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1. Introduction

According to estimates from the World Health
Organization (WHO) cancer is the second lead-
ing cause of death globally. Lung cancer is clas-
sified in mainly two histological subtypes with
different clinical behaviour: non-small cell lung
carcinoma (NSCLC), accounting for 80-85% of
all lung cancer cases, and small-cell lung carci-
noma (SCLC). Even if traditional therapies like
chemotherapy and radiotherapy provided bene-
fit in terms of survival for lung cancer patients
and are still incorporated in therapeutic algo-
rithms, the prognosis remained poor with an es-
timated median overall survival (OS) of about
14 months in the metastatic setting. In this con-
text, immunotherapy (IO) has brought a signif-
icant revolution in the treatment of NSCLC. In
fact, recent clinical studies demonstrated that
10, delivered either alone or in combination
with other therapies, could improve survival out-
comes of advanced NSCLC patients, with about
20% of patients still alive 5 years after diag-
nosis of metastatic disease [1]. Hence, reliable
biomarkers are required to identify patients that
are most or least likely to benefit from this ther-
apy. Since available biomarkers, such as PD-L1,
demonstrated limited predicted efficacy, there

is an urgent need for novel models to improve
predictive capabilities. Analyzing CT scans us-
ing machine learning (ML) and deep learning
(DL) techniques, offers a promising approach to
extract features from medical images and con-
struct predictive models. The present study de-
velops a binary classification problem to char-
acterize each patient if has or not a clinical
benefit from I0. Furthermore, it assesses the
predictive power of features coming from CT
scans. The population involved in this retro-
spective study consisted of 375 patients from
Fondazione IRCCS Istituto Nazionale dei Tu-
mori with advanced NSCLC collected between
April 2013 and May 2022. These patients re-
ceived any-line anti-PD(L)1 therapy either alone
or in combination with chemotherapy. Specifi-
cally, 305 patients were treated with 10, while
70 with the combination of IO and chemother-
apy. Two different pipelines are implemented:
the first is ML-based, while the second employs
an end-to-end DL pipeline. The evaluation is
performed on two data modalities: real-world
data (RWD) and features extracted from CT
scans. Significant effort is dedicated to ensure
the explainability of both ML and DL models by
using SHapley Additive exPlanations (SHAP).



2. Materials and methods

2.1. Data collection and curation

Two types of data were utilized: RWD and fea-
tures extracted from CT scans. The RWD were
collected during routine clinical exams at the
baseline of I0. Clinical data selected for this
study, based on clinicians hypothesis-driven, are
16 and they are collected in Table 1 with the
relative description.

RWD Definition
Therapy Therapy administered to the patient: IO alone (1) or in
combination with chemotherapv (0)
Age Age of the patient at IO baseline
Sex Patient sex: Male (1), Female (0)
Surgery y/n Binary variable identifying patients which underwent surgery

to reduce tumor mass

Histology Binary variable for tumor type: squamous (1) or
non squamous (0)

Line of therapy Line of treatment that patient received

Smoking status Binary variable that identifies if the patient is a smoker or ex-

smoker (1) or non-smoker (0)

PDL1 group Value of Programmed death ligand 1 (PD-L1): < 1% (1),

1-49% (2). >50% (3)

ECOGPS ECOG Performance Status at IO baseline

Tumor stage Tumor characterization according to TNM evaluation

Node stage Node characterization according to TNM evaluation

Metastases stage Metastasis characterization according to TNM evaluation

N of metastatic sites | Indicates the number of the metastases

Metastases Brain Binary variable that indicates brain metastasis

Metastases Bone Binary variable 7that indicates bone metastasis

BMI Body Mass Index at IO baseline

Table 1: RWD

An extensive data curation procedure was per-
formed. Duplicate patients and inconsistent val-
ues were eliminated and missing data were filled
with the assistance of clinicians, whenever pos-
sible. Textual data were converted into numeri-
cal and categorical values, and imputation tech-
niques were employed to address any remaining
missing data. The other data used were features
extracted from the primary tumor volume of pa-
tients’ baseline CT scans. In ML pipeline, they
were calculated with pyradiomics package and
encompassed shape characteristics, grey level
properties, grey tone differences, and statistical
attributes [2]. In DL approach, features were
directly extracted from the neural network.

2.2. Outcome

The target value is represented by the best over-
all response, i.e. the best response recorded from
the first radiological evaluation until disease pro-
gression according to the Response Evaluation
Criteria in Solid Tumors (RECIST1.1) |3|. The
outcome analyzed is the Clinical Benefit Rate

(CBR), which is defined as the percentage of
patients who have achieved complete response
(CR), partial response (PR), or at least four
months of stable disease (SD) as a result of ther-
apy. The outcome takes into account also pa-
tients that had a progression but with still a clin-
ical benefit after at least 9 months. Two classes
were defined as follows:
e Class 0: Progressive Disease (PD) if TTF
< 9 months, Stable Disease (SD) if PFS <
4 months
e Class 1: Complete Response (CR), Partial
Response (PR), Stable Disease (SD) if PFS
> 4 months, Progressive Disease (PD) if
TTF > 9 months
The choice of using a clinical endpoint rather
than the radiologic alone was done after discus-
sions with clinicians, as this endpoint can better
distinguish patients who benefit from 10 from
refractory patients.

2.3. Model development

Two different approaches were used: one ML-
based and the other DL-based, as Figure 1
shows.

Data preparation

Explainability
(sHap)

Deep Learning

Data modality Il‘::‘;].]lil:‘; L::ﬁli.ng
CT scan features Yes Yes
RWD Yes No
CT scan features + RWD Yes Yes

(b)

Figure 1: Two approaches: (a) Machine Learn-
ing and Deep Learning Illustration of method-
ological workflow



2.3.1 ML approach

The first approach is a classification using ML
pipeline (Fig. 1). It started with the segmen-
tation extraction from the CT scans by using
3D slicer, an open source software for visual-
ization, processing and segmentation of medical
images. Subsequently, several steps were under-
taken to pre-process the images and extract the
radiomic features from the CT scans [2|. 107 ra-
diomic features were extracted, which were cat-
egorized into seven different classes: 18 features
of the firstorder class, 14 shape descriptors, 75
texture features. Then a three-step feature se-
lection process was implemented to eliminate re-
dundant information in the dataset. The steps
involved: (1) correlation analysis, (2) manual se-
lection, and (3) Maximum Relevance- Minimum
Redundancy (MRMR) technique. MRMR, algo-
rithm aims at selecting the features that have
maximum relevance with respect to the target
variable and minimum redundancy with respect
to the features selected at previous iterations [4].
Six ML classifiers (Logistic Regression, Random
Forest, SVM, CatBoost, AdaBoost, KNN) were
fed with three different feature sets: radiomic
features, combination of radiomics and RWD,
and RWD. The best-performing classifier was
identified for each feature set and it was tested
on an external validation set. SHAP was em-
ployed to explain model predictions on the test
set, identifying the features that had the greatest
impact on the outcome and understanding how
they influenced it [5]. Two approaches were used
to provide the explainability: global, to under-
stand how a model made all the predictions, and
local, for understanding how the model made de-
cisions for a single prediction. For the global so-
lution, SHAP summary plot was exploited. For
the local solution, waterfall plots were gener-
ated for four types of predictions: True Positive,
True Negative, False Positive, and False Nega-
tive. Features are ordered from top to bottom
based on their importance, and the contribution
of each feature to the individual prediction is
displayed. Features that move the prediction to-
wards class 1 are represented by red bars, while
features that contribute to predict class 0 are the
blue bars.

2.3.2 DL approach

The second approach included the implementa-
tion of two end-to-end solutions (Figure 1) of
DL pipeline. End-to-end means that the model
learns to automatically extract relevant features
and make classification in a single integrated
process. The first pipeline is a 3D Convolutional
Neural Network (3DCNN) that solely processes
DL features coming from the images. The sec-
ond is a bimodal model that receives a combi-
nation of both DL features and RWD as input.
After that, the neural models were trained and
tested with the same training, test and external
validation sets used for ML. In case of model
with images only, local SHAP values were used
to explain the model predictions. Since features
are essentially pixels in DL, model explainability
helps to identify pixels which contribute nega-
tively or positively to the predicted class. Im-
portant pixels for the prediction are assigned
colors: red pixels represent positive SHAP val-
ues that contributed to classify image in class 1,
while blue pixels represent negative SHAP val-
ues that contributed to classify image in class

0.

3. Results

3.1. Dataset

The present study involves a cohort of 375 pa-
tients with NSCLC treated with IO as any-line
of therapy for advanced disease. 236 patients
were used as the training set, while 59 patients
were allocated to the test set. Additionally, 80
patients were reserved as an external validation
set exclusively for the best-performing model.

3.2. Classification with ML
3.2.1 Radiomic features set

Once radiomic features were extracted from CT
scans, the best set of features to feed the ML
models was selected through a three-step fea-
ture selection. The first step involved check-
ing for highly correlated features in order to re-
move them as they carry nearly identical infor-
mation. Out of the initial 107 radiomic features,
77 were found to be highly correlated, leaving 30
features. Subsequently, remaining features that
did not differentiate between class 1 and class 0,
were eliminated, resulting in a set of 21 radiomic



features. In the last step, MRMR was imple-
mented to choose the optimal number of features
to feed each ML classifier. The best-performing
model resulted the Logistic Regression (LR). It
was fed with 15 radiomic features and it achieved
accuracy = 0.61 and AUC = 0.58. To assess the
robustness and performance of this model, an
external validation set was utilized and the re-
sulting accuracy and AUC were 0.54. Figure 2
shows how the features impact globally the pre-
dictions on the test set. Features are arranged
on the y-axis based on their importance for the
model outcome, with the most important fea-
ture positioned at the top. On the x-axis, the
plot indicates whether the effect of the feature
value is associated with class 1 or class 0. A
color map is used to represent the feature val-
ues, where red indicates high values and blue
low values.The feature that has the highest in-
fluence in the model’s outcome is Major Axis
Length.
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Figure 2: Radiomics: Global Explainability of
LR on test set

It belongs to the shape class, where features
are descriptors of the three-dimensional size and
shape of the ROI and are independent from the
gray level intensities distribution. This feature
measures the largest axis length of the ROI-
enclosing ellipsoid. Specifically, lower values of
this feature move the prediction towards class 1,
while higher values are more likely to be present
in class 0.

3.2.2 RWD

The correlation matrix including RWD was plot-
ted and it demonstrated that none of the RWD
were correlated with each other. Therefore, all of
them were utilized as input for the MRMR algo-
rithm, without any additional manual selection
before. With MRMR implementation, optimal
number of features for each model was found.

SVM classifier fed with 15 features, demon-
strated the most promising results on RWD
dataset with accuracy = 0.68 and AUC = 0.71.
Global explainability with SHAP on the test set
is shown in Figure 3.

[P P
- prad
Sex P

Nr_line_IO . eope
ECOG PS el ot
T_stage_IO
Number of metastatic sites .
10_locT W
'] o

- ... e
Y P

.. ndine .

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
SHAP value (impact on model output)

Feature value

Bones
N_stage_lO
Surgery

Sum of 6 other features

Figure 3: RWD: Global Explainability of SVM
on test set

The feature that has highest influence in the
model’s outcome is Line of therapy. Specifically,
lower values of this feature move the prediction
towards class 1, while higher values move the
prediction towards class 0.

3.2.3 Combination of radiomics and
RWD

The same set of 21 radiomic features, obtained
after applying the procedure described in Sec-
tion 3.2.1 to remove highly correlated and poor
informative features, and the 16 baseline RWD
were included in this dataset, resulting in 37 fea-
tures. The MRMR feature selector was then ap-
plied to select the optimal number of features
for each model. LR performed better, achieving
accuracy = 0.69 and AUC = 0.73 with 25 fea-
tures. Subsequently, on the external validation
set, performance metrics were: accuracy = 0.69
and AUC = 0.71. The SHAP values for LR were
computed. Figure 4 shows the global explana-
tion on the test set. Global SHAP revealed that
the two features that most influenced the predic-
tions were ECOG PS (RWD) and Large Depen-
dence Emphasis (LDE), a radiomic feature. For
ECOG PS, higher values shifted the predictions
towards class 1, which is a confirmation of what
is assessed by clinical practice, as a lower value
of the ECOG PS scale indicates better patient
clinical condition. LDE can be translated into a
measure of the texture of the lesion, where
higher values indicate a more homogeneous tex-
ture. The Figure 4, reveals that high values
for LDE are correlated with class 1, suggesting
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Figure 4: Radiomics and RWD: Global explain-
ability of LR on test set

that a more homogeneous texture is most likely
to correspond to a patient belonging to class
1. Figure 5 shows two examples of CT scans,
where high value of LDE is clearly associated
with more homogeneous texture.

3.3. Classification with DL
3.3.1 DL features

3DCNN consisted of three convolutional layers,
each followed by a rectified linear unit, a max
pooling layer, and a dropout layer. Additionally,
there were two linear layers, with the final layer
dedicated to binary classification. Loss and ac-
curacy for both training and test sets were com-
puted. Based on both metrics, overfitting was
present, meaning that the model performed well
during training but poorly on test data, which
represents unseen data. In case of accuracy, the
majority of epochs showed significantly lower
test accuracy compared to the training accuracy.
The train loss demonstrated a consistent pattern
of decreasing as the number of epochs increases.
However, the test loss exhibited an irregular be-
havior, increasing instead of decreasing from left
to right. The best value for test accuracy was
0.63, reached at epoch 42, where the test loss was
0.887. In the external validation set, accuracy
was 0.55 and loss was 0.913. Local explanation
on the test set was carried out using SHAP.

3.3.2 DL features and RWD

In the bimodal model, two data modalities
(RWD and DL features) were processed. Two
neural networks were implemented: a 3DCNN,
slightly different from the previous one, for
processing the 3D images and extract relative
features, and a Feed-Forward neural network
(FNN) for handling the RWD. The features per-
taining to CT scans and RWD were extracted

from the two neural networks and concatenated
within the bimodal model, where the classifica-
tion process was carried out (intermediate fu-
sion). Loss and accuracy for training and testing
were computed. For the test set, the highest ac-
curacy reached was 0.64, achieved at epoch 60,
where loss was 0.170. In the external validation,
accuracy resulted 0.65 and loss was 0.119.

4. Discussion

4.1. ML feature sets comparison

One of the objectives of this study was to eval-
uate the predictive capability of radiomic fea-
tures, either alone or in combination with RWD.
Three different feature sets were used to fed six
ML classifiers. The best performing model was
selected for each feature set: LR was the best for
both the radiomics and combination, while SVM
was chosen for RWD. Radiomics alone were not
efficient in the classification (acc = 0.61), while
RWD demonstrated greater robustness and ef-
ficiency in predicting therapy response (acc =
0.68). However, the results of this study revealed
that the addition of radiomics to RWD did not
add significantly more information compared to
a prediction model based solely on RWD. In fact,
accuracy reached with the combination was 0.69,
while RWD got 0.68. AUC metric confirmed the
low predictive power of radiomics alone (AUC =
0.58), while a similar performance in combina-

tion (AUC = 0.73) and RWD (AUC = 0.71).

4.2. Explainability analysis results

To provide an explanation of how both radiomics
and RWD were utilized to predict the response,
SHAP Summary Plot of LR trained on ra-
diomics and RWD (Fig. 4) is considered. It
is important to note that the model achieved an
accuracy of 0.69 and an AUC of 0.73. These
results indicate that further work is required to
improve the model’s performance and reliabil-
ity. Although the AUC of 0.73 is considered
acceptable, it does not reach the level of ex-
cellence, particularly for medical applications,
where AUC should be higher than 0.8. Given
that performance is not outstanding, the relia-
bility of its explainability may be compromised.
Consequently, the interpretability of the model
may be biased towards certain features and their
corresponding value explanations. ECOG PS



(RWD) emerged as the most influential feature.
Additionally, the treatment received by the pa-
tients also provided valuable information. Pa-
tients who received a combination of 10 and
chemotherapy have a higher probability of posi-
tive response. This is confirmed by many studies
in clinical knowledge. SHAP Summary Plot re-
vealed interesting insights into the radiomic fea-
tures, which can be confirmed by reviewing the
CT scans. An association between LDE in terms
of radiomic meaning and texture homogeneity
was observed. In particular, CT scans with high
LDE (Figure 5a) show homogeneous textures,
while CT scans with low LDE (Figure 5b) show
a non homogeneous texture (pixel variations).
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(a) LDE = 581.914  (b) LDE = 257.381

Figure 5: CT scans: (a) High LDE (b) Low LDE

In the DL pipeline, SHAP values provided initial
insights into the functioning of neural networks.
It seems that the network primarily focuses on
the edges of the ROI, while the internal region of
the ROI does not significantly influence the pre-
diction. However, further analysis is necessary
to fully comprehend which tumor characteristics
contribute to specific predictions.

4.3. ML and DL comparison

One of the objectives of this study was to eval-
uate the performance of ML and DL techniques
(Table 2) and determine which approach could
be superior in predicting IO response in this clin-
ical context. Since the dataset was balanced
with respect to classes in the test set, the perfor-
mances can be compared based on test accuracy
results.

When considering models that uses features de-
rived from CT scans, DL (acc = 0.63) on the
test set demonstrates slightly higher efficiency
compared to ML (acc = 0.61). However, when
incorporating both RWD and features derived
from CT scans, ML technique (acc = 0.69) out-
performs DL approach (acc = 0.64). Further-
more, when combining CT scans features with

Machine Deep

Learning Learning

Data modality Acecuracy Acecuracy
Test Validat | Test Valid
ion ation
CT scan features 0.61 0.54 0.63 0.55

RWD 0.68 0.7 No

CT scan features + RWD 0.69 0.69 0.64 0.65

Table 2: Machine Learning and Deep Learning
performance comparison

RWD, ML techniques exhibit an increase in their
predictive performance. Indeed acc = 0.61 is
achieved with radiomics only, while acc = 0.69
with the combination. However, this does not
happen for DL, where performance achieved us-
ing CT scan features (acc = 0.63) and perfor-
mance with the combination (acc = 0.64) can
be considered comparable. Considering external
validation, more significant improvement when
adding RWD to CT scan features is observed.

4.4. Limitations and Future research

Finally, none of the ML and DL approaches
with the present data types yielded satisfactory
results that would allow the model to be ap-
plied in possible clinical practice. There could
be several reasons for this. Firstly the popu-
lation included an heterogeneous cohort of pa-
tients treated with IO in a different treatment
lines and a wide range of time (2013-2023),
when different CT image acquisition protocol
were applied. In addition, CT scan exams were
performed at different Institutions. These two
considerations could have produced some intrin-
sic noise during the feature extraction. Further-
more, the limited number of patients included
in the study could have influenced the poor re-
sults. In both ML and DL pipelines, includ-
ing a bigger and more homogeneous cohort of
patients to the current dataset would improve
performance. Secondly, the number of features
utilized could be expanded. The current image
pre-processing and feature extraction and selec-
tion methods may not be the optimal solutions
for this type of problem. In the ML approach,
it is important to note that no specific filter
was applied to extract the features. However,
a broader range of features could be extracted
by employing various types of filters that have
the potential to capture different aspects of the



underlying data, and homogenized dataset com-
ing from different institutions. This approach
would enable the inclusion of a larger quantity
of radiomic features that could be explored in
terms of their predictive capabilities. For both
ML and DL approaches, the implementation of
additional image preprocessing techniques can
enhance the quality of input images and con-
tribute to more accurate feature extraction. The
third main limitation regards the request to
completely understanding clinical problem. It is
not sufficient to apply ML and DL solely for pre-
dicting response outcomes. Survival outcomes,
such as progression-free survival (PFS) and over-
all survival (OS), should be used since they are
more relevant clinical outcomes. Additionally,
the combination of RWD and CT scans with
other data types, such as genomics and digital
pathology, could provide better insights into the
clinical problem. This is supported by numerous
studies in the literature, which demonstrated the
improvements achieved by integrating features
from different data modalities (histopathologi-
cal, radiomic, genomic, and clinical data) into
multimodal models. Another potential solution,
considering the data types used in the present
study, is the utilization of delta-radiomic fea-
tures. These features represent the differences
between radiomics extracted from two CT scans:
the baseline CT scan and the post-baseline CT
scan. Incorporating delta-radiomic features may
provide valuable information on the changes in
radiomic characteristics over the course of treat-
ment. Last main problem concerns DL ap-
proach, where preliminary results were found;
to improve performance, transfer learning tech-
niques and the exploration of different neural
network architectures could be employed.

5. Conclusions

The objective of this study was to identify ra-
diomic and clinical biomarkers associated with
IO benefit in a cohort of patients with NSCLC.
Medical applications require very high reliability
and performances in order to be applied in clin-
ical practice. These initial achievements could
be the base of the ambitious but ultimate goal
of developing novel tools for the selection of ideal
candidates for IO. So by investigating and incor-
porating future perspectives, this research may
have the potential to contribute to the develop-

ment of innovative approaches that can be ap-
plied in clinical practice.
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