
Software architecture for AR
art exhibitions in Unreal Engine

Relatore: Prof. Elisabetta Di Nitto
Tesi di Laurea Magistrale di Mihai Barsan, matricola 905604

Anno Accademico 2020-2021

Thanks to all the people involved.

Sommario
Questa tesi è il resoconto di un lavoro svolto nell’ambito dei beni

culturali che consiste nel sviluppare un’applicazione che consenta

all’utente di ammirare un dipinto tramite l’uso di un dispositivo di realtà

aumentata messo a disposizione dei visitatori durante una mostra

artistica. Il contributo principale fornito da questo lavoro è

un’architettura software che può essere utilizzata per implementare

applicazioni simili.

Il capitolo introduttivo descrive l’ambito al quale si fa riferimento

e quali potrebbero essere gli scenari di applicazione di questo lavoro. Il

secondo capitolo illustra il problema che si deve affrontare e gli obiettivi

da raggiungere. Viene poi raccontata l’opera artistica a cui si fa

riferimento descrivendola e parlando brevemente della sua storia. Infine

si introduce il dispositivo che verrà utilizzato per eseguire l’applicazione:

se ne descrivono i principali pregi e caratteristiche hardware. Il terzo

capitolo è dedicato ad Unreal Engine che è il motore grafico utilizzato

per implementare l’applicazione. Si comincia parlando delle principali

caratteristiche di questa tecnologia, successivamente vengono introdotti

gli elementi fondamentali da conoscere per poter comprendere il codice

che verrà mostrato nel capitolo seguente. Il quarto capitolo è il fulcro

della tesi. Nella prima parte si introduce brevemente l’implementazione

dell’ambientazione virtuale e del quadro in sé poi l’attenzione si sposta

sulla parte software che è lo scopo principale di questo lavoro. Viene

quindi spiegata l’architettura software utilizzata: si comincia esponendo

gli obiettivi che si vuole raggiungere per poi discutere le sue

caratteristiche nonché similarità con altri design pattern esistenti. Si

fornisce quindi una descrizione delle varie parti costituenti e del loro

funzionamento. L’ultimo capitolo riassume il lavoro svolto e da dei

suggerimenti su come l’architettura software descritta si potrebbe

utilizzare in scenari simili.

Abstract
This thesis presents a software architecture designed to

implement a virtual reality application developed for an artistic

exhibition. It makes use of the Unreal Engine and uses the tools and

classes provided by the engine. Specifically what this architecture does

is to simulate a finite state machine allowing the developer to define

state classes that inherit from other state classes and execute custom

code on state transitions by declaring methods that make use of the

substitution principle.

Table of contents

1 Introduction..1

1.1 Research context..2

2 Scope...4

2.1 Problem description..4
2.2 Exhibition subject...6

2.2.1 Second WW misfortunes..6

2.2.2 Portrayed characters..8
2.3 Hardware state of the art..10

2.3.1 Magic Leap..12

3 Development environment..16

3.1 Unreal Engine...16

3.1.1 Basics...19

3.1.2 Building blocks...24
Vectors representation..24
Gimbal lock problem...25
World..26
Actor...27
Components...28
UClass...29

4 Realization..30

4.1 The painting...31

4.1.1 Clouds material..33
4.2 The virtual environment..34
4.3 Architectural design..36

4.3.1 Goals...36
Finite state machine...36

4.3.2 Implementation..38
Game act...39
Dispatching mechanism...45
Visitor pattern..45
Solution attempt..48
Polymorphism workaround...49

Game act components..56
Cinematic sequence act component.....................................56

4.4 Computational complexity...60
4.5 Overview..61

4.5.1 World positioning...62

4.5.2 Rope interaction..63

5 Conclusions...65

1. Introduction

1 Introduction
The improvement of the tools available to artists and audiovisual

content creators has introduced a series of new means to experience

the art and cultural heritage by enthusiasts from all over the world. In

particular in recent years we have seen the introduction and rapid

evolution of virtual reality devices. We went from being barely able to

synchronize the movement of the head with the movement of a camera

overlooking a simple virtual world containing a bunch of polygons, to

what exists today. That is, highly reactive devices capable of showing

virtual worlds that are increasingly complex and realistic in their

representation, devices that offer greater interaction capabilities such as

hand tracking or that allow multiple users to share the virtual

experience and see the exact same dynamic scenario that changes for

all of them at the same time.

Virtual reality has remained mainly confined to the world of video

games. Although there have been attempts to employ virtual reality for

other purposes, it is only recently that virtual elements have begun to

be successfully introduced in artistic contexts, the reason being: when it

comes to museums or art exhibitions, the aim is to see the peaces of

art firsthand, also the staging and setting are equally important. Virtual

reality headsets impose a big limitation as they confine the viewers to

the virtual environment, completely isolating them from the

surroundings.

The problem that one tries to solve with augmented reality

devices is precisely this: to show virtual elements overlapping the real

ones. The first iteration of this technology is the virtual reality of

mobile phones. It is a simple technology that does nothing but add

virtual images on top of the images coming from the camera of a

Software architecture for AR art exhibitions in Unreal Engine 1

1. Introduction

smartphone. It is not a true augmented reality device but rather an

editing trick which consists of modifying a video stream in real time

giving the illusion that the virtual image is somehow anchored in a real

space by relying on the orientation sensors of the phone to keep the

image in position. The second iteration of this technology is

represented by mixed reality devices. These devices are able to actively

map the surrounding physical space and create a 3D mesh within

virtual reality. This opens up new interaction opportunities and allows

virtual objects to interact with real ones. Let's imagine a virtual ball

that is thrown against a real wall and bounces back realistically: this is

possible if the virtual world has a 3D model of the real surfaces in the

form of an invisible mesh which has the sole purpose of generating

collision events. [1]

1.1 Research context
This chapter gives a clarification about the context in which the

work related to this thesis was carried out, what is the nature and

contribution offered by this work not only limited to the purpose it was

intended for, but generalized to other scenarios with similar

requirements.

This thesis presents the report of a work aimed to create an

augmented reality experience to allow the viewer to admire the painting

Sistine Madonna in the place where it should have originally been placed:

that is the monastic complex of San Sisto in Piacenza (Italy). This

exhibition is part of a series of cultural events that will take place in

different locations in the Emilia Romagna region in 2021, in the context

of a culturally-based territorial development program: “Piacenza 2020/21

Crocevia di Culture” [2]. The entire work path will be explained starting

from the description of the problem to be solved and the requirements

to be met, the decisions made and solutions to the various problems

Software architecture for AR art exhibitions in Unreal Engine 2

1. Introduction

will be explained and justified. Finally, a design approach will be

suggested and a software architecture will be provided to solve

problems similar to the one presented here.

Several people worked on this project, on different aspects. The

author of this thesis has fully developed the software part, therefore the

point of view and what we will focus on in the next chapters will be the

software architecture of the application itself and the game engine

used.

Before starting it must be said that the goal of this thesis is to

present to the gentle reader the results of a long process of education

the author has undertook. It started with C++ which is a very large

language consisting of multiple paradigms and techniques (some of

them very interesting and obscure to the average programmer) which

take a long time to be fully understood and mastered. It then continued

by breaking down the various parts of Unreal Engine, which is a difficult

endeavor by itself. To further increase the size of the problem, one

must consider that the application produced must run on Magic Leap:

an embedded device that is rather new to the market and its

development kit was, at that time of development, not perfectly stable

and documented. In summary, even if this thesis does not go into the

details of the various problems encountered, it is important to mention

that the development process was difficult and time consuming. Both

because the lapse of time between building a program and then testing

it on the device is very, very long and because of the various crashes

and glitches encountered during development. It happened several times

that a build that behaved or looked a certain way in Unreal Engine on

the PC, behaved or looked differently on the device or did not run at all

because some error occurred. Errors that cannot be debugged on the

device directly but rather must be figured out using logs and stack

trace printings.

Software architecture for AR art exhibitions in Unreal Engine 3

2. Scope

2 Scope

2.1 Problem description
On 6 April 2020 (the event was postponed to mid 2021 due to

the COVID-19 pandemic), on the occasion of the 500 years that have

passed since the death of the famous Italian painter and architect

Raffaele Sanzio, we want to celebrate the event by showing his most

important paintings to art enthusiasts. For the celebration, some rooms

of the church dedicated to San Sisto in Piacenza are set up, rooms that

are normally not accessible to guests. In these rooms, visitors will be

able to take an informative and entertaining tour relating to Raphael's

work, which most of all is linked to the place where the exhibition is set

up: the painting “Sistine Madonna”.

As part of the exhibition, two totems will be set up, on them two

Magic Leap augmented reality devices will be made available to the

participants. The spectators must wear one of the headsets and

autonomously complete the audiovisual experience following the

instructions given to them (both from the software application and

assistants supervising the exhibition). There are no precise time limits

to be met but it’s required that the presentation must have a limited

duration to avoid creating too long queues. It is also necessary to make

it clear to the spectator what the end of the show is, in order to place

the headset back in its position and leave space for the next visitor.

Our aim is to bring this work to life. We have to reproduce the

painting in a virtual environment and allow viewers to admire it. The

painting will be slightly animated enough to make the characters appear

alive but without distorting the representation, it is still a painting and

must appear as such. It is also important to keep in mind that we are

Software architecture for AR art exhibitions in Unreal Engine 4

2. Scope

reproducing subjects of a religious nature that will be exhibited in a

church so we must take into account the context. The reproduction

must be respectful of the reproduced subject, that is, the painting itself

and the religious subjects portrayed inside. We must as much as

possible reproduce (and amplify, thanks to the more powerful mean of

communication we have) the sensations conveyed by the painting. It is

clear that there are many ways to fail in this endeavor and only a few

to successfully create a visual experience that is both spectacular and

respectful of the subject matter.

Figure 1: San Sisto courtyard

Figure 2: San Sisto nave

Software architecture for AR art exhibitions in Unreal Engine 5

2. Scope

2.2 Exhibition subject
The Sistine Madonna is an oil painting made by the Italian artist

Raffaello Sanzio. It was commissioned in 1512 by Pope Julius II to be

exposed in the church San Sisto in Piacenza. It remained there for 240

years and was then sold to August III King of Poland around the mid-

eighteenth century for an unprecedented amount of money. It is

estimated that the value of the transaction was equivalent in value to

about 90 kilograms of gold.

2.2.1 Second WW misfortunes
The painting was almost

lost during the Second World War

after the bombardment of the

city of Dresden, which was the

place the painting was located

it (the city was part of Nazi

Germany and was located near

the eastern front) by the Royal

Air Force. One cannot forget to

mention the man who put

effort to find it back: lieutenant

Leonid Rabinovich, a Ukrainian

Jew who was also an art

student and enthusiast.

It's common knowledge that during the war the Nazis hid goods

like jewels, gold ingots and pieces of art so as not to be found by the

allies. Leonid Rabinovich looked for these paintings and in particular the

Sistine Madonna in a post apocalyptic scenario, in the basements of the

crumbling deposits and museums of Dresden: a city that was destroyed

Software architecture for AR art exhibitions in Unreal Engine 6

Figure 3: Leonid Rabinovich

2. Scope

by bombs. The painting was found in 1945 in an abandoned and sealed

railway tunnel, inside a wagon along with many others. Fortunately, also

in this case the Nazis put in place all their efficient organization to keep

the paintings safe from humidity. They were located in a double-walled

railway carriage with sawdust filled cavities, there was also a heating

and ventilation system to keep the humidity level low [3]. After finding

them, the Soviets took the paintings to Moscow where they were

exhibited for a short period of time at the Pushkin Museum. In 1956 it

was returned back to the Gemäldegalerie in Dresden where it is still

exhibited today and is one of their main attractions. [4]

Figure 4: Gemäldegalerie Alte Meister

Software architecture for AR art exhibitions in Unreal Engine 7

2. Scope

2.2.2 Portrayed characters

The painting depicts six subjects on four different levels of

depth. On the rear level there is the Virgin holding the Christ Child in her

arms. The dress and the veil on her head appear to be moved by a

Software architecture for AR art exhibitions in Unreal Engine 8

Figure 5: Raphael, Sistine Madonna, oil painting 1513-1514
(Gemäldegalerie Alte Meister, Dresden)

2. Scope

breeze, giving a feeling of dynamism to the picture. Closer to the

viewer, Saint Sixtus is depicted: an elderly man with thinning white hair

and a long, bristly beard. His rich robe also appears to be moved by the

wind and seems to bend, in the back, with the clouds. The saint seems

to address to Mary directly and point with his index finger towards the

viewer, rising a feeling of involvement. On a different level of

perspective is Saint Barbara, portrayed as a beautiful young woman with

a placid and timid attitude giving a sense of calm and peace. She does

not look at the apparition of Mary but turns her gaze downwards. On

the front level there are two little angels. They look like winged children

and place their hands on a horizontal windowsill as if to support

themselves in order to participate at the apparition.

In addition to the main characters there are some fundamental

details. The clouds in the background and under the characters suggest

the celestial setting of the scene. It may not be evident at first but the

clouds appear as intangible angelic faces, this effect is more

accentuated in the left part of the painting, near the curtains. Two

other details suggest to the observer the identity of the characters. One

is the papal tiara in the lower left corner to testify the presence of Saint

Sixtus who was pope with the name of Sixtus II in the years 257 – 258

AD. Another is behind Saint Barbara: it is the tower where she was

locked up by her father to keep her away from the suitors who have

been charmed by her beauty.

Finally, on the foreground, there are the green curtains. The

ripples effectively convey the idea of softness of the material they are

made of and make them seem as if they were to swing gently to settle

slowly in a state of rest. The curtains act as a symbolic separator

between the real world in which the viewer is and the divine world to

which the represented scene belongs. These, as in a theater, seem to

have opened to allow the observer to get closer and assist at the scene

Software architecture for AR art exhibitions in Unreal Engine 9

2. Scope

of the apparition and could close at any moment, bringing him back to

the real world.

2.3 Hardware state of the art
The intent of this exhibition is to allow the visitors to virtually

admire a work of art that is physically located elsewhere. Until some

time ago, the mandatory choice as a technological means to achieve

this would have been a virtual reality device: the spectator wears the

headset and finds itself into a completely reconstructed virtual world,

wherever one looks, he will see some corner of the virtual world, from

the floor to ceiling, from the closest to the most distant object.

Everything must be created and placed in the scene. However,

augmented reality devices have been recently introduced. As an

advantage, now the user is not completely isolated anymore but have

the illusion to see the virtual objects placed in the real world as if they

were part of it. This is a huge advantage because now one can enjoy

not only the virtual parts of the scene that he's observing but also the

real part, adding further opportunities for artistic expression. Artists can

now stage their artistic work in a plausible context. This also has a

strong symbolic meaning: it communicates to the viewer that we are

bring the painting back to the place where it was in origin, albeit

virtually.

The precursors of augmented

reality are mobile phones, which

inserted in a special support, can give

the illusion that one is looking at

virtual objects placed in space. The

sensors on board do a decent job of

keeping the virtual objects anchored

in a specific location. The positioning of the object in space, however,

Software architecture for AR art exhibitions in Unreal Engine 10

Figure 6: VR/AR support

2. Scope

is far from perfect: they fluctuate depending on how the phone is

handled and can shift over time in a relevant meaner. Orientation

sensors are calibrated to measure changes in position rather than their

absolute value. In normal phone applications, it is more meaningful to

know how and by how much the device has been moved rather than

knowing exactly where it is at the end of that movement.

Another fundamental limitation is the quality of real-time video

playback and visual quality of the screen. Everyone agrees that today's

phones have very high video shooting quality. This video quality,

however, is made possible in part due to the quality of the optical

sensors but mainly thanks to the post processing operations of the raw

images coming from the camera. These images are not directly saved in

a video stream but are first cleaned up, denoised and maybe improved

with the use of various software filters and artificial intelligence. Finally

compressed to save space. While all of these operations take place in

real time at the camera's frame rate, they introduce a time offset. This

offset must clearly be kept to a minimum maybe sacrificing some of the

post processing operations, otherwise the user will perceive the delay

resulting in a poor AR experience and maybe causing headache.

The visual quality of the screen is an issue as well. Normally the

phone screens, even though highly defined, are not intended to be held

at such a close distance to the eyes. All these reasons have made it

necessary to research and develop new devices capable to overcome

these limits. The two main contestants that meet all our requirements

are Microsoft's HoloLens 2 and Magic Leap. The choice fell on the latter,

the reason being dictated by lower costs rather than technological

qualities.

Software architecture for AR art exhibitions in Unreal Engine 11

2. Scope

2.3.1 Magic Leap
Magic Leap is an augmented

reality device with very

sophisticated features. It was

developed by the startup Magic

Leap, Inc. founded in 2010 based

in Florida. The first device aimed

at the public was released in 2018:

Magic Leap One. The company,

however, has recently undergone a

major restructuring, focusing for

now on the business slice of the

market which is more easily able to afford the investment that the

purchase of these products requires. During the year 2021, they are

preparing to announce the second iteration of the headset.

Figure 8: Magic Leap sensors

Let's see an overview: Magic Leap consists of two distinct parts

connected by cable to each other (figure 7). One is the headset to be

worn on the head. It contains the sensors, scanners, cameras and

Software architecture for AR art exhibitions in Unreal Engine 12

Figure 7: Magic Leap

2. Scope

speakers. The second is the computation unit which consists of all the

circuitry necessary for operation and the battery. In addition to these

two parts, a controller is included that communicates wirelessly with

the device. The software that’s running is a modified version of

Android, an operating system called Lumin OS. It is designed around the

concept of apps just like Android and feels similar to a certain extend.

Apps can be installed, updated, uninstalled, started and stopped. The

user can switch from one application to another and that application

will be paused by the operating system allowing the user to resume

later and continue from where it was.

We now come to the technological merits of the device. At

Magic Leap they are keen to specify that this is not a VR device, nor is

it the AR of smartphones, but rather it is a spatial computer. This

definition, although not common, is actually appropriate. In fact, the

device has a great ability to map the environment around it and to

orient itself in the space. As one can see from the figure 8, Magic Leap

has a long list of sensors that allow it to measure the space around. In

fact it does not only orient itself but also creates a virtual

reconstruction of the physical space, which will then be available to

developers according to the API classes and functions of the graphic

engine employed. Using the central sensors (figure 8), the headset

projects a grid of points of infrared light, invisible to the human eye but

visible to the nearby sensor, this information is processed by the device

and used for the space reconstruction. It can also understand the

space, this means that it will recognize a location that was previously

mapped and maybe load the mapping from memory and update the

map as more information is obtained. Specific locations in the space

can be saved and later loaded by the application. Imagine that a user is

placing a virtual object in a precise spot in the physical space, the

application can decide to save that location and, when restarted, let the

user find the virtual object in the exact same spot.

Software architecture for AR art exhibitions in Unreal Engine 13

2. Scope

Magic Leap doesn't use screens like most VR devices, the first

thing one notices is that the lenses are transparent. To visualize the

images it uses a technology called Lightfield. Tiny image projectors point

the light directly in the eyes of the user. There isn't much information

on how this technology specifically works in Magic Leap, partly because

it's still quite recent, partly because manufacturers keep it secret as

much as possible. However, it is possible to see a general overview of

the light field projector and its main parts in figure 9. Intuitively: the

light coming from the projectors mixes with that coming from the

outside giving a convincing sensation of looking at a virtual object

physically positioned in the space.

Let's talk now about the ways a user can interact with the

application. The development kit provides the developer with

components that map the position of the hands in the space. In fact, it

not only detects the position of the hands but also provides the position

of some key points of the hand (figure 10). This way it is possible to

develop applications that track the hands in an extremely precise way,

Software architecture for AR art exhibitions in Unreal Engine 14

Figure 9: Lightfield schema

2. Scope

allowing the user to interact with

the virtual objects in a natural and

intuitive meaner. It can also

recognize some specific gestures

such as thumbs up, fist, and

several others. As for the eyes, it is

possible to know if the eye is

opened or closed. It is possible to

detect the direction of the user's

gaze and to know in the

application where the attention is

directed. It could be useful, for

example to synchronize events that

must happen and must be noticed

by the user telling how long to wait before showing an object in space

or starting an animation and being sure that the user is observing it.

The controller is a more classic means of interaction, it has six

degrees of freedom and its orientation is measured by the sensors on

the headset. As shown in figure 8, on the device there is an

electromagnetic sensor (6DOF E/M sensor) which measures the magnetic

field generated by the controller. This way the positioning offset of the

controller with respect to the headset can be calculated. Its absolute

position in space is then calculated by summing the position of the

headset. In addition to the orientation, the user can interact using a

simple button (bumper), a trigger that measures a continuous value in

the range 0-1 and a touch pad.

Software architecture for AR art exhibitions in Unreal Engine 15

Figure 10: Magic Leap hand
tracking key points

3. Development environment

3 Development environment
After the long introduction and illustration of the background on

which this work was carried out, as well as of the tools available, in this

chapter the most interesting part of this thesis is finally discussed. Let's

start by introducing the graphics engine used and the main concepts of

the development kit.

3.1 Unreal Engine
Unreal Engine is a graphics

engine developed by Epic Games, Inc.

Like other graphics engines

(CryEngine, Source Engine), UE was

born from the development of a

video game. This is Unreal, a video

game from 1998 developed by the

same company but which was called

Epic MegaGames back then [5]. Over

the years, the graphics engine has

been developed at a steady pace and its potential applications just like

its audience has increased. Now Unreal Engine is used in many fields,

not only video game but also architecture visualization, film making,

automotive, product design, engineering, simulation and others.

The popularity among fans has increased considerably since 2015

when Epic Game has changed its distribution policy allowing anyone to

start using this engine for free and start paying 5% of the revenue when

above a certain threshold (today that threshold is a million US dollars).

Since then, UE's community of enthusiasts has continued to grow and

today is the first alternative to Unity. Unlike Unity, Epic Games also

Software architecture for AR art exhibitions in Unreal Engine 16

Figure 11: Unreal Engine logo

3. Development environment

allows anyone to access the source code of the entire graphics engine

for free. This is not an open source distribution, it is important to

specify. The entire product remains under a proprietary license but is a

particularly free proprietary one that places very few restrictions on the

use of the product. Due to its technical qualities and permissive license,

UE is a popular choice among both large game development studios

and small independent developers.

Figure 12: Unreal Engine 4.26 editor

In the course of the year 2021, a new version of Unreal Engine is

expected to be released: version 5. The presentation video had great

media coverage, because Epic Games announced a couple of features

that could potentially be game changers for the industry: Lumen which

is a new real time lighting system and Nanite which promises to be able

to render meshes with an arbitrary number of polygons [6]. The latter

being particularly interesting. Today's workflow of developers and 3D

artists requires them to create and manage multiple versions of a

certain 3D object. These versions are known as LOD (Level of Detail),

their purpose is to optimize the size of the objects to decrease as much

as possible the time required to be rendered in a frame. Showing

increasingly complex scenes requires a great computational effort, an

Software architecture for AR art exhibitions in Unreal Engine 17

3. Development environment

effort that must be well directed towards the operations that can

visually contribute to substantially improve the scene.

Figure 13: An object displayed at different levels of details

The way LOD works is as follows: the 3D artist prepares various

versions of a mesh, those versions have an increasing degree of

complexity. In fact, to reproduce an object in detail, a large number of

polygons is required, this is particularly evident in the case of curved

surfaces. The number of polygons per unit area must increase as the

camera approaches an object to maintain the same level of visual

quality (figure 13). This mesh density variation is implemented in the

graphics engines as a replacement of the object with that of the next

level of detail. The different levels of detail not only vary in the number

of polygons but can go deeper than that and modify the structure of

the object itself to make it more optimized such as eliminating some

unnecessary parts, using a less detailed material or omitting shadows.

Generally, creating these versions of a mesh takes time and doing it

badly has a negative impact on the user experience. The gentle reader

will certainly be familiar with the popping effect that some video games

present especially when moving the camera at high speed: some objects

seem like they appear on screen due to the replacement with more

detailed versions of them. Nanite technology promises to handle this

automatically, the 3D artist will simply need to load the mesh at the

maximum level of detail and the graphics engine itself will

Software architecture for AR art exhibitions in Unreal Engine 18

3. Development environment

automatically, at runtime, scale the objects to the optimal level of

detail with seamless transitions.

3.1.1 Basics
Here we talk about the fundamental concepts necessary to

understand what will be illustrated later about software programming.

Unreal Engine is written entirely in C++ but has specific conventions

and limitations. Moreover it doesn’t make use of the standard template

library (STL). Most of the classes and templates in the standard library

are implemented with similar names in Unreal hence experienced C++

developers should be able to find all the interfaces they are already

familiar with.

In Unreal Engine one can use any valid C++ program but in

order to interact with the editor the code has to follow some strict

conventions. These conventions were necessary to allow Epic Games

developers to create a massive reflection system, feature that is missing

in C++ and that was necessary in order to implement all the

functionalities offered by the editor. Unreal must in fact examine,

introspect and modify the structure of the classes, this ability is called

reflection in computer science. The reflection is beneficial because, on

the one hand, it allows the engine to instantiate compiled C++ classes

and modify the data of the objects directly from the editor, on the

other hand it allows the functioning of Blueprint: a visual scripting

language very well integrated within the Unreal Engine framework.

One of the main selling points of Unreal is that it has made 3D

programming accessible even to non-developers. By simply using

Blueprint one can do almost anything that can do with C++ and much

faster because it doesn't have to compile the code (which is a very

time-consuming operation). For this reason, it is much easier to

prototype functionality with Blueprint. However, it should be noted that

Software architecture for AR art exhibitions in Unreal Engine 19

3. Development environment

Blueprint has generally less performance than C++, especially in CPU

intensive operations. There is a trade-off to be made here. This project

mainly uses C++ but still Blueprint is also used where it makes sense

and is more convenient. [7]

There are two types of objects in Unreal Engine: classes and

structures. These make use of the same two keywords as plain C++ but

there are some considerations to be made. A class and a struct is

treated the same way in plain C++ (the only difference is the default

access specifier which is public in the case of struct and private in the

case of class), in Unreal the two concepts are given semantic value. An

object of a struct in Unreal is a simple value allocated on the stack.

This can be a member variable of another struct or class, it can be the

value argument of a function and in general it will normally be copied.

The best way to think of a struct is as a data container. Conversely, a

class is a more complex data type that is also handled differently by the

engine. Classes, for example, often make use of inheritance and rely on

virtual methods to implement polymorphism. The objects of classes are

allocated in memory and their existence is not limited by the code

scope they are in. It is responsibility of the garbage collector to manage

objects lifetime and deallocate the memory when it is not referenced

anymore by any property. In fact the garbage collectors works alongside

with the reflection system to keep track of what memory is referenced

by what objects. In Unreal an excellent job has been done in simplifying

the memory management that is normally required to a plain C++

developer.

Software architecture for AR art exhibitions in Unreal Engine 20

3. Development environment

Here is an example of how to declare a class idiomatically in

Unreal. Structures are declared in a similar way with minor differences.

1. #include "CoreMinimal.h"

2. #include "MyObject.generated.h"

3.
4. UCLASS(Blueprintable)

5. class TEST_API UMyObject : public UObject {

6. GENERATED_BODY()

7.
8. protected:

9. UPROPERTY(EditAnywhere)

10. int SomeInt;

11.
12. UPROPERTY(EditAnywhere)

13. TSubclassOf<AActor> SomeActor;

14.
15. UPROPERTY(EditAnywhere, BlueprintSetter = SetSomeString)

16. FString SomeString;

17.
18. int UnknownInt;

19.
20. public:

21. UMyObject();

22.
23. UFUNCTION(BlueprintCallable)

24. void SetSomeString(const FString& String);

25. };

Code 1: Class declaration in Unreal Engine

One detail to notice is that Unreal has a strict convention when

naming classes. The class MyObject (code 1) is proceeded by the letter

“U”, similarly structures begin with the letter “F”. There are additional

elements to take into consideration though, they are mostly macros

used to register the various parts within the reflection system of Unreal

Engine. For example, the class itself is registered using the macro

UCLASS(). The argument Blueprintable tells the system that this

Software architecture for AR art exhibitions in Unreal Engine 21

3. Development environment

class can be used as a parent to create Blueprint classes. There are

many other specifiers that can be used as arguments (not only in

UCLASS() but also in the other macros), they will not be further

discussed though. It is of course possible to avoid registering member

variables and functions. Valid plain C++ code will work correctly in the

context of the engine. Not registered members, however, cannot be

detected by the editor therefore it won't be possible to use then within

Blueprint. See for example the member variable UnknownInt, not being

preceded by the macro UPROPERTY() makes Unreal unaware of its

existence therefore it will not appear and will not be available in the

context of the editor (figure 14). It can still be used as usual in the

context of C++ though. A noteworthy detail is the setter for the

SomeString property. As one can see, the integration of Blueprint with

C++ goes quite deep allowing the developer to specify methods defined

in C++ that will be used when the property at hand will be assigned in

Blueprint. The methods that can be used from Blueprint are preceded

by the macro UFUNCTION() with the argument BlueprintCallable to

inform the engine about that.

Figure 14: MyObject class properties as shown by the editor

The macros are just part of the story. The reflection system of

UE is made possible thanks to the Unread Header Tool. UHT is

invoked before invoking the normal C++ compiler. It will parse the

header files (.h) to get the metadata and generate the custom code

Software architecture for AR art exhibitions in Unreal Engine 22

3. Development environment

that implements various type system related features. It is a tool

integrated in the build process that generates an additional header file

(ClassName.generated.h) that must be included as the last include

directive in every class’ header file [8].

To workaround the lack of introspection of C++, other

frameworks have adopted solutions similar to the one presented here:

on the one hand, macros are used to record the various parts that

make up the classes, on the other hand, an additional compilation step

is introduced in order to run tools specifically designed to analyze the

classes and generate additional code. To make an example which is

similar, the Qt framework uses macros in a similar way as seen in

Unreal and a tool called MOC (Meta Object Compiler) integrated in

the building system to gather information about classes and write the

boilerplate code needed to implement the additional features [9].

All the classes used in Unreal inherit from the class UObject.

The Unreal developers here wanted to conform to the trend that most

programming languages follow (Java, JavaScript, C#, Kotlin and many

others). In object-oriented languages usually there is a top type (also

called universal base class): a class usually called Object from which all

the other classes implicitly inherit methods and attributes. Although

C++ is object oriented, this paradigm is only one of the possible

paradigms that can be used with this language. All types in C++ are in

their own right, conceptually separated from all the other classes when

there’s no inheritance branch in common. Any code will be valid if,

given a certain value, it will happen that it has all the methods and

offers all the features that will be required by the code that uses that

value. This approach is known as duck typing and is used for example by

C++ with templates (at compile time) or by PHP (at runtime): another

language that just so happens to lack the existence of a top type. An

important limitation to keep in mind when writing classes for the Unreal

Engine is that a class can inherit from a single other class. In C++

Software architecture for AR art exhibitions in Unreal Engine 23

3. Development environment

there is multiple inheritance but if a class is made to be compliant with

Unreal's type system then it must inherit from a single class or from

the class Object itself and this behavior is enforced by the UHT. It can,

however, implement multiple interfaces. There are specific conventions

to declare interfaces in Unreal, they are still C++ classes properly

decorated with macros. [10]

3.1.2 Building blocks
Now let's see what are the main parts to keep in mind when

programming in Unreal and how they interact with each other.

Although over time Unreal Engine has been constantly expanded, its

origin as a game engine is evident from the terminology used in various

classes and functions throughout the API. There are names like

UGameEngine, AGameStateBase, FGameplayTag, AActor::BeginPlay

about everywhere.

Vectors representation

In any 3D graphics software, a concern is to develop an efficient

system to represent vectors because it will need to handle a very large

amount of them. Any point in space is characterized by a triple to

represent the location. When dealing with objects in space, besides the

location, one must also take into account the rotation because, as the

educated gentle readers will remember from school, an object in a

three-dimensional space has six degrees of freedom. This means that 6

different numerical values are needed to precisely place it in space.

Moreover an object can be scaled along the three axes. The union of

the concepts listed above is called transform and it managed by the

class FTransform in Unreal Engine. [11]

Inside a transform object, one will find a FVector for the

location: this class is nothing more than a container of 3 float values

Software architecture for AR art exhibitions in Unreal Engine 24

3. Development environment

(one for each axis of the three dimensions XYZ). There is an FQuat

object for the rotation. Although it would be possible to represent

rotations with a vector of dimension 3 (rotations with respect to the

three main axes: yaw, pitch, and roll), in order to avoid ambiguity,

rotations are represented by quatermions, which use 4 values. The

rotator is, in fact, affected by the gimbal lock problem which is talked

about in the next paragraph. Finally, the scale operation is represented

by an FVector, just like the location.

Gimbal lock problem

Figure 15: The actor CameraActor has a locked gimbal

The problem with the gimbal lock is the loss of a degree of

freedom if it so happens that two axes of the three rotation axis were

to position themselves in a parallel configuration. Let's start with the

basics. An object has 3 axes of rotation these are called yaw, pitch, and

roll and in Unreal Engine they are respectively the Z (upper), Y (right)

and X (front) axes. Thinking about the gimbal, these axes lie within a

hierarchy. Rotating the outermost axis will also affect those at the

Software architecture for AR art exhibitions in Unreal Engine 25

3. Development environment

lower levels in the hierarchy and leave unchanged those at the higher

levels. The gimbal lock problem occurs when the intermediate axis of

the hierarchy is rotated 90° so that the other two axes (lower and

upper) line up. Seeing the problem in action is very easy in Unreal

Engine, in this context, the intermediate axis is the Y (pitch) axis,

therefore it is sufficient to rotate any actor by 90° around that axis.

Subsequently one can realize that varying the rotation around the X axis

and around the Z axis produces the same type of rotation (figure 15).

However, setting Y as an intermediate axis is a good compromise. This

way one will risk having to deal with the problem only when an object is

aligned along the vertical axis (looks exactly up or down) possibility

that it is not very common (at least when compared with the other

possible alternatives). [12]

The problem of the gimbal lock can be solved by using a 4-value

system (FQuat in Unreal: quatermions) instead of the 3-value

(FRotator). The 3-value rotation system is made available because it

is much easier for animators to reason about. Rotators have an intuitive

meaning that allows one to mentally understand what kind of pose a

rotator value corresponds to. In the case of quatermions this mental

operation is much more difficult, they have more of a mathematical

meaning than an intuitive one.

World

In Unreal Engine, what is shown on the screen exists in the game

world. This is represented by the UWorld class which is the top level

concept representing a map or a sandbox. If one wants to perform

operations such as adding a new level, or spawning a new character this

is the class to refer to.

Software architecture for AR art exhibitions in Unreal Engine 26

3. Development environment

Actor

An actor is an object that can be physically placed in the world.

Any actor inherits from the AActor class. One can recognize actors in

the code because their classes names begin with the letter “A”. The

actors by default do not have physical qualities, the best way to think

about actors is like entities that perform some actions or reveal

themselves in some ways that depend on the components they have

(see Components).

An actor has a precisely defined life cycle: it comes into

existence when spawned programmatically or because it is part of the

world. Later it can be destroyed programmatically or by the engine itself

because the game or the current level ended. In general when

programming using large frameworks like Unreal Engine that make

available complex abstract environments that are managed in every

single detail by the underlying software architecture (thus being opaque

from the outside), a series as entry points are provided to software

developers. One can attach some code to those entry points in order to

perform custom actions and interact with the environment according to

the needs of the specific application, in other words to script the game

logic. Concerning actors, those entry points are provided as virtual

methods that can be overridden by the sub classes representing the

concrete actors. At the beginning, the engine calls the method

AActor::BeginPlay. This is a very common method to carry out

initialization operations. Similarly the method AActor::EndPlay is the

opposite that carries out eventual cleanup operations.

During their lifetime, actors can be "ticked": they can run a

piece of code at regular intervals, most commonly once per frame. This

code is used to progressively update the 3D scene as the user interacts

with the world and more actions are happening. The piece of code

written inside the method AActor::Tick (as usual overridden by sub

Software architecture for AR art exhibitions in Unreal Engine 27

3. Development environment

classes) takes as argument a float value which is the time elapsed since

the last tick (in seconds). Ticking frequency is dependent on the frame

rate the rendering is running at. This frequency is obviously affected by

the load the engine is sustaining in any instant: how many actors are on

the field of view, how complex are their geometries, how many sources

of lights that generate shadows are there and so on. One should keep

in mind that the game logic is running in a single threaded fashion to

avoid overloading the developer with all the problems that multi

threading brings to the table. This doesn't prevent one from writing

code that runs in parallel and in fact the API provides several facilities

to do this easily. Still, operations carried out in the Tick method must

be very well paid attention to because any lagging that may happen in

this method has a net negative impact on the frame rate, even if it

happens in the most remote and irrelevant actor.

Components

Actors are nothing more the empty shells. They perform actions

or reveal themselves by using components. One should think about

components as building blocks that can be added to actors in order to

confer specific qualities. An actor has to produce a sound?

UAudioComponent is what is needed. An actor has to show a cube or

some other object? UMeshComponent will do that. The best way to

think about components is in terms of reusable behaviors.

Every component is a subclass of UActorComponent. That class

defines the main features of components that the classes inheriting will

eventually override. Like the actors, the components are given the

chance to attach code to the main entry points that are of interest to

the application logic (like UActorComponent::BeginPlay,

UActorComponent::EndPlay). Also, similarly to actors, the

components can be ticked.

Software architecture for AR art exhibitions in Unreal Engine 28

3. Development environment

A fundamental component that is used extensively is

USceneComponent. This component has a transform which means it

represents a specific position into space and any component that needs

the same functionality will inherit from this class. Of fundamental

importance is the ability to attach scene components to other scene

components. Attaching a scene component to another component

means exactly what one intuitively thinks of physical object

attachment: for example the neck is attached to the torso, the head is

attached to the neck, the hair is attached to the head and so on.

Attaching an object to another is an operation frequently done in

games. Image the character grabbing a gun, that gun will temporarily

be attached to the hand of the character by means of scene

components attachments.

UClass

Each C++ or Blueprint class is represented by an object of type

UClass (itself a UObject). This object is unique in the whole program

and cannot be instantiated directly (Singleton pattern). Thanks to

UClass, the Unreal Engine developers have aligned the capacities of

C++ and Blueprint. It is in fact thanks to the information contained in

this class that it is possible to access using C++ the properties and call

the methods defined in Blueprint and vice versa. It is also thanks to the

UClass that it is possible to declare Blueprint classes that inherit from

C++ classes. The UClass has inside all the information that

characterizes a class such as properties, functions, parent class,

implemented interfaces, etc. Moreover this class is often used as a

token in various methods, such as UWorld::SpawnActor this means

that both using C++ and Blueprint will be possible to spawn an actor

indifferently defined in C++ or Blueprint.

Software architecture for AR art exhibitions in Unreal Engine 29

4. Realization

4 Realization
The presentation of the painting takes place in the following way.

Initially, the user wears the device and finds himself inside a virtual

apse. The application has to position this apse in a precise real location

that must be set beforehand. To do this, the pinning function of the

device will be used to recognize the precise point in which the apse

must be positioned with respect to the position of the physical space.

Then the show begins. The painting initially appears with the

curtains closed so it is not possible to see the characters from the

position in which the viewer is (one cannot physically get behind the

curtains). At this point a kinematic sequence begins that sets a high

emissivity value of the material of the clouds then begins the animation

of the curtains opening. As soon as the curtain is slightly moved away,

a very strong ray of light dazzles the viewer. This light increases in

intensity as the curtain opens, allowing one to see more of the light

emitted by the clouds. This opening sequence lasts a few seconds

accompanied by celestial music which together with the strong light

effect is designed to create a sensation of wonder and amazement in

the viewer. In front of the light, the figures appear as dark silhouettes

whose specific traits are not visible. At the end of the opening

sequence, the light dims slowly and the music fades away leaving the

curtains open and the painting completely dark. At this point the

curtains light up and the characters begin to light up one at a time,

accompanied by a narrating voice that explains the role of each

character within the painting and some interesting facts about them.

At the end, the spectator has a few seconds to observe the painting

completely illuminated and then the curtains closing sequence begins,

suggesting that the show is over.

Software architecture for AR art exhibitions in Unreal Engine 30

4. Realization

4.1 The painting
The painting is an actor

which is placed in the scene in

the corresponding position. This

actor contains as components

the various elements that make

up the painting (see Actor and

Components). The composition

was created using Blueprint

because it offers an immediate

visual feedback (figure 16).

The characters are

animated through a series of images to be shown in sequence. This

type of animation is not a concept limited to Unreal Engine but exists

in various other animation and graphics software. In this case they are

managed through the tool Paper 2D Flipbooks, therefore each character is

a Paper Flipbook Component.

Figure 17: Rendered painting

Software architecture for AR art exhibitions in Unreal Engine 31

Figure 16: Painting actor

4. Realization

The additional details of the painting, namely the papal tiara, the

tower of Saint Barbara and the windowsill on which the angels rest, are

inserted as individual frames, exactly like the frames of the characters'

animations: they are Paper Sprite Components.

Finally, the clouds are static meshes, in particular they are 2D

planes arranged on different levels. A material has been applied to these

planes which make them look like moving clouds. It is not possible to

convey the idea of the type of animation through the images shown on

these pages but the material developed (see Clouds material) does a

great job to visually replicate the movement of the clouds. The gentle

reader can take the words for it or can try to replicate the material

within the editor (code 2).

The most careful gentle reader may have noticed that the

curtains are missing from the components of the Painting. This is

because the curtains are made an actor themselves so that their

animation can be started and stopped independently on the animation

of the characters. There are a pair of actors, one has a flip-book that

contains the animation of the opening of the curtains (figure 18), the

other one is a loop animation of the curtains already opened gently

swinging as if moved by a soft wind.

Figure 18: Curtain opening animation

Software architecture for AR art exhibitions in Unreal Engine 32

4. Realization

4.1.1 Clouds material

Software architecture for AR art exhibitions in Unreal Engine 33

Code 2: Clouds material Blueprint

4. Realization

The clouds are made using a material designed to be applied to

flat 2D surfaces and viewed from the front. This material was made in

Blueprint because it really makes much more sense and it's much more

comfortable to use Blueprint to make materials rather than C++. The

entire program can be seen on the previous page. The main function

here is that of the node Motion_4WayChaos which does what it

promises: given a static texture (Texture Object), it chaotically

moves its various parts resembling the movement of a cloud. The

second relevant function in this material is the

RadialGradientExponential node which exponentially decreases the

density of the cloud when moving away from the center. All the

parameters that can be adjusted are self explanatory. There are have

values like Speed (which adjusts the speed of the internal movement of

the cloud), Uoffset and Voffset (which move the center of the cloud

along the two directions) and others (code 2).

4.2 The virtual environment
The user is inside a

3D modeled virtual apse

(figure 20), itself an actor

with a static mesh

component having

materials that, together

with the soft lighting, give

it a discreet appearance

so as not to distract the

user from the focal point

that should be the

painting. The floor has

been voluntarily left empty

Software architecture for AR art exhibitions in Unreal Engine 34

Figure 19: Elements of the 3D scene

4. Realization

as to allow the user to see its feet and where it steps. The user's

window on the virtual world is a camera that moves in the virtual space

following the movement of the headset in the physical space. This

camera is a component of the actor called UserPawn. Besides the

camera, this actor also manages the controller and shows a red laser

beam as a virtual pointer. The user pawn’s class is a subclass of APawn

(itself a subclass of AActor) which is nothing more than a type of actor

that can be possessed wither by a human user or by the AI. An

overview of the elements present in the world can be seen in figure 19

while the scene rendered is shown in figure 20. The names are self-

explanatory: there is the picture actor, the marble altar, two flip-books

which are respectively the opening/closing animation of the curtains

and movement loop of the opened curtains. There are some lights, a

post-processing volume which adds some visual settings and the act

manager that will be explained afterwards.

Figure 20: 3D Apse, the painting and a marble altar

Software architecture for AR art exhibitions in Unreal Engine 35

4. Realization

4.3 Architectural design
Now let's talk about software architecture. It has been developed

not only to implement this project but more widely for research

purposes to have a versatile tool that can be used in the case of similar

projects for artistic exhibitions or maybe even video games or others

purposes.

4.3.1 Goals
The aim to achieve is the realization of a finite state machine

that uses elements understood by Unreal Engine (thus allowing one to

modify these elements directly from the editor). We want to promote

code reuse as much as possible by specializing only the parts that differ

and allowing equal parts to be kept in common.

Finite state machine

Figure 21: Finite-state machine example

A finite state machine is a very general mathematical model that

consist of states and transitions. It can be used to study the evolution

of a system. Graphically a state is represented by a circle (figure 21) and

identifies a particular configuration of the system, configuration that

can be distinguished by all the others, a specific arrangement of the

founding elements, a state precisely. In this case, a state will be an

Software architecture for AR art exhibitions in Unreal Engine 36

4. Realization

exact moment of the show. For example, while trying to locate the

apse in the physical space, that will be a state. While the curtains are

opening, that is a state in which a cinematic sequence is playing. It will

become clearer to the gentle reader what a state should represent, in

the following paragraphs. Systems evolution is modeled as transitions

between states. The system can

progress from one state to another

according to its internal rules of

operation. This evolution is

graphically an arrow (figure 22).

Although the model just

described is very simple, it is also very powerful. It allows the adoption

of a common language to describe very different systems and is useful

to represent the type of actions that are commonly performed in game

engines. [13]

What is of interest to the developer is to intercept these state

transitions in order to express the logic of the application. In practice,

this means that one is interested in being able to attach code in the

main parts of these transitions, that is, when passing from one state to

another (distinguishing according to the source state), inside the state

itself and when moving to a destination state (again, distinguishing

according to the specific state). With reference to the figure 22, if one

calls Xi the transition from a previous state i to the current one, Y the

current state, and Zj the transition from the current state to the next

state j, then one should be able to execute specific code in each of

these parts.

The architecture must be designed in such a way as to allow high

reuse of the code, after all this is a purpose of the software

architectures: to define very precise rules to add new classes and

functions without duplicating or further tangling the code. To

Software architecture for AR art exhibitions in Unreal Engine 37

Figure 22: State transitions

4. Realization

implement the finite state machine model, C++ will be used, which is

an object language therefore it is natural to implement states as

classes. An important feature of object-oriented languages is the

inheritance between classes hence this powerful mechanism should be

made use of. Having the ability to inherit between states somehow goes

beyond the narrow finite state machine model introduced above but it

proves to be very useful and convenient. A state should be able to

inherit from another state and decide to rewrite only the behaviors that

differ while keeping all the remaining behaviors unchanged. In relation

to the figure 22, imagine having a class Y available, someone wants to

create another class (type of state) that is very similar to Y but has a

minor requirement that makes it incompatible. For example, the code in

point X1 must be change while the others remain unchanged. The new

state can very well inherit from Y and override the method where that

code for X1 is.

As an additional requirement, the developer should be able to

define transition methods between states that take into account the

hierarchy. Given a couple of states whose specific type is unknown at

compile time, the correct method between the overloads available (the

one having the argument that most closely matches the actual type)

will be called depending on the dynamic types of the states.

4.3.2Implementation
Now let's see what an architecture that meets the requirements

above could look like. In this context, a state is a game act. One wants

stick with the terminology familiar to the developers who use Unreal

Engine which was initially intended for the development of games so

this is reflected in the names of many classes, therefore the "game"

part. Borrowing from the theatrical terminology it was decided to divide

the show into acts, therefore the "act" part of the name.

Software architecture for AR art exhibitions in Unreal Engine 38

4. Realization

Game act

A game act is an actor thus it can do everything that actors can

do: it can be spawned in a level and begin play, it can be ticked, etc

(see Actor for additional information). Furthermore a game act, and

here again a theatrical terminology is used, can be staged. When staged

it effectively starts to perform its actions and reveal itself. Just like a

pair of virtual methods remark the begin and end play of an actor,

similarly, a pair of methods remark the begin and end of a game act:

AGameAct::GameActBegin, AGameAct::GameActEnd (remember that

actors names begin with the letter "A") (code 3).

The game acts are managed by the act manager. This is the class

to refer to if one wants to stage a new act. There are methods like

AActManager::StageGameActClass (which takes a UClass object as

argument and stages an instance the corresponding game act) or

AActManager::StageGameActObject which directly takes an already

instantiated game act object. To cause a transition from one act to

another, the developer can use

AActManager::MoveToGameActFollowerOf which, given the current

game act, makes this one finish and move on to the next one.

Software architecture for AR art exhibitions in Unreal Engine 39

4. Realization

1. UCLASS(Config = Game)

2. class SANSISTO_API AGameAct : public AActor {

3. GENERATED_BODY()

4. GENERATED_ACT_BODY()

5.
6. protected:

7. UPROPERTY(EditAnywhere, Config)

8. TSubclassOf<AGameAct> NextGameActClass;

9.
10. protected:

11. virtual void BeginPlay() override;

12. virtual void EndPlay(const EEndPlayReason::Type
EndPlayReason) override;

13.
14. virtual void GameActBegin();

15. virtual void GameActEnd();

16.
17. public:

18. UFUNCTION(BlueprintCallable)

19. virtual void DispatchTransitionFromGameAct(AGameAct* Act);

20. UFUNCTION(BlueprintCallable)

21. virtual void DispatchTransitionToGameAct(AGameAct* Act);

22.
23. void TransitionFromGameAct(AGameAct* Previous);

24. void TransitionToGameAct(AGameAct* NextAct);

25. };

Code 3: AGameAct class

Each game act knows the class of its successor. When an act

ends it will call the act manager to move on to the next act, providing

as argument the UClass object of the next one. Of course the act that

follows can be modified by the components of the act. The act

manager takes care to initiate a transition between acts. Each act

involved in a transitions has the ability to execute specific code when

moving from another act towards itself and when it has finished and

moves on, to the next act. These pair of methods are respectively:

AGameAct::TransitionFromGameAct and

Software architecture for AR art exhibitions in Unreal Engine 40

4. Realization

AGameAct::TransitionToGameAct. Upon seeing the AGameAct class

(code 3) declaration, the careful gentle reader will have noticed that

these methods are not declared virtual. One might wonder how

subclasses can rewrite such methods. Well here is exactly where the

most creative and interesting part of this research lies.

1. UCLASS(Config = Game)

2. class SANSISTO_API AActManager : public AActor {

3. GENERATED_BODY()

4.
5. protected:

6. virtual void BeginPlay() override;

7.
8. public:

9. UFUNCTION(BlueprintCallable)

10. void StageInitialGameAct();

11.
12. UFUNCTION(BlueprintCallable)

13. AGameAct* StageGameActClass(UClass* ActClass);

14.
15. UFUNCTION(BlueprintCallable)

16. void StageGameActObject(AGameAct* GameAct);

17.
18. UFUNCTION(BlueprintCallable)

19. void UnstageGameActObject(AGameAct* GameAct);

20.
21. UFUNCTION(BlueprintCallable)

22. AGameAct* MoveToGameActFollowerOf(AGameAct* OldGameAct);

23. };

Code 4: AActManager class

Let's start with order. Each subclass of AGameAct can intercept

the transition in the two methods (transition to and from another game

act). The developer must be able to capture the most specific

transition possible by declaring an overload of such methods that takes

as argument a game act of some type, relying on the fact that the this

method will be called for all the transitions that involves that exact type

Software architecture for AR art exhibitions in Unreal Engine 41

4. Realization

or a subclass type when no more specific method overload exist. It’s

easier to show this concept using a practical example.

Let's imagine that the game acts are geographic locations.

There are acts such as Italy (code 5), from which acts such as Piedmont

inherit. An act like Turin (code 6) will inherit from Piedmont. Now imagine

that a global pandemic has broken out and that travel between

geographical locations must be limited. Let's create the act France

(code 7) and the game act Lyon (code 8) which inherits from France.

Imagine that at this moment to limit the infections, travels from

Piedmont to France are forbidden but one wants a strategic exception for

those who go from Turin to Lyon due to high economical value of trade

on a high speed railway that connects those two locations. To

implement those rules the developer must declare two methods: one in

France that takes as argument a state Piedmont and implements the

travel ban logic (code 7, line 13), the second one in Lyon that takes as

argument a state Turin and implements the travel permission logic (code

8, line 13).

There is some additional code to add to a game act class. Unlike

a plain actor, a game act has a pair of macros GENERATED_ACT_BODY()

and GENERATED_ACT_DISPATCH_DECLARE(). The use of macros is

generally an inelegant practice but in Unreal Engine, those are usually

employed extensively. The first one defines the method

AGameAct::GetIndex which is used to enumerate all the game acts.

The second one must be used in conjunction with the macro

GENERATED_ACT_DISPATCH_DEFINE() in a code (.cpp) file. More

details about those macros will follow in the news paragraphs.

Software architecture for AR art exhibitions in Unreal Engine 42

4. Realization

1. #include "GameActs/France.h"

2. #include "GameActs/GameAct.h"

3. #include "Italy.generated.h"

4.
5. UCLASS()

6. class SANSISTO_API AItaly : public AGameAct {

7. GENERATED_BODY()

8. GENERATED_ACT_BODY()

9. GENERATED_ACT_DISPATCH_DECLARE()

10.
11. protected:

12. virtual void GameActBegin() override {

13. // Moving from "Italy" to "France" immediately

14. this->NextGameActClass = AFrance::StaticClass();

15. this->ScheduleMoveToFollowingGameAct();

16. }

17. };

Code 5: Italy game act

1. #include "GameACts/Lyon.h"

2. #include "GameActs/Piedmont.h"

3. #include "Turin.generated.h"

4.
5. UCLASS()

6. class SANSISTO_API ATurin : public APiedmont {

7. GENERATED_BODY()

8. GENERATED_ACT_BODY()

9. GENERATED_ACT_DISPATCH_DECLARE()

10.
11. protected:

12. virtual void GameActBegin() override {

13. // Moving from "Turin" to "Lyon" immediately

14. this->NextGameActClass = ALyon::StaticClass();

15. this->ScheduleMoveToFollowingGameAct();

16. }

17. };

Code 6: Turin game act

Software architecture for AR art exhibitions in Unreal Engine 43

4. Realization

1. #include "GameActs/GameAct.h"

2. #include "France.generated.h"

3.
4. class APiedmont;

5. UCLASS()

6. class SANSISTO_API AFrance : public AGameAct {

7. GENERATED_BODY()

8. GENERATED_ACT_BODY()

9. GENERATED_ACT_DISPATCH_DECLARE()

10.
11. public:

12. using AGameAct::TransitionFromGameAct;

13. void TransitionFromGameAct(APiedmont* Previous) {

14. UE_LOG(LogTemp, Display, TEXT("Piedmont -> France:
DISALLOW!"));

15. }

16. };

Code 7: France game act

1. #include "GameActs/France.h"

2. #include "Lyon.generated.h"

3.
4. class ATurin;

5. UCLASS()

6. class SANSISTO_API ALyon : public AFrance {

7. GENERATED_BODY()

8. GENERATED_ACT_BODY()

9. GENERATED_ACT_DISPATCH_DECLARE()

10.
11. public:

12. using AFrance::TransitionFromGameAct;

13. void TransitionFromGameAct(ATurin* Previous) {

14. UE_LOG(LogTemp, Display, TEXT("Turin -> Lyon: ALLOW"));

15. }

16. };

Code 8: Lyon game act

Software architecture for AR art exhibitions in Unreal Engine 44

4. Realization

Dispatching mechanism

Summarizing the previous paragraphs, we want to be able to

create an architecture that allows one to intercept a transition between

two game acts by declaring methods that are at the same time

overridable by subclasses, overloadable for different subclasses of

AGameAct and that also support type substitution.

Let's see what happens when a state transition is requested. The

AActorManager::MoveToGameActFollowerOf method is called and an

argument of type AGameAct is provided, this is the origin game act.

Within this method, the game act following the origin one is fetched.

At this point there are two objects of type AGameAct: the origin and

destination one. The task is to decide what is the (dynamic) type of

these two objects, down cast to the exact type, and then call the

transition methods providing the exact types in order to execute the

appropriate overload among those available. This is in fact a common

requirement for many software architectures that have to perform

different operations on multiple types of objects, a topos of computer

science literature, in a manner of speaking. It is called multiple dynamic

dispatch, in this case it is a double dispatch (because there are two

objects involved). Some languages solve this problem at a design level

(the feature is sometimes called multi-methods), examples of those

being: C#, Common Lisp, Julia. Unfortunately C++ is not one of

them. For those languages that do not support this features, a good

design pattern is usually Visitor. [14]

Visitor pattern

Let's see how visitor pattern achieves the double dynamic

dispatching. There are two types of concepts in this design pattern:

visitors and elements. The former are algorithms or operations, which

must act on the latter. For different elements, the same visitor will

Software architecture for AR art exhibitions in Unreal Engine 45

4. Realization

perform different operations as if it was an optimized version of some

algorithm. Let's think for example of data compression. When

compressing an audio file, one will use a different algorithm than when

compressing an image file. In this case the concept of visitor is a

compression algorithm while an element is a binary file. The visitor

subclasses will be different algorithms and elements will be specific

types of file (text, image, audio, etc) (figure 23). A visitor can also

decide to not implement the algorithm for some types (for example

CompressionB does not deal with Text files, just Image and Audio).

Given a pair of Visitor* visitor and Element* element, one wants

the right algorithm to run without having to worry about the specific

type of visitor and element.

To achieve the dispatching the first method to be called is

Element::accept (element->accept(visitor)). Each subclass of

Element will override that method and define it as shown in code 9: the

appropriate Visitor::visit method is called. This is the first step of

the double dispatch, the precise element was identified because the

method is overridden in each (concrete) subclass of class Element. The

visitors can decide which methods to override from the parent class as

to perform the specific operations associated with that element. This is

the second step of dispatch where the visitor is identified (code 10). [14]

Software architecture for AR art exhibitions in Unreal Engine 46

Figure 23: Visitor design pattern UML diagram

4. Realization

1. class Element {

2. public:

3. virtual void accept(Visitor* dispatcher) = 0;

4. };

5. class Image : public Element {

6. public:

7. void accept(Visitor* visitor) override {

8. visitor->visit(this);

9. }

10. };

Code 9: Visitor's pattern element class

1. class Visitor {

2. public:

3. virtual void visit(Text* file) {

4. std::cout << "no action performed" << std::endl;

5. }

6. virtual void visit(Image* file) {

7. std::cout << "no action performed" << std::endl;

8. }

9. virtual void visit(Audio* file) {

10. std::cout << "no action performed" << std::endl;

11. }

12. };

13. class CompressionB : public Visitor {

14. public:

15. void visit(Image* file) override {

16. std::cout << "B: compressing an Image file" << std::endl;

17. }

18. void visit(Audio* file) override {

19. std::cout << "B: compressing an Audio file" << std::endl;

20. }

21. };

Code 10: Visitor's pattern visitor class

Software architecture for AR art exhibitions in Unreal Engine 47

4. Realization

Solution attempt

Concerning game acts transitions, the exact same mechanism

can be exploited, except in this case both visitors and elements are

game acts, the interest here is not towards semantics but more towards

the dispatching mechanism. The way visitor pattern is defined however

makes it hard to add a new element because adding one (in this case a

new game act), a lot of visitors must be modified (in this case a lot of

game acts) to take into consideration the new class. Given that C++

has strong code generation capabilities, one can explore a way to get

rid of the boilerplate code and let the language generate all those

"visit" methods on behalf of the developer. The first implementation

that comes to mind is to keep the same structure as in the visitor

pattern but instead of overloading the methods, just use a template to

generate them and template specialization to implement the logic for

specific elements. An example follows.

1. class Visitor {

2. public:

3. template<typename F>

4. virtual void visit(F* file) {

5. std::cout << "no action performed" << std::endl;

6. }

7. };

8. class CompressionB : public Visitor {

9. public:

10. template<>

11. virtual void visit<Image>(Image* file) override {

12. std::cout << "B: compressing an Image file" << std::endl;

13. }

14. template<>

15. virtual void visit<Audio>(Audio* file) override {

16. std::cout << "B: compressing an Audio file" << std::endl;

17. }

18. };

Code 11: Template Visitor pattern invalid implementation

Software architecture for AR art exhibitions in Unreal Engine 48

4. Realization

The code above, may appear to be syntactically correct but in

fact it is invalid, specifically prohibited by the standard. In C++ it is

forbidden for a method to be declared template and virtual at the same

time. In fact, compile-time and runtime polymorphism cannot be mixed

together.

Polymorphism workaround

Let's see how the proposed solution operates and how to avoid

the problem of code repetition that would derive from the use of the

visitor pattern. To work around the inability to have virtual and

template methods, one has to manually implement a similar

functionality. A sort of poor man's polymorphism. The first step is to

enumerate all the game acts (it's important to do this in a centralized

manner). One can declare a template class that acts as a type list (this

is a basic technique from C++ meta-programming). The actual

argument list of this template is declared in a macro in the file

AllActsDeclare.h, which is included in the header of each game act.

Another header file includes all game act headers and must be included

in each game act code (.cpp) file, that file is AllActsInclude.h. At this

point it is possible to identify a game act by means of an index number

which represents its position in the aforementioned list. The classes are

those of the geographic locations example (see Game act).

1. class AGameAct;

2. class AItaly;

3. class APiedmont;

4. class ATurin;

5. class AFrance;

6. class ALyon;

7.
8. #define TYPES AGameAct, AItaly, APiedmont, ATurin, AFrance, ALyon

Code 12: AllActsDeclare.h

Software architecture for AR art exhibitions in Unreal Engine 49

4. Realization

1. #include "GameActs/GameAct.h"

2. #include "GameActs/Italy.h"

3. #include "GameActs/Piedmont.h"

4. #include "GameActs/Turin.h"

5. #include "GameActs/France.h"

6. #include "GameActs/Lyon.h"

Code 13: AllActsInclude.h

The macro TYPES (code 12) contains the list of all the game act

types. Now there are two problems to be solved: given a specific type,

how to get its position in that list (as an integer value) and given an

integer value how to get the type it corresponds to?

The first problem is solved easily:

1. template <typename Target, typename Types>

2. struct TFindIndex {

3. static_assert(

4. TIsSame<Target, void>::Value,

5. "Types must be registered before getting their index.");

6. static constexpr uint32 Value = 1;

7. };

8. template <typename T, typename... Ts>

9. struct TFindIndex<T, TTuple<T, Ts...>> {

10. static constexpr uint32 Value = 0;

11. };

12. template <typename T, typename U, typename... Us>

13. struct TFindIndex<T, TTuple<U, Us...>> {

14. static constexpr uint32 Value

15. = 1 + TFindIndex<T, TTuple<Us...>>::Value;

16. };

Code 14: TFindIndex class definition

The template class TFindIndex has two template arguments:

the first is the target type to look for, the second is a list of types. In

this case, TTuple is used as a list, which is the Unreal equivalent of

Software architecture for AR art exhibitions in Unreal Engine 50

4. Realization

std::tuple. The member variable Value keeps track of the index

value, it is calculated at compile time (and declared as constexpr).

The basic version of the template is never instantiated (if the code

works correctly) so there is a static_assert which shows a message

informing the developer that the searched type (Target) was not found

in the list and must be "registered" as shown previously. This class has

two template partial specializations. The first (code 14, line 8) is the base

case that occurs when the target type is the first argument of the

tuple, in other words we are looking for a type T and provide a tuple

that happens to start with T. In that case the index is 0 because the

value is in the first position. The second specialization is used to

increment the index and unpack the tuple. The index is calculated as 1

plus the value of the index that the type T would have in a tuple that

starts from the second position of the tuple provided (code 14, line 15).

The second problem may be less easily solved. If the index is

known at compile-time then it is possible to use the

TTupleElement<Index, TupleType>::Type template class (Unreal’s

equivalent of std::tuple_element<Index, TupleType>::type).

Unfortunately Index doesn't accept a value known at runtime (such as

the value of a variable). A possible solution is to declare an array that

has as many elements as there are elements of TupleType and that

each element is a function that performs the operations associated with

the type that appears in the tuple in the position where the function

appears in the array. Using a runtime index then that array can be

accessed and the related function executed.

Remember that each game act can provide its own index via the

AGameAct::GetIndex() method. This virtual method is overwritten by

each game act through the use of the GENERATED_ACT_BODY() macro

that the gentle reader has already seen in code 3. Its content is simply a

method (code 15) that allows each game act to provide its own index to

Software architecture for AR art exhibitions in Unreal Engine 51

4. Realization

allow the dispatching mechanism to happen. The details and additional

types sanitization in code 15 can be ignored. What is interesting though

is how the class TFindIndex was used (MethodDispatcher_Private is

a namespace). It has generality and works for each class because the

specific type doesn’t need to be explicitly stated, it can be obtained

using the specifier decltype (introduced in C++11). Also, why

private: at the end? This macro will be used inside the class body

(normally at the beginning), it needs to declare a public method thus

altering the class’ default access specifier, with the final private: it

will restore the default one.

1. #define GENERATED_ACT_BODY() \

2. public: \

3. virtual uint32 GetIndex() const { \

4. return MethodDispatcher_Private::TFindIndex< \

5. typename TRemoveCV< \

6. typename TRemovePointer< \

7. decltype(this)>::Type>::Type, \

8. TTuple<TYPES>>::Value; \

9. } \

10. \

11. private:

Code 15: GENERATED_ACT_BODY macro definition

The other two macros used by game acts can be seen in code 16.

Unlike GENERATED_ACT_BODY(), these macros are optional and must

appear only within the classes that need to make use of the dispatching

mechanism. In other words, only within classes that need to execute

specific code in transition from or to other game acts. Those are

GENERATED_ACT_DISPATCH_DECLARE() and

GENERATED_ACT_DISPATCH_DEFINE(ActClassName).

Software architecture for AR art exhibitions in Unreal Engine 52

4. Realization

The first macro contains the declaration of the two virtual

methods AGameAct::DispatchTransitionFromGameAct and

AGameAct::DispatchTransitionToGameAct. Those represent the first

step in the double dispatching process. Since they are declared as

virtual and overridden in the subclasses, the type of the first of the two

game acts is known inside their body.

Software architecture for AR art exhibitions in Unreal Engine 53

1. #define GENERATED_ACT_DISPATCH_DECLARE() \

2. public: \

3. virtual void DispatchTransitionFromGameAct(AGameAct* Previous) override; \

4. virtual void DispatchTransitionToGameAct(AGameAct* Next) override; \

5. \

6. private:

7.
8. #define GENERATED_ACT_DISPATCH_DEFINE(ActClassName) \

9. void ActClassName::DispatchTransitionFromGameAct(AGameAct* Previous) { \

10. constexpr uint32 TypesCount = TTupleArity<TTuple<TYPES>>::Value; \

11. return MethodDispatcher_Private::DispatchFunction(\

12. TMakeIntegerSequence<uint32, TypesCount>(), \

13. [this](auto* ActualPrevious) { \

14. this->TransitionFromGameAct(ActualPrevious); \

15. }, \

16. Previous)(Previous); \

17. } \

18. \

19. void ActClassName::DispatchTransitionToGameAct(AGameAct* Next) { \

20. constexpr uint32 TypesCount = TTupleArity<TTuple<TYPES>>::Value; \

21. return MethodDispatcher_Private::DispatchFunction(\

22. TMakeIntegerSequence<uint32, TypesCount>(), \

23. [this](auto* ActualNext) { \

24. this->TransitionToGameAct(ActualNext); \

25. }, \

26. Next)(Next); \

27. }

Code 16: Additional macros definition

4. Realization

The second macro (code 16, line 8) calls the function

DispatchFunction (code 16, line 11, line 21) providing, in order, an integer

sequence of values that represents all the valid indexes of the tuple

TTuple<TYPES>, a lambda function capturing this that must be

executed (the argument of the function will be the precise type of game

act) and the game act object (whose exact type is not yet known

here). Inside the lambda, it just calls the most appropriate method of

the overloads and overrides of AGameAct::TransitionFromGameAct

(code 16, line 14) or AGameAct::TransitionToGameAct (code 16, line 24)

providing as argument the game act converted to its dynamic type.

The final piece of the puzzle is the DispatchFunction function.

What this function has to do has already been anticipated. Given an

index which is the position in the list of a game act, at runtime, it must

cast to the corresponding type which, however, can only be obtained

using a compile time value therefore a conversion mechanism between

the two must be implemented. The integer sequence passed as the first

argument of the function is instrumental in the creation of a parameter

pack (Indexes). That parameter pack is expanded to populate the

array Functions[]. More specifically, that array is populated by

assigning to each element, the result of calling the outer lambda ([&]

(auto* DummyTarget) { /*...*/ }(TypeElement)). The outer

lambda is given as argument a value of the type of the current index in

the types list (TTuple<TYPES>). The purpose of that argument is just

to contain the information about type, has no other purpose. That

information is then used on the line 16 (code 17) to produce another

(inner) lambda ([Function](TargetType* ActualTarget,

ArgsTypes&&... ActualArgs) {}()) that calls the function provided

by the user (captured by copy). That lambda will cast the argument to

the correct type before calling the function provided by the user.

Software architecture for AR art exhibitions in Unreal Engine 54

4. Realization

Software architecture for AR art exhibitions in Unreal Engine 55

1. template <uint32... Indexes, typename FunctionType, typename TargetType,
typename... ArgsTypes>

2. auto DispatchFunction(TIntegerSequence<uint32, Indexes...>, const FunctionType&
Function, TargetType* Target, ArgsTypes&&... Args) {

3. using ReturnValueType

4. = decltype(Function(Target, Forward<ArgsTypes>(Args)...));

5. // We are declaring a static array of TFunction<...> called Functions.

6. static const TFunction<ReturnValueType(TargetType*, ArgsTypes && ...)>
Functions[]

7. // The first time this function is called, Functions will be populated
with the result returned from the OuterLambda(DummyTarget).

8. = {

9. // The argument has no benefit except provideding type information
for the static_cast below.

10. [&](auto* DummyTarget) {

11. // The OuterLambda(DummyTarget) returns
InnerLambda(ActualTarget, ActualArgs...)

12. return [Function](TargetType* ActualTarget, ArgsTypes&&...
ActualArgs) {

13. // InnerLambda(ActualTarget, ActualArgs...) returns the
result of calling Function(ActualTarget, ActualArgs...)

14. return Function(

15. // Get information about the type from above

16. static_cast<decltype(DummyTarget)>(ActualTarget),

17. Forward<decltype(ActualArgs)>(ActualArgs)...);

18. };

19. }

20. // Calling OuterLambda(DummyTarget) for each expansion of
TTupleElement<Indexes, TTuple<TYPES>>... (Remember Indexes is a parameter
pack)

21. (static_cast<typename TTupleElement<Indexes,
TTuple<TYPES>>::Type*>(Target))...

22. };

23. return Functions[Target->GetIndex()];

24. }

Code 17: DispatchFunction definition

4. Realization

Game act components

Game acts themselves do not perform any action. To assign

them abilities, one has to add components, as for actors. In this case

UGameActComponent. All components inherit from this class. The

components also have the opportunity to execute specific code at the

beginning and at the end of a game act (as well as on BeginPlay and

EndPlay being components that are assigned to the actors), however,

they have no way to intercept the transitions of states and should not

even be interested in doing so. Game act components must be thought

of as pieces of reusable code that add general functionality and must be

able to be reused in various game acts.

Cinematic sequence act component

There are various components and the developer can declare

others as needed. For example, a component widely used in this project

is the one that allows to start a kinematic sequence:

UCinematicSequenceActComponent. Let's see its main features as an

example of component implementation. To play a sequence three

elements are needed:

1. LevelSequence: an object which is the sequence itself,

2. LevelSequenceActor: an actor spawned in the world that

physically represents the sequence as a location in space,

3. LevelSequencePlayer: an object to control the sequence play,

player is used here in the multimedia sense of the term,

remember start, stop, pause?

Software architecture for AR art exhibitions in Unreal Engine 56

4. Realization

1. UCLASS(ClassGroup = (GameAct), meta =
(BlueprintSpawnableComponent))

2. class SANSISTO_API UCinematicSequenceActComponent : public
UGameActComponent {

3. GENERATED_BODY()

4.
5. protected:

6. UPROPERTY(EditAnywhere)

7. ULevelSequence* LevelSequence;

8. UPROPERTY(VisibleAnywhere)

9. ALevelSequenceActor* LevelSequenceActor;

10. UPROPERTY(BlueprintGetter = GetSequencePlayer)

11. ULevelSequencePlayer* LevelSequencePlayer;

12.
13. public:

14. UCinematicSequenceActComponent();

15.
16. protected:

17. virtual void BeginPlay() override;

18. virtual void EndPlay(const EEndPlayReason::Type
EndPlayReason) override;

19.
20. public:

21. virtual void GameActBegin() override;

22. virtual void GameActEnd() override;

23. };

Code 18: UCinematicSequenceActComponent class definition

Let's see some examples of methods. In general, the game act

components should perform the setup operations in the

AActor::BeginPlay method and the corresponding cleanup operations

in AActor::EndPlay. This is exactly what

UCinematicSequenceActComponent does as well, as one can see, in

BeginPlay it performs checks to verify that the necessary details

(LevelSequence) are available and if not, logs the error. Then it

spawns the actor who has to manage the ciinematic sequence (and

initializes it by setting the LevelSequence object). In EndPlay it

Software architecture for AR art exhibitions in Unreal Engine 57

4. Realization

eliminates the spawned actor to leave the game world as clean as it was

at the beginning.

1. void UCinematicSequenceActComponent::BeginPlay() {

2. Super::BeginPlay();

3. if (!this->LevelSequence) {

4. UE_LOG(LogGameLogic, Error, TEXT("%s: No LevelSequence
set."), *this->GetPathName());

5. return;

6. }

7. this->LevelSequenceActor

8. = this

9. ->GetWorld()

10. ->SpawnActor<ALevelSequenceActor>(

11. ALevelSequenceActor::StaticClass(),

12. this->SequenceActorTransform);

13. this->LevelSequenceActor->SetSequence(this->LevelSequence);

14. this->LevelSequencePlayer =
this->LevelSequenceActor->GetSequencePlayer();

15. }

16.
17. void UCinematicSequenceActComponent::EndPlay(const

EEndPlayReason::Type EndPlayReason) {
18. Super::EndPlay(EndPlayReason);

19. if (this->LevelSequence) {

20. this->GetWorld()->DestroyActor(this->LevelSequenceActor);

21. }

22. }

Code 19: Cinematic sequence act component methods 1

The GameActBegin and GameActEnd methods, as one can see

from code 20, take care of starting the revelation of the game act. In

this case it simply starts the cinematic sequence using the object

LevelSequencePlayer. One can also observe how the game act

components take the initiative to end the current game and move on to

the next act. When the sequence ends, the current game act has

fulfilled its purpose and has nothing more to show, so the transition to

the next game act is scheduled by this component.

Software architecture for AR art exhibitions in Unreal Engine 58

4. Realization

1. void UCinematicSequenceActComponent::GameActBegin() {

2. Super::GameActBegin();

3. if (this->LevelSequence) {

4. this->LevelSequencePlayer->OnFinished

5. .AddDynamic(this, &ThisClass::ScheduleMoveToFollowing
GameAct);

6. this->LevelSequencePlayer->Play();

7. }

8. }

9.
10. void UCinematicSequenceActComponent::GameActEnd() {

11. Super::GameActEnd();

12. if (this->LevelSequence) {

13. this->LevelSequencePlayer->OnFinished

14. .RemoveDynamic(this, &ThisClass::ScheduleMoveToFollow
ingGameAct);

15.
this->DoSequencePlayerAction(this->PlayerActionGameActEnd);

16. }

17. }

Code 20: Cinematic sequence act component methods 2

A noteworthy detail in the previous code snippet is the check

that variables that may be uninitialized (nullptr) are actually

initialized. This is because in the unfortunate event that the game code

should crash, then the entire Unreal Engine editor will crash and

possibly even corrupt the current project. The author learned this lesson

the hard way. Looking at the code of the engine itself (and one can do

it because it is source available as explained in 3.1 Unreal Engine), one can

certify that this sort of defensive programming is widely used.

Software architecture for AR art exhibitions in Unreal Engine 59

4. Realization

4.4 Computational complexity
Concerning the use of memory, the complexity is quadratic

(O(n2)) in the number of game acts classes. However, also using the

visitor pattern there is a quadratic complexity because a visitor must be

able to manage every single element type. If, as stated previously, both

the visitors and the elements are game acts, then one has that each

game act class must be able to manage every single other game act

class. Here it is, the quadratic complexity. There is however a possible

improvement: only the game acts that need it can make use of the

macro GENERATED_ACT_DISPATCH_DEFINE() which will instantiate the

template function DispatchFunction and allocate memory for the

array Functions[] which contains an element for each game act.

From that point of view it could be said that the memory utilization is

less than quadratic if only a small part of the game acts have to

distinguish the transitions from and to different types of game acts.

Considering the time complexity, it is constant (O(1)) from the

second function call onward. The first time the function

AGameAct::DispatchTransitionFromGameAct (or its dual “transition

to”) is called, in turn it calls DispatchFunction and initializes an array

of functions (as one can see in code 17, line 6) therefore the time

complexity will be linear (O(n)) because that array contains an entry for

each game act class. However, since this array is declared static, in case

of subsequent calls of the DispatchFunction, the initialization

operation will be skipped and the processor will proceed directly to line

23. This is a relevant difference with the visitor pattern. In the case of

visitor, the operation requiring linear time takes the form of compiling a

number of methods, one for each game act class, that is done at

compile time rather than runtime like in our case.

Software architecture for AR art exhibitions in Unreal Engine 60

4. Realization

4.5 Overview
At this stage the gentle reader has understood what the aims to

be achieved with this application consist of and what tools are available

to implement it. The finite state machine that manages the succession

of actions and events in the application is shown in figure 24. This

diagram is encoded by symbols and colors. Each oval shape represents a

game act, black ones are implemented in C++ while blue ones are

Blueprint. In this case, Blueprint has been used, not to implement the

operational logic but rather to populate the default properties of the

class with the specific assets (cinematic sequences, audio files, graphic

widgets to be displayed, etc.) that are needed by the object

representing the specific game act. Similarly the most relevant game

act components are shown using icons nearby, please refer to the

legend to understand what each icon is about.

The finite state machine is logically divided into six parts. The

first one (violet square) is an introduction to allow the user to become

familiar with the device and the controller, there is a start menu

displayed as a widget in the space showing some logos of sponsors of

the exhibition as well as basic information (Home game act). This is

followed by the interaction with the rope (see 4.5.2 Rope Interaction).

Once the introduction part is over, the curtains opening sequence

begins (see 4 Realization). The third part of the show (green square)

starts when the curtains are completely opened and the light of the

clouds is already dimmed out, it plays an audio description of the

various elements of the painting: the characters, initially darkened, light

up one at a time and the narrator explains their role in the painting.

The fourth part (blue square) is the conclusive one: the user is given

some time to admire the painting, then the curtains begin to close,

once closed the user is invited to put the device back on the stand. The

Software architecture for AR art exhibitions in Unreal Engine 61

4. Realization

part that follows is a connection step to allow the application to start

over again, for a new user. As one can see in the diagram, the

application is cyclical, it starts from the game act Home and continues

until the end of the show at the game act WaitEyeTrackingLost. At

that point the user is expected to take off the headset so eye tracking

is lost. Another user will wear the device then the eye tracking will

resume. The application restarts from the beginning and the cycle

continues until the application is closed or the device is turned off. The

last part (see 4.5.1 World positioning) in the red square is functional to the

positioning of the virtual scene in the real space, it does not directly

concern the show so it takes place in parallel to the rest.

4.5.1 World positioning
The main game act of the virtual scene positioning functionality

is WorldPositioning. This game act will spawn in the world origin

position (zero transform: location (0,0,0), rotation (0,0,0), scale (1,1,1)) an

actor called WorldOrigin that contains a

UMagicLeapARPinComponent. Initially this AR pin will not be

associated with any real position, so the user will be asked via a widget

to position the scene into space then, the game act SceneSetup will be

staged. This game act allows the user to move its point of view in the

virtual space using the controller, from the user point of view it feels

like the entire scene is being moved while in reality just UserPawn is

moving. Once positioning is finished, the user can save the new

location, at that point the actor WorldOrigin spawned before will be

pinned and associated with a precise physical position, saved in the

device's memory. The application can now be closed and the device

turned off.

By restarting the device and relaunching the application the

game act WorldPositioning is staged again, the actor WorldOrigin

Software architecture for AR art exhibitions in Unreal Engine 62

4. Realization

will be spawned again in the transform zero. A difference this time is

that the UMagicLeapARPinComponent remembers being previously

saved as pinned, so it will automatically position itself in the virtual

space as to lay in the same position of the physical space. At this point

we have a reference of the physical world in the virtual world. We know

that this reference in the real world should be in the zero transform

position. To make the two points overlap, the actor UserPawn is moved

to the correct position giving to the user the illusion that the scene

automatically goes to orient itself in the real space in its correct

position. The gentle reader might wonder why instead of moving the

user pawn into the virtual world, aren't all the actors attached to a root

pin that automatically positions itself in the space. The problem is that

doing this way all the actors would have to be set movable and one

would lose some optimizations that apply only to the static actors.

Leaving the scene untouched and moving only the user’s perspective

moreover simplifies the job of the artists that don’t need anymore to be

aware of those implementation details.

4.5.2Rope interaction
To engage the user a little bit, an interaction element has been

added, it consists of touching a rope in order to start the show. This

interaction is used also as an artifice to make sure the user is prepared

to observe the scene in order to not miss the curtains opening

animation. The action takes place as follows: the precise position of the

RopeSpawner (figure 19) actor is calculated based on the user's position

in the scene. Once the placeholder is located, the actual rope actor is

spawned. The rope is being lowered from above through an animation

(RopeDescending game act), the narrating voice asks the user to touch

the rope with the hand, at which point the user has a few seconds to

carry out this action (game act PullRope), after that, the rope is being

taken away and the sequence of the curtains opening sequence starts.

Software architecture for AR art exhibitions in Unreal Engine 63

4. Realization

Figure 24: Full game acts diagram

Software architecture for AR art exhibitions in Unreal Engine 64

5. Conclusions

5 Conclusions
This study carried out in the context of the development of the

project for the church of San Sisto to show the painting Sistine

Madonna can prove useful and provide inspiration for the gentle reader.

An example of software architecture was shown that allows the

implementation of a finite state machine: a paradigm in which it's

easier to express the logic of the application. It is convenient less

confusing for the developer to divide the logic of the game into small

steps to be made one after the other or quests to be completed in

succession. Having a precise set of tools provides a common guideline

and language to use within a development team. This is essential to

keep the code as tidy as possible and make it maintainable even when

the elements involved begin to grow in number.

This type of approach applies very well to scenarios similar to the

one presented, that is, where one wants to implement applications

related to cultural heritage or in artistic contexts in general. In fact, by

their nature these applications consist of a series of actions to be

performed in sequence to show the user some type of content related

to the show or in a series of objectives to be completed. Let's imagine

that we are perhaps inside a museum with multiple rooms. The viewer

will have to wear an augmented reality device and walk through the

halls of this museum by completing a series of quests. The quest may

consist, for example, of observing a certain virtual (or real) sculpture or

a painting, or physically reaching a certain place to trigger certain

events. These can very well be game acts that are activated

automatically when the user walk nearby or queued to other game acts.

Whatever the specific need is, this architecture that mimics a

state machine is general enough to be adapted to meet those

Software architecture for AR art exhibitions in Unreal Engine 65

5. Conclusions

requirements. It is up to the developer to identify in the context of the

specific application the appropriate and meaningful game acts. To these

game acts the developer will create and add the game act components

necessary to carry out the specific actions attached to them. We have

seen as an example a game act component that starts a kinematic

sequence but the possible operations can be the most disparate,

examples being: spawning an actor, splitting the quest line by staging

another game act and starting a parallel path, playing a sound, waiting

for an input from the user, waiting the gaze of the user to be directed

towards a specific point, etc. The limit is imposed only by creativity not

by technology.

Software architecture for AR art exhibitions in Unreal Engine 66

Bibliography
[1]: How VR and AR Will Change How Art is Experienced

https://www.invaluable.com/blog/how-vr-is-changing-the-art-
experience/

[2]: Piacenza 2021/21 https://www.piacenza2020.it/en/project/

[3]: Madonna Sistina in guerra
https://st.ilsole24ore.com/art/arteconomy/2013-12-03/madonna-
sistina-guerra-073140.shtml

[4]: La Madonna Sistina di Raffaello, in un doc la storia del capolavoro
ritrovato
https://www.repubblica.it/spettacoli/cinema/2020/12/16/news/la_ma
donna_sistina_di_raffaello_in_un_doc_la_storia_del_capolavoro_ritr
ovato-278486285/

[5]: History of the Unreal Engine
https://www.ign.com/articles/2010/02/23/history-of-the-unreal-
engine

[6]: A first look at Unreal Engine 5 https://www.unrealengine.com/en-
US/blog/a-first-look-at-unreal-engine-5

[7]: Introduction to C++ Programming in UE4
https://docs.unrealengine.com/en-US/ProgrammingAndScripting/Pro
grammingWithCPP/IntroductionToCPP/index.html

[8]: UnrealHeaderTool
https://docs.unrealengine.com/en-US/ProductionPipelines/BuildTool
s/UnrealHeaderTool/index.html

[9]: Using the Meta-Object Compiler (moc)
https://doc.qt.io/qt-6/moc.html

[10]: Explanations of the basic gameplay elements, Actors and Objects
https://docs.unrealengine.com/en-US/ProgrammingAndScripting/Pro
grammingWithCPP/UnrealArchitecture/Actors/index.html

[11]: Transforming Actors
https://docs.unrealengine.com/en-US/Basics/Actors/Transform/index.
html

[12]: What is a gimbal and what does it have to do with NASA?
https://science.howstuffworks.com/gimbal.htm

[13]: What is a Finite State Machine?
https://medium.com/@mlbors/what-is-a-finite-state-machine-
6d8dec727e2c

[14]: A polyglot's guide to multiple dispatch
https://eli.thegreenplace.net/2016/a-polyglots-guide-to-multiple-
dispatch/

List of figures
Figure 1: San Sisto courtyard..5

Figure 2: San Sisto nave...5

Figure 3: Leonid Rabinovich..6

Figure 4: Gemäldegalerie Alte Meister..7

Figure 5: Raphael, Sistine Madonna, oil painting 1513-1514
(Gemäldegalerie Alte Meister, Dresden)...8

Figure 6: VR/AR support..10

Figure 7: Magic Leap..12

Figure 8: Magic Leap sensors..12

Figure 9: Lightfield schema...14

Figure 10: Magic Leap hand tracking key points...............................15

Figure 11: Unreal Engine logo..16

Figure 12: Unreal Engine 4.26 editor..17

Figure 13: An object displayed at different levels of details................18

Figure 14: MyObject class properties as shown by the editor.............22

Figure 15: The actor CameraActor has a locked gimbal.....................25

Figure 16: Painting actor...31

Figure 17: Rendered painting...31

Figure 18: Curtain opening animation...32

Figure 19: Elements of the 3D scene...34

Figure 20: 3D Apse, the painting and a marble altar.........................35

Figure 21: Finite-state machine example..36

Figure 22: State transitions...37

Figure 23: Visitor design pattern UML diagram.................................46

Figure 24: Full game acts diagram...64

List of code snippets
Code 1: Class declaration in Unreal Engine.......................................21

Code 2: Clouds material Blueprint..33

Code 3: AGameAct class...40

Code 4: AActManager class...41

Code 5: Italy game act..43

Code 6: Turin game act..43

Code 7: France game act..44

Code 8: Lyon game act...44

Code 9: Visitor's pattern element class...47

Code 10: Visitor's pattern visitor class..47

Code 11: Template Visitor pattern invalid implementation.................48

Code 12: AllActsDeclare.h...49

Code 13: AllActsInclude.h..50

Code 14: TFindIndex class definition..50

Code 15: GENERATED_ACT_BODY macro definition...................52

Code 16: Additional macros definition..53

Code 17: DispatchFunction definition...55

Code 18: UCinematicSequenceActComponent class definition............57

Code 19: Cinematic sequence act component methods 1...................58

Code 20: Cinematic sequence act component methods 2...................59

	1 Introduction
	1.1 Research context

	2 Scope
	2.1 Problem description
	2.2 Exhibition subject
	2.2.1 Second WW misfortunes
	2.2.2 Portrayed characters

	2.3 Hardware state of the art
	2.3.1 Magic Leap

	3 Development environment
	3.1 Unreal Engine
	3.1.1 Basics
	3.1.2 Building blocks
	Vectors representation
	Gimbal lock problem
	World
	Actor
	Components
	UClass

	4 Realization
	4.1 The painting
	4.1.1 Clouds material

	4.2 The virtual environment
	4.3 Architectural design
	4.3.1 Goals
	Finite state machine

	4.3.2 Implementation
	Game act
	Dispatching mechanism
	Visitor pattern
	Solution attempt
	Polymorphism workaround
	Game act components
	Cinematic sequence act component

	4.4 Computational complexity
	4.5 Overview
	4.5.1 World positioning
	4.5.2 Rope interaction

	5 Conclusions

