
POLITECNICO DI MILANO
Master of Science in Computer Science and Engineering

Dipartimento di Elettronica, Informazione e Bioingegneria

Composable Heuristics for RTL Logic

Locking Optimization based on System

Dependence Analysis

Supervisor: Prof. Christian Pilato

M.Sc. Thesis by:

Luca Collini, 939607

Academic Year 2020-2021

To the professors who inspired me.

Abstract

The recent advance of Integrated Circuit (IC) technology has brought an

increase in both design complexity and manufacturing costs. This leads

more and more design houses to become fabless [26], that is they are out-

sourcing the fabrication process to external foundries. The introduction of

third-party entities in the IC supply chain brings new security challenges [2].

Reverse engineering is the major threat as it can lead to intellectual property

theft and malicious modifications. The total loss from IC counterfeiting was

estimated to be around $169 billion already in 2011 [19] and we only expect

it to grow in the following years, also considering the increasing number of

reported parts [8]. In this scenario, active methods for protecting intellectual

property are more effective to protect against counterfeiting than long legal

disputes after watermarking identification. Logic locking aims at thwarting

reverse engineering by adding extra logic to the original design that is con-

trolled by a new set of inputs called key inputs. The correct functionality is

obtained only if the correct sequence of bits is provided to the key inputs.

The extra logic added to lock the design introduces area, power, and tim-

ing overheads. In real-world applications, we cannot obfuscate the whole

design due to constraints on these overheads. Obfuscating different parts

of a design may lead to very different results in terms of security, though

saying which parts of a design should be obfuscated to obtain the best pos-

sible solution is an open question. A technique for design space exploration

for logic locking optimization at HLS [22] showed that carefully selecting

the obfuscation points can yield much better results than obfuscating the

whole design. HLS solutions are not compatible with all design flows. We

show that such approach is not always feasible at RTL due to the higher

number of possible obfuscation points and the slower simulations. For this

reason, we explore more efficient solutions taking into consideration the ef-

fects on the chip results when locking an element of the design instead of

performing a blind search. We propose four heuristics that analyze different

characteristics based on the dependencies between signals. We represent the

I

signal dependencies of a design with a System Dependence Graph. The pro-

posed solution yields higher differential entropy for 92% of the cases when

compared to non-optimizing techniques. When compared to state-of-the-

art heuristics it shows comparable results while requiring 100× to 400× less

computational time.

Sommario

Il progresso della tecnologia dei circuiti integrati negli ultimi decenni ha por-

tato a un aumento sia della complessità della progettazione che dei costi di

produzione. Questo porta sempre più aziende di progettazione a diventare

fabless [26], cioè a esternalizzare il processo di fabbricazione ad aziende es-

terne. L’introduzione di terze parti nella catena di fornitura dei circuiti inte-

grati porta nuove sfide in termini di sicurezza [2]. Il reverse engineering è la

principale minaccia in quanto può portare a furto di proptietà intellettuale

e modifiche dannose. La perdita economica causata dalla contraffazione di

circuiti integrati è stata stimata in circa 169 miliardi di dollari nel 2011 [19]

e ci aspettiamo che possa solo crescere nei prossimi anni, considerando an-

che il crescente numero di parti segnalate [8]. In questo scenario, i metodi

attivi per la protezione della proprietà intellettuale sono più efficaci per la

protezione dalla contraffazione rispetto alle lunghe controversie legali dopo

l’identificazione del watermark. Il logic locking mira a contrastare il reverse

engineering aggiungendo ulteriore logica al progetto originale controllata da

un nuovo gruppo di input chiamato chiave. La corretta funzionalità si ot-

tiene solo se viene fornita come chiave la corretta sequenza di bit. La logica

aggiuntiva aggiunta per bloccare il design introduce costi generali di area,

potenza e ritardo. Nelle applicazioni del mondo reale, non possiamo offus-

care l’intero progetto a causa dei vincoli su questi costi generali. Offuscare

parti diverse di un progetto può portare a risultati molto diversi in termini

di sicurezza, anche se dire quali parti di un progetto dovrebbero essere offus-

cate per ottenere la migliore soluzione possibile è un problema aperto. Una

tecnica per l’esplorazione dello spazio di progettazione per l’ottimizzazione

del logic locking in HLS [22] ha mostrato che scegliere con cura i punti di

offuscamento può produrre risultati molto migliori rispetto all’offuscamento

dell’intero progetto. Le soluzioni HLS non sono compatibili con tutti i flussi

di progettazione. Mostriamo che tale approccio non è sempre fattibile a

RTL a causa del maggior numero di possibili punti di offuscamento e delle

simulazioni più lente. Per questo motivo esploriamo soluzioni più efficienti

III

prendendo in considerazione l’effetto sul risultato del circuito di offuscare

un elemento del circuito invece di eseguire una ricerca alla cieca. Proponi-

amo quattro euristiche che analizzano diverse caratteristiche, basando la

nostra analisi sulle dipendenze tra i segnali. Rappresentiamo le dipendenze

del segnale di un circuito con un grafo delle dipendenze del sistema. La

soluzione proposta produce entropia differenziale maggiore per il 92% dei

casi rispetto alle tecniche non ottimizzanti. Se confrontato con l’euristica

allo stato dell’arte, mostra risultati comparabili richiedendo da 100× a 400×
in meno in termini di tempo di computazione.

Acknowledgements

I would like to thank countless people that helped me, directly and/or in-

directly. My mum and dad, that always encouraged and supported me in

following my passions. Christian for his guidance and support. The friends

on which I can always count on. Milena and Steven, that helped me discover

my passion for learning and for Computer Science.

VII

Contents

Abstract I

Sommario III

Acknowledgements VII

1 Introduction to Hardware IP Protection 1

1.1 Context . 1

1.1.1 Background . 1

1.1.2 Threat Model . 4

1.2 Scenario and Problem Statement 4

1.3 Methodology . 5

1.4 Contributions . 5

1.5 Structure of Thesis . 6

2 State of the Art 7

2.1 IC Design Flow . 7

2.2 Evaluation Metrics . 8

2.3 Logic Locking Techniques . 9

2.4 Design Space Exploration for Logic Locking Optimization . . 13

2.5 Summary . 13

3 Problem Definition and Background 15

3.1 Problem Statement . 15

3.2 Semantic Obfuscation Techniques 17

3.3 Differential Entropy . 18

3.4 Dependence Graphs . 20

3.5 Summary . 20

4 Approach: Heuristics for RTL Locking 21

4.1 Architecture & Design Decisions 21

IX

4.2 Summary . 26

5 SDG Extraction 27

5.1 PDG Extraction . 27

5.2 SDG Extraction Flow . 29

5.3 Summary . 32

6 Scoring and Selection Heuristics 33

6.1 Scoring Heuristics . 34

6.1.1 Control Disabling . 34

6.1.2 Bounded (Direct) Children 34

6.1.3 Bounded Parents . 35

6.1.4 Max I/O Path Length 37

6.2 Selection Methods . 37

6.2.1 In-order . 37

6.2.2 Probabilistic . 38

6.3 Summary . 39

7 Implementation and Evaluation 41

7.1 Implementation Details . 41

7.2 Evaluation . 45

7.2.1 Design of Evaluation 45

7.2.2 Metrics . 46

7.2.3 Results . 47

7.2.4 Discussion . 50

8 Conclusion and Future Work 57

8.1 Summary and Lessons Learned 57

8.2 Outputs and Contributions 58

8.3 Limitations . 58

8.4 Future Work . 59

References 61

A Differential entropy testbench template 67

X

List of Figures

1.1 Reported counterfeited parts from 2005 to 2019 [8] 2

1.2 Previously reported parts [8] 2

1.3 Design flow of an integrated circuit 3

2.1 Complete design flow of an integrated circuit underlining the

division between the design house and the third party foundry 8

3.1 Example of constant obfuscation 17

3.2 Example of operation obfuscation 17

3.3 Example of branch obfuscation 18

4.1 Framework flow . 22

4.2 Statement transformation to get a single obfuscation point

per statement . 23

4.3 Obfuscation example . 24

5.1 Example of direct dependencies 28

5.2 Example of inter-cycle dependencies 29

5.3 SDG extraction flow . 30

5.4 Example of PDGs merging to obtain the SDG 31

5.5 Example of module flattening 31

6.1 Example of composed heuristic 34

6.2 Example of Control Disabling with an input control signal

valid . 35

6.3 Example of bounded children heuristic 36

6.4 Example of bounded parents heuristic 37

6.5 Example of Max I/O Path Length application 38

6.6 Example of obfuscation points selection 39

7.1 UML of the SDG extraction implementation. 42

7.2 Framework flow highlighting the technologies used 44

XI

7.3 Technique frequencies for key budget intervals across all designs 48

7.4 Differential entropy results, highlighting the heuristic yielding

the best solution . 49

7.5 Differential entropy comparison with topological obfuscation . 52

7.6 Differential entropy comparison with random obfuscation . . 53

7.7 Impact of inverting sub-module instances in SHA256 54

7.8 Area estimation evaluation 55

XII

List of Tables

2.1 Summary of the main logic locking techniques and scoring for

the proposed metrics [2] . 11

2.2 Summary of the main logic locking techniques and scoring for

the proposed metrics [2] . 12

7.1 Characteristics of RTL benchmarks 45

7.2 Naming scheme for heuristics. 47

7.3 Area overhead mean relative error (m.r.e.) 50

7.4 Comparison with DSE approach at 4 key budget constraints . 51

XIII

XIV

Acronyms

ASIC - Application Specific Integrated Circuit.

AST - Abstract Syntax Tree.

DSE - Design Space Exploration.

HDL - Hardware Description Language.

HLS - High-Level Synthesys.

I/O - Input/Output.

IC - Integrated Circuit.

IP - Intellectual Property.

LHS - Left Hand Side.

PDG - Program Dependence Graph.

RHS - Right Hand Side.

RTL - Register-Transfer Level.

SDG - System Dependence Graph.

SoC - System on Chip.

XV

XVI

Chapter 1

Introduction to Hardware IP

Protection

1.1 Context

1.1.1 Background

In the last decades integrated circuits (IC) have seen a rise in both de-

sign complexity and manufacturing cost. This phenomenon has limited

the number of companies that can afford the billion-dollar manufacturing

foundries [7] forcing more and more companies to outsource IC fabrication

to third-party foundries [23]. Nowadays a typical business model for a design

house is to source pre-designed and pre-verified hardware IPs from different

sources like third party IP vendors, integrate them into a system-on-chip

(SoC) and send the final layout to an external foundry for fabrication. This

trend is also known as the globalization of the IC supply chain [29]. How-

ever, the introduction of third parties in the IC supply chain introduces new

security issues [2]. The first major concern is IP theft. As the market for

domain-specific hardware components is becoming more and more lucrative,

the high-value effort put into hardware design increases and makes it crucial

to prevent IP theft [34]. In fact, the estimated loss due to IP violations

alone was $4 billions in 2008 [27], while the total loss from IC counterfeiting

was estimated to be about $169 billions in 2011 [19].

Figure 1.1 shows how in the last decade the problem of counterfeited

parts has affected the semiconductor market. The high number of newly

reported counterfeited parts in Figure 1.2 leads to think that there may be

a huge number of counterfeited parts that has yet to be detected.

The second major concern is malicious modifications of the design. In

CHAPTER 1. INTRODUCTION TO HARDWARE IP
PROTECTION

Figure 1.1: Reported counterfeited parts from 2005 to 2019 [8]

Figure 1.2: Previously reported parts [8]

fact a third party with malicious intentions may want to introduce a hard-

ware Trojan or a backdoor into a design. The threat can range from disclos-

ing secret technologies to compromising valuable network infrastructures,

an example is the attempted trade of counterfeited Cisco equipment to the

US Department of Defense [35].

Both issues require reverse engineering of the design under attack to

extract and copy the functionality. Hardware obfuscation aims at hiding

and disabling the functionality of a chip to thwart reverse engineering of

2

1.1. CONTEXT

the design. They can be divided in two classes: key-less obfuscation, such

as split manufacturing, camouflaging, watermarking and fingerprinting, and

key-based obfuscation, such as logic locking. Split manufacturing divides

the manufacturing process between different untrusted foundries [20]. IC

camouflaging prevents netlist extraction by introducing subtle cell design

changes [6]. Watermarking and fingerprinting aim at simplifying detection

and tracking of illegal copies of the design [1]. Logic locking idea is to apply

modifications to the design that make it functional only when the correct key,

unknown to the foundry, is applied [3]. It is important to understand that in

addition to disabling a design, logic locking must also hide the functionality.

An example of a bad logic locking technique would be one that outputs

zero for each incorrect key by simply adding a multiplexer on the output.

Such technique would still allow reverse engineering and would not protect

effectively the design. Obfuscation techniques can be applied at different

levels of the design flow. The main distinction of logic locking techniques

is done with regard to the logic synthesis step. Logic synthesis is the step

with which a netlist is extracted from a hardware design in the form of a

formal description written with a hardware description language (HDL) such

as Verilog or VHDL. Techniques applied after the synthesis step are called

post-synthesis whereas the others are called pre-synthesis. Post-synthesis

techniques work either at transistor [30] or netlist level [39, 28]. Pre-synthesis

techniques can be applied at either RTL [21] or HLS [23, 40]. In figure 1.3

is reported the design flow of an integrated circuit.

Figure 1.3: Design flow of an integrated circuit

As reported in the scheme of figure 1.3, there are different ways in which

the deign flow can start. All of them converge into a Register-Transfer Level

(RTL) specification before going through the synthesis step. Working at

RTL allows us to develop techniques that are applicable to all the spectrum

of designs since every design is in the form of an RTL specification at one

point. Our work is focused on register-transfer level logic locking techniques.

3

CHAPTER 1. INTRODUCTION TO HARDWARE IP
PROTECTION

1.1.2 Threat Model

In any security field it is important to state the threat model that is being

considered. The threat model defines capabilities and intentions of the at-

tacker. Threat models for logic obfuscation primarily rely on the concept

of Oracle and Ambiguity. An Oracle is a chip that performs the correct

computation, whereas Ambiguity refers to the ability of the attacker to dis-

tinguish between key inputs and normal inputs.

In an oracle-less scenario we suppose that the attacker does not have access

to a functional unit. This setting is plausible for all those application that

are not mass produced for retail market or where the chip is produced for

the first time.

In a oracle-guided scenario we suppose that the attacker has access to a

functional chip that is treated as a black-box unit. The attacker can only

query the chip with input patterns and observe their output values.

Distinct Ambiguity is used to describe a situation in which the attacker is

able to distinguish between key inputs and normal inputs.

Ubiquitous Ambiguity is used to describe a situation in which the attacker

is not able to distinguish key inputs and normal inputs [29]. In our work we

considere an Oracle-less scenario with Distinct Ambiguity. This is plausible

scenario for low-volume markets where the attackers have strong methods

to distinguish between functional and key signals.

1.2 Scenario and Problem Statement

Logic locking requires to add extra logic to the design, introducing overheads

in terms of area, power and timing. A hardware designer that is trying to

protect his work will be willing to spend up to a certain amount in terms of

these overheads. This means that in real-world cases we cannot obfuscate

the whole design due to area, power or timing constraints. A simple, yet

still open, question arises: which parts should be obfuscated and which parts

should be not, to obtain the best design from the security viewpoint? This

question immediately arises at least another one:

How can we say if an obfuscated design is better than another from the

security viewpoint?

The ultimate answer to the latter question is that you should try to break

both designs and the one that is broken first is less secure than the other.

That would be very time consuming and error prone. Luckily there are some

4

1.3. METHODOLOGY

proposed metrics in the literature that have been shown to have correlations

with resiliency towards certain kind of attacks. We will get into those in

Chapter 2.

The first question though remains open. A novel approach to design

space exploration of logic locking solutions at High-Level Synthesis (HLS)

was proposed in [22] and shows that great improvements can be obtained

by exploring the design space. The technique employs a genetic algorithm

to perform design space exploration, which is computationally intensive,

especially at RTL where the design space is larger and the RTL simulations

to evaluate the security metrics are slower. At this level it can be used only

on small designs since it only compares a huge number of alternatives with

a ”blind” search, without reasoning on the properties of the design.

With this work we want to find ways to select parts to obfuscate by

reasoning on the effects of obfuscation.

1.3 Methodology

Our work followed a typical research process. We first conducted a system-

atic literature review on logic locking techniques and evaluation metrics.

Then we followed an iterative development plan running two iterations of

software prototyping and evaluation using the results and experience from

the first round as a feedback for the second one. We used Synopsis vcs to

run behavioral simulations of Verilog designs in order to compute the eval-

uation metrics. We performed synthesis to evaluate area overheads of our

benchmark designs using Synopsys Design Compiler R-2020.09-SP1 target-

ing the Nan-gate 15nm ASIC technology at standard operating conditions

(25◦C). We implemented a prototype framework leveraging Pyverilog [33],

a Python-based Hardware Design Processing Toolkit for Verilog HDL. We

used the DEAP framework [9] to implement the design space exploration

algorithm.

1.4 Contributions

In this thesis we present the following main contributions:

• A modular and composable design framework to apply logic locking

with the support of commercial RTL synthesis tools (see Chapter 4).

5

CHAPTER 1. INTRODUCTION TO HARDWARE IP
PROTECTION

• A procedure to extract System Dependence Graphs from a Verilog

design (see Chapter 5).

• A set of scoring heuristics based on the analysis of the System Depen-

dence Graph of a design (see Chapter 6).

• A prototype implementation and evaluation of the proposed approach

(see Chapter 7).

1.5 Structure of Thesis

The rest of our thesis is organized as follows:

• Chapter 2 introduces the state of the art presenting the IC supply

chain, logic locking techniques and the metrics used to evaluate them.

It presents a design space exploration technique to optimize the use of

logic locking at High-Level Synthesis. It concludes highlighting how

our work contributes to the state of the art.

• Chapter 3 provides an in-depth description of the scenario and the

ideas behind our solution. It highlights the necessary components

that build-up the solution and introduces the remaining background

needed to understand it.

• Chapter 4 presents the approach of our solution. In this chapter we

show the architecture of the solution and our design decisions.

• Chapter 5 presents the first of the two main parts of our solution, the

System Dependence Graph extraction procedure.

• Chapter 6 presents the second of the two main parts of our solution,

the Scoring Heuristics for RTL logic locking optimization.

• Chapter 7 provides the implementation details together with the eval-

uation of the solution.

• Chapter 8 concludes our thesis. In this chapter we provide a summary

of our work, we illustrate the contributions, we discuss the limitations

of the solution and possible future research directions.

• Appendix A presents a test bench template for mean differential en-

tropy estimation.

6

Chapter 2

State of the Art

This chapter discusses more in depth the main topics discussed in this thesis:

• Section 2.1 presents an in depth view on the IC supply chain, high-

lighting the the steps at which logic locking can be applied and the

phases subjected to possible threats.

• Section 2.2 presents the metrics that are used to evaluate logic locking

techniques.

• Section 2.3 presents the state of the art of logic locking techniques and

how they score after the evaluation metrics presented in section two.

• Section 2.4 presents an optimization technique for logic locking at High

Level Synthesis.

• Section 2.5 is a summary of the above bringing together the topics of

the sections above underlining the importance of our work.

2.1 IC Design Flow

The IC design flow starts from a set of specifications that can be imple-

mented in different ways. In case of a High-Level Synthesis (HLS) design,

the implementation is done with a high level programming language like C or

System C and a RTL description is obtained by means of a tool like Vivado

HLS. Hardware generators can also be used to obtain a RTL specification

from a set of specifications. A RTL description can also be designed manu-

ally with a HDL language such as VHDL or Verilog. The RTL description is

given as input to a logic synthesis tool, such as Synopsis vcs, that produces a

netlist. To obtain a physical layout the netlist goes through a process called

CHAPTER 2. STATE OF THE ART

place and routing that outpus a GDSII file. In between all these steps ver-

ification of the design functionality and compliance with constraints (area

and timing) is performed. The verification steps are crucial since the further

a bug goes, the more expensive it is to fix it. The final GDSII file is sent

to a foundry for fabrication. After being manufactured, the chips are sent

to a test facility and eventually they are sent back to the design house for

distribution to the clients. In the ASIC supply chain the IP is exposed to

different potential adversaries such as SoC integrators, foundries, test facili-

ties and end-users. The major threat is reverse engineering that can lead to

IP theft and overbuilding, or hardware Trojan insertion. Figure 2.1 shows

illustrates the IC design flow up to the external foundry.

Figure 2.1: Complete design flow of an integrated circuit underlining the division be-

tween the design house and the third party foundry

2.2 Evaluation Metrics

Many metrics have been proposed to evaluate obfuscated designs. Some

of them directly describe a physical property of the design, such as area or

timing overhead, whereas others are values that have been shown to correlate

with physical properties [2]:

• Verification failure metric: experimental metric that measures how

many, and to which extent, outputs are affected by the obfuscation

technique. To evaluate this metric an equivalence checking tool such

as Synopsys Formality is needed to evaluate the functional difference

between the original and the locked designs.

• Entropy (also known as Shannon Entropy): experimental metric that

measures the amount of information in a data source. In the case of

a combinational circuit it relates to the number of distinct outputs of

the circuit. It tells us about two properties of the design:

8

2.3. LOGIC LOCKING TECHNIQUES

– Power: a design with high entropy must have many different

possible outputs and therefore many transitions between logic-0

and logic-1, increasing the dynamic power of the circuit.

– Implications for obfuscation: An obfuscated design with maxi-

mum entropy most resembles a random function.

• Differential entropy: experimental metric that is calculated with a

miter circuit obtained by XORing each bit of the output of the locked

circuit with the corresponding of the unlocked circuit. The entropy

of the miter circuit is the evaluated to obtain the differential entropy.

This metric represents the proportion of bits that differ between the

obfuscated and the plain design, quantifying the output corruptability

induced by the technique. Experiments found a close relation between

differential entropy and power overhead.

• Reconvergence: structural metric that represents the rate of inter-

nal signals converging in other nodes. Experiments showed that more

resilient circuits to the key sensitization attacks have higher reconver-

gence.

• Key structure metric: normalized metric that indicates the struc-

tural interconnection between the key gates. A high value for this

metric indicates a high resiliency to the key sensitization attacks.

2.3 Logic Locking Techniques

Logic obfuscation techniques can be applied at different steps of the design

phase. In case of high level descriptions, a High Level Synthesis (HLS) tool

may apply algorithmic-level obfuscation [23]. Post-synthesis obfuscation is

the most widespread category at the moment, post-synthesis techniques can

be applied by modifying the netlist, for example adding extra logic ports.

Obfuscation at higher levels of abstraction brings advantages as it allows

designers to hide the semantic information of the chip design.

On the contrary, post-synthesis techniques cannot protect information

that is already embedded in the design by logic synthesis optimizations [16].

On the other hand, obfuscation at the HLS level requires to adapt the design

flow. For these reasons, an RTL approach is highly attractive as it is placed

9

CHAPTER 2. STATE OF THE ART

in between the existing techniques. A first approach at register-transfer level

was proposed in [5] while a promising approach is presented in [21].

Tables 2.1 and 2.2 summarize the classification of the main pre-synthesis

and post-synthesis logic techniques.

For completeness, a brief overview of the main logic locking techniques

(listed in Tables 2.2 and 2.1) is provided:

• TAO [23]: is an extension for HLS tools to produce obfuscated RTL

descriptions. TAO obfuscates the algorithm via obfuscation of con-

stants, control branches and adding variants in the flows of data.

• ASSURE [21]: is a pre-synthesis tool that works at RT level. Assure

applies obfuscation to branches, operations and constants, hiding the

semantic of the design.

• CDFG [5]: is a RT level technique that obfuscates the data flow graph

of a design.

• BDD [16]: is a pre-synthesis technique that works on Binary Decision

Diagrams. Key bits are added in the original BDD by randomly taking

a node and adding two child nodes to it controlled by the key bit.

• RLL [25]: is the first proposed logic locking technique. It randomly

inserts logic gates (tipically XOR or XNOR gates) controlled by a key

bit.

• SLL [38]: Strong Logic Locking is a technique that strengthens the

insertion of logic gates by inserting key-gates with complex interference

among them.

• Anti-SAT [37]: is a technique that aims at making unfeasible SAT

attacks by increasing the number of iterations to the exponential of

number of primary inputs used to implement the AntiSAT block.

• Cone size [2]: is a heuristic technique that integrates the key gates

with other gates that have the largest fanin or fanout cone or both.

We define an obfuscation point as any element that can be obfuscated

by a given technique.

10

2.3. LOGIC LOCKING TECHNIQUES
T

ab
le

2.
1:

S
u

m
m

ar
y

of
th

e
m

ai
n

lo
gi

c
lo

ck
in

g
te

ch
n

iq
u

es
an

d
sc

or
in

g
fo

r
th

e
pr

op
os

ed
m

et
ri

cs
[2

]

A
re

a

ov
er

h
ea

d

P
ow

er

ov
er

h
ea

d

T
im

in
g

ov
er

h
ea

d

S
A

T

at
ta

ck

re
si

li
en

cy

K
ey

se
n

s.

at
ta

ck

re
si

li
en

cy

V
er

ifi
ca

ti
on

fa
il

u
re

m
et

ri
c

E
n
tr

op
y

D
iff

er
en

ti
al

en
tr

op
y

R
ec

on
ve

rg
en

ce

K
ey

st
ru

ct
u

re

m
et

ri
c

Pre-synthesis

T
A

O
[2

3]
H

ig
h

n
.a

.
L

ow
n

.a
.

n
.a

.
n

.a
.

n
.a

.
H

ig
h

a
n

.a
.

n
.a

.

A
S

S
U

R
E

[2
1]

L
ow

n
.a

.
L

ow
n

.a
.

n
.a

.
n

.a
.

n
.a

.
n

.a
.

n
.a

.
n

.a
.

C
D

F
G

[5
]

L
ow

L
ow

n
.a

n
.a

.
n

.a
.

n
.a

.
n

.a
.

n
.a

.
n
.a

.
n

.a
.

B
D

D

R
a
n

d
om

[1
6]

H
ig

h
H

ig
h

M
ed

iu
m

L
ow

H
ig

h
H

ig
h

L
ow

M
ed

iu
m

M
ed

iu
m

H
ig

h

B
D

D

A
n
ti

S
A

T

[1
6,

3
7]

H
ig

h
H

ig
h

M
ed

iu
m

M
ed

iu
m

H
ig

h
L

ow
M

ed
iu

m
L

ow
H

ig
h

H
ig

h

B
D

D

E
n
tr

op
y

[2
]

M
ed

iu
m

M
ed

iu
m

L
ow

L
ow

H
ig

h
H

ig
h

H
ig

h
M

ed
iu

m
L

ow
H

ig
h

a
C

a
lc

u
la

te
d

a
s

H
a
m

m
in

g
d
is

ta
n
ce

11

CHAPTER 2. STATE OF THE ART
T

ab
le

2.2:
S

u
m

m
ary

of
th

e
m

ain
logic

lo
ckin

g
tech

n
iq

u
es

an
d

scorin
g

for
th

e
prop

osed
m

etrics
[2]

A
rea

overh
ead

P
ow

er

overh
ea

d

T
im

in
g

overh
ead

S
A

T

attack

resilien
cy

K
ey

sen
s.

attack

resilien
cy

V
erifi

cation

failu
re

m
etric

E
n
trop

y
D

iff
eren

tial

en
trop

y
R

econ
vergen

ce K
ey

stru
ctu

re

m
etric

Post-synthesis

R
L

L
[25]

L
ow

L
ow

L
ow

L
ow

L
ow

H
igh

M
ed

iu
m

H
igh

M
ed

iu
m

L
ow

S
L

L
[3

8]
L

ow
L

ow
L

ow
L

ow
M

ed
iu

m
m

ed
iu

m
M

ed
iu

m
H

igh
M

ed
iu

m
L

ow

C
o
n

e
size

[2
]

L
ow

L
ow

M
ed

iu
m

L
ow

M
ed

iu
m

L
ow

M
ed

iu
m

H
igh

M
ed

iu
m

M
ed

iu
m

A
n
tiS

A
T

R
a
n

d
o
m

[2
5
,

3
7
]

M
ed

iu
m

M
ed

iu
m

L
ow

H
igh

L
ow

H
igh

M
ed

iu
m

H
igh

L
ow

M
ed

iu
m

A
n
tiS

A
T

S
L

L

[3
8
,

3
7
]

M
ed

iu
m

M
ed

iu
m

L
ow

H
igh

M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

H
igh

L
ow

M
ed

iu
m

A
n
ti

S
A

T

C
o
n

e
size

[2
]

M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

H
igh

M
ed

iu
m

L
ow

M
ed

iu
m

H
igh

L
ow

M
ed

iu
m

12

2.4. DESIGN SPACE EXPLORATION FOR LOGIC
LOCKING OPTIMIZATION

2.4 Design Space Exploration for Logic Locking

Optimization

Logic locking introduces overheads in the design. For this reason, researchers

are putting effort into optimizing the use of logic locking to get good security

results while keeping the overheads low. The approach proposed in [22] uses

a genetic algorithm to perform Design Space Exploration (DSE) at HLS.

Genetic algorithms are based on the concept of individual and evolution.

An individual represents a solution to the problem in the form of a list of

integers. An evolution is a function that generates a new individual starting

from an existing one (ancestor). A generation is a set of individuals that

have the same number of ancestors. Starting from a set of randomly gener-

ated individuals (generation 0), each individual is evaluated after a fitness

function that determines the ”goodness” or fitness of the individual. Indi-

viduals with a low fitness are discarded while the others evolve to create a

new generation. The process is repeated until the best fitness do not im-

prove for a certain amount of generations or when the maximum number

of generations is reached. Genetic algorithms are computationally intensive

and using them for DSE at HLS is feasible only because evaluating an indi-

vidual requires to run the C files of the design. At RTL the computational

effort is much higher because the number of obfuscation points is larger and

RTL simulations are more complex. This approach showed that obfuscat-

ing the whole design yields worse results than obfuscating only parts of it,

highlighting the necessity of carefully selecting obfuscation points.

2.5 Summary

When applying logic locking, one must accept a certain area overhead. Logic

locking can be applied at different abstraction levels, leading to different

results in terms of physical overheads and robustness towards attacks. Some

metrics have been proposed to compare different obfuscated designs but

there is not a unified view on the matter yet.

Having metrics to compare different designs is not only crucial to com-

pare different techniques but most importantly to compare different ap-

plications of the same technique.

In case the key is limited to a fixed amount of bits (to limit area overhead

for example), it is important to understand where it is best to spend this

13

CHAPTER 2. STATE OF THE ART

limited amount of bits. Logic locking is a very open field at the moment and

RTL techniques deserve further exploration. The logic locking state of the

art is also lacking optimization approaches to maximize the efficiency of the

obfuscation from a security viewpoint. The approach in [22] shows that it is

possible to obtain good result in this direction and it is worth to explore it

at RTL. With this work we show that such approach is not feasible at every

level of abstraction as getting to lower levels highers the computational load

required to evaluate the designs. For this reason we focus on more efficient

solutions, taking into consideration the effect of locking on the chip results

instead of performing a blind search.

14

Chapter 3

Problem Definition and

Background

In this chapter we dive deeper into the problem statement, breaking it down

into specific sub-problems.

• Section 3.1 restates the problem statement with more details.

• Section 3.2 presents the obfuscation techniques used in our work.

• Section 3.3 presents differential entropy with more details, explaining

why we picked it as security metric.

• Section 3.4 presents Dependence Graphs.

• Section 3.5 summarizes the above sections.

3.1 Problem Statement

A fabless design house is working on a new IC design at RTL and is will-

ing to protect it since sending the design files for fabrication will expose

them to reverse engineering. However, obfuscating the design will introduce

overheads, increasing its cost. The designers can fix the maximum cost over-

head by deciding a maximum area overhead and the size of the tamper-proof

memory that will store the key. HLS solutions such as [23, 22] cannot be

applied since the design is already at RTL. They may consider using AS-

SURE [21], but the ASSURE results are dependent on the structure of the

design because of its topological visit of the design. If the results are not

good enough, the designers will need to refactor the design to enable the

exploration of alternative solutions.

CHAPTER 3. PROBLEM DEFINITION AND
BACKGROUND

With this work we want to build a framework that allows to optimize

logic locking for differential entropy under area and key bits constraint

by analyzing the effects of obfuscation.

To analyze the effects of obfuscation points we look at the dependencies

between signals via a Dependence Graph. The idea is that applying an

obfuscation technique on an obfuscation point will affect all statements that

depend on it. By analyzing the dependencies we can find the points that will

have major impact on the design or that will build a chain of obfuscation

points that will be amplify the effects.

We consider a scenario where the attacker does not have access to a

working chip (oracle).

Moreover we assume that the attacker can distinguish between primary and

key inputs (distinct ambiguity). In addition we assume that the attacker can

distinguish between control and data inputs and outputs. This is plausible

for low volume designs, where an attacker cannot buy a working chip from

the market. It has been recently shown that oracle-less techniques [21] can

be combined with techniques that prevent oracle-based attacks [14] to com-

plement the protection [13]. The attacker may still perform netlist-based

attacks such as machine learning-guided structural and functional analy-

sis [4, 24, 31], desynthesis [17], and redundancy identification [12] to unlock

the design and perform reverse engineering. For this reason we considered

the obfuscation techniques proposed in ASSURE [21], as they have been

proved to be resilient towards these attacks.

Our framework should be capable of:

• evaluating the differential entropy of obfuscated solutions (to optimize

it as security metric),

• estimating the area of obfuscated solutions (to analyze the impact on

the overhead),

• evaluating the number of key bits required by obfuscated solutions (to

take the key budget into account),

to obfuscate a design optimizing differential entropy under area or key-bit

constraints.

16

3.2. SEMANTIC OBFUSCATION TECHNIQUES

3.2 Semantic Obfuscation Techniques

In our work we consider the obfuscation techniques proposed in ASSURE [21]:

• Constant obfuscation: constants are completely replaced by key

bits. For example a = b + 4′b0100 is obfuscated as a = b + Kc where

Kc is a the 4-bit constant stored in the key (see Fig. 3.1).

Figure 3.1: Example of constant obfuscation

• Operation obfuscation: a multiplexer is added to pick between the

right operation and a dummy one based on the value of a key bit. For

example a = b+c is obfuscated as a = Ko?(b+c) : (b−c) (see Fig. 3.2).

Figure 3.2: Example of operation obfuscation

• Branch obfuscation: the condition is XOR-ed with a key bit and it

is inverted if the key bit is 1. For example, the condition (a < b) can

be obfuscated as (a >= b)
⊕
Kb or as (a < b)

⊕
Kb depending on the

value of Kb (see Fig. 3.3).

The locking key is composed of two parts. The first part is randomly

generated and is used to control the obfuscation of control branches and

17

CHAPTER 3. PROBLEM DEFINITION AND
BACKGROUND

Figure 3.3: Example of branch obfuscation

operations. The second part is used to extract constants from the design

embedding them in the key. An new input port is added through which

the locking key is provided, the key then gets partitioned into sub-keys to

be distributed to all locked elements. This approach protects the semantics

of the designs rather than its structural netlist. An obfuscation point is an

RTL element that can be obfuscated (i.e. a constant value, a conditional

branch, or an operation) using a given locking technique. In ASSURE [21],

obfuscation points are selected in a topological order (i.e. in the order in

which they are found in a depth first search of the AST of the design). The

order in which modules are defined affects the obfuscation outcome. We aim

at carefully selecting the obfuscation points to achieve better results both

in terms of security metrics and area overhead. We used these techniques

to optimize because they have been proved to be resilient towards state-of-

the-art, structure-based oracle-less attacks such as [4, 24]. Moreover it has

been shown that they can be combined with other techniques that prevent

oracle-guided attacks [14] to complement the protection [13].

3.3 Differential Entropy

In an oracle-less scenario an attacker will have to infer information either by

looking at the design files or by observing the design functionality through

simulations. The obfuscation techniques that we consider reveal no infor-

mation about the design [21]. For this reason we evaluate the security of

obfuscated solutions looking at the output corruptibility, i.e. how much

the obfuscation techniques change the output values with respect to the ex-

pected one. We use the mean differential entropy as our security metric as it

measures output corruptibility [2]. The differential entropy of a design is the

entropy measured on a miter circuit obtained by XOR-ing the locked circuit

with the original one. Entropy is measured on each output. The entropy of

18

3.3. DIFFERENTIAL ENTROPY

a output bit i is calculated as follows:

Hi = Pi · log
1

Pi
+ (1− Pi) · log

1

1− Pi

Where Pi is the probability of output i being equal to 1. In case of differential

entropy, Pi is measured as follows:

Pi =

∑N
w=1

∑M
t=1OUT [i]t

⊕
OUT [i]t,w

N ·M
Where OUT [i]t is the correct value of the output bit i when the input t is

given to the unlocked circuit, and OUT [i]t,w is the value of the output bit

i when the input t is given together with the wrong key w to the locked

circuit. N and M are the number of possible input and key combinations,

respectively. Since N and M grow exponentially with the number of input

and key bits, the value of Pi is often estimated. Entropy has a maximum

value max(Hi) = 1 when Pi = 0.5. The entropy of a design is the sum of

the entropy of each output bit:

H =
N∑
i=1

Hi

Where N is the number of output bits. It follows that the maximum value

of H is equal to N . In order to say if an entropy value is good (i.e. close to

the maximum) one must know the number of output bits of the considered

design. To avoid this problem and ease the comparison between different

designs we used the mean differential entropy:

H =
1

N
·

N∑
i=1

Hi =
1

N
·

N∑
i=1

(
Pi · log

1

Pi
+ (1− Pi) · log

1

1− Pi

)
In the threat model that we consider, we suppose that the attacker is

able to distinguish between data and control inputs and outputs. For this

reason we assigned zero as differential entropy value (worst case value) to

those solutions that induced the design to manage control signals incorrectly

(i.e. never asserting ready or valid signals). We must avoid these solutions

because they would allow an attacker to easily discard wrong keys.

We aim at maximizing the mean differential entropy making it as close

as possible to 1. This is the case where Pi = 0.5,∀i. In this situation

the attacker cannot make any educated guess on the design functionality,

leading to a probability of 2−K (where K is the number of key bits) to guess

the correct key.

19

CHAPTER 3. PROBLEM DEFINITION AND
BACKGROUND

3.4 Dependence Graphs

Dependence graphs were first proposed in [11] in 1972 to represent depen-

dencies that occur within a program. In our work we are interested in Pro-

gram Dependence Graphs (PDG) and System Dependence Graphs (SDG).

A PDG is a directed graph that represents a program that consists of a

single procedure. SDGs are an extension of PDGs that allow to represent

programs with multiple procedures and procedure calls, they were first pro-

posed in [10]. The SDG of a program is built by first building a PDG for

each procedure of the program and then connecting the PDGs with edges

that model procedure calls. The use of SDGs for hardware descriptions

was first proposed in [36] for Model Checking. In order to use SDGs with

hardware description languages, we need some considerations since the HDL

computational paradigm differs fundamentally from the one of software lan-

guages [36]. In our work we use System Dependence Graphs to analyse the

impact of obfuscation prior to simulation.

3.5 Summary

We propose a framework to optimize logic locking for a given security met-

ric under area and key bits constraints. We operate at RTL as it allows

to hide semantic information before it gets embedded into the netlist by

logic synthesis optimization, while allowing our framework to be compatible

with all design flows. We optimise the application of the semantic obfus-

cation techniques proposed in ASSURE [21] as they have been proved to

be resilient towards structural attacks and allows us to concentrate on the

output corruptability. We picked mean differential entropy as our security

metrics as it quantifies the output corruptability. To pick the obfuscation

points we reason on their impact on the obfuscated solution analyzing the

System Dependence Graph. We structure our framework to have a set of

scoring heuristics that can be combined to evaluate the obfuscation points.

The obfuscation points with a higher score will be more likely to be selected

for obfuscation.

20

Chapter 4

Approach: Heuristics for

RTL Locking

In this chapter we describe the approach that we propose in this thesis. We

discuss the main design decisions and the architecture of our solution, while

the next chapters will go into more details about the core components of

our solution.

4.1 Architecture & Design Decisions

We propose an RTL obfuscation framework (see Figure 4.1) to easily

evaluate overheads and metrics of obfuscated designs and perform opti-

mizations under area and key budget constraints.

The workflow begins by parsing the HDL code of the input design to be

obfuscated in order to extract its Abstract Syntax Tree (AST). We then

analyze the AST to extract the SDG and identify the obfuscation points.

We apply a set of heuristics based on the SDG analysis to determine the

scores of each obfuscation point, i.e., the likelihood to be a obfuscation point

for our design. Each heuristic gives a score to each obfuscation point that can

either be a positive (rewarding) or negative (punishing) value. We store the

scores of each heuristic into a corresponding score table, i.e., a representation

of the scores for all obfuscation points. Then, we can combine these score

tables in a modular way. Given a combination of heuristics we build a

global score table that is obtained by aggregating the values of the single

score tables of specific heuristics. This global score table associates each

CHAPTER 4. APPROACH: HEURISTICS FOR RTL
LOCKING

Figure 4.1: Framework flow

22

4.1. ARCHITECTURE & DESIGN DECISIONS

Figure 4.2: Statement transformation to get a single obfuscation point per statement

obfuscation point with its final score that is later used for selecting the ones

with higher values.

The SDG has a node for each statement. A statement may have zero,

one, or many obfuscation points. So, each obfuscation point is associated

with a unique SDG node, while each SDG node is associated with an ar-

bitrary number of obfuscation points. A possible alternative would have

been to transform the AST to obtain statements with only one obfuscation

point by introducing intermediate signals like illustrated in Fig. 4.2. This

would prevent having multiple obfuscation points in the same SDG node,

and would allow us to represent the design with better granularity depen-

dencies. However, for associative operations, the order would depend on

the order in which the statement is written. We believe that the benefits

of this finer approach are not justified due to the higher complexity of the

implementation and of the higher resulting number of SDG nodes. With

our solution, all the obfuscation points that correspond to the same SDG

node have the same score. To avoid obfuscating all the obfuscation points

of a statement before moving to the next one, we scale the score of all the

obfuscation points that share the same SDG node as follows:

SOPx =
x · SOPx

n
, x = 1, ... , n

Where OP1, ..., OPn are obfuscation points that share the same SDG node.

The scaling is applied in a random order to avoid design dependent solutions.

A possible alternative would have been to apply the score scaling following

the topological order of the obfuscation points but then the solution would

depend on the design structure, introducing an additional and undesired

degree of freedom.

Given a score table, we can generate a solution in two ways. The first

approach selects the obfuscation points with the highest scores until we reach

the constraints. The second approach is probabilistic. We map the scores

in the range [0.25, 0.75] and use these values as the probabilities of selecting

23

CHAPTER 4. APPROACH: HEURISTICS FOR RTL
LOCKING

Figure 4.3: Obfuscation example

each obfuscation point. So the obfuscation point with the lowest score will

be obfuscated with a probability of 25% while the obfuscation point with

the highest score will be obfuscated with a probability of 75%.

The framework represents an obfuscation solution as a binary string

where each element represents an obfuscation point, if the ith element of the

string is 1, the ith obfuscation point is locked, otherwise it is not locked. The

order of the obfuscation points is the one in which they are found in a depth

first search on the AST of the design to be obfuscated. This representa-

tion allows us to separate the solution generation from the obfuscation and

evaluation phase. Figure 4.3 shows an example of obfuscation highlighting

obfuscation points, their scores, and the solution representation.

The solutions are evaluated measuring the mean differential entropy, the

key size, and the estimated area overhead.

The mean differential differential entropy is estimated by running behavioural

simulations of the obfuscated design. Before the evaluation phase begins,

golden outputs are measured by simulating the original circuit with a set

of input vectors. Then the same input vectors and a set of key vectors are

24

4.1. ARCHITECTURE & DESIGN DECISIONS

passed to a test bench that compares the output of the obfuscated design

with the golden outputs to estimate Pi. From the estimated values of Pi,

the mean differential entropy is obtained using the following formula, first

introduced in Section 3.3:

H =
1

N
·

N∑
i=1

(
Pi · log

1

Pi
+ (1− Pi) · log

1

1− Pi

)

Finding a method to estimate the area overhead is important because

measuring it would require to perform the complete synthesis of the

design, increasing the computational load.

In this way we can generate different solutions and evaluate them with our

estimation method. Then only the best ones can be synthesized to check

the results. The area overhead is estimated as follows:

AreaOverhead = α · C + β ·B + γ ·O

Where C, B and O are the number of bits used for obfuscating constants,

branches, and operations, respectively. α, β and γ are parameters that can

be either given by the designer or estimated by the framework. To estimate

the overheads parameters, the framework measures the mean percentage

overhead for each type of obfuscation point. To do so, it synthesizes and

measures the area of the plain design and of three obfuscated designs, each

of them obtained by obfuscating all the obfuscation points of the specific

category. Let Dp be the plain design, Dc be the design obtained by obfus-

cating all and only the constants, Db be the design obtained by obfuscating

all and only the conditional branches, and Do be the design obtained by

obfuscating all and only the operations. Then α, β and γ are obtained as

follows:

α =

(
Area(Dc)

Area(Dp)
− 1

)
· 1

#key bits(Dc)

β =

(
Area(Db)

Area(Dp)
− 1

)
· 1

#key bits(Db)

γ =

(
Area(Do)

Area(Dp)
− 1

)
· 1

#key bits(Do)

25

CHAPTER 4. APPROACH: HEURISTICS FOR RTL
LOCKING

4.2 Summary

In this chapter we presented the architecture of our solution together with

the design decisions made during our work. We extract the AST of the

given design from its HDL description. Then we analyze the AST to build

the SDG and identify the obfuscation points. The SDG is then analyzed

by our heuristics, obtaining a score table that pairs each obfuscation point

with its score. Different heuristics can be combined by summing their score

tables together. Given a score table we select the obfuscation points using

one of the two proposed methods. In-order selection picks the obfuscation

points following the score order. Probabilistic selection maps the scores into

a probability of selecting the obfuscation points and then randomly picks

the points with the corresponding probability. In order to optimize the

security metric under area constraint we propose a method to estimate the

area overhead. In this way we do not need to perform the synthesis of each

possible solution, reducing the computational requirements.

The area overhead estimation is based on a linear interpolation of area

overhead introduced by applying the single obfuscation techniques.

26

Chapter 5

SDG Extraction

In this chapter we present a detailed overview of the System Dependence

Graph (SDG) extraction procedure. We first present Program Dependence

Graphs (PDG), giving the definition of direct and inter-cycle dependencies

then we present the SDG extraction flow. An introduction to dependence

graphs can be found in Section 3.4.

We built a tool for SDG extraction from Verilog1 designs. We took

inspiration from the considerations made in [36] to build SDGs for HDL,

with some changes to adapt them to obfuscation analysis. Below is reported

a brief description of how we extracted System Dependence Graphs from

Verilog designs, the source code of this part of the implementation is Open-

Source and is available at [15].

An SDG is obtained by integrating different PDGs that represent the

procedures of a program. In case of Verilog, we can see always blocks as

procedures that are called when a signal in the sensitivity list changes value.

Continuous assignment statements can be seen as an always block that only

contains the assignment and has all right hand-side signals in the sensitivity

list.

5.1 PDG Extraction

Let GAB be the PDG of an always block AB, then GAB is a directed graph

with several types of edges. The vertices v1, v2, ..., vn represent the assign-

ment statement and control predicates that are present in AB. The edges

represent dependencies between the nodes with an edge e = (v1, v2) meaning

1Our SDG extraction procedure is not limited to Verilog designs, even though imple-

mentation details may vary due to language specific features.

CHAPTER 5. SDG EXTRACTION

that v2 is dependent on v1. Verilog presents two kind of assignments that

can occur in an always block: blocking (=) and non-blocking (<=) assign-

ments. Blocking assignments behave in a sequential way, like assignments

in software languages, while non-blocking assignments present a more com-

plex behaviour. When the always block is activated at a specific time-step,

all the right hand sides (RHS) of non-blocking assignments are captured.

Only at the end of the time-step the captured RHS values are assigned to

the respective left-hand sides. The behaviour of non-blocking assignments

makes it impossible to have a dependency between two non-blocking assign-

ments at a given time step. It is possible though to have dependency occur

between two different activations of the same always block. It is a common

practice to use non-blocking assignments within clocked always blocks to

model registers.

Let us consider the lines below within an always block sensitive on the

positive clock edge:

A <= Z;

B <= A + Y;

C <= B + W;

The order of the non-blocking assignments does not affect the behaviour of

the always block. At clock cycle X the value of Z is assigned to A but is not

propagated to B. It is only at cycle X+1 that the value of Z is propagated to

B. For this reason we distinguish between direct dependencies and inter-cycle

dependencies.

Definition 1. We have a direct dependency from v1 to v2 if and only if v1
is a predicate vertex, and the execution of v2 depends on the truth of v1; or

v1 is a blocking assignment vertex with some signal X in the left-hand side

that is used in v2, and there exists an execution path from v1 to v2 along

which there is no assignment to X.

Figure 5.1: Example of direct dependencies

28

5.2. SDG EXTRACTION FLOW

Definition 2. We have an inter-cycle dependency from v1 to v2 if and only

if v1 is a non-blocking assignment with some signal X in the left-hand side

that is used in v2.

Figure 5.2: Example of inter-cycle dependencies

We assume to have only one kind of assignment in each always block.

This is a general practice in hardware design.

5.2 SDG Extraction Flow

We combine all PDGs of a module to obtain a representation with a single

graph, the SDG. Then we combine all SDGs to obtain a single representation

of the entire design.

Our goal is to obtain a single graph that represent the whole design,

from the inputs to the outputs of the top module.

We first extract the SDGs of all the modules leaving behind the of instan-

tiation of sub-modules. We then perform a flattening step to put together

the SDGs of all modules. If a module is instantiated multiple times, we

make a clone of its SDG for each of its instances. In this way the final

SDG can accurately represent the dependencies of a sub-module taking into

consideration its actual position in the design.

Figure 5.3 illustrates the workflow to extract the SDG of a Verilog mod-

ule. We analyse each module extracting a PDG from each always block, a

continuous assignment vertex for each continuous assignment, an input ver-

tex for each input, and an output vertex for each output. Then we proceed

adding edges between all these entities merging them into an SDG:

• For each input i we need to check if any assign or condition node n

depends on i, if so we add a direct dependency from the input node of

i to n.

29

CHAPTER 5. SDG EXTRACTION

Figure 5.3: SDG extraction flow

• For each continuous assignment a we need to check if any other assign,

condition, or output node n depends on the rhs of a, if so we need to

add a dependency edge from a to n.

• For each PDG P for each statement s in P we need to check if any

assign, condition (that do not belong to P), or output node n depends

on s, if so we add a dependency edge from a to n.

When adding a dependency edge from a given assign vertex (of any kind) v1
to a vertex v2 within a PDG P1, we add a direct dependency edge if there is

some signal X in the lhs of v1 and X is used in v2 and X is in the sensitivity

list of P1. We add an inter-cycle dependency edge if there is some signal X

in the lhs of v1 and X is used in v2 and X is not in the sensitivity list of P1.

Figure 5.4 shows an example of merge between two simple PDGs to obtain

the SDG.

When a module instantiates a sub-module we insert a “placeholder ver-

tex” connected with a coupling vertex for each input/output of the sub-

module. Coupling vertices represent the port mapping for the sub-module.

After extracting a SDG from each module we perform flattening starting

from the top module. Each instance vertex is substituted with a clone of

the SDG of the corresponding module and coupling nodes are connected

with the corresponding inputs and outputs nodes with direct dependency

edges (Fig. 5.5). The flattening procedure is recursive, for each instance

node that is found we check in a computed table (or software cache) if we

30

5.2. SDG EXTRACTION FLOW

Figure 5.4: Example of PDGs merging to obtain the SDG

have a flattened representation of the needed module. If the module has not

been flattened yet, we proceed by flattening it, otherwise we return a clone

of the flattened module SDG. By returning a clone of the SDG we are sure

not to have problems with those designs that present multiple instantiations

of the same module, moreover at the end we have a list with the flattened

version of each module that may be interesting in some applications.

Figure 5.5: Example of module flattening

31

CHAPTER 5. SDG EXTRACTION

5.3 Summary

In this chapter we have seen how we can build a complete representation of

the dependencies in a design following a divide-and-conquer approach and

starting from smaller representations. We first build a representation for

each always block, the Program Dependence Graph (PDG). We combine the

PDGs of a module together with its continuous assigns and input/output to

obtain the System Dependence Graph (SDG) of the module. In this step we

represent sub-modules with a placeholder node. Once we have the SDGs of

all modules, we combine them with a flattening step to obtain the complete

SDG of the top module.

Our SDG representation allows us to represent dependencies of the whole

design in a single graph. We leverage the SDG representation to build

our scoring heuristics.

32

Chapter 6

Scoring and Selection

Heuristics

We propose four heuristics that give a score to the obfuscation points based

on an analysis of the SDG. The higher is the score of an obfuscation point,

the higher is the probability to select it.

A scoring function can be rewarding, i.e. increasing the score of an

obfuscation point, or punishing, i.e. decreasing its score.

We identified two main categories of scoring functions: local and global func-

tions. Local functions explore the SDG up to a certain distance from each

obfuscation point whereas global functions do not bound the exploration of

the SDG.

The scoring functions are composable, i.e. any subset of the proposed

scoring functions can be used to compute the scores that are in turn

used to rank the obfuscation points.

When combining different functions, the final score table is obtained by

summing together all the score tables obtained by the given heuristics. To

avoid having one scoring heuristic dominating all the others, we normalized

all the scores for each scoring heuristic in the range [0, 100]. Figure 6.1

shows an example of heuristic combination.

CHAPTER 6. SCORING AND SELECTION HEURISTICS

Figure 6.1: Example of composed heuristic

6.1 Scoring Heuristics

6.1.1 Control Disabling

Obfuscating points that influence control signals yields weaker solutions. In

fact it would be easy for an attacker to discard invalid keys if the circuit

never reaches a ready state or signals a valid output. This heuristic has the

goal of finding these points that weaken the solution and disabling them. To

disable the points we assign them a value of −∞. We take as argument a set

of controlling signals classified as input and output signals. These arguments

are defined by the designer in a setting file passed to the framework as the

name of controlling signals can vary across designs.

For the controlling inputs we identify and disable all the conditions that

are directly dependent on any control signal. In fact disabling obfuscation

points at any distance from a point dependent on a controlling input may

disable the entire design. In the cases that we encountered was sufficient to

disable those conditions that control the first transition of the finite state

machine of the design.

For controlling outputs we identify each controlling output, then we ex-

plore the SDG going backwards and we disable all the obfuscation points

that we find. Those are the points that influence the controlling outputs.

This allows us to avoid obfuscating those points that would cause simu-

lation failures, yielding entropy 0 by definition. Figure 6.2 shows an example

of Control Disabling with an input control signal valid.

6.1.2 Bounded (Direct) Children

The idea at the base of this heuristic is that an obfuscation point that influ-

ences a wide portion of the design has a greater impact on the obfuscation

34

6.1. SCORING HEURISTICS

Figure 6.2: Example of Control Disabling with an input control signal valid

result than an obfuscation point that influences only a small design por-

tion. We take into consideration two variants. One only considering direct

dependencies and one considering direct and inter-cycle dependencies. Con-

sidering inter-cycle dependencies introduces the problem of cycles in the

search phase, so we need to keep track of the visited nodes. This is not

the case when the visit is limited to direct dependencies if the design is well

written and does not present combinational loops. This heuristic is bounded

to a maximum distance from the obfuscation point under evaluation as on

big designs a global evaluation may be too complex. Given a distance D,

for each obfuscation point O, the bounded children function returns the

number of (direct) assignments and conditions up to a distance D from O

that are dependent from O. This scoring process favors obfuscation points

that have a higher propagation in the design. In fact, a node with a high

number of children in the dependence graph, is a node that influences a

relevant portion of the design. These points have a higher probability of

having a wider influence on the outputs. Figure 6.3 shows an example oh

application of the bounded children heuristic with both direct and inter-

cycle variants. We highlighted the nodes that contribute to the score of the

different evaluations.

6.1.3 Bounded Parents

The Bounded Partents heuristic is based on the idea that if a big design

portion converges in an obfuscation point, by selecting it we can hide all the

information behind that point. This heuristic aims at selecting the points

that will corrupt a signal that has already been trough some work in order to

35

CHAPTER 6. SCORING AND SELECTION HEURISTICS

Figure 6.3: Example of bounded children heuristic

nullify such work. Also, selecting a point that depends on a high number of

obfuscation points highers the probability of creating a chain of obfuscation

points (a series of dependent obfuscation points). Creating a chain of obfus-

cation points amplifies the effects on output results. In fact to obtain the

correct value on the output bits influenced by a chain of obfuscated points,

the whole key section controlling the chain must be correct. This heuristic

is bounded to a maximum distance from the obfuscation point on which it is

evaluated. This limits the complexity of the visits as in big designs a global

evaluation may be too complex. This heuristic only considers direct depen-

dencies as after our first evaluation round the inter-cycle dependency showed

poor results. That is due to the fact that registered signals usually have at

least two different assignments, one for reset and one for normal operation.

This alters the parents counts when considering the inter-cycle dependen-

cies. Given a distance D, for each obfuscation point O, the bounded parents

heuristic returns the number of obfuscation points up to a distance D from

O that converge in O. This function favors the obfuscation points that have

a high convergence. These points are the most convenient to take in order

to corrupt a signal dependent on a big design portion and build longer se-

quences of obfuscated points. Figure 6.4 shows an example of the bounded

parents heuristic highlighting the nodes that contribute to the score of the

different evaluations.

36

6.2. SELECTION METHODS

Figure 6.4: Example of bounded parents heuristic

6.1.4 Max I/O Path Length

The idea behind the Max I/O Path Length heuristic looks for chain of

obfuscation points in an exhaustive way. To identify long obfuscation point

chains, this heuristics visits all the paths from each input to each output

counting the number of obfuscation points in each path. This heuristic is

not bounded and follows both direct and inter-cycles dependencies, for this

reason it needs to keep track of visited nodes to avoid loops. The heuristic

assigns to each obfuscation point O a value equal to the maximum number

of obfuscation points that can be found in a path from an input to an output

that passes through O. This heuristic performs an accurate search focused

on the length of obfuscation chains. It performs visits across the whole graph

so the complexity is higher than bounded heuristics. Figure 6.5 shows an

example of application of Max I/O Path Length.

6.2 Selection Methods

6.2.1 In-order

The idea behind this selection method is simple: we order the obfuscation

points from highest to lowest scores, then we start obfuscating from the

first obfuscation points until we reach our constraints. Given a score table,

the generated solution using this method is deterministic. However, the

stochastic nature of the score scaling of obfuscation points belonging to the

same SDG node makes the whole process from SDG to obfuscated solution

non deterministic.

37

CHAPTER 6. SCORING AND SELECTION HEURISTICS

Figure 6.5: Example of Max I/O Path Length application

6.2.2 Probabilistic

This selection method selects obfuscation points in a probabilistic way. The

scores, where positive, are mapped in the range [0.25, 0.75]. Negative score

are put equal to 0. These new values correspond to the probability of se-

lecting the corresponding obfuscation point. We then scan the obfuscation

points in topological order and for each obfuscation point p we generate

a random number n in the range [0, 1], if n is less then the score of p we

use the point. We continue to iterate over the obfuscation points until we

meet the constraints or we do not update the solution for a given number

of iterations. This selection methods increases the probability of selecting

obfuscation points that are close to each other if they have a good enough

score. Obfuscation points close to each other are more likely to introduce

smaller area overhead because the extra logic can be optimized more easily

by the logic synthesis tools.

Figure 6.6 shows an example of obfucation points selection starting from

a score table.

38

6.3. SUMMARY

Figure 6.6: Example of obfuscation points selection

6.3 Summary

In this chapter we have seen the base methods that we can use to analyze the

System Dependence Graph to select the obfuscation points. We propose four

scoring heuristics and two selection methods. The scoring heuristics analyze

different aspects of each obfuscation point and assign a score to each of them.

These base methods can be combined together to obtain several obfuscation

procedures. This framework allows us to generate solutions using different

combinations of scoring heuristics and any of the two selection methods.

The framework then evaluates all the alternatives and proposes the best one

as the final candidate solution.

39

CHAPTER 6. SCORING AND SELECTION HEURISTICS

40

Chapter 7

Implementation and

Evaluation

In this chapter we go through the implementation details of our solution

and its experimental evaluation.

• Section 7.1 illustrates the implementation details, showing the tech-

nology used, and an overview of the use of the framework.

• Section 7.2 presents the experimental setup used for the experiments

and then present and comment the results.

7.1 Implementation Details

We implemented a prototype framework leveraging Pyverilog [33], a Python-

based Hardware Design Processing Toolkit for Verilog HDL. We opted to

use Python (version 3.6+) as it is ideal for fast prototyping and offered

both a parser and an evolutionary computation framework. The downsides

of Python are mainly performance related. Better performances can be

obtained by implementing more optimized solutions using lower-level lan-

guages. We felt that the trade-off between development time and execution

time was worth using Python instead of a lower-level language. We used

Pyverilog to parse the Verilog design and create its abstract syntax tree

(AST). The SDG extraction explores the AST leveraging the NodeVisitor

class defined in Pyverilog. We defined new visitors to extract the data

needed to build the SDG. The SDG extraction procedure was built to be

independent of the rest of the framework. In this way it can be used as a

library in any project that requires design analyses. In Figure 7.1, we show

the UML of our SDG extraction implementation.

CHAPTER 7. IMPLEMENTATION AND EVALUATION

UNREGISTER

Graph

+builder: dict

+draw()
+get_nodes()

DependenceNode

+ast: ast.Node[0..1]

+set_ast()
+add_parent()
+add_child()
+add_inter_parent()
+add_inter_child()
+add_fictitious_parent()
+add_fictitious_child()
+get_partents()
+get_children()
+get_inter_parents()
+get_inter_children()
+get_fictitious_parents()
+get_fictitious_children()

InputNode

+label: String

OutputNode

+label: String

ConstNode

+value: String

CondNode

+cond_statement: Object

AssignNode

+name: String

AlwaysNode

+sensList: String[1..*]

CouplingNode

+invar: String
+outvars: String

InstanceNode

+modulename: String

ModuleNode

+name: String

ParameterNode

+name: String
+ids: String
+consts: String

+parents

+children

+inter_parents

+inter_children

+fictitious_parents

+fictitious_children

-nodes 1..*

ProgramDependenceGraph

+_add_alwaysNode()
+build()
+build_nodes()
+build_edeges()
+connect_orphans()
+checl_if_blocking()
+check_case_statement_blocking()
+get_builder()

ModuleSystemDependenceGraph

+name

+import_pdg()
+buil()
+build_nodes()
+build_edges()
+clone()
+connect_orphans()

+coupling_nodes
1..*

SystemDependenceGraph

+flattened_sdgs: dict
+topmodule: String
+modules_sdg: dict

+draw_modules()
+get_inputs()
+flatten_sdg()

Pyverilog

NodeVisitor

ModuleVisitor

+moduleinfotable: visit.ModuleInfoTable

+visit_ModuleDef()
+visit_Portlist()
+visit_Input()
+visit_Output()
+visit_Inout()
+visit_Parameter()
+visit_Localparam()
+get_modulenames()
+get_moduleinfotable()

ArrayVisitor

+arrays: list

+visit_Decl()

DeclVisitor

+array: Boolean
+ids: List

+isArray()
+getIds()
+visit_Dimensions()
+visit_Wire()
+visit_Reg()

InstanceVisitor

+node: ast.Node
+arrays: list

+start_visit()
+visit_PortArg()

IfVisitor

+statements: list
+arrays: list

+visit_IfStatement()
+visit_BlockingSubstitution()
+visit_NonblockingSubstitution()
+visit_CaseStatement()IdentifierVisitor

+ids: list
+consts: list
+arrays: list

+visit_Pointer()
+visit_Identifier()
+visit_IntConst()
+visit_FloatConst()
+visit_StringConst()
+visit_Partselect()

SignalVisitor

+inputs: list
+outputs: list
+arrays: list

+visit_Assign()
+visit_Always()
+visit_Instance()
+visit_Input()
+visit_Output()
+visit_Parameter()
+get_asigns()
+get_instances()
+get_always()
+get_inputs()
+get_outputs()
+get_parameters()

AssignStruct

+lhs_signals: list
+rhs_signals: list
+rhs_consts: list
+rhs_ast: ast.Node

+get_dependency_signals()
+get_consts()

BlockingAssignStruct NonBlockingAssignStruct

AlwaysStruct

+statements: list
+sensitivitylist: list

+add_statement()
+set_sensList()
+get_sensList()
+get_statements()
+get_flattened_statements()
+get_dependency_signals()

CaseStruct

+statements: list

+set_statements()
+get_statements()

CaseStatementStruct

+cond_signal: String

+set_cond_signal()
+get_cond_signal()
+get_cases()
+get_n_cases()
+add_case()
+get_cond_dependencies()
+get_dependency_signals()
+get_flattened_statements()

IfStruct

+cond: ast.Node
+trueStatements: list
+falseStatements: list
+arrays: list

+set_cond()
+get_cond()
+set_trueStmts()
+get_trueStmts()
+set_falseStmts()
+get_falseStmts()
+get_dependency_signals()
+get_cond_constants()
+get_cond_dependencies()
+get_flattened_statements()

InstanceStruct

+module: String
+portlist: list

+add_port()
+get_module()
+get_portlist()

ParameterStruct

+name: String
+ids: list
+consts: list

+get_name()
+get_ids()
+get_consts()
+Operation1()

+cases1..*

+struct

CaseVisitor

+statements: list
+arrays: list

+visit_IfStatement()
+visit_BlockingSubstitution()
+visit_NonblockingSubstitution()
+visit_CaseStatement()

AlwaysVisitor

+arrays: list

+visit_SensList()
+visit_IfStatement()
+visit_CaseStatement()
+visit_BlockingSubstitution()
+visit_NonblockingSubstitution()

+struct

+assigns

0..*

+instances
0..*

+always0..*

+parameters

0..*

+modulevisitor

Figure 7.1: UML of the SDG extraction implementation.

42

7.1. IMPLEMENTATION DETAILS

As it is showed in the UML diagram, we keep track of different kinds of

nodes via inheritance. Our heuristics do not use that information, but we

felt it was valuable information for other possible uses of the SDG.

Once the obfuscation step is finished, our framework uses Pyverilog to

generate the obfuscated Verilog description ready for logic synthesis and

simulation. We then estimate the differential entropy by running behavioral

simulations on the solutions. The test bench evaluates the outputs of differ-

ent primary input and key combinations and outputs the mean differential

entropy in a text file that is then read by our framework. Appendix A shows

a test bench template, also explaining how to build one for a new design.

To implement the genetic algorithm for design space exploration we used

the DEAP [9] framework, a state-of-the-art evolutionary computation frame-

work implemented in Python as well. The framework runs the synthesis of

the designs using Synopsys Design Compiler R-2020.09-SP1 targeting the

Nangate 15nm ASIC technology at standard operating conditions (25◦C).

For the behavioral simulations we used Synopsys vcs. The choice of the RTL

tools is arbitrary and the framework can be adapted to work with different

tools. We decided to use these tools as they are used in industry and pro-

vide a real use-case scenario. Figure 7.2 shows the tool flow, highlighting

the main technologies used for the components. The following is an out-

put snippet from running the framework with FIR filter with 172 key bits

budget:

Design parsing completed in 0.0478 seconds

- Num. of obfuscation points = 34

- Constants = 10

- Operations = 24

- Branches = 0

BEST INDIVIDUAL: 1000011110101110101000010110100001

BEST HEURISTIC: PROB NCHILD

BEST BITS: 172

BEST AREA: 0.8700305931940606

BEST ENT: 0.999977

AREA ESTIMATION ERROR: -0.16205798015968464

AREA MEASURED: 0.707972613034376

In the output log there is also information about the obfuscation steps

and the results of all techniques tried. As showed in the log snippet above,

at the end it reports the information about the best solution. In the output

folder there are all the files related to the evaluated solutions.

43

CHAPTER 7. IMPLEMENTATION AND EVALUATION

Figure 7.2: Framework flow highlighting the technologies used

44

7.2. EVALUATION

7.2 Evaluation

7.2.1 Design of Evaluation

We evaluated our framework by running it to optimize obfuscation for a

set of designs with different key budgets. We evaluated both the mean

differential entropy and the area estimation. We picked five designs from

the MIT-LL Common Evaluation Platform (CEP) [18] to be evaluated with

our framework. Two of these benchmarks (FIR and IIR) were generated

using SPIRAL [32], a hardware generator. The selected benchmarks are a

subset of those used in [21] as we had to build a test-bench to measure the

differential entropy for each third-party design. For a design house it should

not be a problem to adapt a test bench to work with our framework.

Table 7.1: Characteristics of RTL benchmarks

Design Modules Const Ops Branches # Bits SDG nodes

FIR 5 10 24 0 344 157

IIR 5 19 43 0 651 231

SHA256 3 159 36 2 4,992 619

MD5 2 150 50 1 4,533 829

DES3 11 523 3 775 2,990 3,745

Table 7.1 reports the number of obfuscation points for each category, the

maximum number of key bits, and the number of nodes of the SDG for the

considered benchmarks.

To calculate the mean differential entropy, we estimated the output prob-

ability running 10,000 simulations obtained by combining 100 random keys

with 100 random inputs.

The first empirical results showed that the behaviour of the heuristics

is dependent on the design and the constraint. It is difficult to predict

in advance which heuristic will perform better in a given case. Since the

techniques are not computationally intensive we run a set of scoring heuristic

combinations, giving as outcome the best result that we obtain.

We compared our results against a design space exploration approach at

RTL (like the one presented in [22] for HLS), topological-order obfuscation

(like ASSURE [21]), and random obfuscation (where we select obfuscation

points completely at random).

From the first tests, increasing the distance parameter for the bounded

heuristics has a flattening effect on the obfuscation points, reducing the

45

CHAPTER 7. IMPLEMENTATION AND EVALUATION

performances. For this reason, we set a distance of 3 for the bounded children

heuristic and 2 for the bounded parents.

For each benchmark, we ran the framework with 20 different constraints

on the key budget as follows: 1, 2, 3, 4, 5, 7.5, 10, 15, 20, 25, 30, 35, 40,

45, 50, 60, 70, 80, 90, 100% of the maximum number of key bits. The

framework was configured to optimize the mean differential entropy of the

design and to evaluate the area overhead. The best solution was selected as

the one with mean differential entropy within 0.001 from the best value and

with the lowest estimated area overhead. We evaluated mean differential

entropy with respect to topological order obfuscation, random obfuscation,

and design space exploration with a genetic algorithm. We looked at which

technique achieves the best results more often for different key budgets (1-

5%, 7.5-25%, 30-50%, 60-100%, 1-100%). We also evaluated the error of the

area estimation of the best results by running the synthesis of the obfuscated

solutions and comparing them with the estimated value.

We ran the following combinations of scoring heuristics with both in-

order and probabilistic solution generation:

• Control disabling and bounded direct children

• Control disabling and bounded children

• Control disabling and bounded parents

• Control disabling and max I/O path length

• Control disabling, bounded direct children, bounded parents and max

I/O path length

• Control disabling, bounded children, bounded parents and max I/O

path length

We also ran control disabling alone with probabilistic generation, resulting

in a random solution excluding controlling points. For the different combi-

nations we used the naming scheme reported in Table 7.2.

If the solution was generated with the probabilistic approach, we also

added ”PROB” as prefix. We omitted CONTR DIS in the labels since it is

used in all combinations.

7.2.2 Metrics

We evaluated our framework by comparing the differential entropy of solu-

tions yielded from our heuristics with the one yielded by topological obfus-

cation, random obfuscation, and design space exploration. We evaluated the

46

7.2. EVALUATION

Table 7.2: Naming scheme for heuristics.

Heuristic Abbreviation

Control Disabling CONTR DIS

Bounded children NCHILD

Bounded direct children DCHILD

Bounded parents NPAR

Max I/O path LPATH

error of area estimations by comparing them with the real area overhead.

We estimated differential entropy with the following equation:

H =
1

N
·

N∑
i=1

(
Pi · log

1

Pi
+ (1− Pi) · log

1

1− Pi

)
Where Pi is the probability of output i being equal to 1, therefore Pi ∈ [0, 1]

and N is the number of output bits.

Pi =

∑W
w=1

∑T
t=1OUT [i]t

⊕
OUT [i]t,w

W · T
Where OUT [i]t is the correct value of the output bit i when the input t is

given to the unlocked circuit, and OUT [i]t,w is the value of the output bit

i when the input t is given together with the wrong key w to the locked

circuit. W and T are the number of considered input and key combinations,

respectively. In our tests we picked W = T = 100 for a total of 10,000

combinations of randomly-generated inputs and keys.

7.2.3 Results

From the first runs where we ran the heuristic combinations alone, there

is not a single heuristic that outperforms the others. Figure 7.3 shows

how many times each heuristic yielded a best solution across all designs.

All heuristic combinations yielded a best solution at least twice. Certain

heuristics are more likely to yield a best result when used within a certain

key budget interval. The 60-100% constraint interval is predominated by

the sole Control Disabling heuristic with probabilistic generation. This may

be due to noise in the lower scoring points.

Figure 7.4 shows the entropy results for each key budget, highlighting

the technique that generated the best solution. Different techniques show

to work better on different designs and different key budget intervals. Fig-

ure 7.5 shows the comparison with topological obfuscation. The results

47

CHAPTER 7. IMPLEMENTATION AND EVALUATION

20%20%

16%

12%
8%

8% 4%
4%
4%
4%

24%
16%

12%

8%
8%

8%

4%
4%

4%
4%

4%
4%

20%16%

12%

12%

8% 8%
8% 4%

4%
4%
4%

68%

16%
4%

4%
4%
4%

30%

10%
9%

8%

6%

6%
6%

5%

5%
5%

4%
2%
2%
2%

PROB NPAR LPATH NCHILD PROB CONTR DIS
PROB NPAR PROB NPAR LPATH DCHILD
NPAR PROB DCHILD
DCHILD PROB NCHILD
PROB LPATH TOPOLOGICAL
NCHILD NPAR LPATH NCHILD
LPATH NPAR LPATH DCHILD

1-5 % key budget 7.5-25% key budget 30-50% key budget 60-100% key budget

1-100% key budget

Figure 7.3: Technique frequencies for key budget intervals across all designs

show that topological obfuscation presents a higher variability in the en-

tropy results and yields a best solution only in 8% of the cases. Figure 7.6

shows the comparison with random obfuscation. With designs that present

control signals, random obfuscation often selects points that invalidate the

solution. Figure 7.7 shows how modifying the order of the sub-modules in-

stances results in a huge difference in the mean differential entropy values of

the topological order solution while the composable heuristics results only

change slightly where the best solution comes from a probabilistic genera-

tion.

Figure 7.8 shows the evaluation of the area estimation. For FIR, IIR,

and SHA256 the area estimation is very close to the actual area across

all points. On the other hand, DES and MD5 show a large discrepancy

between the estimated area and the measured one. Mean values are reported

in Table 7.3. Obfuscating sparse points yields unpredictable changes in

the synthesis optimization phase sometimes causing larger overheads. The

area evaluation method may be improved to take additional features into

consideration for designs that present this behaviour.

Table 7.4 shows a comparison with the genetic algorithm used for de-

48

7.2. EVALUATION

50 100 150 200 250 300
0.8

0.85

0.9

0.95

1

1.05

bits

En
tro

py

(a) FIR

100 200 300 400 500 600
0.8

0.85

0.9

0.95

1

1.05

bits

En
tro

py

(b) IIR

1000 2000 3000 4000
0.8

0.85

0.9

0.95

1

1.05

bits

En
tro

py

(c) MD5

500 1000 1500 2000 2500 3000
0.8

0.85

0.9

0.95

1

1.05

bits

En
tro

py

(d) DES3

1000 2000 3000 4000 5000
0.8

0.85

0.9

0.95

1

1.05

bits

En
tro

py

(e) SHA256

PROB NPAR LPATH NCHILD PROB CONTR DIS

PROB NPAR PROB NPAR LPATH DCHILD

PROB DCHILD NPAR

PROB NCHILD PROB LPATH

DCHILD TOPOLOGICAL

NCHILD NPAR LPATH DCHILD

NPAR LPATH NCHILD LPATH

Figure 7.4: Differential entropy results, highlighting the heuristic yielding the best

solution

49

CHAPTER 7. IMPLEMENTATION AND EVALUATION

Table 7.3: Area overhead mean relative error (m.r.e.)

Design Area Overhead m.r.e. [%]

FIR 10.86

IIR 16.33

MD5 75.33

DES3 37.24

SHA256 6.69

ALL 29.29

sign space exploration. The two approaches obtain values that are very

close with the proposed combined heuristic approach while being 100 to 400

times faster, where applicable. The reported time for composable heuristics

is the total time to evaluate the all of the 14 heuristic combinations that

we considered in the evaluation settings for a given key budget, for the de-

sign space exploration approach is the time of an exploration for a given

key budget. We did not consider the time to calculate the area estimation

parameters as it is done only once. However, for the composable heuristics,

we also counted the time for the synthesis of the best solution. This result

shows how the proposed methodology scales much better for large designs.

7.2.4 Discussion

The proposed obfuscation framework aims at optimizing a security metric

under either area or number of key bits constraints. Operating at RTL

makes our solution compatible with all IC design flows.

The framework performs its best in highly-constrained scenarios, which

are also the most relevant in real-case scenarios.

Our methodology drastically decreases the computational power required

compared to existing techniques, enabling us to target larger designs.

The entropy results are better than the ones obtained by applying obfus-

cation in topological order for 92% of the cases. In addition, our results

do not depend on the design structure, taking away responsibility from

the designer.

50

7.2. EVALUATION

T
ab

le
7.

4:
C

om
p

ar
is

on
w

it
h

D
S

E
ap

pr
oa

ch
at

4
ke

y
b

u
d

ge
t

co
n

st
ra

in
ts

C
o
m

p
os

a
b

le
H

eu
ri

st
ic

s
D

S
E

D
es

ig
n

M
ea

n
d

iff
er

en
ti

a
l

en
tr

o
p
y

T
im

e
[m

in
]

M
ea

n
d

iff
er

en
ti

al
en

tr
op

y
T

im
e

[m
in

]

25
%

50
%

7
0%

10
0%

25
%

50
%

75
%

10
0%

F
IR

0
.9

99
85

3
0
.9

99
96

7
0
.9

99
74

6
0.

99
99

35
2

0.
99

99
63

1.
00

00
00

1.
00

00
00

0.
99

99
97

24
0

II
R

0
.9

99
23

6
0
.9

99
58

2
0
.9

99
63

3
0.

99
98

42
3

0.
99

99
64

0.
99

99
99

0.
99

99
99

0.
99

99
93

36
0

M
D

5
0
.9

99
93

9
0
.9

99
36

4
0
.9

99
83

2
0.

99
98

32
3

0.
99

99
54

0.
99

99
52

0.
99

99
52

0.
99

99
52

45
0

D
E

S
3

0
.9

99
94

7
0
.9

99
51

3
0
.9

98
35

6
0.

99
67

88
4

0.
99

99
63

0.
99

99
57

0.
99

99
60

0.
99

99
60

60
0

S
H

A
2
56

0
.9

93
65

4
0
.9

93
30

7
0
.9

51
00

3
0.

95
10

03
3

0.
99

95
40

0.
99

96
65

0.
99

96
65

0.
99

96
65

13
00

51

CHAPTER 7. IMPLEMENTATION AND EVALUATION

0 50 100 150 200 250 300 350

0

0.2

0.4

0.6

0.8

1

Entropy heuristics
Entropy TO

bits

En
tro

py

(a) FIR

0 100 200 300 400 500 600

0

0.2

0.4

0.6

0.8

1

bits

En
tro

py

(b) IIR

0 1000 2000 3000 4000

0

0.2

0.4

0.6

0.8

1

bits

En
tro

py

(c) MD5

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

bits

En
tro

py

(d) DES3

0 1000 2000 3000 4000 5000

0

0.2

0.4

0.6

0.8

1

bits

En
tro

py

(e) SHA256

Figure 7.5: Differential entropy comparison with topological obfuscation

52

7.2. EVALUATION

0 50 100 150 200 250 300 350

0

0.2

0.4

0.6

0.8

1

Entropy heuristics
Entropy random

bits

En
tro

py

(a) FIR

0 100 200 300 400 500 600

0

0.2

0.4

0.6

0.8

1

bits

En
tro

py

(b) IIR

0 1000 2000 3000 4000

0

0.2

0.4

0.6

0.8

1

bits

En
tro

py

(c) MD5

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

bits

En
tro

py

(d) DES3

0 1000 2000 3000 4000 5000

0

0.2

0.4

0.6

0.8

1

bits

En
tro

py

(e) SHA256

Figure 7.6: Differential entropy comparison with random obfuscation

53

CHAPTER 7. IMPLEMENTATION AND EVALUATION

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

Entropy heuristics
Entropy TO

bits

En
tro

py

0 1000 2000 3000 4000 5000

0

0.2

0.4

0.6

0.8

1

bits

En
tro

py

Figure 7.7: Impact of inverting sub-module instances in SHA256

54

7.2. EVALUATION

0 100 200 300

−50

0

50

100

150

200

250

300

350
Estimated area overhead
Measured area overhead
Area overhead error

bits

A
re

a
ov

er
he

ad
 [%

]

(a) FIR

0 100 200 300 400 500 600

−50

0

50

100

150

200

250

300

350

bits

A
re

a
ov

er
he

ad
 [%

]

(b) IIR

0 1000 2000 3000 4000

−50

0

50

100

150

200

250

300

350

bits

A
re

a
ov

er
he

ad
 [%

]

(c) MD5

0 500 1000 1500 2000 2500 3000

−50

0

50

100

150

200

250

300

350

bits

A
re

a
ov

er
he

ad
 [%

]

(d) DES3

0 1000 2000 3000 4000 5000

−50

0

50

100

150

200

250

300

350

bits

A
re

a
ov

er
he

ad
 [%

]

(e) SHA256

Figure 7.8: Area estimation evaluation

55

CHAPTER 7. IMPLEMENTATION AND EVALUATION

56

Chapter 8

Conclusion and Future Work

8.1 Summary and Lessons Learned

Logic locking introduces area, power, and timing overheads in the design to

be protected. In real-world cases we cannot obfuscate the whole design due

to area, power, or timing constraints. It is important to carefully select the

obfuscation points to maximize the security metrics while satisfying such

constraints. The literature is missing optimization techniques to maximize

security metrics under overhead constraints. A genetic algorithm for design

space exploration [22] was proposed to optimize logic locking at high-level

synthesis. The approach showed that a careful selection of obfuscation points

yields far better results than obfuscating the whole design. Such approach

is limited by the level of abstraction at which it operates, that allows to

use it only with high-level synthesis generated designs. At register-transfer

level such approach is not feasible due to the higher computational require-

ments of simulations and the higher number of potential obfuscation points.

With our work we propose a framework at register-transfer level to optimize

the selection of obfuscation points for a given security metric under area

and key-bit constraints. The selection of obfuscation points is based on the

analysis of the dependencies between signals. The idea is that selecting an

obfuscation point will affect all statements that depend on it. By analyzing

the dependencies we can find the obfuscation points that will have a major

impact on the design or that will build a chain of obfuscation points that will

be harder to break. To represent the dependencies of signals in the design we

extract the System Dependence Graph of the design. We then created a set

of heuristics that analyze different characteristics of the obfuscation points

by analyzing the System Dependence Graph. Each heuristic gives a score

to each obfuscation points. Heuristics are composable to evaluate different

CHAPTER 8. CONCLUSION AND FUTURE WORK

aspects during the selection phase. We evaluate different heuristic combi-

nations and we output the results by ordering of the security metric score.

This approach drastically decreases (from 100 to 400× faster) the computa-

tional time compared to design space exploration techniques like [22] while

obtaining comparable results. Contrary to topological obfuscation, the re-

sults of our solution are independent of the design structure. Our solution

performed better than topological obfuscation in 92% of the cases.

8.2 Outputs and Contributions

With our thesis we provided the following main contributions:

• a modular and composable design framework to apply logic locking

with the support of RTL simulations and synthesis estimators as pre-

sented in Chapter 4;

• a procedure to extract System Dependence Graphs from a Verilog

design as presented in Chapter 5;

• a set of scoring heuristics based on the analysis of the System Depen-

dence Graph of an input RTL design as presented in Chapter 6;

The main tangible output of this thesis is the prototype implementation and

evaluation of the proposed approach, presented in Chapter 7.

8.3 Limitations

The number of designs that we tested to evaluate our framework is small.

Adding a new design to our test suite requires writing a test bench for the

security metric evaluation. For us, writing a test bench for a third party

design of which we only have the RTL design, without documentation, is not

a trivial task. For a design house, writing a test bench to fit our framework

should not present a problem.

We set a fixed value for the bounded heuristics parameters after running

some preliminary tests. It would be interesting to expand the optimization

task to consider different values for these parameters.

The SDG extraction procedure takes into consideration Verilog features.

The concepts presented in Chapter 5 are not restricted to Verilog designs,

but they correspond to different language features (i.e. signals and variables

in VHDL vs. blocking and non-blocking assignments in Verilog). A VHDL

implementation can be extracted using the presented concepts, mapping

them to the corresponding language features.

58

8.4. FUTURE WORK

We optimize the security metric under key bits and area overhead con-

straints. It would be interesting to perform multi-objective optimization

and trying to minimize area overhead, maximize the security metric under

key-bit constraint.

8.4 Future Work

There are many interesting research directions that we may follow to con-

tinue this work. New overhead estimators can be proposed to consider also

timing and power overheads in the optimization process. Multi-objective

optimization would have a great impact as it would allow to actively re-

duce the overheads instead of just constraining them. The use of SDGs in

logic locking optimization can be further explored with new heuristics and

machine-learning algorithms.

59

CHAPTER 8. CONCLUSION AND FUTURE WORK

60

Bibliography

[1] Amr Abdel-Hamid, Sofiène Tahar, and El Mostapha Aboulhamid. A

Survey on IP Watermarking Techniques. Design Autom. for Emb. Sys.,

9:211–227, 2004.

[2] Sarah Amir, Bicky Shakya, Xiaolin Xu, Yier Jin, Swarup Bhunia,

Mark Mohammad Tehranipoor, and Domenic Forte. Development and

Evaluation of Hardware Obfuscation Benchmarks. Journal of Hardware

and Systems Security, 2:142–161, 2018.

[3] Abhishek Chakraborty, Nithyashankari Gummidipoondi Jayasankaran,

Yuntao Liu, Jeyavijayan Rajendran, Ozgur Sinanoglu, Ankur Srivas-

tava, Yang Xie, Muhammad Yasin, and Michael Zuzak. Keynote: A

Disquisition on Logic Locking. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 39:1952–1972, 2020.

[4] Prabuddha Chakraborty, Jonathan Cruz, and Swarup Bhunia. SAIL:

Machine Learning Guided Structural Analysis Attack on Hardware Ob-

fuscation. In Asian Hardware Oriented Security and Trust Symposium

(AsianHOST), pages 56–61, 2018.

[5] Rajat Chakraborty and Swarup Bhunia. RTL Hardware IP Protection

Using Key-Based Control and Data Flow Obfuscation. pages 405–410,

01 2010.

[6] Ronald P. Cocchi, James P. Baukus, Lap Wai Chow, and Bryan J.

Wang. Circuit Camouflage Integration for Hardware IP Protection. In

Proceedings of the 51st Annual Design Automation Conference, pages

1–5, 2014.

[7] Dean Takahashi . Globalfoundries: Next-generation chip

factories will cost at least $10 billion. Available at:

https://venturebeat.com/2017/10/01/globalfoundries-next-

generation-chip-factories-will-cost-at-least-10-billion/ (Last accessed:

April 1, 2020), 2017.

61

BIBLIOGRAPHY

[8] ERAI. ERAI Reported Parts Statistics. Available at:

https://www.erai.com/erai blog/3167/ 2019 erai reported parts statistics

(Last accessed: April 1, 2020), 2019.

[9] Félix-Antoine Fortin, François-Michel De Rainville, M.A. Gardner,

Marc Parizeau, and Christian Gagné. Deap: Evolutionary algorithms

made easy. Journal of Machine Learning Research, Machine Learning

Open Source Software, 13:2171–2175, 2012.

[10] S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing Using

Dependence Graphs. In Proceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 35–46,

1988.

[11] D.J. Kuck, Y. Muraoka, and Shyh-Ching Chen. On the number of

operations simultaneously executable in fortran-like programs and their

resulting speedup. IEEE Transactions on Computers, C-21(12):1293–

1310, 1972.

[12] L. Li and A. Orailoglu. Piercing Logic Locking Keys through Redun-

dancy Identification. Design, Automation & Test in Europe Conference

& Exhibition (DATE), pages 540–545, 2019.

[13] N. Limaye, A. B. Chowdhury, C. Pilato, M. T. M. Nabeel, O. Sinanoglu,

S. Garg, and R. Karri. Fortifying RTL Locking Against Oracle-Less

(Untrusted Foundry) and Oracle-Guided Attacks. ACM/IEEE Design

Automation Conference (DAC), 2021.

[14] Nimisha Limaye, Emmanouil Kalligeros, Nikolaos Karousos, Irene G.

Karybali, and Ozgur Sinanoglu. Thwarting All Logic Locking Attacks:

Dishonest Oracle with Truly Random Logic Locking. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems,

pages 1–1, 2020.

[15] Luca Collini, Politecnico di Milano. Verilog SDG Extraction. Available

at: https://github.com/Lucaz97/Verilog-SDG-Extraction.

[16] Mohamed El Massad, Jun Zhang, Siddharth Garg, and Mahesh V.

Tripunitara. Logic Locking for Secure Outsourced Chip Fabri-

cation: A New Attack and Provably Secure Defense Mechanism.

arXiv:1703.10187, 2017.

62

BIBLIOGRAPHY

[17] Mohamed El Massad, Jun Zhang, Siddharth Garg, and Mahesh V.

Tripunitara. Logic Locking for Secure Outsourced Chip Fabri-

cation: A New Attack and Provably Secure Defense Mechanism.

arXiv:1703.10187, 2017.

[18] MIT Lincoln Laboratory. Common Evaluation Platform (CEP). Avail-

able at: https://github.com/mit-ll/CEP.

[19] Omdia. Top 5 Most Counterfeited Parts Represent a $169 Billion

Potential Challenge for Global Semiconductor Market. Available at:

https://www.electronicproducts.com/top-5-most-counterfeited-parts-

represent-a-169-billion-potential-challenge-for-global-semiconductor-

market/ (Last accessed: November 1, 2020), 2012.

[20] Tiago D. Perez and Samuel Pagliarini. A Survey on Split Manufactur-

ing: Attacks, Defenses, and Challenges. IEEE Access, 8:184013–184035,

2020.

[21] Christian Pilato, Animesh Basak Chowdhury, Donatella Sciuto, Sid-

dharth Garg, and Ramesh Karri. ASSURE: RTL locking against an

untrusted foundry. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, pages 1–13, 2021.

[22] Christian Pilato, Luca Collini, Luca Cassano, Donatella Sciuto, Sid-

dharth Garg, and Ramesh Karri. On the Optimization of Behavioral

Logic Locking for High-Level Synthesis. arXiv:2105.09666, 2021.

[23] Christian Pilato, Francesco Regazzoni, Ramesh Karri, and Siddharth

Garg. TAO: Techniques for Algorithm-Level Obfuscation during High-

Level Synthesis. In Proceedings of the 55th Annual Design Automation

Conference, 2018.

[24] Chakraborty Prabuddha, Jonathan Cruz, and Bhunia Swarup. SURF:

Joint Structural Functional Attack on Logic Locking. In IEEE Interna-

tional Symposium on Hardware Oriented Security and Trust (HOST),

pages 181–190, 2019.

[25] J. A. Roy, F. Koushanfar, and I. L. Markov. EPIC: Ending Piracy of

Integrated Circuits. In Design, Automation and Test in Europe, pages

1069–1074, 2008.

[26] Samar Saha. Emerging business trends in the microelectronics industry.

Open Journal of Business and Management, 04:105–113, 2016.

63

BIBLIOGRAPHY

[27] Semi. Innovation is at risk as semiconductor equipment and materials

industry loses up to $4 billion annually due to IP infringement. Avail-

able at: http://dev7.semi.org/en/white-paper-ip-infringement-causes-

4-billion-loss-industry-annually (Last accessed: November 1, 2020),

2008.

[28] Abhrajit Sengupta, Mohammed Ashraf, Mohammed Nabeel, and Ozgur

Sinanoglu. Customized Locking of IP Blocks on a Multi-Million-Gate

SoC. In IEEE/ACM International Conference on Computer-Aided De-

sign (ICCAD), pages 1–7, 2018.

[29] Kaveh Shamsi, Meng Li, Kenneth Plaks, Saverio Fazzari, David Z.

Pan, and Yier Jin. IP Protection and Supply Chain Security through

Logic Obfuscation: A Systematic Overview. ACM Trans. Des. Autom.

Electron. Syst., 24, 2019.

[30] Mustafa M. Shihab, Jingxiang Tian, Gaurav Rajavendra Reddy, Bo Hu,

William Swartz, Benjamin Carrion Schaefer, Carl Sechen, and Yior-

gos Makris. Design Obfuscation through Selective Post-Fabrication

Transistor-Level Programming. In Design, Automation Test in Europe

Conference Exhibition (DATE), pages 528–533, 2019.

[31] Dominik Sisejkovic, Farhad Merchant, Lennart M. Reimann, Harshit

Srivastava, Ahmed Hallawa, and Rainer Leupers. Challenging the Se-

curity of Logic Locking Schemes in the Era of Deep Learning: A Neu-

roevolutionary Approach. J. Emerg. Technol. Comput. Syst., 17(3),

2021.

[32] SPIRAL team. SPIRAL software/hardware generation for performance.

Available at: https://www.spiral.net/index.html.

[33] Shinya Takamaeda-Yamazaki. ”Pyverilog: A Python-Based Hardware

Design Processing Toolkit for Verilog HDL”. In Kentaro Sano, Dim-

itrios Soudris, Michael Hübner, and Pedro C. Diniz, editors, Applied

Reconfigurable Computing, pages 451–460, 2015.

[34] Benjamin Tan, Ramesh Karri, Nimisha Limaye, Abhrajit Sengupta,

Ozgur Sinanoglu, Md Moshiur Rahman, Swarup Bhunia, Danielle Du-

valsaint, R. D., Blanton, Amin Rezaei, Yuanqi Shen, Hai Zhou, Leon

Li, Alex Orailoglu, Zhaokun Han, Austin Benedetti, Luciano Brignone,

Muhammad Yasin, Jeyavijayan Rajendran, Michael Zuzak, Ankur Sri-

vastava, Ujjwal Guin, Chandan Karfa, Kanad Basu, Vivek V. Menon,

64

BIBLIOGRAPHY

Matthew French, Peilin Song, Franco Stellari, Gi-Joon Nam, Peter Gad-

fort, Alric Althoff, Joseph Tostenrude, Saverio Fazzari, Eric Brecken-

feld, and Kenneth Plaks. Benchmarking at the Frontier of Hardware

Security: Lessons from Logic Locking. arXiv:2006.06806, 2020.

[35] US Department of Justice. Departments of Justice and Homeland

Security Announce 30 Convictions, More Than $143 Million in Seizures

from Initiative Targeting Traffickers in Counterfeit Network Hardware.

Available at: https://archives.fbi.gov/archives/news/pressrel/press-

releases/departments-of-justice-and-homeland-security-announce-

30-convictions-more-than-143-million-in-seizures-from-initiative-

targeting-traffickers-in-counterfeit-network-hardware (Last accessed:

April 1, 2020), 2010.

[36] Shobha Vasudevan, E. Allen Emerson, and Jacob A. Abraham. Effi-

cient Model Checking of Hardware Using Conditioned Slicing. Electron.

Notes Theor. Comput. Sci., 128:279–294, 2005.

[37] Y. Xie and A. Srivastava. Anti-SAT: Mitigating SAT Attack on Logic

Locking. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 38(2):199–207, 2019.

[38] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri. On Improving

the Security of Logic Locking. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 35(9):1411–1424, 2016.

[39] Muhammad Yasin, Jeyavijayan JV Rajendran, Ozgur Sinanoglu, and

Ramesh Karri. On Improving the Security of Logic Locking. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 35:1411–1424, 2016.

[40] Muhammad Yasin, Chongzhi Zhao, and Jeyavijayan JV Rajendran.

SFLL-HLS: Stripped-Functionality Logic Locking Meets High-Level

Synthesis. In IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), pages 1–4, 2019.

BIBLIOGRAPHY

Appendix A

Differential entropy

testbench template

To estimate the mean differential entropy, we need to run a behavioural sim-

ulation of the obfuscated design. In this appendix we illustrate the structure

of a test bench to measure differential entropy in our framework.

The following is a template for a testbench:

parameter N_OUT = 256;

parameter DELTA = 0.00000000001;

// this is generated by our framework, contains:

// inputs, keys and golden outputs

‘include "../../in_obf.v"

module entropy_tb;

//keeps track of the miter circuit output

real n_out_miter_logic1[N_OUT-1:0];

real diffEntropy, Pi, mean_diffEntropy;

reg [N_OUT-1:0] out, out_miter;

reg clk, reset;

reg [N_KEY-1:0] locking_key;

// design specific signals

reg [511:0] in;

reg ready, out_valid, start;

Appendix A. Differential entropy testbench template

reg out_valid;

int failed;

// module instantiation

mod_obf dut_obf (

.clk(clk), .rst(reset), .in(in), .ready(ready), .start(start),

.out_valid(out_valid), .out(out), .locking_key(locking_key));

always #5 clk = ~clk;

initial begin : prog_blk

int fd_log;

fd_log = $fopen("../vcs_entropy.log", "w");

foreach (n_out_miter_logic1[j])

n_out_miter_logic1[j] = 0;

failed = 0;

{start, valid, ready} = 0;

in = 0;

locking_key = 0;

diffEntropy = 0;

Pi = 0;

clk = 0;

reset = 1;

repeat (5) @(posedge clk);

reset = 0;

repeat (30) @(posedge clk);

foreach (InData[i])

begin

foreach (Locking_key[j])

begin

locking_key = Locking_key[j];

reset = 1;

repeat (5) @(posedge clk);

reset = 0;

repeat (30) @(posedge clk);

// if the orig circuit is ready and the obf one

// is not after 30 cycles

// we consider the test as failed.

repeat (300) @(posedge clk);

if(ready == 1’b0)

begin

$display("NOT READY ON TIME");

$fwrite(fd_log,"1");
$finish;
break;

end

in = InData[i][511:0];

#10

init = 1’b1;

#20

next = 1’b1;

#10

init = 1’b0;

next = 1’b0;

fork: execute

// wait for ready_obf and read outputs

begin

wait(out_valid == 1’b1);

out_miter = out ^ golden_output[i];

foreach (n_out_miter_logic1[k])

n_out_miter_logic1[k] =

n_out_miter_logic1[k] + out_miter[k];

disable execute;

end

begin

// works as timeout

repeat (6000) @(negedge clk);

failed = 1;

disable execute;

end

join

if (failed == 1)

begin

Appendix A. Differential entropy testbench template

$display("NOT VALID ON TIME");

$fwrite(fd_log,"1");
$finish;

end

end

end

foreach (n_out_miter_logic1[j])

begin

Pi = n_out_miter_logic1[j]/(N_P_VECT*N_KEY_VECT);

if (Pi == 0 || Pi == 1) // fixes the problem of Pi = 1 or 0

diffEntropy = 0;

else

diffEntropy = diffEntropy +

(Pi * $log10(1.0/Pi)/$log10(2) +

(1.0 - Pi)*$log10(1.0 /(1.0-Pi))/$log10(2));
end

mean_diffEntropy = diffEntropy/N_OUT;

$fwrite(fd_log,"%f", mean_diffEntropy);

$fclose(fd_log);
$finish;

end : prog_blk

endmodule

We generate an include file with input vectors for both primary inputs

and keys, together with golden outputs obtained by simulating the original

design with the same primary input vectors. The test bench for the golden

outputs is similar, as it is a reduced version of the one reported above.

We collect the output of the miter circuit for each combination of primary

input and key input to estimate Pi. Then we evaluate the differential entropy

with the following formula, previously described in Section 3.3.

H =
1

N
·

N∑
i=1

(
Pi · log

1

Pi
+ (1− Pi) · log

1

1− Pi

)
The designers that are writing the test bench must know at least the control

side of the design. The key points of the test bench are the synchronizing

ones. Before giving the inputs we must be sure that the design is ready

and we must read the output when it is valid. If a design has no control

input or output those phases can be omitted but the designers must know

the correct cycles in which they should provide the inputs and when to read

the corresponding outputs.

	Abstract
	Sommario
	Acknowledgements
	Introduction to Hardware IP Protection
	Context
	Background
	Threat Model

	Scenario and Problem Statement
	Methodology
	Contributions
	Structure of Thesis

	State of the Art
	IC Design Flow
	Evaluation Metrics
	Logic Locking Techniques
	Design Space Exploration for Logic Locking Optimization
	Summary

	Problem Definition and Background
	Problem Statement
	Semantic Obfuscation Techniques
	Differential Entropy
	Dependence Graphs
	Summary

	Approach: Heuristics for RTL Locking
	Architecture & Design Decisions
	Summary

	SDG Extraction
	PDG Extraction
	SDG Extraction Flow
	Summary

	Scoring and Selection Heuristics
	Scoring Heuristics
	Control Disabling
	Bounded (Direct) Children
	Bounded Parents
	Max I/O Path Length

	Selection Methods
	In-order
	Probabilistic

	Summary

	Implementation and Evaluation
	Implementation Details
	Evaluation
	Design of Evaluation
	Metrics
	Results
	Discussion

	Conclusion and Future Work
	Summary and Lessons Learned
	Outputs and Contributions
	Limitations
	Future Work

	References
	Differential entropy testbench template

