
Executive Summary of the Thesis

ODIN Web: An interactive dashboard for black-box deep learning
error diagnosis

Laurea Magistrale in Computer Science And Engineering - Ingegneria Informatica

Author: Alessandro Mastropasqua

Advisor: Prof. Piero Fraternali

Co-advisors: Federico Milani, Rocio Nahime Torres, Niccolò Zangrando

Academic year: 2021-2022

1. Introduction
Classification, Object Detection, and Instance
Segmentation have become key fields in the com-
puter vision research context. Their aim is to
recognize the presence, or presence and location,
of a specific class within an image in an auto-
matic way using neural models. Over the years,
however, the architectures of these models have
become progressively complex due to the con-
stant need to increase their performance. This
has made their evaluation more and more ardu-
ous, leading to evaluate them as "black-boxes"
using standard evaluation metrics necessary to
perform fair analysis on models and understand
their behavior to be able to optimize it for a
given dataset or task.
In this way, several papers describe the de-
velopment of frameworks aimed at enhancing
the diagnosis of deep neural models over the
standard evaluation metrics, implementing tools
with graphical interfaces that support the user
during all analyzes by presenting the results
cleanly and legibly. The interfaces that these
tools present are often sparse and do not allow
the user to vary the types of analysis, nor do
they offer sets of metrics to fully understand the
behavior of the model.

ODIN Framework aims at generalizing and in-
tegrating into a unique solution the main ap-
proaches to error diagnosis, extending the stan-
dard evaluation metrics with custom proper-
ties and metrics, a wide range of off-the-shelf
metrics, and analysis reports. ODIN is a tool
with great potential but with the limit of be-
ing python based and accessible only to users
capable of programming. Therefore, we felt the
need to compensate for this weakness by extend-
ing it with a dashboard that can quickly dis-
play the most common reports without any pro-
gramming effort, still allowing the more experi-
enced to refine the analysis as they want. The
purpose of the presented work is to introduce
ODIN Web, a web-based application capable of
compensating for the lack of a complete tool,
with an intuitive interface, easy to install, and
which supports users in analyzing the results of
their models without any programming effort.
Finally, to demonstrate the utility and effective-
ness of the tool, two types of use cases, applied
to the ArtDL(not covered in the executive sum-
mary for reasons of space) and PASCAL VOC
2007 datasets, are illustrated.

1



Executive summary Alessandro Mastropasqua

2. Related Work
2.1. Black-box error diagnosis
To fulfill the tasks that computer vision offers us,
it is necessary to use deep neural models, and,
to understand the benefits of a given model, it
is necessary to analyze and catch the character-
istics of its architecture.
The model performance analysis can be per-
formed in two ways: the first approach is to
"open the box" to find a link between the in-
put, the various internal layers of the model, its
nodes, and the output provided by it. The other,
that is what we will discuss in this research and
implemented by ODIN, is the one called ’black-
box’ and consists in associating extra annota-
tions to the input, which are not exploited in
the training phase, but capable to make us bet-
ter understand the model output by analyzing
which meta-annotations had the greatest im-
pact on model errors. Our work focuses on the
research and study of the most popular tools
that offer analysis of neural models, exploiting a
black-box approach, through an interactive and
effortless programming interface. A first inter-
face approach can be traced back to the Con-
fusion Wheel concept introduced by Alsallakh
et al. in which authors propose a new graphi-
cal analysis that arranges different classes based
on a radial layout and use histograms to show
the statistics of the true/false positive/negative
associated with each class and their prediction
confidence. However, the technique cannot sup-
port an effective comparison of multiple mod-
els. Moving forward over the years, more and
more tools such as ModelTracker, Prospector,
Squares begin to establish themselves, but they
are aimed at expert people, with interfaces that
are difficult to interpret for novices and lack-
ing all the necessary analyzes to better under-
stand the performance of the model. Manifold
is the first example of a tool in which perfor-
mances were compared on multiple models in
an effective way. In other words, the outputs
of several models were compared trying to un-
derstand the strengths and try to lead to a bi-
ased cognition based on their relation to the
underlying data. After it, some of the best-
known tools in the context of black-box anal-
ysis have emerged over the next years. First of
all WhatIfTool, a web-based tool that leverages

a visual interface to help understand class dis-
tributions in the dataset and Image Classifica-
tion model output. A user can manage differ-
ent characteristics of the input data set to an-
alyze how these changes affect the predictions
of the model. Furthermore, the tool provides
a fairness analysis and different strategies for
optimization. Finally, OpenVino, a stand-alone
tool that provides 360-degree support for analyz-
ing the results of a model, made its appearance.
It has an intuitive but at the same time func-
tional and complete interface for the analysis of
predictions. It focuses on model analysis, opti-
mization, and deployment. Novel visualizations
and evaluations are introduced to support hard-
ware optimization and model calibration. Com-
putational graph visualization allows developers
to investigate the runtime representation of a
model. Calibration techniques enable the accel-
eration of model performance while decreasing
memory impact (keeping into consideration ac-
curacy) and deployment to a target system. Fi-
nally, as it could be deduced from the analysis,
there are very few tools that allow having an
interactive interface and at the same time offer
the user the complete customization of the data
and the analyzes performed on them. Further-
more, each tool focuses mainly on a certain type
of task, completely excluding the other.
For this reason we think that ODIN Framework
could be a valid alternative for analyzing model
results and their behaviour. In addition, the de-
velopment of a user-friendly and captivating in-
terface equipped with all the necessary function-
alities to better analyze the results of the ana-
lyzes, would allow to approach even users who
do not have a great deal of experience in pro-
gramming with python.

2.2. Annotation tools for ML
datasets

Training models is one of the key part when it
comes to deep learning. Often the model’s per-
formance, after being trained, depends on the
quality and breadth of data that has been pro-
vided to it. For that reason, we can say that the
preparation of the training set is crucial to ob-
tain excellent performance from the model and,
therefore, it must be supported by a tool that
allows a quick, but at the same time efficient,
annotation. There are plenty of annotators on

2



Executive summary Alessandro Mastropasqua

the market, each of which specializes in anno-
tating certain types of data. These data can
range from simple text files to images up to mul-
timedia files. The researcher must be able to
identify the objective of the model, the develop-
ment environment, and the effectiveness of the
annotator that is going to be used. With Photo-
Stuff authors propose one of the first platform-
independent, image annotation tools which use
an ontology to provide the expressiveness re-
quired to assert the contents of an image, as well
information about the image. Over the years,
the annotation of datasets has become increas-
ingly fundamental, giving birth to the need for
increasingly effective tools that allow the user to
annotate huge amounts of data quickly and pre-
cisely. In this way, we have identified some of
the most relevant proposals that can be found
at the moment. First of all TagTog, a text an-
notation tool that can be used to annotate text
either automatically or manually. It supports
native PDF annotation and includes pre-trained
NER templates for automatic text annotation.
In addition to the Tagtog tool, the company pro-
vides an annotation service through a network
of skilled workers in the required sector who will
annotate the texts under commission. ImgLab is
the most used image annotator at the moment,
based entirely on web, but it also offers the pos-
sibility to be installed locally. It allows multiple
tasks including object detection, Semantic and
Instance segmentation with a user-friendly inter-
face and rich documentation. After that, Label
Studio is a complete 360-degree tool that cov-
ers all aspects of data annotation, as it offers
services for all types of annotations. The instal-
lation of the tool could be performed locally or
deployed in a cloud instance and has a unique
configuration setup called Labeling Config that
allows you to design your own customized UI.
Finally, COCO Annotator provides many dis-
tinct features among which: the ability to label
an image segment, track object instances, label
objects with disconnected visible parts, and effi-
ciently store and export annotations in the well-
known COCO format. It also exploits advanced
tools, such as DEXTR, MaskRCNN, and Magic
Wand to execute automatic annotation. From
this survey, it emerged that most of the anno-
tation tools are web-based to avoid, probably,
the installation of the software locally and to

exploit the computational power of the server
to perform more complex tasks needed to pre-
pare the data set. In fact, it is possible to notice
how most of the tools based on image annotation
prefer an approach based on instance segmenta-
tion while not neglecting object detection. In
most cases, especially concerning recently devel-
oped tools, the annotation process is not totally
left in the hands of the user, but instead, the
researcher is the person who completes the an-
notations of images not recognized by the anno-
tation system. Over the years, standard formats
have also been set for saving on file (also called
ground truth) of annotations. In fact, most of
the files, both input and output, are generated
as JSON (Javascript Object Notation) files with
MS COCO as the standard format. As for the
annotations saved in XML, it is assumed as stan-
dard format the one dictated by Pascal VOC.

3. An interactive dashboard for
ODIN

This work aims to develop a web interface capa-
ble of exploiting all the features of the previous
work [1] and [2], implementing an application ca-
pable of relieving the user of any programming
effort, with the aim of:
• providing the user with a simple and in-

tuitive tool in use. For this reason a
README guides the user in the installa-
tion process: from cloning the repository, to
installing the required packages, and start-
ing the dashboard. To relieve the user to
those steps, we also provide ODIN Web as
a Docker1 container in order to benefit from
the features that dockerizing the app offers
us. The decision to offer ODIN also in dock-
erized format stems from the aim of making
ODIN a tool that is simple to use but also to
be installed, ensure the possibility to make
ODIN accessible in different ways.

• support the user throughout the manage-
ment of the data set

• support the user in the comprehension of
the results provided by the model using
meta-annotations, i.e., annotations that do
not contribute to model training but can be
exploited for understanding performance

In order to meet the requirements setted for
1https://www.docker.com/

3



Executive summary Alessandro Mastropasqua

ODIN, the application flow is divided into two
main components:

• Annotator : allows the user to access, or if
necessary create, the data set to provide
to the model. Once created, the user can
populate the data set and specify, for each
observation, the category, or categories in
case of multi-label classification, it repre-
sents and the properties that characterize
it. Once all the samples are annotated,
they will be saved in the right format on
the ground truth file.

• Analyzer : allows the user to analyze the
predictions of one or more models easily
and without programming effort. By sim-
ply selecting the dataset, the predictions
associated with it, and the settings with
which you want to perform the analyzes,
the user can access all the functions that
ODIN Framework already offers, provided
with a simple interface and equipped with
all the filters necessary for inspection and
comprehension of the analyzes at different
levels of granularity.

Talking about the architectural part of ODIN
Web, it is organized with a client-server architec-
ture to keep the presentation, application, and
data logic separated.
Starting from the client-side, here lies every-
thing about the presentation logic. It was cho-
sen to take advantage of Vue.js to implement
the ODIN user interface, a javascript framework
that exploits the concept of declarative render-
ing to break down the application into modules,
making the code cleaner and tidier. Its choice
was guided by the fact that it allows to develop
a software with a reactive MVVM architecture.
In fact, the user interacts with the HTML based
web page and normally the whole page has to
refresh even if just one object changes. Vue uses
a virtual copy of the original DOM that figures
out what elements require updating, without re-
rendering the entire DOM, greatly improving
app performance and speed.
All client side data is retrieved from the server
through promise-based HTTP requests to the
server-side via Flask made by the Axios JS li-
brary extension. ODIN Web uses Flask as web
server mainly for its flexibility, scalability for
simplistic application, and adaptability to the
latest technologies. In addition, the App Rout-

ing functionality allows to map specific URLs
with associated functions that are built to per-
form a specific task.
The application and data logic resides in the
server-side. It is developed entirely in Python,
following the line of the previous work [2][3].
A modules structure was designed to maintain
a separation of what are the features offered
and to facilitate subsequent extensions of the
app. All data concerning the analyzes obtained
through the client’s requests are processed by
ODIN Framework, and the results are reorga-
nized to be effortlessly processed by the client.
Moreover, in order to not affect the user experi-
ence, Redis was used as a memory to store the
data structure converted into Bitmap of the in-
stances of the objects associated with the user
as regards Dataset, Analyzer and Comparator.
It was chosen, first of all for its performance,
as it offers response times of less than a mil-
lisecond, allowing millions of requests per sec-
ond. Also, since Redis data resides in memory,
it enables data access with low latency and high
throughput. The main advantage is that, unlike
traditional databases, data in memory does not
require going to disk, minimizing engine latency
to microsecond levels. In fact, in anticipation
of a large number of annotations, it was decided
to adopt MongoDB’s document-oriented NoSQL
database to be able to perform queries instantly
without compromising the user experience and
limit the number of accesses to the ground truth
file. MongoDB is used as it was developed specif-
ically for the management of unstructure data,
allowing them to be stored in json format. In
this way it is possible to save automatically and
without manipulating the annotations provided
by the client, in addition it allows to update the
schemes quickly.

Figure 1: ODIN Web architecture

4



Executive summary Alessandro Mastropasqua

Figure 2: Per-Property Analysis of Faster-
RCNN model over a categories subset

4. ODIN Web in action
ODIN Web functionality is illustrated by apply-
ing it on an object detection benchmark: the
PASCAL VOC 2007’s test set, a time-honored
dataset to evaluate performance in object cat-
egory detection which contains 4952 images de-
picting 20 different classes. For each annotation,
a set of properties is calculated:

• AreaSize: indicates the dimension of its
bounding box: XS (extra-small), S (small),
M (medium), L (large), and XL (extra-
large).

• AspectRatio: is defined as object width di-
vided by its height. Similarly to object
size, objects are categorized into extra-tall
(XT), tall (T), medium (M), Wide (W), and
extra-wide (XW).

In this analysis, we compare two models: Faster-
RCNN (with MobileNet backbone) and the same
with the addition of the Feature Feature Pyra-
mid Network (FPN) 2. The models are compared
in ODIN Web to catch the strengths and weak-
nesses of each. In Fig. 2 the Per-Property anal-
ysis made over the Area Size property for the
Faster-RCNN model is reported. It is possible
to notice how the performances decrease as the
size of the object decreases. One possible solu-
tion, in case the researcher wants to trade some
performance aspects with the recognition of the
presence of particularly small objects, it could
be adopt a different type of model, for exam-
ple, a Feature Pyramid Network (FPN). Fig. 3
shows the performance of the FPN model and, as
expected, it presents higher performance for an-
notations associated with properties values, such
as XS and S, but significantly decreasing perfor-
mance in cases where the size is larger proving

2The weights are obtain from public repositories.

Figure 3: Per-Property Analysis of FPN model
over a categories subset

that, for this particular model, performances are
less affected by the size of the bounding boxes.
Fig. 4 represents the sensitivity and impact

Figure 4: Sensitivity and Impact of the Faster-
RCNN and FPN compared

graph that compares the two models simulta-
neously. As already said, it is possible to see
how FPN is much less sensitive and with a lower
impact than Faster-RCNN, while as regards as-
pect ratio property the two models have similar
behaviors. From this analysis, we can conclude
that the FPN model would be a valid substitute
for the Faster-RCNN if the researcher is will-
ing to give up to 6% of the overall performance
while having a model that recognizes all types
of bounding boxes. By analyzing Fig. 5, it re-

Figure 5: Reliability Diagram of the Faster-
RCNN(left) and FPN(right)

5



Executive summary Alessandro Mastropasqua

ports the reliability diagram applied to the two
models separately, we can see how, unlike the
FPN model, the Faster-RCNN model is not well
calibrated. In this case, the model is underes-
timating its predictions, presenting an expected
calibration value(ECE) of 11.37. This condition
can be improved by applying some calibration
technique such as Bayesian Binning into Quan-
tiles, Platt scaling, or its simplest version, tem-
perature scaling. Focusing on the FPN model,
we can notice that it is well calibrated with an
expected calibration value(ECE) of 2.96 while
overestimating its predictions. This behavior is
also noted by analyzing the distribution of False-
Positives, in Fig. 6, between the two models, in
which FPN commits almost twice as many errors
compared to Faster-RCNN.

Figure 6: False-Positive distribution of the
Faster-RCNN and FPN compared

5. Conclusions
In this work, ODIN Web, a web app that aims
to extend the already existing ODIN framework,
is presented. ODIN Web offers the possibility to
exploit all the functionalities provided by ODIN
Framework simply and without any program-
ming effort. Two of the main features of ODIN
are provided with a graphical interface: the An-
notator can guide the user in a simple but effec-
tive way during the entire phase of the dataset
population, offering a clean and user-friendly in-
terface. As for the analyzer, it provides all the
analyzes implemented by ODIN Framework, al-
lowing the user to view the results in graphi-
cal format and providing all the filters neces-
sary to view only the data of interest. It also
allows you to compare multiple models at the
same time and update the analysis parameters
in real-time. In conclusion, it has been demon-
strated that in the current state of the art in the

field of black-box analysis frameworks there are
very few tools that allow having an interactive
interface and at the same time offer the user the
complete customization of the data and the an-
alyzes performed on them. Therefore, we think
that ODIN Web could be a considerable step for-
ward that can allow anyone to interface with the
world of computer vision in a simple way but,
at the same time, can also support researchers,
and not, to extract multiple and useful infor-
mation for the refinement of their models. As
for future works, we expect to expand ODIN
web with features already present in the frame-
work, such as: implement a Visualizer compo-
nent to give the user the ability to fully explore
the ground truth and predictions of the model,
allow the annotator to support textual observa-
tions in the annotation phase and expand the
types of meta-annotations offered by the anno-
tator: range of values and textual parameters,
and implement automatic extraction of certain
types of meta-annotations such as: object-count
and colors. We also plan to add support analysis
for Class Activation Maps (CAMs), both from a
quantitative and qualitative point of view.

References
[1] Rocio Nahime Torres, Piero Fraternali, and

Jesus Romero. Odin: An object detec-
tion and instance segmentation diagnosis
framework. In Adrien Bartoli and Andrea
Fusiello, editors, Computer Vision – ECCV
2020 Workshops, pages 19–31, Cham, 2020.
Springer International Publishing.

[2] Rocio Nahime Torres, Federico Milani, and
Piero Fraternali. Odin: Pluggable meta-
annotations and metrics for the diagno-
sis of classification and localization. In
Giuseppe Nicosia, Varun Ojha, Emanuele
La Malfa, Gabriele La Malfa, Giorgio
Jansen, Panos M. Pardalos, Giovanni Giuf-
frida, and Renato Umeton, editors, Machine
Learning, Optimization, and Data Science,
pages 383–398, Cham, 2022. Springer Inter-
national Publishing.

[3] Niccolò Zangrando. The odin frame-
work, a tool for image classification diag-
nosis. Master’s thesis, Politecnico di Mi-
lano, ING - Scuola di Ingegneria Industriale
e dell’Informazione, 2021.

6


	Introduction
	Related Work
	Black-box error diagnosis
	Annotation tools for ML datasets

	An interactive dashboard for ODIN
	ODIN Web in action
	Conclusions

