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ABSTRACT 

 

The analysis of the response of bridges to thermal actions is a particularly relevant topic, as 

confirmed by several cases of damages suffered by this type of structures reported in literature. 

Bridge structures are subject to non-linear temperature distributions generating compatibility 

stresses in order to satisfy the plane section hypothesis under Bernoulli beam bending. Moreover 

when redundant structures are considered, the effect of thermal actions produces additional stresses 

due to the reactions of the redundant restraints. In this framework, the aim of the present work is 

to evaluate the influence of the long term creep-relaxation behaviour of concrete on these stresses. 

In order to do this, various techniques for the analysis in the viscoelastic field are studied with 

reference to this particular problem, arriving to define the exact formulation which should be 

adopted in the case in which the sinusoidal variation in time of the temperature distributions is 

considered. However, in addition to the exact formulation, also approximate solutions, more 

suitable for the engineering practice, are explored. In particular, in order to show the application 

of the procedures for the long-term analysis in the viscoelastic field to real bridge structures, two 

case studies are analysed: a multi-span box girder bridge and a simply supported bridge with 

composite deck. Moreover this second structure allows to show the extension of the procedure to 

the case of non-homogenous cross sections, in order to provide the necessary tools to analyse also 

composite reinforced concrete-steel bridges. 
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Algebraic Approach; Fundamental Theorem. 
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SOMMARIO 

 

L'analisi della risposta dei ponti alle azioni termiche è una tematica particolarmente rilevante, 

come confermato da diversi casi di gravi danni subiti da strutture di questo tipo e documentati in 

letteratura. Le strutture da ponte sono soggette a distribuzioni di temperatura non lineari che 

generano sforzi di compatibilità necessari affinché sia soddisfatta l'ipotesi di sezione piana secondo 

la teoria della trave inflessa di Bernoulli. Inoltre, quando si considerano strutture iperstatiche, 

l'effetto delle azioni termiche produce sollecitazioni aggiuntive dovute alle reazioni dei vincoli 

iperstatici. In questo quadro, lo scopo del presente lavoro è valutare l'influenza del comportamento 

a lungo termine del calcestruzzo su queste sollecitazioni. A tal fine vengono studiate diverse 

tecniche di analisi in campo viscoelastico, con riferimento a questo particolare problema, arrivando 

a definire la formulazione esatta che dovrebbe essere adottata nel caso in cui si consideri la 

variazione sinusoidale nel tempo delle distribuzioni di temperatura. Tuttavia, oltre alla 

formulazione esatta, vengono esplorate anche soluzioni approssimate, più adatte alla pratica 

ingegneristica. In particolare, al fine di mostrare l'applicazione delle procedure per l'analisi a lungo 

termine in campo viscoelastico a strutture da ponte reali, sono stati analizzati due casi studio: un 

ponte a cassone con travata continua su più campate ed un ponte in semplice appoggio con sezione 

mista acciaio-calcestruzzo. Questa seconda struttura permette inoltre di mostrare l'estensione della 

procedura descritta al caso di sezioni trasversali non omogenee, al fine di fornire gli strumenti 

necessari per analizzare anche i ponti con sezione mista acciaio-calcestruzzo. 

 

 

 

 

 

 

 

 

 

 

Parole chiave: 

Ponti in Calcestruzzo Armato e a Sezione Mista; Variazione Termica; Deformazioni Viscose; 

Equazioni Integrali; Formulazioni Algebriche; Teorema Fondamentale. 
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SOMMARIO ESTESO 

 

L'analisi della risposta dei ponti alle azioni termiche è una tematica particolarmente rilevante, 

come confermato da diversi casi di gravi danni subiti da strutture di questo tipo e documentati in 

letteratura. Le strutture da ponte sono soggette a distribuzioni di temperatura non lineari che 

generano sforzi di compatibilità necessari affinché sia soddisfatta l'ipotesi di sezione piana secondo 

la teoria della trave inflessa di Bernoulli. Inoltre, quando si considerano strutture iperstatiche, 

l'effetto delle azioni termiche produce sollecitazioni aggiuntive dovute alle reazioni dei vincoli 

iperstatici. In questo quadro, lo scopo del presente lavoro è valutare l'influenza del comportamento 

a lungo termine del calcestruzzo su queste sollecitazioni. 

Il presente lavoro di tesi si sviluppa in sette capitoli i cui contenuti sono brevemente illustrati nel 

prosieguo. 

 

Il primo capitolo è dedicato all’introduzione della problematica oggetto di studio, delineando 

inoltre le fasi secondo cui la ricerca si è sviluppata. 

 

Nel secondo capitolo viene fornita una panoramica degli aspetti necessari a definire le azioni 

termiche agenti sulle strutture, prestando particolare attenzione al caso delle strutture da ponte. La 

corretta definizione delle azioni termiche dovute al clima è infatti un presupposto necessario al 

fine di trattare correttamente le problematiche affrontate nei capitoli successivi. 

Inizialmente si sono considerati i fattori climatici che influenzano la risposta termica delle 

strutture, tra i quali particolare importanza è ricoperta dalla temperatura dell’aria, la quale presenta 

variazioni annuali e giornaliere con andamento prossimo a quello di una sinusoide. 

Si descrive quindi brevemente il problema del calcolo delle distribuzioni di temperatura nelle 

strutture. 

Viene poi presentato il metodo di soppressione delle deformazioni che permette di definire, nota 

la distribuzione di temperatura sulla sezione di un corpo prismatico a cui possono essere assimilati 

gli impalcati da ponte, le azioni geometriche agenti su di esso. Un’alternativa a tale metodo, 

utilizzato per la definizione delle deformazioni imposte su di una struttura a causa della 

temperatura, viene inoltre presentata in quanto adottata per le successive analisi. 

Infine una breve rassegna delle normative riguardanti le azioni termiche sulle strutture è illustrata. 

 

Nel terzo capitolo si presenta l’analisi in campo elastico di strutture omogenee soggette a 

distribuzioni di temperatura non lineari. Sulla base della procedura alternativa al metodo della 

soppressione delle deformazioni precedentemente descritta, si illustra dal punto di vista teorico il 
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calcolo degli sforzi di compatibilità dovuti alla non linearità della distribuzione di temperatura. 

Inoltre viene presentata la procedura per il calcolo delle sollecitazioni aggiuntive da considerarsi 

nel caso di strutture iperstatiche.  

Avendo definito compiutamente gli aspetti teorici necessari al calcolo delle sollecitazioni che 

nascono nelle strutture omogenee soggette a distribuzioni di temperatura non lineari, si analizzano 

diversi casi di applicazione considerando vari tipi di sezioni soggette a differenti distribuzioni di 

temperatura non lineari, calcolando allo stesso tempo gli sforzi aggiuntivi associati ad alcuni 

schemi strutturali iperstatici. Attraverso tali esempi di applicazione ci si propone infatti di mostrare 

l’applicabilità della procedura presentata alle più svariate situazioni, ponendo in evidenza, di volta 

in volta, le complicazioni che nascono a causa della particolare sezione considerata o della 

particolare distribuzione di temperatura applicata. 

 

Il quarto capitolo è dedicato all’analisi in campo viscoelastico di strutture omogenee soggette a 

distribuzioni di temperatura non lineari, al fine di valutare l’influenza del comportamento a lungo 

termine del calcestruzzo sugli sforzi che nascono nei ponti a causa delle azioni termiche. Gli aspetti 

teorici necessari ad effettuare questo tipo di analisi sono dettagliatamente discussi nel contesto 

della viscoelasticità lineare. 

In particolare tre procedure alternative per il calcolo degli sforzi dovuti a deformazioni imposte 

variabili nel tempo vengono presentate e specializzate alla problematica in esame delle strutture 

omogenee soggette a distribuzioni di temperatura non lineari. Tali procedure sono rappresentate 

dalla formulazione esatta, basata sulla risoluzione di un’Equazione Integrale di Volterra, 

dall’approccio algebrico ed infine dal Teorema Fondamentale.  

Risulta tuttavia importante precisare che, sulla base di quanto discusso nel capitolo 2 con 

riferimento alle azioni climatiche sulle strutture, l’analisi rigorosa delle problematiche oggetto di 

studio dovrebbe prendere in considerazione una variazione nel tempo delle deformazioni imposte 

che abbia un andamento sinusoidale. Tuttavia tale aspetto introduce diverse complicazioni 

nell’analisi in campo viscoelastico perciò, al fine di discutere compiutamente le strategia da 

adottare per poter far fronte a queste situazioni, si rimanda al capitolo 5, proponendosi di 

considerare nel quarto capitolo variazioni nel tempo della distribuzione di temperatura più 

convenzionali. 

Dal momento che la formulazione esatta porta alla scrittura di un’Equazione Integrale di Volterra, 

si è presentata in dettaglio la procedura numerica che è stata implementata par la sua risoluzione. 

Si sono presentati inoltre i risultati in campo viscoelastico in termini di sollecitazioni generate dalle 

azioni termiche a 10000 giorni ottenuti con la procedura implementata per uno degli esempi 

analizzati nel capitolo 3 con riferimento al campo elastico. In questo modo è stato quindi possibile 

valutare la riduzione degli sforzi in campo viscoelastico attraverso un confronto tra quanto 

calcolato precedentemente in campo elastico e quanto risulta dalla procedura numerica di 

integrazione dell’Equazione Integrale di Volterra.  
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Si applica inoltre, per la risoluzione dello stesso problema, il Teorema Fondamentale, il quale 

fornisce una soluzione approssimata del problema in esame. I risultati così ottenuti sono stati 

comparati con quelli derivanti dalla formulazione esatta, attraverso la risoluzione dell’Equazione 

Integrale di Volterra, permettendo quindi di evidenziare l’eccellente livello di approssimazione 

associato al Teorema Fondamentale. Tale considerazione, unitamente alla semplicità di 

applicazione di tale metodo che consiste sostanzialmente nella sovrapposizione di tre soluzioni 

elastiche opportunamente combinate, permette di identificare nel Teorema Fondamentale un 

valido strumento da applicarsi nella pratica ingegneristica. 

Infine lo stesso teorema è stato applicato al caso di distribuzioni di temperatura costanti nel tempo 

in quanto le normative nazionali ed internazionali fornisco gradienti di temperatura da adottarsi 

nell’analisi delle problematiche in esame che risultano appunto costanti nel tempo. Tale procedura 

sarà infatti adottata in seguito, nel sesto capitolo, per l’analisi di due casi studio su reali strutture 

da ponte. 

 

Nel quinto capitolo si giunge a definire la formulazione esatta per l’analisi in campo viscoelastico 

delle problematiche in esame. Come già anticipato, una trattazione rigorosa del problema del 

calcolo delle sollecitazioni che nascono nelle strutture da ponte a causa di distribuzioni di 

temperatura non lineari prevederebbe l’adozione di una variazione di temperatura con legge 

sinusoidale, la quale permette di riprodurre con sufficiente precisione la variazione stagionale delle 

azioni climatiche. In questo contesto il Teorema Fondamentale non risulta applicabile e perciò la 

formulazione esatta risulta l’unica via percorribile per la soluzione del problema. 

Al fine di approcciare correttamente la definizione delle variazioni di temperatura sinusoidali, si 

sono considerate quattro diverse funzioni di temperatura variabili nel tempo secondo legge 

sinusoidale, associate a quattro diversi scenari riguardanti la stagione dell’anno in cui avviene il 

getto dell’opera. 

Tuttavia, nonostante si sia già ampiamente discussa nel capitolo 4 la tecnica numerica per la 

risoluzione dell’Equazione Integrale di Volterra che governa il problema, si è reso necessario 

rivedere tale procedura, adattando opportunamente gli intervalli di integrazione, al fine di ottenere 

risultati affidabili anche nel caso di storie di deformazioni variabili con legge sinusoidale a causa 

della particolare variabilità temporale considerata per la distribuzione di temperatura. 

La procedura implementata così modificata è stata quindi adottata, allo scopo di fornire un esempio 

di applicazione, per risolvere il medesimo problema considerato per le analisi in campo 

viscoelastico riportate nel capitolo 4. In questo caso è stata però adottata una variazione della 

distribuzione di temperatura con andamento sinusoidale e perciò si è ritenuto più significativo 

presentare graficamente i risultati dell’evoluzione delle sollecitazioni nel tempo, piuttosto che i 

risultati in termini di distribuzione delle sollecitazioni sulla sezione trasversale. Inoltre l’analisi di 

tale problema è stata svolta considerando i diversi scenari relativi alla stagione dell’anno in cui 

avviene il getto dell’opera, mettendo in evidenza le differenze che si possono riscontrare in termini 

di sollecitazioni nei vari casi. 
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Infine il sesto capitolo è dedicato all’analisi di due casi studio riguardanti la valutazione della 

risposta a lungo termine di strutture reali da ponte soggette alle azioni termiche. In particolare si 

sono considerati il caso di un ponte a cassone con travata continua su più campate e di un ponte in 

semplice appoggio con sezione mista acciaio-calcestruzzo. 

Il primo caso studio ha permesso di mostrare l’applicabilità delle procedure discusse in presenza 

della distribuzione di temperatura non-lineare fornita dalla normativa europea mentre il secondo 

caso studio ha permesso di mostrare l’estensione della procedura, precedentemente discussa con 

riferimento al caso di sezioni omogenee, al caso di sezioni miste acciaio-calcestruzzo. 

 

Nel capitolo 7 sono riportate le conclusioni ed un breve accenno a possibili ricerche future 

nell’ambito del lavoro svolto. 
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AIM OF THE RESEARCH 

 

Structures are subject to temperature distributions which are, generally, complicated functions of 

the spatial coordinates and of time. As a consequence, due to the strong non-linearity of the 

temperature distributions, compatibility stresses are generated to satisfy the plane section 

hypothesis under Bernoulli beam bending. Moreover, in the case of redundant structures, the effect 

of thermal actions produces an additional state of stress due to the reactions of the additional 

restraints. The knowledge of the stresses caused by temperature variations is of paramount 

importance both in the design phase as well as in the verification stage. As a matter of fact, it is 

not possible to ignore thermal effects due to climatic actions in structures as they can influence not 

only the durability and functionality of the structure itself but they can also reduce the safety 

margin at collapse. Thermal actions can indirectly compromise the safety of a reinforced concrete 

structure when they lead to severe cracking, causing the corrosion of rebars and, in the case of 

beams, when the cracking is so extended over the depth of the section to compromise the shear 

resistance. 

Despite the importance and complexity of this topic, climatic thermal actions have often been 

approached in a simplistic way, as well explained by Froli [1] and testified by many references 

that can be found in literature. In particular, in 1979, Leonhardt [2] drew the attention to the 

damages caused in structures, primarily in bridges, due to an inadequate design against thermal 

actions. This topic, in fact, has particular relevance when dealing with bridges as confirmed by 

several cases of severe damages suffered by this type of structures.  

In this framework, the aim of the present work is to evaluate the influence of the long-term 

behaviour of concrete on the stresses which arise in bridges due to thermal actions. 

An introduction aimed at describing the climatic actions on structures will be provided, 

highlighting in particular their cyclic behaviour which will be a key aspect to consider when 

dealing with the analysis performed in the viscoelastic field. In addition to this, a brief overview 

of code prescriptions from various country regarding thermal actions will be also provided. 

The analysis of the compatibility stresses due to non-linear temperature distributions, as well as 

the analysis of the additional stresses which arise in presence of thermal actions in redundant 

structures, will be first addressed with reference to the elastic field for the case of homogeneous 

sections. The results obtained in this way will allow to set a reference for the computations 

performed in the viscoelastic field, in order to take into account the influence of the long-term 

behaviour of concrete. 

The applicability to this particular problem of the various techniques which can be adopted for the 

analysis in the viscoelastic field, will be then discussed. In fact, because of the peculiar cyclic 

1  
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variation in time of the thermal actions, special considerations must be done in approaching the 

problem of the long-term response of the structure. 

Finally, after having discussed in detail all the theoretical aspects characterizing the problem of 

the evaluation of the long-term response of bridges to thermal actions, two real structures will be 

analysed: a multi-span box girder bridge, characterized by a redundant static scheme, and a bridge 

with composite deck and simply supported static scheme. This will allow also to show the 

extension of the procedure, previously discussed with reference to homogeneous cross sections, to 

the case of non-homogenous cross sections, in order to provide the necessary tools to analyse also 

bridges with composite decks. 
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THERMAL ACTIONS ON STRUCTURES 

 

2.1 Introduction 

The aim of the present chapter is to provide an overview of the theoretical aspects necessary to 

define the thermal actions on structures, paying particular attention to the case of bridge structures, 

on the basis of the research done by Froli [1] and on the basis of the Bulletin n.170 of the Italian 

National Research Council (CNR) [3]. 

The correct definition of the thermal actions due to the climate, acting on bridge structures, is in 

fact a fundamental step for the work presented in the following chapters. 

 

2.2 Climatic factors influencing the thermal response of a structure 

The knowledge of the climatic factors which influence the thermal response of a structure is 

necessary in order to define with sufficient accuracy the boundary conditions for the computation 

of the induced thermal fields. 

The main climatic factors are: 

- shade air temperature; 

- wind velocity; 

- short wave radiation (solar radiation), which can be decomposed in direct and diffused 

radiation; 

- long wave radiation (thermal radiation), due to the radiation emitted by the atmosphere 

and by the environment. 

 

2.2.1 Air temperature 

The shade air temperature, for sake of simplicity called air temperature in the following, depends 

on the season, on the latitude and it is strongly influenced by local climatic conditions. Due to this 

fact it is evident the importance of making reference to in situ measurements over a long time span, 

in order to obtain reliable information. 

A very important aspect for the following developments is the fact that both the daily variation of 

the mean air temperature as well as the annual variation of it show a wave-like shape. This 

particular characteristic depends on the alternation of day and night and on the alternation of the 

seasons. In order to appreciate these trends in temperature variations Figure 1 shows an example 

of daily variations of air temperature while Figure 2 shows an example of the annual variation of 

average monthly temperatures for three Italian cities. 

2  
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Figure 1- Daily variations of shade air temperature 

Figure 2 - Annual variation of average monthly temperatures 
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2.2.2 Wind velocity 

The wind velocity deeply affects the thermal response of a structure since from it depends the 

convection heat exchange. Depending on the situation, a low or an high wind velocity can bring 

to the most unfavourable situation: for instance the highest temperatures will be reached on the 

surface of a structure exposed to the sun in a clear summer day if, contemporarily, the wind 

velocity will be low, so that the exchange of heat to the environment will be low. On the contrary, 

the lowest temperature will be reached in clear winter nights, when the air temperature becomes 

lower than the one of the surface if, contemporarily, the wind velocity is high. 

 

2.2.3 Short wave radiation (solar radiation) 

The solar radiation can be decomposed in two parts 

- direct solar radiation 𝐼 

- diffused solar radiation 𝐷 

The sum of these two components provides the so called global radiation 𝑟𝑠: 

𝑟𝑠 = 𝐼 + 𝐷                                                                                                                                                      ( 1 ) 

Both the components depend on the geographic location, on the season, on the cloudiness and on 

the opacity of the air. Moreover the direct radiation acting on a surface depends on its orientation. 

 

2.2.4 Long wave radiation (thermal radiation) 

Thermal radiation is emitted by any solid or gaseous medium due to the fact that it is endowed 

with a certain temperature. This phenomenon can be described by means of Stefan-Boltzmann 

law: 

𝑟 = 𝜖 𝐶𝑠 𝑇
4                                                                                                                                                    ( 2 ) 

where: 

- 𝑟 = thermal power radiated per unit surface [𝑊 𝑚2⁄ ] 

- 𝐶𝑠 = Stefan-Boltzmann constant  

- 𝜖 = emission coefficient of the body 

- 𝑇 = absolute temperature of the body [°𝐾] 

Furthermore Kirchoff law applies and establishes the relationship between the emission coefficient 

𝜖 and the absorption coefficient 𝑎. 

𝜖 = 𝑎                                                                                                                                                               ( 3 ) 

The structure for which it is requested the determination of the temperature distribution receives 

and absorbs thermal radiation from the surrounding environment (such as the soil and other 
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constructions) and from the atmosphere while emitting itself thermal radiations. As it is not 

possible to evaluate precisely the quantity of heat radiated by the atmosphere and by the soil 

surface because of the fact that their temperature distributions are not known, it is necessary to 

adopt some approximate evaluations starting from the shade air temperature. Since this 

temperature depends on the climatic conditions of the site, it is possible to treat, among the 

meteorological quantities, also the atmospheric and terrestrial thermal radiations. 

In particular for what concerns the atmospheric thermal radiation, the heat quantity radiated by the 

atmosphere can be expressed as follow: 

𝑟𝑎 = 𝜖𝑎 𝐶𝑠 𝑇𝑎
4                                                                                                                                                 ( 4 ) 

where: 

- 𝑟𝑎 = thermal power per unit surface of the structure radiated by the atmosphere [𝑊 𝑚2⁄ ] 

- 𝜖𝑎 = emissivity of the atmosphere (𝜖𝑎 = 0,86 for clear sky, 𝜖𝑎 = 0,94 for cloudy sky) 

- 𝑇𝑎 = shade air temperature [°𝐾] 

Analogously, for the terrestrial thermal radiation it can be written: 

𝑟𝑡 = 𝜖𝑡 𝐶𝑠 𝑇𝑎
4                                                                                                                                                  ( 5 ) 

where: 

- 𝑟𝑡 = thermal power per unit surface of the structure radiated by the soil [𝑊 𝑚2⁄ ] 

- 𝜖𝑎 = emissivity of the soil (𝜖𝑎 = 0,86 for clear sky, 𝜖𝑎 = 0,94 for cloudy sky) 

 

2.3 Thermal distribution computation 

For what concerns heat transmission, a generic structure can be considered as a solid body whose 

boundary is in contact with other bodies of various nature or with fluids. The heat exchange is due 

to conduction in those portions of the boundary in contact with other solids while it is due to 

convection and radiation in those portions in contact with liquids or air. Furthermore exothermal 

(e.g. cement hydration) or endothermal chemical processes can take place inside the mass of the 

structure. These processes, together with the superficial heat exchange, can lead to temperature 

distributions which are generally not uniform, causing therefore an internal heat flux due to 

conduction. 

Since both the superficial exchange as well as the internal chemical processes are rarely stationary, 

the temperature in the structure results, other than variable in space, variable from time to time: 

T = 𝑓(x, y, z, t)                                                                                                                                              ( 6 ) 

where: 

- 𝑇 = temperature inside the body 

- 𝑥, 𝑦, 𝑧 = coordinates of the generic point P inside the volume of the structure 

- 𝑡 = time variable 
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2.3.1 Heat transfer equations 

From the mathematical point of view, the problem of the determination of the function 𝑇 for an 

assigned structure is described inside the body by the Fourier heat conduction equation: 

∂2𝜆𝑥𝑇

∂x2
+
∂2𝜆𝑦𝑇

∂𝑦2
+
∂2𝜆𝑧𝑇

∂z2
+ 𝑞̇ = 𝜌𝐶𝑝

∂T

∂t
                                                                                                         ( 7 ) 

While the equation ( 7 ) holds for every point inside the body, on the boundary, for each element 

of surface, the principle of energy conservation is applied: 

𝜕𝜆𝑥𝑇𝑠

𝜕𝑥
𝑛𝑥 +

𝜕𝜆𝑦𝑇𝑠

𝜕𝑦
𝑛𝑦 +

𝜕𝜆𝑧𝑇𝑠

𝜕𝑧
𝑛𝑧 + 𝑞 = 0                                                                                                     ( 8 ) 

In the previous equations the various symbols are: 

- 𝑇𝑠 = superficial temperature [°𝐶] 

- 𝜆𝑥, 𝜆𝑦, 𝜆𝑧 = thermal transfer coefficients along x, y, z 

- 𝑞̇ = thermal power produced per unit volume of the body [𝑊 𝑚3⁄ ] 

- 𝜌 = material density [𝑘𝑔 𝑚3⁄ ] 

- 𝐶𝑝 = specific heat of the material [𝑊ℎ 𝑘𝑔⁄ °𝐶] 

- 𝑛𝑥 , 𝑛𝑦, 𝑛𝑧 = direction cosines of the normal to the surface in point P, oriented outward 

- 𝑞 = thermal power exchanged per unit surface of the boundary [𝑊 𝑚2⁄ ] 

 

The simplifying hypothesis of thermally homogeneous and isotropic body is usually accepted, 

allowing to write equations ( 7 ) and ( 8 ) in the following form where the conduction coefficients 

are reduced to only one coefficient. 

∂2𝑇

∂x2
+

∂2𝑇

∂𝑦2
+
∂2𝑇

∂z2
+ 𝑞̇ =

1

𝛽

∂T

∂t
                                                                                                                         ( 9 ) 

𝜆 [
𝜕𝑇𝑠

𝜕𝑥
𝑛𝑥 +

𝜕𝑇𝑠

𝜕𝑦
𝑛𝑦 +

𝜕𝑇𝑠

𝜕𝑧
𝑛𝑧] + 𝑞 = 0                                                                                                       ( 10 ) 

Where: 

- 𝛽 =
𝜆

𝐶𝑝𝜌
  is the thermal diffusivity [𝑚2 ℎ⁄ ] 

 

It is important to underline that equation ( 9 ) must be applied to the whole volume of the body and 

equation ( 10 ) must be applied to the external surface and to the surface of eventual internal holes.  

In order to obtain a good prediction of the thermal fields induced in a structure, it is necessary to 

model in an accurate way the superficial heat transfers, generally indicated with the symbol 𝑞 in 

the previous equations. In the following paragraph all the contributions of superficial heat transfer 

will be therefore analysed in detail. 
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2.3.2 Boundary conditions 

For what concerns the convection heat exchanges in a structure, they are mainly those between the 

surface and the air. The heat quantity exchanged through this mechanism is essentially influenced 

by the air velocity and by the difference in temperature between the air and the surface of the 

structure. In particular the convection mechanism is classified as natural convection or forced 

convection, depending on the fact that the air movement around the body is caused by the 

difference in temperature of the air in proximity of the interface or it is due to external causes such 

as wind. 

The convection heat exchange can be described by the Newton’s law of cooling: 

𝑞𝑐 = 𝛼(𝑇𝑠 − 𝑇𝑎)                                                                                                                                          ( 11 ) 

where: 

- 𝑞𝑐 = thermal power exchanged by convection per unit surface [𝑊 𝑚2⁄ ] 

- 𝑇𝑠 = surface temperature [°𝐶] 

- 𝑇𝑎 = surrounding air temperature [°𝐶] 

- 𝛼 = adduction coefficient of the surface [𝑊 𝑚2⁄ °𝐶] 

It is worth noting that the adduction coefficient takes into account the effect of the velocity of the 

air around the surface of the body on the convection heat exchange between the air and the surface 

itself. Rigorously 𝛼 is a function and not a constant value, depending on various factors such as: 

surface orientation, velocity, density and viscosity of the air, difference in temperature between 

the solid surface and the air. However, in the framework of the computation of the temperature 

distribution for structural analysis, various authors agree in considering sufficiently accurate an 

expression of 𝛼 depending only on the air velocity, for which a constant value between 0 and 

5 𝑚/𝑠 is adopted. In particular, in the CEB-FIP Bulletin [4], it is proposed the following relation: 

𝛼 = 5.6 + 4.0 𝑉      [𝑊 𝑚2⁄ °𝐶]                                                                                                               ( 12 ) 

with: 𝑉 ≤ 5 𝑚/𝑠 

In the case of velocities greater than 5 𝑚/𝑠, the same Bulletin suggests the following expression: 

𝛼 = 7.15 𝑉0.78      [𝑊 𝑚2⁄ °𝐶]                                                                                                                 ( 13 ) 

 

However the major part of the heat absorbed by a structure is the one due to radiation phenomena 

among which the solar radiation is the dominant one. In this framework it is possible to make the 

hypothesis that the heat absorption due to radiation takes place just on the surface of the body and 

it is considered to be directly proportional to the radiating power acting on the surface. 

- Solar radiation (short wave radiation) 

 

If 𝑟𝑠 is the global radiating solar power, sum of the direct and diffused radiating power, the 

absorbed thermal power per unit of surface is expressed by: 
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𝑞𝑟𝑠 = 𝑎 ∙ 𝑟𝑠                                                                                                                                      ( 14 ) 

where 𝑎 is the absorption coefficient of the surface, depending on the material and on the 

colour of the surface itself. In the case of concrete, the coefficient 𝑎 is assumed to be equal 

to 0,8. 

 

- Thermal radiation (long wave radiation) 

In an analogous way to what happens for the solar radiation , the thermal power absorbed 

by the structure because of thermal radiations, respectively atmospheric and terrestrial, will 

be given by: 

𝑞𝑟𝑎 = 𝑎 ∙ 𝑟𝑎                                                                                                                                     ( 15 ) 

𝑞𝑟𝑡 = 𝑎 ∙ 𝑟𝑡                                                                                                                                      ( 16 ) 

where  𝑟𝑎 and 𝑟𝑡 are the atmospheric and the terrestrial radiating power. 

 

- Thermal radiation emitted by the body 

Finally the surface of the structure itself radiates heat towards the surrounding environment 

and the thermal power emitted by the surface, expressed in [𝑊 𝑚2⁄ ], is given by: 

𝑞𝑟𝑒 = −𝜖𝑠 𝐶𝑆 𝑇𝑠
4                                                                                                                            ( 17 ) 

where 𝜖𝑠 is the emission coefficient of the surface of the structure (𝜖 = 𝑎). 

 

In conclusion, the total thermal power exchanged on an elementary portion of the external surface, 

in the most general case, is given by: 

𝑞 = 𝑞𝑐 + 𝑞𝑟𝑠 + 𝑞𝑟𝑎 + 𝑞𝑟𝑡 + 𝑞𝑟𝑒 = 𝛼(𝑇𝑠 − 𝑇𝑎) − 𝑎(𝐼 + 𝐷 + 𝜖𝑎𝐶𝑠𝑇𝑎
4 + 𝜖𝑡𝐶𝑠𝑇𝑎

4 − 𝐶𝑠𝑇𝑠
4)         ( 18 ) 

in which the positive sign is related to the case of thermal power going out of the body. 

From the practical point of view it is convenient to express equation ( 18 ) by means of a purely 

convective thermal exchange between the surface of the body, characterized by a temperature 𝑇𝑠, 
and the air, for which it is considered a fictitious temperature 𝑇∗. 

𝑞 = 𝛼(𝑇𝑠 − 𝑇
∗) = 𝛼(𝑇𝑠 − 𝑇𝑎) − 𝑎(𝐼 + 𝐷 + 𝜖𝑎𝐶𝑠𝑇𝑎

4 + 𝜖𝑡𝐶𝑠𝑇𝑎
4 − 𝐶𝑠𝑇𝑠

4)                                       ( 19 ) 

from which derives: 

𝑇∗ = 𝑇𝑎 +
𝑎

𝛼
(𝐼 + 𝐷 + 𝜖𝑎𝐶𝑠𝑇𝑎

4 + 𝜖𝑡𝐶𝑠𝑇𝑎
4 − 𝐶𝑠𝑇𝑠

4)                                                                               ( 20 ) 
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The previous equation represents a boundary condition in which the temperature (even though 

fictitious) of the external fluid and a law describing the thermal power exchange between fluid and 

the surface of the structure are assigned. 

The temperature 𝑇∗is called fictitious sun-air temperature and represents the temperature at which 

the air should be in order that the convective thermal exchange between the external surface and 

the air itself results the same as the effective total thermal exchange caused by convection and by 

the various radiation phenomena. For sake of example Figure 3 shows shade air temperature and 

the fictitious sun-air temperature in the average day of August, in the Italian city of Pisa, for the 

case of horizontal surfaces.  

 

Furthermore it is possible to neglect the fourth order terms which are not very significant, leading 

to the following expression for equation ( 19 ): 

𝑞 = 𝛼(𝑇𝑠 − 𝑇
∗) = 𝛼(𝑇𝑠 − 𝑇𝑎) − 𝑎(𝐼 + 𝐷)                                                                                           ( 21 ) 

Remembering that 𝐼 and 𝐷 depend on 𝑡, it is therefore possible to write: 

𝑇∗(𝑡) = 𝑇𝑎(𝑡) +
𝑎

𝛼
(𝐼 + 𝐷)                                                                                                                       ( 22 ) 

The daily variation of the air temperature can be expressed by means of Fourier series 

developments truncated at the first harmonic. The approximation, obtained proceeding in this way, 

is quite good, as it can be appreciated from Figure 4. 

𝑇𝑎(𝑡) =  𝑇𝑚 + ∆𝑇 ∙ 𝑐𝑜𝑠 [
2𝜋∙(𝑡+𝜔)

𝑃
]                                                                                                           ( 23 ) 

Figure 3 – Air temperature and fictitious sun-air temperature example 
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where 𝑇𝑚 and ∆𝑇 are respectively the mean value and the semi-difference between the maximum 

and the minimum measured values.  

 

2.3.3 Numerical integration of the Fourier Equation 

The solution of the Fourier Equation over a domain characterized by a complex shape, having 

boundary conditions which are in general variable in time and space, such as in the case of bridge 

structures, can be performed only by means of numerical integration. Various researchers have 

studied this problem, always considering the hypothesis of null heat flux in the longitudinal 

direction of the bridge. This hypothesis has been confirmed to be accurate by the results of an 

analysis carried out by Mirambell and Aguado [5].  

The technique which can be adopted for this kind of analysis is the Finite Element Method; in fact, 

analogously to what happens in the field of continuum mechanics, also in the case of heat transfer 

problems, the Finite Element Method is widely used. In particular, this technique has been adopted 

in the researches carried out in New Zealand (Lanigan [6]) and in Canada (Elbadry, Ghali [7], [8]) 

in which procedures for plane heat transfer problems have been developed in order to compute the 

temperature distributions due to climatic actions in bridges. 

Under the hypothesis that the bridge analysed is an isotropic and homogeneous prismatic body 

with a longitudinal axis z, having a temperature distribution which is constant along its axis, 

without any internal source of heat, the Fourier heat transfer equation is written as follow: 

∇2𝑇 =
1

𝛽

𝜕𝑇

𝜕𝑡
                                                                                                                                                     ( 24 ) 

Figure 4 – Approximation of the daily variation of air temperature 
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where: 

- 𝛽 = 
𝜆

𝐶𝑣𝜌
 is the thermal diffusivity [𝑚2 ℎ⁄ ] 

- 𝜌 = mass density [𝑘𝑔 𝑚3⁄ ] 

- 𝐶𝑣 = specific heat coefficient [𝑊ℎ 𝑘𝑔⁄ °𝐶] 
- 𝜆 =  thermal transfer coefficient [𝑊 𝑚⁄ °𝐶] 

 

The previous equation has to be associated to the boundary conditions and the simplifying 

considerations, presented in the previous paragraph with reference to the fictitious temperature, 

are also taken into account.  

The solution of this problem by means of the Finite Element Method can be described by making 

a parallelism with the same method used in the field of structural analysis. In both cases, in fact, 

the domain is subdivided in various elements of opportune dimensions and shapes and the 

following relations between causes and effects are defined respectively for the structural analysis 

problem and for the thermal problem: 

𝐹 = 𝐾 𝛿                                                                                                                                                          ( 25 ) 

𝜑 = 𝐻 𝑇                                                                                                                                                         ( 26 ) 

The first equation, referred to the structural analysis problem, expresses the relation between forces 

(𝐹) and displacements (𝛿) by means of the stiffness matrix (𝐾) while the second equation, referred 

to the thermal problem, expresses the relation between thermal fluxes (𝜑) and temperatures (𝑇) by 

means of a thermal transfer matrix (𝐻).  

Thanks to this method it is therefore possible to obtain the temperature values in all the nodes of 

the mesh used to discretise the domain. The temperature 𝑇 in any point of an element of the mesh 

will be then obtained as a function of the temperature in the nodes of that element by means of 

shape functions. 

 

2.4 Thermal actions in prismatic structures 

2.4.1 Deformations suppression method 

The temperature acting on a structure, which can be defined according to the theoretical concepts 

presented in the previous paragraphs, is taken into account in structural analysis by means of  

imposed deformations. In order to define these geometrical actions on structures, caused by 

temperature, the deformation suppression method is adopted. 

Consider a prismatic body, indefinitely long, in which the temperature is independent on time and 

on the z coordinate, that means having a steady heat flow parallel to the x-y plane. According to 
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these hypothesis the prismatic body under consideration is in a state of plain strain and it can be 

demonstrated, as done by Timoshenko [9], that the only stress different from zero is 𝜎𝑧. 

In the case of a long prismatic body of finite length, an approximate solution can be found by 

making the hypothesis that, at a sufficient distance from the ends, sections remain plane. To this 

latter model several real structures can be assimilated such as, in particular, bridge girders for 

which, as already stated, the hypothesis of independence of the temperature from the z coordinate 

is well accepted. The hypothesis of steady state is not that realistic, however, since temperature in 

massive structures varies quite slowly, it can be considered approximately constant in proximity 

of the time instants in which it assumes extreme values. 

 

Having defined 𝐴 as the area of the section of the prismatic body, 𝐸 the Young modulus of the 

material and 𝛼 its coefficient of thermal expansion, it is considered a distribution of temperature 

𝑇(𝑥, 𝑦) acting instantaneously over 𝐴.  

If the axial fibres would be free to expand, their thermal deformation would be: 

𝜀𝑧
 (𝑇)

= 𝛼𝑇(𝑥, 𝑦)                                                                                                                                           ( 27 ) 

According to the deformation suppression method (Timoshenko [9]), in order to eliminate these 

thermal deformations it is sufficient to apply to each axial fiber a normal stress equal to: 

𝜎𝑧
 (𝑇)

= −𝛼𝐸𝑇(𝑥, 𝑦)                                                                                                                                    ( 28 ) 

Figure 5 - Long prismatic body of finite length 
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To this stresses distribution correspond an axial force 𝑁(𝑇), a bending moment 𝑀𝑥
(𝑇)

 around the x 

axis and a bending moment 𝑀𝑦
(𝑇)

 around the y axis: 

𝑁(𝑇) = ∫ 𝜎𝑧
 (𝑇)
𝑑𝐴

𝐴
                                                                                                                                        ( 29 ) 

𝑀𝑥
(𝑇) = ∫ 𝜎𝑧

 (𝑇)
𝑦𝑑𝐴

𝐴
                                                                                                                                     ( 30 ) 

𝑀𝑦
(𝑇) = ∫ 𝜎𝑧

 (𝑇)
𝑥𝑑𝐴

𝐴
                                                                                                                                     ( 31 ) 

However in reality the ends of the prismatic body are free from forces. It is therefore possible to 

imagine to apply to the ends an axial force 𝑁(𝑆) and two bending moments 𝑀𝑥
(𝑆)

, 𝑀𝑦
(𝑆) so that: 

𝑁(𝑇) +𝑁(𝑆) = 0                                                                                                                                          ( 32 ) 

𝑀𝑥
(𝑇) +𝑀𝑥

(𝑆) = 0                                                                                                                                         ( 33 ) 

𝑀𝑦
(𝑇) +𝑀𝑦

(𝑆) = 0                                                                                                                                         ( 34 ) 

Due to the Saint-Venant principle, at a sufficient distance from the ends, 𝑁(𝑆), 𝑀𝑥
(𝑆)

, 𝑀𝑦
(𝑆)

 will 

produce some linear deformations: 

𝜀𝑧
(𝑆) = 𝜀0 + (

𝑑𝜙𝑥

𝑑𝑧
) 𝑦 + (

𝑑𝜙𝑦

𝑑𝑧
) 𝑥                                                                                                                ( 35 ) 

to which correspond the following stresses: 

𝜎𝑧
(𝑆) = 𝐸 [𝜀0 + (

𝑑𝜙𝑥

𝑑𝑧
) 𝑦 + (

𝑑𝜙𝑦

𝑑𝑧
) 𝑥]                                                                                                        ( 36 ) 

Equation ( 32 ) can be therefore written as follow: 

∫ (𝜎𝑧
 (𝑇)

+ 𝜎𝑧
 (𝑆)
)

𝐴
𝑑𝐴 = 0                                                                                                                            ( 37 ) 

and substituting the expressions ( 28 ) and ( 36 ) of the normal stresses: 

𝐸 ∫ {−𝛼𝑇(𝑥, 𝑦) + [𝜀0 + (
𝑑𝜙𝑥

𝑑𝑧
) 𝑦 + (

𝑑𝜙𝑦

𝑑𝑧
) 𝑥]}

𝐴
𝑑𝐴 = 0                                                                      ( 38 ) 

Since x and y are centroidal axes, it results: 

∫ [(
𝑑𝜙𝑥

𝑑𝑧
)𝑦 + (

𝑑𝜙𝑦

𝑑𝑧
) 𝑥]

𝐴
𝑑𝐴 = 0                                                                                                                ( 39 ) 

Therefore it is finally obtained that: 

𝜀0 =
𝛼

𝐴
∫ 𝑇(𝑥, 𝑦)
𝐴

𝑑𝐴                                                                                                                                   ( 40 ) 

which is the axial deformation of the fiber at the level of the centroid due to temperature.  
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Proceeding in an analogous way, starting from equation ( 33 ): 

∫ (𝜎𝑧
 (𝑇)
𝑦 + 𝜎𝑧

 (𝑆)
𝑦)

𝐴
𝑑𝐴 = 0                                                                                                                       ( 41 ) 

𝐸 ∫ {−𝛼𝑇(𝑥, 𝑦) ∙ 𝑦 + [𝜀0 + (
𝑑𝜙𝑥

𝑑𝑧
) 𝑦 + (

𝑑𝜙𝑦

𝑑𝑧
) 𝑥] ∙ 𝑦}

𝐴
𝑑𝐴 = 0                                                          ( 42 ) 

𝐸 ∫ {−𝛼𝑇(𝑥, 𝑦) ∙ 𝑦 + 𝜀0𝑦 + (
𝑑𝜙𝑥

𝑑𝑧
) 𝑦2 + (

𝑑𝜙𝑦

𝑑𝑧
) 𝑥𝑦}

𝐴
𝑑𝐴 = 0                                                            ( 43 ) 

Since x and y are centroidal axes: 

∫ 𝜀0𝑦𝐴
𝑑𝐴 = 0                                                                                                                                              ( 44 ) 

and having chosen as x and y the principal reference axes: 

∫ (
𝑑𝜙𝑦

𝑑𝑧
) 𝑥𝑦

𝐴
𝑑𝐴 = 0                                                                                                                                    ( 45 ) 

Therefore it is finally obtained that: 

𝜒𝑥 =
𝑑𝜙𝑥

𝑑𝑧
=

𝛼

𝐼𝑥
 ∫ 𝑇(𝑥, 𝑦) ∙ 𝑦𝑑𝐴
𝐴

                                                                                                               ( 46 ) 

which is the thermal curvature in the plane z-y, where 𝐼𝑥 is the moment of inertia of the section 

with respect to x axis. 

Starting instead from equation ( 34 ) it is obtained: 

𝜒𝑦 =
𝑑𝜙𝑦

𝑑𝑧
=

𝛼

𝐼𝑦
 ∫ 𝑇(𝑥, 𝑦) ∙ 𝑥𝑑𝐴
𝐴

                                                                                                               ( 47 ) 

which is the thermal curvature in the plane z-x, where 𝐼𝑦 is the moment of inertia of the section 

with respect to y axis. 

Moreover it is possible to define the following quantities: 

𝑇𝑚 =
1

𝐴
∫ 𝑇(𝑥, 𝑦)𝑑𝐴
𝐴

                                                                                                                                   ( 48 ) 

𝐷𝑇𝑦 =
1

𝐼𝑥
∫ 𝑇(𝑥, 𝑦) ∙ 𝑦𝑑𝐴
𝐴

                                                                                                                          ( 49 ) 

𝐷𝑇𝑥 =
1

𝐼𝑦
∫ 𝑇(𝑥, 𝑦) ∙ 𝑥𝑑𝐴
𝐴

                                                                                                                          ( 50 ) 

which are respectively the average effective temperature of the body [°𝐶], the global effective 

linear thermal gradient of the body along y direction [° 𝐶 𝑚⁄ ] and the global effective linear 

thermal gradient of the body along x direction [° 𝐶 𝑚⁄ ]. The first one is responsible of the axial 

deformation of the fiber at the level of the centroid while the second one and the third one are 

responsible of the thermal curvatures in z-y and z-x planes. These quantities will be recalled in 

paragraph 2.4.4 where a brief overview of code provisions from different countries in the world 

will be provided. However in the following developments the gradient 𝐷𝑇𝑥 will not be taken into 

account since, as arise from the research done by Froli on a real bridge structure in Italy carried 
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out with an extensive thermal monitoring campaign (see [1] – Chapter IV), it results of one order 

of magnitude lower than the gradient 𝐷𝑇𝑦. 

 

2.4.2 Alternative procedure to the deformations suppression method 

In addition to the method for the definition of the imposed deformations on a structure due to 

temperature, presented in paragraph 2.4.1 and adopted by Froli [1], it is also possible to follow a 

different approach which is the one applied for the analysis presented in the following chapters. 

Consider a generic cross section for which the centroid corresponds to the origin of the principal 

reference system. The temperature distribution 𝑇(𝑥, 𝑦, 𝑡) acting over the section is in general, as 

already discussed, a complicated function of the spatial coordinates and of time. 

 

The total deformation under the hypothesis that the section remains plane can be written as follow: 

𝜀 = 𝜌𝑇𝜓                                                                                                                                                        ( 51 ) 

with: 

𝜌 = [
1
𝑦
𝑥
] 

𝜓 = [

𝜀0
𝜒𝑥
𝜒𝑦
] 

The deformation generating stresses is given by the difference between the total deformation 𝜀 and 

the thermal deformation 𝛼𝑇(𝑥, 𝑦, 𝑡): 

𝜀𝜎 = 𝜌𝑇𝜓 − 𝛼𝑇(𝑥, 𝑦, 𝑡)                                                                                                                             ( 52 ) 

 

 

Figure 6 – Generic cross section 
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The associated stresses in the elastic field, positive if in tension, are given by: 

𝜎 = 𝐸 [𝜌𝑇𝜓 − 𝛼𝑇(𝑥, 𝑦, 𝑡)]                                                                                                                       ( 53 ) 

Equation ( 53 ) represents a system of self-equilibrated stresses to which correspond null axial force 

and null bending moment. It is therefore imposed the equilibrium: 

∫ 𝜌𝜎𝑑𝐴
𝐴

= 0                                                                                                                                                 ( 54 ) 

which, substituting expression ( 53 ), is written as follow: 

𝐸 ∫ 𝜌
𝐴

𝜌𝑇𝑑𝐴 ∙ 𝜓 − 𝐸 ∫ 𝛼𝑇(𝑥, 𝑦, 𝑡) ∙ 𝜌
𝐴

𝑑𝐴 = 0                                                                                      ( 55 ) 

where: 

-  𝜌 𝜌𝑇 = [
1
𝑦
𝑥
] [1 𝑦 𝑥] = [

1 𝑦 𝑥

𝑦 𝑦2 𝑥𝑦

𝑥 𝑥𝑦 𝑥2
]                                                                          ( 56 ) 

and therefore, it follows: 

𝐸 ∫ 𝜌
𝐴

𝜌𝑇𝑑𝐴 = 𝐸 [

1 0 0
0 𝐼𝑥 0
0 0 𝐼𝑦

] = 𝐵                                                                                     ( 57 )      

which is the stiffness matrix, where 𝐴 is the area of the section while 𝐼𝑥 and 𝐼𝑦 are the 

moments of inertia of the section. 

 

- 𝐸 ∫ 𝛼𝑇(𝑥, 𝑦, 𝑡) ∙ 𝜌
𝐴

𝑑𝐴 = [

𝐸𝛼 ∫ 𝑇(𝑥, 𝑦, 𝑡)𝑑𝐴
𝐴

𝐸𝛼 ∫ 𝑇(𝑥, 𝑦, 𝑡) ∙ 𝑦𝑑𝐴
𝐴

𝐸𝛼 ∫ 𝑇(𝑥, 𝑦, 𝑡) ∙ 𝑥𝑑𝐴
𝐴

] = 𝑆(𝑡)                                             ( 58 )      

which is a vector function of time depending on the temperature acting on the structure.  

  

On the basis of equations ( 57 ) and ( 58 ), equation ( 55 ) can be written as: 

𝐵 𝜓 = 𝑆(𝑡)                                                                                                                                                   ( 59 ) 

which represents a set of three decoupled equation, as the stiffness matrix 𝐵 is a diagonal matrix, 

which can be solved in order to get 𝜓. 

𝜓 = 𝐵−1 𝑆(𝑡)                                                                                                                                               ( 60 ) 
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The three components of the vector 𝜓 found according to this procedure are: 

𝜓1 = 𝜀0 =
𝛼

𝐴
∫ 𝑇(𝑥, 𝑦, 𝑡)𝑑𝐴
𝐴

                                                                                                                     ( 61 ) 

𝜓2 = 𝜒𝑥 =
𝛼

𝐼𝑥
 ∫ 𝑇(𝑥, 𝑦, 𝑡) ∙ 𝑦𝑑𝐴
𝐴

                                                                                                             ( 62 ) 

𝜓3 = 𝜒𝑦 =
𝛼

𝐼𝑦
 ∫ 𝑇(𝑥, 𝑦, 𝑡) ∙ 𝑥𝑑𝐴
𝐴

                                                                                                             ( 63 ) 

which are respectively the axial deformation of the fiber at the level of the centroid due to 

temperature, the thermal curvature in the plane z-y and the thermal curvature in the plane z-x,  

exactly equal to those found with the deformations suppression method. 

 

2.4.3 General definition of thermal action 

An important observation about the definition of thermal action is the fact that, known the 

temperature distribution acting in a certain instant 𝑡 and consequently computed the quantities 

defined by the expressions ( 48 ), ( 49 ) and ( 50 ), in general, they don’t yet represent the thermal 

actions of interest for structural analysis. 

In fact, at the generic instant 𝑡, the thermal effect of interest will not be dependent on the actual 

thermal distribution 𝑇(𝑥, 𝑦, 𝑡) but it will be dependent on the difference ∆𝑇(𝑥, 𝑦, 𝑡) between the 

thermal distribution at time 𝑡 and the one at time 𝑡0, that is the time instant to which correspond 

the initial time of action for the considered thermal effect. 

∆𝑇(𝑥, 𝑦, 𝑡) = 𝑇(𝑥, 𝑦, 𝑡) − 𝑇(𝑥, 𝑦, 𝑡0)                                                                                                     ( 64 ) 

The expressions ( 48 ), ( 49 ) and ( 50 ) will be therefore the ones referred to ∆𝑇(𝑥, 𝑦, 𝑡) instead of 

𝑇(𝑥, 𝑦, 𝑡): 

𝑇𝑚 =
1

𝐴
∫ ∆𝑇(𝑥, 𝑦, 𝑡)𝑑𝐴
𝐴

                                                                                                                            ( 65 ) 

𝐷𝑇𝑦 =
1

𝐼𝑥
∫ ∆𝑇(𝑥, 𝑦, 𝑡) ∙ 𝑦𝑑𝐴
𝐴

                                                                                                                    ( 66 ) 

𝐷𝑇𝑥 =
1

𝐼𝑦
∫ ∆𝑇(𝑥, 𝑦, 𝑡) ∙ 𝑥𝑑𝐴
𝐴

                                                                                                                    ( 67 ) 

The same concept applies to the computation of the axial deformation of the fiber at the level of 

the centroid due to temperature and to the computation of the thermal curvatures. 

For what concern the selection of the correct instant 𝑡0, it depends on the acquisition of the 

restraints by the structure during its construction. For instance when considering a bridge with a 

simply supported girder, the initial time 𝑡0 to be considered for the computation of the axial thermal 

displacements, in order to correctly design the expansion joints and the bearing supports, is the 

time instant in which the girder is placed on its supports. If instead a continuous girder on multiple 

supports is considered and the aim is to compute the stresses due to temperature, the initial time 
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𝑡0 will correspond to the time in which the structure reaches the final condition of redundancy of 

the restraints. 

 

2.4.4 Classification of thermal actions 

According to Froli [1], thermal actions can be classified with reference both to their spatial and to 

their time distribution.  

For what concerns the spatial classification, thermal actions on bridge girders can be distinguished 

in: 

- Global actions (or longitudinal) 

They are given by the expressions ( 65 ), ( 66 ) and ( 67 ) on the basis of the difference 

of the thermal field at a generic instant 𝑡 and at the initial time 𝑡0. These actions, due 

to the non-linearity of the thermal field, are responsible of the arising of compatibility 

stresses as well as of an additional state of stress in the case of redundant structures, as 

it will be described in detail in chapter 3. Moreover in bridge structures these stresses 

can reach the same order of magnitude of those caused by the traffic loads (Mirambell, 

Aguado [10]) and will be the ones studied in the following developments. 

These actions, in fact, have greater importance with respect to the local actions, as 

testified by the fact that in the Eurocode 1 [11] the provided prescriptions on thermal 

actions in bridges are mainly referred to the global actions. 

 

- Local actions (or transversal) 

They can arise in the case of box girder bridges, due to the non-uniform distribution of 

temperature on the box walls. 

 

For what concerns the temporal classification, thermal actions can be distinguished in: 

- Long duration actions 

Because of the alternation of seasons during the year with the consequent variations in 

the climatic conditions, it is possible to observe an average variation, characterized by 

a slow evolution in time, of the components 𝑇𝑚, 𝐷𝑇𝑦, 𝐷𝑇𝑥 which are therefore classified 

as long duration components of the thermal actions. The average annual variation of 

𝐷𝑇𝑦, 𝐷𝑇𝑥 is generally small while the average annual variation of 𝑇𝑚 is much more 

significative. 
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- Short duration actions 

The global actions 𝑇𝑚, 𝐷𝑇𝑦, 𝐷𝑇𝑥, due to the alternation of day and night, are also 

characterized by daily oscillations which are therefore classified as short duration 

components of the thermal action. 

 

2.5 Code provisions 

The aim of the present paragraph is to provide a brief overview of the code provisions regarding 

thermal actions in bridges from different countries in the world; however, for a more detailed 

analysis of this topic, it possible to make reference to [1]. 

The first systematic research program about the thermal response of bridges aimed at producing 

code provisions is the one by Mary Emerson, which is based on the continuous and prolonged 

measurement of thermal fields in different kinds of bridges, in various locations in Great Britain. 

The fundamental results obtained by Emerson [12], [13], related to the study of the global actions 

in bridge girders, have been traduced in code prescriptions in the British standards BS5400 [14]. 

The characteristic values of the component 𝑇𝑚 are determined by Emerson finding, in an empirical 

way, on the basis of the great number of observations collected, a functional dependence between 

the component 𝑇𝑚 itself and the extreme values of the shade air temperature [15].  

This functional dependence can be represented by means of two groups of three curves, as shown 

in Figure 7. The three curves are referred respectively to steel decks, composite decks and concrete 

decks, independently from the shape and dimension of the cross section. Once the dependence 

between the shade air temperature and the average effective temperature 𝑇𝑚 is defined, it is 

sufficient to consider the isothermal maps of the extreme values of the shade air temperature at the 

level of the sea, associated with a return period of 50 years, to obtain the correspondent extreme 

values of 𝑇𝑚 with the same return period, in a certain location. Moreover, in order to consider 

different return periods, it is possible to adopt corrective coefficients and the altitude of the site is 

taken into account by means of assigned altimetric gradients of the air temperature.  

The simplicity of this method, together with the fact that it is on the safe side since it considers the 

same sensitivity to the thermal variations for massive bridge structures as well as for light bridge 

structures, has led to the adoption of it by the Project Team in charge of the redaction of the section 

related to thermal actions of Eurocode 1. 
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For what concerns the global effective thermal gradient, the Project Team has instead introduced 

two different approaches which the designer can adopt depending on the importance of the bridge 

and the accuracy required for its thermal analysis. The first approach, which is the simplified one, 

is based on the method adopted by the DIN regulations in Germany while the second approach, 

more complex and accurate, is based on the method of the British regulations. 

 

- Simplified approach 

The bridges are subdivided in three categories: steel decks, composite decks, concrete 

decks. For each category the characteristic values of 𝐷𝑇𝑦 are given as temperature 

differences between the extrados and the intrados, independently from the type of 

Figure 7 – Correlation between shade air temperature and the average effective 

temperature of bridges according to EC1 (based on the results by M.Emerson) 
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section and from its depth. The non-linearity of the thermal fields is disregarded in this 

approach and the influence of the surfacing (both for road and for railway bridges) is 

taken into account by a corrective coefficient which depends on the thickness of the 

surfacing itself. 

 

- Complex approach 

The bridges are subdivided in the three categories adopted also for the simplified 

approach. For each category the characteristic values of the temperature profiles which 

depart from the uniformity are given on the basis of the type of section and on its depth. 

 

As already mentioned temperature distributions are complicated functions of the spatial 

coordinates and of time. In particular the temperature profiles result to be strongly non-linear over 

the depth of the cross section and the extension of the zone in which the profile is non-linear, under 

the same climatic condition, results to be almost equal for each section category, independently 

from its depth [16]. This aspect is well addressed in some codes from different countries such as 

the British regulations [14], the New Zealand regulations [17] and the Australian regulations [18]. 

These codes, in fact, provide in a schematic way the profiles, over the depth of the cross section, 

of the extreme differences of the thermal field with respect to uniformity (under the implicit 

assumption that the initial thermal field, even though unknown, is uniform). A schematic 

representation of the profiles adopted by these codes are reported in the following figures where h 

is the depth of the cross section. 

 

 

Figure 8 – Heating temperature profile (left) and cooling temperature profile (right) adopted by the British code 
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Figure 9 – Temperature profiles adopted by the New Zealand code (above) and by the Australian code (below) 



44 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 
 

  

ELASTIC FIELD 

 

3.1 Introduction 

The analysis in the elastic field of homogeneous structures subject to non-linear temperature 

distributions over the depth of the cross section is presented in this chapter. Depending on the type 

of structure, this problem may be analysed at two different levels. In fact, due to the non-linearity 

of the thermal field over the depth of the cross section, compatibility stresses will always arise at 

the sectional level; however, at the structural level, in presence of redundant static schemes, an 

additional state of stress is generated by the thermal actions. 

The theoretical concepts presented in paragraphs 3.2 and  3.3 will be applied in paragraph 3.4 in 

order to solve some significative examples. The results obtained in this way will be then used as a 

reference to be compared with the ones obtained for the same problems in the viscoelastic field in 

chapters 4 and  5, in order to determine the influence of the long-term behaviour of concrete. 

 

3.2 Compatibility stresses due to non-linear temperature variations 

Consider a generic homogeneous cross section, subject to a non-linear temperature distribution 

along its depth 𝑦, for which the plane section hypothesis is assumed. In order to satisfy this 

assumption, due to the non-linearity of the thermal field, compatibility stresses are generated and 

can be computed according to equation (53) presented in paragraph 2.4.2:  

𝜎𝑒(𝑦) = 𝐸0 [𝜌
𝑇𝜓𝑒 − 𝛼𝑇(𝑦, 𝑡0)]                                                                                                              ( 68 ) 

Since the elastic field is considered, the subscript “e” is adopted and the Young modulus 

considered in the previous equation is the one at initial time 𝑡0 which is indicated as 𝐸0; for the 

same reason also the temperature distribution, which is variable in time, is computed for 𝑡 = 𝑡0. 

An important difference with respect to the generic formulation presented in paragraph 2.4.2 is the 

fact that, in this case, the curvature in the z-x plane is not taken into account since, as already 

discussed, the gradient 𝐷𝑇𝑥, which causes it, results of one order of magnitude lower than the 

gradient 𝐷𝑇𝑦 and can be neglected in practical cases. The vectors 𝜌𝑇 and 𝜓𝑒 are therefore defined 

as follow: 

𝜌 = [
1
𝑦
] 

𝜓𝑒 = [
𝜀0
𝜒𝑥
] 

3  
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As already discussed the compatibility stresses given by equation ( 68 ) are self-equilibrated and 

are associated to the difference between the total deformation and the non-linear deformation over 

the depth of the cross section 𝛼𝑇(𝑦, 𝑡0): 

𝜀𝜎(𝑦) = 𝜌
𝑇𝜓𝑒 − 𝛼𝑇(𝑦, 𝑡0)                                                                                                                       ( 69 ) 

In the previous equations the vector 𝜓𝑒 can be computed on the basis of the procedure explained 

in paragraph 2.4.2, according to which, by imposing the equilibrium, the following relation is 

obtained: 

𝜓𝑒 = 𝐵𝑒
−1 𝑆(𝑡0)                                                                                                                                         ( 70 ) 

where the stiffness matrix in the elastic field 𝐵𝑒 is computed with reference to the Young modulus 

at initial time 𝐸0: 

𝐵𝑒 = 𝐸0 [
𝐴 0
0 𝐼

]   

where 𝐴 is the area of the cross section and 𝐼 is the moment of inertia of the cross section with 

respect to the x axis. 

Due to the fact that, for the specific problem under examination, the vector 𝜓𝑒 has only two 

components, expression ( 70 ) represents a system of two decoupled equations instead of a system 

of three equations as it happens in the case of the generic formulation. In particular, the two 

equations obtained in this case are: 

𝜓1𝑒 = 𝜀0 =
𝛼

𝐴
∫ 𝑇(𝑦, 𝑡0)𝑑𝐴𝐴

                                                                                                                      ( 71 ) 

𝜓2𝑒 = 𝜒𝑥 =
𝛼

𝐼
 ∫ 𝑇(𝑦, 𝑡0) ∙ 𝑦𝑑𝐴𝐴

                                                                                                              ( 72 ) 

By substituting the vector 𝜓𝑒 in expression ( 68 ) and by developing the product between the vector 

𝜌 and the vector 𝜓𝑒 it is finally found: 

𝜎𝑒(𝑦) = 𝐸0 [
𝛼

𝐴
∫ 𝑇(𝑦, 𝑡0)𝑑𝐴𝐴

+
𝛼

𝐼
 ∫ 𝑇(𝑦, 𝑡0) ∙ 𝑦𝑑𝐴 ∙ 𝑦𝐴

− 𝛼𝑇(𝑦, 𝑡0)]                                               ( 73 ) 

From the previous equation it is clear that the compatibility stresses arise at the sectional level just 

in presence of non-linear temperature distributions. In fact, in the case in which 𝑇(𝑦, 𝑡0) is linear 

along the depth of the cross section, the sum of the terms in the square brackets of the previous 

equation is null and therefore no compatibility stresses arise. Moreover the distribution of stresses 

𝜎𝑒 over the cross section appears to be non-linear, due to the presence of the non-linear term 

𝛼𝑇(𝑦, 𝑡0). 
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Once the vector 𝜓𝑒 is known, also the total deformation of the cross section in the elastic field, 

due to the presence of the non-linear temperature distribution, under the plane section hypothesis, 

can be computed as follow: 

𝜀𝑒(𝑦) =  𝜌
𝑇𝜓𝑒 = 𝜓1𝑒 + 𝜓2𝑒 ∙ 𝑦 =

𝛼

𝐴
∫ 𝑇(𝑦, 𝑡0)𝑑𝐴𝐴

+
𝛼

𝐼
 ∫ 𝑇(𝑦, 𝑡0) ∙ 𝑦𝑑𝐴 ∙ 𝑦𝐴

                               ( 74 ) 

 

3.3 Additional stresses due to redundant restraints 

In addition to the compatibility stresses presented in the previous paragraph, which arise at the 

sectional level independently on the static scheme of the structure to which the section under 

analysis belongs, in the case of redundant structures, the effect of thermal actions produces an 

additional state of stress due to the reactions of the redundant restraints. 

As already explained, the compatibility stresses arise in order to satisfy the plane section 

hypothesis according to which the total deformation of the section is defined by equation ( 74 ). To 

this deformation correspond an axial deformation due to temperature 𝜓1𝑒 and the thermal 

curvature in the plane z-y given by 𝜓2𝑒. At the structural level both of these geometrical actions, 

determined at the sectional level according to the procedure shown in the previous paragraph, can 

be then considered in performing the structural analysis of the redundant static scheme. By 

operating in this way it is possible to compute the reactions of the redundant restraints due to the 

non-linear temperature distribution acting on the structure, which will finally correspond to 

additional stresses at the sectional level. 

 

3.4 Examples of applications 

Some significant examples of applications of the method, explained in the previous paragraphs for 

the computation in the elastic field of the compatibility stresses and of the additional stresses in 

presence of redundant static schemes, will be here presented. In order to show the applicability of 

the procedure to the most general situations, different kinds of sections subjected to various non-

linear temperature distributions will be considered along with different redundant static schemes. 

For sake of simplicity in the writing of the equations, the variability in time of the temperature 

distribution is here neglected since, in the elastic field, the temperature is always computed, as 

already mentioned, for 𝑡 = 𝑡0. The variability in time will be then considered when dealing with 

the analysis in the viscoelastic field in chapter 4 and chapter 5. 

 

3.4.1 Example 1  

Consider an homogeneous rectangular cross section subject to a parabolic temperature distribution 

over its depth, whose dimensions are those indicated in Figure 10. The values assumed by the 

temperature function in correspondence of the top,  centroidal and bottom fibers are respectively 

𝑇𝑠, 𝑇𝐺 and 𝑇𝑖. 
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The origin of the reference system is fixed in correspondence of the centroid of the cross section 

and the expression of the parabolic function defining the temperature distribution along the depth 

of the section is determined by imposing that the temperature assumes the values 𝑇𝑠, 𝑇𝐺 and 𝑇𝑖 in 

correspondence of the coordinates 𝑦 = −ℎ 2⁄ , 𝑦 = 0 and 𝑦 = −ℎ/2. 

𝑇 = 𝐴𝑦2 + 𝐵𝑦 + 𝐶                                                                                                                                     ( 75 ) 

𝑦 = −
ℎ

2
          𝑇 = 𝑇𝑠          𝐴

ℎ2

4
− 𝐵

ℎ

2
+ 𝐶 = 𝑇𝑠                                                                                   ( 76 ) 

𝑦 = 0              𝑇 = 𝑇𝐺         𝐶 = 𝑇𝐺                                                                                                             ( 77 ) 

𝑦 =
ℎ

2
             𝑇 = 𝑇𝑖           𝐴

ℎ2

4
+ 𝐵

ℎ

2
+ 𝐶 = 𝑇𝑖                                                                                    ( 78 ) 

 

After some simple computations the expression of the function defining the temperature 

distribution along the coordinate y is: 

𝑇(𝑦) = (𝑇𝑠 + 𝑇𝑖 − 2𝑇𝐺)
2𝑦2

ℎ2
+ (𝑡𝑖 − 𝑇𝑠)

𝑦

ℎ
+ 𝑇𝐺                                                                                    ( 79 ) 

 

Figure 10 – Homogeneous rectangular cross section subject to a parabolic temperature 

distribution over its depth 
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Knowing the expression of 𝑇(𝑦) it is possible to compute the two components of vector 𝜓𝑒 

according to equations ( 71 ) and ( 72 ): 

𝜓1𝑒 =
𝛼

𝐴
∫ 𝑇𝑑𝐴
𝐴

=
𝛼𝑏

𝐴
∙ ∫ [(𝑇𝑠 + 𝑇𝑖 − 2𝑇𝐺)

2𝑦2

ℎ2
+ (𝑡𝑖 − 𝑇𝑠)

𝑦

ℎ
+ 𝑇𝐺] 𝑑𝑦

ℎ

2

−
ℎ

2

                                        ( 80 ) 

𝜓1𝑒 =
𝛼

6
(𝑇𝑠 + 𝑇𝑖 + 4𝑇𝐺)                                                                                                                           ( 81 ) 

 

𝜓2𝑒 =
𝛼

I
∫ 𝑇𝑦𝑑𝐴
𝐴

=
𝛼𝑏

𝐼
∙ ∫ [(𝑇𝑠 + 𝑇𝑖 − 2𝑇𝐺)

2𝑦2

ℎ2
+ (𝑡𝑖 − 𝑇𝑠)

𝑦

ℎ
+ 𝑇𝐺] ∙ 𝑦 𝑑𝑦

ℎ

2

−
ℎ

2

                               ( 82 ) 

𝜓2𝑒 =
𝛼(𝑇𝑖−𝑇𝑠)

ℎ
                                                                                                                                              ( 83 ) 

 

The compatibility stresses in the elastic field are computed according to equation ( 68 ): 

𝜎𝑒(𝑦) = 𝐸0[𝜓1𝑒 + 𝜓2𝑒 ∙ 𝑦 − 𝛼 ∙ 𝑇(𝑦)]                                                                                                  ( 84 ) 

Substituting the expressions ( 81 ), ( 83 ) and ( 79 ) in the previous equation it is obtained: 

𝜎𝑒(𝑦) = 𝐸0𝛼 [
𝑇𝑠+𝑇𝑖+4𝑇𝐺

6
+
(𝑇𝑖−𝑇𝑠)𝑦

ℎ
− 2(𝑇𝑠 + 𝑇𝑖 − 2𝑇𝐺)

𝑦2

ℎ2
− (𝑇𝑖 − 𝑇𝑠)

𝑦

ℎ
− 𝑇𝐺]                            ( 85 ) 

which, after some simplifications, is finally written as follow: 

𝜎𝑒(𝑦) = 𝐸0𝛼 [−2(𝑇𝑠 + 𝑇𝑖 − 2𝑇𝐺)
𝑦2

ℎ2
+
𝑇𝑠+𝑇𝑖−2𝑇𝐺

6
]                                                                              ( 86 ) 

 

For sake of simplicity all the parameters defining the temperature function are considered to be 

dependent on a single parameter 𝑇0 as follow: 

− 𝑇𝑠 = −𝑇0 

− 𝑇𝐺 = 𝑇0 

− 𝑇𝑖 = 2𝑇0 

The quantities previously computed will therefore become: 

𝑇(𝑦) = 𝑇0 (−2
𝑦2

ℎ2
+ 3

𝑦

ℎ
+ 1)                                                                                                                   ( 87 ) 

𝜓1𝑒 =
𝛼𝑇0

6
(−1 + 2 + 4) =

5

6
𝛼𝑇0                                                                                                            ( 88 ) 

𝜓2𝑒 = 3
𝛼𝑇0

ℎ
                                                                                                                                                   ( 89 ) 

𝜎𝑒(𝑦) = 𝐸0𝛼𝑇0 (2
𝑦2

ℎ2
−
1

6
)                                                                                                                        ( 90 ) 
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The compatibility stresses distribution over the depth of the cross section for the case under 

examination is reported in Figure 11 where the coordinate y is normalized with respect to the depth 

ℎ of the section and the stresses are normalized with respect to 𝐸0𝛼𝑇0.  

 

Figure 12 – Total deformation of the cross section 

Figure 11 – Compatibility stresses distribution over the depth of the cross section 
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Once the components of the vector 𝜓𝑒 are known, also the total deformation of the cross section 

under the plane section hypothesis can be computed according to equation ( 74 ). The result 

obtained for the case under examination is reported in Figure 12 where the coordinate y is 

normalized with respect to the depth ℎ of the section and the deformation is normalized with 

respect to 𝛼𝑇0. 

 

An effective way to verify the computations carried out is to exploit the fact that the compatibility 

stresses 𝜎𝑒 are self-equilibrated by checking that the equilibrium equations are satisfied: 

∫ 𝜌𝜎𝑑𝐴
𝐴

= 0                                                                                                                                                 ( 91 ) 

which for the example under consideration are: 

∫ 𝜎𝑒𝑏𝑑𝑦 = 𝐸0𝛼𝑇0𝑏 |
2

3

𝑦3

ℎ2
−
1

6
𝑦|
−
ℎ

2

ℎ

2
= 0                                         

ℎ/2

−ℎ/2
                                                   ( 92 ) 

∫ 𝜎𝑒𝑦𝑏𝑑𝑦 = 𝐸0𝛼𝑇0𝑏 |
2𝑦4

4ℎ2
−
𝑦2

12
|
−
ℎ

2

ℎ

2
= 0

ℎ

2

−
ℎ

2

                                                                                                ( 93 ) 

The equilibrium equations are satisfied, therefore the compatibility stresses computed are correct. 

In order to show the application of the procedure for the computation of the additional stresses due 

to redundant restraint, it is possible to consider the case in which the section under examination is 

the one adopted for the elements composing the following redundant static schemes: 

- Scheme 1 

Figure 13 - Two times redundant static scheme and relative 

redundant variables 
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The static scheme reported in Figure 13 is two times redundant and the geometrical actions 𝜓1𝑒 

and 𝜓2𝑒, previously determined at the sectional level, are applied. Moreover in the same figure the 

redundant variables 𝑀1, 𝑀2 and 𝑁 have been highlighted. By performing the structural analysis of 

this structural scheme it is possible to compute the reactions of the redundant restraints due to the 

non-linear temperature distribution, which will finally lead to additional stresses at the sectional 

level. 

Since the geometrical action 𝜓2𝑒 is constant along the beam axis, the static scheme under 

examination is characterized by a central symmetry and therefore it is possible to state that 𝑀1 is 

equal to 𝑀2. The compatibility equations, necessary to compute the redundant variables, are 

therefore just two: 

𝑀1 (
𝑙

3𝐸0𝐼
+

𝑙

6𝐸0𝐼
) + 𝜓2𝑒

𝑙

2
= 0                                                                                                                  ( 94 ) 

𝑁
𝑙

𝐸0𝐴
+ 𝜓1𝑒𝑙 = 0                                                                                                                                        ( 95 ) 

from which it is obtained: 

𝑀1 = −𝜓2𝑒𝐸0𝐼                                                                                                                                            ( 96 ) 

𝑁 = −𝜓1𝑒𝐸0𝐴                                                                                                                                             ( 97 ) 

 

The axial force and the bending moment along the beam are constant and respectively equal to 𝑁 

and 𝑀1. It is therefore necessary to consider, for each section of the beam, an additional stresses 

distribution ∆𝜎𝑒(𝑦) along the depth of the cross section, corresponding to the effect of the 

redundant variables just computed.  

∆𝜎𝑒(𝑦) = 𝐸0 (
𝑁

𝐸0𝐴
+

𝑀1

𝐸0𝐼
∙ 𝑦  )                                                                                                                   ( 98 ) 

which, by substituting the values of the redundant variables 𝑀1 and 𝑁, becomes: 

∆𝜎𝑒(𝑦) = −𝜓1𝑒𝐸0 − 𝜓2𝑒𝐸0𝑦 = 𝐸0𝛼𝑇0 (−
5

6
− 3

𝑦

ℎ
)                                                                           ( 99 ) 

 

The total stresses at the sectional level are therefore computed by making the sum of the 

compatibility stresses 𝜎𝑒(𝑦) and of the additional stresses ∆𝜎𝑒(𝑦) due to the redundant restraints 

as it can be appreciated in Figure 14. Moreover it is possible to observe that, as the beam 

considered in scheme 1 is completely restrained, the total stresses at the sectional level are simply 

given by −𝐸0𝛼𝑇(𝑦). 

𝜎𝑒,𝑡𝑜𝑡(𝑦) = 𝜎𝑒(𝑦) + ∆𝜎𝑒(𝑦) = 𝐸0𝛼𝑇0 (2
𝑦2

ℎ2
− 3

𝑦

ℎ
− 1) = −𝐸0𝛼𝑇(𝑦)                                        ( 100 ) 
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- Scheme 2 

Figure 15 - One time redundant static scheme and relative redundant 

variable 

Figure 14 – Total stresses distribution over the depth of the cross section 
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The second structural scheme analyzed in presence of the geometrical actions 𝜓1𝑒 and 𝜓2𝑒 is only 

one time redundant. The compatibility equation, necessary to compute the redundant variable 𝑀, 

is the following: 

𝑀
𝑙

3𝐸0𝐼
+ 𝜓2𝑒

𝑙

2
= 0                                                                                                                                  ( 101 ) 

from which it is obtained: 

𝑀 = −
3

2
𝐸0𝐼𝜓2𝑒                                                                                                                                        ( 102 ) 

Since, due to the configuration of the restraints of the static scheme under analysis, no redundant 

axial variables are present, the geometrical action 𝜓1𝑒 does not appear in the compatibility 

equation and does not influence the additional stresses distribution. 

The additional stresses distribution, over the depth of the section in correspondence of which the 

redundant variable 𝑀 is applied, is the following: 

∆𝜎𝑒(𝑦) = −
3

2
𝐸0𝜓2𝑒𝑦 = 𝐸0𝛼𝑇0 (−

9

2

𝑦

ℎ
)                                                                                              ( 103 ) 

 

The total stresses at the sectional level are computed by making the sum of the compatibility 

stresses 𝜎𝑒(𝑦) and of the additional stresses ∆𝜎𝑒(𝑦) due to the redundant restraint as it can be 

appreciated in Figure 16. 

 

Figure 16 – Total stresses distribution over the depth of the cross section 
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3.4.2 Example 2 

Consider the same homogeneous rectangular cross section analysed in example 1, subject to a 

discontinuous, non-linear temperature distribution over its depth. In particular the temperature 

distribution in the portion of the cross section above the centroid 𝐺 is defined by means of a 

sinusoidal function of y coordinate, while the temperature distribution in the portion below the 

centroid is defined by means of a linear function of y coordinate. The aim of this example is to 

show the application of the method to the cases in which the non-linear temperature distribution is 

characterized by the additional complexity of being a discontinuous function. 

 

The components of the vector 𝜓𝑒 are computed according to equations ( 71 ) and ( 72 ) in which the 

integration is opportunely performed in order to deal with the discontinuity in the temperature 

distribution: 

𝜓1𝑒 =
𝛼

𝐴
∫𝑇𝑑𝐴
𝐴

=
𝛼

𝐴
{∫ 𝑇0𝑠𝑖𝑛 [ 

𝜋

2
(1 +

2𝑦

ℎ
)] 𝑏𝑑𝑦 + ∫ −

4𝑇0
ℎ
(𝑦 −

ℎ

4
) 𝑏𝑑𝑦

ℎ
2

0

0

−
ℎ
2

} = 

=
𝛼

𝐴
{∫ 𝑇0sin (

𝜋

2
+
𝜋𝑦

ℎ
)𝑏𝑑𝑦 + ∫ (−

4𝑇0
ℎ
𝑦𝑏 + 𝑇0𝑏) 𝑑𝑦

ℎ
2

0

0

−
ℎ
2

} = 

Figure 17  – Homogeneous rectangular section subject to a discontinuous temperature distribution over its depth 
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=
𝛼

𝐴
{∫ 𝑇0cos (

𝜋𝑦

ℎ
) 𝑏𝑑𝑦 + ∫ (−

4𝑇0
ℎ
𝑦𝑏 + 𝑇0𝑏) 𝑑𝑦

ℎ
2

0

0

−
ℎ
2

} = 

=
𝛼

𝐴
{|𝑇0

ℎ

𝜋
sin (

𝜋𝑦

ℎ
) 𝑏𝑑𝑦|

−
ℎ

2

0

+ |−
2𝑇0

ℎ
𝑦2𝑏 + 𝑇0𝑏𝑦|

0

ℎ

2
} =

𝛼

𝜋
𝑇0                                                            ( 104 ) 

 

𝜓2𝑒 =
𝛼

I
∫𝑇𝑦𝑑𝐴
𝐴

=
𝛼

𝐼
{∫ 𝑇0𝑠𝑖𝑛 [

𝜋

2
(1 +

2𝑦

ℎ
)]

0

−
ℎ
2

𝑏𝑦𝑑𝑦 +∫ −4
𝑇0
ℎ
(𝑦 −

ℎ

4
) 𝑏𝑦𝑑𝑦

ℎ
2

0

} = 

=
𝛼

𝐼
{∫ 𝑇0𝑐𝑜𝑠 (

𝜋𝑦

ℎ
)

0

−
ℎ
2

𝑏𝑦𝑑𝑦 + ∫ (−
4𝑇0
ℎ
𝑦2𝑏 + 𝑇0𝑦𝑏) 𝑑𝑦

ℎ
2

0

} = 

=
𝛼

𝐼
{|𝑇0

ℎ

𝜋
𝑠𝑖𝑛 (

𝜋𝑦

ℎ
) 𝑏𝑦|

−
ℎ
2

0

−∫ 𝑇0
ℎ

𝜋
sin (

𝜋𝑦

ℎ
) 𝑏𝑑𝑦 +∫ (−

4𝑇0
ℎ
𝑦2𝑏 + 𝑇0𝑦𝑏) 𝑑𝑦

ℎ
2

0

0

−
ℎ
2

} = 

=
𝛼

𝐼
{−𝑇0

ℎ

𝜋
𝑏
ℎ

2
− |−𝑇0

ℎ2

𝜋2
𝑐𝑜𝑠 (

𝜋𝑦

ℎ
) 𝑏|

−
ℎ
2

0

+ |−
4

3

𝑇0
ℎ
𝑦3𝑏 +

1

2
𝑇0𝑦

2𝑏|
0

ℎ
2
} = 

=
𝛼

𝐼
{−

𝑇0

2

ℎ2𝑏

𝜋
+ 𝑇0

ℎ2𝑏

𝜋2
−
4

3

𝑇0

ℎ

ℎ3

8
𝑏 +

1

2
𝑇0

ℎ2

4
𝑏} =

𝛼

𝐼
𝑇0 (

ℎ2𝑏

𝜋2
−
1

2

ℎ2𝑏

𝜋
−

1

24
ℎ2𝑏)                              ( 105 ) 

 

The compatibility stresses in the elastic field are computed according to equation ( 68 ) which, due 

to the discontinuity in the temperature distribution leads to the following expressions: 

for −
ℎ

2
≤ 𝑦 ≤ 0  

𝜎𝑒(𝑦) = 𝐸0 {
𝛼

𝜋
𝑇0 +

𝛼

𝐼
𝑇0 (

ℎ2𝑏

𝜋2
−
1

2

ℎ2𝑏

𝜋
−

1

24
ℎ2𝑏)𝑦 − 𝛼𝑇0𝑠𝑖𝑛 [

𝜋

2
(1 +

2𝑦

ℎ
)]}                                 ( 106 ) 

for 0 ≤ 𝑦 ≤
ℎ

2
  

𝜎𝑒(𝑦) = 𝐸0 {
𝛼

𝜋
𝑇0 +

𝛼

𝐼
𝑇0 (

ℎ2𝑏

𝜋2
−
1

2

ℎ2𝑏

𝜋
−

1

24
ℎ2𝑏)𝑦 +

4𝛼𝑇0

ℎ
(𝑦 −

ℎ

4
)}                                               ( 107 ) 

 

The compatibility stresses distribution over the depth of the cross section for the case under 

examination is reported in Figure 18 where the coordinate y is normalized with respect to the depth 

ℎ of the section and the stresses are normalized with respect to 𝐸0𝛼𝑇0. In Figure 19 the total 
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deformation of the cross section under the plane section hypothesis, normalized with respect to 

𝛼𝑇0, is also reported. 

 

 

Figure 18 – Compatibility stresses distribution over the depth of the cross section 

Figure 19 – Total deformation of the cross section 
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The computations carried out are verified by checking that the equilibrium equations are satisfied: 

∫ 𝜌𝜎𝑑𝐴
𝐴

= 0                                                                                                                                              ( 108 ) 

which for the example under consideration are: 

∫ 𝜎𝑒𝑏𝑑𝑦 = 𝐸0𝛼𝑇0 {∫ [
1

𝜋
+
12

𝑏ℎ3
𝑏ℎ2 (

1

𝜋2
−
1

2𝜋
−
1

24
) 𝑦 − sin (

𝜋

2
+
𝜋𝑦

ℎ
)] 𝑏𝑑𝑦 +

0

−ℎ/2

ℎ/2

−ℎ/2

 

+∫ [
1

𝜋
+
12

𝑏ℎ3
𝑏ℎ2 (

1

𝜋2
−
1

2𝜋
−
1

24
) 𝑦 +

4𝑦

ℎ
− 1] 𝑏𝑑𝑦

ℎ/2

0

} = 

=𝐸0𝛼𝑇0 {|
𝑏

𝜋
𝑦 +

6

ℎ
𝑏𝑦2 (

1

𝜋2
−

1

2𝜋
−

1

24
) −

ℎ

 𝜋
𝑠𝑖𝑛 (

𝜋𝑦

ℎ
) 𝑏|

−
ℎ

2

0

+ |
𝑏

ℎ
𝑦 +

6

ℎ
𝑏𝑦2 (

1

𝜋2
−

1

2𝜋
−

1

24
) + 

+
2𝑦2𝑏

ℎ
− 𝑦𝑏|

0

ℎ
2

= 

= 𝐸0𝛼𝑇0 {
𝑏

𝜋

ℎ

2
+
6

ℎ
𝑏𝑦2 (

1

𝜋2
−

1

2𝜋
−

1

24
) +

𝑏

𝜋

ℎ

2
−
6

ℎ
𝑏𝑦2 (

1

𝜋2
−

1

2𝜋
−

1

24
) −

ℎ

𝜋
𝑏 +

ℎ𝑏

2
−
ℎ𝑏

2
} = 0                  ( 109 ) 

 

∫ 𝜎𝑒𝑦𝑏𝑑𝑦 = 𝐸0𝛼𝑇0 {∫ [
𝑦𝑏

𝜋
+
12

𝑏ℎ3
𝑏ℎ2 (

1

𝜋2
−
1

2𝜋
−
1

24
)𝑦2𝑏] 𝑑𝑦 +

ℎ/2

−ℎ/2

ℎ/2

−ℎ/2

 

−∫ 𝑠𝑖𝑛 [
𝜋

2
(1 +

2𝑦

ℎ
)] 𝑦𝑏𝑑𝑦 + ∫

4

ℎ
(𝑦 −

ℎ

4
) 𝑦𝑏𝑑𝑦

ℎ/2

0

0

−ℎ/2

} = 

= 𝐸0𝛼𝑇0 {|
𝑦2

2

𝑏

𝜋
+
12

ℎ
(
1

𝜋2
−
1

2𝜋
−
1

24
)
𝑦3

3
𝑏|
−ℎ/2

ℎ/2

−∫ 𝑐𝑜𝑠 (
𝜋𝑦

ℎ
)𝑦𝑏𝑑𝑦 +

0

−ℎ/2

 

+∫ (
4

ℎ
𝑦2𝑏 − 𝑦𝑏)𝑑𝑦

ℎ/2

0

} = 

= 𝐸0𝛼𝑇0 {
ℎ2

8

𝑏

𝜋
+
12

ℎ
(
1

𝜋2
−
1

2𝜋
−
1

24
)
ℎ3

24
𝑏 −

ℎ2

8

𝑏

𝜋
+
12

ℎ
(
1

𝜋2
−
1

2𝜋
−
1

24
)
ℎ3

24
𝑏 + 

−∫ 𝑐𝑜𝑠 (
𝜋𝑦

ℎ
) 𝑦𝑏𝑑𝑦 + |

4

3

𝑦3𝑏

ℎ
−
𝑦2𝑏

2
|
0

ℎ/20

−ℎ/2

} = 

= 𝐸0𝛼𝑇0 {(
1

𝜋2
−

1

2𝜋
−

1

24
) ℎ2𝑏 +

ℎ

𝜋

ℎ

2
𝑏 −

ℎ2

𝜋2
𝑏 +

4

3

𝑏

ℎ

ℎ3

8
−
1

2
𝑏
ℎ2

4
} = 0                                               ( 110 ) 

 

The equilibrium equations are satisfied, therefore the compatibility stresses computed are correct. 
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For what concerns this second example, 4 static schemes have been considered for the application 

of the procedure for the computation of the additional stresses due to redundant restraint. 

- Scheme 1 

 

Analogously to what has already been presented for the first example, the structural scheme is 

analysed in presence of the geometrical actions 𝜓1𝑒 and 𝜓2𝑒. The structural scheme is only one 

time redundant and the compatibility equation, necessary to compute the redundant variable 𝑀, is 

the following: 

𝑀(
𝑙

3𝐸0𝐼
+

2𝑙

3𝐸0𝐼
) + 𝜓2𝑒

𝑙

2
+𝜓2𝑒

2𝑙

2
= 0                                                                                                  ( 111 ) 

from which it is obtained: 

𝑀 = −𝜓2𝑒
3

2
𝑙
𝐸0𝐼

𝑙
= −𝜓2𝑒

3

2
𝐸0𝐼                                                                                                              ( 112 ) 

As stated before with reference to the second static scheme analyzed in the first example, also in 

this case no redundant axial variables are present and therefore the geometrical action 𝜓1𝑒 does 

not appear in the compatibility equation and does not influence the additional stresses distribution. 

The additional stresses distribution for the section in correspondence of the central support is 

therefore given by: 

 ∆𝜎𝑒(𝑦) = −
3

2
𝐸0𝜓2𝑒𝑦 = −18𝐸0𝛼𝑇0 (

1

𝜋2
−

1

2𝜋
−

1

24
)
𝑦

ℎ
                                                                     ( 113 ) 

 

The total stresses at the sectional level, given by the sum of the compatibility stresses 𝜎𝑒(𝑦) and 

of the additional stresses ∆𝜎𝑒(𝑦), are represented in non-dimensional form in Figure 21. 

Figure 20 - One time redundant static scheme and relative redundant variable 
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- Scheme 2 

 

Figure 21 - Total stresses distribution over the depth of the cross section 

Figure 22 - Two times redundant static scheme and relative redundant variables 
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This second static scheme differs from the first one because of the fact that the central support of 

the two span continuous beam is no longer a roller but it is a simple support. This lead to an 

additional redundant variable represented by the horizontal action in the central support. The 

compatibility equations are written as follow: 

𝑀(
𝑙

3𝐸0𝐼
+

2𝑙

3𝐸0𝐼
) + 𝜓2𝑒

𝑙

2
+𝜓2𝑒

2𝑙

2
= 0                                                                                                  ( 114 ) 

𝑁
𝑙

𝐸0𝐴
+ 𝜓1𝑒𝑙 = 0                                                                                                                                       ( 115 ) 

from which it is obtained: 

𝑀 = −𝜓2𝑒
3

2
𝐸0𝐼                                                                                                                                         ( 116 ) 

𝑁 = −𝜓1𝑒𝐸0𝐴                                                                                                                                            ( 117 ) 

As already done for the first static scheme analysed, consider for instance the section in 

correspondence of the central support. The computation of the additional stresses distribution over 

that cross section, due to the presence of the redundant restraints, needs to be performed 

distinguishing if it is considered the section immediately on the left side or on the right side of the 

central support, because of the discontinuity in the value of the axial force in the two spans of the 

scheme. 

For the section immediately on the left side of the central support, it is found: 

∆𝜎𝑒,𝑙𝑒𝑓𝑡(𝑦) = −𝐸0𝜓1𝑒 −
3

2
𝐸0𝜓2𝑒𝑦 = 𝐸0𝛼𝑇0 [−

1

𝜋
− 18 (

1

𝜋2
−

1

2𝜋
−

1

24
)
𝑦

ℎ
]                                 ( 118 ) 

The total stresses at the sectional level given by the sum of the compatibility stresses 𝜎𝑒(𝑦) and of 

the additional stresses ∆𝜎𝑒,𝑙𝑒𝑓𝑡(𝑦) are represented in non-dimensional form in Figure 23. 

For what concerns the section immediately on the right side of the central support, since the axial 

force in correspondance of that section is null and the bending moment 𝑀 coincides with the one 

computed for the static scheme 1, the additional stresses distribution is exactly the same as the one 

computed for the scheme 1.  

∆𝜎𝑒,𝑟𝑖𝑔ℎ𝑡(𝑦) = −
3

2
𝐸0𝜓2𝑒𝑦 = −18𝐸0𝛼𝑇0 (

1

𝜋2
−

1

2𝜋
−

1

24
)
𝑦

ℎ
                                                             ( 119 ) 

Since both the compatibility stresses 𝜎𝑒(𝑦) and the additional stresses ∆𝜎𝑒,𝑟𝑖𝑔ℎ𝑡(𝑦) are respectively 

coincident with the compatibility stresses and the additional stresses computed for the static 

scheme 1, also the total stresses distribution will be the same and it is therefore possible to make 

reference to Figure 21 also for what concerns total stresses diagram of the section immediately on 

the right side of the central support. 
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- Scheme 3 

 

 

Figure 23 - Total stresses distribution over the depth of the cross section 

Figure 24 - Three times redundant static scheme and relative redundant variables 
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The third static scheme differs from the second one because of the fact that the right end support 

of the two span continuous beam is no longer a roller but it is a simple support. This lead to an 

additional redundant variable represented by the horizontal action in the right end support and the 

scheme is therefore a three times redundant static scheme. The compatibility equations, necessary 

to compute the three redundant variables, are written as follow: 

𝑀(
𝑙

3𝐸0𝐼
+

2𝑙

3𝐸0𝐼
) + 𝜓2𝑒

𝑙

2
+𝜓2𝑒

2𝑙

2
= 0                                                                                                  ( 120 ) 

{
𝑁1 (

𝑙

𝐸0𝐴
+

2𝑙

𝐸0𝐴
) + 𝑁2 (−

2𝑙

𝐸0𝐴
) + 𝜓1𝑒(𝑙 − 2𝑙) = 0      

𝑁1 (−
2𝑙

𝐸0𝐴
) + 𝑁2 (

2𝑙

𝐸0𝐴
) + 𝜓1𝑒2𝑙 = 0                            

                                                                       ( 121 ) 

from which it is obtained: 

𝑀 = −𝜓2𝑒
3

2
𝐸0𝐼                                                                                                                                         ( 122 ) 

𝑁1 = −𝐸0𝐴𝜓1𝑒                                                                                                                                           ( 123 ) 

𝑁2 = −2𝐸0𝐴𝜓1𝑒                                                                                                                                        ( 124 ) 

As observed also in the analysis of the scheme 2, when computing the additional stresses due to 

the redundant restraints, the discontinuity in the axial force value in correspondence of the central 

support is responsible for the necessity of distinguishing between the cross section immediately 

on the left side of the central support and the cross section immediately on the right side of the 

central support. 

For the section immediately on the left side of the central support, it is found: 

∆𝜎𝑒,𝑙𝑒𝑓𝑡(𝑦) = −3𝐸0𝜓1𝑒 −
3

2
𝐸0𝜓2𝑒𝑦 = 𝐸0𝛼𝑇0 [−

3

𝜋
− 18 (

1

𝜋2
−

1

2𝜋
−

1

24
)
𝑦

ℎ
 ]                              ( 125 ) 

The total stresses at the sectional level given by the sum of the compatibility stresses 𝜎𝑒(𝑦) and of 

the additional stresses ∆𝜎𝑒,𝑙𝑒𝑓𝑡(𝑦) are represented in non-dimensional form in Figure 25. 

For the section immediately on the right side of the central support, it is found: 

∆𝜎𝑒,𝑟𝑖𝑔ℎ𝑡(𝑦) = −2𝐸0𝜓1𝑒 −
3

2
𝐸0𝜓2𝑒𝑦 = 𝐸0𝛼𝑇0 [−

2

𝜋
− 18 (

1

𝜋2
−

1

2𝜋
−

1

24
)
𝑦

ℎ
 ]                            ( 126 ) 

The total stresses at the sectional level given by the sum of the compatibility stresses 𝜎𝑒(𝑦) and of 

the additional stresses ∆𝜎𝑒,𝑟𝑖𝑔ℎ𝑡(𝑦) are represented in non-dimensional form in Figure 26. 
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Figure 25 - Total stresses distribution over the depth of the cross section 

Figure 26 - Total stresses distribution over the depth of the cross section 
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- Scheme 4 

 

The scheme 4 represented in Figure 27 is a four times redundant static scheme characterized also 

by the presence of a rotational and a translational elastic restraint, whose stiffnesses are 

respectively 𝜇 and 𝑘. 

The compatibility equations, necessary to compute the four redundant variables, are written as 

follow:  

{
𝑀1 (

𝑙

3𝐸0𝐼
+

1

𝜇
) + 𝑀2 (

𝑙

6𝐸0𝐼
) + 𝜓2𝑒

𝑙

2
= 0                                                                                

𝑀1 (
𝑙

6𝐸0𝐼
) + 𝑀2 (

𝑙

3𝐸0𝐼
+

2𝑙

3𝐸0𝐼
) + 𝜓2𝑒 (

𝑙

2
+
2𝑙

2
) = 0                                                              

            ( 127 ) 

{
𝑁1 (

𝑙

𝐸0𝐴
+

2𝑙

𝐸0𝐴
) + 𝑁2 (−

2𝑙

𝐸0𝐴
) + 𝜓1𝑒(𝑙 − 2𝑙) = 0                                                                       

𝑁1 (−
2𝑙

𝐸0𝐴
) + 𝑁2 (

2𝑙

𝐸0𝐴
+

1

𝑘
) + 𝜓1𝑒(2𝑙) = 0                                                                                 

    ( 128 ) 

from which it is obtained: 

𝑀1 = −𝜓2𝑒
9𝜇𝑙𝐸0𝐼

11𝜇𝑙+36𝐸0𝐼
                                                                                                                              ( 129 ) 

𝑀2 = −𝜓2𝑒
15𝜇𝑙𝐸0𝐼+54𝐸0

2𝐼2

11𝜇𝑙+36𝐸0𝐼
                                                                                                                          ( 130 ) 

𝑁1 =
𝐸0
2𝐴2−2𝑘𝑙𝐸0𝐴

2𝑘𝑙+3𝐸0𝐴
𝜓1𝑒                                                                                                                                ( 131 ) 

Figure 27 - Four times redundant static scheme with elastic restraints and relative 

redundant variables 
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𝑁2 = −
4𝑘𝑙𝐸0𝐴

2𝑘𝑙+3𝐸0𝐴
𝜓1𝑒                                                                                                                                  ( 132 ) 

 

Similarly to the previously analysed static schemes, the computation of the additional stresses due 

to the redundant restraints, for the section in correspondence of the central support, is performed 

as follow. For what concerns the section immediately on the left side of the central support, the 

additional stresses are given by: 

∆𝜎𝑒,𝑙𝑒𝑓𝑡(𝑦) =
𝐸0𝐴−6𝑘𝑙

2𝑘𝑙+3𝐸0𝐴
𝐸0𝜓1𝑒 −

15𝜇𝑙+54𝐸0𝐼

11𝜇𝑙+36𝐸0𝐼
𝐸0𝜓2𝑒𝑦                                                                           ( 133 ) 

while for what concerns the section immediately on the right side of the central support, the 

additional stresses are given by: 

∆𝜎𝑒,𝑟𝑖𝑔ℎ𝑡(𝑦) = −
4𝑘𝑙

2𝑘𝑙+3𝐸0𝐴
𝐸0𝜓1𝑒 −

15𝜇𝑙+54𝐸0𝐼

11𝜇𝑙+36𝐸0𝐼
𝐸0𝜓2𝑒𝑦                                                                     ( 134 ) 

 

In order to provide in Figure 28 and in Figure 29 a simple representation of the total stresses at 

the sectional level, in non-dimensional form, the following values have been considered for the 

stiffnesses of the elastic restraints: 

− 𝜇 =
3𝐸0𝐼

𝑙
 

− 𝑘 =
3𝐸0𝐴

𝑙
 

  

Figure 28 - Total stresses distribution over the depth of the cross section 
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3.4.3 Example 3 

Consider an homogeneous T-shaped cross section subject to an exponential temperature 

distribution over its depth, whose dimensions are those indicated in Figure 30.  The aim of this 

example is to show the application of the method in presence of cross sections characterized by a 

more complex shape and in particular by a variable width along the y coordinate. 

The function of y coordinate considered for the temperature distribution is the following: 

𝑇(𝑦) = 𝑇0 ∙ 𝑒
−
𝑦

ℎ                                                                                                                                                ( 135 ) 

Since the origin of the reference system is fixed in correspondence of the centroid of the cross 

section, the temperature assumes a value equal to 𝑇0 in correspondence of it.  

The moment of inertia of the cross section with respect to x axis is: 

𝐼 = 28793907,4612 𝑐𝑚4 

while the area of the section is: 

𝐴 = 10750 𝑐𝑚2 

 

 

Figure 29 - Total stresses distribution over the depth of the cross section 
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Having computed the area and the moment of inertia with respect to x axis of the cross section, it 

is possible to apply equations ( 71 ) and ( 72 ) in order to compute the components of the vector 𝜓𝑒. 

The integrations are opportunely performed in order to deal with the discontinuity in the width of 

the section over the y coordinate. Moreover in the following computations the distance of the 

centroid from the upper fiber of the section, equal to 49,1279 cm, is briefly indicated with 𝑦𝑔
′ . 

𝜓1𝑒 =
𝛼

𝐴
∫𝑇𝑑𝐴
𝐴

=
𝛼

𝐴
{∫ 𝑇0𝑒

−
𝑦
ℎ250𝑑𝑦

−𝑦𝐺
′+25

−𝑦𝐺
′

+∫ 𝑇0𝑒
−
𝑦
ℎ30𝑑𝑦

175−𝑦𝐺
′

−𝑦𝐺
′+25

} = 

=
𝑇0𝛼

𝐴
{∫ 𝑒−

𝑦
ℎ250𝑑𝑦

−24,1279

−49,1279

+∫ 𝑒−
𝑦
ℎ30𝑑𝑦

125,8721

−24,1279

} = 

=
𝑇0𝛼

𝐴
{|−ℎ𝑒−

𝑦
ℎ250|

−49,1279

−24,1279

+ |−ℎ𝑒−
𝑦
ℎ30|

−24,1279

125,8721

} = 

= 𝑇0𝛼 ∙ 1,04004247  [−]                                                                                                                               ( 136 ) 

Figure 30 - Homogeneous T-shaped cross section subject to an exponential temperature distribution over its depth 
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𝜓2𝑒 =
𝛼

I
∫𝑇𝑦𝑑𝐴
𝐴

=
𝛼

𝐼
{∫ 𝑇0𝑒

−
𝑦
ℎ ∙ 𝑦 ∙ 250𝑑𝑦

−𝑦𝐺
′+25

−𝑦𝐺
′

+∫ 𝑇0𝑒
−
𝑦
ℎ ∙ 𝑦 ∙ 30𝑑𝑦

175−𝑦𝐺
′

−𝑦𝐺
′+25

} = 

=
𝑇0𝛼

𝐼
{∫ 𝑒−

𝑦
ℎ ∙ 𝑦 ∙ 250𝑑𝑦 + ∫ 𝑒−

𝑦
ℎ ∙ 𝑦 ∙ 30𝑑𝑦

125,8721

−24,1279

−24,1279

−49,1279

} = 

=
𝑇0𝛼

𝐼
{250 ∙ |−ℎ𝑒−

𝑦
ℎ𝑦 − (ℎ2𝑒−

𝑦
ℎ)|

−49,1279

−24,1279

+ 30 ∙ |(−ℎ𝑒−
𝑦
ℎ) (𝑦 + ℎ)|

−24,1279

125,8721

} = 

= −𝑇0𝛼 ∙ 0,005036134  [1 𝑐𝑚⁄ ]                                                                                                                  ( 137 ) 

 

The compatibility stresses in the elastic field are computed according to equation ( 68 ) as follow: 

𝜎𝑒(𝑦) = 𝐸0[𝜓1𝑒 + 𝜓2𝑒 ∙ 𝑦 − 𝛼 ∙ 𝑇(𝑦)]                                                                                                 ( 138 ) 

which, by substituting expressions ( 136 ), ( 137 ) and ( 135 ) leads to: 

𝜎𝑒(𝑦) = 𝐸0𝑇0𝛼 [1,04004247 − 0,005036134𝑦 − 𝑒
−

𝑦

175]                                                              ( 139 ) 

 

The compatibility stresses distribution over the depth of the cross section, normalized with respect 

to 𝐸0𝛼𝑇0, is reported in Figure 31 while in Figure 32 is represented the total deformation of the 

cross section under the plane section hypothesis, normalized with respect to 𝛼𝑇0. 

 

Figure 31 – Compatibility stresses distribution over the depth of the cross section 
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The computations carried out are verified by checking that the equilibrium equations are satisfied: 

∫ 𝜌𝜎𝑑𝐴
𝐴

= 0                                                                                                                                              ( 140 ) 

which for the example under consideration are: 

∫ 𝜎𝑒𝑏𝑑𝑦 = 𝐸0𝑇0𝛼 {∫ (1,04004247 − 0,005036134𝑦 − 𝑒−
𝑦
175) 250𝑑𝑦

−𝑦𝐺
′+25

−𝑦𝐺
′

+
175−𝑦𝐺

′

−𝑦𝐺
′

 

+∫ (1,04004247 − 0,005036134𝑦 − 𝑒−
𝑦
175 ) 30𝑑𝑦

175−𝑦𝐺
′

−𝑦𝐺
′+25

} = 

= 𝐸0𝑇0𝛼 {∫ (260,0106175 − 1,2590335𝑦 − 250𝑒−
𝑦
175) 𝑑𝑦

−24,1279

−49,1279

+ 

+∫ (31,2012741 − 0,15108402𝑦 − 30𝑒−
𝑦
175) 𝑑𝑦

125,8721

−24,1279

} = 

= 𝐸0𝑇0𝛼 {|260,0106175𝑦 −
1,2590335

2
𝑦2 + 43750𝑒−

𝑦
175|

−49,1279

−24,1279

+ 

Figure 32 - Total deformation of the cross section 
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+ |31,2012741𝑦 −
0,15108402

2
𝑦2 + 5250𝑒−

𝑦
175|

−24,1279

125,8721

} = 

= −𝐸0𝑇0𝛼 ∙ 0,000379 ≅ 0                                                                                                                            ( 141 ) 

 

∫ 𝜎𝑒𝑦𝑏𝑑𝑦 = 𝐸0𝑇0𝛼 {∫ (260,0106175𝑦 − 1,2590335𝑦2 − 250𝑦𝑒−
𝑦
ℎ)𝑑𝑦 +

−24,1279

−49,1279

175−𝑦𝐺
′

−𝑦𝐺
′

 

+∫ (31,2012741𝑦 − 0,15108402𝑦2 − 30𝑦𝑒−
𝑦
ℎ)𝑑𝑦

125,8721

−24,1279

} = 

= 𝐸0𝑇0𝛼 {|
260,0106175

2
𝑦2 −

1,2590335

3
𝑦3 − 250 (−ℎ𝑒−

𝑦
ℎ) (𝑦 + ℎ)|

−49,1279

−24,1279

+ 

+ |
31,2012741

2
𝑦2 −

0,15108402

3
𝑦3 − 30 (−ℎ𝑒−

𝑦
ℎ) (𝑦 + ℎ)|

−24,1279

125,8721

} = 

= 𝐸0𝑇0𝛼 ∙ 0,09 ≅ 0                                                                                                                                          ( 142 ) 

 

The equilibrium equations are satisfied therefore, the compatibility stresses computed are correct. 

 

3.4.4 Example 4 

Consider the same homogeneous T-shaped cross section analysed in example 3, subject to a 

discontinuous non-linear temperature distribution over its depth. In particular the temperature 

distribution is given by a linear function of y coordinate in the top part of the cross section, by a 

null temperature in the superior portion of the web and by a constant negative temperature in the 

portion of the web below the centroid, as it can be appreciated in Figure 33. The aim of this 

example is to show the application of the method to the cases characterized by the complexity of 

a cross section with variable width along y coordinate, as well as by the complexity of a 

discontinuous non-linear temperature distribution. Both of these aspects will in fact imply the 

necessity of dividing the various integrations in multiple contributions, as it will be clear from the 

computations reported in the following. 

Having defined as 𝑦′𝑔 the distance of the centroid from the upper fiber of the cross section, equal 

to 49,1279 cm, the linear expression defining the temperature distribution acting on the flange of 

the T-shaped cross section is determined as follow: 

𝑇(𝑦) = 𝑎𝑦 + 𝑏                                                                                                                                           ( 143 ) 
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where 𝑎 and 𝑏 are found by imposing: 

{
𝑎(−𝑦𝐺

′ ) + 𝑏 = 𝑇1         

𝑎(−𝑦𝐺
′ + 25) + 𝑏 = 0

                                                                                                                            ( 144 ) 

which leads to: 

𝑇(𝑦) = 𝑇1 (1 −
𝑦𝐺
′

25
−

𝑦

25
)                                                                                                                          ( 145 ) 

 

 

Since the section is the same as the one considered in example 3, the moment of inertia with respect 

to x axis and the area of the cross section are the same previously reported. 

The components of the vector 𝜓𝑒 are computed applying equations ( 71 ) and ( 72 ) in which the 

integrals have to be subdivided in two contributions in order to deal with the discontinuity in the 

width of the section over the y coordinate as well as in the temperature distribution over the depth 

of the section. 

Figure 33 - Homogeneous T-shaped cross section subject to a discontinuous non-linear temperature 

distribution over its depth 
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𝜓1𝑒 =
𝛼

𝐴
∫𝑇𝑑𝐴
𝐴

=
𝛼

𝐴
{∫ 𝑇1 (1 −

𝑦𝐺
′

25
−
𝑦

25
)250𝑑𝑦

−𝑦𝐺
′+25

−𝑦𝐺
′

+∫ 𝑇230𝑑𝑦
175−𝑦𝐺

′

0

} = 

=
𝛼

𝐴
{∫ 6250 (1 −

𝑦𝐺
′

25
−
𝑦

25
)𝑑𝑦

−𝑦𝐺
′+25

−𝑦𝐺
′

−∫ 300𝑑𝑦
175−𝑦𝐺

′

0

} = 

=
𝛼

𝐴
{|6250𝑦 − 250𝑦𝐺

′ 𝑦 − 125𝑦2|
−𝑦𝐺

′

−𝑦𝐺
′+25

− |300𝑦|0
175−𝑦𝐺

′

} = 

= 𝛼 ∙ 3,754732093  [−]                                                                                                                          ( 146 ) 

 

𝜓2𝑒 =
𝛼

I
∫𝑇𝑦𝑑𝐴
𝐴

=
𝛼

𝐼
{∫ 𝑇1 (1 −

𝑦𝐺
′

25
−
𝑦

25
)𝑦250𝑑𝑦

−𝑦𝐺
′+25

−𝑦𝐺
′

+∫ 𝑇2𝑦30𝑑𝑦
175−𝑦𝐺

′

0

} = 

=
𝛼

𝐼
{∫ 6250 (𝑦 −

𝑦𝐺
′ 𝑦

25
−
𝑦2

25
)𝑑𝑦

−𝑦𝐺
′+25

−𝑦𝐺
′

−∫ 300𝑦𝑑𝑦
175−𝑦𝐺

′

0

} = 

=
𝛼

𝐼
{|6250

𝑦2

2
− 250𝑦𝐺

′
𝑦2

2
− 250

𝑦3

3
|
−𝑦𝐺

′

−𝑦𝐺
′+25

− |300
𝑦2

2
|
0

175−𝑦𝐺
′

} = 

= −𝛼 ∙ 0,1932229396  [1 𝑐𝑚⁄ ]                                                                                                             ( 147 ) 

 

The compatibility stresses in the elastic field are computed according to equation ( 68 ) which, due 

to the discontinuity in the temperature distribution, leads to the following expressions: 

for −𝑦𝐺
′ ≤ 𝑦 ≤ −𝑦𝐺

′ + 25  

𝜎𝑒(𝑦) = 𝐸0𝛼[27,88263209 + 0,8067770604𝑦]                                                                            ( 148 ) 

for −𝑦𝐺
′ + 25 ≤ 𝑦 ≤ 0  

𝜎𝑒(𝑦) = 𝐸0𝛼[3,754732093 − 0,1932229396𝑦]                                                                            ( 149 ) 

for 0 ≤ 𝑦 ≤ 175 − 𝑦𝐺
′   

𝜎𝑒(𝑦) = 𝐸0𝛼[13,754732093 − 0,1932229396𝑦]                                                                          ( 150 ) 

 

The compatibility stresses distribution over the depth of the cross section is reported in Figure 34 

by assuming 𝐸0 = 35000 𝑀𝑃𝑎 and 𝛼 = 10−5 °𝐶−1 which are values compatible with the ones 

assumed in the case of a reinforced concrete section. Moreover the total deformation of the cross 

section under the plane section hypothesis, computed according to equation ( 74 ), is represented 

in Figure 35 by assuming the same value of  𝛼. 
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Figure 34 – Compatibility stresses distribution over the depth of the cross section 

Figure 35 – Total deformation of the cross section 
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VISCOELASTIC FIELD 

 

4.1 Introduction 

The analysis in the viscoelastic field of homogeneous structures subject to non-linear temperature 

distributions over the depth of the cross section is presented in this chapter. As already mentioned 

in chapter 1, in fact, the aim of the present work is to evaluate the influence of the long-term 

behaviour of concrete on the stresses which arise in bridges due to thermal actions.  

Concrete when subject to sustained stresses, because of its viscoelastic behaviour, shows some 

delayed deformations which increase in time with decreasing velocity until they stabilize over the 

years. The dual aspect of this physical phenomenon is the relaxation of concrete, because of which 

the response of a concrete structure subject to a sustained imposed deformation is characterized by 

a reduction in time of the initial state of stress. Since, as already discussed, thermal actions on 

structures are taken into account in structural analysis by means of  imposed deformations, this 

second aspect, related to the time-dependent behaviour of concrete, causes the reduction in time 

of the stresses which arise in bridges due to temperature and which can be computed according to 

the procedure presented in chapter 3. The reduction in the stresses will be clearly shown in the 

present chapter by means of the comparison of the results obtained in the viscoelastic field at 10000 

days with the same results previously computed with reference to the elastic field. 

The theoretical background necessary to perform the analyses in the viscoelastic field presented in 

this chapter will be discussed in paragraph 4.2 in the framework of linear viscoelasticity, which 

holds for moderate stresses, not above 45-50% of the uniaxial concrete compressive strength. In 

particular, three alternative procedures for the computation of the stresses due to imposed 

deformations variable in time will be presented: the exact formulation, the algebraic approach and 

the Fundamental Theorem. According to what has been discussed in chapter 2 with reference to 

the climatic actions on structures, in order to properly define the temperature variation in time and, 

on consequence, the variation in time of the imposed deformations due to thermal actions, a 

sinusoidal time function should be considered. However this aspect leads to several complications 

in the application of the proposed procedures for the computation of the stresses in the viscoelastic 

field. These complications will be addressed in detail in chapter 5 while in the present chapter 

simpler variations in time of the temperature will be considered. 

As the exact formulation above mentioned leads to a Volterra Integral Equation, the numerical 

procedure implemented for its solution is discussed in detail in paragraph 4.3 together with the 

results obtained with it.  

Finally in paragraph 4.4 the application of the Fundamental Theorem, which provides an 

approximate solution of the problem under discussion, is shown. In particular, the Fundamental 

Theorem will be applied both to the case of a temperature distribution varying in time as well as 

4  
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to the case of a temperature distribution constant in time. The application of the theorem in the 

case of a temperature distribution varying in time will allow to compare the obtained results with 

those presented in paragraph 4.3 by means of the numerical integration of the Volterra Integral 

Equation. The application to the case of constant temperature in time is instead motivated by the 

fact that national and international code prescriptions do not provide temperature gradients varying 

in time and therefore the same procedure will be applied in chapter 6 for the analysis of two real 

bridge structures. 

 

4.2 Computation of stresses due to imposed deformations 

4.2.1 Exact formulation 

The computation in the viscoelastic field of the stress at time 𝑡, when the imposed deformations 

and the history of total deformations are known, is given by the following expression which derives 

from the application of the McHenry Principle of Superposition [19]: 

𝜎(𝑡) = ∫ 𝑑[𝜀(𝑡′) − 𝜀(𝑡′)] ∙ 𝑅(𝑡, 𝑡′)
𝑡

0

                                                                                                 ( 151 ) 

where the integration from 0 to 𝑡 represents a Stieltjes integral which allows to integrate also non-

continuous functions. The function 𝑅 = 𝑅(𝑡, 𝑡0) is referred as Relaxation Function and represents 

the stress at time 𝑡 > 𝑡0 generated by a unit deformation applied at 𝑡 = 𝑡0 and sustained in time. 

Moreover the Relaxation Function is monotonic, growing with 𝑡0 and decreasing with 𝑡.  

Equation ( 151 ) can be specialized for the problem under examination of the computation of 

stresses due to non-linear temperature distributions over the depth of the cross section as follow: 

𝜎(𝑦, 𝑡) = ∫ [𝜌𝑇𝑑𝜓(𝑡′) − 𝛼𝑑𝑇(𝑦, 𝑡′)] ∙ 𝑅(𝑡, 𝑡′)
𝑡

0

                                                                           ( 152 ) 

 

Imposing the equilibrium: 

∫ 𝜌 ∙ 𝜎
𝐴

𝑑𝐴 = 0                                                                                                                                       ( 153 ) 

and considering equation ( 152 ) for the expression of the stress 𝜎, it is found 

∫ ∫ (𝜌 𝜌𝑡𝑑𝜓(𝑡′) − 𝛼𝑑𝑇(𝑦, 𝑡′)𝜌) ∙ 𝑅(𝑡, 𝑡′)
𝑡

0𝐴

𝑑𝐴 = 0                                                                    ( 154 ) 

which, according to the definition of the elastic stiffness matrix 𝐵𝑒 and of the vector 𝑆(𝑡) presented 

in the previous chapters, can be written as follow: 

∫ (𝐵𝑒𝑑𝜓(𝑡′) − 𝑑𝑆(𝑡
′)) ∙

𝑅(𝑡, 𝑡′)

𝐸0
= 0

𝑡

0

                                                                                            ( 155 ) 
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The previous equation leads to: 

∫ (𝐵𝑒𝑑𝜓(𝑡
′) − 𝑑𝑆(𝑡′)) = 0

𝑡

0

                                                                                                             ( 156 ) 

which is equivalent to writing: 

𝐵𝑒𝜓(𝑡) = 𝑆(𝑡)                                                                                                                                        ( 157 ) 

from which it is finally found that: 

𝜓(𝑡) = 𝐵𝑒
−1𝑆(𝑡) = 𝜓𝑒(𝑡)                                                                                                                     ( 158 ) 

It has been demonstrated that the total deformation at time 𝑡 for the considered problem is the same 

as the one computed with reference to the elastic field. The vector 𝜓𝑒, known from the elastic 

solution, can be therefore adopted in the writing of equation ( 152 ) as follow: 

𝜎(𝑦, 𝑡) = ∫ 𝐸0 ∙ (𝜌
𝑇𝑑𝜓𝑒(𝑡

′) − 𝛼𝑑𝑇(𝑦, 𝑡′)) ∙
𝑅(𝑡, 𝑡′)

𝐸0
= ∫ 𝑑𝜎𝑒(𝑦, 𝑡

′) ∙
𝑅(𝑡, 𝑡′)

𝐸0

𝑡

0

𝑡

0

                 ( 159 ) 

The result just obtained expresses the Second Theorem of Linear Viscoelasticity which in fact 

holds for homogenous structures subject only to imposed deformations as the ones considered in 

the present chapter. 

In the particular case in which the temperature 𝑇 is independent from the time variable 𝑡, in order 

to compute the stress 𝜎(𝑦, 𝑡) it is sufficient to know the Relaxation Function 𝑅(𝑡, 𝑡0) for the 

specific initial time 𝑡0. 

𝜎(𝑦, 𝑡) = 𝜎𝑒(𝑦) ∙
𝑅(𝑡, 𝑡0)

𝐸0
                                                                                                                   ( 160 ) 

In the case in which 𝑇 is instead variable in time, the computation of the stresses 𝜎(𝑦, 𝑡) is more 

involved as the function 𝑅 has to be defined for all the 𝑡′ necessary to perform the numerical 

integration of equation ( 159 ). The complication in this process is due to the fact that the 

Relaxation Function has to be determined numerically and it is not provided by design codes. The 

reason behind this is the fact that the function 𝑅 cannot be determined experimentally since it 

would be necessary to perform tests applying a unit deformation constant in time but this is not 

affordable as concrete is characterized also by the presence of a shrinkage deformation variable in 

time. The Relaxation Function has therefore to be determined numerically as the solution of the 

following Volterra Integral Equation, also called Convolution Equation: 

∫
𝜕𝑅(𝑡′, 𝑡0)

𝜕𝑡′
∙ 𝐽(𝑡, 𝑡′) ∙ 𝑑𝑡′ = 1

𝑡

0

                                                                                                          ( 161 ) 

where the function 𝐽 = 𝐽(𝑡, 𝑡0) is referred as Compliance Function or Creep Function and in a dual 

way to what happens for the Relaxation Function expresses the total deformation produced at time 

𝑡 > 𝑡0 by a unit sustained stress applied at 𝑡 = 𝑡0. Moreover the Creep Function is monotonic, 
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growing with 𝑡 and decreasing with 𝑡0. Differently from what happens for the Relaxation Function 

the Creep Function can be determined experimentally and its analytical expression is found in 

design codes.  

On the basis of these observations, in order to obtain a more immediate procedure for the 

computation of the stresses 𝜎(𝑦, 𝑡) it is possible to rearrange equation ( 159 ) in the following way: 

∫ 𝑑𝜎(𝑦, 𝑡′) ∙ 𝐽(𝑡, 𝑡′) = 𝜌𝑇𝜓𝑒(𝑡) − 𝛼𝑑𝑇(𝑦, 𝑡)
𝑡

0

                                                                                ( 162 ) 

which is written in extended form as follow 

∫ 𝑑𝜎(𝑦, 𝑡′) ∙ 𝐽(𝑡, 𝑡′) = 𝜓𝑒1(𝑡) + 𝑦 ∙ 𝜓𝑒2(𝑡) − 𝛼𝑑𝑇(𝑦, 𝑡)
𝑡

0

                                                            ( 163 ) 

Fixing a value 𝑦̅ of y coordinate, equation ( 163 ) represents a Volterra Integral Equation whose 

solution provides the stress 𝜎(𝑦̅, 𝑡). Solving the integral equation fixing different values of 𝑦̅ it is 

possible to determine, point by point, the function 𝜎(𝑦, 𝑡) in the interval 𝑦𝑠𝑢𝑝 ≤ 𝑦 ≤ 𝑦𝑖𝑛𝑓 where 

𝑦𝑠𝑢𝑝 and 𝑦𝑖𝑛𝑓 are respectively the y coordinate of the upper and lower fibers of the cross section. 

The numerical technique implemented in a computer code for the solution of the Volterra Integral 

Equation above mentioned will be discussed in detail in paragraph 4.3. 

 

4.2.2 Algebraic approach 

The exact formulation for the computation of the stresses in the viscoelastic field, which is based 

on the solution of the Volterra Integral Equation, can be substituted by an approximate solution 

with the aim of eliminating the mathematical complexity connected to the solution of integral 

equations. In order to do this, in the past various attempts have been done to transform into an 

algebraic form the Volterra integral form of the constitutive law for a linear viscoelastic material, 

expressed by: 

∫ 𝑑𝜎(𝑡′) ∙ 𝐽(𝑡, 𝑡′)
𝑡

0

= 𝜀(𝑡) − 𝜀(𝑡)                                                                                                        ( 164 ) 

which is specialized for the problem under examination according to equation ( 163 ). Among 

these attempts the most refined one is due to Trost (1967) [20], successively manipulated by Bazant 

(1972) [21], then introduced in the CEB-FIP Model Code 1990 [22] and at present time suggested 

by various normative codes such as the Eurocode 2 [23]. 

The basic simplifying hypothesis of the method consists in supposing that the deformation of 

concrete due to a generic stress history starting at time 𝑡0 can be expressed in the subsequent form: 

 𝜀(𝑡) = 𝑎 + 𝑏 ∙ 𝜑(𝑡, 𝑡0)                                                                                                                         ( 165 ) 

where 𝑎 and 𝑏 are two arbitrary constants and 𝜑(𝑡, 𝑡0) is the creep coefficient which is defined as 

the ratio between the creep deformation and the initial elastic deformation at time 𝑡0. 
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Since the creep coefficient can be expressed as follow: 

 𝜑(𝑡, 𝑡0) = 𝐸(𝑡0) ∙ 𝐽(𝑡, 𝑡0) − 1                                                                                                            ( 166 ) 

by substituting this expression in equation ( 165 ) it is obtained: 

 𝜀(𝑡) = (𝑎 − 𝑏) + 𝑏 ∙ 𝐸(𝑡0) ∙ 𝐽(𝑡, 𝑡0)                                                                                                 ( 167 ) 

It is therefore immediate to evaluate the stress 𝜎(𝑡) associated to the strain 𝜀(𝑡) by applying the 

basic concepts of linear viscoelasticity: 

 𝜎(𝑡) = (𝑎 − 𝑏) ∙ 𝑅(𝑡, 𝑡0) + 𝑏 ∙ 𝐸(𝑡0)                                                                                               ( 168 ) 

The previous equation, written for 𝑡 = 𝑡0, since 𝑅(𝑡0, 𝑡0) = 𝐸(𝑡0) becomes: 

  𝜎(𝑡0) = 𝑎 ∙ 𝐸(𝑡0)                                                                                                                                 ( 169 ) 

and, as at the initial time the material exhibits an elastic behavior, it follows that: 

  
𝜎(𝑡0)

𝐸(𝑡0)
= 𝑎 = 𝜀(𝑡0)                                                                                                                                  ( 170 ) 

which, substituted in equation ( 168 ) leads to: 

 𝜎(𝑡) = 𝜀(𝑡0) ∙ 𝑅(𝑡, 𝑡0) + 𝑏 ∙ [𝐸(𝑡0) − 𝑅(𝑡, 𝑡0)]                                                                             ( 171 ) 

From previous equation it is finally found that: 

 𝑏 =
[𝜀(𝑡)−𝜀(𝑡0)]

𝜑(𝑡,𝑡0)
                                                                                                                                        ( 172 ) 

Combining equation ( 171 ) and equation ( 172 ) it is obtained: 

𝜎(𝑡) = 𝜀(𝑡0) ∙ 𝑅(𝑡, 𝑡0) +
[𝜀(𝑡) − 𝜀(𝑡0)]

𝜑(𝑡, 𝑡0)
∙ [𝐸(𝑡0) − 𝑅(𝑡, 𝑡0)]                                                       ( 173 ) 

which, solved with respect to 𝜀(𝑡), provides: 

𝜀(𝑡) = 𝜎(𝑡) ∙
𝜑(𝑡, 𝑡0)

[𝐸(𝑡0)−𝑅(𝑡, 𝑡0)]
+ 𝜀(𝑡0) ∙ [1 −

𝑅(𝑡, 𝑡0) ∙ 𝜑(𝑡, 𝑡0)

𝐸(𝑡0)−𝑅(𝑡, 𝑡0)
]                                                   ( 174 ) 

Equation ( 174 ) represents the algebraic form of the viscoelastic creep law when the simplifying 

hypothesis expressed by equation ( 165 ) is made. Moreover equation ( 174 ) can be written in a 

more concise way by introducing the following equality: 

𝜑(𝑡, 𝑡0)

[𝐸(𝑡0) − 𝑅(𝑡, 𝑡0)]
=
1 + 𝜒(𝑡, 𝑡0) ∙ 𝜑(𝑡, 𝑡0)

𝐸(𝑡0)
                                                                                     ( 175 ) 

in which the function 𝜒(𝑡, 𝑡0), known as ageing coefficient, is defined as follow: 

𝜒(𝑡, 𝑡0) =
1

1 −
𝑅(𝑡, 𝑡0)
𝐸(𝑡0)

−
1

𝜑(𝑡, 𝑡0)
                                                                                                      ( 176 ) 
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From equation ( 175 ) it is possible to observe that the Relaxation Function 𝑅(𝑡, 𝑡0) can be 

expressed as a function of 𝜒(𝑡, 𝑡0). Therefore, by performing the inversion of equation ( 175 ) it is 

found: 

𝐸(𝑡0) − 𝑅(𝑡, 𝑡0)

𝜑(𝑡, 𝑡0)
=

𝐸(𝑡0)

1 + 𝜒(𝑡, 𝑡0) ∙ 𝜑(𝑡, 𝑡0)
                                                                                        ( 177 ) 

from which derives: 

R(t, t0) = E(t0) ∙ [1 −
φ(t, t0)

1 + χ(t, t0) ∙ φ(t, t0)
]                                                                                 ( 178 ) 

By inserting equations ( 175 ) and ( 178 ) in equation ( 174 ) it is finally obtained: 

ε(t) =
σ(t)

E(t0)
∙ [1 + χ(t, t0) ∙ φ(t, t0)] +

σ(t0)

E(t0)
∙ φ(t, t0) ∙ [1 − χ(t, t0)]                                    ( 179 ) 

Equation ( 179 ) is the final form of Trost algebraic approach which can be generalized by adding 

the imposed deformation 𝜀(̅𝑡): 

ε(t) =
σ(t)

E(t0)
∙ [1 + χ(t, t0) ∙ φ(t, t0)] +

σ(t0)

E(t0)
∙ φ(t, t0) ∙ [1 − χ(t, t0)] + 𝜀(𝑡)                       ( 180 ) 

 

For sake of simplicity in the writing of equation ( 180 ) it is possible to adopt the following 

convention: 

{
 
 
 

 
 
 
ε(t) = ε         
𝜎(𝑡) = 𝜎       
𝜑(𝑡, 𝑡0) = 𝜑

𝜒(𝑡, 𝑡0) = 𝜒  

𝐸(𝑡0) = 𝐸     

𝜎(𝑡0) = 𝜎0    

𝜀 (𝑡) = 𝜀       

                                                                                                                                         ( 181 ) 

so it is obtained: 

ε =
σ

E
∙ [1 + χ ∙ φ] +

𝜎0
𝐸
∙ φ ∙ [1 − 𝜒] + ε                                                                                          ( 182 ) 

Equation ( 182 ) represents a pseudoelastic form and assuming: 

E′ =
𝐸

1 + 𝜒 ∙ 𝜑
                                                                                                                                        ( 183 ) 

𝜀̿ =  
𝜎0
𝐸
∙ 𝜑 ∙ [1 − 𝜒]                                                                                                                               ( 184 ) 
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it is possible to write: 

ε =
σ

E′
+ (𝜀̿ + ε)                                                                                                                                      ( 185 ) 

This equation is an elastic form referred to the varied modulus 𝐸′ in which is also introduced the 

additional imposed deformation 𝜀 ̿depending on the initial state of strain of concrete.  

By solving equation ( 182 ) with respect to 𝜎 it is finally obtained: 

σ =
E ∙ (ε − ε)

1 + χ ∙ φ
− σ0 ∙

φ ∙ (1 − χ)

1 + χ ∙ φ
                                                                                                      ( 186 ) 

which can be adopted to obtain an approximate solution of the problem under examination of the 

computation of stresses due to non-linear temperature distributions in the viscoelastic field. 

The approach to the long term analysis of viscoelastic structures based on the work of Trost, 

finalized by Bazant in the so called Age-Adjusted-Effective-Modulus-Method (AAEMM), here 

presented, allows to obtain results characterized by a good precision for engineering practice. 

However, even though the AAEMM introduces a strong simplification of the viscoelastic 

constitutive law, its application to the analysis of complex structures is not immediate as the related 

algebraic form of the constitutive law contains an additional imposed deformation 𝜀,̿ proportional 

to the initial one. This difficulty can be overcome by means of the application of the Fundamental 

Theorem, which will be discussed in the following paragraph.  

 

4.2.3 Fundamental Theorem 

The Fundamental Theorem, demonstrated by Mola [24], shows that the application of the Age-

Adjusted-Effective-Modulus-Method can be operated by superposing three elastic solutions 

avoiding to take into consideration the additional imposed deformation 𝜀 ̿given by equation ( 184 ), 

as it will be shown in the following. This theorem represents therefore an alternative form of the 

AAEMM more suitable for the engineering practice maintaining however the same level of 

accuracy. 

Consider the algebraic approach presented in the previous paragraph: 

ε =
σ

E
∙ (1 + χ ∙ φ) +

σ0
E
∙ 𝜑 ∙ (1 − 𝜒)                                                                                                ( 187 ) 

or equivalently: 

σ =
E ∙ 𝜀

1 + χ ∙ φ
− σ0 ∙

φ ∙ (1 − χ)

1 + χ ∙ φ
                                                                                                         ( 188 ) 
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Considering equation ( 188 ), by virtue of the principle of superposition it is possible to express 𝜎 

as the sum of two components: 

σ = 𝜎1 + 𝜎2                                                                                                                                             ( 189 ) 

with: 

σ1 =
𝐸 ∙ 𝜀

1 + χ ∙ φ
                                                                                                                                        ( 190 ) 

σ2 = −σ0 ∙
φ ∙ (1 − χ)

1 + χ ∙ φ
                                                                                                                         ( 191 ) 

where σ1 represents the stress produced at time 𝑡 by the deformation 𝜀, computed assuming the 

effective modulus 𝐸′ while σ0 is the initial stress computed assuming the elastic modulus 𝐸(𝑡0). 

To solve equation ( 191 ) it is assumed: 

𝜎2 = 𝜆
𝜎0

1 + 𝜒𝜑
+ 𝜇𝜎0                                                                                                                           ( 192 ) 

where: 

𝜎0
(1 + 𝜒 ∙ 𝜑)

= ε0 ∙
𝐸

(1 + 𝜒 ∙ 𝜑)
= σ10                                                                                                 ( 193 ) 

represents the elastic initial stress generated by the initial deformation 𝜀0 assuming the effective 

modulus 𝐸′ while 𝜆 = 𝜆(𝑡, 𝑡0) and 𝜇 = 𝜇(𝑡, 𝑡0) are two functions to be determined. 

By equating expressions ( 191 ) and ( 192 ): 

λ

1 + χφ
+ μ = −

φ(1 − χ)

1 + χφ
                                                                                                                   ( 194 ) 

the polynomial identity requires: 

μ = −
1 − χ

χ
                                                                                                                                               ( 195 ) 

λ = −μ                                                                                                                                                          ( 196 ) 

from which the following expression of 𝜎2 derives: 

σ2 = μ(−σ10 + σ0)                                                                                                                                  ( 197 ) 

and therefore equation ( 189 ) finally becomes: 

σ = σ1 + μ(σ0 − σ10)                                                                                                                          ( 198 ) 

Equation ( 198 ) is an alternative form of equation ( 188 ) and represents the formulation of the 

Fundamental Theorem which shows that the state of stress in the viscoelastic field can be obtained 

combining three elastic solutions by means of a special time function depending on the ageing 
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coefficient 𝜒. The advantage of requiring only elastic computations is what makes this method 

particularly convenient in the practical applications as it will be shown through the examples 

provided in paragraph 4.4. regarding the problem of the computation of stresses due to non-linear 

temperature distributions. 

Proceeding in a dual way, starting from equation ( 187 ), the Fundamental Theorem can also be 

formulated as follow: 

ε = ε1 + μ(ε0 − ε10)                                                                                                                             ( 199 ) 

where ε1 is the elastic deformation produced by the stress 𝜎 acting at time 𝑡 assuming the effective 

modulus 𝐸′, ε10 is the initial elastic deformation evaluated assuming the effective modulus 𝐸′ and 

finally ε0 represents the initial deformation computed assuming the elastic modulus 𝐸(𝑡0). 

In the particular case in which the applied loads are constant in time it is immediate to observe that 

σ1(t) = σ10                                                                                                                                              ( 200 ) 

ε1(t) = ε10                                                                                                                                               ( 201 ) 

and therefore equations ( 198 ) and ( 199 ) are simplified as follow: 

σ = σ1 ∙ (1 − μ) + μ ∙ σ0                                                                                                                      ( 202 ) 

ε = ε1(1 − μ) + μ ∙ ε0                                                                                                                           ( 203 ) 

 

It is worth noting that, being an alternative form of the AAEMM, the Fundamental Theorem is 

also based on the simplifying hypothesis expressed by equation ( 165 ) that the deformation 𝜀(𝑡) 
is a linear function in the creep coefficient. Therefore in the case of the problem under examination 

of the computation of stresses due to non-linear temperature distributions in the viscoelastic field, 

the Fundamental Theorem provides, in general, an approximate solution. The results obtained with 

the Fundamental Theorem are in fact exact just in the case in which the function expressing the 

time variation of  temperature results to be a linear function of the coefficient 𝜑(𝑡, 𝑡0). This 

particular condition is satisfied by the case of temperature distribution constant in time for which 

therefore the solution provided by the Fundamental Theorem is exact. 

In the framework of the analysis of the stresses which arise in bridges due to non-linear temperature 

distributions the application of the Fundamental Theorem allows to write: 

𝜓 = 𝜓e
(1)
+ μ ∙ (𝜓e

(0) − 𝜓e
(1,0))                                                                                                          ( 204 ) 

where the quantities with the superscript (1) are computed in the elastic field adopting the effective 

modulus 𝐸′ while those characterized by the superscript (1,0) are the analogous ones computed 

making reference to the external action evaluated at time 𝑡0. Finally the quantities indicated by the 

superscript (0) are those evaluated in the elastic field at initial time.  
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Considering the analyses performed in the elastic field, which are described in chapter 3, it is 

possible to observe that the expressions of the two components of the vector 𝜓𝑒 are independent 

from the elastic modulus of concrete: 

𝜓1𝑒 =
𝛼

𝐴
 ∫𝑇𝑑𝐴
𝐴

                                                                                                                                     ( 205 ) 

𝜓2𝑒 =
𝛼

I
∫𝑇𝑦𝑑𝐴
𝐴

                                                                                                                                    ( 206 ) 

therefore it is possible to write: 

𝜓e
(1)
= 𝜓𝑒                                                                                                                                                ( 207 ) 

𝜓e
(1,0)

= 𝜓𝑒
(0)
                                                                                                                                           ( 208 ) 

from which it follows: 

𝜓 = 𝜓𝑒                                                                                                                                                      ( 209 ) 

As already discussed in paragraph 4.2.1 this result is in agreement with the Second Theorem of 

Linear Viscoelasticity which in fact holds for homogenous structures subject only to imposed 

deformations as the ones considered in the present chapter. 

Moreover, considering again the analyses performed in the viscoelastic field, it is possible to write: 

𝜎𝑒
(1)
=

𝜎𝑒
1 + 𝜒 ∙ 𝜑

                                                                                                                                     ( 210 ) 

𝜎𝑒
(1,0)

= 
𝜎𝑒
(0)

1 + 𝜒 ∙ 𝜑
                                                                                                                                 ( 211 ) 

and introducing the following quantity: 

𝜆(𝑡) =
𝑇(𝑦, 𝑡)

𝑇(𝑦, 𝑡0)
                                                                                                                                       ( 212 ) 

equation ( 210 ) can be written as follow: 

𝜎𝑒
(1)
= 𝜆 ∙

𝜎𝑒
(0)

1 + 𝜒 ∙ 𝜑
                                                                                                                               ( 213 ) 

Substituting equation ( 211 ) and ( 213 )in equation ( 198 ) it is obtained: 

σ =   σe
(0)
∙ [

𝜆

1 + 𝜒 ∙ 𝜑
+ 𝜇 ∙ (1 −

1

1 + 𝜒 ∙ 𝜑
)]                                                                                 ( 214 ) 
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which after some simple manipulations, introducing the expression previously found for 𝜇, is 

written as follow: 

σ =   σe
(0)
∙ [
𝜆 + 𝜒 ∙ 𝜑

1 + 𝜒 ∙ 𝜑
−

𝜑

1 + 𝜒 ∙ 𝜑
]                                                                                                    ( 215 ) 

Since, as already discussed, the Fundamental Theorem provides an approximate solution for the 

problem under examination, equation ( 215 ) represents the approximate form of equation( 159 ). 

 

4.3 Numerical solution of the Volterra Integral Equation 

4.3.1 Algorithm for the computation of the stresses 

In order to solve the Volterra Integral equation ( 163 ) found with reference to the exact 

formulation, it has been implemented a MATLAB code which allows to perform its numerical 

integration. The numerical procedure implemented is the one proposed in the CEB Bulletin 142-

142bis [25] and consists in the step-by-step solution of the Volterra Integral Equation for the 

determination of the stress response to a given strain history by approximating the Stieltjes 

hereditary integrals with finite sums. In particular, two different numerical approximations can be 

considered: the first one is based on the rectangular rule while the second one is based on the 

trapezoidal rule. In both cases, as it is well known, the accuracy of the numerical solution increases 

with the reduction of the amplitude of the considered time steps. For practical applications the 

CEB Bulletin suggests the second kind of approximation, considering a time step definition as the 

one described in the following paragraph.  

The trapezoidal rule is written as follow: 

𝜀𝑡𝑜𝑡(𝑡𝑘) − 𝜀𝑛(𝑡𝑘) =∑
1

2
[𝐽(𝑡𝑘, 𝑡𝑖) + 𝐽(𝑡𝑘, 𝑡𝑖−1)]∆𝜎(𝑡𝑖)

𝑘

𝑖=1

                                                             ( 216 ) 

and from it derives the following recurrent algebraic formula which has been implemented in a 

MATLAB code: 

for 𝑘 = 1 

∆𝜎(𝑡1) = 2
𝜀𝑡𝑜𝑡(𝑡1) − 𝜀𝑛(𝑡1)

𝐽(𝑡1, 𝑡1) + 𝐽(𝑡1, 𝑡0)
 

                                                                                                                                                                      ( 217 ) 

for 𝑘 > 1 

∆𝜎(𝑡𝑘) =

= 2
∆𝜀𝑡𝑜𝑡(𝑡𝑘) − ∆𝜀𝑛(𝑡𝑘) − ∑

∆𝜎(𝑡𝑖)
2 [ 𝐽(𝑡𝑘, 𝑡𝑖) + 𝐽(𝑡𝑘, 𝑡𝑖−1) − 𝐽(𝑡𝑘−1, 𝑡𝑖) − 𝐽(𝑡𝑘−1, 𝑡𝑖−1)]

𝑘−1
𝑖=1

𝐽(𝑡𝑘, 𝑡𝑘) + 𝐽(𝑡𝑘, 𝑡𝑘−1)
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where: 

𝜀𝑡𝑜𝑡 = total deformation 

𝜀𝑛= imposed deformation 

and the stress at time 𝑡 = 𝑡𝑘 is finally obtained as follow: 

𝜎(𝑡𝑘) =∑∆𝜎(𝑡𝑖)

𝑘

𝑖=1

                                                                                                                                ( 218 ) 

It is important to point out that the implemented MATLAB code has been conceived for strain 

histories characterized by an instantaneous variation at 𝑡 = 𝑡1 ≡ 𝑡0. This choice implies the 

necessity to impose that 𝑡0 is equal to 𝑡1 in the algorithm given by equation ( 217 ). 

For what concerns the definition of the Creep Function 𝐽(𝑡, 𝑡0) adopted in the procedure, it is given 

by the following expression: 

𝐽(𝑡, 𝑡0) =
1

𝐸(𝑡0)
∙ [1 + 𝜑(𝑡, 𝑡0)]                                                                                                          ( 219 ) 

where the creep coefficient 𝜑(𝑡, 𝑡0) has been computed according to the formulation suggested by 

the CEB-FIP Model Code 1990 [22]: 

𝜑(𝑡, 𝑡0) = 𝜑0 ∙ 𝛽𝑐(𝑡 − 𝑡0)                                                                                                                    ( 220 ) 

where: 

- 𝜑0 is the notional creep coefficient - eq. ( 221 ) 

- 𝛽𝑐 is the coefficient describing the development of creep with time after loading - eq. 

( 225 )  

- 𝑡 is the age of concrete in days at the considered moment 

- 𝑡0 is the age of concrete in days at loading 

The notional creep coefficient may be estimated from: 

𝜑0 = 𝜑𝑅𝐻 ∙ 𝛽(𝑓𝑐𝑚) ∙ 𝛽(𝑡0)                                                                                                                   ( 221 ) 

with: 

𝜑𝑅𝐻 = 1 +
1 − 𝑅𝐻/𝑅𝐻0
0,46 ∙ (ℎ ℎ0⁄ )1/3

                                                                                                               ( 222 ) 

𝛽(𝑓𝑐𝑚) =
5,3

(𝑓𝑐𝑚 𝑓𝑐𝑚0⁄ )0,5
                                                                                                                      ( 223 ) 
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𝛽(𝑡0) =
1

0,1 + (𝑡0 𝑡1⁄ )0,2
                                                                                                                     ( 224 ) 

where: 

- ℎ=2𝐴𝑐/𝑢 is the notional size of the member [mm], where 𝐴𝑐 is the cross section area and 

u is the perimeter of the member in contact with the atmosphere 

- 𝑓𝑐𝑚 is the mean compressive strength of concrete at the age of 28 days [MPa]  

- 𝑓𝑐𝑚0= 10 MPa 

- 𝑅𝐻 is the relative humidity of the ambient environment [%] 

- 𝑅𝐻0=100% 

- ℎ0=100 mm 

- 𝑡1=1day 

The development of creep with time is given by: 

𝛽𝑐(𝑡 − 𝑡0) = [
(𝑡 − 𝑡0) 𝑡1⁄

𝛽𝐻 + (𝑡 − 𝑡0) 𝑡1⁄
]

0,3

                                                                                                   ( 225 ) 

with: 

𝛽𝐻 = 150 ∙ {1 + (1,2
𝑅𝐻

𝑅𝐻0
)
18

}
ℎ

ℎ0
+ 250 ≤ 1500                                                                       ( 226 ) 

 

It is interesting to observe that the implemented algorithm, in the particular case of a constant 

prescribed unit strain, allows to determine the Relaxation Function 𝑅(𝑡, 𝑡0) which is in fact given 

by the solution of the Volterra Integral Equation ( 161 ). An important benchmark to test if the 

implemented MATLAB code provides correct results has been therefore the possibility to 

determine the Relaxation Function from the Creep Function. 

In order to do this the following parameters, necessary to compute the Creep Function 𝐽(𝑡, 𝑡0), 
have been assumed: 

- 𝐶40/50 concrete 

- ℎ = 200 mm 

- 𝑅𝐻 = 0,7 

- 𝑡0 = 28 days 

The values assumed by the Creep Function computed according to equation ( 219 ) on the basis of 

these parameters are plotted in non-dimensional form in Figure 36. 
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Adopting the Creep Function obtained in this way, the algorithm implemented in the MATLAB 

code has been applied considering a constant prescribed unit strain: 

{
𝑓𝑜𝑟 𝑡 ≤ 𝑡0:  𝜀𝑡𝑜𝑡(𝑡) − 𝜀𝑛(𝑡) = 0

𝑓𝑜𝑟 𝑡 ≥ 𝑡1:  𝜀𝑡𝑜𝑡(𝑡) − 𝜀𝑛(𝑡) = 1
                                                                                                         ( 227 ) 

with 𝑡0 ≡ 𝑡1 

and thus: 

{
𝜀𝑡𝑜𝑡(𝑡1) − 𝜀𝑛(𝑡1) = ∆𝜀𝑡𝑜𝑡(𝑡1) = 1      

∆𝜀𝑡𝑜𝑡(𝑡𝑘) − ∆𝜀𝑛(𝑡𝑘) = 0    𝑝𝑒𝑟 𝑘 > 1
                                                                                               ( 228 ) 

In this case the stress response is, by definition, 𝜎(𝑡𝑘) = 𝑅(𝑡𝑘, 𝑡0) and therefore the algorithm 

provides the Relaxation Function whose plot is reported in Figure 37. The obtained result is 

satisfactory as the curve representing the Relaxation Function has the expected shape; moreover it 

is worth noting that the function value for 𝑡 = 𝑡0, normalized with respect to the value of the elastic 

modulus of concrete at 28 days, is exactly equal to 1. This result is in agreement with the fact that 

the assumed value of 𝑡0 was 28 days and therefore 𝑅(𝑡0, 𝑡0) = 𝐸(𝑡0) = 𝐸𝑐,28. 

 

 

Figure 36 – Creep Function 𝐽(𝑡, 𝑡0) 
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4.3.2 Time step definition 

For what concerns the time step definition, for practical computations, the CEB Bulletin suggests 

to adopt increasing time steps which leads to an adequate level of accuracy associated with a 

minimum of computation time for usual strain histories. 

In particular, it is possible to determine the time step (𝑡𝑘 − 𝑡0) according to a geometric 

progression. This translates into the following relation: 

(𝑡𝑘 − 𝑡0)

(𝑡𝑘−1 − 𝑡0)
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑞                                                                                                               ( 229 ) 

and putting: 

(𝑡𝑘 − 𝑡0) = 10
1
𝑚(𝑡𝑘−1 − 𝑡0)                                                                                                                ( 230 ) 

it is possible to determine the expression for the computation of the generic time step ∆𝑡𝑘: 

∆𝑡𝑘 = 10
1
𝑚 ∙ ∑∆𝑡𝑖

𝑘−1

𝑖=2

−∑∆𝑡𝑖

𝑘−1

𝑖=2

                                                                                                            ( 231 ) 

Figure 37– Relaxation Function 𝑅(𝑡, 𝑡0) 
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It is worth noting that the index of the summations in the above expression start from 𝑖 = 2. This 

choice is justified by the fact that, as already mentioned, the implemented algorithm is conceived 

for strain histories characterized by an instantaneous variation at 𝑡 = 𝑡1 ≡ 𝑡0. 

Moreover the values adopted for ∆𝑡2 and for 𝑚, are the ones suggested by the CEB Bulletin when  

computing the Relaxation Function associated to a Creep Function of the type of the CEB 1978 

creep model: 

∆𝑡2 = 𝑡2 − 𝑡1 = 0,05 𝑑𝑎𝑦 

𝑚 = 16   (i.e. 𝑞 ≅ 1,15) 

By making this choice, the number of steps required to cover a time span of about 30 years is equal 

to 80 ÷ 90, as it has been confirmed by the analyses performed with the MATLAB code 

implemented. 

The amplitude of the time step in days with respect to the number of the considered step is reported 

in the following graph, which is obtained considering a time span for the integration equal to 10000 

days (i.e. ≅ 30 years):  

 

 

The graph reported in Figure 38 clearly shows the increase in the time step amplitudes, which is 

strongly evident starting from the time step number 50, reaching time step amplitudes of more than 

1300 days. It is important to highlight the fact that time step amplitudes of this magnitude are not 

Figure 38 – Time step amplitude according to CEB bulletin 142-142bis 
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suitable for the integration of the Volterra Integral Equation when complex strain histories are 

considered. In fact the values of the time step amplitudes here reported have been obtained in the 

framework of the procedure suggested by the CEB Bulletin for usual strain histories and a specific 

discussion in order to integrate more complex strain histories, such as the ones associated to the 

periodic time variation of temperature distributions, will be provided in chapter 5. 

 

4.3.3 Example of application 

An example of application of the MATLAB code implemented in order to solve the Volterra 

Integral Equation ( 163 ) is here provided. In particular it is considered the problem presented in 

paragraph 3.4.1 with reference to the elastic field. The same cross section and the same static 

schemes have been analysed in the viscoelastic field according to the exact formulation presented 

in paragraph 4.2.1, allowing to obtain the compatibility stresses and the additional stresses due to 

the redundant restraints at 10000 days. These stresses distributions over the depth of the cross 

section are found by performing several numerical integrations of the Volterra Integral Equation 

( 13 ) by means of the implemented algorithm, each time fixing a different value 𝑦̅ of y coordinate, 

allowing to determine, point by point, the function 𝜎(𝑦, 𝑡). 

The various data assumed for the present example are the following: 

- 𝐶40/50 concrete 

- ℎ = 200 mm (notional size of the member)  

- 𝑅𝐻 = 0,7 

- 𝑡0 = 28 days 

- 𝛼 = 10−5 °𝐶−1 

where it has been assumed for the value of the notional size of the member an admissible, even 

though arbitrary, value as the cross section dimensions have been generically defined as 𝑏 and ℎ.  

For what concerns the non-linear temperature distribution along the y coordinate it is given by: 

𝑇(𝑦) = 𝑇0 (−2
𝑦2

ℎ2
+ 3

𝑦

ℎ
+ 1)                                                                                                                ( 232 ) 

but in order to perform the analysis in the viscoelastic field it is also necessary to know its 

variability in time. As already discussed in the introduction of the present chapter, the formulation 

here adopted is valid only for simple variations in time of the temperature while specific 

considerations will be done in chapter 5 in order to extend the formulation to the case of  the 

periodic time variation of temperature distributions. Because of this, in order to express the time 

variation of 𝑇(𝑦) for the present example, it has been considered a parameter 𝑇0 in equation( 232 ) 

which varies in time according to an exponential decreasing law: 

𝑇0(𝑡) = 20 ∙ 𝑒
−
𝑡−𝑡0
𝑡   [°𝐶]                                                                                                                         ( 233 ) 
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According to the Second Theorem of Linear Viscoelasticity the total deformation at time 𝑡 is the 

same as the one computed with reference to the elastic field. The components of the vector 𝜓 are 

therefore the same as the ones of the vector 𝜓𝑒 previously computed: 

𝜓1(𝑡) = 𝜓1𝑒(𝑡) =
5

6
𝛼𝑇0(𝑡)                                                                                                                 ( 234 ) 

𝜓2(𝑡) = 𝜓2𝑒(𝑡) = 3
𝛼𝑇0(𝑡)

ℎ
                                                                                                                ( 235 ) 

The total deformation, which has to be provided as an input value to the implemented MATLAB 

code, is computed as follow: 

𝜀𝑡𝑜𝑡(𝑡) = 𝜓1(𝑡) + 𝜓2(𝑡) ∙ 𝑦                                                                                                                 ( 236 ) 

while the imposed deformation is given by: 

𝜀𝑛(𝑡) = 𝛼𝑇(𝑡)                                                                                                                                         ( 237 ) 

 

The distribution of compatibility stresses over the depth of the cross section computed at 10000 
days by means of the implemented algorithm (𝜎10000) is reported in Figure 40 in comparison with 

the same distribution computed with reference to the elastic field (𝜎0). 

 

Figure 39 – Time variation of the parameter 𝑇0 



93 
 

  

In order to obtain the total stresses distribution over the depth of the cross section at 10000 days it 

is necessary to compute also the additional stresses distribution at the same time. The expressions 

of the additional stresses computed in the elastic field with reference to the two different static 

schemes considered for the example under analysis are given by: 

∆𝜎𝑠𝑐ℎ𝑒𝑚𝑒 1(𝑦, 𝑡) = −𝐸0𝜓1𝑒(𝑡) − 𝐸0𝜓2𝑒(𝑡) ∙ 𝑦 = 𝐸0𝛼𝑇0(𝑡) ∙ (−
5

6
− 3

𝑦

ℎ
)                              ( 238 ) 

∆𝜎𝑠𝑐ℎ𝑒𝑚𝑒 2(𝑦, 𝑡) = −
3

2
𝐸0𝜓2𝑒(𝑡) ∙ 𝑦 = 𝐸0𝛼𝑇0(𝑡) ∙ (−

9

2

𝑦

ℎ
)                                                        ( 239 ) 

from which it is possible to obtain the total deformations to be provided as an input to the 

implemented algorithm: 

𝜀𝑡𝑜𝑡,𝑠𝑐ℎ𝑒𝑚𝑒 1(𝑡) = −𝜓1𝑒(𝑡) − 𝜓2𝑒(𝑡) ∙ 𝑦 = 𝛼 ∙ 𝑇0(𝑡) ∙ (−
5

6
− 3

𝑦

ℎ
)                                          ( 240 ) 

𝜀𝑡𝑜𝑡,𝑠𝑐ℎ𝑒𝑚𝑒 2(𝑡) = −
3

2
𝜓2𝑒(𝑡) ∙ 𝑦 = 𝛼 ∙ 𝑇0(𝑡) ∙ (−

9

2

𝑦

ℎ
)                                                                ( 241 ) 

The imposed deformations to be provided as an input to the implemented algorithm are instead 

null in both cases. 

By operating in this way the implemented MATLAB code allows to compute the additional 

stresses distributions at 10000 days for the two considered static schemes. These distributions are 

then added to the one of the compatibility stresses, obtaining therefore the total stresses 

Figure 40 – Compatibility stresses comparison 
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distributions (𝜎𝑡𝑜𝑡,10000) represented in Figure 41 and in Figure 42, where they are compared with 

the same results obtained in the elastic field (𝜎𝑡𝑜𝑡,0). 

 

Figure 42 - Total stresses comparison (Static scheme 2) 

Figure 41 – Total stresses comparison (Static scheme 1) 
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In conclusion it is worth mentioning that the obtained results in the viscoelastic field correctly 

show a reduction of the stresses previously computed in the elastic field. In fact, due to the 

phenomenon of relaxation of concrete, the response of a concrete structure subject to a sustained 

imposed deformation is characterized by a reduction in time of the initial state of stress. 

 

4.4  Application of the Fundamental Theorem  

4.4.1 Example of application with temperature distributions variable in time 

An example of application of the Fundamental Theorem in the case of a temperature distribution 

varying in time is here presented. In particular the same problem analysed in paragraph 4.3.3 by 

means of the exact formulation is considered, allowing to compare the approximate solution 

provided by the Fundamental Theorem with the exact one represented by the numerical integration 

of the Volterra Integral Equation. 

The Fundamental Theorem has been applied in the form expressed by equation ( 215 ) in order to 

compute the compatibility stresses and the additional stresses due to the redundant restraints at 

10000 days. The application of equation ( 215 ), specifically obtained in the framework of the 

computation of the stresses which arise in bridges due to non-linear temperature distributions, can 

be performed quite easily, simply starting from the knowledge of the solution in the elastic field 

at initial time σe
(0)

.  

Considering as σe
(0)

 in equation ( 215 ) the expression of the compatibility stresses previously 

computed in chapter 3 with reference to the elastic field and given by: 

𝜎𝑒(𝑦, 𝑡0) = 𝐸0𝛼𝑇0 (𝑡0) (2
𝑦2

ℎ2
−
1

6
)                                                                                                   ( 242 ) 

 it is obtained the compatibility stresses distribution at 𝑡 = 10000 days as follow: 

𝜎𝑒(𝑦, 𝑡) = 𝐸0𝛼𝑇0 (𝑡0) (2
𝑦2

ℎ2
−
1

6
) ∙ [

𝜆 + 𝜒 ∙ 𝜑

1 + 𝜒 ∙ 𝜑
−

𝜑

1 + 𝜒 ∙ 𝜑
]                                                       ( 243 ) 

Proceeding in an analogous way, for what concerns the additional stresses due to the redundant 

restraints, it is obtained:  

∆𝜎𝑠𝑐ℎ𝑒𝑚𝑒 1(𝑦, 𝑡) = 𝐸0𝛼𝑇0(𝑡0) (−
5

6
− 3

𝑦

ℎ
) ∙ [

𝜆 + 𝜒 ∙ 𝜑

1 + 𝜒 ∙ 𝜑
−

𝜑

1 + 𝜒 ∙ 𝜑
]                                       ( 244 ) 

∆𝜎𝑠𝑐ℎ𝑒𝑚𝑒 2(𝑦, 𝑡) = 𝐸0𝛼𝑇0(𝑡0) (−
9

2

𝑦

ℎ
) ∙ [

𝜆 + 𝜒 ∙ 𝜑

1 + 𝜒 ∙ 𝜑
−

𝜑

1 + 𝜒 ∙ 𝜑
]                                               ( 245 ) 

 

The results obtained in terms of compatibility stresses by means of the Fundamental Theorem are 

compared in Figure 43 with the same results obtained by means of the exact formulation. 
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Furthermore the two solutions in the viscoelastic field are compared in Figure 44 with the same 

stresses previously computed in the elastic field. 

 

Figure 44 – Compatibility stresses comparison 

Figure 43 – Comparison of the solutions in the viscoelastic field 
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The same comparisons are reported in Figure 45 and in Figure 46 for what concerns the total 

stresses computed for the problem under examination when the static scheme 1 is considered. 

 

Figure 45 - Comparison of the solutions in the viscoelastic field 

Figure 46 – Total stresses comparison (Static scheme 1) 
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Finally the same comparisons are also reported in Figure 47 and in Figure 48 for what concerns 

the total stresses computed for the problem under examination when the static scheme 2 is 

considered. 

 

 

Figure 47 - Comparison of the solutions in the viscoelastic field 

Figure 48 – Total stresses comparison (Static scheme 2) 
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From the previous figures it is evident the excellent level of approximation provided by the 

Fundamental Theorem. This aspect together with the simplicity of application of this procedure 

makes the Fundamental Theorem a particularly convenient tool for the engineering practice.   

However it is important to point out that the procedure here presented is valid in the case of 

homogeneous structures. When dealing instead with structures which are characterized by the 

presence of elastic restraints, such as the case of the static scheme 4 presented with reference to 

example 2 in the elastic field, particular care has to be adopted in the analysis. For what concerns 

the procedure for the computation of the additional stresses ∆𝜎, in fact, it is necessary to compute 

the redundant restraints reactions according to the following equation: 

𝑋 = 𝑋 1 + 𝜇(𝑋 0 − 𝑋 10)                                                                                                                        ( 246 ) 

where 𝑋  is the column vector of the restraints reactions, 𝑋 1 is the elastic solution associated to the 

external actions applied at time 𝑡 assuming for concrete the effective modulus 𝐸′, 𝑋 10 is the elastic 

solution associated to the external actions applied at time 𝑡0 assuming for concrete the effective 

modulus 𝐸′ and 𝑋 0 is the initial solution assuming for concrete the elastic modulus 𝐸(𝑡0). 

 

4.4.2 Example of application with temperature distributions constant in time 

An example of application of the Fundamental Theorem in the case of a temperature distribution 

constant in time is here presented. As already pointed out in paragraph 4.2, the application of the 

Fundamental Theorem in this case provides the exact solution for the considered problem of the 

computation of stresses due to non-linear temperature distributions in the viscoelastic field. 

However the solution becomes approximate when for sake of simplicity 𝜒 = 0,8 is assumed. This 

choice, in practical applications, is motivated by the fact that the variation in time of the function 

𝜒 can be in many cases neglected by adopting this value. 

The problem considered for this application is the same one analysed in paragraphs 4.4.1 and 4.3.3.  

The same temperature distribution over the y coordinate is considered even though in this case it 

is assumed constant in time. 

For sake of simplicity the computations reported in the following are performed by considering a 

value of the creep coefficient equal to 2,5. Having adopted 𝜒 = 0,8 and 𝜑 = 2,5 the effective 

modulus 𝐸′ is given by: 

𝐸′ =
𝐸(𝑡0)

1 + 𝜒𝜑
=  
𝐸(𝑡0)

3
                                                                                                                          ( 247 ) 

 

Since the temperature distribution is constant in time, the Fundamental Theorem is applied 

according to the simplified expression ( 202 ) in order to compute the compatibility stresses and 

the additional stresses due to the redundant restraints in the viscoelastic field. 
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In particular, applying equation ( 202 ) for the computation of the compatibility stresses, the 

stresses 𝜎0 have been considered equal to the compatibility stresses previously computed with 

reference to the elastic field in chapter 3: 

𝜎0 = 𝐸0𝛼𝑇0 (2
𝑦2

ℎ2
−
1

6
)                                                                                                                      ( 248 ) 

while the stresses 𝜎1 are given by the same stresses computed adopting the effective modulus 𝐸′: 

𝜎1 =  𝐸′𝛼𝑇0 (2
𝑦2

ℎ2
−
1

6
)                                                                                                                       ( 249 ) 

Proceeding in an analogous way, for the computation of the additional stresses due to redundant 

restraints in the viscoelastic field it is considered: 

∆𝜎0,𝑠𝑐ℎ𝑒𝑚𝑒 1 = 𝐸0𝛼𝑇0 (−
5

6
− 3

𝑦

ℎ
)                                                                                                    ( 250 ) 

∆𝜎0,𝑠𝑐ℎ𝑒𝑚𝑒 2 = 𝐸0𝛼𝑇0(𝑡0) (−
9

2

𝑦

ℎ
)                                                                                                     ( 251 ) 

∆𝜎1,𝑠𝑐ℎ𝑒𝑚𝑒 1 = 𝐸′𝛼𝑇0 (−
5

6
− 3

𝑦

ℎ
)                                                                                                     ( 252 ) 

∆𝜎1,𝑠𝑐ℎ𝑒𝑚𝑒 2 = 𝐸′𝛼𝑇0(𝑡0) (−
9

2

𝑦

ℎ
)                                                                                                     ( 253 ) 

 

The compatibility stresses computed in the viscoelastic field by means of the procedure here 

described, are compared with the same stresses computed in the elastic field in Figure 49 where 

the stresses are normalized with respect to 𝐸0𝛼𝑇0 and the y coordinate is normalized with respect 

to the depth ℎ of the cross section. 

The total stresses computed in the viscoelastic field by means of the procedure here described, are 

also represented in non-dimensional form in Figure 50 and in Figure 51 in which they are 

compared with the same stresses computed in the elastic field. 
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Figure 49 - Compatibility stresses comparison 

Figure 50 – Total stresses comparison (Static scheme 1) 



102 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 51 - Total stresses comparison (Static scheme 2) 
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VISCOELASTIC FIELD AND SINUSOIDAL 

TEMPERATURE VARIATIONS 

 

5.1 Introduction 

Since the long term analysis requires the presence of permanent or quasi-permanent actions, in 

defining the time variation of the temperature function it is considered an average annual variation 

as the daily fluctuations do not produce significative delayed phenomena. On the basis of what has 

been discussed in chapter 2 with reference to the thermal actions on structures, in order to do this, 

it is possible to consider a sinusoidal time function which reproduces with sufficient precision the 

seasonal variation of climatic actions. 

The description of the different sinusoidal temperature variations which can be considered, 

depending on the season in which the casting of the structure takes place, is provided in paragraph 

5.2. 

Since, as discussed in chapter 4, the Fundamental Theorem is based on the simplifying hypothesis 

that the deformation is a linear function in the creep coefficient 𝜑(𝑡, 𝑡0) it cannot be applied when 

sinusoidal time functions of the temperature are considered. In fact, because of the sinusoidal 

variation in time of the temperature, imposed deformations due to thermal actions strongly differ 

from a linear function in 𝜑(𝑡, 𝑡0). Therefore, for the considered problem of the long-term analysis 

of the stresses arising in bridge structures due to non linear temperature variations, only the exact 

formulation should be adopted. However also for what concerns the numerical solution of the 

Volterra Integral Equation associated to the exact formulation, the fact of dealing with sinusoidal 

time functions introduces some complications which will be addressed in paragraph 5.3 in order 

to extend the formulation to the solution of the considered problems.  

Finally in paragraph 5.4 the procedure discussed in paragraph 5.3 will be applied in order to show 

the variation in time of the stresses arising in presence of non-linear temperature distributions 

characterized by a sinusoidal variation in time. 

 

5.2 Sinusoidal temperature variations 

The sinusoidal function which can be used to describe the temperature variations associated to the 

different climatic conditions over the year has been determined on the basis of the work done by 

Mola [26] and is given by the following expression: 

𝑇(𝑡) = (−1)ℎ ∙ ∆𝑇 ∙ {𝐾 + 𝑠𝑖𝑛 [2𝜋 ∙ (
(𝑡 − 𝑡0)

𝑇𝑎
+ 𝜙)]}                                                                ( 254 ) 

5  
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where: 

- ∆𝑇 = semi-amplitude of the sinusoidal function [°𝐶] 

- 𝐾 = constant defining the position on the ordinate axis 

- 𝜙 = phase constant 

- 𝑇𝑎 = period (assumed equal to one year) 

- 𝑡0 = initial time  

- ℎ = 0 ; 1 = sign constant 

 

Making reference to equation ( 254 ) it is possible to consider four different scenarios for the period 

of the year in which the casting of the structure takes place: Spring, Summer, Autumn and Winter. 

In particular, for the case of casting in Spring, the parameters of equation ( 254 ) assume the 

following values: 

- ℎ = 0 

- 𝐾 = 0 

- 𝜙 = 0 

therefore equation ( 254 ) becomes: 

𝑇(𝑡) = ∆𝑇 ∙  𝑠𝑖𝑛 [2𝜋 ∙
(𝑡 − 𝑡0)

𝑇𝑎
]                                                                                                          ( 255 ) 

whose graph, assuming ∆𝑇 = 20°𝐶 and 𝑡0 = 28 days, is reported in Figure 52 over a time span 

of 2000 days and in Figure 53 over the period of one year. 

Figure 52 – Temperature function (casting of the structure in Spring) 
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For the case of casting in Autumn the parameters of equation ( 254 ) assume the following values: 

- ℎ = 1 

- 𝐾 = 0 

- 𝜙 = 0 

therefore equation ( 254 ) becomes: 

𝑇(𝑡) = −∆𝑇 ∙  𝑠𝑖𝑛 [2𝜋 ∙
(𝑡 − 𝑡0)

𝑇𝑎
]                                                                                                      ( 256 ) 

Comparing equation ( 256 ) and equation ( 255 ) it is evident that the temperature function in 

Autumn has the same values as the one in Spring but with opposite sign. This aspect leads to the 

arising of stress states which are identical but opposite in sign in these two situations as it will be 

clearly shown in the example of paragraph 5.4. 

The graph of 𝑇(𝑡) for the case of casting in Autumn, assuming ∆𝑇 = 20°𝐶 and 𝑡0 = 28 days, is 

reported in Figure 54 over a time span of 2000 days and in Figure 55 over the period of one year.  

 

 

 

Figure 53 - Temperature function over the period of 1 year  

(casting of the structure in Spring) 
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Figure 54 – Temperature function (casting of the structure in Autumn) 

Figure 55 - Temperature function over the period of 1 year  

(casting of the structure in Autumn) 
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For the case of casting in Winter the parameters of the equation ( 254 ) assume the following 

values: 

- ℎ = 0 

- 𝐾 = 1 

- 𝜙 = −0,25 

therefore equation ( 254 ) becomes: 

𝑇(𝑡) = ∆𝑇 ∙ {1 + 𝑠𝑖𝑛 [2𝜋 ∙ (
(𝑡 − 𝑡0)

𝑇𝑎
−
1

4
)]}                                                                                 ( 257 ) 

whose graph, assuming ∆𝑇 = 20°𝐶 and 𝑡0 = 28 days, is reported in Figure 56 over a time span 

of 2000 days and in Figure 57 over the period of one year. From these figures it is possible to 

appreciate that the temperature function assumes only values grater or equal to zero, differently 

from what happens in the case of casting in Spring or Autumn when the temperature function 

oscillates assuming values which are both positive and negative. 

 

 

 

 

 

 

Figure 56 – Temperature function (casting of the structure in Winter) 
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Finally, for the case of casting in Summer the parameters of the equation ( 254 ) assume the 

following values: 

- ℎ = 1 

- 𝐾 = 1 

- 𝜙 = −0,25 

therefore equation ( 254 ) becomes: 

𝑇(𝑡) = −∆𝑇 ∙ {1 + 𝑠𝑖𝑛 [2𝜋 ∙ (
(𝑡 − 𝑡0)

𝑇𝑎
−
1

4
)]}                                                                              ( 258 ) 

Comparing equation ( 258 ) and equation ( 257 ) it is evident that the temperature function in 

Summer has the same values as the one in Winter but with opposite sign. Also in this case, as 

happens for the case of Spring and Autumn, this aspect leads to the arising of stress states which 

are identical but opposite in sign. 

The graph of 𝑇(𝑡) for the case of casting in Summer, assuming ∆𝑇 = 20°𝐶 and 𝑡0 = 28 days, is 

reported in Figure 58 over a time span of 2000 days and in Figure 59 over the period of one year.  

 

 

Figure 57 - Temperature function over the period of 1 year  

(casting of the structure in Winter) 
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Figure 58 – Temperature function (casting of the structure in Summer) 

Figure 59 - Temperature function over the period of 1 year  

(casting of the structure in Summer) 
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5.3 Numerical solution of the Volterra Integral Equation 

In chapter 4 the procedure for the numerical solution of the Volterra Integral Equation has been 

discussed on the basis of the suggestions provided by the CEB Bulletin 142-142bis [25] when 

usual strain histories are considered. In that case, the adoption of increasing time steps leads to an 

adequate level of accuracy associated with a minimum of computation time but, as already pointed 

out, the magnitude of the time step amplitudes so obtained is not suitable for the integration 

procedure when dealing with the strain histories associated to the periodic time variation of 

temperature distributions. It is in fact important to observe that, due to the sinusoidal temperature 

variation, the time step discretization can be assumed to be of logarithmic type, as the one 

suggested by the CEB Bulletin, just with reference to the first half-period or to the first quarter of 

period (depending on the season in which the casting of the structure takes place) when the 

temperature is monotonically increasing or decreasing. After that time interval, the time steps 

should be properly defined in order to describe with sufficient accuracy the cyclic variation in time 

of the temperature. This goal can be achieved by means of a constant time step which has produced 

reliable results. 

On the basis of the considerations above reported, the implemented MATLAB code for the 

numerical solution of the Volterra Integral Equation has been properly modified adopting the 

following scheme for the time step definition: 

 

- Casting of the structure in Spring or Autumn  

 

For 𝑡0 ≤ 𝑡 ≤ 𝑇𝑎/4 the time step is defined according to the CEB Bulletin: 

(𝑡𝑘 − 𝑡0)

(𝑡𝑘−1 − 𝑡0)
= 1,15 

∆𝑡2 = 𝑡2 − 𝑡1 = 0,05 𝑑𝑎𝑦𝑠 

                                                                                                                                                                      ( 259 ) 

 For 𝑡 ≥ 𝑇𝑎/4 the time step is assumed constant: 

∆𝑡 =
𝑇𝑎

32
  

 

The amplitude of the time step in days with respect to the number of the considered step is 

reported in Figure 60, which is obtained considering a time span for the integration equal 

to 2000 days. From this figure it is well evident the constancy in the amplitude of the time 

steps which are adopted after the first quarter of period. 

 



111 
 

 

 

- Casting of the structure in Summer or Winter  

 

For 𝑡0 ≤ 𝑡 ≤ 𝑇𝑎/2 

(𝑡𝑘 − 𝑡0)

(𝑡𝑘−1 − 𝑡0)
= 1.15 

∆𝑡2 = 𝑡2 − 𝑡1 = 0.05 𝑑𝑎𝑦𝑠 

                                                                                                                                                                        ( 260 ) 

 For 𝑡 ≥ 𝑇𝑎/2 

∆𝑡 =
𝑇𝑎
32

 

  
The amplitude of the time step in days with respect to the number of the considered step is 

reported in Figure 61, which is obtained considering a time span for the integration equal 

to 2000 days. From this figure it is well evident the constancy in the amplitude of the time 

steps which are adopted after the first half-period. 

Figure 60 – Time step amplitude (casting of the structure in Spring or Autumn) 
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5.4 Example of application 

An example of application of the MATLAB code, opportunely modified according to what has 

been presented in the previous paragraph is here provided. In particular the problem presented in 

paragraph 3.4.1 with reference to the elastic field, then analysed in chapter 4 in the viscoelastic 

field considering simple temperature variations in time, is here presented in the case of sinusoidal 

temperature variations. 

Since the compatibility stresses distribution as well as the additional stresses distribution due to 

the redundant restraints, which arise in bridge structures due to non-linear temperature variations, 

have been deeply studied in chapter 3 and their reduction due to the long-term behaviour of 

concrete has been shown in chapter 4, in the present chapter the results of the performed analysis 

will be provided trying to highlight the evolution in time of those stresses distributions when 

sinusoidal temperature variations are considered. With this aim, rather than showing the stresses 

distributions diagrams over the depth of the section, the time variation of the stres at the level of a 

specific fiber of the cross section will be shown. In particular it will be considered just the variation 

in time of the compatibility stres at the level of the bottom fiber of the section. This is justified by 

the fact that for what concerns the additional stresses due to the redundant restraints or the total 

stresses the only difference would be in their entity as they are affected by the same kind of 

variability in time.  

 

Figure 61 – Time step amplitude (casting of the structure in Summer or Winter) 
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The function defining the temperature distribution over the depth of the cross section for the 

considered problem is given by: 

𝑇(𝑦) = 𝑇0 (−2
𝑦2

ℎ2
+ 3

𝑦

ℎ
+ 1)                                                                                                           ( 261 ) 

In order to consider the variability in time of this distribution, it has been assumed a parameter 𝑇0 

which varies in time according to the various expressions found in paragraph 5.2 for the different 

scenarios associated to the period of the year in which the casting of the structure takes place, 

assuming ∆𝑇 = 20°𝐶.  

Moreover for what concerns the data assumed for the present example, it has been considered: 

- 𝐶40/50 concrete 

- ℎ = 200 mm (notional size of the member)  

- 𝑅𝐻 = 0,7 

- 𝑡0 = 28 days 

- 𝛼 = 10−5 °𝐶−1 

where it has been assumed for the value of the notional size of the member an admissible, even 

though arbitrary, value as the cross section dimensions have been generically defined as 𝑏 and ℎ.  

 

The results obtained in terms of compatibility stresses at the level of the bottom fiber of the section, 

considering the four scenarios previously presented, are shown in the following figures.  

In particular for each of the four seasons in which the casting of the structure can take place, the 

variability in time of the stress computed by means of the implemented MATLAB code in the 

viscoelastic field is reported in a first graph and then it is compared in a second graph with the 

elastic solution, computed taking into account the variability in time of the elastic modulus. For 

what concerns the variability in time of the elastic modulus of concrete, it has been considered the 

formulation provided by the CEB-FIP Model Code 1990 [22]. 

The first situation analysed is the one associated to the casting in Spring and the relative results 

are represented in Figure 62 and in Figure 63. In the first graph it is evident the decreasing in time 

of the peak values assumed by the stresses. Moreover  by comparing the viscoelastic solution with 

the elastic one in the second graph, it is clear the reduction of the stresses computed in the 

viscoelastic field with respect to the ones computed in the elastic field. Considering Figure 63 it 

is also possible to appreciate the effect of the variability of the elastic modulus of concrete which 

leads to a moderate increase in time of the peak values of the elastic solution. 

By comparing the results associated to the casting in Spring with the ones of Figure 64 and Figure 

65, relative to the casting in Autumn, it is evident that the stresses which arise in these two 

situations are identical but opposite in sign. 
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Figure 62 - Variation in time of the compatibility stress 

(casting of the structure in Spring) 

Figure 63 - Comparison of elastic and viscoelastic solutions 

(casting of the structure in Spring) 
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Figure 64 - Variation in time of the compatibility stress 

(casting of the structure in Autumn) 

Figure 65 - Comparison of elastic and viscoelastic solutions 

(casting of the structure in Autumn) 
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The results obtained considering the case of casting of the structure in Winter are represented in 

Figure 66 and Figure 67. 

 

 

Figure 66 - Variation in time of the compatibility stress 

(casting of the structure in Winter) 

Figure 67 - Comparison of elastic and viscoelastic solutions 

(casting of the structure in Winter) 
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The results obtained considering the case of casting of the structure in Summer are represented in 

Figure 68 and Figure 69. 

 

 

Figure 68 - Variation in time of the compatibility stress 

(casting of the structure in Summer) 

Figure 69 - Comparison of elastic and viscoelastic solutions 

(casting of the structure in Summer) 
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Analogous observations to the ones made about the results obtained for the cases of casting in 

Spring and in Autumn can be made with reference to the results associated to Winter and Summer. 

Moreover, as already anticipated, since the temperature function in Summer has the same values 

as the ones in Winter but with opposite sign, also the stresses which arise in these two situations 

are identical but opposite in sign. 

Finally it is possible to observe that the stresses associated to the extreme seasons are almost the 

double the ones associated to the middle seasons. 
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CASE STUDIES 

 

6.1 Introduction 

In the present chapter two case studies regarding the evaluation of the long-term response of  two 

real bridge structures subject to thermal actions are presented. Even though the rigorous analysis 

in the viscoelastic field of this kind of structures should be performed considering sinusoidal 

temperature variations, as discussed in chapter 5, national and international code prescriptions do 

not provide temperature gradients varying in time. For the case studies here presented non-linear 

temperature distributions constant in time are therefore considered. In this framework the 

Fundamental Theorem can be applied and it has been adopted for the analyses of the case studies 

as a very convenient tool to be used in the engineering practice to which is associate an excellent 

level of approximation, as demonstrated by the results presented in chapter 4. As a matter of fact, 

as already discussed, when constant temperature distributions are considered the Fundamental 

Theorem provides the exact solution for the problem of the computation of stresses due to non-

linear temperature distributions in the viscoelastic field. However, in order to make the procedure 

immediately feasible for practical applications, the solution becomes approximate when for sake 

of simplicity the time variation of 𝜒(𝑡, 𝑡0) is neglected assuming the constant value 𝜒(𝑡, 𝑡0) = 0,8. 

The first case study, presented in paragraph 6.2, consists in a multi-span continuous box girder 

bridge which has been analysed in presence of the non-linear temperature distribution suggested 

by the Eurocode 1 [11] in the framework of the complex approach described in paragraph 2.5. 

Since the considered bridge is a redundant structure, it has been necessary to consider the 

compatibility stresses due to non-linear temperature distributions as well as the additional stresses 

due to the redundant restraints, allowing to highlight both of these aspects of the problem with 

reference to a real bridge structure. 

Moreover, a second case study, presented in paragraph 6.3, consists in a bridge characterized by a 

composite deck and by a simply supported static scheme. The analysis of this structure has the aim 

of showing the extension of the concepts previously presented, in particular in chapter 4, to the 

case of non-homogeneous structures with reference to a real bridge structure. 

 

6.2 Case study 1: Multi-span continuous box girder bridge 

6.2.1 Description of the structure 

The structure analysed is represented in Figure 70 and consists in a multi-span continuous box 

girder bridge. The shape and the dimensions (in cm) of the cross section are reported in Figure 71. 

 

6  
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For what concerns the characteristics of the material for the bridge deck a C40/50 concrete is 

adopted, which is endowed with a characteristic cylindrical strength of 40 MPa and with an elastic 

modulus at 28 days 𝐸0 of 35000 MPa.  

Moreover it is important to point out that the cross section can be considered homogeneous since 

the quantity of reinforcing steel is very small if compared with the amount of concrete constituting 

the section itself. In addition to this, the coefficient of thermal expansion 𝛼 for concrete, equal to 

Figure 70 – Case study 1: Multi-span continuous box girder bridge 

Figure 71 – Cross section shape and dimensions (in cm) 
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10−5 °𝐶−1, is of the same order of magnitude as the one associated to steel and therefore the cross 

section can be considered homogeneous also from this point of view. 

The non-linear temperature distribution which has been considered for the analysis of the structure 

is the one suggested for the case of heating by Eurocode 1 [11] in the framework of the complex 

approach described in paragraph 2.5, which is based on the method of the British regulations. In 

particular the diagram of the temperature distribution is the one reported in the following figure: 

 

where: 

- h is the depth of the cross section 

- h1 = 0,3h but ≤ 0,15 m 

- h2 = 0,3h but ≥ 0,10 m and ≤ 0,25 m  

- h3 = 0,3h but ≤ (0,10 m + surfacing depth in meters) 

For the present case study the surfacing depth has been considered equal to 100 mm and, since 

h = 2,5 m, the values of h1,h2 and h3 to be considered are: 

- h1 = 0,15 m 

- h2 = 0,25 m 

- h3 = 0,20 m 

Moreover the values provided by the Eurocode for T1,T2 and T3 depend on the depth h of the cross 

section and in this case, since h ≥ 0,8 m, it is considered: 

- T1 = 13°𝐶 

- T2 = 3°C 

- T3 = 2,5°C 

Figure 72 – Eurocode 1 non-linear temperature distribution (heating) 
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6.2.2 Analysis of the structure in the elastic field  

In order to correctly apply the procedure presented in chapter 3 for the analysis of the structure 

subject to a non-linear temperature distribution over the depth of the cross section, it is necessary 

to fix the origin of the principal reference system in the centroid of the section itself. The first step 

to be performed is therefore the computation of the position of the centroid which, for the cross 

section of the present case study, is located in correspondence of the vertical symmetry line of the 

cross section itself, at a distance 𝑦𝑔 = 121,3348 𝑐𝑚 from the extrados of the girder.  

The moment of inertia with respect to the x axis is: 

 𝐼𝑥 = 770755249,8 𝑐𝑚
4  

while the area of the cross section is: 

 𝐴 = 84750 𝑐𝑚2 

 

The function of the y coordinate, whose origin is fixed in the centroid of the cross section, 

describing the non-linear temperature distribution over the depth of the section, is determined on 

the basis of the values reported in paragraph 6.2.1 and is given by: 

For −𝑦𝑔 ≤ 𝑦 ≤ −𝑦𝑔 + ℎ1 

𝑇(𝑦) = −67,8899 − 2 3⁄ 𝑦                                                                                                                 ( 262 ) 

For −𝑦𝑔 + ℎ1 ≤ 𝑦 ≤ −𝑦𝑔 + ℎ1 + ℎ2 

𝑇(𝑦) = −9,760176 − 0,12 ∙ 𝑦                                                                                                           ( 263 ) 

For −𝑦𝑔 + ℎ1 + ℎ2 ≤ 𝑦 ≤ −𝑦𝑔 + ℎ − ℎ3 

𝑇(𝑦) = 0                                                                                                                                                  ( 264 ) 

For −𝑦𝑔 + ℎ − ℎ3 ≤ 𝑦 ≤ −𝑦𝑔 + ℎ 

𝑇(𝑦) = −13,58315 + 0,125 ∙ 𝑦                                                                                                         ( 265 ) 

 

The two components of the vector 𝜓𝑒 can be computed according to equations (71) and (72) 

presented in chapter 3: 

𝜓1𝑒 =
𝛼

𝐴
∫𝑇𝑑𝐴
𝐴

= 

=
𝛼

𝐴
{∫ (−67,8899 −

2

3
𝑦) ∙ 1130𝑑𝑦 + ∫ (−9,760176 − 0,12 ∙ 𝑦) ∙ 1130𝑑𝑦 +

−96,3348

−106,3348

−106,3348

−121,3348
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+∫ (−9,760176 − 0,12 ∙ 𝑦) ∙ 3 ∙ 50𝑑𝑦 +
−81,3348

−96,3348

 

+∫ (−13,58315 + 0,125 ∙ 𝑦) ∙ 800𝑑𝑦
128,6652

108,6652

} = 

=
10−5

84750
{135599,435 + 27120 + 2025 + 20000} = 2,179875339 ∙ 10−5     [−]           ( 266 ) 

 

𝜓2𝑒 =
𝛼

𝐼𝑥
∫𝑇 ∙ 𝑦𝑑𝐴
𝐴

= 

=
𝛼

𝐼𝑥
{∫ (−67,8899 −

2

3
𝑦) ∙ 1130 ∙ 𝑦𝑑𝑦 +

−106,3348

−121,3348

 

+∫ (−9,760176 − 0,12 ∙ 𝑦) ∙ 1130 ∙ 𝑦𝑑𝑦 +
−96,3348

−106,3348

 

+∫ (−9,760176 − 0,12 ∙ 𝑦) ∙ 3 ∙ 50 ∙ 𝑦𝑑𝑦 +
−81,3348

−96,3348

 

+∫ (−13,58315 + 0,125 ∙ 𝑦) ∙ 800 ∙ 𝑦𝑑𝑦
128,6652

108,6652

} = 

=
10−5

770755249,8
{−15647809,56 − 2759499,776 − 184952,97 + 2439970,667} = 

= −2,095644713 ∙ 10−7     [1 𝑐𝑚⁄ ]                                                                                                  ( 267 ) 

 

Knowing the temperature function over the depth of the section and having computed 𝜓1𝑒 and 

𝜓2𝑒, the compatibility stresses in the elastic field are determined according to equation (68): 

𝜎𝑒(𝑦) = 𝐸0[𝜓1𝑒 + 𝜓2𝑒 ∙ 𝑦 − 𝛼 ∙ 𝑇(𝑦)]                                                                                              ( 268 ) 

The compatibility stresses distribution over the depth of the section, obtained in this way, is 

reported in Figure 73 while the total deformation of the cross section under the plane section 

hypothesis is represented in Figure 74. 
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Figure 73 – Compatibility stresses distribution over the depth of the cross section 

Figure 74 – Total deformation of the cross section 
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The computations carried out are verified by checking that the equilibrium equations are satisfied: 

∫ 𝜌𝜎𝑑𝐴 = 0
𝐴

                                                                                                                                           ( 269 ) 

which for the case under consideration are written as follow: 

𝐸0 {∫ [2,179875339 ∙ 10−5 − 2,095644713 ∙ 10−7 ∙ 𝑦 − 10−5 ∙ (−67,8899 −
2

3
𝑦)] ∙

−106,3348

−121.3348

 

∙ 1130𝑑𝑦 + ∫ [2,179875339 ∙ 10−5 − 2,095644713 ∙ 10−7 ∙ 𝑦 − 10−5 ∙
−96,3348

−106,3348

 

∙ (−9,760176 − 0,12 ∙ 𝑦)] ∙ 1130𝑑𝑦 + 

+∫ [2,179875339 ∙ 10−5 − 2,095644713 ∙ 10−7 ∙ 𝑦 − 10−5 ∙
−81,3348

−96,3348

 

∙ (−9,760176 − 0,12 ∙ 𝑦)] ∙ 3 ∙ 50𝑑𝑦 + 

+∫ [2,179875339 ∙ 10−5 − 2,095644713 ∙ 10−7 ∙ 𝑦] ∙ 3 ∙  50𝑑𝑦 +
93,6652

−81,3348

 

+∫ [2,179875339 ∙ 10−5 − 2,095644713 ∙ 10−7 ∙ 𝑦] ∙ 800𝑑𝑦 +
108,6652

93,6652

 

+∫ [2,179875339 ∙ 10−5 − 2,095644713 ∙ 10−7 ∙ 𝑦 − 10−5 ∙ (−13,58315
128,6652

108,6652

+ 

+0,125 ∙ 𝑦)] ∙ 800𝑑𝑦} = 𝐸0 ∙ (−1,46954 ∙ 10
−7) ≅ 0                                                                 ( 270 ) 

 

 

𝐸0 {∫ [2,179875339 ∙ 10−5 − 2,095644713 ∙ 10−7 ∙ 𝑦 − 10−5 ∙ (−67,8899 −
2

3
𝑦)] ∙

−106,3348

−121.3348

 

∙ 1130 ∙ 𝑦𝑑𝑦 + ∫ [2,179875339 ∙ 10−5 − 2,095644713 ∙ 10−7 ∙ 𝑦 − 10−5 ∙
−96,3348

−106,3348

 

∙ (−9,760176 − 0,12 ∙ 𝑦)] ∙ 1130 ∙ 𝑦𝑑𝑦 + 

+∫ [2,179875339 ∙ 10−5 − 2,095644713 ∙ 10−7 ∙ 𝑦 − 10−5 ∙
−81,3348

−96,3348

 

∙ (−9,760176 − 0,12 ∙ 𝑦)] ∙ 3 ∙ 50 ∙ 𝑦𝑑𝑦 + 
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+∫ [2,179875339 ∙ 10−5 − 2,095644713 ∙ 10−7 ∙ 𝑦] ∙ 3 ∙  50 ∙ 𝑦𝑑𝑦 +
93,6652

−81,3348

 

+∫ [2,179875339 ∙ 10−5 − 2,095644713 ∙ 10−7 ∙ 𝑦] ∙ 800 ∙ 𝑦𝑑𝑦 +
108,6652

93,6652

 

+∫ [2,179875339 ∙ 10−5 − 2,095644713 ∙ 10−7 ∙ 𝑦 − 10−5 ∙ (−13,58315
128,6652

108,6652

+ 

+0,125 ∙ 𝑦)] ∙ 800 ∙ 𝑦𝑑𝑦} = 𝐸0 ∙ (−6,125 ∙ 10
−5) ≅ 0                                                                ( 271 ) 

 

The equilibrium equations are both satisfied, therefore the compatibility stresses computed are 

correct. 

 

Finally, since the bridge under examination is characterized by a redundant static scheme, in order 

to conclude the analysis in the elastic field, it is necessary to compute the additional stresses due 

to the redundant restraints. In particular the static scheme to be considered is the following: 

 

 

 

The structural scheme is analysed in presence of the geometrical actions 𝜓1𝑒 and 𝜓2𝑒 previously 

determined at the sectional level. The two redundant variables 𝑀1 and 𝑀2 have been highlighted 

in Figure 76, however it is possible to observe that, due to the symmetry in the geometry of the 

structure as well as in the disposition of the geometrical actions on it, it must be 𝑀1 = 𝑀2. 

Moreover it is worth mentioning that, since no redundant axial variables are present, the 

geometrical action 𝜓1𝑒 does not appear in the compatibility equations and therefore does not 

influence the additional stresses distribution. 

Figure 75 – Static scheme of the multi-span bridge 
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The compatibility equations, necessary to compute the redundant variables, are written as follow: 

{
 

 𝑀1 (
𝑙1
3𝐸0𝐼

+
𝑙2
3𝐸0𝐼

) + 𝑀2 (
𝑙2
6𝐸0𝐼

) + 𝜓2𝑒
𝑙1
2
+ 𝜓2𝑒

𝑙2
2
= 0

𝑀1 (
𝑙2
6𝐸0𝐼

) + 𝑀2 (
𝑙1
3𝐸0𝐼

+
𝑙2
3𝐸0𝐼

) + 𝜓2𝑒
𝑙1
2
+ 𝜓2𝑒

𝑙2
2
= 0

                                                          ( 272 ) 

where:  

- 𝑙1 = 2500 𝑐𝑚 

- 𝑙2 = 4000 𝑐𝑚 

- 𝐸0 = 35000 𝑀𝑃𝑎 

- 𝐼 = 770755249,8 𝑐𝑚4 

from which it is obtained: 

𝑀1 = 𝑀2 = 𝑀 = −648467002,7 𝑁 ∙ 𝑐𝑚                                                                                        ( 273 ) 

The additional stresses distribution for the sections in correspondence of the two central supports 

is therefore computed as follow: 

∆𝜎𝑒(𝑦) = 𝐸0 ∙ (
𝑀

𝐸0𝐼
∙ 𝑦) =

𝑀

𝐼
∙ 𝑦                                                                                                         ( 274 ) 

The total stresses at the sectional level, given by the sum of the compatibility stresses 𝜎𝑒(𝑦) and 

of the additional stresses ∆𝜎𝑒(𝑦) are represented in Figure 77. 

 

 

Figure 76 - Static scheme of the multi-span bridge and relative redundant variables  
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6.2.3 Analysis of the structure in the viscoelastic field 

The analysis in the viscoelastic field in order to compute the compatibility stresses and the 

additional stresses due to the redundant restraints at 10000 days has been performed by applying 

the Fundamental Theorem. Moreover, as already discussed, in order to make the procedure 

immediately feasible for practical applications it is possible to consider the constant value 

𝜒(𝑡, 𝑡0) = 0,8 to which corresponds 𝜇(𝑡, 𝑡0) = −0,25. 

Since the temperature distribution provided by the Eurocode and adopted for the present case study 

is constant in time, the Fundamental Theorem can be written according to the simplified expression 

given by: 

𝜎(𝑦, 𝑡) = 𝜎1(𝑦, 𝑡)(1 − 𝜇(𝑡, 𝑡0)) + 𝜇(𝑡, 𝑡0)𝜎(𝑦, 𝑡0)                                                                        ( 275 ) 

 

In particular, applying equation ( 275 ) for the computation of the compatibility stresses, 𝜎(𝑦, 𝑡0) 
is given by the compatibility stresses previously computed with reference to the elastic field: 

𝜎(𝑦, 𝑡0) = 𝜎𝑒(𝑦) = 𝐸0[𝜓1𝑒 +𝜓2𝑒 ∙ 𝑦 − 𝛼 ∙ 𝑇(𝑦)]                                                                         ( 276 ) 

 

Figure 77 – Total stresses distribution over the depth of the cross section 
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while the stresses 𝜎1(𝑦, 𝑡) are given by the same stresses computed adopting the effective modulus 

𝐸′ as follow: 

𝜎1(𝑦, 𝑡) = 𝐸′[𝜓1𝑒 + 𝜓2𝑒 ∙ 𝑦 − 𝛼 ∙ 𝑇(𝑦)]                                                                                           ( 277 ) 

where the effective modulus 𝐸′ is given by: 

𝐸′ =
𝐸0

1 + 𝜒(𝑡, 𝑡0) ∙ 𝜑(𝑡, 𝑡0)
= 15625 𝑀𝑃𝑎                                                                                      ( 278 ) 

with: 

- 𝜒(𝑡, 𝑡0) = 0,8 

- 𝜑(𝑡, 𝑡0) = 1,55  

The value of the creep coefficient 𝜑(𝑡, 𝑡0) has been determined according to the formulation 

presented in the CEB-FIP Model Code 1990 [22] assuming 𝑡 = 10000 days, 𝑡0 = 28 days, a 

relative humidity of 70% and a notional size of the member ℎ = 614 𝑚𝑚.  

 

Proceeding in an analogous way, for the computation of the additional stresses due to the redundant 

restraints at 10000 days, equation ( 275 ) is applied assuming: 

∆𝜎(𝑦, 𝑡0) = ∆𝜎𝑒(𝑦) =
𝑀

𝐼
∙ 𝑦                                                                                                                ( 279 ) 

and  

∆𝜎1(𝑦, 𝑡) = 𝐸
′∆𝜎(𝑦, 𝑡0)                                                                                                                        ( 280 ) 

It is important to mention that the Fundamental Theorem can be applied according to the procedure 

here presented for the computation of the additional stresses due to the redundant restraint because 

the considered structure is homogeneous and it is not interacting with elastic restraints. In fact, in 

this case, the Second Theorem of Linear Viscoelasticity holds and because of it the geometrical 

action 𝜓2𝑒 remains the same as the one computed with reference to the elastic field. As a 

consequence, when re-writing the compatibility equations in order to compute the redundant 

variable 𝑀 which finally provides ∆𝜎1(𝑦, 𝑡), the known term remains the same one of the elastic 

field while the stiffness matrix is computed considering the effective modulus 𝐸′. This will lead to 

a different value in the redundant variable from which ∆𝜎1(𝑦, 𝑡) is computed. However, by 

performing the computations, it finally results that ∆𝜎1(𝑦, 𝑡) is given by equation ( 280 ). 

 

The compatibility stresses distribution over the depth of the cross section computed at 10000 days 

is reported in Figure 78, while the total stresses distribution at the same time is represented in 

Figure 79. 
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Figure 78 – Compatibility stresses comparison 

Figure 79 – Total stresses comparison 
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6.3 Case study 2: Simply supported bridge with composite deck 

6.3.1 Description of the structure 

The structure analysed consists in a bridge characterized by a composite deck and by a simply 

supported static scheme. The cross section of the composite deck is represented in Figure 80 and 

is made by three I-shaped steel beams and by a reinforced concrete slab. 

 

The I-shaped steel beams consists in a 20 mm thick web and two flanges characterized by a 

thickness of 30 mm and a width of 600 mm. A detail of the I-shaped cross section is reported in 

Figure 81. 

Figure 80 – Cross section of the composite deck (dimensions in mm) 

Figure 81 - I-shaped steel beam (dimensions in mm) 
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For what concerns the characteristics of the materials, for the concrete slab it is adopted a C40/50 

concrete, which is endowed with a characteristic cylindrical strength of 40 MPa and with an elastic 

modulus at 28 days 𝐸0 of 35000 MPa. The modulus of elasticity 𝐸𝑠 of the steel beams is instead 

equal to 210000 MPa. 

The coefficient of thermal expansion 𝛼𝑐 for concrete is equal to 10−5 °𝐶−1 while the one adopted 

for the steel beams, indicated as 𝛼𝑠, is equal to 1,2 ∙ 10−5 °𝐶−1. 

Since the aim of the present case study is to show the extension of the concepts previously 

presented to the case of non-homogeneous structures, for sake of simplicity, a simple temperature 

distribution has been considered: a positive constant temperature ∆𝑇 acting only on the steel beams 

of the composite deck. 

 

6.3.2 Analysis of the structure in the elastic field  

In order to extend to the case of non-homogeneous structures the procedure previously presented 

for the computation of the compatibility stresses due to non-linear temperature distributions, it is 

important to fix the origin of the principal reference system in the centroid of the homogenized 

cross section. 

The homogenization coefficient 𝛼𝑒 is computed as follow: 

𝛼𝑒 =
𝐸𝑠
𝐸0
=
210000

35000
= 6                                                                                                                       ( 281 ) 

The position of the centroid of the homogenized cross section is therefore computed with respect 

to the top fiber of the concrete slab as follow: 

𝑦𝑔,ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑖𝑧𝑒𝑑 =
𝐴𝑐 ∙ 𝑦𝑔,𝑐 + 𝛼𝑒 ∙ 𝐴𝑠 ∙ 𝑦𝑔,𝑠

(𝐴𝑐 + 𝛼𝑒 ∙ 𝐴𝑠)
= 506,2396466 𝑚𝑚                                             ( 282 ) 

where: 

- 𝐴𝑐 = 3000000 𝑚𝑚2 is the area of the concrete slab cross section 

- 𝐴𝑠 = 3 ∙ 74800 = 224400 𝑚𝑚
2 is the total area of the steel portion of the cross section 

- 𝑦𝑔,𝑐 = 150 𝑚𝑚 is the position of the centroid of the concrete area with respect to the top 

fiber of the concrete slab 

- 𝑦𝑔,𝑠 = 1300 mm is the position of the centroid of the total steel area with respect to the top 

fiber of the concrete slab 

 

After having fixed the origin of the principal reference system in the centroid of the homogenized 

cross section just computed, analogously to what is done in the procedure for the homogeneous 

cross section, the equilibrium is imposed. 
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The equilibrium equations are: 

∫ 𝜌
𝐴𝑐

𝜎𝑐𝑑𝐴𝑐 + ∫ 𝜌
𝐴𝑠

𝜎𝑠𝑑𝐴𝑠 = 0                                                                                                          ( 283 ) 

which can be written in extended form as: 

𝐸0∫ (𝜌 𝜌𝑇𝜓𝑒 − 𝜌 𝛼𝑐𝑇) 𝑑𝐴𝑐 + 𝐸𝑠∫ (𝜌 𝜌𝑇𝜓𝑒 − 𝜌 𝛼𝑠𝑇) 𝑑𝐴𝑠 = 0
𝐴𝑠𝐴𝑐

                                         ( 284 ) 

Having defined the y coordinate, contained in the vector 𝜌, with respect to the centroid of the 

homogenized cross section, it is possible to write a system of two decoupled equilibrium equations 

which are: 

𝐸0(𝐴𝑐 + 𝛼𝑒𝐴𝑠) ∙ 𝜓1𝑒 = 𝐸0𝛼𝑐∫ 𝑇(𝑦)𝑑𝐴𝑐
𝐴𝑐

+ 𝐸𝑠𝛼𝑠∫ 𝑇(𝑦)𝑑𝐴𝑠
𝐴𝑠

= 𝑆𝑐1 + 𝑆𝑠1                           ( 285 ) 

𝐸0(𝐼𝑥,𝑐 + 𝛼𝑒𝐼𝑥,𝑠) ∙ 𝜓2𝑒 = 𝐸0𝛼𝑐∫ 𝑇(𝑦) ∙ 𝑦𝑑𝐴𝑐
𝐴𝑐

+ 𝐸𝑠𝛼𝑠∫ 𝑇(𝑦) ∙ 𝑦𝑑𝐴𝑠
𝐴𝑠

= 𝑆𝑐2 + 𝑆𝑠2             ( 286 ) 

where: 

- (𝐴𝑐 + 𝛼𝑒𝐴𝑠) is the area of the homogenized cross section 

- (𝐼𝑥,𝑐 + 𝛼𝑒𝐼𝑥,𝑠) is the moment of inertia of the homogenized cross section 

For the case study under examination the area of the homogenized cross section is: 

(𝐴𝑐 + 𝛼𝑒𝐴𝑠) = 4346400 𝑚𝑚2 

while the moment of inertia of the homogenized cross section is: 

(𝐼𝑥,𝑐 + 𝛼𝑒𝐼𝑥,𝑠) = 2,099322701 ∙ 1012 𝑚𝑚4 

 

It is possible to observe that in equation ( 285 ) and in equation ( 286 ) the quantities 𝑆𝑐1 and 𝑆𝑐2 

assume null value due to the fact that the temperature distribution over the depth of the cross 

section is null in correspondence of the concrete slab. 

 

In order to compute the two components of the vector 𝜓𝑒, the quantities 𝑆𝑠1 and 𝑆𝑠2 are determined. 

For what concerns 𝑆𝑠1 it is interesting to observe that in the present case, due to the fact that the 

temperature distribution over the area of the steel portion is constant, its expression simply reduces 

to: 

𝑆𝑠1 = 𝐸𝑠𝛼𝑠∫ 𝑇(𝑦)𝑑𝐴𝑠
𝐴𝑠

= 𝐸𝑠𝛼𝑠∫ ∆𝑇 𝑑𝐴𝑠
𝐴𝑠

= 𝐸𝑠𝛼𝑠∆𝑇 ∙ 𝐴𝑠                                                         ( 287 ) 
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For what concerns 𝑆𝑠2 instead, for the same reason, its expression simply reduces to: 

𝑆𝑠2 = 𝐸𝑠𝛼𝑠∫ 𝑇(𝑦) ∙ 𝑦𝑑𝐴𝑠
𝐴𝑠

= 𝐸𝑠𝛼𝑠∫ ∆𝑇 ∙ 𝑦𝑑𝐴𝑠
𝐴𝑠

= 𝐸𝑠𝛼𝑠∆𝑇 ∙ 𝑆𝑦𝑔                                              ( 288 ) 

where 𝑆𝑦𝑔is the first order moment of the area of steel. 

From equation ( 285 ) it is therefore obtained 𝜓1𝑒 as follow: 

𝐸0(𝐴𝑐 + 𝛼𝑒𝐴𝑠) ∙ 𝜓1𝑒 = 𝐸𝑠𝛼𝑠∆𝑇 ∙ 𝐴𝑠                                                                                                  ( 289 ) 

𝐸0(𝐴𝑐 + 𝛼𝑒𝐴𝑠) ∙ 𝜓1𝑒 = 𝐸0 ∙ 𝛼𝑒 ∙ 𝛼𝑠∆𝑇 ∙ 𝐴𝑠                                                                                      ( 290 ) 

4346400 ∙ 𝜓1𝑒 = 𝛼𝑠∆𝑇 ∙ 1346400                                                                                                    ( 291 ) 

𝜓1𝑒 = 𝛼𝑠∆𝑇 ∙ 0,3097736057 [−]                                                                                                      ( 292 ) 

while from equation ( 286 ) it is obtained 𝜓2𝑒 as follow: 

𝐸0(𝐼𝑥,𝑐 + 𝛼𝑒𝐼𝑥,𝑠) ∙ 𝜓2𝑒 = 𝐸𝑠𝛼𝑠∆𝑇 ∙ 𝑆𝑦𝑔                                                                                              ( 293 ) 

𝐸0(𝐼𝑥,𝑐 + 𝛼𝑒𝐼𝑥,𝑠) ∙ 𝜓2𝑒 = 𝐸0 ∙ 𝛼𝑒 ∙ 𝛼𝑠∆𝑇 ∙ 𝑆𝑦𝑔                                                                                   ( 294 ) 

2,099322701 ∙ 1012 ∙ 𝜓2𝑒 = 𝛼𝑠∆𝑇 ∙ 1068718939                                                                        ( 295 ) 

𝜓2𝑒 = 𝛼𝑠∆𝑇 ∙ 5,0907797 ∙ 10
−4 [1/𝑚𝑚]                                                                                        ( 296 ) 

 

Having computed 𝜓1𝑒 and 𝜓2𝑒 and knowing the temperature distribution over the depth of the 

cross section, the compatibility stresses in the concrete portion are obtained as follow: 

𝜎𝑒,𝑐(𝑦) = 𝐸0[𝜓1𝑒 + 𝜓2𝑒 ∙ 𝑦 − 𝛼𝑐𝑇(𝑦)]                                                                                             ( 297 ) 

while the compatibility stresses in the steel portion are obtained as:  

𝜎𝑒,𝑠(𝑦) = 𝐸𝑠[𝜓1𝑒 + 𝜓2𝑒 ∙ 𝑦 − 𝛼𝑠𝑇(𝑦)]                                                                                             ( 298 ) 

 

The compatibility stresses distribution over the depth of the section, obtained in this way, is 

reported in Figure 82 while the total deformation of the cross section under the plane section 

hypothesis is represented in Figure 83. 
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Figure 82  – Compatibility stresses distribution over the depth of the cross section 

Figure 83 – Total deformation of the cross section 
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The computations carried out are verified by checking that the equilibrium equations are satisfied: 

∫ 𝜌
𝐴𝑐

𝜎𝑐𝑑𝐴𝑐 + ∫ 𝜌
𝐴𝑠

𝜎𝑠𝑑𝐴𝑠 = 0                                                                                                          ( 299 ) 

which for the case under consideration are written as follow: 

∫ 𝐸0[𝜓1𝑒 + 𝜓2𝑒 ∙ 𝑦]𝑑𝐴𝑐
𝐴𝑐

+∫ 𝐸𝑠[𝜓1𝑒 + 𝜓2𝑒 ∙ 𝑦 − 𝛼𝑠∆𝑇]𝑑𝐴𝑠 =
𝐴𝑠

 

= 𝐸0 {∫ [𝜓1𝑒 + 𝜓2𝑒 ∙ 𝑦]𝑑𝐴𝑐
𝐴𝑐

+ 𝛼𝑒 ∙ ∫ [𝜓1𝑒 + 𝜓2𝑒 ∙ 𝑦 − 𝛼𝑠∆𝑇]𝑑𝐴𝑠
𝐴𝑠

} = 

= 𝐸0𝛼𝑠∆𝑇 {∫ [0,3097736057 + 5,0907797 ∙ 10−4 ∙ 𝑦] ∙ 10000𝑑𝑦 +
−206,2396466

−506,2396466

 

+6 ∙ ∫ [0,3097736057 + 5,0907797 ∙ 10−4 ∙ 𝑦 − 1] ∙ 3 ∙ 600𝑑𝑦 +
−176,2396466

−206,2396466

 

+6 ∙ ∫ [0,3097736057 + 5,0907797 ∙ 10−4 ∙ 𝑦 − 1] ∙ 3 ∙ 20𝑑𝑦 +
1763,760353

−176,2396466

 

+6 ∙ ∫ [0,3097736057 + 5,0907797 ∙ 10−4 ∙ 𝑦 − 1] ∙ 3 ∙ 600𝑑𝑦
1793,760353

1763,760353

} = 

= 𝐸0𝛼𝑠∆𝑇{−3,4 ∙ 10
−4} = −1,428 ∙ 10−4 ∙ ∆𝑇 ≅ 0                                                                     ( 300 ) 

 

 

∫ 𝐸0[𝜓1𝑒 + 𝜓2𝑒 ∙ 𝑦] ∙ 𝑦𝑑𝐴𝑐
𝐴𝑐

+∫ 𝐸𝑠[𝜓1𝑒 + 𝜓2𝑒 ∙ 𝑦 − 𝛼𝑠∆𝑇] ∙ 𝑦𝑑𝐴𝑠 =
𝐴𝑠

 

= 𝐸0 {∫ [𝜓1𝑒 + 𝜓2𝑒 ∙ 𝑦] ∙ 𝑦𝑑𝐴𝑐
𝐴𝑐

+ 𝛼𝑒 ∙ ∫ [𝜓1𝑒 + 𝜓2𝑒 ∙ 𝑦 − 𝛼𝑠∆𝑇] ∙ 𝑦𝑑𝐴𝑠
𝐴𝑠

} = 

= 𝐸0𝛼𝑠∆𝑇 {∫ [0,3097736057 + 5,0907797 ∙ 10−4 ∙ 𝑦] ∙ 10000 ∙ 𝑦𝑑𝑦 +
−206,2396466

−506,2396466

 

+6 ∙ ∫ [0,3097736057 + 5,0907797 ∙ 10−4 ∙ 𝑦 − 1] ∙ 3 ∙ 600 ∙ 𝑦𝑑𝑦 +
−176,2396466

−206,2396466

 

+6 ∙ ∫ [0,3097736057 + 5,0907797 ∙ 10−4 ∙ 𝑦 − 1] ∙ 3 ∙ 20 ∙ 𝑦𝑑𝑦 +
1763,760353

−176,2396466
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+6 ∙ ∫ [0,3097736057 + 5,0907797 ∙ 10−4 ∙ 𝑦 − 1] ∙ 3 ∙ 600 ∙ 𝑦𝑑𝑦
1793,760353

1763,760353

} = 

= 𝐸0𝛼𝑠∆𝑇{−1,19} = −0,4998 ∙ ∆𝑇 ≅ 0                                                                                         ( 301 ) 

 

The equilibrium equations are both satisfied, therefore the compatibility stresses computed are 

correct. 

 

6.3.3 Analysis of the structure in the viscoelastic field 

In order to perform the analysis in the viscoelastic field it is important to highlight the fact that, 

since the structure is non-homogeneous, the Second Theorem of Linear Viscoelasticity does not 

hold. Therefore, differently from what happens in the case of homogeneous cross sections, the 

total deformation at time 𝑡 is not the same as the one computed with reference to the elastic field. 

Consequently the components of the vector 𝜓 have to be re-computed according to an analogous 

procedure to the one discussed in paragraph 6.3.2 with reference to the elastic field. The only 

difference is that here the cross section has to be homogenized considering a different value of 𝛼𝑒. 

In particular for the computation of the homogenization coefficient 𝛼𝑒 it considered the ratio 

between the modulus of elasticity 𝐸𝑠 and the effective modulus 𝐸′: 

𝛼′𝑒 =
𝐸𝑠
𝐸′
=

210000

14982,877
= 14,02                                                                                                        ( 302 ) 

where the effective modulus 𝐸′ has been computed as follow: 

𝐸′ =
𝐸0

1 + 𝜒(𝑡, 𝑡0) ∙ 𝜑(𝑡, 𝑡0)
= 14982,877 𝑀𝑃𝑎                                                                             ( 303 ) 

with: 

- 𝜒(𝑡, 𝑡0) = 0,8 

- 𝜑(𝑡, 𝑡0) = 1,67  

The value of the creep coefficient 𝜑(𝑡, 𝑡0) has been determined according to the formulation 

presented in the CEB-FIP Model Code 1990 [22] assuming 𝑡 = 10000 days, 𝑡0 = 28 days, a 

relative humidity of 70% and a notional size of the member ℎ = 319 𝑚𝑚.  

The position of the centroid of the homogenized cross section is therefore computed with respect 

to the top fiber of the concrete slab as follow: 

𝑦′𝑔,ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑖𝑧𝑒𝑑 =
𝐴𝑐 ∙ 𝑦𝑔,𝑐 + 𝛼′𝑒 ∙ 𝐴𝑠 ∙ 𝑦𝑔,𝑠

(𝐴𝑐 + 𝛼′𝑒 ∙ 𝐴𝑠)
= 738,6673279 𝑚𝑚                                          ( 304 ) 
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where: 

- 𝐴𝑐 = 3000000 𝑚𝑚2 is the area of the concrete slab cross section 

- 𝐴𝑠 = 3 ∙ 74800 = 224400 𝑚𝑚
2 is the total area of the steel portion of the cross section 

- 𝑦𝑔,𝑐 = 150 𝑚𝑚 is the position of the centroid of the concrete area with respect to the top 

fiber of the concrete slab 

- 𝑦𝑔,𝑠 = 1300 mm is the position of the centroid of the total steel area with respect to the top 

fiber of the concrete slab 

 

After having fixed the origin of the principal reference system in the centroid of the homogenized 

cross section just computed, analogously to what is done in the procedure described for the elastic 

field, the equilibrium is imposed considering the effective modulus 𝐸′ and the homogenization 

coefficient 𝛼′𝑒. Proceeding in this way the two components of the vector 𝜓 are computed and are 

given by: 

𝜓1 = 𝛼𝑠∆𝑇 ∙ 0,511884633   [−]                                                                                                        ( 305 ) 

𝜓2 = 𝛼𝑠∆𝑇 ∙ 4,377339322 ∙ 10
−4  [1 𝑚𝑚⁄ ]                                                                                   ( 306 ) 

 

The obtained results can be verified by checking that the equilibrium equations are satisfied: 

∫ 𝜌
𝐴𝑐

𝜎𝑐𝑑𝐴𝑐 + ∫ 𝜌
𝐴𝑠

𝜎𝑠𝑑𝐴𝑠 = 0                                                                                                          ( 307 ) 

which for the case under consideration are written as follow: 

∫ 𝐸′[𝜓1 + 𝜓2 ∙ 𝑦]𝑑𝐴𝑐
𝐴𝑐

+∫ 𝐸𝑠[𝜓1 + 𝜓2 ∙ 𝑦 − 𝛼𝑠∆𝑇]𝑑𝐴𝑠 =
𝐴𝑠

 

= 𝐸′ {∫ [𝜓1 + 𝜓2 ∙ 𝑦]𝑑𝐴𝑐
𝐴𝑐

+ 𝛼′𝑒 ∙ ∫ [𝜓1 + 𝜓2 ∙ 𝑦 − 𝛼𝑠∆𝑇]𝑑𝐴𝑠
𝐴𝑠

} = 

= 𝐸′𝛼𝑠∆𝑇 {∫ [0,511884633 + 4,377339322 ∙ 10−4 ∙ 𝑦] ∙ 10000𝑑𝑦 +
−438,6673279

−738,6673279

 

+14,02 ∙ ∫ [0,511884633 + 4,377339322 ∙ 10−4 ∙ 𝑦 − 1] ∙ 3 ∙ 600𝑑𝑦 +
−408,6673279

−438,6673279

 

+14,02 ∙ ∫ [0,511884633 + 4,377339322 ∙ 10−4 ∙ 𝑦 − 1] ∙ 3 ∙ 20𝑑𝑦 +
1531,332672

−408,6673279

 

+14,02 ∙ ∫ [0,511884633 + 4,377339322 ∙ 10−4 ∙ 𝑦 − 1] ∙ 3 ∙ 600𝑑𝑦
1561,332672

1531,332672

} = 
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= 𝐸′𝛼𝑠∆𝑇{3 ∙ 10
−4} = 5,39383572 ∙ 10−5 ∙ ∆𝑇 ≅ 0                                                                   ( 308 ) 

 

 

∫ 𝐸′[𝜓1 + 𝜓2 ∙ 𝑦] ∙ 𝑦𝑑𝐴𝑐
𝐴𝑐

+∫ 𝐸𝑠[𝜓1 + 𝜓2 ∙ 𝑦 − 𝛼𝑠∆𝑇] ∙ 𝑦𝑑𝐴𝑠 =
𝐴𝑠

 

= 𝐸′ {∫ [𝜓1 + 𝜓2 ∙ 𝑦] ∙ 𝑦𝑑𝐴𝑐
𝐴𝑐

+ 𝛼′𝑒 ∙ ∫ [𝜓1 + 𝜓2 ∙ 𝑦 − 𝛼𝑠∆𝑇] ∙ 𝑦𝑑𝐴𝑠
𝐴𝑠

} = 

= 𝐸′𝛼𝑠∆𝑇 {∫ [0,511884633 + 4,377339322 ∙ 10−4 ∙ 𝑦] ∙ 10000 ∙ 𝑦𝑑𝑦 +
−438,6673279

−738,6673279

 

+14,02 ∙ ∫ [0,511884633 + 4,377339322 ∙ 10−4 ∙ 𝑦 − 1] ∙ 3 ∙ 600 ∙ 𝑦𝑑𝑦 +
−408,6673279

−438,6673279

 

+14,02 ∙ ∫ [0,511884633 + 4,377339322 ∙ 10−4 ∙ 𝑦 − 1] ∙ 3 ∙ 20 ∙ 𝑦𝑑𝑦 +
1531,332672

−408,6673279

 

+14,02 ∙ ∫ [0,511884633 + 4,377339322 ∙ 10−4 ∙ 𝑦 − 1] ∙ 3 ∙ 600 ∙ 𝑦𝑑𝑦
1561,332672

1531,332672

} = 

= 𝐸′𝛼𝑠∆𝑇{0,801} = 0,1440154137 ∙ ∆𝑇 ≅ 0                                                                               ( 309 ) 

 

The equilibrium equations are both satisfied, therefore the obtained results are correct. 

 

Since the temperature distribution adopted for the present case study is constant in time, the 

Fundamental Theorem can be written according to the simplified expressions given by: 

𝜎𝑐(𝑦, 𝑡) = 𝜎1,𝑐(𝑦, 𝑡)(1 − 𝜇(𝑡, 𝑡0)) + 𝜇(𝑡, 𝑡0)𝜎𝑐(𝑦, 𝑡0)                                                                  ( 310 ) 

𝜎𝑠(𝑦, 𝑡) = 𝜎1,𝑠(𝑦, 𝑡)(1 − 𝜇(𝑡, 𝑡0)) + 𝜇(𝑡, 𝑡0)𝜎𝑠(𝑦, 𝑡0)                                                                   ( 311 ) 

𝜀(𝑦, 𝑡) = 𝜀1(𝑦, 𝑡)(1 − 𝜇(𝑡, 𝑡0)) + 𝜇(𝑡, 𝑡0)𝜀(𝑦, 𝑡0)                                                                         ( 312 ) 

where, for the case study under examination: 

- 𝜎𝑐(𝑦, 𝑡0) are the stresses in concrete previously computed in the elastic field 

- 𝜎𝑠(𝑦, 𝑡0) are the stresses in steel previously computed in the elastic field 

- 𝜀(𝑦, 𝑡0) is the total deformation previously computed in the elastic field 

- 𝜎1,𝑐(𝑦, 𝑡) = 𝐸′[𝜓1 + 𝜓2 ∙ 𝑦] 

- 𝜎1,𝑠(𝑦, 𝑡) = 𝐸𝑠[𝜓1 + 𝜓2 ∙ 𝑦 − 𝛼𝑠∆𝑇] 

- 𝜀1(𝑦, 𝑡) = 𝜓1 + 𝜓2 ∙ 𝑦 
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A very important aspect to be considered in applying the Fundamental Theorem as reported above, 

is the fact that the stresses 𝜎𝑐(𝑦, 𝑡0) and 𝜎𝑠(𝑦, 𝑡0) as well as the total deformation 𝜀(𝑦, 𝑡0) have 

been computed in the elastic field considering a y coordinate whose origin was fixed in the centroid 

of the cross section homogenized adopting a factor 𝛼𝑒 = 6 while 𝜎1,𝑐(𝑦, 𝑡), 𝜎1,𝑠(𝑦, 𝑡), 𝜀1(𝑦, 𝑡) have 

been computed considering a y coordinate whose origin was fixed in the centroid of the cross 

section homogenized adopting a factor 𝛼′𝑒 = 14,02. The correct application of the Fundamental 

Theorem implies therefore the necessity to refer all the previously cited quantities to the same 

coordinate y, in order to perform in equations ( 310 ),( 311 ) and ( 312 ) the summations of stresses 

and deformations at the level of the same fiber of the cross section. 

The comparison in terms of compatibility stresses between the results obtained in the elastic field 

and the ones obtained in the viscoelastic field at 10000 days is reported in Figure 84. 

 

 

 

Moreover the comparison in terms of total deformation of the cross section between the results 

obtained in the elastic field and the ones obtained in the viscoelastic field at 10000 days is reported 

in Figure 85. 

 

 

Figure 84 – Compatibility stresses comparison 
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Figure 85– Total deformation of the cross section comparison 
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CONCLUSIONS AND FUTURE RESEARCH 

 

As testified by many references which can be found in literature, the analysis of the response of 

bridges to thermal actions is a particularly relevant topic, as also confirmed by several cases of 

damages suffered by this type of structures. 

Because of the climatic actions, bridge structures are subject to non-linear temperature 

distributions which cause the arising of compatibility stresses in order to satisfy the plane section 

hypothesis under Bernoulli beam bending. Moreover when redundant structures are considered, 

the effect of thermal actions produces additional stresses due to the reactions of the redundant 

restraints. 

After having discussed in detail the procedure in order to compute the above mentioned stresses 

in the elastic field, the influence of the long-term behaviour of concrete has been studied with 

reference to the viscoelastic field. In particular it has been shown that, in order to rigorously treat 

the problem of the computation of the stresses which arise in bridges due to non-linear temperature 

distributions in the viscoelastic field, a sinusoidal temperature variation, which reproduces with 

sufficient precision the seasonal variation of climatic actions, should be considered. In this 

framework the only solution for the problem is given by the exact formulation, which is based on 

the numerical integration of a Volterra Integral Equation. However this procedure, in the 

framework of sinusoidal temperature variations, results to be particularly involved and therefore 

not suitable for the engineering practice. 

Thanks to the analyses performed in the viscoelastic field in presence of simpler variations of the 

temperature in time, it has been possible to demonstrate the excellent level of accuracy of the 

Fundamental Theorem in approximating the exact solution given by the numerical integration of 

the Volterra Integral Equation. This aspect, together with the simplicity of application of the 

Fundamental Theorem, which basically consists in the superposition of three elastic solutions, 

makes this procedure a particularly convenient tool for the engineering practice. Moreover this 

procedure results to be exact in the case of temperature distributions constant in time, such as the 

ones suggested by national and international code prescriptions, while it becomes approximate 

when for sake of simplicity 𝜒(𝑡, 𝑡0) is assumed equal to 0,8. This choice is motivated in practical 

applications by the fact that the variation in time of the function 𝜒(𝑡, 𝑡0) can be in many cases 

neglected by adopting this value and by making the procedure immediately feasible for the 

engineering practice. 

In conclusion, after having discussed in detail all the theoretical aspects characterizing the problem 

of the evaluation of the long-term response of bridges to thermal actions, the analysis of  the real 

structure of the first case study has allowed to show the applicability of the discussed procedure in 

presence of the non-linear temperature distribution provided by the Eurocode 1 [11]. Moreover the 

second real structure analysed has allowed to show the extension of the procedure, previously 

7  
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discussed with reference to homogeneous cross sections, to the case of non-homogenous cross 

sections, providing in this way the necessary tools to analyse also bridges with composite 

reinforced concrete-steel decks. 

Future developments in the research for the problems studied in the present work could be oriented 

to provide additional examples of applications, considering also other non-linear temperature 

distributions from international standards. For what concerns instead the analysis of bridges 

characterized by non-homogeneous cross sections, the problem could be approached also by 

adopting the method of the Reduced Relaxation Functions. Also in this case however, the solution 

of the problem in presence of temperature distributions varying in time, would be quite involved 

and therefore not applicable in the engineering practice. 
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