
Modular software architecture for
assistive and rehabilitative
exoskeletons: a proof of concept

Tesi di Laurea Magistrale in
Biomedical Engineering - Ingegneria Biomedica

Authors: Dario Comini, Daniele d’Arenzo

Student ID: 928348, 952883
Advisor: Prof. Marta Gandolla
Co-advisors: Stefano dalla Gasperina, Mattia Panzenbeck
Academic Year: 2021-22

i

Abstract

Exoskeletons are increasingly being used for rehabilitation and assistance of people with
disability. Indeed, robots are designed in order to be patient-specific and to provide an
effective treatment and support in daily activities. However, current exoskeleton designs
are mostly all-in-one solutions, from low-level physical hardware, to high-level software
functionalities. This is not ideal for continuously evolving scenarios like rehabilitation
and assistance. Instead, it could be more convenient to individually and independently
develop the different components of the system, choosing and connecting them afterwards
through a common platform. For this purpose, a proof of concept for a modular software
architecture for exoskeletons has been implemented, using ROS platform and a set of
compatible and standard frameworks. To assess system modularity, the components of
the architecture are individually and collectively tested, using a test-bench and BRIDGE
– an upper-limb assistive exoskeleton. Results show that the architecture components
are all capable of performing their function, regardless of the implementation choice.
Adoption of standardized frameworks and modular design strategies can help researchers
concentrating their expertise on tasks they are proficient in, allowing future solutions to
become more robust, reusable and adaptable.

Keywords: modular, exoskeleton, disability, assistance, ROS2, robotic architecture

Abstract in lingua italiana

Gli esoscheletri sono sempre più utilizzati per la riabilitazione e l’assistenza di persone con
disabilità: possono infatti essere progettati a misura del paziente, e al contempo fornire
un trattamento e un supporto efficaci nelle attività quotidiane. Tuttavia, gli attuali es-
oscheletri sono per lo più progettati in un’unica soluzione fissa – dall’hardware fisico a
basso livello, alle funzionalità software di alto livello. Questo non è ideale per scenari
in continua evoluzione come la riabilitazione e l’assistenza. Potrebbe invece essere più
conveniente sviluppare indipendentemente i diversi componenti del sistema, scegliendoli
e collegandoli successivamente attraverso una piattaforma comune. In questo progetto
è stato implementato un proof-of-concept per un’architettura software modulare per es-
oscheletri, utilizzando la piattaforma ROS e un insieme di framework compatibili e stan-
dard. Per valutare la modularità del sistema, i componenti dell’architettura sono stati
testati sia indipendentemente che collettivamente, utilizzando un banco prova e BRIDGE
– un esoscheletro assistivo per arto superiore. I risultati mostrano che i componenti
dell’architettura sono tutti in grado di svolgere la propria funzione, indipendentemente
dalla scelta implementativa. L’adozione di framework standardizzati e una strategia di
progettazione modulare possono aiutare i ricercatori a concentrare le proprie competenze
nei settori in cui sono più esperti, consentendo alle soluzioni future di risultare più robuste,
riutilizzabili e adattabili.

Parole chiave: modularità, esoscheletri, disabilità, assistenza medica, ROS2, architet-
tura robotica

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
1.1 Disability . 1

1.1.1 Rehabilitation . 1
1.1.2 Assistance . 2
1.1.3 Robotic therapy . 3

1.2 Exoskeletons and human-robot systems . 5
1.2.1 Exoskeleton hardware . 7
1.2.2 Controllers . 9
1.2.3 Intention detection and user interfaces 15
1.2.4 Planning . 17
1.2.5 Decision system . 19
1.2.6 Robotic platform . 20

1.3 Modularity and standardization . 22

2 Materials 25
2.1 Software architecture requirements . 25
2.2 Selection of the robotic platform . 28

2.2.1 ROS 2 . 28
2.3 Robot description . 33
2.4 Hardware abstraction layer . 34

2.4.1 Hardware–Controller interfaces . 37
2.5 Control layer . 37
2.6 Planning layer . 39

vi | Contents

2.6.1 Planners . 41
2.6.2 Kinematics . 42
2.6.3 Offline planning . 43
2.6.4 Online planning . 44
2.6.5 Direct control . 45

2.7 User interfaces . 47
2.7.1 Visualization tools . 48
2.7.2 GUI . 49

2.8 Docker . 50

3 Methods 51
3.1 Hardware setup . 51

3.1.1 Hardware setup for "horizontal" experiments 51
3.1.2 BRIDGE exoskeleton hardware . 53

3.2 Robot description . 54
3.2.1 Robot description for "horizontal" experiments 54
3.2.2 BRIDGE exoskeleton abstract description 55

3.3 Hardware abstraction implementation . 57
3.3.1 Hardware abstraction for "horizontal" experiments 58
3.3.2 BRIDGE exoskeleton hardware abstraction 59

3.4 Control layer implementation . 59
3.4.1 Controllers for "horizontal" experiments 62
3.4.2 BRIDGE exoskeleton software controllers 63

3.5 MoveIt2 configuration . 63
3.5.1 Planning configuration . 64
3.5.2 SRDF configuration . 65

3.6 Offline planning implementation . 65
3.7 Direct control implementation . 67
3.8 Hybrid planning implementation . 68
3.9 Human machine interfaces . 72

3.9.1 Graphical interfaces . 72
3.9.2 Hardware interfaces . 73

4 Results 75
4.1 Hardware layer validation . 75
4.2 Control layer validation . 79
4.3 Planning layer validation . 81
4.4 Direct-control validation . 84

4.5 Vertical validation: BRIDGE exoskeleton 85
4.5.1 Planning . 86
4.5.2 Direct control . 90
4.5.3 Hybrid planning . 94

5 Conclusions 99
5.1 Future developments . 100

Bibliography 103

A Appendix 107

List of Figures 109

List of Tables 111

Acknowledgements 113

1

1| Introduction

1.1. Disability

Disability refers to the interaction between individuals with a health condition and per-
sonal and environmental factors [35]. Over 1 billion people are estimated to live with
some form of disability, about 15% of the global population [36]. Moreover, it’s correlated
with ageing and chronic health conditions, resulting in a dramatic increase of people with
disability [26].

People with disability experience poorer health outcomes, have less access to education
and work opportunities and are more likely to live in poverty than those without a dis-
ability [40]. Often they do not receive the healthcare services they need or find them
inadequate or under-resourced. This is due to prohibitive costs (over 50% of people
with disability cannot afford healthcare [36]); limited availability of services, espe-
cially in rural or remote areas; physical barriers to access building or medical equipment;
inadequate skill and knowledge of health workers, who sometimes don’t meet their
needs, treat them badly or deny them care [12]. Disability is extremely diverse. However,
all people with disability have the same general healthcare needs as everyone else, and
therefore need access to mainstream health care services [36].

There are two main interventions to contrast the impact of disability: rehabilitation
and assistance.

1.1.1. Rehabilitation

Rehabilitation is a field that favors the development of the potential of people with
disability. It consists of measures that range from physical interventions to improve body
functions, to mental, social and vocational forms of aid, to strategies that promote in-
clusion and independence [32]. It involves the identification of a person’s problems and
needs, the related environment in which the person lives, the goals to be reached, planning
and treatment processes and assessing the results [15].

2 1| Introduction

Rehabilitation is always voluntary, but for some people with disability it is essential to
participate in education, the labour market and civic life [36]. Moreover, better health is
experienced when people with disability and their families are partners in rehabilitation
[14]. An important factor is indeed education, not only of acquaintances, but also of all
other people interacting with a person with disability, even on a general level.

Sometimes rehabilitation is distinguished from habilitation in that the latter is considered
for disabilities acquired early in life or congenitally [36]. The rehabilitation process can
be therefore divided according to the time passed since the disability is first experienced,
as in the case of a traumatic event or injury, from acute and sub-acute to chronic [38].

Focusing on motor disabilities, the main goal of rehabilitation is the recovery of motor
functionality. This is usually possible when the traumatic event has an orthopedic source,
but becomes non-trivial when there is a neurological cause [3]. The effectiveness of a
rehabilitation treatment and the consequent motor relearning depend on several factors
[7][37][25]:

• Repeatability of the exercises

• Intensity and dosage of the training

• Adaptation of the treatment to the patient (needs, status, recovery stage), through
performance assessments

• Customization of the therapy and individualization

• Direct involvement of the patient and motivation

The continuous increase in people with disabilities results in higher requests for reha-
bilitation. This in turn increases the burden for therapists and the healthcare system.
Although the need of a specialist for the care of a patient is always needed, the workload
and cost required for rehabilitation can be reduced through technological support.

1.1.2. Assistance

The purposes of assistance are different from those of rehabilitation, but not separate:
both have the potential to improve health and quality of life of people with disability.
However, while rehabilitation concentrates on the development of personal, physiological
capabilities to contrast disability, assistance is mainly focused on providing support in
activities of daily living (ADLs) [31]. This introduces another important topic in the
context of disability: autonomy. The lack of assistive services can make people with
disability overly dependent on family members and caregivers, causing economical and

1| Introduction 3

social inclusion difficulties.

Again, technology can come in handy in alleviating the issue of lacking autonomy. For
example, a person with lower limb disability may require a wheelchair to be able to move
independently. This is a fairly easy solution to the problem of mobility, but it requires
to adapt the environment of people with this kind of disability to the developed solution,
removing physical, economical and educational barriers: a collective effort is almost always
required.

In the scope of assistance to motor and muscular disability, research and industrial effort
has been mostly concentrated on powered wheelchairs or respiratory assistance: respira-
tory problems are indeed not only a matter of survival, but they can be both cause and
effect of a wide variety of muscular and motor disabilities [42].
However, an important topic that is sometimes left aside and undervalued regards the
disability and assistance of upper limbs. It has been shown that arm disability plays a
key role in reducing patient’s autonomy and worsening quality of life [17][10][22]. Also in
this case, assistive technology has been demonstrated to significantly improve the ability
to perform activity of daily living [17].

1.1.3. Robotic therapy

In both fields of rehabilitation and assistance, particularly for motor disabilities, rehabil-
itative and assistive robots are increasingly integrated into clinics [24] and industrially
produced.

Robotic and mechatronic devices have been proposed to reinforce the process of rehabilita-
tion on several levels. Indeed, robots can be designed in order to follow the aforementioned
general rules for an effective rehabilitation (1.1.1): they should provide high repeatabil-
ity and variety of exercises, high intensity and dosage, adaptation and customization of
the treatment, high level of safety, possibility to assess performance during training, to
provide task-oriented exercises and to increase motivation (for example through virtual-
reality elements).

With a closely connected intent, assistive robotics aims at empowering people with mo-
tor disability to keep an effective motor functionality even in a domestic and personal
environment, allowing them to be more independent from other people’s assistance.

Surveys about stakeholders attitude toward robotic therapy confirm the good satisfac-
tion levels and perceptions. This emphasizes the importance to continue improving such
technologies, with the aim of maximizing the overall health status of people with motor

4 1| Introduction

Figure 1.1: Elbow orthoses [18]

disabilities [11].

There are many classifications possible for rehabilitative and assistive robots. Also, liter-
ature is sometimes not consistent with these taxonomies [7]. A first general classification
falls within the separation between prostheses and orthoses [18], depending on whether
the device replaces an anatomical part, or helps it perform its function by interacting with
it externally.

A remarkable type of robotic orthoses are exoskeletons (figure 1.2), devices that allow
direct control of individual joints of a person’s limbs, minimizing abnormal postures. This
is possible because the robotic structure of exoskeletons interacts with the human body
through multiple ports [7], generally represented by ergonomic cuffs.

Figure 1.2: 16 DoFs X-Arm-2 exoskeleton [18]

By contrast, upper-limb assistive technology has been mostly concentrated to end-effector
devices and external manipulators: in end-effector devices only the end-effector of the
robotic structure is in contact with the human body; external manipulators are usually
not even attached to user’s arm [16]: this in fact can affect the dignity and self-esteem of
people with upper-limb disability.

Differently, surveys confirm the great impression that active exoskeletons have made on
patients and healthcare professionals [21]. In this case, people who wear the exoskeleton
really are the ones performing the action with their own body, not an external object.

1| Introduction 5

This tends to be more accepted: people with disability prefer to use their own skills and
the abilities that they perfected and learned to overcome the disability itself. Deciding
to use a surrogate device for a functional task is not always a pleasant choice, even if the
function to be restored is necessary.

Robotic orthoses and exoskeletons are of particular interest also because of their complex-
ity. The functioning of robotic orthoses and exoskeletons themselves is in a sense just a
portion of the real objective of these devices: the correct functionality of the anatomical
part that they have to support. In fact, exoskeletons constitute a complex inter-related
system, that is often referred to as human-robot system (1.2).

One of the main problems in current exoskeleton implementations is that the designed
solutions are often fixed, all-in-one systems with little room for change and adaptation,
tailored to specific dysfunctions [13]. While this practice can still yield patient-specific
solutions – an important requirement in the scenario of disability – it doesn’t account
for the evolution of patient needs and of the system at play, which can happen at any
of the different elements it is constituted by: hardware requirements, control strategies,
interaction mechanisms and more. This can also represent a problem when an already
developed strategy must be implemented onto a new system, where incompatibility issues
may appear, slowing down the development process.
Therefore, a standardized environment is needed to build all the different elements of
a complex exoskeleton system on a common ground; on the other hand, a modular
framework is required to merge all the system functionalities together ensuring they can
communicate instead of going into conflict with each other.

1.2. Exoskeletons and human-robot systems

An exoskeleton system is a complex human-robot coupled system in which the wearer
and its exoskeleton interact both physically (pHRI, physical human-robot interaction)
and cognitively (cHRI, cognitive human-robot interaction) [18].

More specifically, to complete a functional task, the intention of movement from human
perspective is elaborated at the Central Nervous System (CNS), which delivers motor
commands to its actuating ports: the muscles. Physiological sensory systems (visual,
somatosensory and kinematic) provide feedbacks that the CNS analyzes to adjust and
correct the strategy, comparing the original intention and the executed movement.

The purpose of an exoskeleton is to replicate the kinematics and dynamics of human mus-
culoskeletal structure and to support the human motion. Mimicking the human system,

6 1| Introduction

the exoskeleton system cooperates with the human by superimposing to the muscular
effort the (external) robotic contribution (fig: 1.3).

Figure 1.3: Human-robot interaction [7]

The interaction between exoskeleton and human subsystems is called, not by chance,
human-robot interaction. It is important to understand that this interaction happens
both at a mechanical level, exchanging forces and torques through the exoskeleton inter-
action ports, and more abstractly through the exchange of information between the two
main subsystems. To understand the complexity of the overall system, we can start by
classifying its task environment [39], which is an high-level model description:

• Multi-agent: Human and artificial systems interact and affect each other’s deci-
sions through competitive, complementary and cooperative information.

• Partially observable or imperfect information: the artificial and human agents
are required to estimate information that cannot be retrieved by sensors (e.g. spatial
localization, perception, state estimation).

• Uncertain: due to partial-observability, noise terms, stochastic environment and
other uncertain or unmodeled elements.

• Sequential: past decisions may affect future ones.

• Dynamic: the environment may change while human and artificial agents are mak-
ing decisions

1| Introduction 7

• Discrete (artificial agent) and continuous (human and environment) systems.

This wide categorization of the system can already explain the difficulty in implementing
an efficient exoskeleton agent, especially under the limitations of resources and cost typical
of an assistive scenario. That’s why usually the implementation of assistive exoskeletons is
made through even rough simplifications, such as that of considering a completely passive
control mechanism (1.2.2).

Robotic motion is often shaped abstractly through the concept of degree of freedom
(DoF), which consists in all the independent directions in which the robot can move. The
degrees of freedom of a robot define its spatial position, called spatial configuration or
pose. If the first or second derivative of the robot pose is available, they define respectively
the kinematic and dynamic state of the robot [39].

Non-rigid bodies as the human system possess additional degrees of freedom. Due to the
complex anatomical structure, there is not a unanimous model available for the human
body in bio-mechanics literature [19]. For example, the shoulder joint is usually modelled
as a three degrees of freedom mechanism. However, the instantaneous center of rotation
of the shoulder joint changes with movement of the human upper limbs, and it is required
to accommodate this effect while modelling an exoskeleton shoulder mechanism. Joint
axes misalignments can lead to high interaction forces and torques at the interacting ports
of a human-robot system, as well as high cognitive load, contact pressure and discomfort
[18]. Therefore it is important to minimize this effect by correctly assessing the specific
bio-mechanics of an exoskeleton wearer while designing the artificial system.

There are many elements that compose an exoskeleton system, that will be described
below. Their implementation depends on how much complexity is considered in the design
phase. More importantly, a structure able to merge them all together into an unique
system is needed: the advantage of a modular implementation is that - independently
on the choice that will be made in the design process around these elements - they’re
granted to be all compatible together and customizable depending on the evolution of the
scenario.

1.2.1. Exoskeleton hardware

The hardware of an exoskeleton system is mainly composed by actuators, sensors, passive
components and transmissions.

Actuators are the active effectors of the system, and the means by which exoskeletons
are able to autonomously move. The overall robotic device is often classified as active or

8 1| Introduction

passive depending on whether it has at least one actuated degree of freedom [1].

Actuators themselves can be classified according to the nature of the energy source used
to generate mechanical power [1]:

• Electric: 73% of actuators have an electric power source. In particular brushed
and brushless DC motors are mainly used.

• Pneumatic: 13% of actuators use pneumatic forces from compressed gas.

• Hydraulic: 9% of actuators are hydraulically powered using pressurized fluids (fig-
ure 1.4.

Figure 1.4: Hydraulic actuator [41]

Actuators can be placed directly at the exoskeleton joint, avoiding the need of a mechan-
ical transmission, but increasing the inertia of the system and consequently its power
consumption. By placing them proximally to the joint instead, a transmission mecha-
nism is required. This may introduce nonlinear behaviours such as hysteresis and friction.
Mechanical transmissions consists in cables, gearboxes, elastic bands and tendons, ball-
screw drives, and other linkage mechanisms [18].

Sensors constitute the perceptual interface between the exoskeleton and its environment.
There are both passive and active sensors, depending on whether they capture signals
generated by other sources or they send energy into the environment.
Exoskeleton sensors are needed both for understanding the robot internal configuration
and location, and for sensing the state and outputs of the human system: the artificial
agent can use both these information to derive the state of the human-robot system and
apply the correct decisions.

The main sensors used in exoskeleton systems are inertial IMU sensors and accelerometers,
dynamic sensors such as force and torque sensors, position sensors such as encoders and
goniometers, cameras for localization and object recognition, EMG and electrodes for
recording muscular activity. Also, other sensors can be integrated to derive the intention
of movement (1.2.3) or measure performances.

1| Introduction 9

Both actuators and sensors are matter of discussion in a user-specific design [1]. Some
sensors are notably expensive and cannot fit into an assistive scenario, but they are often a
requirement in rehabilitation to implement a compliant control (1.2.2) and monitor a pa-
tient progress. Different users possess a different anatomical and functional bio-mechanics:
this may require even very distinct kinematic chains, degrees of freedom, structural sup-
ports, materials and actuating hardware. Moreover, sensory systems requirements may be
extremely diverse between individuals simply considering the intention-detection mech-
anisms (1.2.3). Also users’ preference in choosing the solution that best suits them
shouldn’t be neglected. Modularity is therefore an useful feature, enabling to select
the best choice among all the possible hardware combinations, while still allowing them
to work together.

Sensors and actuators communicate with the artificial systems by means of mostly wired
connections, adopting a specific communication protocol, which defines how two or
more entities transmit meaningful information. According to the protocol, different
speeds, distances and number of connecting devices are supported. The most common
protocols are [33]:

• Inter System Protocols: USB and UART are very common protocols used to com-
municate between different devices through an inter bus system.

• Intra System Protocols: I2C, SPI and CAN are protocols used to communicate at
lower level, typically between two devices within the same circuit board.

• PLC Communication Protocols: protocols used in PLC (programmable logic con-
troller) includes Ethernet, USB and Profibus standards but used over a network.

The integration of the artificial system with actuators and sensors that use different
communication protocols is another design challenge. This fragmentation may slow down
the development process and even increase the costs of solutions: companies often prefer
to buy components with the same protocols and manufacturers, so that they do not have
to develop the control units from scratch. The high cost of many technologies is known
to limit access for people with disabilities [36]. Again, a modular framework can help
alleviating this issue, combining different technologies together while keeping intact the
rest of the system.

1.2.2. Controllers

The term control refers to all the systems that regulate the behavior (output or state)
of other systems. The agent that performs the control is called controller. A controller

10 1| Introduction

Control unit

Actuators

Mechanical
structure

Sensors
Physical communication protocol

Figure 1.5: Communication protocol established between control unit of the artificial
system and actuators/sensors of the human-robot system

doesn’t always refer to a physical entity: it can be a more abstract agent given by the
interaction of different subsystems. Moreover, controllers are sometimes regarded to as
simple actuators controllers, whose goal is simply the driving of the robotic effectors; other
times they’re considered at an higher-level, including in their function also perception
and decision-making mechanisms (1.2.5). Controllers represent one of the cores of a
robot: they enable the system to compensate for errors and also act as an interface
between physical hardware and higher-level functions, such as planning.

The general schema of a control system is a closed-loop model (fig: 1.6). The controller
receives inputs from sensory data and a desired reference for the physical quantities that
it has to control. In the scope of human-robot systems, these quantities can include state
variables of the exoskeleton or human system, which can be hardly measured and are
usually estimated from other sources of information; also, they can be the measurable
output variables of the human-robot system. The controller then performs a transfer
function, translating the input reference errors to control signals that are fed to the
actuator system. A well-designed controller should be stable, responsive and able produce
a control signal such that error is minimized and the real state of the controlled-system
is as much as possible close to the desired one.

A further classification divides controllers into feed-back and feed-forward modalities
(fig: 1.7), depending on whether they use or not sensory feedback information. Usually
controllers are used in feed-back modality, because they can provide more stability and
control over the system’s variables. These are for example impedance and admittance
control schemes [7]. However, if enough system’s parameters are known and they’re more
or less static, the control can be made feed-forward, as in the case of some gravity-
counterbalance or friction-compensation strategies [23].

On top of this general control scheme, several additional features can be added to achieve

1| Introduction 11

Control signal

Controller

System outputsHuman-robot
system

_

sensor data
Sensor
system

Reference

+
error

Disturbances

physical eventsActuator
system

Figure 1.6: Robot control system

inter-joint coordination, promoting physiological synergies, or to adapt the assistance
according to the patient conditions [7].

In an exoskeleton system, in particular in robotic rehabilitation scenarios, control systems
are usually classified into hierarchical levels [7].

High level training modalities are control strategies that abstract the exoskeleton hard-
ware, related to the desired human-robot interaction behavior. Depending on the level
of assistance, they range from passive (movement is performed by the robot regardless
of subject’s response), to active-assisted (both robot and patient control the movement
cooperatively, also called compliant interaction), active (movement arises from human
contribution only) or resistive (the robot opposes the movement making it more difficult
for the human).

Passive modalities are of particular importance also in the assistive field, as they can relax
some of the constraints that rehabilitation has on the effectiveness of motor relearning
and plasticity mechanisms, especially in the assistance to advanced disability. They can
include:

• triggered mode: the wearer triggers the exoskeleton assistance. This encourages
the patient to self-initiate movements, essential feature for motor relearning. The
trigger is derived from intention-detection mechanisms (1.2.3).

• teach-and-replay: the exoskeleton pose and trajectory is recorded during a teach-

12 1| Introduction

+

Feedback
controller

System outputsHuman-robot
system

_

sensor data
Sensor
system

+
error

Disturbances

physical eventsActuator
system

Reference

+

Feed-forward
controller

Control
signal

Figure 1.7: Feedback and feed-forward controllers

ing phase, in which it is operated in transparent mode. Then, the user can decide
to replay the recorded trajectory.

• mirrored: the exoskeleton passively mimicks the behavior of an healthy limb, on
which measures are performed in transparent mode by another exoskeleton. It’s
also called master-slave mode.

Low level control strategies are more related to the hardware implementation. They
depend on output (sensing) and state (mechanical properties) of the system to be con-
trolled, but also on the nature of system’s inputs that the controller can drive. Their role
is to shape and control the relationships between dynamic and kinematic variables, often
modelled through a mechanical impedance, in Laplace’s notation:

F (s) = Z(s) · ẋ(s), (1.1)

Where F is the force, Z is the impedance and ẋ is the velocity. The impedance Z is
generally approximated up to the second order:

Z(s) = C−1s−1 +D + I · s, (1.2)

Where C is the compliance, D is the damping or viscosity, I is the inertia. The
inertial term, dependent on the mass, is usually compensated in feed-forward, neglecting
it from a feedback control as it is usually static (with some exceptions such as picking up
objects).

1| Introduction 13

Instead, a more important role is given by the compliance C. Compliance is the inverse
of rigidity and models the relationship between a change in position dx and a change in
force dF (i.e. spring model):

dF = C−1 · dx, (1.3)

In rehabilitation, a compliant control is needed to adjust how much force the subject has
to exert in order to achieve a certain change in position. Usually, the subjects compliance
is low not because of an intrinsic rigidity of its body, but because of an impairment that
makes them weak and unable to apply a significant force. The total compliance (and
impedance) of a human-robot system is given by the combination of the properties of
the two systems. Therefore, by controlling the input variables of the human system (e.g.
force and position) we are able to adapt the compliance to different patient’s conditions,
enabling them to move despite their weakness.

Most compliant controllers implement nested control loops, usually with an inner high-
accuracy loop for fast-response and an outer "flexible" loop, which includes the human
contribution and implements the interaction control. Such approaches mainly rely on two
control schemes: impedance control (force/torque-based) and admittance control
(position-based).

Impedance control uses an inner torque-feedback loop that promotes mechanical compli-
ance and an outer position-feedback loop that corrects for trajectory errors by applying
forces or torques. The torque (or force) signal τ is updated by varying a reference torque
(or force) τref around a function of the position error:

τ = Z(s) · (xref − xm) + τref (1.4)

Where Z(s) is the mechanical impedance model, xref is the reference or equilibrium
position (linear or angular) and xm is the actual measured position.

Admittance control instead uses an inner position-feedback loop, which stiffens the control
and an outer force/torque-feedback loop that softens the interaction behavior. With a
dual structure with respect to impedance control, the position signal x is updated by
varying a reference position xref around a function of the torque/force error:

x = A(s) · (τref − τm) + xref (1.5)

Where A(s) is the admittance model, τref is the reference force/torque and τm is the
actual measured force.

14 1| Introduction

Actuator

Human-robot
systemSensor

Actuator

Figure 1.8: Impedance control. Z(s) is the impedance controller, while F (s) is the force/-
torque controller of the inner loop, which can be neglected if the torque control is imple-
mented through an open loop [7]

.

Actuator

Human-robot
systemSensor

Sensor

Figure 1.9: Admittance control. A(s) is the admittance controller, while P (s) is the
position controller of the inner loop [7]

.

In rehabilitation, the compliance and in general the control schema and parameters of the
system should be adapted to the patient’s conditions. If rehabilitation is addressed to the
recovery from a traumatic event for example, the acute phase is generally characterized
by a passive modality: the patient has low residual force and the therapy is aimed at
reducing muscular atrophy through the simple controlled movement of the body. In later
stages, the patient is given more and more responsibility in performing the movement,
and the robot should not interfere providing more than the required help. This is one of
the important conditions to ensure an effective promotion of neural plasticity and motor
recovery from the training [7].

In assistive scenarios, the focus shifts from motor plasticity, towards being able to per-

1| Introduction 15

form a certain function autonomously. However, also assistive exoskeletons have to adapt
to the patient’s conditions, but for a different reason: to ensure that the functionality
that the robot assists is still effectively and comfortably granted.

When the patient is severely impaired, usually compliance is kept close to zero, meaning
total rigidity is perceived by the human system. Thus, the subject is not able to move
whatever force it applies: it’s completely controlled through the exoskeleton movement
(passive modality). However, the subject can still control the movement, as the artificial
system, through sensors, is able to detect human intention (1.2.3).
In other situations, people with less compromised motor disability may prefer to still
be able to use their residual muscular force in order to move, with the necessity of a
more complex control system, hardware and intention detection mechanism. This is often
difficult to achieve in assistive scenarios, where costs and resources are limited. However,
the connection between rehabilitation and assistance could be better exploited if both
realities are able to follow the evolution of the user’s condition cooperatively.

These situations represent again a reason why modularity, also at control level, is an
auspicable property for an exoskeleton system. Designing an exoskeleton to be modular
allows the control systems to work independently on the physical hardware located at
a lower level, provided that the hardware is able to transmit and receive the physical
information that the controller model requires.

1.2.3. Intention detection and user interfaces

Intention detection mechanisms are used by the artificial agent of the exoskeleton system
to derive the willingness of the human system to perform a task. Intentions can be
classified as implicit when they’re derived from neural, muscular or force signals from
the user, and explicit when the intention is expressly and voluntarily asserted by the
user [28].

There is a wide variety of intention detection strategies:

• Brain computer interfaces (BCI): user’s intention is derived from electrical and
hemodynamic signals from the brain. Examples are electroencephalography (EEG),
magnetoencephalography (MEG), which record the electrical activity of the brain;
fMRI and NIRS, which rely on the measurement of task-induced blood oxygen level-
dependent response (BOLD signal). These strategies need long training periods
to translate the raw encoded brain signals to relevant decoded information about
human intention. Moreover, they are often expensive, affected by background noise
activity and poor information transfer rate. However, they’re still in an early phase

16 1| Introduction

of research and development.

• Muscle activation interfaces: EMG-based interfaces are widely used because of
their accessibility and direct correlation to the human intention. Indeed, they’re
one of the closest signals to the movement drive, while other signals may be delayed
with respect to user’s intention. The main requirements consist in signal processing
mechanisms and proper filtering of external noise contributions and artifacts such as
unrelated movements and tremors. Moreover, not all people with motor disability
are able to generate isolated and repeatable contractions. Reliable muscle-activation
patterns are indeed a requirement to be able to map the specific movement inten-
tions.

• Muscle-contraction interfaces: muscular vibration, dimensional change, force,
stiffness and hemodynamics can be all used to detect motion intention. The main
advantage of these interfaces is that they’re free from electromagnetic noise and
they’re a cheaper solution with respect to the strategies mentioned before.

• Movement and force interfaces: other implicit interfaces consist in sensing body
segment’s motion, through IMUs, camera-based systems, goniometers or encoders.
Force-based interfaces make use of force and/or torque sensors by implementing
control strategies that relate motion to the input force. One advantage is that these
sensors can be embedded in the mechanical structure of the robot, avoiding the
preparations needed in the previous strategies to position the sensors on the users.
A disadvantage is that some people with severe muscular weakness may not have
enough residual force to be detectable by these devices.

• Explicit interfaces: explicit interfaces are also called parallel systems, as they do
not directly derive from the physiological pathway of a movement execution. These
interfaces are extremely diverse, some examples include eye interfaces (movement
or gaze-trackers); tongue interfaces through hall-effect and pressure sensors; head
interfaces that detect head movement, direction or inclination; speech and voice-
recognition interfaces using conventional microphones and language-processing al-
gorithms; hand interfaces, such as joysticks.

Each of these methods present several advantages and disadvantages. Recent approaches
are directed toward fusing data from multiple interfaces and sensors, in order to derive
hybrid intention-detection interfaces. These solutions can combine advantages of differ-
ent solutions, while solving the individual limitations that they possess, in a cooperative
or hierarchical manner. Hybrid interfaces also have the potential to better adapt to the
needs of a user, giving them more control over the preferred interfaces, more accuracy

1| Introduction 17

and reliability.

Another important topic is the feedback that the exoskeleton gives to the user. For active
exoskeletons, this consists at least in a force feedback, due to the movement of the robot
itself. Other two main feedbacks are used in this context: haptic and visual. haptic
feedback generates forces to interact with the user through the sense of touch. Visual
feedbacks instead consist in visual interfaces and virtual environments used to support
user’s proprioception and sense of localization of the human-robot system [1].

Concerning intention detection and user-interfaces, modularity can both allow to select
the most desirable interface and to effectively separate the desired functionality from the
interface itself. This allows for example to easily fuse together multiple intention-detection
mechanisms, obtaining the valuable advantages that result from an hybrid interface, as
discussed above.
Assistive devices and assistive technologies are often incompatible with smartphones, the
Internet and other mainstream systems that people with disability are often used to. To
overcome this problem, it is required that the device is adaptable to a wide range of user
capabilities and compatible with a wide range of user interface devices. In this sense,
a standardization of the system allows to keep up with the rapid evolution of interface
technologies.

1.2.4. Planning

The classical planning refers to what to do, and in what order, without any information
about time, neither how long an action takes to be executed, nor when it occurs. The
real world also imposes many resource constraints that must be considered into planning
activity. Time-parameterization of a path is called scheduling, that is the process of
adding temporal information to the plan to ensure that it meets resource and deadline
constraints. The overall problem [39] can be divided into a planning phase in which
actions are selected accounting for constraints and to meet the goals of the problem, and
a later scheduling phase, in which actions are time-parameterized according to deadline
constraints.

Working space and its representation is a core point to implement the point-to-point mo-
tion problem, so to deliver the robot or its end effector to a designated target location.
The space of robot states called configuration space is defined by location, orientation,
and joint angles and is a better place to work than the original 3D space which is com-
putationally expensive to deal with. The path planning problem then, concern the action
of find a path from one configuration to another in the robot configuration space and

18 1| Introduction

Desired end-effector
position Inverse Kinematic Trajectory planning Controller Robot

-

Robotic Framework Control System

Figure 1.10: Generic planning integrated into a robotic system

simplifying the robot in simpler structures with techniques such as cell decomposition,
which decompose the space of all configurations into finitely many cells, or skeletonization
technique, which project configuration spaces onto lower-dimensional manifolds.

Even with the simplification of using the robot configuration space, the task of a robot
is usually expressed in 3D workspace coordinates, requiring mapping techniques to re-
late workspace coordinates and configuration space. These chain of transformations are
linear for prismatic joints and trigonometric for revolute joints and are known as direct
kinematics.

The inverse problem of calculating the configuration of a robot whose effector location
is specified in workspace coordinates is known as inverse kinematics. Calculating the
inverse kinematics is expensive, especially for robots with many DOFs because the solution
usually is not unique.

Also accounting for obstacles is not simple: one usually probes a configuration space
instead of constructing it explicitly, so the planner generate a configuration and then test
to see if it is in free space by applying the robot kinematics, then it checks for collisions
in workspace coordinates. In a space high densely with obstacles (the problem is greater
if obstacles have complex shapes) replanning due to collisions may require some time to
complete.

Planners are integrated into high-level frameworks so user can not be aware of planning
processes. Robotic frameworks (1.2.6) include visualization, user interaction tools and
simulations that integrate perfectly with planning workflow: in a simple task (figure
1.10), user move virtually the end-effector in a 3D space, its workspace coordinates are
then converted into configuration space coordinates with inverse kinematics and sent to
trajectory planner as a goal state. Once the trajectory has been calculated, planner
communicates with controller which will take care of executing the commands.

In medical applications, trajectory planning helps to improve the activities of daily living
of stroke patients who will not have to control directly the exoskeleton for the entire

1| Introduction 19

trajectory. Once defined an acceptable amount of everyday positions in the workspace,
these can be saved and recalled quickly by the patient. However, it is difficult to accurately
replicate human kinematics with robots due to the morphologic variability of patients
and the complexity of joint kinematics; this “kinematic incompatibility” could lead to
hyperstaticity or overconstraint. In literature [27], using more DoFs into the configuration
of an exoskeleton has been indicated to improve kinematic compatibility. Biomedical tasks
use frequently 2 type of approaches[34]:

• Cartesian motion planning and inverse kinematics using polynomial-interpolation
or computational methods such as minimum-jerk, minimum-torque-change, and
inertia-like models. These methods don’t have high computational costs, but gen-
erated trajectories are not physiological. Optimization-based methods with human-
like motions can be used only for simple point-to-point movements with a limited
range of motion, so, not really usable for activities of daily living.

• learning by demonstration using learning models such as neural networks, Gaus-
sian mixture models, and DMP models. They show more physiological trajectories
but have high computational costs.

Motion planning is a very time-demanding task, depending on tasks and user residual
abilities a planner choice must maximize the performances: for this purpose a platform
which gives the possibility of a fast planner switch is preferred rather than solutions which
require code intervention when adapting to a new patient.

1.2.5. Decision system

The artificial "brain" of a robotic system consists in a decision module, able to trans-
late the information interpreted from sensors into one or more actions that the robot
has to perform, in order to fulfil its goals. The interpretation of sensory data is called
perception: it is a kind of state estimation which enables the artificial agent to convert
sensor data into higher-level representations of information, suitable for the robot decision
system.

Agent decision systems can be classified according to the complexity of decision-making
[39]:

• Simple reflex agents are stateless controllers with no memory of past perceptions;
the inputs trigger some condition-action rules, which are simple if-then rules that
can be a-priori given or learned through machine-learning processes.

• Model-based reflex agents are still reflex agents, but with additional structures

20 1| Introduction

that constitute memory. These agents maintain a model of the environment, but
the action is still completely determined by just the current perceptions and model.

• Goal-based agents try to predict an action by thinking about what the state will
be, exploiting knowledge of actions consequences and perceptions of the environ-
ment. They can select a goal and decide which path to follow in order to pursue
it.

• Utility-based agents are goal-based agents in which the goal is not binary (reached
or not reached). Instead, it has an utility which provides the degree of "goodness"
to the different possible actions.

A complex artificial agent such as an exoskeleton system is composed by many different
decision systems.
Some low-level modules may require fast and real-time decisions. These can be for exam-
ple safety mechanisms to prevent failure of the different hardware or software components,
fault-tolerant structures able to compensate a malfunctioning element, units to enforce
safety limits for the movement of the exoskeleton and so on.
Higher-level components on the other hand may be allowed to perform more complex and
time-costly decisions, such as sensory perception tasks, localization, planning of trajecto-
ries and adaptation of the exoskeleton parameters depending on the evaluation of user’s
performances.

There is not an unique way to organize and interlace the different elements of an ex-
oskeleton decision system. Some applications in assistive scenarios may rely more on a
lightweight and fast-paced structure, focusing on direct, real-time controls and simpli-
fied calculations. A rehabilitation context, instead, may lean more towards high-level
functionalities able to pursue physiological complexities and reinforce the motor recovery.

Usually these functionalities are performed on robotic platforms (1.2.6). Their collective
organization and structural arrangement is what constitutes the system’s architecture
(2).

1.2.6. Robotic platform

Control unit integrates controllers and high-level frameworks which have to communicate
each other, for this reason a messaging protocol must be implemented with a set of
rules, formats, and functions for exchange messages with data integrity. An application
protocols is evaluated according to performance metrics such as packet loss rate, message
size, bandwidth consumption and latency [43].

1| Introduction 21

Despite the large number and type of protocols, there are two distinct categories of frame-
works that are relevant to automation purposes:

• low level framework messaging protocols (figure 1.11), including ZeroMQ, DDS
and LCM. A basic messaging protocol provide service layers in each message with
functionalities that are protocol purpose-based. A real-time communication system
must include a timestamp or an integrity check layer.

• high level frameworks, also called robotic platforms. Most of them are mid-
dleware; a middleware is a software that act as intermediary among two services
or applications and lies between an operating system and the applications itself.
Among them, ROS, PX4, ArduPilot and NVidia Isaac SDK are mentioned because
of their market spread. Usually a middleware is much more that just a messaging
protocol and includes more stuff such as visualizations, transforms graphs, dynamic
configuration, integration with simulations and much more.

Encapsulated
message

Raw message

Application

Messaging protocol

Layers

Layers

Layers

N layers

Application
Raw messageEncapsulated

message

Figure 1.11: Two applications exchange data using a message protocol.

From a biomedical perspective, middleware are frameworks of great interest thanks to
their support to hardware implementation and visualization, which is a very common tool
in a rehabilitation process both for the patient and the specialist. Furthermore, medical
monitoring applications prefer protocols whose goal is real-time data exchanging due to
high frequency of physiological data collected from patient. Most of middleware have also
the capability to ensure system stability even if a process dies due to errors. Application
processes must be identified in a well-known state, usually active/inactive/running, that
prevent errors of a single process influences the execution of the others; In an exoskeleton
scenario, a joint fail must not stop the execution of counterbalance processes, because it
can cause hardware breakdown and consequently harm to patients.

The adoption of a standardized robotic platform is a key element in enabling all the
parts of a modular design to be compatible, as it constitutes a common ground for
development in the robotic field. Moreover, standardization carries with it the benefits

22 1| Introduction

of a continuously reviewed and updated infrastructure, such as security measures, feature
improvements, testing protocols, all aimed at reducing risks and constantly improving the
system.

1.3. Modularity and standardization

No one model of support service will work in all contexts and meet all needs. Person-
centred services are preferable, so that individuals are involved in decisions about the sup-
port they receive and have maximum control over their lives [36]. One of the philosophies
that leans toward pursuing this objective is the user-centered design [20] or co-design.
The inclusion of people with disabilities in the design process, alongside caregivers and
multidisciplinary expertise, is what mostly allows to remain close to the needs, sensations
and objectives of each user. Self-assessment is an important part of this process: it is
not always easy for service users to articulate their needs, so supported decision making
should be indicated.

Given the impressive complexity of human-robot systems for rehabilitation and assis-
tance previously described, the unfeasibility of an unique solution suitable for everyone
becomes easily clear. At the same time, methods and technologies to support disabili-
ties may improve more rapidly if collective effort is directed toward the cooperation and
the interchange of a wide variety of studied solutions, described on a common reference
ground. In this view, a strong importance should be dedicated to modularity and stan-
dardization.

Adaptability and modularity of the different elements of a robotic system is an extremely
important factor. Modularity can help improve all stages of an exoskeleton life-cycle:

• Design phase: a modular framework and way of thinking can help the development
of technologies, dividing the overall problem into simpler blocks that are easily
connectable, replaceable and isolated from the rest of the complex overall system.
The simplification of this process can help not only the user, but also the clinicians
and developers to understand the different components and functionalities that the
system could offer, and allows to make decisions more easily.

• Context of use: the utilization of robotic technology by the end-users can also
benefit from modularity and standardization, allowing them to rely on a safe, robust
and peer-reviewed infrastructure, which was designed to satisfy as much as possible
their requirements.

• Update process: a modular framework is intrinsically easily customizable and

1| Introduction 23

adaptable to the evolution of user’s needs, without requiring to change all the struc-
ture. Developers can switch to different variants of the system according to the will
of the user without too much effort.

In robotic rehabilitation, automatically adjusting the device support based on the patient
progressive recovery is essential [1] and requires high interchangeability at all levels of the
human-robot system. The same is true for a device which is used by multiple different
people, as it happens in the rehabilitative scenario.
Nonetheless, exoskeletons used for assistance of people with disability should be enough
customizable and adaptable to meet the needs of each individual, at least during the
design process.

The purpose of this work is to provide a proof of concept for the construction of a mod-
ular and adaptable software architecture, in particular addressed to upper-limb assistive
exoskeletons. Even if the proposed solution was implemented for this specific area, the
general concepts and way of thinking are not limited to it. We believe that, with a careful
evaluation of the trade-offs, this work can be extended to other fields of application aiming
at the contrast of disability.

25

2| Materials

2.1. Software architecture requirements

One of the cores of a modular architecture is the software: while the hardware (actua-
tor, sensors and the physical structure) of an exoskeleton can be made customizable and
modular through engineering effort, a software application enables much more degrees of
flexibility. Moreover, most of the algorithmic and high-level elements that compose an
exoskeleton system do not come in pre-built physical boards, but have to be designed and
implemented through software programming. Even if they did, the adaptability given by
software is simply unmatched.

A software architecture is a methodology to structure, organize and assemble all the
algorithms, entities and functionalities that compose a system. It also includes languages,
tools and the overall philosophy for how programs can be brought together [39]. Software
architectures are often hierarchical, contain multiple elements running in parallel but also
sequential instructions, are usually designed in layers of abstraction, networks and through
multiple techniques supporting and complementing each-other.

As already introduced for the decision system of an artificial agent (1.2.5), a software
architecture, from an overall decision-making perspective, may contain low-level and high-
level functionalities. Low-level functionalities are called reactive: they’re sensory-driven
and often real-time, but they rarely yield plausible solutions at global level. High-level
functionalities are called deliberative: they are model-based, depend on information
elaborated through perception and are relatively slow-paced. Most software architectures
for robotic applications are focused on optimally fuse the two principles, to combine their
strengths while reducing their weaknesses.

A software architecture for robots interacting with people, especially if they have health
conditions, has many requirements (1.2), one of which is its adaptability to the user’s
needs.

First, it has to be able to provide an abstract description of the physical structure

26 2| Materials

of the exoskeleton system: this includes the kinematic chain, the dynamic properties of
the physical elements (mass, inertia...), the shapes and measures of the various links (3D
model), the degrees of freedom and the physical limits and constraints. An abstract
description is important to have an unique global and easily adaptable description of the
physical components. Each other element of the architecture should be able to derive all
the important information that it needs about this description by interpreting and parsing
it in its own way.

A second requirement is the possibility to connect hardware with different characteristics.
To make this independent from the overall system, the low-level hardware instructions
must pass through a layer of hardware abstraction: this means that, whatever the
hardware is, the software will be able to provide abstract instructions that will be under-
stood by the physical hardware, thanks to the decoding function offered by the hardware
abstraction, and vice-versa.

From the control perspective, the architecture needs to be able to switch between differ-
ent control modalities (1.2.2), especially if the exoskeleton will be used in a rehabilitative
scenario. This includes not only simple close-loop and open-loop structures, but also the
nested, hierarchical and other complex control schemes which are continuously developed
by research. Also, controllers must be abstract entities able to switch between different
control commands, such as position, current, force, without caring about how the hard-
ware implements them. The hardware abstraction or some other component could care
about decoding this information. Both hardware abstraction and control functions should
be as possible reactive and real-time implementations.

The deliberative part of the architecture must include planning functionalities (1.2.4), in
particular motion planning and trajectory execution. Planning must be highly customiz-
able in order for it to be user-specific and respect the physiological bio-mechanics required
for a safe movement execution. Also other mechanisms of control of movement should
be implementable, such as direct control of end-effector, mechanisms to avoid collisions,
singularity and abnormal position avoidance and similar.

The architecture must be able to implement several different user interfaces and in-
tention - detection mechanisms (1.2.3) by abstracting the interface hardware from the
functionalities that it must implement. Different functionalities and interfaces must be
easily convertible and possibly fused together. Also, the software should be able to provide
feedback to the user, whether haptic or visual through a virtual environment.

The architecture should be able to run all these components independently, in parallel and
asynchronously, possibly including high-level parent-entities that regulate the synchrony

2| Materials 27

Physical layer

Actuators Sensors
Human-
machine

interfaces

Feedback to
user

Hardware abstraction

Perception Decoding

Decision system

High-level control

Intention-
detection Planning Adaptation

and learning

Low-level control

System-theory
controllers

Constraint
enforcing

Safety
mechanisms Abstract robot

description

Deliberative
functionalities

Reactive
functionalities

Figure 2.1: Robotic system architecture design

and the behavior of the multiple different processes. There should be an high possibility
of designing the network of connections between components, even dynamically. Also,
most components should be parameterized and dynamically adaptable.

All these components should preferably include both packages already implemented and
standardized from a common database, and the possibility to construct one’s own im-
plementation through a software template reference. For accessibility, the architecture
should also be compatible with other systems and languages commonly used such as Mat-
lab, Simulink, Labview, Python and so on. Finally, it is preferable for the software to
be independent from the physical machine it will run on, by abstracting the operating
system.

28 2| Materials

2.2. Selection of the robotic platform

The high-complexity of the system required to have an high modularity, made it necessary
to choose a robust high level framework rather than a simple messaging protocol such as
DDS. Moreover, a robotic platform (1.2.6) in the form of a middleware integrates itself
a messaging protocol and, beyond this, also other essential tools - such as visualizations,
transforms graphs, dynamic configuration, simulation environments - which help in the
development of modular software.

Among all the alternatives such as ROS, ArduPilot, NVidia Isaac SDK or PX4, the first
one was chosen: it guaranteed the greatest compatibility and is the most widespread
possible.

ROS advantages over competitors are:

• an easy to use, cross-language inter-process communication system that is fairly
versatile (works via IP address or shared memory)

• it allows easy integration of a wide range of tools including visualization of robot
kinematics and sensor data, path planning and perception algorithms, as well as low
level drivers for commonly used sensors.

• Management tools that allow monitoring and inspecting messages.

• the messaging system approach encourages a high-level of modularity when writ-
ing code, although, a drawback is its overhead, which can accumulate in complex
systems consisting of hundreds of processes

• open source

2.2.1. ROS 2

ROS (Robot Operating system) is an open-source collection of libraries, drivers and
other tools for building robot applications [30]. It is a relatively recent project, and it
contains many of the main standards accepted and used by the robotic communities all
around the world. ROS 2 is the most recent version of this software, and it is increasingly
being adopted in both academic and industrial environments.

Although ROS is in core a middleware, it provides much more functionality and tools than
a middleware such as hardware abstraction, inter-process communication mechanisms and
package management. Despite its name, it’s a meta-operating system (meta-OS), meaning
it runs on top of an host OS.

2| Materials 29

The conceptual architecture of ROS is composed by a peer-to-peer network of elements
communicating one another: ROS is designed to be modular, and robots constructed
through ROS consists of many elements separating resources and functionalities.

ROS Nodes: Each single module of the ROS infrastructure constitutes a node. Nodes
are processes that perform computation, derived from a common standard library, but
highly customizable. All nodes can be uniquely identified by the rest of the system, and
their configuration state is given by dynamically reconfigurable parameters.

Standard nodes follow a life-cycle state-machine that governs their functionality. There
are 4 main states:

• Unconfigured: the node becomes unconfigured immediately after it’s instantiated
and initialized.

• Inactive: represents a node that is currently not performing any processing. The
main purpose is to allow a node to be (re-)configured without altering its behavior
while running.

• Active: main state of node life-cycle. The node performs processing, responds to
service requests, reads data, produces output and so on.

• Finalized: states in which the node is immediately before being destroyed, used
for debugging and introspection.

The transition between states are made possible by supervisory processes, unless an
error occurs; figure 2.2 shows the various transition states that can occur in a standard
node.

30 2| Materials

Initialize

Unconfigured

Inactive

Active

Destroy

Finalized

SUCCESS

FAILURE

Error
processing

ConfiguringCleaning up

ActivatingDeactivating

Shutting down

: Error raised

: Error management

Figure 2.2: ROS node standard life-cycle

ROS interfaces: Nodes communicate with one another through ROS interfaces. All
interfaces work by exchanging messages; the semantics of the information contained
in a message is defined by the message type. Interfaces are usually not real-time, but
they possess a series of communication policies that can be customized (for example
retrying sending messages, deadlines, queuing...). There are three main types of ROS
interfaces:

• Topics: Topics act as a bus for nodes to exchange messages. Communication via
topics is N-to-N through a publisher-subscriber model: nodes sending messages
are publishers for that topic, while nodes receiving messages are subscribers (fig:
2.3).

• Services: Services are another method of communication for nodes. Services are
based on a request-response model: they only provide data when they are specif-
ically called by a client (fig: 2.4).

• Actions: Actions are yet another communication type intended for long-running
tasks. Actions consist of a goal, a feedback and a result. The goal is sent by a client

2| Materials 31

Node

Publisher

Subscriber
Node

Publisher

Node

Subscriber

Topic

Figure 2.3: ROS2 topics

Node

Server

Node

Client

Node

Client

Request

Response

Service

Figure 2.4: ROS2 services

32 2| Materials

Node

Goal client

Result client

Feedback
subscriber

Action client

Response

Request

Goal
service

Feedback
topic

Action

Response

Request

Result
service

Node
Action server

Goal server

Result server

Feedback
publisher

Figure 2.5: ROS2 actions

node to be fulfilled by a server node. While executing the task, the server sends
back a stream of feedback messages to the client. When the goal is reached, or the
action is interrupted, the server sends a message to the client containing the result
(fig: 2.5).

On top of this architecture, several libraries and packages are constructed. Table 2.1 shows
a concise list of the aformentioned architecture requirements, with the corresponding
implementation alternatives given by ROS. Thanks to the underlying platform, these
elements can all be developed independently and successively fused together, assuring
modular functionalities.

2| Materials 33

Requirement ROS2 implementation
Multi-processing and task indepen-
dence

Intrinsic in the design as a network of
nodes, constituting different processes
running in parallel

Customization Low-level customization thanks to pro-
gramming and code-based implementa-
tion; high-level customization given by
node-network parameterization

Hardware and Exoskeleton abstract de-
scription

Implemented as a markup language
(URDF and SRDF) and additional
parametric files

Hardware abstraction Provided with real-time safe function-
alities and resource management by the
ROS2 control library

Control functionalities Implemented with real-time safe func-
tionalities by the ROS2 control li-
brary

Planning and other movement-control
functionalities

Supported through the compatibility
with MOVEIT2 framework and Nav-
igation2 stack

Graphical interfaces and visualization Implemented by the RViz module,
Gazebo physical simulator and Qt-
based applications

Table 2.1: Software architecture requirements: implementation through ROS 2

2.3. Robot description

As previously mentioned, an abstract robotic description allows to generalize the physical
model of the robot, providing semantic information that can be interpreted by all layers
of the system, or even by different robotic platforms. Hence, it ensures that the indi-
vidual elements of the architecture are independent from the robot model, making the
architecture modular.

The logical components of the robotic system are arranged using the Unified Robotic De-
scription Format (URDF). This allows to provide a kinematic and dynamic description
of the robot, visual representations and collision models. URDF is a markup lan-

34 2| Materials

guage (XML) that is shared across the ROS2 system and subsequently parsed by the
different nodes. These information are not strictly static: once initialized, it is also possi-
ble to change them at run-time if the structure of the robotic system varies. The drawback
is that only tree structures with rigid links can be represented, ruling out parallel robots
and flexible elements.

The description of a robot consists of a set of link elements and a set of joint elements
(fig. 2.6). Links represent the skeleton of the robot. The link element describes a rigid
body with an inertia, visual features and collision properties. The joint element describes
the kinematics and dynamics of the joint, also specifying safety limits of the joint. Links
and joints coordinates are always expressed with respect to parent reference frame.

Figure 2.6: URDF hierarchy with a joint connecting parent and child links; child frame
coordinates are with respect to parent frame

To write an URDF description, an "higher-order" markup language can be used: XACRO.
XACRO allows to define macros so that the XML source files become simpler. Macros
are then expanded before instantiating the source as URDF.

2.4. Hardware abstraction layer

The lowest level of the conceptual architecture, just before the physical layer, is the
hardware abstraction layer. It has core importance in the hardware modularity, as it
acts as a transition system between hardware and software, assuring their compatibility
by encoding and decoding information. Moreover, being at low-level, the implementations

2| Materials 35

Physical layer

Hardware 1 Actuator N Sensor N

Hardware abstraction layer

Component 1 Component N

read/write write read

Control layer

Controller 1 Controller M

Manages

Manages

Resource manager

Interfaces

State interfaces Command interfaces

Communication protocols

Figure 2.7: Hardware abstraction operates encoding/decoding functions between con-
trollers and physical layer

are constrained to real-time requirements.

In ROS2, the hardware abstraction can be implemented by the ROS2 control package.
The hardware abstraction layer is composed by hardware resources or components.
Each hardware component acts as an intermediate system between controllers and physical
hardware, translating abstract information at the control level to hardware directives at
the physical hardware level, and vice-versa (fig: 2.7).

We can distinguish logical components, that represent the different parts of a robotic
model (e.g. joints, links) or more abstract structures, and physical components, that
are the actual hardware implementation of the robot (e.g. actuators, sensors and trans-
missions). The information at the hardware–controller interfaces is related to logical

36 2| Materials

components. For example, an input command for an hardware component may refer to a
desired joint state. It is then responsibility of the hardware abstraction to send the proper
signals to the actuators in order to achieve that joint state, considering reductions, cou-
pling of multiple actuators and complex transmissions.
Similarly, information coming from different physical sensors can be pre-processed and
combined by the hardware abstraction, then sent as a logical joint "state" information to
the controllers’ interfaces.

There are three basic types of hardware components:

• System: a system component represents a complex robotic hardware abstraction
(e.g. multi-DOF). It can expose several interfaces to the controllers and use complex
transmissions.

• Actuator: an actuator component represents a simpler robotic abstraction, like
single motors, valves or similar. It can still be used with a multi-DOF robotic
system if its hardware enables a modular design (i.e. multiple components with
multiple communication channels to the physical hardware).

• Sensor: a sensor component abstracts the robotic sensor system. Sensors are re-
lated to logical components, such as joints (e.g. an encoder) or links (e.g. a force
sensor). Unlike system and actuator components, it has only reading capabilities.

Hardware components can be dynamically loaded and unloaded at run-time. In particular,
they follow the life-cycle common to ROS2 nodes (2.2.1). The main phases are:

• Initialization phase: the main attributes are initialized, robot description is
parsed from URDF to derive logical components and transmissions.

• Configuration phase: connection with physical drivers is established and the local
attributes are shared with controllers as hardware–controller interfaces (2.4.1).

• Activation phase: consists of a final, quick preparation before starting executing
the main component activity.

• Execution phase: hardware components cycle between writing commands to the
hardware and reading back the hardware state from sensors, driven by the requests
of controllers.

The loading/unloading of components and their life-cycle is managed by the Resource
Manager, a central entity that governs the hardware abstraction functioning, ensur-
ing that hardware components requests do not collide with each other, distributing the
resources and managing their access.

2| Materials 37

Each component has usually a single communication channel with the physical hardware,
but the actual implementation depends on the application and on the machine that is
used to run ROS2. Typical communication protocols for a personal computer are USB
serial or Ethernet, but any means of communication fast enough to keep up with the
required control cycle may be implemented, if the hardware supports it.

2.4.1. Hardware–Controller interfaces

The communication between hardware abstraction and controllers can be bi-directional,
M-to-N, and is made through default (e.g. "position", "velocity", "effort"...) or custom
hardware–controller interfaces (fig: 2.7). More specifically, each hardware component
exposes (’exports’) its interfaces, while each controller claims the interfaces it requires.

There are two main types of hardware–controller interfaces:

• Command interfaces: representing information going from controllers to the
hardware abstraction (hardware input).

• State interfaces: representing information going from hardware abstraction to
controllers (feedback).

These specialized interfaces are real-time channels of communication, implemented as a
shared memory between hardware abstraction and controllers. The hardware abstraction
initializes these variables as component attributes, then their address in memory is shared
with controllers. Because of that, the access to interfaces needs to be correctly managed
in order to avoid colliding retrieval of resources. Again, this is handled by the Resource
Manager.

2.5. Control layer

To ensure modularity and adaptation of the control modality, especially required in re-
habilitation, the control implementation should also be system-independent, at least as
much as the control model allows it. This can again be accomplished through the ROS2
control package.

Controllers in ROS2 have the same functionalities as defined in control theory. One
one side, they communicate with the hardware abstraction through command and state
interfaces (2.4.1), gathering feedback states from hardware and outputting the driving
commands. On the other side, they share information with the rest of the ROS2 system
through the standard interfaces (2.2.1), receiving the desired hardware states and com-

38 2| Materials

Control layer

Controller 1 Controller M

Manages

Resource manager

Interfaces

State interfaces Command interfaces

Hardware abstraction and physical layer

Standard ROS interfaces (topics, services, actions)

Request/grant
interfaces

Offers services

Manages

Controller manager

High-level nodes and functionalities

Figure 2.8: Control layer operates between high-level functionalities and hardware ab-
straction layer

municating the actual states to other ROS entities (fig: 2.8). Internally, they perform
the operations that implement the required transfer function (e.g. PID control) between
inputs and outputs.

Similarly to hardware components, controllers are dynamic objects whose life-cycle is
managed by a central node, the Controller Manager. The life-cycle is similar to that of
hardware components, but the execution phase consists in the update of the controller
state, which performs the transfer function between input and outputs.
The Controller Manager communicates with the Resource Manager to claim the interfaces
that the controllers request, in order to access the hardware abstraction without conflicts.
It also offers ROS2 services (2.2.1) for the user, that can be exploited to directly manage
controllers and their activity. The Controller Manager also synchronizes the functioning
of the different controllers by maintaining a unique clock that determines the control-loop
update frequency.

The current implementation of controllers in ROS2 requires that the actual real-time chan-
nel of communication is only that between controllers and hardware abstraction. However,

2| Materials 39

this doesn’t allow to construct the nested architectures used in rehabilitation for a com-
pliant control, as it requires controllers communicating one another. This is a downside
that is currently under development. Up to now, to implement nested architectures they
have to be all included in a single high-level controller, or the real-time requirement has
to be relaxed by using standard ROS2 interfaces for communication between controllers.

2.6. Planning layer

Planning functionalities are useful in all those situations where the intention of the user
is more abstract, like moving from one point to another, leaving many possibilities on
how to achieve that. It is also needed when the user executes some frequent or repeated
tasks that he does not want to (or he is not able to) control directly. In this case, it is not
the user himself - but the artificial system - that thinks and decides the course of actions
to perform a certain task. Being an high-level function, planning has an even more wide
variety of possibilities on how to implement it, from trajectory interpolation methods, to
collision-avoidance strategies and environmental constraints, to kinematic algorithms, to
inter-joint cooperation for the execution of more natural movements.

ROS2 fits perfectly the planning prerequisites, because with its open interfaces it can
integrate any kind of planning framework, with high customization capabilities. However,
since ROS2 is compatible with MoveIt2 out of the box, its choice is almost obvious by
users because it doesn’t require adaptation interventions. Moreover, MoveIt2 is the most
widely used software for manipulation and has been used on over 150 robots [4]. It is
released under the terms of the BSD license, and thus free for industrial, commercial, and
research use; this makes it easy to be adopted by as many people as possible. MoveIt is
also capable of managing control movement mechanisms, such as direct control of end-
effector, mechanisms to avoid collisions, singularities and abnormal position avoidance
and similar.

MoveIt2 is a robotic manipulation platform for ROS 2 led by PickNik Robotics [4], which
runs on top of ROS2. MoveIt framework runs on top of ROS building on its messaging
and build systems and using ROS pre-existing tools like the ROS Visualizer (Rviz) and
the ROS unified robot description format (URDF). Its functionalities includes:

• Motion Planning: generation of trajectories avoiding local minima. A specific
C++ interface helps to integrate easily a custom planner.

• Manipulation: interaction with local environment with grasps.

• Inverse Kinematics: extraction of joint parameters from end-effector pose, even

40 2| Materials

in over-actuated arms.

• Control: possibility to execute time-parameterized joint trajectories using motion
planning adapters and to fix start/goal state if outside joint limits bound, near to
singularities or in collision with an object.

• 3D Perception: handling different kinds of sensor input, MoveIt is able to generate
point clouds (octomaps) and depth images.

• Collision Checking: detection and deviation of obstables using octomaps or
mashed geometric primitives.

MoveIt2 architecture is simple (fig. 2.9): a central node can be chosen from a series
of default ones, each of them with peculiar features. For example, motion planning
is implemented by a node called move group [2.6.3] while direct control by the node
MoveIt servo [2.6.5]. Each central node shares the ability to access the Scene, which is a
representation of environment and its constraints. The central node can also communicate
with hardware using controller interface. Human machine interfaces are implemented with
ROS visualizer plugins, custom implementation with C++ or raw input from a computer
terminal.

Central Node

Rviz plugins Raw input from
terminalC++ interface

Controller interfaceScene

Figure 2.9: MoveIt architecture; functionalities change switching central node

Despite the possibility of using ROS2 topics and services for communication between
nodes, MoveIt must be aware of external packages used to extend its functionalities:
human hardware interfaces, planners and collision detection systems are implemented as
plugins, giving a further modularity to the architecture.

Central node parameters can be customized with configuration files, so every detail of a
particular functionality can be customized and easily switched with another configuration
set.

2| Materials 41

2.6.1. Planners

Moveit2 architecture allows to fast switch between multiple planning plugins or to use
different planners for each joint group. Currently available planners include Open Mo-
tion Planning Library (OMPL), Open Motion Planning Library, Stochastic Trajectory
Optimization for Motion Planning (STOMP), Covariant Hamiltonian Optimization for
Motion Planning (CHOMP).

Default plugin used is OMPL [44] (fig. 2.10), an open source C++ implementation of
more than 40 different sampling-based algorithms. A sampling-based motion planning
approximates the connectivity of the search space with a graph and so reasons over a finite
set of configurations in the state space.

Start state
Goal state

No

Yes
Exact solution

Try N times

Get solution path

Yes

NoEmpty solution

Publish empty path

Publish path Robot moves

Figure 2.10: OMPL functional scheme

Within OMPL planners are divided into two categories:

• Geometric planners: they accounts only for the geometric and kinematic con-
straints of the system.

• Control-based planners: used when the system under consideration is subject
to differential constraints which restrict the allowable velocities at each point. In
robotics most problems involves differential constraints due to dynamics of robots.

To set up a planning context in OMPL are required:

• Space: is expressed as simple state space for geometric planners or a representation
of controls for control-based planners. OMPL indeed, is flexible and applicable to
a wide variety of robotic systems, so the library does not explicitly represent the
geometry of the workspace or the robot operating in it.

42 2| Materials

• Space Information: needed to check the validity of state and motion

• Problem Definition: necessary to set initial and goal states

• Planner: planner class with parameters

OMPL itself makes sure that all the objects are properly created before the planning
operation begins.

OMPL choose planner in accordance with constraints and set parameters: for example,
if the state space has a default projection (e.g. joints projection), then OMPL will use
LBKPIECE. In other circumstances RRTConnect can be used. These two planners, in
particular, have been shown to work well consistently across many real-world motion
planning problems, which is why they are the default choice.

2.6.2. Kinematics

There are both analytical and numerical solutions for Kinematics [2] which are available
to be integrated in MoveIt2 without any particular effort. An analytical solution is
a direct calculation of the joint values, while a numeric solution is often an optimiza-
tion problem (for example start in a known position and apply gradient until a solution
is found). Analytical solutions are therefore faster and often generate solutions when
numeric methods fail, but they are very hard to calculate for complex manipulators.

The most commonly used numerical IK implementation in the robotics community today
is the joint-limit-constrained pseudoinverse Jacobian solver found in the Orocos Kinemat-
ics and Dynamics Library [2].

Nevertheless, KDL’s inverse kinematics implementation has the following issues:

• if the robot has joint limits, the convergence can fail.

• no alternatives are available if the search gets stuck in local minima

• tolerances can’t be used in the KDL solver

A KDL alternative, which has been adopted more and more in recent years, is IKFast
that can analytically solve the kinematics equations of any complex kinematics chain with
solutions extremely stable that can run as fast as 5 microseconds on recent processors.

2| Materials 43

2.6.3. Offline planning

In a typical static scenario, planning is performed before the movement execution: this
modality is known as offline planning. Offline planning can be implemented with a
central node called Move group, a key node provided by MoveIt2 that act as a centralized
point to connect user actions and core components to let plan and execute trajectories in
an easy way. In particular, using URDF, SRDF and other Moveit configuration files, it
is able to:

• Communicate with robot using ROS topics and actions to get joint state information
or 3D perception from sensor data. Move group listens on a topic for determining
the current state information and on a transformation topic to monitor transform
information (i.e. pose of the robot).

• Send commands to controllers using the controller interface, which is a ROS
action interface.

• Using the Planning Scene Monitor, can monitor the planning scene, a represen-
tation of environment and robot constraints, including attached objects (fig. 2.11).

Move group exposes a service interface to receive motion plan requests through 3 inputs:
Rviz plugins that make use of MoveIt2 C++ interface and standard QT libraries, an
alternative is a C++ requests without the use of a GUI (motion plan integration with
others high-level tasks); the last input type is through user’s terminal input thanks to
MoveIt2 API (green blocks in fig. 2.11). The motion plan request includes planner
preference and parameters (otherwise defaults are used), motion constraints and final
pose of end-effector or new position in joint space.

Once motion plan request is received, move group works with custom or default planners
through the motion planning plugin, making MoveIt2 easily extensible (blue block in
fig. 2.11). The motion plan result is not just a path from start to desired location; move
group builds a chain including path and adapters which result in a trajectory, that
is a path bound by specific, time constraints, joints velocity and acceleration for each
way-point.

Motion plan adapters allow for pre-processing motion plan requests and post-processing
motion plan responses, depending on the motion constraints and environment character-
istics. Some adapters are useful for fix starting position if the robot is slightly outside the
specified joint limits, others can time-parameterize trajectories.

44 2| Materials

Move group

Rviz plugins Raw input from
terminalC++ interface

motion planning plugin

planning
interface

OMPL
CHOMP
STOMP

...

Controller interfacePlanning scene

planning request adapters

planning request adapters

Motion plan response

Central Node

Figure 2.11: Motion plan workflow

2.6.4. Online planning

Offline planning works well in well-known static environments but not in unstable or dy-
namic situations. Industrial tasks may involve moving object during trajectory execution
like other robot arms, workers, conveyor belts; therefore, is necessary to check real-time
for collisions. From a biomedical perspective, tasks like writing and manipulating objects
require adapting pressures and forces, but even simply moving in a dynamic environment
where other people interact with the user requires real-time adaptation. The Hybrid
Planning architecture attempts to solve this problem by combining a pair of global and
local planners that run in parallel and recurrently with different planning speeds and
problem scopes.

2| Materials 45

Hybrid planning manager receives the motion plan request from API, C++ interface
or Rviz plugins and then coordinates the planners asking global planner to publish a new
solution trajectory when local planner identify a local constraint. Planner logic plugin
defines how to react to events and is highly customizable (2.12).

ROS2 Action

ROS2 Action

Hybrid planning
manager planner logic

Global planner

Adapters

Planner plugin

Local planner
Local constraint

solver

Trajectory
operator

Motion plan request

Figure 2.12: Hybrid planning architecture

The global planner runs slow and, by default, it’s the move group pipeline with defined
planner plugin and adapters, that build a trajectory made of way-points (single trajectory
points in the joints space). Its target is to publish the solution trajectory to the Local
Planner for further processing; indeed, once published, the trajectory is managed by the
local planner trajectory operator, which extract way-points that local constraint solver
has to test, for example, to avoid collisions.

The local planner is running at high frequency during movement execution, because
local constraint solver has to be sufficiently sensible to constraint detection. If, during an
iteration, a local constraint is identified, local planner sends a feedback to the planning
manager and activates the planner logic. If no constraint is detected, commands from the
current way-point are sent to the robot controller and a Success feedback is notified to
planning manager.

2.6.5. Direct control

Direct control of the exoskeleton can be implemented with MoveIt Servo central node,
which is a node that allow to stream end-effector velocity commands from a wide range
of inputs, including joysticks, voice commands, keyboards and every hardware-mapped

46 2| Materials

system. The main feature that distinguishes this node from a simple robot direct control,
is the capability of preserving self collision check and singularity avoidance, inherited from
core functionalities of MoveIt2.

Servo keep an high modularity by sharing libraries with other core nodes, indeed a cooper-
ative approach lets developers instantiate Servo and move group nodes together, allowing
the user to reach a pre-defined location with planning, but also control directly end-
effector for precision movements, although the two nodes cannot be active at the same
time.

The two primary inputs to MoveIt Servo are Cartesian commands and joint commands
(fig. 2.13):

• End-effector twist commands are expressed as velocity in free space broken into
its linear and angular parts (x-y-z linear, x-y-z angular) referencing to a specific
frame, declared in the header of the message. A twist message linked to a body
reference frame is in agreement to robot movement, while referencing to world is
useful for calculations which require an external, absolute frame of reference.

• Joint commands enable the direct joint control given a joint name.

2| Materials 47

MoveIt Servo

Rviz plugins Raw input from
terminalC++ interface

Controller interfaceScene

Twist commands Joint commands

Human machine
interface

Joystick

Keyboard

Voice commands

Central node

Figure 2.13: MoveIt servo workflow - human machine interfaces are outside central node
architecture

MoveIt Servo need specific configuration files whose purpose is to define how to handle
incoming input and how sensitive has to be the output (3.7).

2.7. User interfaces

Thanks to ROS topic and services, robots can be visualized or controlled with external
interfaces, allowing the user to use the software he needs at will. In a medical scenario, it
is not always necessary to see a 3D reconstruction of robot, furthermore, the selection of
appropriate human machine interfaces requires plug-and-use modules quickly exchange-
able.

ROS has several pre-implemented tools for interacting graphically with robotic systems:

• Rviz is the primary tool for visualizing your robot and its sensor data in 3D

• Gazebo is a set of tools for advanced robot visualization and physical simulation

48 2| Materials

• RQt is for creating a graphical user interface (GUI) in ROS.

• Plugins: thanks to the plugin structure, the user can integrate his own graphical
or human machine interface or integrate an existing one with minimal effort.

2.7.1. Visualization tools

Visualization tools represent complex and nuanced data in a digestible format and bring
some much-needed sense and order to the multidimensional nature of robotics data. The
most used ROS2 tools for data visualization are Rviz and Gazebo.

Rviz is used to visualize data in ROS in a 3D environment to help visualizing what the
robot seeing and doing (2.14). Rviz can receive ROS messages and parameters of following
type:

• Paths to visualize a series of points that have been visited over time

• Visualization Messages to display visual primitives

• Markers related to frame used to interpret their coordinates. Markers can be
interactive to let user interact directly with the robot.

Figure 2.14: Rviz exoskeleton visualization with end-effector marker to allow user inter-
action

Gazebo is a more complex set of tools to simulation with libraries and cloud services
to build a realistic environment with advanced graphics engines. Compared to Rviz, it

2| Materials 49

builds high-quality and more realistic virtual environments; for this reason it is preferable
in situations where complex tasks have to be done.

2.7.2. GUI

Graphical interface is implemented through RQt, a Qt-based framework for GUI devel-
opment for ROS; the implementation logic is similar to that of ROS plugins, in particular
by means of dockable multiple widgets in a single window (fig. 2.15). Each widget is a
separate and independent plugin with private settings, and threads.

Figure 2.15: Widgets in red; every widget is designed and loaded individually.

Users can create custom plugins for RQt with either Python or C++ using rqt metapack-
ages or include one of the many developed by the community. They vary from simple
topic/services administration tools to complex robot plugins to interact with them at
runtime.

The advantage of using RQt from an architecture’s perspective, is the multi-platform
support (thanks to QT extended libraries) and the easier maintenance because of the use
of common API. Moreover, a practical aspect is the possibility to completely integrate
an existing Qt-based project into a RQt widget with minimal changes and additions:
ROS2 and Qt-applications communicate each other through the use of ROS Topics and

50 2| Materials

Services so they can exchange robot models and processes information, such as operative
nodes and control performances.

In a possible scenario, an RQt GUI can be designed, thanks to ROS2 topics, to access
and control hardware through the ROS2 hardware layer (2.7).

2.8. Docker

ROS libraries are built for specific versions of ROS middleware and operating system. In
order for an implemented package to work independently from the underlying system, a
possible solution is containerization.

Containers are used to package and run an application, along with its dependencies, in
an isolated, predictable and repeatable way. Containers require less system resources
than traditional or hardware virtual machine environments because they don’t include
operating system, thus provide faster performances and increased adoption in mini-PCs.

Reproducibility To correctly reproduce a work, the most complicated way is provide a
detailed README with all the necessary dependencies, installation steps, troubleshooting
tips, etc. Alternatively, is possible to handle all those potentially tricky dependencies
inside a Docker container that can be shared with much easier set of instructions to get
things running.

OS abstraction Multiple projects can be compiled for specific frameworks or OS ver-
sion. If a developer is working on projects that use different versions of ROS (or different
versions of software in general), then switching between host machine’s environment may
be painful, if not impossible, to get right.

Process distribution Connected to OS abstraction, developers can run different pro-
cesses on different containers; this is particularly helpful into an assistive scenario, when
the wheelchair must be as lightweight as possible. For instance, a cloud workstation can
perform 3D virtualization calculus while a single-board computer mounted on the back of
the wheelchair handles the less heavy calculations. This is only possible if processes can
abstract OS and run independently on the machine environment.

51

3| Methods

The robotic platform and materials (2) previously described and selected offer a well
assorted framework for the purposes of this work: demonstrating the possibility to build
a software architecture, able to satisfy the requisites of assistive and rehabilitative robotics.

In order to do that, a custom architecture was implemented and explored on each of
the main elements constituting it: the robot description, the hardware abstraction,
the control systems, planning and direct control functionalities, human-machine
interfaces and visualization. The main focus is to test if each of these components can
be made customizable and adaptable, while still conserving the collective functionality of
the system.

The proof of concept is mainly structured following the increasingly abstract levels of the
overall architecture. Each layer of abstraction (in particular hardware abstraction layer,
control layer, planning layer) is tested independently from the rest of the architecture,
with modifications designed to test its modularity and the robustness of the remaining
system ("horizontal" experiments).
After that, a final set of tests including the whole architecture ("vertical" experiments) is
performed on an assistive exoskeleton.

3.1. Hardware setup

The main hardware consists in 3 different types of actuators, 2 types of drivers and one
computer used to run the main software architecture. The "vertical" experiments are
performed on the BRIDGE exoskeleton.

3.1.1. Hardware setup for "horizontal" experiments

To test independent functionalities of the different layers of the architecture, in particular
the hardware-abstraction modularity, a testbench was constructed (fig: 3.1).

It consists mainly of 2 drivers connected to 3 effectors:

52 3| Methods

Figure 3.1: Test-bench setup - On the left, frontal view of the testbench with position
indicators of the motors. On the right: top view of the testbench, with the components
highlighted: A Arduino driver; N nanotec driver; S steppers

• A Nanotec driver (SMCI33-1) connected to a Nanotec stepper (ST2818S1006-B)
with an integrated encoder. Nanotec driver and stepper were chosen for horizontal
experiments as they constitute the same hardware implemented for the BRIDGE
exoskeleton (3.1.2).

The Nanotec driver is able to implement accurate functionalities for the actua-
tors, such as low-level control loops, different transients for the control mechanisms,
sensor reading, profile selection with configured parameters, calibration through ex-
ternal or internal inputs and more. Still, it is more expensive than the remaining
hardware setup for the testbench put together.

The driver allows for velocity and position control, returns a position feedback
from encoders and dialogues with the computer through the USB serial protocol.
The calibration function was exploited using a photoelectric sensor (PM-25) con-
nected to an analog input. The only thing needed by the hardware abstraction to
communicate with the Nanotec driver is knowledge about the serial control string
(3.1)

• An Arduino driver, connected to the 28BYJ stepper, and to the Nema 17
stepper. The Arduino driver consists in an Arduino UNO board, able to handle
serial USB communication and simultaneous control of multiple actuators. It is

3| Methods 53

header motor address command value tail
string string string \r

Table 3.1: Nanotec driver, serial control string. Length of the string is variable and ends
with a carriage return byte. The motor address identifies the actuator to control. Com-
mands include setting profiles, direction of movement, position and velocity, gathering
and changing setup parameters of the driver, initiating a calibration procedure, getting
position feedback and error information

effectively a more economic alternative than the Nanotec driver, depending on the
application scope and requirements.

A C++ firmware [5] was implemented on the UNO board, following the "modularity"
philosophy: all instantiated actuators are derived from the same base abstract entity,
and then specialized for each individual stepper. Thus, the functionalities of the
firmware are independent from the stepper motor.
The firmware supports velocity or position control of actuators, and can return a
position state. The position state is given by the algebraic sum of past commanded
steps: it is not measured by an encoder and it may be prone to significant errors if
the step is commanded but not executed, or vice-versa.

These information are exchanged through USB serial protocol with the computer
running the ROS2 middleware. Again, the important part for the hardware abstrac-
tion is the serial control string (tab: 3.2).

header motor ID command value MSB value LSB tail
s 8-bit [v,p,w,I] 8-bit 8-bit e

Table 3.2: Arduino driver, serial control string. The motor ID identifies the actuator
to control. Commands v, p, w and I are used respectively for velocity control, position
control, "whoami" identifier and position feedback

3.1.2. BRIDGE exoskeleton hardware

The BRIDGE exoskeleton is a four degrees-of-freedom active orthosis for upper-limb as-
sistance, designed to be worn on the left upper limb (fig: 3.2). It consists of three
shoulder joints and one elbow joint, each consisting of a rotation around the drive system
axis. Joints’ ranges of motion can be adapted to user’s capabilities at mechanical level;
moreover, the elbow module can be positioned according to the patient’s anthropometric

54 3| Methods

Figure 3.2: BRIDGE exoskeleton and rotational axis [17].

measures. The system includes a mounting frame to be secured to the personal user’s
wheelchair [17].

The actuating drivers and effectors are all Nanotec drivers and steppers, described in
(3.1.1), but with different characteristics depending on the torque required by each joint.
In particular, J2 shoulder joint must support arm lifting, therefore it is equipped with an
anti-gravity system, consisting of an elastic element in parallel with the actuator. Each
joint has also a gearbox connecting the structure to the actuators, with varying reduction
ratios.

3.2. Robot description

Two different robot descriptions were implemented: a simple robot description for tests
with individual actuators; a robot description for the BRIDGE exoskeleton.

3.2.1. Robot description for "horizontal" experiments

A simple 1-DoF URDF model was constructed in order to represent the actuators of the
test-bench. It consists of a single continuous rotational joint connected between a fixed
"base" link (the actuator case) and a movable "indicator" link, which is simply used to
represent the motion in the virtual world of the RViz visualizer (fig: 3.3).

All three actuators of the testbench are portrayed through the same abstract descrip-
tion. To control and visualize them in parallel, one has to simply instantiate the same
description multiple times, with a name indicating which actuator they represent.

3| Methods 55

Figure 3.3: Robot description of a single actuator of the testbench

3.2.2. BRIDGE exoskeleton abstract description

The BRIDGE exoskeleton description in URDF/XACRO was implemented following the
kinematic modelling described in [17] (fig: 3.4). It’s composed by 4 revolute joints:

• J1: shoulder horizontal abduction/adduction

• J2: shoulder vertical flexion/extension

• J3: humeral rotation

• J4: elbow flexion/extension

The first three joints are used to replicate the shoulder glenohumeral joint (GH), approxi-
mated as a ball-and-socket joint. This is equivalently obtained through a kinematic chain
of three rotational references whose axes intersect the GH joint center of rotation. The
kinematic model follows the modified Denavit-Hartenberg parameters [6]. Figure (3.4)
shows the reference frames of the implemented abstract joints. The rotation is always
around the local z-axis. Figure (3.5) shows the implemented description of the exoskele-
ton visualized in RViz, including a fixed base-link mimicking the trunk and head of a
person, for better understanding.

Each joint has also software customizable ranges of motion (position limits) and velocity
limits, in order to be safe and user-specific. Collision and inertial information is added
through simplified shapes, like cylinders for links and spheres for joints. Moreover, reduc-
tion ratios and offsets of the joints are added as parameters in the URDF, which will be
interpreted and used by the hardware abstraction.

56 3| Methods

Figure 3.4: BRIDGE reference frames for joints and links, following the modified Denavit-
Hartenberg convention [17]

Figure 3.5: Robot description of the BRIDGE exoskeleton, rotational axes of the various
joints are shown in blue

3| Methods 57

Hardware abstraction layer

ArduinoSerial NanotecSerial

Physical layer

Arduino driver Nanotec
driver

28BYJ Nema 17 Nanotec stepper

read/write

Interfaces

State interfaces Command interfaces

USB serial read/write

Control layer

Figure 3.6: Implementation of hardware abstraction layer

3.3. Hardware abstraction implementation

As two different types of drivers were used to connect with the hardware, only two
different component designs needed to be implemented in the hardware abstraction:
NanotecSerial, able to communicate with the Nanotec driver, ArduinoSerial, able to
communicate with Arduino driver (fig:).

Both hardware component designs use USB serial protocol to communicate with the
corresponding drivers. To achieve that, the serialib C++ library has been used [29].

The functionalities of the two component designs are enclosed in their life-cycle (2.4):

• Initialization: URDF parsing to extract logical components (joints and links),
interface types (2.4.1) and parameters such as transmissions. As the Arduino driver
is able to control multiple actuators simultaneously, 2 different joints are controlled

58 3| Methods

in a single instance of ArduinoSerial component. The NanotecSerial component
instead drives a single actuator and encoder for each instantiated component.

• Configuration: connection with the drivers is established automatically by scan-
ning serial ports, as both types of driver can provide a driver ID as echo. Also the
state and command interfaces (2.4.1) are exported: both component types support
position and velocity command-interfaces and position state-interface. NanotecSerial
component also has a settings interface, used to send on-demand commands to the
hardware, such as calibration directives, and receive other information such as tem-
perature and errors.

• Activation: all variables are initialized and a final check is performed for possible
errors.

• Execution: the components follow the controllers’ directives enabling actuation
and perception functions. These mainly consist in step-to-radian conversions and
transmissions’ implementation.

3.3.1. Hardware abstraction for "horizontal" experiments

Concerning the testbench setup, both hardware component types just mentioned were
used. The URDF implemented is that of the single actuator (3.2.1). Therefore, some
parameters such as reduction-ratios are not necessary.

For testing the hardware abstraction functionality, the hardware composing the testbench
is connected to the computer. The software architecture must be able to support all two
drivers and three steppers, even in parallel, demonstrating hardware modularity.

A set of four tests were chosen for this purpose: all actuators at the same velocity; each
actuator at a different velocity; all actuators at the same desired angular position; each
actuator at a different desired position. This is done in order to test the different command
modalities and hardware characteristics, while getting a position feedback to evaluate the
results. The evaluation consists in assessing the outcome qualitatively, showing whether
the functions were respected or not, without going to much in detail on the quantitative
accuracy as this is not the scope of the experiments.

The ros2_control package also offers the possibility to use Fake Hardware: it consists
of a standard hardware abstraction that accepts all types of interfaces and simply mirrors
the commands back as states for the controllers (fig: 3.7). This is done in order to test
the communication between controllers and hardware abstraction layer, without the need
to connect to a physical hardware. The Fake Hardware functionality will be used in

3| Methods 59

Control layer

Controller 1 Controller M

Interfaces

State interfaces Command interfaces

High-level nodes and functionalities

Fake hardware

Figure 3.7: Fake hardware mirrors commands back to states

the horizontal experiments of high-level control modalities, such as planning and direct
control of end-effector: in this way, they can be tested as if they were independent from
the hardware abstraction.

3.3.2. BRIDGE exoskeleton hardware abstraction

In case of multiple drivers of the same type, as in the BRIDGE exoskeleton, the hardware
component corresponding to that type can be simply instantiated multiple times. This is
done by declaring multiple joints in the BRIDGE URDF description (3.2.2), each using
the same NanotecSerial hardware component type (fig: 3.8). Thus, multiple processes
will be initiated, each driving its own specific actuator driver, with specific parameters
such as reduction-ratios, offsets and driver IDs for auto-connection. This implementation
will be used for the "vertical" experiments comprising the whole architecture.

3.4. Control layer implementation

Regarding the control layer, the main goal is to verify if different control modalities and
schemes can be implemented, without caring about the remaining architecture. Most
controllers are already implemented by the ROS community, though with the limitations

60 3| Methods

Hardware abstraction layer

Physical layer

Nanotec
driver

Nanotec
driver

Nanotec
driver

Interfaces

State interfaces Command interfaces

USB serial read/write

Control layer

NanotecSerial

Nanotec
driver

read/write

NanotecSerial NanotecSerial

read/write

NanotecSerial

read/write

Figure 3.8: Hardware abstraction implementation for the bridge exoskeleton

3| Methods 61

introduced before (2.5). In particular, the following were chosen:

• Forward controllers: simple open-loop controllers with a proportional transfer
function between input and output. They can control multiple joints simultaneously,
with different output types, such as the position and velocity interfaces required by
the implemented hardware abstraction.

• Trajectory controllers: Used to execute trajectories on a set of joints. A tra-
jectory is specified as a set of way-points to be reached at specific time instants.
Way-points may consist of position and optionally velocity or acceleration. The
controller can work with different trajectory representations: by default a spline
interpolator is provided. Trajectories are sent to the controller through an action
interface (2.2.1). Also, it can write to multiple command and state interfaces, using
a PID transfer function when required.

• State broadcaster: It’s not really a controller in control-theory terms, as it doesn’t
send any command. Its function is to read all state interfaces of all joints and report
them on a ROS topic that can be used by other nodes of the system (e.g. rViz and
higher level controllers and planning functions). This functionality is used in all
setups, at least to provide visual feedback.

Other controllers were implemented in this work, to exploit the customizability of the
framework:

• A PID controller with position feedback and output in velocity, with the role of
maintaining at each update a desired position:

ẋ(t) = Kp e(t) +Ki

∫ t

0

e(τ) dτ +Kd
de(t)

dt
(3.1)

Where Kp, Ki and Kd are the PID coefficients, ẋ(t) is the velocity command,
e(t) = xr−xm is the position error between desired reference position and measured
position.

The main structure is derived from the forward controllers, adding a position feed-
back interface, while the PID processing is obtained from the ROS control_toolbox

package.

• Settings controller: a general purpose controller used to dispatch on-demand com-
mands to the hardware abstraction. Differently from other controllers, it doesn’t
send commands at each update cycle, but only once, in correspondence to the call-
back of its input topic.

62 3| Methods

Control layer

State
broadcaster PID controller Forward

controller

Interfaces

State position Command positionCommand velocity

Hardware abstraction and physical layer

desired position desired position

Standard ROS interfaces (topics, services, actions)

High-level nodes and functionalities

Figure 3.9: Implementation of two different control modalities: open-loop through forward
controller, close-loop through PID controller

Controllers and Controller Manager node are declared and configured in a parametric
file. The Controller Manager needs to know the update frequency of the control cycle, to
which it synchronizes all its child controllers. Then it needs a list of all controllers it has
to handle. Controllers are then specified with their own parameters.

3.4.1. Controllers for "horizontal" experiments

The control layer is tested against the architecture modularity with two different control
modalities (fig:3.9):

• An open-loop control scheme, implemented through a forward controller;

• A close-loop control scheme, implemented through the custom PID controller.

The two modalities are tested keeping the hardware and hardware-abstraction fixed. The
Nanotec driver was chosen for this purpose as it provides an integrated encoder for position
feedback.

For horizontal experiments on higher layers, such as planning and direct control, the

3| Methods 63

Trajectory controller is used as it provides the most advanced functionalities for the
purposes.

3.4.2. BRIDGE exoskeleton software controllers

As the exoskeleton must support all higher-level functions, the Trajectory controller
was the preferred choice for all the main tests. At the same time, the custom Settings
controller is working in background, listening to the user and system intentions of cali-
bration and other setup functionalities.

3.5. MoveIt2 configuration

Since MoveIt2 [4] provides ready to use tools, a set of parameters have to be established
to achieve the experiments goal.

Some of these features are not really used, such as 3D perception, which is used to
generate points cloud or depth map from sensor data. Perception file is indeed empty,
since no external 3D sensor is used to perceive real world objects which are virtually
crossed by trajectory. Tests’ obstacles are virtually built measuring the real world object
coordinates with respect to a reference frame, then placing a similar shaped object in the
same virtual coordinates.

Joint limits are set to allows the dynamics properties specified in the URDF to be
overwritten or augmented as needed. They include velocity and acceleration limits and
scaling factors and are customized to limit maximum velocities/accelerations of URDF
ones.

To configure Kinematics, a plugin has to be specified and its parameters must be con-
figured. Plugin has to include also forward kinematics and finding jacobians. For testing
purposes, KDL solver (from Orocos Kinematics and Dynamics, it integrate a joint-limit-
constrained pseudoinverse Jacobian solver [2]) is used, because of its widespread adoption.

Moveit controller manager was a complete set of nodes and services to manage old
ROS controllers but nowadays is implemented as a medium to connect ROS2 controllers
and joint groups. This architecture will be soon deprecated, so its configuration are
strictly related to define controller names, which are matched to the ones defined in the
controller layer. Their correct coupling is essential to let MoveIt2 be conscious of used
controllers.

64 3| Methods

3.5.1. Planning configuration

Planner configuration require set of files, one for each planner used. Different planners
may requires specific parameters but, since in this work only OMPL motion library is
integrated, only its specific parameters need to be configured. For how OMPL is built, the
greater the number of planners allowed to be used, the greater the performances (2.6.1).

Planners included are SBL, EST, LBKPIECE, BKPIECE, KPIECE, RRT, RRTConnect,
RRTstar, TRRT, PRM, PRMstar, FMT, BFMT, PDST, STRIDE, BiTRRT, LBTRRT,
BiEST, ProjEST, LazyPRM, LazyPRMstar, SPARStwo, TrajOpt. For each of them,
planning parameters are defined (tables A.1-A.2), otherwise defaults are used by OMPL.
For some tests, it is forced to prefer RRTConnect because of its better performance but
if it fails to find a trajectory, OMPL automatically try with another planner.

Upstream and downstream a planner activity, adapters used are:

• Time Optimal Parameterization: it time parameterize the motion plans con-
verting paths to trajectories, applying velocity and acceleration constraints.

• Resolve Constraint Frames: resolves constraints that are defined in collision
objects or sub-frames to robot links, because the former are not known to the
planner.

• Fix Workspace Bounds: it specify a default workspace for planning (a cube of
10m x 10m x 10m) if planning request does not specify it.

• Fix Start State Bounds: it fix start state bounds adapter fixes the start state to
be within the joint limits specified in the URDF, otherwise motion planner will be
unable to plan. The fix is acceptable if the joint is slightly outside joint limits, so a
parameter is set to define how much the the joint can be outside its limits for it to
be “fixable”.

• Fix Start State Collision: The fix start state collision adapter try to sample a new
collision-free configuration near a specified configuration (in collision) by perturbing
the joint values by a small amount, defined as a percentage of the total range of
motion for the joint. It is also specified how many random perturbations the adapter
will sample before giving up.

• Fix Start State Path Constraints: if the start state for a motion plan does not
obey the specified path constraints, an interim location where the path constraint
is obeyed is included and will be used as the start state for planning.

3| Methods 65

3.5.2. SRDF configuration

Since SRDF require to semantically aggregate joints and links into groups, a chain from
the trunk to the forearm is selected to identify the arm.

A single group pose is specified (referring to home position) for the arm with joint values
<0.1935,0.4363,0.2637,-0.9361,0.0854,0.0>. This pose will be used in the test phase
to have a reference to start from.

A fixed robot (like an industrial manipulator) should be attached to the world using a
fixed virtual joint to represent the virtual motion of the robot base with respect to the
ground which is an external frame of reference (considered fixed with respect to the robot);
In this work, a virtual joint is defined to bind the exoskeleton to a fake wheelchair.

As the last configuration, a Self-Collision Matrix or Allowed Collision Matrix(ACM) have
to be built. By default it is assumed that any link of the robot could potentially come
into collision with any other link in the robot. ACM includes pairs of links that can safely
be disabled from collision checking, decreasing motion planning processing time. Pairs
are disabled when links are always/never in collision, adjacent to each other or if they are
in collision in the initial pose.

3.6. Offline planning implementation

Offline planning rely on the same basic scheme of figure 1.10. Once all the parameters
have been set, nodes, topic and services are generated (fig. 3.10): central node is move
group (2.6.3) which integrates the core functionalities to handle planning requests and
collision checking.

66 3| Methods

Central node

move group node

 Receive plan request

Check planning scene

Handle adapters

Collision detection

Generate global trajectory

Execute trajectory

Display planned path

planning scene

Attached collision object

Robot transforms

MoveIt controller manager

to ros2 control

action feedbackControllers

current position

Rviz plugins

Joint states

Rviz plugins

C++ interface

S
R

D
F

U
R

D
F

C
on

fig

Parameters

Figure 3.10: Moveit2 planning architecture

In particular, move group node (fig. 3.10) workflow is the follow:

1. reception of the plan request from Human machine interfaces, such as visualization
tools (Rviz) or C++ interfaces. The latter include hardware inputs (keyboards,
buttons etc.) or graphical interfaces.

2. Handling of plan request reading set parameters from URDF, SRDF and configu-
ration files (3.5)

3. Check of the the planning scene using relative topic; scene is also updated accord-
ing to attached objects and robot transformation.

4. Depending on the planner algorithm, collision detection is made before path
generation (if a path is extracted, it is always possible to execute it) or after path
generation (if path intersects an object, planner repeat N times the motion planning
until a free path is found).

5. After path is found, adapters are applied, generating a trajectory, which is a time-
parameterized and fixed path (3.6)

6. Trajectory is sent to controllers and an Action interface is generated, so a feedback
signal is received by MoveIt controller manager for every point of the path.

7. Trajectory is also sent to GUI plugins which display the path in a three-dimensional
space visualization.

3| Methods 67

In the horizontal tests, trajectories are sent to a fake controller, whose purpose is to
copy commands into joints states. The test goal is the correspondence of goal state (fixed
in advance) and joints final configuration. If they match, it is proved that the method is
able to correctly reach a goal position from an initial state.

Another test is done to check move group collision detection, in particular an object is
placed along the optimal path, then the executed trajectory is compared to a reference
without the obstacle.

For vertical tests trajectories are sent to control layer, so using all the lower layers
already tested.

As for horizontal tests, the experiment is considered passed if joints final configuration
match the goal state.

3.7. Direct control implementation

Servo node, which is the central node used to direct control the exoskeleton, requires
additional parameters to be set; they include command type, that could be unitless

or speed units. The latter is expressed as m/s or rad/s, while unitless is in range of
[−1 : 1], an ideal input for joystick commands. Both of them are assigned because in the
test phase, different inputs will be used (joystick and keyboard).

Collision-check rate is enabled at low frequency to not bog down a CPU if done too
often, furthermore, a threshold under which decelerating if self-collision may occurs is
set. Singularities are instead monitored through soft and hard thresholds, respectively
conditions to start decelerating and completely stop the motion. As a safety margin,
a parameter set a buffer to joint limits, if moving quickly, buffer becomes larger to let
CPU computationally follow the real movement properly. Finally, commands smoothing
is committed to a Butterworth filter plugin.

Twist and joint commands are the 2 type of message that MoveIt Servo can receive
from whatever human machine interface. For demonstration purposes, a Joystick and a
keyboard nodes are developed to send both message types. In particular, to correctly
detect hardware button pressing, a driver has been made (fig. 3.11). It is composed by
an hardware input detector, whose purpose is to convert ASCII symbols to encoded
values, and by a topic which send the encoded messages to the succeeding node for further
conversions. Before Servo node indeed, an intermediary node converts raw values which
indicate what button has been pressed, to twist and joint messages.

68 3| Methods

Before converting twist and joint commands to states in the joints space, servo node need
to check for obstacles, avoid singularities and respect joint limits by accessing the planning
scene and joints current states. If everything checks out, the resulting joints configuration
is sent to controllers which generates a feedback for every new goal they reach.

This process is equal for both joystick and keyboard used in tests phase.

Joystick input
detector

Joystick
node

update

Joystick to messages
converter

Planning scene

to ros2_control

Servo node

Check planning scene

Execute trajectory

Receive twist commands

Receive joint commands

Keyboard to messages
converter

Robot transforms

Central node

current position

Joint states

Joystick driver

S
R

D
F

U
R

D
F

C
on

fig

Parameters

MoveIt controller manager

action feedback

Controllers

Figure 3.11: Servo planning architecture - green blocks belong to the servo variant with
joystick, red block is the keyboard variant

The experiments are organized to demonstrate a subject can move with cartesian paths
and in the joint space: as for offline planning tests, horizontal validation requires fake
hardware, while horizontal experiments are done with real hardware and control layer
that has been implemented in this work.

3.8. Hybrid planning implementation

Hybrid planning configuration parameters can be divided into three macro areas:

• Local planner: includes information about where to publish local solutions (con-
troller’s topic name and type), global solution topic information, working frequency
and the plugin name that will solve local constrain problem.

By default, Moveit2 uses a plugin whose main purpose is to ensure that no collision
will happen in a short time window (2.6.4) but, no already-built algorithm is used
since no external sensors are included in this work.

• Global planner: information about planning scene monitor defines what global
planner has to consider as obstacles and let it know the initial joints positions.
Planning pipeline is entrusted to OMPL planner (2.6.1) with the same configuration

3| Methods 69

of offline planning.

• Hybrid planning manager: since it runs the planning logic and coordinates
the planners, planner logic is an essential parameter to customize; planner logic
refers to the support of mapping generic events to available actions provided by the
architecture. In the basic implementation, logic simply ask global planner to re-plan
if local constraint solver detect an obstacle on the path (2.6.4). Since there aren’t
external 3D sensors, default planner logic is replaced accordingly to the new local
constraint solver.

The new local constraint solver behaviour is comparable to a "fast switch" system: Plan-
ning and direct control can be used alternatively without intervening in the architecture,
because they are both active. Custom hybrid planning operation provides, specifically
(fig.3.12), that the local planner is always listening from a joystick for incoming com-
mands.

If a new input is received, an event sent flag is set to false; this flag allows to send
a replan request once the joystick inputs are finished. Subsequently, joystick inputs are
converted to joints space positions and sent to controllers as new way-point. In this
scenario, controllers receives only the user input commands, therefore the control of the
exoskeleton is totally entrusted to the joystick.

When no more joystick commands are received (fig.3.12), the event sent flag is checked:
if it is true, it means there’s no need to replan, because already replanned or the user
never intervenes in the movement. Current way-point is then set as next point of global
trajectory and sent to controllers, following the standard planning-execution process. If
event sent is false, it means a replan is required, due to joystick intervention in the
exoskeleton control. The exoskeleton is held still and a new global trajectory is calculated;
in the next process iteration, the flag will be true and planning will resume working as
usual.

70 3| Methods

JOY COMMANDS NODE

LOCAL PLANNER

yesno

Joy commands
incoming

Set the flag "EVENT SENT" to
false if true

Set new waypoint as
trajectory took from
joystick commands

yes no

"EVENT SENT" is true?

Send new waypoint to
controller

Send replan request to
planning manager

Set "EVENT SENT" to true
Set new waypoint to

keep the current
position

Send joy commands
to local planner

Set new waypoint as
next trajectory step

from global planning

Set Joy commands
incoming to true

Figure 3.12: Fast Switch working diagram

Local planner and joystick node frequencies must be set properly, because if the local
planner frequency is greater than that of the joystick, hybrid system will start replan at
every loop iteration, making the control unusable.

Set of functionalities described are implemented (fig. 3.13) with three central nodes, two
of them for motion planning (local and global planner nodes) and one for handling joystick
commands. The upper section of the architecture (fig. 3.13) is essentially the same of

3| Methods 71

direct control implementation (2.6.5). The only difference is that Servo node commands
are not directly sent to controllers but to local planner, who will deal with planner logic
described above.

Hybrid planning, beyond coordinating Global planner and local planner, has the task of
handling motion requests that user send through a GUI. It also receives action feedback
from controllers to make sure actuators are moving properly.

Joystick input
detector

Joystick
node

update

Joystick to messages
converter

Planning scene

Servo node

Check planning scene

Execute trajectory

Receive twist commands

Receive joint commands send joystick commands

Servo commands to hybrid
system

servo_keyboard_input

Robot transforms

Central nodes

current position

action feedback

global_trajectory

publish

action feedback
to

ros2_control
Controllers

action
 feedback

Hybrid planning manager

send planning request

C++ interface node

float64 array

Joints state
 from gui

Joint states

Joint states

Planning scene

Local planner node

 Receive Joystick commands

Receive global planner trajectory

Handle global trajectory update

Solve local constraint

Monitor current robot state

Execute trajectory

Global planner node

Receive plan request

Check planning scene

Handle adapters

Generate global trajectory

Display planned path

Rviz plugins

Figure 3.13: Hybrid planning architecture

Hybrid planning tests provide the demonstration of goal reaching despite user’s input
perturbation (like joystick): for this reason, joints final configuration is matched to a-
priori goal state. If they are equal, the test is passed. As for offline planning and direct
control, horizontal validation is done with fake hardware, while vertical experiments with
real hardware and control layer that has been implemented in this work.

72 3| Methods

3.9. Human machine interfaces

Planning and direct control systems need interfaces to let user interact with them. Two
approach are possible: physical input such as joystick, keyboard, pressure sensors or
graphical interfaces thanks to RQt libraries (2.7.2).

3.9.1. Graphical interfaces

Some tools are already present in the MoveIt meta-package, they just need to be properly
configured. One of them is selected to be used in this work thanks to its ease of use and
completeness: Motion planning plugin allow to (fig. 3.14):

• Quickly switch planners which are used in the test phase

• Send a plan and execution request

• Set goal pose

• Include shaped objects in the 3D environment

Figure 3.14: Planning plugin to handle planners and objects

For all other tests, custom graphical interfaces have been developed to adapt to specific
purposes. To assist control layer validation (4.2) an adaptive GUI contains a variable
number of sliders to test position and velocity control by selecting the relative modality.
The control through graphical tools made it possible not to use the commands from the
terminal and speed-up the test phase. Furthermore, a process monitor shows topics and
services to check workflow and execution correctness.

User side, it has been necessary to integrate a demo GUI (fig. 3.15) to assist subject
into vertical validation tests (4.5). Pose selection as a tab witch integrate the possibility
of choose different test poses to send as motion plan requests to MoveIt central nodes.

Since the exoskeleton has 4 controllable joints, their homing is added as functionality

3| Methods 73

with 4 different buttons. To set joints home positions, a calibration is required, thus a
corresponding button is added. During calibration phase, user can set motor current to
zero (transparent motion) or at working values.

Lastly, a dedicated section allow to monitor motor parameters such as temperature.

Figure 3.15: GUI to manage exoskeleton and its joints - functionalities include planning
requests to predetermined poses, homing, stepper parameter control and calibration

3.9.2. Hardware interfaces

Despite the easiness of GUIs, hardware interfaces are always necessary when dealing with
patients with reduced residual motor skills. Two type of hardware input have been tested:
a joystick and a keyboard.

Joystick needs a software driver to convert hardware inputs to adimensional commands in
the range [-1,1] for left/right analogs and on-off signals for the remaining buttons (figure
3.16).

74 3| Methods

Figure 3.16: Joystick model - green analog lever gives input in [-1;1] range, while orange
buttons are mapped as ON-OFF

Driver implementation is described into 3.7 and its purpose is to convert ASCII symbols
to encoded values.

Keyboard input is an alternative to joystick: the functionality is the same, except for
the input type, which is always pressed/not pressed and not in a continuous range as for
analog levels. Keyboard drivers are implemented directly by kernel, so there’s no node to
interpret ASCII symbols.

75

4| Results

As described in the methods (3), experiments were designed for independent layers of the
architecture and then for the overall implementation.

Hardware components are equipped with a data logger, which is used to save the data
transmitted through the interfaces of the hardware abstraction layer. This data is then
processed with MATLAB: velocity profiles are derived from position data and both are
displayed for low-level experiments; for high-level experiments, the BRIDGE exoskeleton
robot description is loaded from URDF, forward kinematics is calculated to get the end-
effector cartesian positions and visualize the motion trajectory and joint configuration
data.

4.1. Hardware layer validation

To validate hardware modularity, it will be shown that it’s possible to implement an
architecture able to adapt to different hardware without requiring to change the rest of
the system. This becomes possible thanks to the hardware abstraction.

The hardware used for validation consists in the 3 stepper motors and 2 drivers (described
in 3.1), mounted on a test-bench.

The hardware abstraction must convert the inputs coming from controllers to the proper
signal sent to the drivers. The three steppers have different step-to-radiant factors, dif-
ferent operating currents, the 28BYJ stepper has an integrated gearbox, therefore the
actuator-control signal has to be correctly translated in order to transfer its semantic
meaning down to the physical layer.

Also, hardware abstraction operates the very first stage of perception that is required
for higher-level functionalities of the artificial agent. In fact, also the feedback coming
from the drivers has to be correctly interpreted (for example encoder information).

The first test consists in controlling the different actuators at the same velocity. Thus,
a signal carrying semantic value of "velocity" is sent from controllers; it is translated to

76 4| Results

a serial command in the hardware abstraction; it then reaches the drivers that decode
the serial messages and initiate the proper electrical signals, driving the steppers to the
correct velocity. The collected data shows that the 3 actuators were qualitatively able to
successfully reach the same commanded velocity (fig: 4.1).

Figure 4.1: Control of different hardware, same commanded velocities (0.94 rad/s)

Modularity is also demonstrated by sending different velocity signals to the various step-
pers. This shows that the three components of the hardware abstraction were able, in
parallel, to correctly translate the controllers’ signals for the physical drivers (fig: 4.2).

4| Results 77

Figure 4.2: Control of different hardware, different commanded velocities (Nanotec step-
per: 3.14 rad/s; 28BYJ stepper: 0.94 rad/s; Nema 17 stepper: 1.57 rad/s).

Both drivers support different controlling modalities, therefore other tests were made
to validate if the hardware abstraction is able to understand and decode signals with a
different semantic. In this case, the same position signal was sent from the controllers
to the various abstract hardware components: results show that the 3 steppers reached
the same correct commanded position, albeit at each one’s own speed, confirming the
hardware abstraction functionality (fig: 4.3).

78 4| Results

Figure 4.3: Control of different hardware, same commanded position (6.28 rad and back
to 0 rad)

Finally, position control was used again, but with varying values across the different
steppers, with results in accordance with expectations (fig: 4.4).

4| Results 79

Figure 4.4: Control of different hardware, different commanded position (Nanotec stepper:
3.14 rad; 28BYJ stepper: 6.28 rad; Nema 17 stepper: 9.42 rad

Overall, results demonstrate how multiple hardware from different manufacturers can be
connected and controlled in parallel by the same system, thanks to the implementation
of an hardware abstraction. This allows the designers of an exoskeleton system to choose
the preferred hardware implementation considering the different hardware costs and char-
acteristics, while still maintaining a proper functionality.

4.2. Control layer validation

To demonstrate the modularity of control mechanisms, two different control modalities,
one open-loop and one close-loop, will be tested against the architecture. In this case, the
control layer will be isolated from the rest of the system and tested independently from it,
as done before with the hardware abstraction. The bottom part of the architecture down
to the actuators will be used in order to provide inputs and feedbacks from the effectors:
only the Nanotec driver and its corresponding actuator and hardware abstraction will
be employed and kept fixed.

The first test is done with a feed-forward controller, which is a simple controller
directly sending position signals to the hardware abstraction. It doesn’t access to any
state interface so it doesn’t receive feedbacks from the physical layer. The capabilities

80 4| Results

of the actuators to reach the correct position have already been established before. This
time, a temporary obstacle is placed during the execution of the movement. As expected,
the actuator couldn’t reach the proper position because the controller didn’t have any
information about the failed execution.

Figure 4.5: Open-loop controller with Nanotec stepper (target position: 12.56rad, obstacle
around 10 rad)

In a different test, a PID feed-back controller is used, receiving a position feed-back,
a position reference, and sending a velocity command proportional to the error between
position and reference. Again, an obstacle is placed during the movement for a short
time. However, this time the actuator correctly continued the execution up to the desired
position, displaying the proper behavior.

4| Results 81

Figure 4.6: Close-loop controller with Nanotec stepper (target position: 12.56rad, obstacle
around 10 rad, PID coefficients: [P = 0.5, I = 0, D = 0])

These qualitative results demonstrate the possibility to modulate the control strategy
according to the choice and requirements of the application, independently from the rest
of the implementation. As explained, this is crucial for both rehabilitative and assistive
scenarios (1.2.2).

4.3. Planning layer validation

To test individually the planning layer, fake hardware (3.3.1) is used and joint limits
are set as:

J1 J2 J3 J4

Upper limit 170° 170° 170° 170°

Lower limit -170° -170° -170° -170°

Speed limit 30 deg/s 30 deg/s 30 deg/s 30 deg/s

Table 4.1: Joint limits for virtual planning and virtual direct control validation

82 4| Results

Since fake hardware behaviour is that of an ideal sensor and actuator and consid-
ering the absence of motor friction, the expectation is a set of end effector coordinates
whose variation will be mostly sharp. The first experiment wants to test the correct goal
reaching: initial and goal states are defined a-priori as reference for successive comparison:

J1 J2 J3 J4

Initial state 11° 25° 15° -53°

Goal state -30° -30° -25° -50°

Table 4.2: Initial and goal state for virtual planning tests

Initially, no obstacle is placed along the path, so the result is an optimal solution found
by planner (fig. 4.7). Z-axis, which has the higher range of motion in the test, shows
an abrupt slope change due to perfect control behaviour (a fake hardware simulates the
hardware ideally). Goal position is perfectly matched by end-effector.

In the second iteration, an obstacle is placed into <0.31 -0.04 1.58> to evaluate plan-
ning reaction to environmental change. The acquired data (fig. 4.7) demonstrate that
the obstacle is properly avoided, probably without a optimal trajectory, but reaching the
goal successfully, which is the aim of the test.

4| Results 83

Figure 4.7: Virtual planning test - differences with and without collision detection with
spherical obstacle

Hybrid functionalities are tested comparing a reference trajectory with another ob-
tained by intervening with the joystick during movement execution. Initial and goal
states are:

J1 J2 J3 J4

Initial state 6° 8° 9° -36°

Goal state 23° 31° 17° 8°

Table 4.3: Initial and goal state for hybrid planning tests

The experiment want to test the user’s unaware of switch between two control modal-
ities and the correctness into replanning to reach the goal state. Green area of figure
4.8 shows how X-Y-Z coordinates changes accordingly to the intervention of direct con-
trol by the user. Arm control is exclusive: as soon as joystick commands start to be
sent, the framework must stop executing old trajectory and rapidly re-plan when joystick
intervention ends. Goal state is correctly reached also in this test.

84 4| Results

Figure 4.8: Virtual hybrid planning - Left plot: planning without joystick intervention.
Middle plot: joystick intervention (green area). Right image: comparison between the
two trajectories.

Even though simple planning and hybrid experiments were done with OMPL planner, it is
always possible to switch with another one in accordance to necessities and patient’s feed-
back: the calculated trajectories will follow a path based on the new planner construction
goal.

4.4. Direct-control validation

In this experiment the end-effector is moved in a cartesian path with right analog lever,
in particular in the plane Y-Z. Other planes are possible by using a different combination
of joystick buttons. Results (fig. 4.9) point out the almost constancy of X-axis, even
though its initial and goal coordinates does not coincide perfectly. This behaviour can
occur due to singularities avoidance, indeed the system seems to try bending the elbow
in some points of the trajectory to avoid outstretching the arm.

4| Results 85

Figure 4.9: Joystick control of end-effector on the Y-Z plane, in a circular trajectory

The potential modularity of this layer arises from the possibility of switching the joystick
with another input device, such as computer keyboard or voice control. The importance
of this possibility has been well described for the assistive and rehabilitative fields (1.2.3).
In this respect, a generic keyboard was tested with similar results and performances to
those shown in figure 4.9.

4.5. Vertical validation: BRIDGE exoskeleton

Vertical validation involves the use of the whole architecture in the reference exoskeleton
worn by a subject of about 80 Kg. The subject was requested to interact with a computer
running virtual environment, and with a joystick to directly control the exoskeleton.
Collected data represent joint angular positions measured by the encoders. A Matlab
program was then used for further analysis.

A trajectory controller (3.4) with velocity commands and position states and OMPL as
planner (2.6.1) are used for all the following experiments. Joint limits are set accordingly
to hardware limits, they are considered after motor reductions:

86 4| Results

J1 J2 J3 J4

Upper limit 25° 25° 20° -10°

Lower limit -55° -50° -40° -120°

Speed limit 15 deg/s 15 deg/s 15 deg/s 15 deg/s

Table 4.4: Joint limits for vertical validation

The experiments want to establish if:

• User can correctly see a virtualization of current robot configuration in space in a
virtual environment.

• User can easily interact with planning functionalities with GUIs or hardware inter-
faces.

• Path planning is correctly computed in every scenario, with presence or not of
obstacles. Cartesian paths must not influence the correctness of planning and have
to follow a straight line in a bi-dimensional space.

• Adapters are correctly applied to planned paths, this include fixing start/end posi-
tions and time-parameterization.

• Time-parameterized trajectory is well-executed by a trajectory controller, this means
that every final joint configuration read by encoders must be equal to reference final
position;

For specific experiments such as joystick interface or hybrid control, further goals will be
defined in the dedicated sections.

4.5.1. Planning

The experiment is conducted between two known points in the joints configuration. The
initial state P1 and the goal state P2 are (joint space):

4| Results 87

J1 J2 J3 J4

Initial state -10° -30° 0° -50°

Goal state 20° 20° 0° -50°

Table 4.5: Initial and goal state for planning test with horizontal obstacle

In the first experiment the subject start from P1 and has to select P2, as planning goal,
from a robot visualization widget. Initially, a preview of the movement is shown, then
the subject has to accept the planning by pressing a button. Since the time-discrete path
is accepted by the user, the trajectory controller start sending commands to actuator
drivers. Results (figure 4.10) denote a perfect alignment of goal pose with goal reference
P2 and an end-effector position in space which is consistent with goal and smooth. A
stepped trajectory would be very unpleasant for the user, indeed a ramp is essential in
everyday tasks.

Figure 4.10: Planning without obstacles

An ulterior experiment want to test collision checking in an everyday routine, like moving
the arm near an horizontal table or with a water bottle positioned along the trajectory.

For the table test, initial and final positions are the same P1 and P2 of the previous test.
The table intercept the former optimal trajectory, so that an adjustment is necessary by

88 4| Results

the planner. Since no 3D perception is available, the position of real table is measured
manually with a point in the ground as frame reference, then a virtual table is positioned
accordingly. The coordinates in the workspace of table’s center of gravity are <0.3, 0,

1.58>.

The subject is asked to repeat the previous task, checking for the planned trajectory pre-
view and then executing the movement. Results (figure 4.11) show a noticeable deviation
from the optimal trajectory of the previous task, this is particularly visible in figure 4.12.
Comparing the x,y and z-axis of the end effector in both tasks underline this deviation, es-
pecially on y-axis, accordingly to expectations. Also in this case the movement is smooth
and never jerky.

Figure 4.11: Planning with horizontal obstacle

4| Results 89

Figure 4.12: Planning - comparison between simple trajectory and collision avoidance

An horizontal movement is best suitable for testing with water bottle; the new initial and
goal states are (joint space):

J1 J2 J3 J4

Initial state 20° 20° 0° -50°

Goal state -15° 10° 0° -30°

Table 4.6: Initial and goal state for planning test with vertical obstacle

As for the table, bottle position is mapped with respect to ground and then imported
as a virtual shape to be visualized on the computer: center of gravity x-y-z coordinates
are <0.4 , 0, 1.4>. After subject planning and execution, data collected confirm the
perfect match with goal coordinates and the success in obstacle avoiding (figure 4.13).

90 4| Results

Z-axis, indeed, shows a reasonable path to avoid water bottle.

Figure 4.13: Planning with vertical obstacle

The robotic platform and the planner let also compute a Cartesian path in a 2D plane
of choice. This results in end effector straight lines with 100% success in every test
performed.

4.5.2. Direct control

Planning functionalities are not used if the intention is to move the exoskeleton with direct
commands. Further objectives, beyond generic ones, are:

• Subject can interact one-to-one with end effector or in the joint configuration space
with zero-lag or, at most, without a relevant delay when pressing joystick buttons

• Subject cannot hit an object that is near one of the exoskeleton links. Movements
in other directions should be allowed but not ones that could lead to a collision

• System must not stuck into singularities

• For the entire test, subject should not perceive the movement as uncomfortable and
imprecise

For this experiment are used the same joystick and software driver of direct control layer
validation [4.4].

4| Results 91

The tests consists of the 6 possible movements representing the end effector’s degrees of
freedom (3 translation and 3 rotation).

In the first experiment translational component is tested even though all 6 DoFs can be
used together in a complex movement in the workspace. The subject is asked to draw a
quadrilateral in the plane Y-Z by moving the right analog level (fig. 4.14). The task can
be divided into 4 phases, complementary coupled:

• Phase A-C: shoulder’s adduction (A) and abduction (C).

• Phase B-D: shoulder’s flexion (B) and extension (D). Phase D is not linear because
framework accounts for joint limits; shoulder’s extension involves its abduction, but
as defined in the configuration file, shoulder can’t abduct more than a defined limit.
Used framework compensates by slightly adducting the shoulder, as visible in phase
D of figure 4.14. A further limit is reached for J2, this mean that user can’t extend
more the shoulder (at least not in current joint configuration and with a straight
line).

92 4| Results

Figure 4.14: Direct Cartesian control through joystick, in the Y-Z plane. Path "D"
shows softening of the vertical constraint due to closeness to J1 rotational limit (shoulder
horizontal abduction). Also, this downward path stops when J2 limit is reached (shoulder
extension)

The second experiment want to try the rotational component: arm’s end effector can’t
move linearly, so for a rotation on the X-axis shoulder’s flexion and abduction components
are predominant (fig. 4.15). Results show that end effector is perfectly still on the 3 axis,
the only active component is a torque around X-axis.

4| Results 93

Figure 4.15: Direct control of twist angle (transparent trace of movement)

If the user want to control joints individually, joystick’s buttons are mapped for this
purpose. Since buttons are ON/OFF, respective joint will go at maximum speed possible,
defined in the configuration file. Subject is asked to move J1 to bring the end effector
near the trunk. As result (fig. 4.16), Z-axis doesn’t change due to joint 1 construction,
whose rotation is defined around Z-axis.

94 4| Results

Figure 4.16: Direct control of the single joint j1

Further tests were conducted about the collision avoidance by placing a virtual obstacle
and asking the subject to driving into. In none of the test it was possible for him to
continue the movement in the object direction if it is near to exoskeleton links.

The last test about direct control concern the singularity avoidance: none of previous
test led to singularity stuck because the framework always decrease the speed if near one
of them or, as last countermeasure, stop the exoskeleton motion.

All previous direct-control tests were conducted using a generic joystick, but the same
results have been obtained with a computer keyboard; the only difference is notable
when trying to control the movement speed because keyboard buttons are ON/OFF and
can’t be mapped as analog levels to ranged inputs. Independently from using keyboard
or joystick a ramp is associated to each trajectory but, if the user want to move the end
effector at lower speed, with keyboard is impossible, the exoskeleton will move always at
maximum speed the user set.

4.5.3. Hybrid planning

Hybrid planning tests want to investigate the possibility of subject to fast switch from
planned path execution to direct control without delay or jerky movements. Such func-
tionality can be helpful if, during a planned movement, user notices an obstacle on the
path and, for security reasons, has to change the trajectory to avoid it. Since the software

4| Results 95

workflow is significantly different, new objectives are:

• Subject can plan and execute a movement as good as previous tests (4.5.1)

• Subject can control directly the exoskeleton with cartesian paths and every joint
individually with the same results obtained in 4.5.2

• When moving along a planned trajectory to a goal pose, subject must be able to
intervene with direct control

• As soon as joystick intervene, previous planned movement must pause and resume
only when no more direct commands are sent by the subject

• When the initial trajectory resume, planner has to fast replan and correctly reach-
ing the initial goal pose

Two new test positions are established: they are the same used for virtual hybrid validation
(table 4.3). A reference trajectory is acquired (fig. 4.17), subject is able to move from
initial state to goal state by pressing a button. Smoothness and precision is comparable
to the ones of planning tests (4.5.1).

Figure 4.17: Hybrid planning without joystick intervention

The same exercise is repeated interfering with joystick during the trajectory execution
(fig. 4.18) simulating an obstacle on the path. Three phases can be distinguished:

96 4| Results

• Phase A: planner start executing trajectory by moving end effector in the direction
of final pose

• Phase B: Subject use joystick to direct command the end effector in a cartesian
path, pausing the execution of previous movement. From this point on, exoskeleton
will execute only the joystick commands

• Phase C: Subject stop sending joystick commands, framework fast replan and set
the new trajectory to reach defined goal pose

Figure 4.18: Hybrid planning with joystick intervention. A: start execution of planned
trajectory; B: joystick direct control; C: continuation of planning towards end point

As effect of joystick cartesian commands, only Z-axis is affected by the trajectory change,
anyway, user can perform end effector complex movements without any issue. In figure
4.19 is clearly visible the correspondence of initial and final positions of reference and
with-interference exercises.

4| Results 97

Figure 4.19: Hybrid planning: trajectories comparison

As for direct control tests (4.5.2) subject can intervene also with a computer keyboard
with the same exact results shown.

99

5| Conclusions

This project attempted to demonstrate the possibility to implement an architecture for
exoskeletons, either rehabilitative or assistive, following recent robotic standards and an
overall philosophy of system modularity. All concepts were followed while keeping the
overall analysis tied to the biomedical field, in particular the topic of motor disability.

A software architecture was implemented using widespread tools, libraries and systems.
The architecture was given a basic structure, still maintaining all the main functionalities
required by the problem statements, but with a simplified implementation. All the dif-
ferent modular elements of the system can be specialized for the requirements that each
scenario may have, and this work provides some concrete examples and a general line of
thought on how to do that.

Specifically, this project focused on the customization and cooperation of the different ele-
ments that compose an exoskeleton or human-robot system, such as decision system, hard-
ware, control system, high-level functionalities and planning, intention-detection mech-
anisms, human-machine interfaces and user-feedback. Qualitative results demonstrated
that an overall customization is possible to obtain, still preserving a robust functionality
for each of the modules of the system.

The adoption of a standardized software and architecture design philosophy in rehabil-
itation and assistance can help different realities and fields join together for a common
objective. Partitioning a complex problem into simpler subsystems allows people with
different backgrounds and knowledge to work separately and concentrate their expertise
on tasks they are proficient in: the concept of a modular architecture is to fuse all these
individual elements into a single system where they can be easily switched, composed
together, customized and re-used, avoiding to re-design the whole system over and over,
and to waste physical and mental resources.

Of course, a modular architecture is not the solution to all problems. Implementing from
scratch a complex system made up of multiple simultaneous processes and mechanisms to
make them dialogue can make one lose the primary purpose of the work; on the other hand,
learning a standardized framework that implements these functions can be particularly

100 5| Conclusions

difficult and time consuming, especially for people whose background is more theoretical
or broad-spectrum.
In this regard, it is useful to underline the importance of a well-documented system,
at code-level, conceptual-level and use-case-level. A thorough documentation can help
developers to construct and adapt the system faster and more easily; also, documentation
can help users and caregivers understand better the main functionalities of the system
and how it interacts with the environment. For this project, a documentation was written
both for the software packages and for the conceptual framework that has been studied in
order to implement them [9]. In addition, a system has been developed to automatically
generate core packages and so, speeding up the development process [8].

Another aspect is that not all functions are better achieved if implemented using the
same framework: that’s why a middleware connecting and supporting different developing
tools is important. Moreover, some low-level, reactive control systems are much more
efficient if implemented closer to the hardware, for example on integrated circuit boards,
rather than on an higher-level architecture. However, systems that are designed to stay
fixed may display a greater connection between the system components, as they can be
optimally designed for that particular instance. In many cases, an integrated design can
also help lowering the prices, mostly for hardware, and this is one of the main factors in
the assistive scenario. Therefore, some trade-offs are always present between the different
design philosophies, and the choice on how to implement each functionality should depend
on the context.

5.1. Future developments

In the future, this proof of concept and architecture design will be used by the Neuro-
Engineering And medical Robotic Laboratory (NEARLab) for projects currently under
development. In order to finalize a project built in this way, attention must be paid to
several points.

First, the robot description must be more accurate, including meshes for both visual-
ization and collision, as close as possible to the real geometries of the system, and correct
dynamic properties. This is tricky to implement in a ROS environment, as the robot
description is made in a markup language: other robotic platforms such as Orocos allow
to define a 3D model of the robot directly into the system. Anyway, there are some pos-
sibilities to ease the robot description implementation: for example, a SolidWorks plugin
allows to export the URDF from a 3D model made on a graphic interface, but it has to be
constructed properly in kinematic terms. Also, alternatives to URDF description should

5| Conclusions 101

be researched for soft structures, that are seldom used in the industrial field, but more
and more studied by the scientific community.

Secondly, the hardware abstraction layer must be expanded to other communication
protocols, such as EtherCAT, and other types of actuators like brushless and pneumatic
effectors that are gaining interest in research for artificial muscles. Moreover, it’s possible
to construct more distributed architectures, where the main framework runs both on a
main computer and on integrated boards: the latter may implement more reactive control
mechanisms, using a lower level of communication with the hardware of the exoskeleton.

Furthermore, there’s the need to transfer controllers already developed for rehabilita-
tion into the system: as said, this is not immediate as the current version doesn’t support
nested control structures, but can be solved by wrapping controllers into a unique pro-
cess/node of the system. Another feature under development is the asynchrony between
controllers, that are currently all dependent on the Controller Manager’s unique clock;
anyway, it’s possible to implement multiple Controller Managers each running indepen-
dently their child controllers.

Another improvement concerns the planning layer, which currently uses planners de-
signed for industrial robotics: a more physiological model to calculate trajectories such
as "learning by demonstration" is necessary for medical applications, but currently there
is no solution robust enough to be implemented. Also, other mechanisms of intention
detection and user-feedback should be tested and assessed.

The final hope is that this work could be an useful starting point for a more outlined
methodology on how to construct a modular human-robot system, for both clinical and
assistive scenarios.

103

Bibliography

[1] T. M. B. A. Sensors and actuation technologies in exoskeletons: A review. Sensors
(Basel), 2022.

[2] P. Beeson and B. Ames. Trac-ik: An open-source library for improved solving of
generic inverse kinematics. International Conference on Humanoid Robots, 2015.

[3] A. Cieza, K. Causey, K. Kamenov, S. W. Hanson, S. Chatterji, and T. Vos. Global
estimates of the need for rehabilitation based on the global burden of disease study
2019: a systematic analysis for the global burden of disease study 2019. Lancet, 2020.

[4] D. Coleman, I. A. S, ucan, S. Chitta, and N. Correll. Reducing the barrier to entry
of complex robotic software: a moveit! case study. Journal of Software Engineering
for Robotics, 2014.

[5] D. Comini and D. d’Arenzo. arduino_stepper_serial_driver, 2022. URL https:

//github.com/Assistive-Exoskeleton/arduino_stepper_serial_driver.

[6] J. J. Craig. Introduction to Robotics: Mechanics and Control. Pearson Higher Edu-
cation, 3rd edition, 2014. ISBN 978-1-292-04004-2.

[7] S. Dalla Gasperina, L. Roveda, A. Pedrocchi, F. Braghin, and M. Gandolla. Review
on patient-cooperative control strategies for upper-limb rehabilitation exoskeletons.
Front Robot AI, 8:745018, Dec. 2021.

[8] D. d’Arenzo and D. Comini. Ros2_templates, 2022. URL https://github.com/

Assistive-Exoskeleton/Templates_ROS2.

[9] D. d’Arenzo and D. Comini. Ros notes, 2022. URL https://

assistive-exoskeleton.github.io/ROS_notes/index.html.

[10] L. A. V. der Heide, B. van Ninhuijs, A. Bergsma, G. J. Gelderblom, D. J. van der
Pijl, and L. P. de Witte. An overview and categorization of dynamic arm supports for
people with decreased arm function. Prosthetics and orthotics international, 2014.

[11] G. DH., V. M., and D. C. Satisfaction and perceptions of long-term manual

https://github.com/Assistive-Exoskeleton/arduino_stepper_serial_driver
https://github.com/Assistive-Exoskeleton/arduino_stepper_serial_driver
https://github.com/Assistive-Exoskeleton/Templates_ROS2
https://github.com/Assistive-Exoskeleton/Templates_ROS2
https://assistive-exoskeleton.github.io/ROS_notes/index.html
https://assistive-exoskeleton.github.io/ROS_notes/index.html

104 | Bibliography

wheelchair users with a spinal cord injury upon completion of a locomotor train-
ing program with an overground robotic exoskeleton. Disability and Rehabilitation:
Assistive Technology, 2019.

[12] S. A. Directorate General for Employment and E. Opportunities. Quality in and
equality of access to healthcare services. Brussels, 2008.

[13] A. Elkady and T. Sobh. Robotics middleware: A comprehensive literature survey
and attribute-based bibliography. Journal of robotics, 2012.

[14] L. G. et al. Development and psychometric properties of the family life interview.
Journal of Applied Research in Intellectual Disabilities, 2010.

[15] S. W. et al. Use of the icf model as a clinical problem-solving tool in physical therapy
and rehabilitation medicine. Physical Therapy, 2002.

[16] M. Gandolla, A. Costa, L. Aquilante, M. Gfoehler, M. Puchinger, F. Braghin, and
A. Pedrocchi. Bridge - behavioural reaching interfaces during daily antigravity ac-
tivities through upper limb exoskeleton: Preliminary results. IEEE International
conference on rehabilitation robotics, 2017.

[17] M. Gandolla, S. Dalla Gasperina, V. Longatelli, A. Manti, L. Aquilante, M. G.
D’Angelo, E. Biffi, E. Diella, F. Molteni, M. Rossini, M. Gföhler, M. Puchinger,
M. Bocciolone, F. Braghin, and A. Pedrocchi. An assistive upper-limb exoskeleton
controlled by multi-modal interfaces for severely impaired patients: development
and experimental assessment. Robotics and Autonomous Systems, 143:103822, 2021.
ISSN 0921-8890. doi: https://doi.org/10.1016/j.robot.2021.103822. URL https:

//www.sciencedirect.com/science/article/pii/S092188902100107X.

[18] R. Gopura, D. Bandara, K. Kiguchi, and G. Mann. Developments in hardware
systems of active upper-limb exoskeleton robots: A review. Robotics and Au-
tonomous Systems, 75:203–220, 2016. ISSN 0921-8890. doi: https://doi.org/10.1016/
j.robot.2015.10.001. URL https://www.sciencedirect.com/science/article/

pii/S0921889015002274.

[19] M. A. Gull, S. Bai, and T. Bak. A review on design of upper limb exoskeletons.
Robotics, 2020.

[20] ISO 9241-210. Ergonomics of human-system interaction, part 210: Human-centred
design for interactive systems, 2019.

[21] W. J., P. C., and B. J. A survey of stakeholder perspectives on exoskeleton technology.
Journal of NeuroEngineering and Rehabilitation, 2014.

https://www.sciencedirect.com/science/article/pii/S092188902100107X
https://www.sciencedirect.com/science/article/pii/S092188902100107X
https://www.sciencedirect.com/science/article/pii/S0921889015002274
https://www.sciencedirect.com/science/article/pii/S0921889015002274

| Bibliography 105

[22] M. M. H. P. Janssen, J. Lobo-Prat, A. Bergsma, E. Vroom, and workshop par-
ticipants. 2nd workshop on upper-extremity assistive technology for people with
duchenne: Effectiveness and usability of arm supports irvine, usa, 22nd-23rd january
2018. NMD, 2019.

[23] O. Just, F. Feedforward model based arm weight compensation with the rehabilita-
tion robot armin. International Conference on Rehabilitation Robotics, 2017.

[24] V. Klamroth-Marganska. Stroke rehabilitation: Therapy robots and assistive devices.
Springer, 2018.

[25] P. Langhorne, F. Coupar, and A. Pollock. Motor recovery after stroke: a systematic
review. The Lancet Neurology, 2009.

[26] R. Lee. The demographic transition: three centuries of fundamental change. The
Journal of Economic Perspectives, 2003.

[27] J. Li, S. Li, L. Zhang, C. Tao, and R. Ji. Position solution and kinematic interference
analysis of a novel parallel hip-assistive mechanism. Mech. Mach. Theory, 2018.

[28] J. Lobo-Prat, P. N. Kooren, A. H. Stienen, J. L. Herder, B. F. Koopman, and P. H.
Veltink. Non-invasive control interfaces for intention detection in active movement-
assistive devices. Journal of neuroengineering and rehabilitation, 2014.

[29] F. Lulu. serialib, 2021. URL https://github.com/imabot2/serialib.

[30] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall. Robot operat-
ing system 2: Design, architecture, and uses in the wild. Science Robotics, 7(66):
eabm6074, 2022. doi: 10.1126/scirobotics.abm6074. URL https://www.science.

org/doi/abs/10.1126/scirobotics.abm6074.

[31] A. Mohebbi. Human-robot interaction in rehabilitation and assistance: a review.
Current Robotics Reports, 2020.

[32] U. Nations. Article 26 – habilitation and rehabilitation. Convention on the Rights
of Persons with Disabilities (CRPD).

[33] P. Neumann. Communication in industrial automation—what is going on? Science
Direct, 2007.

[34] C. Nguiadem, M. Raison, and S. Achiche. Motion planning of upper-limb exoskeleton
robots: A review. Applied Sciences, 2020.

[35] W. H. Organization. Disability and health. Geneva, 2001.

https://github.com/imabot2/serialib
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074

106 5| BIBLIOGRAPHY

[36] W. H. Organization and W. Bank. World report on disability, 2011.

[37] F. Posteraro, S. Mazzoleni, S. Aliboni, B. Cesqui, A. Battaglia, P. Dario, and
S. Micera. Robot-mediated therapy for paretic upper limb of chronic patients follow-
ing neurological injury. J Rehabil Med, 2009.

[38] T. Proietti, V. Crocher, A. Roby-Brami, and N. Jarrassé. Upper-limb robotic ex-
oskeletons for neurorehabilitation: A review on control strategies. IEEE Reviews in
Biomedical Engineering, 9:4–14, 2016.

[39] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson
College Div, 3rd edition, 2010. ISBN 978-0136042594.

[40] A. Sen and L. Sen. The Idea of Justice. Harvard University Press, 2009. ISBN
9780674036130. URL https://books.google.it/books?id=enqMd_ze6RMC.

[41] K. Suzumori and A. A. Faudzi. Trends in hydraulic actuators and components in
legged and tough robots: a review. Advanced Robotics, 2018.

[42] J. B. West and A. M. Luks. West’s Pulmonary Pathophysiology: The Essentials.
Lippincott Williams and Wilkins, 9th edition, 2017.

[43] B. H. Çorak and F. Y. Okay. Comparative analysis of iot communication protocols.
Computers and Communications, 2018.

[44] I. A. S, ucan, M. Moll, and L. E. Kavraki. The open motion planning library. IEEE
Robotics and Automation Magazine, 2012.

https://books.google.it/books?id=enqMd_ze6RMC

107

A| Appendix

Motion planner Parameters Description

EST
range: 0.0 Max motion added to tree
goal_bias: 0.05 When close to goal select goal, with this probability

LBKPIECE
range: 0.0 Max motion added to tree
border_fraction: 0.9 Fraction of time focused on boarder
min_valid_path_fraction: 0.5 Accept partially valid moves above fraction

BKPIECE

range: 0.0 Max motion added to tree
border_fraction: 0.9 Fraction of time focused on boarder
min_valid_path_fraction: 0.5 Accept partially valid moves above fraction
failed_expansion_score_factor: 0.5 When extending motion fails, scale score by factor

KPIECE

range: 0.0 Max motion added to tree
border_fraction: 0.9 Fraction of time focused on boarder
min_valid_path_fraction: 0.5 Accept partially valid moves above fraction
failed_expansion_score_factor: 0.5 When extending motion fails, scale score by factor
goal_bias: 0.05 When close to goal select goal, with this probability

RRT
range: 0.0 Max motion added to tree
goal_bias: 0.05 When close to goal select goal, with this probability

RRTConnect range: 0.0 Max motion added to tree

RRTstar
range: 0.0 Max motion added to tree
goal_bias: 0.05 When close to goal select goal, with this probability
delay_collision_checking: 1 Stop collision checking as soon as C-free parent found

TRRT

range: 0.0 Max motion added to tree
goal_bias: 0.05 When close to goal select goal, with this probability
max_states_failed: 10 hen to start increasing temp
temp_change_factor: 2.0 how much to increase or decrease temp
min_temperature: 10e-10 lower limit of temp change
init_temperature: 10e-6 initial temperature
frountier_threshold: 0.0 dist new state to nearest neighbor to disqualify

as frontier
frountierNodeRatio: 0.1 1/10, or 1 nonfrontier for every 10 frontier
k_constant: 0.0 value used to normalize expresssion

FMT

num_samples: 1000 number of states that the planner should sample
radius_multiplier: 1.1 multiplier used for the nearest neighbors search radius
nearest_k: 1 use Knearest strategy
cache_cc: 1 use collision checking cache
heuristics: 0 activate cost to go heuristics

extended_fmt: 1
activate the extended FMT*: adding new samples
if planner does not finish successfully

PRM max_nearest_neighbors: 10 Use k nearest neighbors

Table A.1: OMPL implemented planners and respective parameters

108 A| Appendix

Motion planner Parameters Description

BFMT

num_samples: 1000 number of states that the planner should sample
radius_multiplier: 1.0 multiplier used for the nearest neighbors search radius
nearest_k: 1 use Knearest strategy
balanced: 0 Exploration strategy: balanced true expands one

tree every iteration. False will select the tree
with lowest maximum cost to go

optimality: 1 Termination strategy: optimality true finishes when
the best possible path is found. Otherwise,
the algorithm will finish when the first feasible
path is found

heuristics: 1 activate cost to go heuristics
cache_cc: 1 use collision checking cache

extended_fmt: 1
activate the extended FMT*: adding new samples
if planner does not finish successfully

STRIDE

range: 0.0 Max motion added to tree
goal_bias: 0.05 When close to goal select goal, with this probability
use_projected_distance: 0 whether nearest neighbors are computed based on distances

in a projection of the state rather distances in
the state space itself

degree: 16 desired degree of a node in the
Geometric Near-neightbor Access Tree (GNAT)

max_degree: 18 max degree of a node in the GNAT
min_degree: 12 min degree of a node in the GNAT
max_pts_per_leaf: 6 max points per leaf in the GNAT
estimated_dimension: 0.0 estimated dimension of the free space
min_valid_path_fraction: 0.2 Accept partially valid moves above fraction

BiTRRT

range: 0.0 Max motion added to tree
temp_change_factor: 0.1 how much to increase or decrease temp
init_temperature: 100 initial temperature
frountier_threshold: 0.0 dist new state to nearest neighbor to disqualify as frontier
frountier_node_ratio: 0.1 1/10, or 1 nonfrontier for every 10 frontier
cost_threshold: 1e300 the cost threshold. Any motion cost that is not better will

not be expanded

LBTRRT
range: 0.0 Max motion added to tree
goal_bias: 0.05 When close to goal select goal, with this probability
epsilon: 0.4 optimality approximation factor

BiEST range: 0.0 Max motion added to tree

ProjEST
range: 0.0 Max motion added to tree
goal_bias: 0.05 When close to goal select goal, with this probability

LazyPRM range: 0.0 Max motion added to tree

SPARS

stretch_factor: 3.0 roadmap spanner stretch factor. multiplicative upper bound on
path quality. It does not make sense to make
this parameter more than 3

sparse_delta_fraction: 0.25 delta fraction for connection distance. This value represents
the visibility range of sparse samples

dense_delta_fraction: 0.001 delta fraction for interface detection
max_failures: 1000 maximum consecutive failure limit

SPARStwo

stretch_factor: 3.0 roadmap spanner stretch factor. Multiplicative
upper bound on path quality. It does not make sense
to make this parameter more than 3

sparse_delta_fraction: 0.25 delta fraction for connection distance.
This value represents the visibility range of sparse samples

dense_delta_fraction: 0.001 delta fraction for interface detection
max_failures: 5000 maximum consecutive failure limit

Table A.2: OMPL implemented planners and respective parameters

109

List of Figures

1.1 Elbow orthoses [18] . 4
1.2 16 DoFs X-Arm-2 exoskeleton [18] . 4
1.3 Human-robot interaction [7] . 6
1.4 Hydraulic actuator [41] . 8
1.5 Communication protocol between hardware and control unit 10
1.6 Robot control system . 11
1.7 Feedback and feed-forward controllers . 12
1.8 Impedance control . 14
1.9 Admittance control . 14
1.10 Generic planning integrated into a robotic system 18
1.11 Two applications exchange data using a message protocol. 21

2.1 Robotic system architecture design . 27
2.2 ROS node standard life-cycle . 30
2.3 ROS2 topics . 31
2.4 ROS2 services . 31
2.5 ROS2 actions . 32
2.6 URDF hierarchy . 34
2.7 Hardware abstraction architecture . 35
2.8 Control layer architecture . 38
2.9 MoveIt architecture; functionalities change switching central node 40
2.10 OMPL functional scheme . 41
2.11 Motion plan workflow . 44
2.12 Hybrid planning architecture . 45
2.13 MoveIt servo workflow . 47
2.14 Rviz exoskeleton visualization . 48
2.15 Widget organized in RQt . 49

3.1 testbench setup . 52
3.2 BRIDGE exoskeleton and rotational axis [17]. 54

110 | List of Figures

3.3 Robot description of a single actuator of the testbench 55
3.4 Bridge modeling . 56
3.5 Robot description of the BRIDGE exoskeleton 56
3.6 Implementation of hardware abstraction layer 57
3.7 Fake hardware mirrors commands back to states 59
3.8 Hardware abstraction implementation for the bridge exoskeleton 60
3.9 Controllers implementation . 62
3.10 Moveit2 planning architecture . 66
3.11 Servo planning architecture . 68
3.12 Fast Switch working diagram . 70
3.13 Hybrid planning architecture . 71
3.14 Planning plugin to handle planners and objects 72
3.15 GUI to manage exoskeleton and its joints 73
3.16 Joystick model . 74

4.1 Control of different hardware, same commanded velocities 76
4.2 Control of different hardware, different commanded velocities 77
4.3 Control of different hardware, same commanded position 78
4.4 Control of different hardware, different commanded position 79
4.5 Open-loop controller with Nanotec stepper 80
4.6 Close-loop controller with Nanotec stepper 81
4.7 Virtual planning test . 83
4.8 Virtual hybrid planning test . 84
4.9 Virtual direct-control test . 85
4.10 Planning without obstacles . 87
4.11 Planning with horizontal obstacle . 88
4.12 Planning - comparison between simple trajectory and collision avoidance . 89
4.13 Planning with vertical obstacle . 90
4.14 Direct Cartesian control through joystick, in the Y-Z plane 92
4.15 Direct control of twist angle . 93
4.16 Direct control of the single joint j1 . 94
4.17 Hybrid planning without joystick intervention 95
4.18 Hybrid planning with joystick intervention 96
4.19 Hybrid planning: trajectories comparison 97

111

List of Tables

2.1 Software architecture requirements: implementation through ROS 2 33

3.1 Nanotec driver, serial control string . 53
3.2 Arduino driver, serial control string . 53

4.1 Joint limits for virtual planning and virtual direct control validation 81
4.2 Initial and goal state for virtual planning tests 82
4.3 Initial and goal state for hybrid planning tests 83
4.4 Joint limits for vertical validation . 86
4.5 Initial and goal state for planning test with horizontal obstacle 87
4.6 Initial and goal state for planning test with vertical obstacle 89

A.1 OMPL implemented planners and respective parameters 107
A.2 OMPL implemented planners and respective parameters 108

113

Acknowledgements

Ringraziamo la professoressa Alessandra Pedrocchi per l’opportunità offertaci nello svol-
gimento di questo lavoro e la professoressa Marta Gandolla per la cura e la supervisione
del progetto. Un ringraziamento particolare a Stefano e Mattia per averci accompagnato
e seguito in questo percorso con grande professionalità, dedizione e pazienza e per essere
stati essenziali per la riuscita di questo progetto di tesi. Ringraziamo anche tutti i ragazzi
e le ragazze del NearLab per la loro dedizione alla ricerca e per la compagnia durante
questo percorso.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Disability
	Rehabilitation
	Assistance
	Robotic therapy

	Exoskeletons and human-robot systems
	Exoskeleton hardware
	Controllers
	Intention detection and user interfaces
	Planning
	Decision system
	Robotic platform

	Modularity and standardization

	Materials
	Software architecture requirements
	Selection of the robotic platform
	ROS 2

	Robot description
	Hardware abstraction layer
	Hardware–Controller interfaces

	Control layer
	Planning layer
	Planners
	Kinematics
	Offline planning
	Online planning
	Direct control

	User interfaces
	Visualization tools
	GUI

	Docker

	Methods
	Hardware setup
	Hardware setup for "horizontal" experiments
	BRIDGE exoskeleton hardware

	Robot description
	Robot description for "horizontal" experiments
	BRIDGE exoskeleton abstract description

	Hardware abstraction implementation
	Hardware abstraction for "horizontal" experiments
	BRIDGE exoskeleton hardware abstraction

	Control layer implementation
	Controllers for "horizontal" experiments
	BRIDGE exoskeleton software controllers

	MoveIt2 configuration
	Planning configuration
	SRDF configuration

	Offline planning implementation
	Direct control implementation
	Hybrid planning implementation
	Human machine interfaces
	Graphical interfaces
	Hardware interfaces

	Results
	Hardware layer validation
	Control layer validation
	Planning layer validation
	Direct-control validation
	Vertical validation: BRIDGE exoskeleton
	Planning
	Direct control
	Hybrid planning

	Conclusions
	Future developments

	Bibliography
	Appendix
	List of Figures
	List of Tables
	Acknowledgements

