
Executive Summary of the Thesis

Arti�cial Neural Neworks for the approximate solution of Partial

Di�erential Equations

Laurea Magistrale in Mathematical Engineering - Ingegneria Matematica

Author: Beatrice Crippa

Advisor: Prof.ssa Paola Francesca Antonietti

Academic year: 2020-2021

1. Introduction

Partial Di�erential Equations (PDEs) are widely
used to model many physical, �nancial and so-
cial phenomena. There exists a wide class of nu-
merical schemes employed for their approximate
solution such as Finite Element methods. Finite
Element methods are based on the construction
of a suitable triangulation of the domain and the
de�nition therein of a discrete space [1]. The
computational cost of FEMs grows with the do-
main dimension, and as a consequence incur in
the so-called curse of dimensionality.
Since deep learning techniques have gained suc-
cess in high-dimensional data frames, new nu-
merical methods have been introduced in the
past years for the approximate solution of PDEs,
based on Arti�cial Neural Networks (ANNs).
ANNs are learning structures based on the
synaptic neural connection in the human brain,
and have been proved to be able to approximate
a wide set of functions [2, 4�6]. On the one hand,
ANN-based methods can overcome the curse of
dimensionality and provide a �exible paradigm
because they are mesh-free. On the other hand,
the lack of a strong theoretical background and
lack of information of the physics of the under-
lying problem represent important drawbacks.
In my thesis I present an ANN-based method

for the numerical solution of PDEs, based on
the work of Xu et al. [14] and Karniadakis [9]
and test its performance on a wide class of prob-
lems in terms of approximation error, stability
and computational time.
This executive summary is organized as follows:
Section 2 provides a brief introduction to ANNs
and the state of the art on their application
to PDEs, Section 3 introduces the numerical
method discussed in my thesis, followed by its
application to the main test cases considered in
Section 4. In Section 5 some conclusions and
further developments are discussed.

2. Arti�cial Neural Networks

ANNs are computational learning systems trans-
forming data inputs into numeric outputs, whose
building blocks are interconnected nodes, called
neurons, that are grouped into layers. Their
main applications are classi�cation, pattern
recognition, and prediction in many disciplines,
usually providing reasonable robustness.
We consider feedforward dense neural networks,
made of one input layer containing the data, one
output layer providing the result and some in-
termediate layers called hidden.
Each neuron takes as input a vector x =
[x1, x2, ..., xN] of data whose entries coincide

1

Executive summary Beatrice Crippa

with the output of all the neurons in the pre-
vious layer, and gives a 1-dimensional output.

Figure 1: Structure of a feedforward dense neu-
ral network with two hidden layers made of six
neurons each. The input layer consists of the
input data and the output layer gives the re-
sult. The middle layers are called hidden and
are made of interconnected nodes, called neu-
rons.

Let us enumerate the neurons in each layer
l = 1, ..., L from 1 to N l. Then, the output alj
of neuron j in layer l is computed as the evalua-
tion of a chosen real activation function σ at the
weighted sum of the neuron input with respect
to speci�c parameters wl

jk, j = 1, ..., N l, k =

1, ..., N l−1, l = 1, ..., L and a bias blj , l = 1, ..., l.

The weights wl
jk are speci�c for each connection

between the kth neuron in layer l−1 and the jth

neuron in layer l. It can be expressed as follows:

alj = σ

N l−1∑
k=1

wl
jka

l−1
k + blj

 ,

∀j = 1, ..., N l ∀l = 1, ..., L. An example of struc-
ture of a backpropagation ANN is represented
in Figure 2.
The weights {wl

jk}jkl and biases {blj}jl are au-
tomatically chosen during the network training
phase, according to the minimization via gradi-
ent descent-based algorithms of a loss function,
usually expressed as sum of square errors:

J(x;W,b) =
||yout(x)− ytrue||2

2N
, (1)

where W is the collection of all the weights
{wl

jk}jkl, j = 1, ..., N l, k = 1, ..., N l−1, l =

1, ..., L and b the vector of the biases {blj}jl, j =

1, ..., N l, l = 1, ..., L, and || · || the Euclidean
norm. The loss function of the output layer is
given by (1), while in the hidden layers it is
modi�ed according to the backpropagation al-
gorithm [8, 12].

Figure 2: Scheme of a backpropagation network.

The performance of an ANN depends on the de-
sign of its architecture, based on the tuning of
the so-called hyperparameters, that may include
the number of layers and neurons, the activa-
tion function, etc. A popular choice of activation
function is the sigmoid, i.e.

σ(z) =
1

1 + e−z
=

1

2

(
1 + tanh

(
z

2

))
.

Cybenko [2] proved that feedforward dense neu-
ral networks with sigmoidal activation functions
are universal approximators for continuous func-
tions (see [5] for details).
Extensions of this result to the estimation of
measurable functions and functions belonging to
Sobolev spaces and their derivatives are possible.

2.1. ANNs for the solution of PDEs

ANNs-based approaches to the numerical solu-
tion of PDE were proposed in [15].
Consider a generic boundary value problem with
Dirichlet boundary conditions expressed in gen-
eral form as:{

Lu(x) = f(x) in Ω,

u = gD on ∂Ω ,
(2)

where L is a di�erential operator to be speci-
�ed. A basic approach [3] consists in determin-
ing the approximate solution uh as the output
of an ANN taking as input suitable coordinate
points in the domain and the corresponding eval-
uation of the PDE data, trained for learning the

2

Executive summary Beatrice Crippa

parameters p = {W,b} by minimizing the fol-
lowing loss function:

J(x, p) =
n∑

i=1

[(LΨt(xi,p)− f(xi))
2+

+ (Ψt(x, p)− gD(xi))
2],

involving a penalty term for the enforcement of
the boundary constraint.
The proposal of Lagaris et al. [7] is instead based
on the following trial solution:

Ψt(x, p) = Ψ̂(x) + F (x)N(x, p), (3)

where Ψ̂ is a smooth extension of the bound-
ary condition gD, F

∣∣
∂Ω

= 0 and N(·, p) is an
ANN giving as output the approximate solution
of the problem (2), trained without taking into
account the Dirichlet condition, by minimizing
the following loss function:

J(x, p) =
N∑
i=1

[∇Ψt(xi, p)− f(xi)]
2. (4)

The approximate solution Ψt(x̂, p
?) of the PDE

at any point x̂ ∈ Ω is �nally given by the trial
solution with parameters p? = arg minp J(x, p).
Other approaches based on the traditional
Galerkin-based numerical methods rely on Fi-
nite Element Neural Networks (FEMNNs) [10],
whose structure is built according to the mesh
de�nition. Some authors have also applied deep
learning to the discovery of the PDE expression
based on a set of scattered data [9].
Finally, extensions to time-dependent problems
were also proposed [13], in which the time is con-
sidered as an additional variable and the ANN
minimizes the following loss function:

J(x, t, p) = JGE(x, t, p) + JIC(x, p) + JBC(x, t, p),

where JGE is given by equation (4), while JIC
and JBC are penalization terms corresponding
to the imposition of the initial and boundary
condition respectively.

3. The network structure

My thesis is based on the work of Xu et al. [14],
who propose to replace the deterministic �eld
Ψt in (3) with another independent ANN that

approximately satis�es the boundary condition:
A(x, y;w1)∣∣∂Ω

≈ gD ∀(x, y) ∈ ∂Ω. Then, the

expression of the approximate solution becomes:

uh(x, y;w1, w2) = A(x, y;w1)+

+B(x, y)N(x, y;w2), (5)

where B is a smooth function whose restriction
to the boundary is zero and N is a network ap-
proximating the PDE solution, whose parame-
ters w2 are learned by the minimization of the
following loss function:

Jp(x,y;w2) =

=

np∑
i=1

[f(xi, yi)− LN(xi, yi;w2)]2, (6)

where LN is the numerical evaluation of the dif-
ferential functional of the problem (2) at the out-
put of the PDE network N .
The boundary network A(x, y;w1) is indepen-
dently trained on points belonging to ∂Ω only,
updating its parameters w1 by minimizing the
boundary loss function:

Jb(x̂, ŷ;w1) =

=

nb∑
i=1

[(gD(x̂i, ŷi)−A(x̂i, ŷi;w1)]2. (7)

The coupled structure is trained inM iterations
of a loop that consists in the minimization of
(6) corresponding to one randomly sampled set
of coordinate points {(xn, yn)}np

n=1 ⊂ Ω (train-
ing of the PDE network N) and the optimiza-
tion of (7) corresponding to random samples
{(x̂n, ŷn)}nb

n=1 ⊂ ∂Ω (training of boundary net-
work A).
After the training phase, the optimal networks
parameters w∗1 and w∗2 are determined and the
approximate solution of the PDE at any point
of the domain can be computed as follows:

ũh(x̃, ỹ) = uh(x̃, ỹ;w∗1, w
∗
2),

where uh is given in (5).
For details about the coupling structure, see Fig-
ure 3.
If the problem has the following structure:

ut − Lu = f in Ω× (0, T],

u = gD on ∂Ω× (0, T],

u(x, 0) = g(x) in Ω,

(8)

3

Executive summary Beatrice Crippa

Figure 3: Coupled neural network structure.
(Taken from [14])

I have proposed an extension of the proposed
approach. The time variable t is treated as an
additional data variable and impose the initial
condition as a penalization term in the loss func-
tion of the PDE network.
The trial solution is modi�ed in order to take
into account also the variable t:

uh(x, y, t;w1, w2) = A(x, y, t;w1)+

+B(x, y)N(x, y, t;w2),

where B is the same functional introduced in (3)
and A and N are ANNs whose parameters w1

and w2 are learned by minimizing the following
loss functions, respectively:

Jb(x̂, ŷ, t̂;w1) =

=

nb∑
i=1

[(gD(x̂i, ŷi.t̂i)−A(x̂i, ŷi, t̂i;w1)]2

and

Jp(x,y, t;w1) =

=

nb∑
i=1

[(g(xi, yi)−N(xi, yi, ti;w1))2+

+ (f(xi, yi, ti)+

−Nt(xi, yi, ti;w2) + LN(xi, yi, ti;w2))2].

The only di�erence in the training algorithm is
that the samples are now (d + 1)-dimensional,
i.e. {(xn, yn, tn)}np

n=1 ⊂ Ω × [0, T] for the PDE
network N and {(x̂n, ŷn, t̂n)}nb

n=1 ⊂ ∂Ω × [0, T]
for the boundary network A.
The networks architecture, i.e. the choice of the
number of layers and neurons, is set up by trial
and error. I have tested the method performance
with networks made of 1, 2 and 3 layers com-
posed of 128, 256 and 512 neurons each. As
activation function I have chosen the hyperbolic
tangent σ(x) = tanh(x) for all the hidden layers
and the linear function σ(x) = x for the output

layer.
Finally, the adopted optimization algorithm is a
variation of the gradient descent, called Adam
optimizer, based on the adaptation of the learn-
ing rate at each iteration, in order to speed up
the convergence and reduce the probability of
settling into a local minimum [11].
As a measure of the approximation error, I have
tested the method on a 20× 20 spatial grid over
Ω and on a 20 × 20 × 20 grid over Ω × [0, T],
evaluating its l2 norm, de�ned in the spatial and
time-dependent cases, respectively, as follows:

err2 =

√√√√ 1

m

m∑
i=1

|uh(xi, yi;w1, w2)− u(xi, yi)|2,

(9)

and

err2,t =

=

√√√√ 1

m

m∑
i=1

|uh(xi, yi, ti;w1, w2)− u(xi, yi, ti)|2.

(10)

4. Numerical results

The architecture of the networks is chosen to be
composed of 3 hidden layers made of 256 neurons
each, and the initialization of the learning rate
of the Adam optimizer is �xed to η = 0.001.

4.1. Poisson problem

The �rst test case (TC.E1) presents a smooth
analytical solution u(x, y) = sin(πx) sin(πy),
that solves the problem{

∆u = f ∀(x, y) ∈ Ω = (0, 1)2,

u = 0 on ∂Ω,

with f derived accordingly.
The second test case (TC.E2) presents instead
a steep peak in the centre of the domain and its
exact solution has the following expression:
u(x, y) = e−1000(x−0.5)2−1000(y−0.5)2 in (0, 1)2.
Figure 4 shows the plot of the error de�ned as
in (9) as a function of the training iteration
counts. It decreases and reaches 10−3 in almost
300 iterations and then starts oscillating around
values of order 10−4.

4

Executive summary Beatrice Crippa

Figure 4: TC.E1: error as a function of the iter-
ation counts.

In Figure 5 we can see that no convergence
is attained in 1000 iterations for the test case
(TC.E2): after an initial decrease, the error
keeps oscillating around 10−1. This is due to
the high-gradient of the exact solution near the
peak, where it suddenly becomes very large. In-
deed, the plot on the right shows that the ap-
proximate curve even presents an opposite cur-
vature to the expected one.

Figure 5: TC.E2: error as a function of the it-
eration counts (left) and computed (green) and
exact (orange) solutions after 1000 training iter-
ations (right).

The exact solutions of test cases (TC.E1) and
(TC.E2) are extremely regular, in C∞(Ω).
Therefore, the approximation error in the L2

norm of the Finite Element method based on
a mesh of granularity h is controlled by h2 and
reaches the same order as the convergence value
of the ANN-based method in both cases in the
same computational time and with meshes made
of almost 103 nodes.

4.2. Heat equation

The last problem analyzed (TC.P1) is a spe-
cial case of system (8), where the di�erential
operator L is speci�ed as the Laplacian and
the exact solution is chosen as u(x, y, t) =
sin(πx) sin(πy)e−t on the domain Ω = (0, 1)2.
The initial and boundary data are set accord-

ingly.

Figure 6: TC.P1: error as a function of the iter-
ation counts.

In Figure 6 we can notice a lower learning rate
of the networks coupling, maybe due to the ad-
ditional penalization term in the PDE loss con-
cerning the initial condition. Within 1000 itera-
tions the error (10) reaches at most order 10−2,
even if it shows a continuously decreasing trend.
Moreover, the plot presents very small oscilla-
tions, proving that the hyperparameters choice
is valid also for the time-dependent case.

5. Conclusions

In the thesis we have extensively studied the per-
formance of the ANN-based method of Xu et al.
[14] for the approximate solution of PDEs. I
have also extended to parabolic and hyperbolic
problems the approach of Xu and tested it on
problems having exact solutions with di�erent
levels of regularity.
The error tends to quickly settle around the con-
vergence value, that is no lower than 10−3 in all
the considered cases. Moreover, as we can de-
duce from the analysis of the problem with so-
lution with a peak (Section 4.1), the method is
also not able to detect particular features of the
solution in small areas of the domain.
This is however a good black-box approach for
the approximate solution of PDEs, even if it can-
not substitute the traditional methods.
Possible future developments may follow two dif-
ferent paths: either trying to optimize the net-
works structures by making use of some auto-
tuning techniques, or moving the focus on the
improvement of Galerkin-type scheme trying to
calibrate the values of some related parameters
via physics-informed PDEs.

5

Executive summary Beatrice Crippa

6. Acknowledgements

I would like to express my gratitude to my ad-
visor, Professor Paola Francesca Antonietti, for
her precious support and directions during the
research for my thesis and for showing me many
interesting unknown aspects and applications of
this subject.

References

[1] Susanne C. Brenner and L. Ridgway Scott.
The mathematical theory of �nite element

methods, volume 15 of Texts in Applied

Mathematics. Springer, New York, third
edition, 2008.

[2] George Cybenko. Approximation by super-
positions of a sigmoidal function. Math-

ematics of Control, Signals and Systems,
2(4):303�314, 1989.

[3] Gamini M. W. M. Dissanayake and Nhan
Phan-Thien. Neural-network-based ap-
proximations for solving partial di�eren-
tial equations. Communications in Numeri-

cal Methods in Engineering, 10(3):195�201,
1994.

[4] A. Ronald Gallant and Halbert White. On
learning the derivatives of an unknown
mapping with multilayer feedforward net-
works. Neural Networks, 5(1):129�138,
1992.

[5] Kurt Hornik, Maxwell Stinchcombe, and
Halbert White. Multilayer feedforward net-
works are universal approximators. Neural

Networks, 2(5):359�366, 1989.

[6] Kurt Hornik, Maxwell Stinchcombe, and
Halbert White. Universal approximation of
an unknown mapping and its derivatives us-
ing multilayer feedforward networks. Neural
Networks, 3(5):551�560, 1990.

[7] Isaac E. Lagaris, Aristidis C. Likas, and
Dimitris I. Fotiadis. Arti�cial neural net-
works for solving ordinary and partial dif-
ferential equations. IEEE Transactions on

Neural Networks, 9(5):987�1000, 1998.

[8] Yann LeCun. A theoretical framework for
back-propagation. In David Touretzky, Ge-
o�rey Hinton, and Terrence Sejnowski, edi-
tors, Proceedings of the 1988 Connectionist

Models Summer School, CMU, Pittsburg,

PA, volume 1, pages 21�28. Morgan Kauf-
mann, 1988.

[9] Maziar Raissi, Paris Perdikaris, and
George Em Karniadakis. Physics-informed
neural networks: A deep learning frame-
work for solving forward and inverse prob-
lems involving nonlinear partial di�eren-
tial equations. Journal of Computational

Physics, 378:686�707, 2019.

[10] Pradeep Ramuhalli, Lalita Udpa, and
Satish S. Udpa. Finite-element neural
networks for solving di�erential equations.
IEEE Transactions on Neural Networks,
16(6):1381�1392, 2005.

[11] Sebastian Ruder. An overview of gradient
descent optimization algorithms. arXiv e-

print, 1609.04747, 2017.

[12] David E. Rumelhart, Geo�rey E. Hinton,
and Rondald J. Williams. Learning repre-
sentations by back-propagating errors. Na-
ture, 323(6088):533�536, 1986.

[13] Justin Sirignano and Konstantinos
Spiliopoulos. DGM: a deep learning
algorithm for solving partial di�erential
equations. Journal of Computational

Physics, 375:1339�1364, 2018.

[14] Kailai Xu, Bella Shi, and Shuyi Yin. Deep
learning for Partial Di�erential Equations
(PDEs). 2018.

[15] Neha Yadav, Anupam Yadav, Manoj Ku-
mar, et al. An introduction to neural

network methods for di�erential equations.
Springer, 2015.

6

	Introduction
	Artificial Neural Networks
	ANNs for the solution of PDEs

	The network structure
	Numerical results
	Poisson problem
	Heat equation

	Conclusions
	Acknowledgements

