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Abstract 

Next Generation Sequencing (NGS) technology has made it possible, in recent 

decades, to obtain a lot of mutational data in a short time and at a low cost. Based on 

the wealth of mutational data generated NGS technology, this thesis focuses on 

colorectal cancer patients (CRC) with mutations in the RAS gene family (KRAS, NRAS, 

HRAS), since these are patients who, unfortunately, do not respond to conventional 

therapies.  

Our main objective is the identification in RAS-mutated CRC patients of co-

occurrent mutations, whose actionability may be further investigated. The study aims 

to enhance a previous workflow developed for identifying the most frequently co-

occurring mutated genes in a RAS-mutated subpopulation of CRC patients. Given the 

promising results of that work, this thesis project aims to improve the encoding and 

selection phases, needed to transform the available mutational data into relevant 

features for Machine Learning techniques. Additionally, it seeks to optimize the 

prediction phase and its outcomes by evaluating and improving the previously 

proposed Data Science-based pipeline. The objective is to identify the most effective 

strategy in terms of performance and highlight the relevant features in the proposed 

methods. The resulting relevant features could thus be a starting point for 

personalized therapies for CRC patients who do not respond to conventional 

therapies. 

Key words: RAS gene family, Machine Learning, mutations, feature selection, 

bioinformatics, colorectal cancer, encoding, computational genomics. 
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Abstract in italiano 

La tecnologia Next Generation Sequencing (NGS) ha reso possibile, negli ultimi 

decenni, ottenere una grande quantità di dati mutazionali in breve tempo e a basso 

costo. Sulla base della ricchezza di dati mutazionali generati dalla tecnologia NGS, 

questa tesi si concentra sui pazienti affetti da cancro del colon-retto (CRC) con 

mutazioni nella famiglia dei geni RAS (KRAS, NRAS, HRAS), poiché questi pazienti, 

purtroppo, non rispondono alle terapie convenzionali.  

Il nostro obiettivo principale è l’identificazione, nei pazienti affetti da CRC con 

mutazioni RAS, di mutazioni co-occorrenti, le cui influenzabilità devono essere 

ulteriormente investigate. Lo studio mira a migliorare il flusso di lavoro precedente 

sviluppato per identificare i geni mutati più frequentemente co-occorrenti in una sotto-

popolazione di pazienti affetti da CRC con mutazioni RAS. Dati i promettenti risultati 

di quel lavoro, questo progetto di tesi mira a migliorare le fasi di codifica e selezione, 

necessarie per trasformare i dati mutazionali disponibili in caratteristiche rilevanti per 

le tecniche di apprendimento automatico. Inoltre, si propone di ottimizzare la fase di 

predizione e i suoi risultati attraverso la valutazione e il miglioramento della pipeline 

precedentemente proposta basata sulla Data Science. L’obiettivo è identificare la 

migliore strategia in termini di prestazioni e mettere in evidenza le caratteristiche 

rilevanti preservate nei metodi proposti. Le caratteristiche rilevanti risultanti 

potrebbero essere quindi un punto di partenza per terapie personalizzate per i pazienti 

affetti da CRC che non rispondono alle terapie convenzionali. 
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Introduction 

The genetic material, or genome, is given by the set of genes, which are portions of 

DNA that contain information necessary for the proper functioning of the organism. 

Variation in the structure of the genetic material, and so in the nucleotide sequence of 

DNA, is called mutation and can cause diseases such as cancer. Much mutational data 

is possible today thanks to the development in recent decades of NGS, a technology 

that allows the entire genome to be sequenced in a short time and at a low cost. 

Within this context, this thesis is developed. Our main objective is the identification in 

RAS-mutated colorectal cancer (CRC) patients of co-occurrent mutations, whose 

actionability may be further investigated. Specifically, the study aims to assess and 

enhance a previous workflow[1], in which a Data Science-based pipeline has been 

proposed to identify the most frequently co-occurring mutated genes in a RAS-

mutated subpopulation of CRC patients. In particular, this thesis is focused on 

improving the encoding and selection phases, needed to transform the available 

mutational data into relevant features for Machine Learning techniques. In addition, it 

evaluates and enhances the previously proposed Data Science-based pipeline to better 

optimize the prediction phase and its results, together with the strategy required to 

identify relevant co-occurrent mutations.  

To achieve this goal, we work on several aspects. To begin with, for what concern the 

encoding phase, we develop a method for identifying the category of patients, called 

hypermutants, who can be eliminated from the analysis because they are subject to a 

specific therapy. Moreover, we perform a sensitivity analysis to estimate suitable 

significance thresholds for MutSig and MutClust algorithms, needed to identify a gene 



12 

 

 

space on which proceeding with the analysis and to determine any mutational area -

hotspot- of interest.  

The other aspects we focus on concerns the feature selection and prediction phases. 

We investigate the robustness of Lasso Logistic Regression selection for Logistic 

regression model using a bootstrapping approach to select the most conserved 

features. Furthermore, we evaluate an alternative selection based on feature 

importance for the classification task of interest (such as Mean Decrease in Impurity) 

and we also run different Machine Learning models within different scenarios to 

evaluate the performances in terms of different metrics (such as accuracy, precision, 

recall and f1-score) and the selected features spaces. In this way, using different 

techniques and analyses can help better determine features that are strongly preserved 

in the proposed methods and assess their robustness. 

By performing all these analyses and evaluations, we highlight features that could 

offer a starting point for personalized therapies for CRC patients who do not respond 

to conventional therapies. 
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1 Background 

In this chapter, the fundamental concepts that are the basis for understanding the 

mechanisms that act at the basis of biological systems are illustrated. In addition, an 

overview of colorectal cancer and Next Generation Sequencing (NGS) technology is 

given. 

1.1. DNA, Genes, Mutations 

DNA (desoxyribonucleic acid) is a macromolecule found in all cells of living beings. 

Its typical double-helix shape is the result of the double-helix coiling of two 

polynucleotide chains. These chains are chemically composed of nucleotides, elements 

formed by a phosphate group, a deoxyribose sugar and a nitrogenous base (adenine, 

cytosine, guanine or thymine). Nucleotides within the same chain are linked together 

by a covalent bond, whereas those between the two chains are linked by a hydrogen 

bond. The double helix is packed, with the presence of proteins called histones, until 

it takes on a compact, twisted shape (called a chromosome) that thus allows DNA to 

be contained within the nuclear membrane in eukaryotic cells. During cell division, 

the chromosome takes an “X” shape and each human cell contains 23 pairs: 22 equal 

pairs called "homologous," 1 pair called "sexual" because it determines male (XY) and 

female (XX) sex. 

DNA plays the crucial role of containing and transmitting essential information for the 

proper functioning of the organism. Precisely, individual instructions are contained 

within genes. Genes, in fact, are portions of DNA that contain the information for 

coding a product (mainly proteins). Proteins, in their turn, are important to ensure the 

proper functioning, structure, and shape of the cells that make up organs and tissues. 
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In a nutshell, the protein-coding mechanism involves transcribing regions of DNA into 

RNA and then translating them into protein. During the transcription process, which 

takes place in the nucleus, DNA straightening, separation of the two chains, and 

generation of messenger RNA (mRNA) occur. Subsequently, mRNA leaves the 

nucleus and arrives in the ribosome, where the translation phase takes place. At this 

stage, a nucleotide triplet (called a codon) is translated into an amino acid. As a result, 

the amino acids conjunction forms the protein. Moreover, translation occurs according 

to the genetic code.  

 

A recent study [2] reported a catalogue of human genes in which 41,356 genes were 

counted, 19,839 of which encode a protein (i.e., transcribed into RNA and then 

translated into protein). Taking the number of base pairs into account, merely 2% of 

DNA is coding. Lastly, the non-coding portion of DNA (called Junk DNA) plays 

additional key roles, such as regulating gene expression, i.e., whether and how much 

a gene is activated.  

In addition to the process of DNA transcription and translation, the process of DNA 

duplication also takes place in cells. Specifically, this occurs during cell division, in 

which a mother cell divides into two or four daughter cells (depending on whether it 

is mitosis or meiosis). Briefly, during the stages of cell division, DNA is "unwound" 

from its double-helix form, the two strands are separated, and then complementary 

Figure 1. Example of gene expression in a cell 
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strands are created. The result is double DNA destined for daughter cells. Again, there 

are several steps involving multiple elements making this process very complex and 

high risk of error. 

Given the complexity of the mechanisms, the number of elements involved, and the 

possible occurrence of mutagenic factors (external factors, such as exposure to ionizing 

radiation), errors can occur. Nevertheless, errors can be recognized by the cell, which 

brings DNA repair mechanisms into play. Yet, if the error is not recognized, it can be 

transmitted to subsequent cells and, if it occurs in a germ cell, even inherited by every 

cell of an offspring organism. Mutations are the basis of evolution since they allow 

organisms to differentiate more, but they can also lead to the onset of diseases and/or 

dysfunctions of the organism. 

To sum up, mutations can be classified according to: 

1. Type of cell in which they occur. 

2. Which DNA sections it involves. 

3. Origin (induced or spontaneous). 

1.1.1. Type of cell in which they occur 

Whether a mutation first occurs in a somatic cell, it can be transmitted only to cells of 

the individual in which it occurs. On the other hand, if the mutation occurs in a germ 

cell (such as the egg cell or sperm cell), it can pass on to subsequent generations, 

causing mutated offspring.  

1.1.2. Sections, types and effects  

Depending on which DNA sections it involves, mutations can be divided into: 

1. Gene mutations: these affect single nucleotides (point) or a few base pairs (for 

repeated sequences). 
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2. Chromosomal mutations: these affect an area of the chromosome. 

3. Genomic mutations: these alter the number of chromosomes.  

The most common gene mutations are the point mutations listed here below: 

1. Substitution: substitution of one nucleotide/base pair. 

2. Insertion: addition of one or more nucleotides/base pairs. 

3. Deletion: loss of one or more nucleotides/base pairs. 

The effect of these mutations is defined by categorizing mutations as follows: 

1. Missense: it causes a change in coding for a different amino acid. The 

phenotype can change depending on the substituted amino acid. 

2. Nonsense: causes a change in coding for an amino acid to a STOP codon, 

terminating protein synthesis. 

3. Silent: if the pair substitution encodes an equivalent codon.  

4. Frameshift: insertion and deletion alter the reading sequence causing a shift 

resulting in the insertion of different amino acids. 

1.2. Next Generation Sequencing 

Next Generation Sequencing (NGS) is a DNA sequencing technology that enables 

large genomes to be analysed in short time frames. These tools make it possible to 

identify many alterations, some of which may prove to be an important aid in 

therapeutic decision making.  

The Next Generation Sequencing process consists of: 

1. Sample preparation: DNA is extracted from the sample and fragmented. The 

fragments are ligated to adapters (artificial molecules) that enable their 

amplification.  
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2. Amplification of DNA fragments: various techniques such as PCR that allows 

multiple copies of the DNA fragments to be produced to be sequenced 

simultaneously. 

3. Sequencing: technologies involve the generation of light or electrical signals. 

4. Sequencing data are processed and analysed by special software that identifies 

any variations and mutations from the reference genome. The results are 

reported in BAM (Binary Alignment and Map), SAM (Sequence Alignment and 

Map) and VCF (Varian Call Format) files. 

1.2.1. Applications 

NGS technology can be used for several applications: 

1. Whole Genome Sequencing (WGS): analysis of an individual's entire genome. 

2. Whole Exome Sequencing (WES): analysis of the coding region of all genes in 

an individual. 

3. Targeted Sequencing: analysis of a group of genes or a single gene. 

4. Transcriptome Analysis: analysis of RNAs produced by the cell 

(transcriptome). [3] 

These types of experiments allow different data-processing approaches to extrapolate 

information about mutational data, which can then be studied and analysed. 

1.3. Colorectal cancer 

Colorectal cancer (CRC) is the third most common cancer in industrialised countries. 

According to AIOM-AIRTUM 2021 data, it accounts for 10 % of all cancers diagnosed 

worldwide [4].  
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1.3.1. Anatomy 

The digestive system consists of a set of organs responsible for the intake and digestion 

of food, absorption of nutrients and elimination of waste products. It includes: mouth, 

epiglottis, pharynx, oesophagus, liver, pancreas, small intestine, large intestine. 

Secondly, the terminal tract, the large intestine, is responsible for absorbing water and 

electrolytes, accumulating food waste and providing for its decomposition and 

evacuation from the body. About 1.5 meters long in total, it consists of: Colon, Rectum 

and Anal Canal. 

 

1.3.2. Classification 

Colorectal cancer can be classified according to its histology, molecular mechanisms, 

molecular markers, and stages of disease. 

1.3.2.1. Histopathological classification 

Histologically (that is by the type of cells that constitute it), the most common 

colorectal cancer is adenocarcinoma (95%). Adenocarcinoma is a malignant tumour 

that develops from epithelial glandular cells that are assigned to produce mucus: they 

Figure 2. Digestive System 
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proliferate uncontrollably and invade surrounding tissues. Furthermore, glandular 

epithelial cells are present in the colon and rectum, lining the inside of the colon and 

producing mucin.   

1.3.2.2. Molecular classification 

Based on the molecular mechanisms underlying disease formation and development, 

colorectal cancer can be classified into two broad categories: 

1. 85% - MSS (stable microsatellite) or MSI-L (unstable low-level microsatellite) 

phenotype: among these, 1% represent hereditary FAP (familial adenomatous 

polyposis) syndrome and 84% sporadic. 

2. 15% - MSI - H (high-level unstable microsatellite) phenotype due to DNA 

mismatch repair deficiency: 3% hereditary Lynch syndrome and 12% sporadic. 

1.3.2.3. Classification based on molecular markers 

The classification below is based on the use of specific molecular biomarkers to define 

the biological features of the tumour.  

1. Infiltration with immune system cells: local immune cell infiltration has been 

shown to be a powerful factor for prognostic classification: The MSI-H 

phenotype is closely associated with high lymphocyte density, an association 

in all probability ascribable to a pronounced antitumor immune response. 

2. Microsatellite instability: Analysis of microsatellite instability may provide 

information on the prognosis and therapeutic response of patients: MSI-H 

phenotype did not show benefit from adjuvant fluorouracil therapy whereas 

had an improved response to irinotecan-based chemotherapy. 

3. RAS gene family mutations: Mutations in the RAS gene family (especially 

KRAS oncogene) do not allow affected cells to respond to treatment with anti-
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EGFR antibodies, thus reducing response rates from monotherapy from almost 

20% to nearly 0%. 

1.3.2.4. Cancer stage classification 

“Stage” is the term used to describe the size of the tumour and its possible spread. 

Accordingly, this information is used by physicians to determine the best therapy. 

Speaking of colorectal cancer, it is classified into: 

1. Stage I: tumour circumscribed within the intestinal wall. 

2. Stage II: intestinal patter invaded by the tumour but lymph nodes unharmed. 

3. Stage III: one or more lymph nodes close to the intestine invaded by the 

tumour. 

4. Stage IV: tumour spread to other organs. [5] 

1.3.3. Therapeutic treatments 

Therapeutic treatments depend on the area, staging, presence or absence of metastasis. 

Potential treatments are: 

1. Resective surgery: removal of the tumour mass. 

2. Chemotherapy (therapy directed at tumour cells) and/or immunotherapy (acts 

by stimulating immune response) 

3. Postoperative (adjuvant) chemotherapy: based on the analysis performed on 

the surgically removed tumour, it is evaluated whether to perform 

chemotherapy therapy to reduce the risk of recurrence. 

4. Postoperative radiation therapy: in support of patients with cancer tumour 

resection.  
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2 Thesis Goals 

As mentioned in the introduction, this study is focused on colorectal cancer (CRC) 

patients with mutations in the RAS gene family (RAS, KRAS, NRAS): these patients 

are, in fact, unlikely to respond to conventional therapies and mutations on genes of 

the RAS gene family are not actionable (i.e. valid targets for alternative treatments). 

Accordingly, our main objective is the identification in RAS-mutated CRC patients of 

co-occurrent mutations, whose actionability may be further investigated. 

Specifically, the study aims to assess and enhance a previous workflow developed 

within a master thesis titled "Statistical and machine learning methods for discovering 

mutational signatures in RAS-mutated colorectal cancer patients" [1]. In such a research 

work, a Data Science-based pipeline has been proposed to identify the most frequently 

co-occurring mutated genes in a RAS-mutated subpopulation of CRC patients. 

Particularly, a supervised learning setting is used to extract the features that are crucial 

to recognize RAS-mutated patients, starting such a prediction task from an entire set 

mutational features obtained using a combination of MutSig2CV [6], [7] and 

MutClustSW [8] algorithms. 

Given the promising results of that work, this thesis project is first focused on 

improving the encoding and selection phases, needed to transform the available 

mutational data into relevant features for Machine Learning techniques. In addition, it 

evaluates and enhances the previously proposed Data Science-based pipeline to better 

optimize the prediction phase and its results, together with the strategy required to 

identify relevant RAS co-occurrent mutations. 

Towards these goals, for what concerns the encoding phase we aim to develop a 

method for identifying the category of patients, called hypermutants, to whom specific 
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therapy is administered, would help in achieving the goal as these patients would thus 

be eliminated from the analysis.  

Moreover, we aim to better determine genes and hotspots of interest for the application 

of machine learning models through investigations and a sensitivity analysis able to 

tune the significance thresholds of MutSig2CV and MutClustSW. Accordingly, we aim 

to subdivide MutSig2CV-based assessments into subcases (such as genes that belong 

only to patients with the mutated RAS gene family, genes that belong only to patients 

with the unmutated RAS gene family, genes that are in common between the two 

above categories) to better identify a gene space of interest to proceed with 

MutClustSW analysis.  

For what concerns the feature selection and prediction phases, we aim to evaluate 

several scenarios, feature selection methods and classification models. Using different 

methodologies in different training/testing scenarios evaluated in terms of 

performance with different metrics (such as accuracy, precision, recall, and f1-score) 

offers the possibility both to choose the best strategy in terms of performance and 

extract the most relevant features. Specifically, we aim to analyse the robustness of a 

Lasso Logistic Regression classifier to accurately choose the most conserved features 

and make comparisons with other classification models. Also, we aim to apply an 

alternative selection method based on feature importance to find other spaces that 

could be valuable in terms of the classification task of interest. Notably, we aim to 

compare so-obtained feature sets and produce rankings able to evaluate the predictive 

role of any selected feature.  

The expected result is to highlight several mutational features that could offer a 

relevant starting point for further studies moving towards personalized therapies for 

those CRC patients who do not respond to conventional therapies. 
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3 Material 

This section reports how the data collections are performed and how mutational data 

are processed to obtain final dataset. 

3.1. cBioPortal 

With NGS technologies that made it possible to investigate the genome more easily, 

genomic data has increased exponentially. Several projects have collected and stored 

genomic data in repositories and databases accessible to researchers to share and boost 

advances and discoveries in the genomic field within the scientific community.  

The database from which the data considered in this study are taken is cBioPortal [9], 

[10]. cBioPortal allows interactive exploration of cancer genomics datasets and 

organises information into MAF files (Mutation Annotation Format), a standard file 

type aggregating mutational information from files in VCF format (Variant Calling 

Format reports somatic variants detected by variant identifiers).  

To be specific, MAF files can be of two types: 

1. Minimum MAF with 6 required columns: 

- Chromosome: affected chromosome (e.g. ch1). 

- Start_Position: lowest numeric position of the reported variant on 

the genomic reference sequence/the mutation start coordinate. 

- End_Position: highest numeric genomic position of the reported 

variant on the genomic reference sequence/the mutation end 

coordinate. 

- Reference_Allele: plus strand reference allele at this position; it 

includes the deleted sequence for a deletion or "-" for an insertion. 
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- Tumor_Seq_Allele2: primary data genotype for tumor sequencing 

allele. 

- Tumor_Sample_Barcode: aliquot barcode for the tumor sample. 

4 optional colums: 

- t_alt_count: variant allele count (tumor). 

- t_ref_count: reference allele count (tumor) 

- Protein_position: relative position of affected amino acid in protein. 

- SWISSPROT: UniProtKB/Swiss-Prot accession. 

2. Extended MAF: 32 columns, including the previously mentioned, 1 

column with amino acid variation, 4 columns with information on the 

number of reference alleles and variants in tumor and normal samples. 

In addition to the mutational information (such as gene symbol, position in the 

chromosome, and variant type), clinical data are also available with information 

regarding patients (such as sex, age diagnosis, tumor site) and samples (such as tumor 

stage). The final dataset of each study is obtained by aggregating the information from 

the mutational and clinical dataset. 

3.2. Datasets 

In this thesis work, the datasets collected concern somatic mutations of colorectal 

cancer samples processed through whole-exome sequencing (WES) and using 

hg19/GRCh37 variant as the reference genome call. 

The studies considered are: 

1. Giannakis et al. [11] 

2. TCGA - Pan Cancer Atlas (A project funded by the US National Institutes of 

Health (NIH), aimed at creating a catalog of genetic mutations responsible for 

cancer). 
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3. Seshagiri et al. [12] 

Below is a summary table with key information from each study: 

 Giannakis 

et al. 

TCGA Pan Cancer 

Atlas 

Seshagiri 

et al. 

Patients 619 594 (*) 74 (*) 

Samples 619 528 (*) 72 (*) 

Patients with the mutated RAS gene 215 258 39 

Percentage of patients with the mutated RAS 

gene compared with total patients 
43,4 % 34,7 % 52,7 % 

Table 1. Summary information about the collected data 

(*) The number of patients and samples is different becausenonly samples subjected to WES are considered. 

3.2.1. Protocols 

Regarding the protocols implemented by each study, the flow consists of the following 

general steps:  

1. Sample preparation and extraction: acquisition of genomic DNA from 

biological samples. 

2. Exon library preparation: DNA fragmentation, ligation to adapter, target 

enrichment. 

3. Exome sequencing: library subjected to parallel sequencing to produce millions 

of short reads. 

4. Alignment and mapping: alignment of sequencing data to human genome 

reference sequence. 

5. Variant Calling: in silico tools used to determine variant calling. 

6. Annotation: annotation of variants provides information for analysis and 

interpretation. 

7. Filtering: to identify random genes. 
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The protocols of each study are given below.  

Giannakis et al. Protocol details 

Sample 

preparation and 

extraction: 

Patients undergo resection of the tumor and adjacent tissue. Samples are 

fixed in formalin and embedded in kerosene (FFPE). Genomic DNA is 

extracted from dissected tumor areas from tissue sections obtained from 

FFPE blocks using QIAGEN QIAamp DNA FFPE Tissue Kit. 

Exon library 

preparation 

DNA subjected to hybrid capture in solution phase with Exome Sure Select 

V2 (Agilent Technologies). 

Exome sequencing Sequencing with Illumina HiSeq 2000 (average coverage 90x). 

Alignment and 

mapping 
Alignment Using Burrows-Wheeler Aligner BWA-MEM. 

Variant Calling 
Somatic mutation detection by MuTect and Somatic Indels with Idelocator 

and Strlka. 

Annotation 

Clinical, epidemiological and pathological annotations related to incident 

colorectal cancers in the Nurses' Health Study (NHS) and Health 

Professionals Follow-up Study (HPFS) cohort studies. 

Filtering 
Filter out consistent C>T mutations with a single-stranded bias based on read 

pair orientation. 

Table 2. Giannakis et al. protocol details 
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TCGA Pan Cancer Atlas protocol details 

Sample 

preparation and 

extraction: 

Biological samples were collected from patients who underwent surgical 

resection and had not received any previous treatment for their disease, 

including chemotherapy or radiation therapy. Each frozen tumor sample had 

an accompanying normal tissue sample. Each tumor and the adjacent normal 

tissue sample were embedded in optimal cutting temperature (OCT) 

medium. DNA extraction from the tumor samples using the Qiagen AllPrep 

DNA/RNA kit (Qiagen). 

Exon library 

preparation 
Exome capture was performed using SOLiD (NimbleGen CCDS Solution 

Probes) and Illumina (NimbleGen SeqCap EZ Exome 2.0 Solution Probes). 

Exome sequencing Sequencing with Illumina HiSeq 2000 (mean coverage 179x). 

Alignment and 

mapping 

Alignment using Burrows-Wheeler Aligner BWA - MEN (if read length is 

greater than or equal to 70 bp) or BWA - aln. Each read group is aligned to 

the reference genome separately, and all read group alignments that belong 

to a single aliquot are merged using Picard Tools, SortSam, and 

MergeSamFile. Duplicate reads are marked to avoid downstream variant 

calling errors. 

Variant Calling 

Variant Calling is performed using four separate pipelines-Musa, MuTect2, 

VarScan2, Pindel. Variant Calling is reported by each pipeline in a VCF 

format. The four separate pipelines are implemented to harmonise the data. 

Currently there is no scientific consensus on the best variant calling pipeline, 

so the researcher is responsible for choosing the most appropriate pipeline 

for the data. 

Annotation 

Raw VFC files are annotated with the VEP (Variant Effect Predictor) v84 

command. Variants in VCF files are also matched with known variants from 

external mutation databases: GENCODE v22, Sift v.5.2.2, ESP v.20141103, 

Polyphene v.2.2.2, dbSNP v.156, Ensembl genebuild v.2017-07, Ensembl 

regbuild v.13.0, HGMD public v.20154, ClinVar v.201601 

Filtering False-positive filter for labeling low-quality variants in VarScan. 

Table 3. TCGA Pan Cancer Atlas protocol details 
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Seshagiri et al. protocol details 

Sample 

preparation and 

extraction: 

Fresh frozen primary colon tumors matched to the patient and normal tissue 

samples were obtained from commercial sources. Tumor DNA extracted 

using the Qiagen AllPrep DNA/RNA kit (Qiagen). 

Exon library 

preparation 
Exome capture was performed using SeqCap EZ v2.0 (NimbleGen). 

Exome sequencing Sequencing with Illumina HiSeq 2000 (average coverage 179x). 

Alignment and 

mapping 
Alignment Using Burrows-Wheeler Aligner BWA. 

Variant Calling 
Detection of somatic mutations with Illumina 2.5M single-

nucleotidepolymorphism (SNP) and Indels with GATK indel Genotype 

Version 2. 

Annotation Variants annotated using Ensembl (version 59). 

Filtering 

Known germline variations represented in Known germline variations 

represented in dbSNP Build 131, but not represented in COSMIC 

v54.Variants that were present in both tumor and normal samples were 

removed as germline variations.Predicted somatic variations were further 

filtered to include only those positions with a minimum 10-fold coverage in 

both tumor and corresponding normal. 

Table 4. Seshagiri et al. protocol details 

3.2.2. Deletion of duplicated rows in TCGA Pan Cancer Atlas 

In examining the columns of the TCGA Pan Cancer Atlas dataset, special regard was 

placed on the "Matched_Norm_Sample_Barcode" column, in which the patient ID is 

matched to the normal sample. For the same patient, two rows resulted with the same 

mutational information minus the code matched to the normal sample, i.e., blood (10) 

or tissue (11). 

Figure 3. Example of two rows in the Matched Norm Sample Barcode column of the same patient 

with two different codes to indicate normal sample type. 
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Since two rows containing the same mutational information minus the code matched 

to the normal sample resulted for the same patient, specifically for 37 patients, we 

proceeded with the elimination of one of the two duplicate rows: specifically, the one 

with blood as sample type (10) is retained to be consistent with other patients in the 

dataset. In addition to maintaining consistency, computational performance is also 

improved by reducing the number of rows.  
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4 Methods and Software  

This part explains in detail how the models and software used in this analysis work. 

Furthermore, we introduce the metrics used to quantify the level of performance of 

the models discussed in the next chapter. 

4.1. MutSig2CV 

MutSig (Mutational Significance)[6], [7] is an algorithm implemented in Matlab to 

recognise genes mutated with a higher frequency than expected by chance in a cohort 

of patients. In addition, MutSig developers collected samples from 21 cancer types by 

compiling a list of 18 388 genes. 

The latest "MutSig2CV" version of MutSig algorithm estimates the background 

mutation rate (BMR, average frequency at which genetic mutations occur in a 

population) for each gene-patient-mutation category combination based on the silent 

mutations observed in the gene and non-coding mutations in the surrounding regions. 

Three significance tests are calculated for each gene: 

1. MutSigCV (Covariance): determines the P-value for observing the given 

amount of non-silent mutations in the gene, given the background pattern 

determined by silent (and noncoding) mutations in the same gene and 

neighbouring genes in the covariate space.  

2. MutSigCL (Clustering): groups mutations at the local site level, which allows 

MutSig to differentiate between, on the one hand, genes with uniformly 

distributed mutations and, on the other hand, genes with localised hotspots, 

assigning higher significance to the latter. 
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3. MutSigFN (Conservation): estimates the significance of the tendency of 

mutations to occur at highly evolutionarily conserved positions (using 

conservation as a proxy for likely functional impact). 

Finally, these three statistical tests are combined into a single P-value. At first, an 

earlier joint P-value (CL + FN) is calculated from the joint probability distribution of 

random permutations. Afterwards, this is combined with the MutSigCV P-value using 

the Fisher method (which combine P-values from independent tests).  

Concerning the high number of genes, the final values of P-values are converted to 

False Discovery Rate (FDR), taking the name q-value, using the Benjamin Hochberg 

method. The Benjamin Hochberg procedure enables the selection of significant values 

in a set of independent statistical tests. Briefly, a threshold value is established for the 

rate of acceptable false positives (for example 5%) and the P-values obtained from the 

independent tests are sorted in ascending order. Subsequently, for each P-value, the 

ratio of acceptable false positives to the position of the P-value in the sorted list is 

calculated. Genes with a q-value <0.1 are declared significantly mutated. 

4.2. MutClustSW 

MutClustSW [8] is an algorithm that identifies somatic mutations that occur most 

frequently in a genomic region (called hotspot). Specifically, it is based on the Smith-

Waterman algorithm to identify mutation hotspots of single or clustered amino acid 

residues, as mutation hotspots are single or clustered amino acid residues that show a 

high mutation frequency in cancer-related genes. The MutClustSW algorithm 

evaluates the clustering of mutation hotspots and their position in individual genes: in 

conclusion, it can identify both single amino acid mutation hotspots and amino acid 

tracts with high mutation frequencies without a priori information on protein 

domains. 
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An adaptation of the Smith-Waterman algorithm (originally used local alignment of 

DNA and protein sequences) is made: mutations along the amino acid length of given 

genes are converted into one-dimensional series or score vectors representing the 

presence or absence of mutations. If the amino acid is not mutated, then a negative 

score is assigned at that position. On the contrary, the score increases with the 

frequency of mutation of that amino acid at that position. Hotspots are identified by 

recursively iterating the algorithm: at each iteration, the nearest hotspots below a 

certain threshold are merged into a single cluster.  

Significance values are then adjusted for multiple testing using the Benjamin-

Hochberg method, and segments with a false discovery rate (FDR) < 0.05 are defined 

as significant hotspots. MutClustSW is an open-source algorithm implemented in R, 

available for free download and use. 

4.3. Machine Learning Classifier  

Machine Learning is a branch of Artificial Intelligence concerned with developing 

algorithms that enable computers to learn tasks and improve automatically by 

analysing large amounts of data. Supervised Machine Learning models try to find 

patterns and relationships among the example data to predict the outcome of a learnt 

task in the case of new data. 

Broadly speaking, the machine learning workflow consists of the following steps:  

1. Collection and preprocessing of data  

2. Choice of the algorithm(s) 

3. Pattern analysis and parameter selection 

4. Training of the model 

5. Testing of the tuned and trained model on new data 

6. Interpretation of the collected results 
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Specifically, Supervised Machine Learning approaches aim to find a relationship 

between dependent variables and independent variables in known training data (used 

as examples) in order to make predictions on new data. The dependent variables are 

those that are to be predicted (e.g., memberships, regession values or class labels), 

while the independent variables allow to estimate these predicted variables (e.g., 

classify an observation into a particular class). 

All Machine Learning models presented in this study are implemented in Python for 

a classification task. Details of the Supervised Learning methods are given below. 

4.3.1. Logistic regression, Lasso and Ridge regularisations 

In comparison to linear regression, which looks for a line that best fits the data, logistic 

regression is used to model the probability of a finite number of outcomes (e.g., class 

membership in a classification task).  

Lasso and Ridge regularisations are embedded feature selection methods since they 

both attempt to minimise the sum of residuals (RSS) along with a penalty term. In the 

first case (L1 norm - the sum of the absolute values – and the penalty term defined as 

L1), a shrinkage of the variables is performed as it can reset some coefficients of the 

model to zero producing a simpler model. In the second case (L2 norm - square root 

of the sum of the squared values - and penalty term defined as L2), on the contrary, 

the variables are all retained, without eliminating them but reducing their impact on 

the model. 

In Python we used the sklearn.linear_model, specifically implementing with the class 

LogisticRegression. 

4.3.2. Random Forest and Mean Decrease Impurity (MDI) 

Random Forest is a machine learning model that is based on the creation of multiple 

decision trees. Each tree is created using a random subset of training data and a subset 
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of independent variables. Therefore, combining the results of all the individual trees 

and choosing as the classification the one with more outputs produces a final 

prediction. In Python, we used the sklearn.ensemble library implemented with the class 

RandomForestClassifier. The Random Forest with Feature Importance (called Mean 

Decrease impurity) calculates the importance of each feature as the sum of the number 

of splits (across all trees) that include the feature in proportion to the number of 

samples it splits.  

In Python, we used the sklearn.ensemble implementation of the class 

RandomForestClassifier. 

4.3.3. Bootstrapping 

Bootstrapping, which consists of repeated samplings of the original dataset with 

replacement, gives an estimate of the sample distribution.  

In this thesis, the Bootstrapping method has a dual role. The first role consists in 

feature selection: in particular, after applying 100 Lasso Logistic Regression models, 

we decided to select features that are different from zero at least 50 % of the times. The 

features selected by this method are then compared with those selected by the Random 

Forest method with Feature Importance to assess which and how many turn out to be 

in common. The second one is to evaluate the robustness of the individual Lasso 

Logistic Regression model: specifically, the features are ranked in descending order 

according to the number of times they are selected in the Bootstrapping model. In this 

way, it is possible to evaluate the features that are most often selected in Bootstrapping 

so that they can be compared with those selected by the Lasso Logistic Regression 

model.  

In Python we used the class LogisticRegression of the sklearn.linear_model and the 

sklearn.utilis library with its class resample to obtain 100 boostrapped versions of Lasso 

regularized Logistic Regression models. 
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4.3.4. Interpretation of results: SHAP 

After applying Machine Learning models, it is crucial to use methods intended to 

enable users (like researchers or clinicians) to interpret the models and make decisions 

based on their predictions. Two different types of analysis can be performed:  

1. Global-level analysis determines the most important features by analysing the 

predictions made for the entire dataset. 

2. Local-level analysis determines, for each prediction, which variables were the 

most important given the specific instance. 

One such method is the SHAP algorithm, implemented in a Python library named 

SHAP (Shapley Additive exPlanations) and considered in this study. The SHAP 

algorithm originated in the context of game theory to determine how much each player 

contributed to the success of a collaborative game. In Machine Learning, SHAP 

evaluates the difference between the model prediction for the entire dataset and the 

model prediction for each input instance, taking into account the various combinations 

of features that may affect the model prediction. Thus, a better interpretation of the 

contribution of each feature to model prediction is obtained. In this study, the features 

are plotted in a bar graph in which the average absolute value of each feature over all 

input instances used to train the Machine Learning model is represented.
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4.4. Metrics 

Several metrics are analysed to evaluate the performance of the proposed models. 

Usually, machine learning binary classification models take into account the confusion 

matrix, which is a 2x2 table summarising the number of correct and incorrect 

predictions made by the model. 

From such a confusion matrix, typically, we can evaluate the following metrics:   

1. Accuracy: assesses the goodness of a classification model. It is defined as the 

ratio of the number of correct predictions to the total number of predictions 

made by the model.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

2. Precision: measures the model's ability to avoid misclassifying negative 

samples as positive. It is defined as the ratio of the number of true positives to 

the total number of cases predicted as positive by the model.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

3. Recall: measures the ability of the model to identify all positive samples. It is 

defined as the ratio of the number of true positives to the total number of truly 

positive cases in the dataset. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Figure 4. Example of a two-class confusion matrix 
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4. F1-score: assesses the model's ability to balance precision and recall. It is 

defined as the harmonic mean between precision and recall. 2 * (precision * 

recall) / (precision and recall). It is a value between 0 and 1 where a value close 

to 0 indicates that the model has no prediction capability, in contrast, a value 

close to 1 indicates perfect accuracy between precision and recall. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

In Python is used the sklearn.metric library implemented with the class 

classification_report.  
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5 Results and Discussion 

This chapter explains the several steps implemented in this study. Initially, data 

processing is carried out, including identification and subsequent elimination of 

hypermuted patients, merging the datasets and creating three scenarios. 

Subsequently, relevant genes are selected using MutSig2CV, hotspots are identified 

using MutClustSW, and the occurrence matrix is created. Finally, a Supervised 

Machine Learning approach is taken to extract the mutational signatures. In addition, 

the results obtained in each step are applied and compared for all three scenarios 

described above. 

5.1. Data Processing 

5.1.1. Deletion of hyper-mutated patients 

In MSI-H (high microsatellite instability) colorectal cancers (15%), cancer cells have 

higher frequency of mutation and repair processes of small, repeated DNA sequences. 

Thus, several genetic alterations are accumulated that are easily recognised by the 

immune system such that the immunotherapy approach to this type of tumour is 

effective by administering checkpoint inhibitor drugs to the patient. Patients with this 

characteristic are termed hypermutated and are eliminated from further analysis, since 

they already have immunotherapy as a valid treatment option.  

Mutational assessment of the tumour allowed us to identify the hypermutated 

patients, most likely to respond to immunotherapy. One parameter used for 

mutational assessment is the mutation rate (or mutation rate), which indicates the rate 

at which mutations occur. 
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In this analysis, the following formula is used to calculate the mutation rate: 

 

𝑴𝒖𝒕𝒂𝒕𝒊𝒐𝒏 𝒓𝒂𝒕𝒆 =  
𝑺𝒖𝒎 𝒕𝒐𝒕𝒂𝒍 𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏 𝒍𝒆𝒏𝒈𝒕𝒉 (𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒑𝒂𝒕𝒊𝒆𝒏𝒕 𝒊𝒏𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕𝒍𝒚 𝒐𝒇 𝒈𝒆𝒏𝒆𝒔)

𝑻𝒐𝒕𝒂𝒍 𝒔𝒖𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒍𝒆𝒏𝒈𝒕𝒉 𝒐𝒇 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒔 𝒊𝒏 𝒕𝒉𝒆 𝒅𝒂𝒕𝒂𝒔𝒆𝒕
 

 

Calculating the numerator is simple since the mutation length information is obtained 

from the VCF file and therefore already present in the dataset. As for, however, the 

denominator the calculation of the length of the genes present in the dataset is not 

trivial. We have implemented this aspect using the class “EnsembleRelease” from 

"pyensambe" library Python through which, using Hugo Symbol of the gene, it is 

possible to derive its respective length in amino acid bases. 

The following graphs (in logarithmic scale) are obtained for the three studies: 

 

 

Figure 5. Curve showing on the x-axis the patients and on the y-axis the associated mutation rate per 

10 million bases on a logarithmic scale from the study by Giannakis et al. 
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The three graphs show a similar trend: there is a large slope at first, then a plateau and 

finally another slope. The point of interest that separates the hyper-muted patients 

from the non-hyper-muted is the one that follows the first slope and begins the plateau 

phase.  

Figure 6. Curve showing on the x-axis the patients and on the y-axis the associated mutation rate per 

10 million bases on a logarithmic scale from the study by TCGA Pan Cancer Atlas.  

Figure 7. Curve showing on the x-axis the patients and on the y-axis the associated mutation rate per 

10 million bases on a logarithmic scale from the study by Seshagiri et al. 
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To identify this point (i.e., the threshold that corresponds to the number of hyper-

muted patients) the following approach is proposed and developed. 

The method uses the KneeLocator python function of the kneed library that locates the 

knee/elbow points of a line fit to the data. The knee/elbow is defined as the point on 

the line with the maximum curvature. The parameters set are curve = "convex" and 

direction = "decreasing," since an elbow (convex) with negative slope (starting from 

the left, decreasing) is sought. 

 

As in the example in Figure 8 the KneeLocator function determines the point to the 

right of the slope (starting from the left). 

The KneeLocator function identifies only one point. To obtain the one that identifies 

the threshold of hyper-mutated patients, we proceed iteratively by decreasing the 

dimensionalities of the patients and mutation rate each time an elbow is found (by 

putting the point preceding the newly found elbow as the new extreme). In this way, 

elbows are searched on all patients. For each point found (x), we consider the mutation 

rate of the tenth previous (x-10) and next (x+10) patients and calculate the difference 

in mutation rates between the patient found by the function. 

Figure 8. Example of application of the KneeLocator function using the "convex" and "decreasing" 

parameters. 
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5.1.1.1. Example of application 

1. Consider the entire dataset; (Seshagiri et al.:72 patients and 72 corresponding 

mutation rates). 

2. Apply the KneeLocator function (the first point identified by KneeLocator 

corresponds to the 68th patient) and consider the associated mutation rate. 

3. Consider the previous patient with the associated mutation rate (i.e., patient 67-

sixth). 

4. Calculate the difference between the mutation rates (gap patient 67-68). 

5. Define the newly calculated gap as gap_max and the point obtained from the 

KneeLocator function as x_max.(i.e., patient 68th). 

6. Set the new extremes to reapply the KneeLocator function: from the first to the 

x_max -1 patient (i.e., patient 67th). 

7. Proceed by performing step 2, 3 and 4. 

8. If the newly calculated gap is greater than gap_max, replace gap_max with the 

new gap and x_max with the new point. 

9. Set the new extremes and proceed until the function finds no more points. 

Finally, taking the gap_max, we derive the mutation rates associated with the 

points x_max and x_max-1. 
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5.1.1.2. Results 

The following results and graphs are obtained for the three studies: 

Giannakis et al. 

Patients 116 117 

Mutation Rate 5,82 4,46 

 

Figure 9. Graphs showing the results of the method for Giannakis et al.: red line (x_max), green line 

(x_max-1) and the black dashed line (calculated average mutation rate). The graph on the right shows 

a zoom of the affected area. The table shows the pair of patients identified by the KneeLocator 

function and the associated mutation rate. 
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Figure 10. Graphs showing the results of the method for TCGA Pan Cancer Atlas: red line (x_max), 

green line (x_max-1) and the black dashed line (calculated average mutation rate). The graph on the 

right shows a zoom of the affected area. The table shows the pair of patients identified by the 

KneeLocator function and the associated mutation rate. 

Seshagiri et al. 

Patients 17 18 

Mutation Rate 7,27 1,44 

Figure 11. Graphs showing the results of the method for Seshagiri et al: red line (x_max), green line 

(x_max-1) and the black dashed line (calculated average mutation rate). The graph on the right shows 

a zoom of the affected area. The table shows the pair of patients identified by the KneeLocator 

function and the associated mutation rate.  

 

The most stringent interval, i.e., the intersection of the three studies, is then considered. 

In our analysis, it is coincident with the interval of Giannakis et al.  

To determine a common threshold for the three studies, one considers the mean 

value of the most stringent interval and takes its integer value. In this case, the 

mutation rate for 10 million bases is equal to 5. 

TCGA Pan Cancer Atlas 

Patients 81 82 

Mutation Rate 6,02 4,4 
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Then, the pair of patients with mutation rates surrounding the selected threshold are 

identified for each study. The patient of the pair whose mutation rate is higher than 

the threshold is considered as the cutoff. 

Giannakis et al. 

Patients 116 117 

Mutation Rate 5,82 4,46 

 

TCGA Pan Cancer Atlas 

Patients 81 82 

Mutation Rate 6,02 4,4 
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Seshagiri et al. 

Patients 17 18 

Mutation Rate 7,27 1,44 

Figure 12. Results of the three datasets 

The sum of hypermutated patients from the individual studies is 214 patients. 

5.1.2. Merging datasets 

Even though the clinical data are heterogeneous with each other (not containing the 

same information, such as survival information), the mutational data are 

homogeneous with each other due to the fact that they are collected in MAF format 

from WES experiments, and thus the data can be merged with each other. 

Considering the protocols implemented by each study (see 3.2.1 section), the merging 

of the datasets is done after the elimination of hypermutated patients. Below is the 

information on the merged dataset. 
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Merged Dataset without hyper-mutated patients 

Patients 1005 

Samples 1005 

Patients with the mutated RAS gene 437 

Percentage of patients with the mutated RAS gene compared with total patients 43 % 

Table 5. Summary information about merged dataset 

The average mutation rate is also studied within a dataset composed of the union of 

the three studies with all patients, obtaining the following results: 

 

Merged dataset 

Patients 214 215 

Mutation Rate 5,63 4,33 

Figure 13.  Results of the merged dataset 

From the results obtained, it is observed that the sum of hypermutated patients 

selected from the individual studies coincides with the number and IDs of 

hypermutated patients selected, using the same mutation rate value, from the merged 

dataset.  
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5.1.3. Subdivision of training and test datasets 

After combining the data from the three studies, the merged dataset is divided into 

training and test dataset into three case scenarios: 

1. 75 % training dataset and 25 % test dataset. 

2. 80 % training dataset and 20 % test dataset. 

3. 85 % training dataset and 15 % test dataset. 

Each scenario has within its training and testing sets the same percentages of patients 

with mutated RAS gene and patients with non-mutated RAS gene as the total dataset 

(patients with the mutated RAS gene family are the 40 % of the total dataset and 

patients with the unmutated RAS gene family are the 60 %). 

The following tables show the details of each scenario: 

 75 % 

Training 

25 % 

Test 

Total Patients 755 250 

Total patients with mutated RAS gene: 328 109 

Total patients with mutated RAS gene from the Giannakis et al. study 137 46 

Total patients with mutated RAS gene from the TCGA Pan Cancer Atlas study 165 55 

Total patients with mutated RAS gene from the Seshagiri et al. study 26 8 

 

 80 % 

Training 

20 % 

Test 

Total Patients 805 200 

Total patients with mutated RAS gene: 349 88 

Total patients with mutated RAS gene from the Giannakis et al. study 146 37 

Total patients with mutated RAS gene from the TCGA Pan Cancer Atlas study 176 44 
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Total patients with mutated RAS gene from the Seshagiri et al. study 27 7 

 

 85 % 

Training 

15 % 

Test 

Total Patients 854 151 

Total patients with mutated RAS gene: 371 66 

Total patients with mutated RAS gene from the Giannakis et al. study 155 28 

Total patients with mutated RAS gene from the TCGA Pan Cancer Atlas study 187 33 

Total patients with mutated RAS gene from the Seshagiri et al. study 29 5 

Table 6. Details of the three scenarios 

It is to be noticed that the patients in common among the three training datasets are 

509 (including 193 patients with the mutated RAS gene), while among the three test 

datasets the patients in common are only 9 (including 2 patients with the mutated RAS 

gene). 

5.2. MutSig2CV 

After data collection and creation of the three scenarios, each training dataset is 

divided into training data containing patients with the mutated RAS gene and data of 

patients with the unmutated RAS gene. Both are given alternatively as input to 

MutSig2CV, which returns the file "sig_genes.txt" containing the list of significantly 

mutated genes with the corresponding p-value and q-value. Based on the values of the 

latter, the most relevant ones (those least likely to be mutated by chance) are selected. 

In this study, the following were highlighted:  

1. Significantly relevant genes exclusive to patients with the mutated RAS gene. 

2. Significantly relevant genes exclusive of patients with the unmutated RAS gene. 
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3. Significantly relevant genes given by the sum of the previous two cases. 

4. Significantly relevant genes in common between patients with the mutated and 

non-mutated RAS gene. 

5.2.1. MutSig2CV: Results and choice of gene features 

Below are graphs showing the p-value and q-value (i.e., p-value converted to False 

Rate Discovery) on the x-axis and the number of genes on the y-axis for the three 

scenarios. 

 

 

Figure 14. Number of genes chosen by MutSig2CV as the significant threshold varies in the Training 75% dataset 

Figure 15. Number of genes chosen by MutSig2CV as the significant threshold varies in the Training 80% dataset 
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According to the documentation, genes with q-value <0.1 indicates that they are 

significantly mutated. In this study, we decide to continue the analysis for both genes 

with q-value <0.1 and q-value<1. The choice to keep genes with a q-value < 1, that is 

not stringent (and thus to accept the possibility of having more false positives), is 

because we are in the early stage of the study and want to evaluate how the later 

proposed methods perform with a larger number of mutated genes. 

 

 

 

 

 

 

 

 

Figure 16. Number of genes chosen by MutSig2CV as the significant threshold varies in the Training 85% dataset 
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The table shows the number of significantly relevant genes for the four case histories 

for all three scenarios. 

 Training 75 % Training 80 % Training 85 % 

 
Q-value 

< 0,01 

Q-value 

< 1 

Q-value 

< 0,01 

Q-value 

< 1 

Q-value 

< 0,01 

Q-value 

< 1 

Significantly relevant genes 

exclusive to patients with the 

mutated RAS gene 

116 17 99 16 137 15 

Significantly relevant genes 

exclusive of patients with the 

unmutated RAS gene. 

214 26 226 14 233 30 

Significantly relevant genes 

given by the sum of the two 

previous exclusive cases. 

330 43 325 30 370 45 

Significantly relevant genes 

in common to patients with 

the mutated and non-

mutated RAS gene. 

34 13 32 13 44 16 

Table 7. Summary of significantly relevant genes for the four cases for all three scenarios 

5.3. MutClustSW 

The genes selected by MutSig2CV are used to create the input files for MutClust2SW, 

which is responsible for determining mutational hotspots. 

The ".txt" files are prepared and given as input to MutClustSW for hotspot selection. 

In a file, each gene is associated with its length. To obtain this information, the Python 

library "pyensembl" is used, which allows, compared to the previous work that 

approximated this value, to have the correct value with the possibility of choosing the 

reference genome (in this case, the hg19/GRCh37 genome that corresponds to version 

75). The second ".txt" file contains two columns, where the first one is composed of the 



53 

 

 

gene and the type of mutation (e.g., "APC_Nonsense_Mutation"), the second one 

contains the position along the protein where there is the mutation. 

MutClustSW is run for each group of genes listed above, and a ".txt" file is obtained 

that contains the list of genes with the mutation, the starting and ending position 

location, and the respective p-value. Also, in this case, significantly relevant hotspots 

are selected based on the p-value, indicating that the cluster is less likely to be due to 

chance.  

5.3.1. MutClustSW Results 

The graphs below show the significant clusters/hotspots as the p-value varies as the 

four cases (described in 5.2) change. 

 

Figure 17. Number of hotspots chosen by MutClustSW as the significant threshold varies in the Training 75% 

dataset: the graph on the left represents the case with q-value <1, while the graph on the right represents the case 

with q-value<0.01 
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Figure 18.  Number of hotspots chosen by MutClustSW as the significant threshold varies in the Training 80% 

dataset: the graph on the left represents the case with q-value <1, while the graph on the right represents the case with 

q-value<0.01 

Figure 19. Number of hotspots chosen by MutClustSW as the significant threshold varies in the Training 85% dataset: 

the graph on the left represents the case with q-value <1, while the graph on the right represents the case with q-

value<0.01 
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In MutClustSW documentation, mutational hotspots with p-value<0.05 are defined as 

significant. In this case, we decide to keep 0.05 as the threshold.  

The table below summarise the results for the four gene classes and the three scenarios. 

Training 75 % 

Set of genes given as input to 

MutClustSW 

Number of 

significant 

hotspots 

Exclusive 

genes 

Mutation 

types 

Q<0,1 Q<1 Q<0,1 Q<1 Q<0,1 Q<1 

Significantly relevant genes exclusive to 

patients with the mutated RAS gene 
7 10 5 10 2 2 

Significantly relevant genes exclusive of 

patients with the unmutated RAS gene. 
10 16 10 16 1 1 

Significantly relevant genes given by the 

sum of the previous two cases. 
17 24 15 23 2 2 

Significantly relevant genes in common to 

patients with the mutated and non-

mutated RAS gene. 

37 44 9 15 4 4 

Table 8. Summary of the MutClustSW results for the Training 75 % dataset 

Training 80 % 

Set of genes given as input to 

MutClustSW 

Number of 

significant 

hotspots 

Exclusive 

genes 

Mutation 

types 

Q<0,1 Q<1 Q<0,1 Q<1 Q<0,1 Q<1 

Significantly relevant genes exclusive to 

patients with the mutated RAS gene 
7 10 5 10 2 2 

Significantly relevant genes exclusive of 

patients with the unmutated RAS gene. 
4 14 4 14 1 2 

Significantly relevant genes given by the 

sum of the previous two cases. 
10 22 9 20 2 2 

Significantly relevant genes in common to 

patients with the mutated and non-

mutated RAS gene. 

39 52 11 19 4 4 

Table 9. Summary of the MutClustSW results for the Training 80 % dataset 
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Training 85 % 

Set of genes given as input to 

MutClustSW 

Number of 

significant 

hotspots 

Exclusive 

genes 

Mutation 

types 

Q<0,1 Q<1 Q<0,1 Q<1 Q<0,1 Q<1 

Significantly relevant genes exclusive to 

patients with the mutated RAS gene 
7 11 6 11 2 2 

Significantly relevant genes exclusive of 

patients with the unmutated RAS gene. 
8 14 10 14 1 1 

Significantly relevant genes given by the 

sum of the previous two cases. 
10 22 9 22 2 2 

Significantly relevant genes in common to 

patients with the mutated and non-

mutated RAS gene. 

42 52 12 18 4 4 

Table 10. Summary of the MutClustSW results for the Training 85 % dataset 

5.4. Matrix Occurrence creation 

A matrix of occurrences is created in which the rows are patients and the columns are 

mutational features/signatures. Specifically, mutations in MutSig-selected genes that 

belong to a hotspot are labelled as follows: gene, mutation type, initial hotspot position 

along the protein (by convention, the initial position included), and final hotspot 

position along the protein (by convention, the final position is excluded), example 

APC_Nonsense_Mutation_1450_1451. Instead, mutations in MutSig-selected genes 

that do not belong to any hotspot are labelled as follows: gene, type of mutation, 

"noclust" (identifies not belonging to any hotspot). In addition, a "target" column is 

added where at a patient with the mutated RAS gene family "1" is added, otherwise it 

remains zero.  

In this study, the matrix of occurrences is created from the group of significantly 

relevant genes given by the sum of the exclusive genes of patients with the mutated 

RAS gene family with the exclusive genes of patients with the unmutated RAS gene 
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family. The matrix is then filled by counting the mutations in the corresponding 

columns. 

5.4.1. Matrix Occurrence creation: Results 

As explained earlier, the columns of the matrix (which are the mutational signatures) 

are created by selecting the significantly relevant genes given by the sum of the patient-

exclusive genes with the RAS mutated and non-mutated gene family. The table below 

shows the number of mutational signatures in cases with q-value < 0.1 and q-value < 1 

in the three scenarios. 

 Training 75 % Training 80 % Training 85 % 

 Q<0,1 Q<1 Q<0,1 Q<1 Q<0,1 Q<1 

Number of 

mutational signatures 
184 1145 141 1173 222 1351 

Table 11. Number of mutational signature for the three scenarios for the case with q-value <0,1 and q-value <1 

 

The following tables give the details of the mutational signatures: specifically, the 

number of hotspots, genes, and type of mutations exclusive to both mutational 

signatures labelled "clust" (genes identified by MutClustSW that belong to a hotspot) 

and "noclust" (genes identified by MutSig2CV that do not belong to any hotspot) for 

the three scenarios. 

Training 75 % 

Exclusive genes in 

hotspot columns 

Exclusive genes in no-

hotspot columns 

Type mutations in 

hotspot columns 

Type mutations in no-

hotspot columns 

Q<0,1 Q<1 Q<0,1 Q<1 Q<0,1 Q<1 Q<0,1 Q<1 

15 23 43 330 2 2 14 17 
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Training 80 % 

Exclusive genes in 

hotspot columns 

Exclusive genes in no-

hotspot columns 

Type mutations in 

hotspot columns 

Type mutations in no-

hotspot columns 

Q<0,1 Q<1 Q<0,1 Q<1 Q<0,1 Q<1 Q<0,1 Q<1 

9 20 30 325 2 2 15 17 

 

Training 85 % 

Exclusive genes in 

hotspot columns 

Exclusive genes in no-

hotspot columns 

Type mutations in 

hotspot columns 

Type mutations in no-

hotspot columns 

Q<0,1 Q<1 Q<0,1 Q<1 Q<0,1 Q<1 Q<0,1 Q<1 

9 22 45 370 2 2 16 17 

Table 12. Details of the mutations signatures for the three scenarios 

 

Finally, this table summarizes the sizes of the occurrence matrices for the three 

scenarios: 

 Training 75 % Training 80 % Training 85 % 

 Q-value < 

0,1 
Q-value < 1 

Q-value < 

0,1 
Q-value < 1 

Q-value < 

0,1 
Q-value < 1 

Rows 

(Patients) 
755 755 805 805 854 854 

Columns 

(Mutational 

Signatures) 

184 1145 141 1173 222 1351 

Table 13. Summary of the details of the occurrence matrices for the three scenarios
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5.5. Statistical and Machine Learning models 

Supervised Machine Learning approaches are used to determine which mutational 

features/signatures are characteristic of the patients of the group under study (in this 

case, patients with mutated RAS gene family).  

To this aim, a further preprocessing of the matrices is made: since they are not balanced 

in terms of patients with the mutated RAS gene family (40%) and patients with the 

unmutated RAS gene family (60%), to better evaluate the performance of the models, 

patients with no mutations in the RAS gene family are undersampled.  

Specifically, we obtain three training and three testing sets, each one including 50% of 

patients with the mutated RAS gene family and 50 % of patients with unmutated RAS 

gene family. These sets are originated from previous scenarios (Training 75%, Training 

80%, Training 85%) simply randomly selecting for each case the same amount of RAS-

unmutated patients as the number of RAS-mutated ones. In this way, the percentages 

of training/testing splits are different from those of the three previous scenarios, but 

the selected training and testing patients are perfect subsets of the previous ones to 

provide better comparability.  

The following tables show the number of patients with the mutated RAS gene family 

labeled with 1 and the unmutated RAS gene family labeled with 0 in the balanced and 

unbalanced versions of the datasets for the three different scenarios. 

From Training 75 % 

Balanced Unbalanced 

Training  Test  Training 75 % Test 25 % 

0 1 0 1 0 1 0 1 

302 302 76 75 453 302 113 76 
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Training 80 % 

Balanced Unbalanced 

Training 80 % Test 20 % Training 80 % Test 20 % 

0 1 0 1 0 1 0 1 

322 322 65 64 483 322 97 64 

 

Training 85 % 

Balanced Unbalanced 

Training 85 % Test 15 % Training 85 % Test 15 % 

0 1 0 1 0 1 0 1 

342 342 52 51 512 342 77 51 

Table 14. Number of patients labeled with 0 and 1 in case they belong to the category of patients with 

the RAS mutated or not mutated gene family respectively in the balanced and unbalanced datasets for 

the three scenarios. 

The models are then trained on the training sets, while the performance of the models 

is evaluated using the test set. 

Lasso Logistic regression is used to decrease the number of features while training a 

classifier to recognize RAS-mutated cases and estimating the performance in terms of 

accuracy, precision, recall and f1-score. As described in 4.3.1, Lasso Logistic Regression 

forces some model coefficients to 0, working as a selection of mutational 

features/signatures. The results obtained from this model, are then compared with two 

other methodologies fed with the same input features, as shown below.  

In the first methodology, a Bootstrapping approach of 100 Lasso Logistic Regression 

models is performed for two different purposes. First, to evaluate the robustness of the 

first individual Lasso Logistic Regression by producing rankings based on the number 

of times features are selected by Bootstrapping and see which position is taken by 
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those selected by Lasso Logistic Regression. Second, to perform further feature 

selection preserving only features associated with a null coefficient less than a certain 

number of times among the 100 models. So-selected features are then simultaneously 

used for other three models, a full (not-regularized) Logistic Regression, a Ridge-

regularized Logistic Regression and a Random Forest. Moreover, each model is 

evaluated in terms of accuracy, precision, recall and f1-score.  

A second methodology is proposed as an alternative selection option based on feature 

importance: in particular, feature selection is made after applying Mean Decrease in 

Impurity. In this way, using different techniques and comparing their results, could 

be useful to better determine features that are preserved in the methods proposed and 

to determine the robustness of the model used. As in the previous case, the selected 

features are simultaneously pulled into the Logistic Regression, Ridge Logistic 

Regression and Random Forest models and evaluated in terms of accuracy, precision, 

recall and f1-score.  

5.5.1. Lasso Logistic Regression model Results 

The first model proposed in this study is the Lasso Logistic Regression. The following 

are its performance values in terms of accuracy, precision, recall, F1-score and the 

number of features selected (i.e., the feature with coefficients different from zero) by 

the model itself. 

Lasso Logistic Regression -  Training 75 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Prec. Recall F1-s. Num. Feat  Prec. Recall F1-s. Num. Feat 

0 0,57 0,86 0,68 

118 

0 0,69 0,90 0,78 

144 

1 0,70 0,35 0,46 1 0,73 0,39 0,51 

Acc. 0,60 Acc. 0,70 
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Balanced Q-value < 1 Unbalanced Q-value < 1 

 Prec. Recall F1-s. Num. Feat  Prec. Recall F1-s Num. Feat 

0 0,55 0,63 0,59 

334 

0 0,66 0,78 0,72 

403 

1 0,56 0,49 0,53 1 0,55 0,41 0,47 

Acc. 0,56 Acc. 0,63 

 

Lasso Logistic Regression -  Training  85 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Prec. Recall F1-s. Num. Feat  Prec. Recall F1-s. Num. Feat 

0 0,56 0,77 0,65 

158 

0 0,62 0,82 0,70 

174 

1 0,62 0,39 0,48 1 0,48 0,25 0,33 

Acc. 0,58 Acc. 0,59 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Prec. Recall F1-s. Num. Feat  Prec. Recall F1-s Num. Feat 

0 0,56 0,65 0,60 

402 

0 0,64 0,79 0,71 

480 

1 0,57 0,47 0,52 1 0,53 0,35 0,42 

Acc. 0,56 Acc. 0,61 

 

Lasso Logistic Regression -  Training  80 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Prec. Recall F1-s. Num. Feat  Prec. Recall F1-s. Num. Feat 

0 0,58 0,94 0,72 

97 

0 0,60 0,88 0,71 

107 

1 0,83 0,31 0,45 1 0,40 0,12 0,19 

Acc. 0,63 Acc. 0,58 



63 

 

 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Prec. Recall F1-s. Num. Feat  Prec. Recall F1-s Num. Feat 

0 0,59 0,63 0,61 

364 

0 0,66 0,77 0,71 

422 

1 0,60 0,56 0,58 1 0,53 0,39 0,45 

Acc. 0,60 Acc. 0,62 

Table 15. Results of the Lasso Logistic Regression Model for the three scenarios. 

The performance results obtained from this model are compared with the results 

obtained from the following two proposed pipelines. 

5.5.1.1. Results evaluation 

After a first analysis of the three scenarios, attention is turned to the case with the 

selection of genes from MutSig2CV with q-value < 0.1 and balanced, as they show 

overall better performance on the class of interest 1. In particular, the choice of 

performing the analysis by considering the sum of exclusive genes belonging to the 

category of patients with the mutated and non-mutated RAS gene family allows us to 

evaluate the selected features by the Lasso Logistic Regression method in the following 

way: the number of genes belonging to the category of patients with the mutated RAS 

gene family, which features belong to these genes, and finally the number of patients 

having these features. 

Next, the results for the three scenarios are reported. 

 Training 75 % 

q-value < 0,1 

Balanced 

Training 80 % 

q-value < 0,1 

Balanced 

Training 85 % 

q-value < 0,1 

Balanced 

Features selected by Lasso Logistic 

Regression 
118 97 158 

Total genes belonging to the category of 

patients with the mutated RAS gene family 
43 30 45 
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Total patients belonging to the category of 

patients with the mutated RAS gene family 
302 322 342 

Genes belonging to the category of patients 

with the mutated RAS gene family in the 

features selected by Lasso Logistic 

Regression 

17 (40%) 16 (53 %) 15 (33 %) 

Features that contain the genes that belong 

to the category of patients with the mutated 

RAS gene family in the features selected by 

Lasso Logistic Regression 

49 (42 %) 55 (57 %) 62 (39 %) 

Patients who have the features that contain 

the genes belonging to the category of 

patients with the mutated RAS gene family 

in the features selected by Lasso Logistic 

Regression 

182 (60 %) 162 (50 %) 232 (68 %) 

Table 16. Details of genes, features and patients selected by Lasso Logistic Regression 

In addition, we can also evaluate which features and genes belonging to the category 

of patients with the mutated RAS gene family, shown in the table above, are in 

common in the three scenarios. 

 

In common 

between the 

Training 75 % and 

Training 80 % 

In common 

between the 

Training 75 % and 

Training 85 % 

In common 

between the 

Training 80 % and 

Training 85 % 

In common 

between the three 

scenarios 

Features 22 22 26 15 

Genes 8 7 8 5 

Table 17. Features and genes analysis 

5.5.2. First method proposal Results 

As anticipated in section 4.3.3, one of the roles of the Bootstrapping method is feature 

selection. In particular, Bootstrapping method is performed using 100 Lasso Logistic 

Regression models trained on random sampling of the 75, 80 and 85 percent of the 

training data (respectively for the scenarios Training 75 %, Training 80 % and Training 

85%).  
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In order to identify the most relevant features, we perform feature bootstrapping and 

analyse the frequency distribution of nonzero coefficients obtained from 100 iterations. 

To give an example, we plot the distribution of number of features based on the 

number of times out of 100 that each of them has non-zero coefficient of the Training 

75 % scenario in the unbalanced case and gene selection with q-value < 1. The x-axis 

represents the number of times a feature has nonzero coefficients across the 100 

bootstrapping iterations, while the y-axis represents the frequency with which the 

number of times feature have non-zero coefficients occur across the 100-bootstrapping 

iteration. 

 

So, if a feature has a non-zero coefficient in 20 out of the 100 bootstrapping iterations, 

the corresponding value on the x-axis will be 20. If there are 10 features that have non-

zero coefficients in 20 out of the 100 bootstrapping iterations, the corresponding value 

on the y-axis will be 10.  

Figure 20. Distribution of number of times features have non-zero coefficients in the bootstrapping iterations and 

the number of features that occur with that number of times. 
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In essence, the plots show the distribution of number of times features have non-zero 

coefficients in the bootstrapping iterations and the number of features that occur with 

that number of times. 

Since the graphs do not suggest a threshold for selecting features, we analyse the 

frequency distribution of nonzero coefficients obtained from feature bootstrapping in 

terms of percentiles. The percentile indicates the percentage of times a feature has a 

non-zero coefficient in the 100 iterations of the bootstrap. The percentiles, the number 

of times the features have a non-zero coefficient, and the number of features is given 

in the following table. 

 

Bootstrapping with Lasso Logistic Regression – Training 75 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

Perc. 30 40 50 60 70 80 90 Perc. 30 40 50 60 70 80 90 

N. 

times 
17 54 62 69 84 90 96 

N. 

times 
56 63 67 76 87 92 97 

N. 

feat. 
129 111 97 74 56 39 20 

N. 

feat. 
130 112 96 75 58 38 19 

Balanced Q-value <1 Unbalanced Q-value < 1 

Perc. 30 40 50 60 70 80 90 Perc. 30 40 50 60 70 80 90 

N. 

times 
0 3 10 19 29 47 60 

N. 

times 
1 5 12 25 37 51 66 

N. 

feat. 
1146 692 574 466 351 231 117 

N. 

feat. 
818 967 581 467 351 239 116 
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Bootstrapping with Lasso Logistic Regression – Training 80 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

Perc. 30 40 50 60 70 80 90 Perc. 30 40 50 60 70 80 90 

N. 

times 
58 63 67 82 89 93 96 

N. 

times 
52 62 65 70 78 91 95 

N. 

feat. 
101 87 72 57 44 34 15 

N. 

feat. 
99 87 75 61 46 29 16 

Balanced Q-value <1 Unbalanced Q-value < 1 

Perc. 30 40 50 60 70 80 90 Perc. 30 40 50 60 70 80 90 

N. 

times 
0 4 10 21 34 47 63 

N. 

times 
2 7 15 25 39 53 66 

N. 

feat. 
1174 706 600 472 353 235 121 

N. 

feat. 
842 717 594 481 353 242 121 

 

Bootstrapping with Lasso Logistic Regression – Training 85 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

Perc. 30 40 50 60 70 80 90 Perc. 30 40 50 60 70 80 90 

N. 

times 
43 55 64 71 86 92 96 

N. 

times 
58 64 68 80 89 94 97 

N. 

feat. 
156 134 114 93 67 48 28 

N. 

feat. 
158 134 112 89 71 49 24 

Balanced Q-value <1 Unbalanced Q-value < 1 

Perc. 30 40 50 60 70 80 90 Perc. 30 40 50 60 70 80 90 

N. 

times 
0 3 8 16 30 46 64 

N. 

times 
1 5 13 26 37 52 66 

N. 

feat. 
1352 819 690 555 413 271 138 

N. 

feat. 
1002 822 692 545 412 276 136 

Table 18. Results of the Bootstrapping with Lasso Logistic Regression for the three scenarios 
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By looking at the results obtained, we decide to select the number of features not 

according to a fixed percentile because it would lead to unbalanced and reduced 

numerosities among the scenarios and subcases that would make the comparison 

between them inconsistent. We, therefore, decide to select features based on the 

number of times the features have a non-zero coefficient: in this thesis, we chose 

features with the non-zero coefficient at least 50 % of the times out of the 100 Lasso 

Logistic Models performed by Bootstrapping. 

Bootstrapping – Lasso Logistic Regression 

Training 75 % 

 Balanced Q<0,1 Unbalanced Q<0,1 Balanced Q<1 Unbalanced Q<1 

Perc. 40 30 90 80 

N. times 54 56 60 51 

N. feat. 111 130 117 239 

Training 80 % 

 Balanced Q<0,1 Unbalanced Q<0,1 Balanced Q<1 Unbalanced Q<1 

Perc. 30 30 90 80 

N. times 58 52 63 53 

N. feat. 101 99 121 242 

Training 85 % 

 Balanced Q<0,1 Unbalanced Q<0,1 Balanced Q<1 Unbalanced Q<1 

Perc. 40 30 90 80 

N. times 55 58 64 52 

N. feat. 134 158 138 276 

Table 19. Summary of the Bootstrapping with Lasso Logistic Regression for the three scenarios 

After that, the performance of three models with the newly selected features is 

evaluated: Logistic Regression, Ridge Logistic Regression and Random Forest.  
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Below, the results are reported. 

First Method - Logistic Regression – Training 75 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0,54 0,84 0,66 0 0,66 0,90 0,76 

1 0,62 0,27 0,37 1 0,69 0,32 0,43 

Accuracy 0,56 Accuracy 0,67 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,53 0,82 0,65 0 0,62 0,80 0,70 

1 0,60 0,28 0,43 1 0,49 0,29 0,36 

Accuracy 0,55 Accuracy 0,59 

 

First Method - Logistic Regression – Training 80 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0,57 0,86 0,70 0 0,59 0,86 0,70 

1 0,75 0,33 0,46 1 0,33 0,11 0,16 

Accuracy 0,61 Accuracy 0,56 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,61 0,79 0,69 0 0,52 0,74 0,61 

1 0,43 0,23 0,30 1 0,53 0,30 0,38 

Accuracy 0,57 Accuracy 0,52 
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First Method - Logistic Regression – Training 85 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0,53 0,88 0,67 0 0,62 0,88 0,73 

1 0,65 0,22 0,32 1 0,53 0,19 0,28 

Accuracy 0,55 Accuracy 0,60 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,50 0,79 0,61 0 0,60 0,86 0,71 

1 0,48 0,20 0,28 1 0,42 0,15 0,23 

Accuracy 0,50 Accuracy 0,57 

Table 20. Results of the Logistic Regression for the three scenarios in the first method proposed 

First Method - Ridge Logistic Regression – Training 75 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0,53 0,84 0,65 0 0,65 0,92 0,76 

1 0,61 0,25 0,36 1 0,69 0,26 0,38 

Accuracy 0,55 Accuracy 0,66 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,53 0,82 0,65 0 0,62 0,78 0,69 

1 0,60 0,28 0,38 1 0,47 0,29 0,36 

Accuracy 0,55 Accuracy 0,58 
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First Method - Ridge Logistic Regression – Training 80 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0.59 0,92 0,72 0 0,59 0,86 0,70 

1 0,81 0,34 0,48 1 0,33 0,11 0,16 

Accuracy 0,64 Accuracy 0,56 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,51 0,72 0,60 0 0,61 0,80 0,69 

1 0,51 0,30 0,38 1 0,42 0,22 0,29 

Accuracy 0,51 Accuracy 0,57 

 

First Method - Ridge Logistic Regression – Training 85 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0,53 0,87 0,66 0 0,62 0,88 0,73 

1 0,61 0,22 0,32 1 0,53 0,19 0,28 

Accuracy 0,54 Accuracy 0,60 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,51 0,81 0,62 0 0,60 0,87 0,71 

1 0,50 0,20 0,28 1 0,44 0,15 0,23 

Accuracy 0,50 Accuracy 0,58 

Table 21. Results of the Ridge Logistic Regression for the three scenarios in the first method 
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First Method - Random Forest – Training 75 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0,54 0,80 0,64 0 0,65 0,88 0,75 

1 0,59 0,29 0,39 1 0,62 0,28 0,38 

Accuracy 0,64 Accuracy 0,53 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,52 0,80 0,63 0 0,65 0,83 0,73 

1 0,56 0,25 0,35 1 0,57 0,33 0,42 

Accuracy 0,53 Accuracy 0,63 

 

First Method - Random Forest – Training 80 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0,56 0,88 0,69 0 0,60 0,88 0,71 

1 0,71 0,31 0,43 1 0,40 0,12 0,19 

Accuracy 0,60 Accuracy 0,58 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,51 0,78 0,62 0 0,61 0,84 0,70 

1 0,52 0,23 0,32 1 0,43 0,19 0,26 

Accuracy 0,51 Accuracy 0,58 
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First Method - Random Forest – Training 85 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0,52 0,79 0,63 0 0,62 0,81 0,70 

1 0,54 0,25 0,35 1 0,48 0,27 0,35 

Accuracy 0,52 Accuracy 0,59 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,52 0,79 0,63 0 0,62 0,86 0,72 

1 0,54 0,25 0,35 1 0,52 0,23 0,32 

Accuracy 0,52 Accuracy 0,60 

Table 22. Results of the Random Forest for the three scenarios in the first method 

5.5.2.1.  Result evaluation and mutational feature prioritization 

The second role covered by the Bootstrapping method is the evaluation of the 

robustness of individual models in the Lasso Logistic Regression. Specifically, the 

features are ranked in descending order according to the number of times they are 

selected in the Bootstrapping model. In terms of robustness, we consider the features 

in common in the three downstream scenarios (in the case with q-value < 0,1 and 

balanced) in the first proposed method, i.e., Lasso Logistic regression, to determine 

their position within the ranking made by the Bootstrapping model. In total, 15 

features are in common and below are reported their ranking obtained in the three 

scenarios. 
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Training 75 % / q-value < 0,1 / Balanced 

Feature Ranking 

TGIF1_Nonsense_Mutation_noClust 11 

PTEN_Splice_Site_noClust 16 

ERBB2_Splice_Region_noClust 32 

TGIF1_Splice_Site_noClust 52 

TGIF1_Frame_Shift_Ins_noClust 58 

ERBB2_Missense_Mutation_noClust 63 

ELF3_Frame_Shift_Ins_noClust 87 

ERBB2_Silent_noClust 94 

PTEN_Nonsense_Mutation_noClust 98 

ELF3_Missense_Mutation_noClust 113 

ELF3_Nonsense_Mutation_noClust 120 

TGIF1_Missense_Mutation_noClust 125 

BCL9_Splice_Site_noClust 165 

BCL9_Nonsense_Mutation_noClust 166 

PTEN_Missense_Mutation_noClust 175 

 

Training 80 % / q-value < 0,1 / Balanced 

Feature Ranking 

TGIF1_Splice_Site_noClust 12 

ERBB2_Splice_Region_noClust 14 

TGIF1_Missense_Mutation_noClust 20 

BCL9_Nonsense_Mutation_noClust 26 

ELF3_Frame_Shift_Ins_noClust 35 
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PTEN_Splice_Site_noClust 38 

PTEN_Nonsense_Mutation_noClust 43 

TGIF1_Nonsense_Mutation_noClust 45 

ERBB2_Missense_Mutation_noClust 78 

PTEN_Missense_Mutation_noClust 80 

TGIF1_Frame_Shift_Ins_noClust 82 

ERBB2_Silent_noClust 93 

ELF3_Missense_Mutation_noClust 99 

ELF3_Nonsense_Mutation_noClust 109 

BCL9_Splice_Site_noClust 125 

 

Training 85 % / q-value < 0,1 / Balanced 

Feature Ranking 

PTEN_Splice_Site_noClust 3 

TGIF1_Missense_Mutation_noClust 14 

ELF3_Missense_Mutation_noClust 15 

PTEN_Nonsense_Mutation_noClust 25 

ERBB2_Splice_Region_noClust 34 

TGIF1_Nonsense_Mutation_noClust 50 

TGIF1_Splice_Site_noClust 62 

ERBB2_Silent_noClust 92 

PTEN_Missense_Mutation_noClust 103 

ELF3_Frame_Shift_Ins_noClust 105 

ELF3_Nonsense_Mutation_noClust 120 

ERBB2_Missense_Mutation_noClust 142 
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BCL9_Splice_Site_noClust 143 

TGIF1_Frame_Shift_Ins_noClust 153 

BCL9_Splice_Site_noClust 190 

Table 23. Feature in common and their ranking 

5.5.3. Alternative feature selection and classification method 

The second methodology, proposed and illustrated before, consists of feature selection 

from the Random Forest method with Feature Importance, called also Mean Decrease 

in Impurity. As in the case above, the selected features are used to train Logistic 

Regression, Ridge Logistic Regression and Random Forest models. 

After using the Random Forest with Feature Importance, the mutational features are 

put in ascending order according to their relative importance (i.e., the reduction of the 

mean is evaluated when a particular feature is used to separate the two groups during 

the construction of the decision tree: the greater the reduction, the greater the 

importance of the feature). Once put in order from most important to least important, 

the numbers selected with the previous Bootstrapping methodology are considered to 

select the features and better compare the two options. 

In the following, the performance results in terms of accuracy, precision, recall and f1-

score of the three models (Logistic Regression, Ridge Logistic Regression and Random 

Forest) are reported. 
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Second Method - Logistic Regression – Training 75 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0,57 0,83 0,68 0 0,68 0,89 0,77 

1 0,68 0,37 0,48 1 0,71 0,38 0,50 

Accuracy 0,60 Accuracy 0,69 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,60 0,64 0,62 0 0,65 0,73 0,69 

1 0,61 0,56 0,58 1 0,52 0,42 0,46 

Accuracy 0,60 Accuracy 0,61 

 

Second Method - Logistic Regression – Training 80 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0,57 0,91 0,70 0 0,59 0,84 0,69 

1 0,76 0,30 0,43 1 0,33 0,12 0,18 

Accuracy 0,60 Accuracy 0,55 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,48 0,57 0,52 0 0,64 0,78 0,70 

1 0,46 0,38 0,41 1 0,51 0,35 0,41 

Accuracy 0,47 Accuracy 0,60 
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Second Method - Logistic Regression – Training 85 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0,56 0,77 0,65 0 0,55 0,73 0,63 

1 0,62 0,39 0,48 1 0,59 0,39 0,47 

Accuracy 0,58 Accuracy 0,56 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,56 0,77 0,65 0 0,64 0,79 0,71 

1 0,61 0,37 0,46 1 0,53 0,35 0,41 

Accuracy 0,57 Accuracy 0,61 

Table 24. Results of the Logistic Regression for the three scenarios in the second method 

Second Method - Ridge Logistic Regression – Training 75 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0,57 0,87 0,69 0 0,70 0,93 0,80 

1 0,71 0,33 0,45 1 0,79 0,39 0,53 

Accuracy 0,60 Accuracy 0,71 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,58 0,67 0,62 0 0,65 0,75 0,7 

1 0,60 0,51 0,55 1 0,52 0,39 0,45 

Accuracy 0,59 Accuracy 0,61 
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Second Method - Ridge Logistic Regression – Training 80 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0,58 0,94 0,72 0 0,60 0,84 0,70 

1 0,83 0,31 0,45 1 0,38 0,16 0,22 

Accuracy 0,63 Accuracy 0,57 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,48 0,58 0,53 0 0,69 0,77 0,73 

1 0,46 0,36 0,40 1 0,58 0,48 0,53 

Accuracy 0,47 Accuracy 0,66 

 

Second Method - Ridge Logistic Regression – Training 85 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0,56 0,77 0,65 0 0,60 0,81 0,69 

1 0,61 0,37 0,46 1 0,61 0,21 0,28 

Accuracy 0,57 Accuracy 0,57 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,56 0,75 0,64 0 0,64 0,81 0,71 

1 0,61 0,39 0,48 1 0,53 0,33 0,4 

Accuracy 0,57 Accuracy 0,61 

Table 25. Results of the Ridge Logistic Regression for the three scenarios in the second method 
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Second Method - Random Forest – Training 75 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0,57 0,76 0,65 0 0,68 0,88 0,77 

1 0,63 0,41 0,50 1 0,68 0,39 0,50 

Accuracy 0,59 Accuracy 0,68 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,60 0,66 0,63 0 0,68 0,85 0,75 

1 0,62 0,56 0,59 1 0,64 0,39 0,49 

Accuracy 0,61 Accuracy 0,67 

 

Second Method - Random Forest – Training 80 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0,56 0,88 0,68 0 0,60 0,86 0,71 

1 0,70 0,30 0,42 1 0,39 0,14 0,21 

Accuracy 0,59 Accuracy 0,57 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,50 0,58 0,54 0 0,50 0,58 0,54 

1 0,49 0,41 0,44 1 0,49 0,41 0,44 

Accuracy 0,50 Accuracy 0,50 
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Second Method - Random Forest – Training 85 % 

Balanced Q-value < 0,1 Unbalanced Q-value < 0,1 

 Precision Recall F1-score  Precision Recall F1-score 

0 0,55 0,75 0,63 0 0,60 0,73 0,65 

1 0,59 0,37 0,46 1 0,40 0,27 0,32 

Accuracy 0,56 Accuracy 0,54 

Balanced Q-value < 1 Unbalanced Q-value < 1 

 Precision Recall F1-Score  Precision Recall F1-Score 

0 0,56 0,77 0,65 0 0,66 0,84 0,74 

1 0,62 0,39 0,48 1 0,61 0,37 0,46 

Accuracy 0,58 Accuracy 0,65 

Table 26. Results of the Random Forest for the three scenarios in the second method 

Considering the results obtained, with the same number of features selected compared 

to the previous methodology, we can make the following observations in terms of 

performance. Regarding the category of interest 1 (the label given to patients with the 

mutated RAS gene family) we see overall improvement for the Training 75 % and 

Training 85 % scenarios while decreasing slightly for the Training 80 % scenario. 

5.5.3.1. Comparison of the collected results 

Now it is possible to analyze and compare the features selected in the two methods 

proposed above, such as Bootstrapping and Random Forest with Feature importance. 

In particular, the features that are present in all scenarios among the various cases were 

determined as they might turn out to be of interest.  
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It thus turns out that for the case with genes selected by MutSig2CV with q-value < 

0,1: 

1. Features in common in the Training 75 % scenario with unbalanced case 

selected by Bootstrapping and Random Forest with Feature Importance: 91 

(70%). 

2. Common features in the scenario Training 75 % with balanced case selected by 

Bootstrapping and Random Forest with Feature Importance: 67 (60 %). 

3. Common features in the Training 80 % scenario with unbalanced case selected 

by Bootstrapping and Random Forest with Feature Importance: 69 (68 %). 

4. Common features in the Training 80 % scenario with balanced case selected by 

Bootstrapping and Random Forest with Feature Importance: 66 (67 %). 

5. Common features in the Training 85 % scenario with unbalanced case selected 

by Bootstrapping and Random Forest with Feature Importance: 117 (75 %) 

6. Common features in the 85 % Training scenario with balanced case selected by 

Bootstrapping and Random Forest with Feature Importance: 82 (61 %) 

Further delving into the features in common within the same scenario, we observe 

that: 

1. Feature in common in the Training scenario 75 % with q-value < 0.1 between 

balanced and unbalanced: 55 

2. Feature in common in Training scenario 80 % with q-value < 0.1 between 

balanced and unbalanced: 52 

3. Feature in common in Training scenario 85 % with q-value < 0.1 between 

balanced and unbalanced: 72 

Finally, among the last three analyses with q-value < 0.1, there are 9 features in 

common: 

- BCL9_Missense_Mutation_noClust 
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- PTEN_Splice_Site_noClust 

- TGIF1_Nonsense_Mutation_noClust 

- CHEK2_Nonsense_Mutation_noClust 

- ELF3_Frame_Shift_Ins_noClust 

- ERBB2_Missense_Mutation_noClust 

- ERBB2_Splice_Region_noClust 

- TGIF1_Splice_Site_noClust 

- CHEK2_Silent_noClust. 

 

Further comparison can be made with the 15 features determined in section 5.5.2.1, 

i.e., the features that belong to the category of patients with the RAS mutated gene 

family in common in the three scenarios. We then first select the features in common 

in the three scenarios for the q-value <0.1 and balanced case. The following 10 

features in common with then result: 

- BCL9_Missense_Mutation_noClust 

- PTEN_Splice_Site_noClust 

- CHEK2_Nonsense_Mutation_noClust 

- ELF3_Frame_Shift_Ins_noClust 

- RNF43_Frame_Shift_Del_noClust 

- ERBB2_Missense_Mutation_noClust 

- TGIF1_Splice_Site_noClust 

- ERBB2_Splice_Region_noClust 

- TGIF1_Nonsense_Mutation_noClust 

- CHEK2_Silent_noClust. 
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Comparing them with the common 15 features determined in section 5.5.2.1, there 

are 6 features in common:  

- PTEN_Splice_Site_noClust 

- ELF3_Frame_Shift_Ins_noClust 

- ERBB2_Missense_Mutation_noClust 

- TGIF1_Splice_Site_noClust 

- ERBB2_Splice_Region_noClust 

- TGIF1_Nonsense_Mutation_noClust. 

As for the case with genes selected by MutSig2CV with q-value < 1, it results: 

1. Feature in common in scenarios Training 75 % with unbalanced case selected 

by Bootstrapping and Random Forest with Feature Importance: 45 (19 %). 

2. Common features in the Training 75 % scenario with balanced case selected by 

Bootstrapping and Random Forest with Feature Importance: 13 (9 %). 

3. Common features in the Training 80 % scenario with unbalanced case selected 

by Bootstrapping and Random Forest with Feature Importance: 53 (23 %). 

4. Common features in the Training 80 % scenario with balanced case selected by 

Bootstrapping and Random Forest with Feature Importance: 11 (9 %). 

5. Feature in common in the Training 85 % scenario with unbalanced case selected 

by Bootstrapping and Random Forest with Feature Importance: 62 (22 %). 

6. Common features in the 85 % Training scenario with balanced case selected by 

Bootstrapping and Random Forest with Feature Importance: 11 (8 %). 

Further delving into the features in common within the same scenario, it is observed 

that: 

1. Feature in common in the Training scenario 75 % with q-value < 0.1 between 

balanced and unbalanced: 9. 
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2. Feature in common in the Training 80 % scenario with q-value < 0.1 between 

balanced and unbalanced: 6. 

3. Feature in common in the Training 85 % scenario with q-value < 0.1 between 

balanced and unbalanced: 4. 

Finally, among the last three analyses, there appear to be no common features. 

5.6. Overall discussion and interpretation of the results 

At the end of these analyses, we can make evaluations and observations for what 

concerns the feature selection and the prediction phase.  

To begin with, proposing scenarios analysis with several cases proved to be optimal 

because it allowed us to evaluate both the performance of the proposed methods and 

the selected features. With a higher number of results, it allows considerations to be 

made about which methodology is more in line with the proposed objectives. 

Moreover, we evaluate the robustness of single Lasso Logistic Regression by ranking 

in descending order according to the number of times they are selected in the 

Bootstrapping model. Keep in mind, however, that comparing scenarios a feature by 

the number of the position it occupies in the ranking can be misleading since the total 

number of features in each scenario is different, but it is still useful to have an overall 

view of the overall feature ranking. Therefore, the order in which the features are 

ranked should be taken into greater consideration. In particular, the two features that 

are present in the first six positions in the three scenarios result 

PTEN_Splice_Site_noClust and ERBB2_Splice_Region_noClust. We notice that both 

PTEN and ERBB2 genes belong to the patient with the RAS gene family mutated and, 

also, by consulting Malacard [13] (an open source database that contains useful 

information on diseases and annotations including comparability of scores between 
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diseases and disease-gene association) these two genes are recognized as being 

associated with colorectal cancer. 

Furthermore, by comparing the 15 features in common in the three downstream 

scenarios (in the case with q-value < 0,1 and balanced) Lasso Logistic regression with 

the feature selected by Bootstrapping, we extract 6 features.  

The application of different techniques (such as Bootstrapping and Mean Decrease in 

Impurity) is useful to determine the features that are mostly preserved in the proposed 

methods and furthermore to determine the robustness of the model. In particular, the 

comparison of the features selected by the two different approaches highlighted how 

those in the case of q-value <0,1 and unbalanced are most preserved.  

For what concern the prediction phase, we propose different Machine Learning 

methods in multiple scenarios to choose the best strategy in terms of performances. To 

do this, we evaluate not only overall accuracy, since we experience weaker 

performance on RAS-mutated cases only, but also other metrics such as precision, 

recall and f1-score. Analyzing the metrics just mentioned in identifying the category 

of patients with the mutated RAS gene family, we observe overall better performance 

in the three proposed methodologies for case with MutSig2CV gene selection with q-

value < 0.1. Regarding the balanced and unbalanced case, the best performance is 

observed in the proposed methodologies especially for the balanced case. Going into 

detail in the three scenarios, the best performance is observed in: Training 75 % falls in 

the case with q-value < 0.1 and unbalanced, Training 80 % falls in the case with q-value 

<0.1 and balanced and Training 85 % falls in the balanced case, but most with q-value 

< 1 (4 out of 6 models proposed). Evaluating the performance that absolutely turn out 

to be the best are those of the Training 75 % scenario with the case of genes selected by 

MutSig2CV q-value<0.1 unbalanced applying the alternative method by using Ridge 

Logistic Regression. 
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Performance evaluation of the different proposed machine learning models suggests 

the selection of d MutSig2CV genes with q value <0.1. In addition, since the absolute 

best performance for the unbalanced case, we also propose this case. Moreover, given 

that the absolute best performance for the unbalanced case, we also propose this case. 

Also, because it falls into the case with a reasonable percentage of training and test 

data. 

 

After the evaluation of the methods, the scenario (and subcase) with the best 

performance is evaluated using the Python SHAP library. Then, the 130 features 

selected by Ridge Logistic regression are put in order of importance by this algorithm. 

Specifically, as explained in section 4.3.5, the evaluation of the overall impact of a given 

feature is determined by summing for all classes the average SHAP values, where 

SHAP values are calculated as the difference between the prediction of a model that 

uses the feature and one that does not.  

The graph shows the top 9 features defined as most important by the algorithm. 

 

Figure 20. Results of SHAP algorithm 
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Analyzing the mutation type, it can be stated that Missense mutation is the most 

present (7/9), while Nonsense mutation (occupying the first place) is present in only 

1/9 and also silent mutation in only 1/9.  

Instead by analyzing the genes, genes from the dataset of patients with the mutated 

RAS family gene can be identified are ING1 and CHECK2, while those from the dataset 

of patients with the nonmutated RAS family gene are KPAN2, BRAF, SRRM1, 

RANBP9. Also by consulting Malacard, most of the genes listed above are recognized 

as being associated with colorectal cancer. The exceptions are SRRM1 and RANBP9 

genes. 
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6 Conclusions 

This thesis work is focused on colorectal cancer patients (CRC) with mutations in the 

RAS gene family (HRAS, KRAS, NRAS), since these patients do not respond to 

conventional therapies. The idea is to identify the most frequently co-occurring 

mutated genes, which could be potential targets for personalized therapy. To achieve 

this goal, we aim to assess and enhance a previous workflow which presented 

promising results.  This thesis is focused on improving the encoding and selection 

phases, needed to transform the available mutational data into relevant features for 

Machine Learning techniques. In addition, it evaluates and enhances the previously 

proposed Data Science-based pipeline to better optimize the prediction phase and its 

results, together with the strategy required to identify relevant co-occurrent mutations.  

Towards these aims, for what concerns the encoding phase we develop a method for 

identifying the category of patients, called hypermutants, to whom specific therapy is 

administered, would help in achieving the goal as these patients would thus be 

eliminated from the analysis. to achieve this goal, we first calculated the mutation rate 

(which indicates the rate at which a mutation occurs) using the Python library 

pyensemble which allows us to obtain the correct gene length on the number of bases in 

short computational times. then we developed a method for automatic threshold 

selection using another Python library called kneelocator. 

Moreover, to determine genes and hotspots of interest, the investigation and a 

sensitive analysis for the significance thresholds of MutSig2CV and MutClustSW is 

done to improve the selection of genes and hotspots used to proceed with the 

application of Machine Learning models. To enhancing this step, we subdivide 

MutSig2CV results into subcases to identify a gene space of interest to proceed to 
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MutClustSW analysis. We decide to keep the sum of the genes that belong only to 

patients with the mutated RAS gene family and genes that belong only to patients with 

the unmutated RAS gene family because it thus makes it easy to identify which genes 

are associated with the patient category. 

In addition, we create three scenarios of Supervised Learning containing 75, 80, and 85 

percent of the patients for training phase, respectively, allowing us to make multiple 

simultaneous assessments and comparisons.  

For what concerns the feature selection and prediction phases we evaluate several 

aspects. In the first place, we analyse the robustness of Lasso Logistic Regression 

models to more accurately select the most conserved features. Specifically, the features 

are ranked in descending order according to the number of times they are selected in 

a Bootstrapping setting including 100 Lasso Logistic Regression models. These 

analysis is performed considering for each configuration under exam three 

training/testing scenarios. Focusing  on the features in common (in the case with q-

value < 0,1 and balanced) we obtain 15 features: in particular, the two features that are 

present in the first six positions in all the three scenarios are PTEN_Splice_Site_noClust 

and ERBB2_Splice_Region_noClust, which belong to the patient with the RAS gene 

family mutated and are recognized by Malacard as being associated with colorectal 

cancer. 

In addition, we apply Mean Decrease in Impurity as an alternative selection method 

based on feature importance to find other feature spaces and compare with those 

obtained by the Bootstrapping method. We observe that for all the three scenarios (in 

the case of q-value < 0,1 and unbalanced) the features selected are highly conserved 

(about 70 % of features in common). Furthermore, we extract the features in common 

between the Bootstrapping and Mean Decrease Impurity methods in the three 

scenarios in the balanced case and q-value <0.1 with a total of 10 features and we 

compare them with the previously mentioned 15 features in common in the three 



91 

 

 

scenarios (in the balanced case and q-value <0.1). This further comparison highlights 

the most robust and preserved features: 

PTEN_Splice_Site_noClust,ELF3_Frame_Shift_Ins_noClust,ERBB2_Missense_Mutati

on_noClust,TGIF1_Splice_Site_noClust,ERBB2_Splice_Region_noClust, 

TGIF1_Nonsense_Mutation_noClust. 

Overall, using different methodologies in different scenarios optimized based on 

accuracy but evaluated also in terms of different performance metrics (including 

precision, recall, and f1-score) allows to eventually compare such strategies and extract 

the most interesting and shared features. We observe overall better performance in the 

three proposed methodologies for case with MutSig2CV gene selection with q-value < 

0.1. Regarding the cases of balanced and unbalanced distribution of RAS-mutated and 

not-RAS mutated patients, better performances are reached in the proposed 

methodologies especially for the balanced case. The considerations just made about 

the performance of the models suggest further analysis of the 6 features that we found 

to be most robust and consistent (by comparing 10 features in common between the 

Bootstrapping and Mean Decrease Impurity methods in the three scenarios in the 

balanced case and q-value <0.1 and 15 features in common in the three scenarios in the 

case with q-value < 0,1 and balanced after applied Lasso Logistic Regression), thus 

offering a starting point for personalized therapies for CRC patients who do not 

respond to conventional therapies.  

 

6.1. Future work 

First, the analysis performed on patients with colorectal cancer can be carried out on 

another court of patients with other diseases with respective mutational data. Thus, 

the versatility of the proposed study turns out to be its great advantage. 
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We propose an analysis with a different gene space of interest from that proposed in 

our models. in particular, a gene space devoted entirely to patients with the mutated 

RAS gene family could lead to a more in-depth and centralized study of features in 

this category.  

Moreover, since we experience weaker performance on RAS-mutated cases only, this 

may suggest that not the entire population of interest but just a sub-coohort is better 

recognized by specific features: future investigations could analyse the inherent 

heterogeneity of the mutated RAS subgroup and focus on one or more subgroups 

separately. 

A further aspect that could be explored is to centralize the optimization on other 

evaluation metrics proposed rather than the accuracy, as this could lead to more 

focused considerations on the performance of the Machine Learning models, 

especially from the perspective given by the class of interest (e.g. precision/recall). 

Finally, another curious consideration can be made by evaluating the performance and 

results obtained by considering multiple disease studies with their respective 

mutational data and seeing how different patients’ selection might affect performance. 
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