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Abstract

Energy system optimization models (ESOMs) have helped policy makers over the years
outlining the most cost-effective strategies for the deployment of energy technologies.
However, research in the last years has shown how the least cost strategy often neglects
other important issues, such as land usage or the mismatch in energy balance between
regions. For this reason, policy makers are showing an increased interest in finding al-
ternative strategies, as long as the increase in total cost is limited with respect to the
cost-optimized strategy. This thesis, hence, provides an overview of all existing methods
to generate near optimal solutions in ESOMs, and implements one of these methodologies
into a supply-side ESOM, named Hypatia, applying the methodology to a case study
inspired by the decarbonization of the Italian electricity sector by 2050. The near optimal
solutions obtained, which refer to alternative decarbonization strategies, present different
electricity mixes at equal electricity produced throughout the planning period. Highest
land usage reduction is obtained when solar photovoltaic is preferred in the electricity mix.
Conversely, the capacity factor is maximized for the whole sector in 2050 when hydro-
electric, biofuels and waste power plants are prevalent in the mix. Lastly, the alternative
strategy with the lowest total carbon dioxide emissions entails the largest deployment of
new wind on-shore capacity, among all scenarios found. Overall, results present insightful
energy strategies, which can be tailored to policy makers’s needs worldwide.

Keywords: near optimal solutions, energy system optimization models, land usage,
structural uncertainty, method to generate alternatives





Abstract in lingua italiana

I modelli di ottimizzazione dei sistemi energetici (in inglese ESOM) hanno aiutato politici e
legislatori nel corso degli anni a delineare le strategie più economiche per l’implementazione
di nuove tecnologie energetiche a lungo termine. Tuttavia, la ricerca degli ultimi anni ha
dimostrato come la strategia dal minimo costo spesso trascuri altre questioni importanti,
come l’uso del suolo o il disallineamento del bilancio energetico tra le regioni. Pertanto,
i responsabili politici stanno mostrando un crescente interesse nel trovare strategie al-
ternative, purché l’aumento del costo totale rispetto alla strategia più economica sia
limitato. Questa tesi fornisce, dunque, una panoramica di tutti i metodi esistenti per
generare soluzioni quasi ottimali negli ESOMs, e l’implementazione di una o più di queste
metodologie in un ESOM incentrato sul lato generazione dell’energia, chiamato Hypa-
tia, applicando la metodologia a un caso di studio ispirato dalla decarbonizzazione del
settore elettrico italiano entro il 2050. Tutte le strategie alternative generate presentano
un diverso mix energetico, a parità di energia elettrica prodotta lungo tutto il periodo
di pianificazione. Gli scenari mostrano una prevalenza di solare fotovoltaico nel mix di
generazione con la più alta riduzione dell’uso del suolo. Al contrario, la massimizzazione
del fattore di capacità dell’intero settore elettrico al 2050 si ottiene con una prevalenza nel
mix energetico di centrali idroelettriche e centrali alimentate da biocarburanti e rifiuti.
Infine, tra tutti gli scenari individuati, la strategia alternativa con le più basse emissioni
totali di anidride carbonica comprende il più grande dispiegamento di nuova capacità
eolica on-shore. Nel complesso, i risultati mostrano delle strategie energetiche a diverso
carattere nozionistico, che possono quindi essere adattate alle esigenze dei responsabili
politici di tutto il mondo.

Parole chiave: soluzioni vicino all’ottimo, modelli di ottimizzazione dei sistemi ener-
getici, utilizzo del suolo, incertezze strutturali, metodi per la generazione di alternative
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1

Introduction

Countries all over the world have pledged to fight climate change by setting targets for
the reduction of green house gases emissions. These targets will help mitigate the ef-
fects of the increase in global mean temperature caused by anthropogenic activities, as
stated by international cooperation treaties such as the Paris Agreement [24]. In order
to pursue these climate goals, policy makers all over the World need to lay down detailed
and specific energy technology strategies. To do so, the most common tools utilized are
Energy Systems Optimization Models (ESOMs), which are models that usually find a sin-
gle optimal solution by minimizing the total system cost and respecting certain physical
constraints, in the pursue of predetermined targets such as decarbonization by a specific
year [17]. Indeed, it is in the interest of policy makers, as well as tax-payers, to reach
climate goals in the most advantageous economical way for all.
At the same time, research in energy modeling during the last years has focused on find-
ing alternative solutions, different from the least-cost one [4]. This is because traditional
single-optimal solution ESOMs do not take into consideration certain social issues which
are almost impossible to transcribe into variables in a mathematical model, because of
their intrinsic nature. These issues may vary from public acceptance of a specific technol-
ogy, to the overcrowding of one technology in a specific region with respect to the actual
energy consumed by the population of this region, just to make two examples. These
problems affect policy makers decisions, and therefore, their relevance when planning an
energy strategy, should not be underestimated. That is why policy makers have stated
that they are willing to pay more, to a certain extent, in order to cope with these issues.
How much they are willing to exceed in total cost is a matter which will be discussed
later in this thesis work. But this is not the only reason why, in recent years, the focus
of energy modeling has shifted to the exploration of alternative solutions different to the
lest-cost optimal one. Real world energy transition has shown that traditional ESOMs
are quite unlikely to predict the actual solution of the future [22]. This is because these
models, as per their definition, should not be considered crystal balls able to see into the
future, but they should be seen as tools that lay out the main guidelines in order to reach
specific energy policy targets. Therefore, it becomes paramount to research an extensive
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number of other possible feasible solution, that could very well represent the actual "real
world" energy transition.

The current framework of methodologies to tackle uncertainties in ESOMs may differ
depending on the what is the main challenge that researchers want to face in their models.
First of all, it is important to understand what the uncertainties are and what is their
role when looking for alternative solutions.
Uncertainties in energy optimization models can be of two kinds [26]:

• Parametric uncertainties: they are given by the aleatory nature of some economic
or social parameters, like for example fuels and technologies costs, discount rates,
learning rate curves, and so on.

• Structural uncertainties: they are given by the model inadequacy to represent real
life conditions.

The first kind of uncertainties are easier to tackle with respect to the second one. In
fact, having to deal with an input parameter whose value may change in the future and
therefore affect the overall results of the optimization, requires a sensitivity analysis on
that parameter. This consists of selecting a range of plausible values, rerun the model for
each value and assess the impact on the results. However, nowadays it is more common to
see innovative methodologies to perform sensitivity analyses which involve probabilistic
distributions of the uncertain parameters (Monte Carlo simulation analysis), stochastic
programming or robust optimization [26]. These methods (together with other methods
not mentioned here, but still valid for parametric uncertainties) allow to analyze different
deterministic or distributed solutions, different with respect to the single optimal solution
case, in a direct and concise cause-relation way between input and output.

The second kind of uncertainties are, on the other hand, significantly trickier. Indeed,
models often do not consider issues that are not mathematically represented in their
equations, and therefore, cannot be studied with sensitivity analyses on some input pa-
rameters. These problems can hence be linked to the structural uncertainties of ESOMs,
and they therefore need different methodologies from the previous one to be analyzed and
to find possible pathways to cope with them. While usually research studies on struc-
tural uncertainties have focused only on increasing the accuracy to depict real world of
ESOMs by making them more and more complex and structured, in recent years a new
methodology has been introduced to face these uncertainties without altering heavily the
structure of the model.
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This methodology, introduced first in energy modeling by DeCarolis, is called "Modeling
to generate alternatives" (MGA) [4]. It is commonly utilized for linear optimization and
single objective problems, but as it will be seen later in this thesis, it has many possible
applications, and the ways in which it can be utilized are various and valid for the explo-
ration of alternative solutions in energy modeling. However, the general principle at the
base for the implementation of this method consists of these three different steps:

• First, the optimal single solution is found with the minimization of the total cost of
the system as the objective function.

• Second, the total cost becomes a new constraint of the model in the search of
alternative solutions. These new solutions will indeed have a total system cost
which can be higher than the previous one, but not exceed it by a certain value set
arbitrarily by introducing a cost slack.

• Third, with this new constraint, a new objective function needs to be defined. Its
definition is of pivotal importance when looking for near-optimal solutions and, as
it will be seen later, it is the key aspect on which research works on MGA have been
focusing in the last years.

Hence, using the MGA methodology answers policy makers demands to explore alterna-
tive solutions, which are more expensive in monetary cost, but solve possible problematic
issues which may arise in the future. The way in which it creates a set of near-optimal
solutions is adequate when exploring different pathways Countries want to embrace in the
climate change challenge. On the other hand, however, simply implementing this method
is not enough when studying single specific study cases, since there are different options
when choosing possible new constraints, the new objective functions, new parameters at-
tributed to the variables of the function and so on.
This is why it is of paramount importance to study, analyze and compare different MGA
applications of recent research works in this field, and then implement the most appro-
priate one for a specific case study to see how it affects the results. That is exactly what
this thesis intends to do, starting from one specific research work, which is Lombardi et
al. (near-optimal solutions for the decarbonization of the energy sector of Italy in 2050),
and then proceeding to study different existing ways to generate near-optimal solutions,
compare them and implement one for the original case study.
The approach which will be therefore followed in this thesis consists first of an advance
literature review of the current framework in the field of near-optimal solutions in energy
modelling. This section is fundamental in order to find the most suitable methodology
for the generation of alternative energy mix solutions in the Italian net-zero 2050 case.
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Then, the following section concerns the implementation of the methodology found in the
literature review section, with a focus on the results and comments about their interpre-
tation. Lastly, a final section compares the results found with Lombardi et al., with the
solutions for the specific case study, and with other MGA implementations.
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1| Literature review

In this chapter, the process followed in order to conduct the needed literature review is
described in careful detail.
As stated in the introduction, this literature review is a fundamental aspect of this thesis,
as it helps to understand the current framework of methods used to generate alternative
solutions. In particular, the main focus of the review is centered on those methods that
cope with structural uncertainties, rather than parametric uncertainties. As before men-
tioned, these latter uncertainties are not really related to the problem discussed at the
beginning of the introduction and the range of methods to deal with them is already quite
vast and explored.
In particular, the goal is to find methods like the "Modeling to generate alternatives" one,
which allow to generate and explore possible near-optimal solutions, without increasing
the complexity of the model. In order to later implement these methods, they need to
meet specific requirements which are compatible with the study case of this thesis. These
requirements translate into specific key words and research filters, which will help to detect
the most suitable research works.

1.1. Methodology

Literature reviews can be carried out in different ways and with the help of a vast range
of available commercial tools. In this thesis, the "Systematic literature review" is chosen
as the most appropriate one for the purpose of this work, because of its scientific rigorous
approach in finding relevant scientific articles. This approach defines a specific search
string and systematically analyzes all the corresponding literature. In case of an exces-
sively high number of articles found, the review selects a subset of the literature to focus
through one or more selection criterion. In this way, all relevant research available on a
specific topic is reviewed.
The tool utilized for the review is Scopus - Advanced literature research, which allows to
find articles by entering specific query strings. These query strings are a combination of
commands regarding the possible words that appear in the title, in the abstract or in the
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"Modeling to generate
alternatives" OR "Near

optimal"

Sentences to be found
either in the title, the

abstract or the keywords

Number of results: 28,623

"English" Language

Number of results: 28,051

previous sentences AND
("energy system model"

OR "energy system
optimization model")

Sentences to be found
either in the title, the

abstract or the keywords

Number of results: 11

Criterion

Criterion

Criterion

Figure 1.1: Schematic representation of the Advanced Literature research

keyword section of the papers. Moreover, commands include filters on the language of the
article, on the date of publication, on possible restricted access and many other criteria.
For the purpose of this thesis work, the query strings used in Scopus were selected to be
relevant only for the words or sentences present in either the title, the abstract or the
keywords, and for the language of the research works, which needs to be in the English
language in order to make this thesis accessible for international readers. No particular
relevance was given to the date of publication, since the energy modeling research field
(and in particular methods to tackle uncertainties) is relatively young. All other criteria
were deemed unnecessary for the finding of the most suitable research works.
After having conducted several advanced literature researches on uncertainty analyses
applied to energy systems modeling, the results appeared to be unconnected to the re-
search question of this thesis, since their focus was mainly on parametric uncertainties.
However, thanks to a shift of the focus more directly on the generation of near-optimal
solutions and different MGA applications, a final advanced literature research [appendix]
was selected as the one to find the most adequate results.

As it can be seen from the Figure 1.1, the words researched in either the title, the ab-
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stract or the keyword with the Scopus command TIT-ABS-KEY(), consist of two short
sentences:

• "Modeling to generate alternatives", as it looks for the most common methodology
to cope with structural uncertainties, developed by DeCarolis and used also in the
reference research work at the center of this thesis (Lombardi et al.).

• "Near optimal", as it looks in general for ways to generate or explore near-optimal
solutions.

By using the search string above, the research included all articles, written in English,
which included the phrases “modeling to generate alternatives” or “near-optimal” either
in their abstract, title, or keywords. The literature search is further constrained so that
the articles found are relevant to energy system optimization models, i.e., they include
this term either in their abstract, title or keywords.

1.2. Results

The final results of the advanced literature research are 11 research papers. In this section,
they are carefully scrutinized, while a discussion about which research work to implement
for the study case of the decarbonization of Italy in 2050 will follow in the next section.

The following research papers were found:

1. "Policy Decision Support for Renewables Deployment through Spatially Explicit Prac-
tically Optimal Alternatives", 2020, Lombardi, F., Pickering, B., Colombo, E., Pfen-
ninger, S.

As stated in the introduction, this paper is used as the benchmark to explore and
compare different alternative near-optimal solutions.
In this work, the authors first find the least-cost optimal solution for the Italy 2050
decarbonization of the energy sector case study. Then, they add a new constraint
which is the relaxation of the total system cost, and thanks to a new objective func-
tion, they are able to find near-optimal solutions. This new objective function is the
minimization of decision variables such as the new installed capacity of renewable
technology, where each variable is multiplied by a weight, which depends on the
theoretical maximum capacity that could be installed of a specif technology in a
certain region. Indeed, one of the issues with the single optimal solution, relevant
to Italian policy makers, is the overcrowding of one technology in a specific region,
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which might seem unfair for the local population not only because of the environ-
mental impact this technology might cause, but also because the energy produced in
that area would be much greater than the one needed for local consumption. This
is also connected to another issue which might be the one to put great stress on
certain transmission lines, while leaving others underutilized. Thanks to this MGA
approach implemented in this paper, many solutions are found which can help to
partially solve the before mentioned issues.

2. "Balancing GHG mitigation and land-use conflicts: Alternative Northern European
energy system scenarios", 2022, Chen, Y.-K., Kirkerud, J.G., Bolkesjø, T.F.

While the work from Lombardi et al. focuses on a quantitative approach to find
near-optimal solutions, this paper centers its attention on a qualitative way to im-
plement the MGA and find near-optimal solutions. The specific case study is about
the deployment of large scale renewables in Northern European countries, and in
particular how to find alternative solutions, different from the optimum, which cope
with the problem of renewable technologies land use. The methodology implemented
for the generation of near-optimal solutions is the same as before, with the excep-
tion of the new objective function. In this case, the authors opt for two desirable
scenarios, with the creation of two new variables which qualitatively represent land
occupation. With their optimization, the authors rely that the two near-optimum
solutions found are guaranteed to be the best ones to cope with this particular issue.

3. "Modeling all alternative solutions for highly renewable energy systems", 2021, Ped-
ersen, T.T., Victoria, M., Rasmussen, M.G., Andresen, G.B.

This research work implements an alternative method to find near-optimal solu-
tions, which is called "Mapping All Alternatives" (MAA). The specific case study
is an application of this method on an European electricity system model, and its
implementation consists of creating a space of all near-optimal solutions, starting
from the single least-cost optimum one. MAA does that by defining first a tetra-
hedron which is the border of near-optimum solutions, thanks to a constraint on
the total cost of the system. Then it populates the area of this tetrahedron (space
of near-optimum solutions) thanks to the definition of multiple simplex (which in
two dimensions correspond to triangles). This allows to create a vast number of
alternative solutions, which could be explored by policy makers in order to solve
specific issues related to the single optimum one, all inside a space delimited by the
constraint of the cost relaxation.

4. "Exploring flexibility of near-optimal solutions to highly renewable energy systems",
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2021, Pedersen, T.T., Victoria, M., Rasmussen, M.G., Andresen, G.B.

This paper is complementary to the previous one (as it was written and pubblished
by the same authors) and is, indeed, a more detailed analysis of the results of the
MAA method application to an European electricity system model.

5. "Finding a Portfolio of Near-Optimal Aggregated Solutions to Capacity Expansion
Energy System Models", 2020, Buchholz, S., Gamst, M., Pisinger, D.

This article centers the focus on the generation of maximally different solutions,
in capacity expansion problems (CEP). It does this by finding first the optimal
investment strategy for this kind of problem, then, like in the MGA approach, it
sets a new constraint on the total cost of the new installed capacity. The interesting
peculiarity is the new objective function, which consists of finding the most different
investment strategy inside the cost constraint. It does that by maximizing the
absolute value of the difference between the newest strategy and the previous ones.
In this iterative approach, it creates a portfolio of investment strategy solutions,
different from the optimal one, which could be explored by policy makers.

6. "Exploring the impact space of different technologies using a portfolio constraint
based approach for multi-objective optimization of integrated urban energy systems",
2019, Jing, R., Kuriyan, K., Kong, Q., Zhang, Z., Shah, N., Li, N., Zhao, Y.

This research work combines the MGA method to a multi-objective optimization
problem, which consists of finding the optimal technology portfolio for integrated
urban energy systems. The case study to which it applies is the optimal deploy-
ment of these energy systems in urban China. The methodology implemented starts
with the generation of a baseline optimal solution, and then it creates a space of
alternative solution by processing iteratively each technology present in the baseline
portfolio. This process comprehends two steps: the first one is to exclude com-
pletely that technology and the second one is that the technology module is called
gradually with an acceptance parameter inside the portfolio. Then, thanks to the
application of the Direct Least Squares Fitting of Ellipses algorithm via Matlab[],
the best fitting ellipse containing all the alternative solutions generated following
the described methodology is created.

7. "Integrated renewable energy systems for Germany-A model-based exploration of the
decision space", 2019, Nacken, L., Krebs, F., Fischer, T., Hoffmanna, C.

In this paper, the authors study the implementation of the MGA method on the
case study of the German energy system. The methodology implemented is very
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similar to the one seen in Lombardi et al. research work, with the exception of the
assignation of weights in the new objective function. In this case, the minimization
of the decision variables, is characterized by a product of the Cartesian set (-1,1)
with the variables. This means that if the variables are for example 2, the new near
optimal solutions will be four and they will be found by multiplying the variables
respectively by (1,1), (-1,1), (1,-1), and (-1,-1). In this specific case study, the
variables are 8, meaning that this method is going to find 28 near optimal solutions,
for each slack of the total system cost relaxation.

8. "A review of approaches to uncertainty assessment in energy system optimization
models", 2018, Yue, X., Pye, S., DeCarolis, J., Li, F.G.N., Rogan, F., Gallachóir,
B.Ó.

This article is a review of the current framework of methods used to cope with
uncertainties in ESOMs. The methods mentioned include the MGA one for struc-
tural uncertainties, while for parametric uncertainties, it describes the Monte Carlo
analysis, Stochastic programming and Robust optimization.

9. "Ensuring diversity of national energy scenarios: Bottom-up energy system model
with Modeling to Generate Alternatives", 2017, Berntsen, P.B., Trutnevyte, E.

In this research work, the MGA method is implemented for the study of near optimal
solutions in the case study of the energy transition of the Swiss electricity supply
system. The peculiarity in this case, is to not add any cost constraint in the research
of alternative solutions. Indeed, it simply creates two new objective functions which
are the minimization and the maximization of the same function. This function
is the sum of all the decision variables, which are mainly the new installed energy
capacity of specific technologies, each multiplied by its own weight. This weight is
sampled randomly within a uniform distributed set (-1,1). With each sample, it is
possible to find two alternative solutions, therefore, the authors of this work repeat
this procedure 20 times, in order to have the possibility at the end to explore 40
different alternative solutions.

10. "Does cost optimization approximate the real-world energy transition?", 2016, Trut-
nevyte, E.

This article tries to answer the question which ponders how good energy optimiza-
tion models actually simulate the real World energy transition. The author uses as
a case study the energy transition of the United Kingdom between 1990 and 2014,
and it compares the real one with a single least-cost optimal solution of an ESOM
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and near-optimal solutions generated with the MGA method. The way near-optimal
solutions are generated in the model is similar to the same methodology approached
by Lombardi et al., with the exception of the weights used in the new objective
function. In this case, the weights are values which are generated randomly in the
range between 0 and 1.

11. "Modelling to generate alternatives with an energy system optimization model",
2016, DeCarolis, J.F., Babaee, S., Li, B., Kanungo, S.

This research work, written and pubblished by many authors including DeCarolis,
who can be safely described as the "father" of the MGA method to find near opti-
mal solutions, is the application of this method on an energy system optimization
model, while analyzing the specific case study of the electricity sector of the United
States of America. It is at the center of all the previous works presented, which im-
plement MGA in their research studies, including the main reference of this thesis
by Lombardi et al.

1.3. Discussion

1.3.1. Analysis of the results

After having seen a brief description of each systematic literature research result, it is
now possible to discuss whether the research works found are either suitable or useful
for this thesis purposes. Indeed, the desired objective is to implement one or more of
the aforementioned methods to generate alternative near optimal solutions to the case
study of Italy’s decarbonization of the electricity sector by 2050. In this way, it would be
possible to analyze and compare the results to the ones found by Lombardi et al. [10].
Firstly, a consideration can be made about the nature of some of the papers found. The
research work conducted by Yue et al. [26] contains a general description of the current
methodologies used to tackle uncertainties in ESOMs and for this reason, even if it might
be useful for a general knowledge on the subject of energy modeling, it does not provide
actual methods to implement the generation of near optimal solutions. Instead, the paper
published by DeCarolis et al. [5], being already important for the work done by Lombardi
et al., which is the reference work for this thesis, is not going to be further analyzed.
Certain methodologies found in the review are deemed as not suitable for linear program-
ming single objective cost-optimization problems. For example, the method described by
Jing et al. [9] is designed for mixed integer linear programming multi-objective problems
and therefore, not suitable for the ESOM used for the case study of this thesis. Moreover,
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its objective is to find the optimal portfolio of technologies in integrated urban energy
systems, which may differ from the cost-optimal energy system desired in this thesis.
Buchholz et al. [1] was also deemed as not suitable for this thesis, since it is developed
for capacity expansion problems with the research of the optimal investment strategy.

Pedersen et al. [15] [16] introduces a new alternative and promising way to find near
optimal solutions. Indeed, the possibility to define the limits of a space of solutions under
a cost-constraint and then populate that space allows to find a significant number of
alternatives easy to explore and analyze. In addition, this methodology also implicitly
guarantees the robustness of the solutions found, which is one of the main critiques of the
MGA method developed by DeCarolis. Moreover, another interesting aspect of this work
is the use of the Gini coefficient for the analysis of regional energy self-sufficiency. The
Gini coefficient is a parameter commonly used in economics to measure financial inequality
among the population of a region or a country. Pedersen et al. adapt this coefficient to
the energy field to measure the energy produced in a certain region compared to the one
actually consumed by its population. In this way, the Gini coefficient is a representation
of how far a region is from energy self-sufficiency, which as stated in the introduction,
could be a severe issue for the local population, and therefore relevant to policy makers.
However, because of the complex algorithms used to define and populate the near optimal
space, this method requires heavy computational tools which cannot be adopted in this
thesis. Even though, on the other hand, the idea to use the Gini coefficient to measure
energy self-sufficiency is suitable for the aim of this thesis. Indeed, in order to tackle the
aforementioned issue of regional energy disparities between production and demand, the
Gini coefficient will be taken up in the following chapters.

Chen et al. [2] focuses instead on a qualitative approach to generate near optimal so-
lutions. In this way, the number of solutions found significantly decreases, thus, policy
alternatives would also decrease. In addition, this methodology searches fewer solutions,
given a clear purpose at the start of the research, which translates into a higher efficiency
in finding the best possible solution for a specific issue.
One critique which could arise after reviewing this method, is that rather than a way to
generate alternative near optimal solutions, this approach is more resembling of a multi-
objective approach. Indeed, instead of finding alternative solutions by assigning weights
to the decision variables of a new objective function (like in the work of Lombardi et al.),
it creates two new variables, whose minimization serves as the specific objective in the
new objective functions. However, this critique falls behind the fact that the methodology
introduced in this paper follows the iterative procedure of the classic MGA method intro-
duced by DeCarolis. Therefore, instead of optimizing simultaneously multiple objectives
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like in usual multi-objective optimization problems, it generates first a least-cost optimal
solution, and then it uses new objective functions by adding the constraint of a total cost
relaxation with different values of slack.
Hence, implementing this method on the ESOM utilized for this thesis, for the specific
case study of Italy’s decarbonization, could be a valid approach in pursuing the aim of
this work. Indeed, by using the method introduced by Chen et al., it would be possible
to analyze and compare results with the ones by Lombardi et al., as well as to com-
pare a qualitative and a quantitative approach when generating alternative near optimal
solutions.

The remaining literature found present a methodology to finding near optimal solutions
similar to the one presented by Lombardi et al. , with the exception of the method used to
define weights in the new objective function. The noticeable difference lies in the fact that,
while Lombardi et al. [10] use an arbitrary approach when defining the weights (based
on the maximum theoretical capacity which could be installed of a specific technology in
a specific location), the authors of these three articles use a randomized approach. Thus,
solutions vary from the Cartesian product of the set (-1,1) proposed by Nacken et al. [13],
to the random value generated in the range from 0 to 1 proposed by Trutnevyte [22],
and then again to lastly the value sampled from a uniform distribution of the set (-1,1)
proposed by Trutnevyte et al. [23].
This random approach in generating weights for the new objective function, could there-
fore bring new interesting insights when generating near optimal solution for the specific
case study of the thesis. Indeed, assigning random values from a uniform distribution to
the decision variables weights, would consequentially result in a uniform distribution of
close to optimal solutions. A key aspect is that not only it would do that, but it would
also do it while maintaining the same objective function and the same cost relaxation
with respect to the least cost solution. Hence, a possible implementation of this method
in the new objective function to be later defined, might bring new insights when trying to
explore alternative solutions, different from the ones found by Lombardi et al„ and could
consequentially aid in the pursue of the thesis purpose, as stated in the earlier chapters.

1.3.2. Conclusions

After reviewing the methodologies used for the generation of alternative near optimal
solutions in ESOMs, the most suitable ones are chosen to be implemented in the follow-
ing chapters of this thesis. They will be reformulated in order to adapt to the energy
system optimization model and the specific case study present in the work conducted by
Lombardi et al. [10]. The main difference from the methodology implemented in their
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work will rely on the definition of the new objective function, after the least-cost optimal
solution has been found and the new cost constraint has been added.
As seen in the previous section, the qualitative approach proposed by Chen et al. [2]
is the most appropriate one so to assess how much they differ from the ones found by
Lombardi et al.’s quantitative approach. The new qualitative objective functions to be
introduced in the model and, in particular, their definition, are going to be at the center
of the next chapter. In fact, they obviously will have to represent plausible solutions to
the policy makers’ issues presented in the introduction chapter, such as land occupation
or energy self-sufficiency of a region (for this latter, it might be useful to implement new
variables like the Gini coefficient seen in the work conducted by Pedersen et al. [15]).
Moreover, with new qualitative objective functions implemented in the model, an alter-
native way of assigning weights to the decision variables of the functions could be used.
This would help find alternative near optimal solutions which might have not yet been
explored by Lombardi et al. in their work. Again, as seen in the previous section, this
new approach is going to be based on random generation from distributed sets, like in
the methodologies proposed by Trutnevyte [22]. The specific methodology to be followed
for the generation of the decision variables weights will also be at the center of the next
chapter.
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In this chapter, all the features that have been implemented in the model to reach the
targets of this thesis are going to be discussed. They range from the mathematical formu-
lation of the new objective functions and constraint, to the definition of the optimization
mode, from the new utilities of the model, to the script needed to run the model in ’close
to optimal’ optimization mode, and so on.
First, it is of crucial importance to describe the energy system optimization model used.
Indeed, before going into deeper detail on how to generate close to optimal solutions,
it is a better practice to understand how the model normally works and what can be
implemented in it for the aim of this work.

2.1. Hypatia

Hypatia is an energy system optimization model written and developed by SESAM [14],
a research group at Politecnico di Milano. It is written in the objective-oriented Python
programming language and it is possible to edit and run it through different available
source code editors (e.g. Visual Studio Code 2, the one used in this thesis). Thanks to
its technology-oriented structure, Hypatia allows to optimize even complex energy system
frameworks, with a premium accuracy in time and space resolution. Moreover, Hypatia
allows the user to choose between two different optimization modes, "Operation" and
"Planning". In the first, the model optimizes for the operational analysis in one year,
while in the second, Hypatia optimizes for continuous capacity deployment analysis over
multiple years. For the aim of thesis, and therefore for the case study of Italy’s decar-
bonization by 2050, only the "Planning" mode is of interest. However, all the new features
that will be implemented for the generation of close to optimal solutions, can be adopted
also for the "Operation" mode.
The model, as stated by the authors, is inspired by other popular energy system opti-
mization models, such as Calliope, the one utilized by Lombardi et al. in their work
to generate close to optimal solutions. However, while most of the other open-source
ESOMs, included Calliope, use Pyomo to solve optimization problems, Hypatia relies on
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CVXPY.
CVXPY is an innovative domain-specific language for convex optimization problems,
which enables writing the optimization problem in a natural way following plain mathe-
matical rules, contrary to the strict standard form required by solvers. Moreover, the use
of CVXPY does not lessen the number of solvers that can be utilized for Hypatia, which
indeed remains high, both for open-source and for commercial ones.

The structure of the model is divided in different "blocks". In the following list, a brief
analysis of what each block does is carried out:

• Backend

The Backend modules are the backbone of the whole model. Here all the input
data is processed, the variables and constraints are defined and calculated, and
lastly, in the "Build.py" module, the optimization problem is defined along with its
objective functions. For this reason, most of the conceptual features which need
to be implemented to generate close to optimal solutions, are going to be done in
Backend modules.

• Utilities

In the Utilities block, everything regarding auxiliary features of the model is stored.
From the calculation of utility functions, which are then needed in the description of
the problem, to the correct label of different categories of technologies and carriers.

• Main

The "Main.py" module inside the Main block is where the model is defined as a
class. This definition is needed so to initialize and run a model, since it helps to
clearly visualize the different steps when running the optimization problem present
in the Backend. In fact, thanks to the class input arguments and methods, the user
is able to perform in a dedicated script all the steps needed, from the definition and
initialization of the Model, to the writing of the optimization problem results. The
precise steps will be seen more in detail later, when this dedicated script needed to
run the model will be discussed.

• Analysis

Lastly, the Analysis block is responsible for the analysis and postprocessing of the
model results. A key aspect when working with energy system optimization models,
since it fosters the communication with people and organizations interested in the
final results of the model, such as policy makers or private companies.
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As briefly previewed in the Main block, a fundamental feature of Hypatia is also a module
(e.g., "Run.py") where to run the model. In this, the user can define and run the model
built by executing the following dedicated steps:

1. First, initialize the model by directing it towards the path of desired input sets and
by choosing whether to run it in operation or in planning mode.

2. Define the path where the input parameters are stored and allow the model to read
them.

3. Run the model, while deciding also which solver needs to be used for the problem
optimization, among the available ones.

4. Last, store the results of the run in a dedicated path, given that the optimization
of the problem terminated successfully.

A proper "run.py" module is fundamental in order to properly define models and generate
close to optimal results. Indeed, in the following sections we are going to see how, in this
module, there is also the need to define and update new parameters of the model, which
are pivotal to the generation of alternative solutions with different objective functions.

Undoubtedly, Hypatia comprehends numerous other features ranging from the definition
of equations, variables, and classes, to the postprocessign of optimization results. Any
additional detail regarding the structure of the model can be found in [14].
The new features implemented in Hypatia are discussed in the following sections. First,
the objective functions are defined in Section 2.2, Next, the design of the new cost con-
straint is described in Section 2.3. Finally, the structure of the new module dedicated to
the running of the model is presented in Section 2.4.

2.2. Objective functions

In this section, the new objective functions introduced in the model are discussed. To-
gether with the cost constraint, the definition of a new objective function is an important
step of the MGA method [5] to generate close to optimal solutions in energy system opti-
mization models. Indeed, after having obtained the first optimal solution of the problem,
which is traditionally the least-cost one, there is a change in the objective function, to-
gether with the definition of a new constraint.
Since the definition of the new objective functions to implement is more relevant to the
aim of this thesis, they are discussed first.

Literature review results (section 1.2) show that most of the methods to generate alter-
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native solutions exhibit two types of new objective functions:

• Qualitative

The new objective function focuses on the research for a possible solution to a well
identified issue, which is possibly different from the one identified by the first ob-
jective function. Instead of the quantity of close to optimal solutions, this kind of
objective function focuses on the accuracy on its specific target, generating thus just
one solution.
Examples are the two objective functions proposed by Chen et al. [2], where the spe-
cific targets are respectively the minimization of occupied land and the minimization
of impacted area by energy technologies.

• Quantitative

The new objective function aims at finding alternative solutions close to the least
cost one, possibly focusing on multiple issues simultaneously. In this case, the focus
is shifted more on the number of alternative solutions in the neighbourhood of the
optimal one. Then, by analyzing the results obtained, the overall accuracy of the
solutions found may be increased.
Typically, these functions are the minimization of the sum of some decision variables
(usually the installed generation capacity of each technology), each multiplied by a
coefficient, often called weight. The value of these weights can be given based on
some criteria (e.g., the ideal maximum capacity in Lombardi et al. [10]), or they
can be extracted randomly from a distributed sample of numbers (e.g. the uniform
distribution between 0 and 1 in the work by Trutnevyte [22])

Qualitative objective functions are of interest for the aim of this thesis. In fact, two
of Italy’s biggest issues with traditional least cost solutions are the land occupation of
renewable technology and energy balance mismatch among its macroregions [10]. These
issues, therefore relevant to the decarbonization of the Italian electricity production sector,
could be therefore tackled with targeted qualitative objective functions.

But qualitative functions have also undergone some criticisms because of their nature.
In the work by Chen et al. [2], it is maintained that the optimization problem related to
qualitative objective functions is very similar to that of a multi-objective optimization one.
Even though this might not necessarily be a negative aspect, it is a different optimization
structure compared to near optimal solutions. Indeed, multi-objectives problems have a
different structure and the way their optimization is done is conceptually different from
single-objective. For this reason, it is incorrect placing on the same level qualitative
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objective functions and multi-objectives optimization problems.
This difference in the structure is important, since close to optimal solutions always work
with a specific cost constraint on the least cost one. Therefore, all solutions found are
still in the neighbourhood of the optimal one in terms of total cost. In this way, the
first optimal solution is still prioritized, as all the following close to optimal solutions are,
because of their nature, influenced by it.
Contrary to the multi-objective optimization problems, where the solution could come
with a cost significantly higher than the one it would have had with a least cost single
optimization.

In general, having a higher number of solutions is better for several aspects.
First, single optimal solutions hardly capture the multifarious nature of the real world
energy transition. Conversely, the higher the number of close to optimal solutions, the
higher the likeliness of considering insightful aspects of the real world energy transition
[22]. Indeed, qualitative objective functions try to solve as much as possible specific
issues, but there might be other hidden close to optimal solutions which could potentially
be similar and, in addition to that, be helpful for other issues.
Second, close to optimal solutions can support policy makers addressing specific issues.
In fact, exploring alternative solutions through a qualitative objective function tailored
to a specific policy issue allows to model and explore policy strategies addressing specific
issues at a cost that is still close to the lowest. In contrast, having just one close to
optimal solution may not advise policy makers on a range of possible strategies as crisply
as multiple close to optimal solutions would do
Lastly, close to optimal alternatives help find solutions to problems which are hard to be
mathematically transcribed into a model [4].

Given all these reasons, in this thesis a combined quantitative and qualitative approach
was pursued while defining two new objective functions. The qualitative part is given by
the definition of the functions, which will try to solve as much as possible specific issues.
Then, after the first run of each function, each of the decision variables of the function is
multiplied by a different weight. By running multiple times and giving every time a new
value to the weights, a desired number of close to optimal solutions is obtained. In this
way, the objective functions are guaranteed to be also quantitative.

The two new objective functions to be implemented in Hypatia regard two different topics:

• Land usage

• Energy balance mismatch
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In the following subsections, a more careful description of what they concern, the refer-
ence for them and how they are implemented in the model will follow.
To every decision variable of the two functions, a weight, whose value is extracted ran-
domly from a uniform distribution sample between 0 and 1, is multiplied allowing to reach
a desired number of close to optimal solutions.

2.2.1. Land usage

The deployment of renewable technologies to generate electricity is fundamental to achieve
decarbonization targets in the Paris Agreement [24]. However, renewable energy deploy-
ment has not been an easy task, among other reasons, due to land usage concerns [8].
Indeed, electricity production technologies all require a different amount of land in order
to generate the same amount of energy. This factor, which can be called "Land Usage",
has sparked a fiery debate over the years, involving not only policy makers but also local
communities [21].

Land usage is important for three main reasons. First, from an economic perspective land
is a strategic asset and using it for energy production could make it difficult or impossi-
ble carrying out other activities. Such activities can vary from the housing of people to
agriculture or manufacturing industries.
Second, from a social perspective,land is connected with labour and employment. Thus,
a higher land use may involve higher employment in the region, all others factors held
true.
Third, from an environmental perspective a land occupation with power production tech-
nologies may negatively affect the landscape or scenery of an area.
However, this is not a priori true, in the sense that visual impact is also related to other
features of a plant, like for example the presence of condensation towers or the physical
attributes of a specific plant. Moreover, there are other types of environmental impact
which could be of more importance to local population (e.g. air and water pollution,
acoustic, and so on).

In general, renewable technologies, such as solar photovoltaic and wind, have a higher
specific Land Usage than traditional fossil fuel power plants. This means that at equal
installed capacity, the land used by renewable sources is significantly more, as it can be
seen in a table of reference values A.1.
It is reasonable believing that land usage should be minimized, even though it comes with
a greater cost.

Thus, the research of close to optimal solutions, with a qualitative objective function
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about the minimization of land usage, is pertinent to the target of this thesis. The one
which is implemented in this work, comes from the work on close to optimal solutions by
Chen et al. [2], with a readjustment to the model used, which in this case is Hypatia.

The mathematical description of the objective function is the following:

obj.func. = min(

years∑
i

tech∑
j

xi,j · LU i,j) (2.1)

Where:

LUyear,tech = LUspecificyear,tech · TotCapacityyear,tech (2.2)

Land usage [m2] is a matrix given by the positional product of elements inside two matrices
of the same size, which are respectively the specific land usage of each energy technology
for every year [ m2

GW
] and the total installed capacity of each technology for every year

[GW ].
Specific land usage is an input parameter of the model, where the values chosen for each
technology remain constant over the years. The entity of these values can be seen in Table
A.1 in appendix A, together with the references of where they come from.

While in the objective function it is possible to observe the positional product of the
elements of two matrices. Respectively, the just seen land usage matrix and a matrix of
the weights needed for the quantitative part of the objective function (Section 2.29. The
value of these weights is assigned in the following way:

{
xtech = 1, if it is the first time running Land obj. func.

xtech = rand(0, 1), if it is NOT the first time running Land obj. func.

(2.3a)

(2.3b)

This means that a value of 1 is given for each technology during the first run of close
to optimal solutions with this objective function. While for the other close to optimal
solutions with the same function, the weight for each technology is extracted randomly
from a uniform distribution sample between 0 and 1.
Notice how for both cases the different random value is given only to each technology.
Indeed, this value is then kept constant over the years, in order to maintain the same
weight for each technology during time. When the model is then run again for a new
close to optimal solution, a new weight is assigned to each technology.

The product between the weights and land usage results in one final matrix, whose sum
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over the technologies and over the years is the global objective of the model that needs
to be minimized (equation 2.1).

The implemented code, written in Python, used to define and use this equation into the
model can be found in appendix B. However, it is suggested to first read how the running
module (section 2.4.2) is structured and then proceed to have a look at all the new code
lines implemented in Hypatia.

2.2.2. Energy balance mismatch

Another issue with the current energy transition, is the one linked to the mismatch of
the energy balance. For this mismatch, it is intended the disparity between the energy
demand and the energy production of a single region [15].
There are many reasons behind why this happens and why it is actually an emerging
issue, with policy makers that are now more inclined to pay attention to it.

First, disparity between energy demand and production happens because one region does
not have enough energy resources to meet its demand. Therefore, it is forced to import
electricity from the production of another region. Consequently, this implies that the
other region which exports electricity, has more energy resources than it needs to meet
its demand.
Other sources of disparity between energy demand and supply include logistic issues,
economic or regulatory convenience in producing in a certain region, or the scarcity of
land.

A mismatch in the energy balance is problematic for many reasons.
First, in regions where the Global horizontal irradiance (GHI) or the average wind speed
are higher than anywhere else, a higher production of electricity from renewables can be
expected. In these regions, the use of transmission lines to export it to other parts of the
country is also expected.
However, renewable technologies for the generation of electricity, as seen in the previous
subsection 2.2.1, bear the highest Land Usage factors. As a consequence, in such regions
there might be an overcrowding of power generation technologies, which in turn comes
with a significant occupancy of land, while other regions can just reap the benefits of such
electricity production, without bearing the same burdens.
One example from this, which is also cited in Lombardi et al. [10], is the region of Sardinia
in Italy. In least-cost traditional energy systems optimization models, Sardinia features a
great deployment of wind energy, much higher than the regional electricity demand. Such
a situation might be undesirable from a policymaking perspective.
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Second, energy balance mismatch may cause the congestion of transmission lines. Indeed,
the higher the electricity export from one region to the other, the higher the usage of
transmission lines. This results in a prolonged stress of the infrastructure, together with
the fact that in case of damages or maintenance, the energy reliability of the importing
region could potentially be at risk.

In this thesis, an objective function regarding energy balance mismatch was implemented,
to generate close to optimal solutions. However, to mathematically describe such a prob-
lem is not an easy task (one of the main principles behind close to optimal solutions).
Therefore, taking inspiration from the reference in Pedersen et al. [15], an economics
index, the Gini coefficient, was used and adapted to the energy domain.
The Gini coefficient is an index traditionally used to measure inequality between the in-
comes of cumulative shares of the population in a certain region or country. In Pedersen
et al. [15], it is readjusted so that the inequality is a representation of the energy balance
mismatch and it is shown between the cumulative share of energy demand and the cumu-
lative share of energy production of regions in a country, or countries in an agglomerate
of countries.
A graphical representation of the Gini coefficient is shown in figure 2.1 whereby the con-
cept was framed for economic and energy-domain analysis. The equality line represents
what would happen in the case of perfect equality (i.e., in the energy case, the cumu-
lative share of demand matches perfectly the cumulative share of production). While
the Lorentz curve depicts what happens in reality (i.e., in the energy case, the difference
between the cumulative share of demand and production in some regions).
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(a) Economics Gini [18]

(b) Energy Gini [15]

Figure 2.1: Visual representation of the Gini coefficient

The Gini coefficient is calculated in both cases as the ratio between the area delimited by
the equality line and the Lorenz curve, and the overall area:

Gini =
A

A+B
(2.4)
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The Gini values range between 0 (perfect equality, Lorenz and equality curves are the
same) and 1 (complete inequality, i.e. in the energy case there is one region/country
generating all the energy).
Hence, the second objective function to be implemented in the model for this thesis, is
set to minimize the overall Italian energy inequality, operationalized by means of the Gini
coefficient. This Gini is a function which takes as input the total demands and the total
productions of all N regions and returns the Gini value.

obj.func. = min(Gini([TotDemreg1, .., T otDemregN ], [TotProdreg1, .., T otProdregN ]))

(2.5)

Where the total demand is calculated as the sum over the years of the yearly typical-day
demands of each region, which are input parameters of the model:

TotDemreg =

years∑
i

Demreg,i (2.6)

And the total production is calculated as the sum over the years and technologies of
the product between the annual typical-day electricity productions of each region, and a
random weight assigned to each technology:

TotProdreg =

years∑
i

tech∑
j

xi,j · AnnualProdreg,i,j (2.7)

The weights are, once again, a way to generate multiple close to optimal solutions with a
qualitative objective function, and therefore make it also quantitative. The way in which
its values are assigned is exactly the same as the one used for the land objective function
(equations 2.3).

The code written in Python to implement this objective function in Hypatia, can be found
in Appendix B. However, it is once again recommended checking the code after having
read the section on the running module (section 2.4.2), at the end of this chapter.

Moreover, together with the objective function, in Appendix B is possible to find the code
of the Gini function used in it to look for the global objective.
In this function, the aim is to compute the cumulative shares of the total demands and
productions of the regions, based on given percentiles, and then calculate the areas de-



26 2| Methodology

limited by the equality and Lorenz curves. The structure is as follows:

1. Take the vectors of regional total demands and productions as an input.

2. Define an array, whose length is given by the number of regions, of evenly spaced
numbers over the (0,100) interval. This creates the percentiles needed to rearrange
demand and production.

3. For every percentile, from 0 and to 100, calculate the cumulative share of both
demand and production.

4. At this point, there are two arrays with the values of the cumulative shares of
demand and production, from 0 to 100. The length of these arrays is the same as
the one of percentiles, since every value of cumulative share is calculated based on
all the percentiles.

5. The perfect equality area (A + B) and the Lorenz area (B) are calculated with
integrals of the values of cumulative shares.

6. The Gini coefficient is calculated as the difference between the perfect equality and
Lorenz areas, therefore (A), over the perfect equality area. As per definition.

7. The function returns the value of the Gini coefficient just found.

This function is therefore called when looking for close to optimal solutions with a qual-
itative objective function on energy balance mismatch (equation 2.5). In particular, the
value the function returns is minimized as the global objective, to obtain the solution that
minimizes energy balance mismatch as much as possible.

This objective function only works in a model set with multiple regions, so to assess energy
balance mismatch between regions or countries.

2.3. Cost constraint

After having seen the definition of the close to optimal objective functions, it is now
possible to move to the other fundamental step of the MGA method [5]: the addition of
a constraint on the total cost.
Indeed, in order to effectively be close to optimal solutions, the new objective functions
are calculated under one extra constraint on the cost of the system. In particular, the
total actualized cost of the energy system cannot exceed a specific value.
This value is given by the total cost of the least-cost traditional optimization solution,
and by a parameter called "cost relaxation", so that the additional cost constraint can be
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mathematically expressed like this:

TotCostclose2optSolutions ≤ TotCostleastcostSolution · (1 + CR) (2.8)

Therefore, the cost relaxation represents the percentage (expressed in decimals notation)
of the total cost of the least-cost optimal solution, which cannot be exceeded while looking
for close to optimal solutions. Such value corresponds to how much more policy makers
are willing to pay extra for alternative solutions in ESOMs. According to Trutnevyte [22],
a maximum acceptable value of cost relaxation for them is around 30%.

In Hypatia, every constraint has its own module located in the constraints directory
inside the Backend block of the model. Therefore, this additional cost constraint has
been implemented in the model through its own module called "Close2optimalCost.py".
In the module, whose code is possible to see in Appendix B, the constraint is defined
as a class which takes as an input the "Constraint" class. In this way, it initializes the
constraint with the model data and variables, and it allows, through a dedicated method
called "rules", to append the mathematical formulation of the additional cost constraint.

Every class of constraints is then added to a list of constraints, called "CONSTRAINTS",
in a dedicated module. This allows to add all the constraints when building the model in
the "Build.py" module.
To add the additional cost constraint, a new list, called "CLOSE2OPTCONSTRAINTS",
is created in the same constraints list module. In this way, it will be possible to use this
additional cost constraint only when looking for close to optimal solutions, which is indeed
the only time when it is needed.
The operational way in which this is done, will be seen in the next section of this chapter.
While, in appendix B, the new module of the constraints list can be found.

2.4. Running the model

In the previous section, it has been seen how Hypatia is structured and what the main
core features are when building the desired model.
After having clarified these concepts, it is now possible to proceed to a detailed analysis
of all the things needed to work with and run the built model.
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2.4.1. Optimization mode

Hypatia already has the option to choose an optimization mode, regarding whether the
model needs to be run in "Planning" or "Operation" mode.
However, an additional optimization mode needs to be implemented in the model for the
aim of this thesis. This concerns the possibility to choose whether the user wants to
run the model with just the single traditional least-cost solution or with both the single
solution and the multiple close to optimal solutions.

In the model, this choice is translated into a feature present when defining the model in
the running module. Indeed, this definition happens by calling the class Model, together
with its input arguments.
These arguments are:

1. Path, where it is indicated where the sets of the model desired to build are stored.

2. Mode, where it is possible to choose between "planning" and "operation".

3. Name, where it is possible to give a name to the model (this input is optional).

Therefore, to generate close to optimal solutions, a new input argument is added to the
class, called Optimization. This argument, just like Mode, lets the user decide between
two different optimization modes:

• "Single", to generate just one traditional least-cost solution.

• "Close2opt", to generate multiple close to optimal solutions, together with the single
least-cost one

This new feature is implemented in Hypatia in the script of the "Model" class, in the
"Main.py" module. In particular, Optimization is defined with a dedicated class called
with the same name and present in the "constants.py" module in Utilities block of the
model.
This process is done, just like for Mode, to make the optimization mode be of either two
specific kinds, which are the ones just mentioned. Indeed, every other string different from
"Single" and "Close2opt", written for the optimization mode when defining the model in
the run module, is considered an invalid input argument.

The specific code, written in Python implementing this feature, can be found in Appendix
B.
This comprehends both the part in the "Main.py" module and the one in the "con-
stants.py" module.
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2.4.2. Run module

The run module is a dedicated script, which contains all the steps needed to define, run
and store the results of the model built.
For these dedicated steps, as also seen in section 2.1, the methods present in the class
"Model" are used.

Given the aim of this thesis, the run model cannot simply contain the steps to run just
once. Instead, its structure should be a cycle that runs multiple times to get all the
desired solutions. Note how for desired solutions, it is intended the single least-cost one,
plus the close to optimal ones, obtained with the objective functions described in section
2.2.
Moreover, a feature must be implemented, that allows to decide the desired number of so-
lutions to look for with each objective function. While doing this, it is worth remembering
that the Gini objective function only works with a multiregion model.

Lastly, together with the number of solutions, the script must also have features to let
the user decide the optimization mode, discussed in the previous subsection 2.4.1, and
the value of cost relaxation, described in section 2.3.

Before getting into deeper detail on how everything works in the module, in figure 2.2, it
is possible to observe a schematic representation of the cyclical structure inside the run
module. This is the one implemented in Hypatia to generate close to optimal solutions.

As it can be observed, the first part of the module consists of defining some new parame-
ters. These parameters are an important tool to generate close to optimal solutions, since
they are a way to communicate, to the build module, the solution wished to obtain.

For example, the parameter "Sol_num" is the iterative component in the cycle, which
allows to run several models consecutively. It is always initialized to 1 before the cycle be-
gins, and it iteratively grows by one with every run, until it reaches the user-defined value
of total number of solutions. Notice however, how this happens only if the optimization
mode defined is "Close2opt", otherwise the cycle ends after the first run.

Moreover, the solution number, together with the parameter Last_Gini, is in charge of
communicating with the build model, so that the desired objective function and con-
straints are chosen.
Indeed, even though the steps in the highlighted process box in figure 2.2 are standard
for every run (as they are dictated by all the same methods in the "Model" class), the
model built is actually different for every obtained solution.
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Figure 2.2: Schematic representation of the cycle in the running module
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This is possible thanks to the calling of the methods in the "BuildModel" class present
in the "Build.py" module. In fact, this calling depends on user-defined parameters, and
in this particular case, on the optimization mode, the solution number, and the last Gini
solution.
A representation of what happens in the build model for every solution number, when
running in close to optimal optimization mode, can be observed in tables 2.1 and 2.2.
Notice how the representation changes based on whether the model run is single or multi-
region, since it has already been stated how the energy balance mismatch (Gini) objective
function only works with multiple regions.

Multiregion objective functions

Solution
Number

Objective function Cost constraint

1 Traditional least-cost No

2 Gini, no weights (xtech = 1) Yes

3 → Last_Gini Gini, with weights (xtech = rand(0, 1)) Yes

Last_Gini + 1 Land, no weights (xtech = 1) Yes

Last_Gini + 2 →
Tot_num_sol

Land, with weights (xtech = rand(0, 1)) Yes

Table 2.1: Objective function for every solution number - Multiregion

Single region objective functions

Solution
Number

Objective function Cost
Constraint

1 Traditional least-cost No

2 Land, no weights (xtech = 1) Yes

3 → Tot_num_sol Land, with weights (xtech = rand(0, 1)) Yes

Table 2.2: Objective function for every solution number - Single region

As an example, the solutions obtained in a multiregion model, when the total number of
solutions is 11 and the last Gini solution is 6, are:

• 1 least-cost traditional (solution number 1)
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• 1 Gini with no weights (solution number 2)

• 4 Gini with weights (solution numbers 3 → 6)

• 1 Land with no weights (solution number 7) and 4 Land with weights (solution
numbers 8 → 11)

Because of the definition of the MGA method to generate close to optimal solutions [5],
every time the model is run in "close to optimal" mode, solution number 1 must always
be of the traditional least-cost type.
In this way, the optimal value at the end of the first run, which is the least possible total
cost of the system, is saved and used in the additional cost constraint (see section 2.3) for
all the other runs of the cycle.

The whole script written in Python for this running module, called "Run.py", can be
found in appendix B. For the cycle (figure 2.2), it was decided to implement a "while"
cycle that keeps running with new solutions until the solution number is equal to total
number of solutions.
In the script, it is possible to notice how the solution number, the cost relaxation and the
last Gini solution, together with the optimal value of the first run, are actually saved in
another module called "Utilities_close2opt.py" present in the Utilities block of Hypatia.
The reason behind why this is done, is because all these parameters are called in other
modules of the model (the build module for the solution number and the last Gini solu-
tion, and the cost constraint module for the optimal value of the first run and the cost
relaxation).
If these parameters were to be imported directly from the run module, and since this
latter at turn imports the whole Model, the terminal would raise circular import errors,
bringing the whole model to not work.

Therefore, "Utilities_close2opt.py" works as an intermediate module where to store the
correct and updated values of the aforementioned parameters.

In appendix B, the script of this module can be found. Notice however, how the values for
every parameter are just to initialize them. Indeed, after the first run, everyone of them
is updated to the correct value, and this value is then imported in the other modules,
where needed.
The only value which is purposely set at 1, is the one for the solution number. In fact, in
this way, the cycle in the run module always begins with the solution number equal to 1.

This concludes the chapter on the methodology behind the work of this thesis.
After having observed all the features implemented in Hypatia, the reasons why they were
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done, and how the model works, it is now possible to proceed and observe the results for
the specific case study of this thesis, applied to the model just described.
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The methodology just seen in chapter 2 can be applied to any single objective energy
system optimization model. With some cautious modifications, it could also be applied
to other optimization models, not mandatorily related to the energy domain.

In this thesis, the aim is to obtain near optimal solutions with this methodology applied
to a case study, which in this case is inspired by the decarbonization of Italy electricity
generation sector by 2050. Being inspired by the Italian case does not exclude the alter-
native scenarios found from being relevant to policy makers all over the World.
Therefore, in this chapter, the analysis of the solutions to this specific problem is carried
out, together with a thorough description of the reference energy system built and used
in Hypatia.

3.1. Reference Energy System

The Reference Energy System (RES) is the framework of the energy system used in an
energy system optimization model. The target, when building a RES, is to represent as
much as possible the real energy system of the case study under analysis.
Indeed, the RES must try to comprehend all the existing energy technologies and take
into consideration all parametric constraints, in the period of analysis.

As a consequence, a vast amount of data is required to describe complex energy systems,
such as the electricity production one in Italy. The more detailed the representation of the
real-world energy system, the more similar model results look to real-world phenomena.
Nevertheless, in doing so data needs increase as well.

For this reason, in this thesis a simplified RES is built to analyze the near optimal solutions
of the case study. The focus of this work is on generating multiple alternative solutions
next to the least-cost one, rather than detailing all plants of the national energy system.
Hence, a simplified version of the Italian electric power production sector is considered
suitable enough for the aim of this thesis.

A schematic representation of the RES built for this thesis, to test the generation of near
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optimal solutions, can be seen in figure 3.1. In it, it is possible to observe:

• The generation technologies, in rectangular-shaped boxes

• Energy carriers, in rounded boxes and in bold

• Storage technologies, in diamond-shaped boxes

• Transmission and distribution technologies, in the trapezium-shaped box

• The final demand of electricity, in the double marked box

Boxes highlighted in blue represent technologies whose production variables are at the
center of the optimization of the problem. On the other hand, energy carriers are seen
as the inputs and outputs of these technologies, necessary to meet the final electricity
demand.

Moreover, the transmission and distribution of electricity is present so to consider grid
losses, through the efficiency of the electrical lines. The value of this efficiency, in the
specific study case of this thesis, is 96%.

Another notable aspect of the RES structure is the oil refinery. This conversion technology
has multiple inputs (crude oil, natural gas and electricity), which are needed to generate
the oil products, then used in oil power technologies.

Before running the model, it has been seen in section 2.4 how Hypatia reads the defined
input parameters needed to obtain meaningful results. These parameters were obtained
by a report commissioned by the International Energy Agency (IEA) [11].
They range from the residual capacity of each generation and storage technology, to the
technical and economic lifetime of technologies, from the capacity factor of resources, to
the efficiencies of technologies, and so on.

However, there are some parameters which require a discussion, given the importance for
the specific case study of this thesis.

The decarbonization of the power sector requires a policy, which contributes to the grad-
ual abandon of traditional fossil fuels in favor of renewable technologies. This policy can
be set in the model through input parameters.
In fact, the entity of some parameters, like for example the minimum or maximum capac-
ity to be installed of a certain technology or the minimum share of renewable capacity
installed, constitutes implicitly a policy.

For this work, it was decided to set the minimum values of renewable production and
minimum renewable electric penetration for each year of the model run. In this way, a



3| Results and discussion 37

Natural
Gas NG PP

Oil
refineryCrude oil

Oil
prods

Biofuels
& Waste

Solid FF

Oil
PP

B&W PP

SFF PP

Solar PV

Wind PP

Geoth PP

Hydro PP

Pumped
Hydro PP

El. import

Pumped
Hydro

Electro-
chemical

E
L
E
C
T
R
I
C
I
T
Y

El. Trans-
mission

Final
electricity
demand
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minimum deployment of renewable technologies is guaranteed, with a consequent decrease
of emissions.
Undoubtedly, these values cannot be set arbitrarily, but they need to be realistic and
actually follow the country intended policies on the paths to reach climate goals [24]. For
this work, it was decided to use as a reference the Italian national integrated plan for
energy and climate (PNIEC) [12].

From the PNIEC, the values for the minimum renewable production share, which are
equal to the ones for the renewable electric penetration, are reported in table 3.1. It can
be observed how these values increase until 2030, after which they are then assumed to
remain constant until 2050.

Year Min Res Production Share (%)

2020 0
2021 36.2
2022 38.2889
2023 40.3778
2024 42.4667
2025 44.5556
2026 46.6444
2027 48.7333
2028 50.8222
2029 52.9111
2030 55

Table 3.1: Minimum share of renewable power production [12]

In the PNIEC, there are also guidelines on the yearly values for the total minimum
capacity installed of each renewable technology. However, these values were not used in
the model, in order to possibly increase the diversity among close to optimal solutions.

Other parametric constraints comprehend a maximum total installed capacity for those
generation technologies whose value is limited by a maximum resource availability. In
Italy, some technologies are already almost using their full potential, such as hydroelectric
and geothermal power plants [12].

Moreover, another constraint was set, on the basis of climate policies, by setting the
maximum new capacity of solid fossil fuel and oil power plants to 0 [12].
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Final electricity demand is also included in a constraint, as the demand nees to be met
with production and storage.
The data used for the electricity demand in Italy from 2020 to 2050, was obtained from the
European Union reference scenario 2020 (EU-REF2020) [3]. Considering the projection
of electricity consumption shares for every sector, obtained through the PNIEC, it was
then possible to compute the yearly electricity demand of Italy, from 2020 to 2050.

Lastly, another climate policy was implemented in the model, aimed at further reducing
greenhouse gas emissions. In fact, together with the policy on the minimum share of
renewable technologies, a carbon tax was implemented in the model through its input
parameters.
The value of this carbon tax is in the range of 0 to 120 €/tonCO2 , by taking as a reference
current values in European countries [25].
In this specific case study, the model runs with a carbon tax value in this range, and then,
in order to assess its impact, a sensitivity is carried out in section 3.2.10.

After having discussed the reference energy system and some important input parameters
of the model, it is possible to proceed analyzing the results of the model, for the specific
case study of this thesis.

3.2. Results analysis

The Hypatia model was run with the reference energy system of section 3.1 and with the
code implementation described in chapter 2 to generate close to optimal solutions.
The run module, discussed in section 2.4, also requires some additional parameters when
running with multiple near optimal solutions. In particular, the total number of solutions
and the cost relaxation of the additional cost constraint are needed to be set by the user.

For this thesis, it was decided to generate near optimal solutions with three different values
of cost relaxation. According to Trutnevyte [22], policy makers are not willing to exceed
a 30% increase of total cost, from the least cost solution. Therefore, cost relaxations of
5%, 15% and 25% were devised.

For every value of cost relaxation, it was then decided to obtain a total number of solutions
of 21. These 21 solutions comprehend the first least cost one, and then 20 near optimal
solutions with the land objective function 2.2.1. Of these alternative solutions, the first
one (i.e., solution number 2, see section 2.4.2) is going to be obtained with no weights on
the decision variables, while all the other have random weights, as described in section
2.2.
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This number was preferred to others so to obtain statistically relevant results, while still
considering a limited computational power of the machine used to run the model.

In addition, it has also been discussed in section 3.1 how the policy used for the reduction
of emissions is a combination of carbon tax and the PNIEC [12] guidelines.
For these results, it was decided to use a value of carbon tax of 80 €/tonCO2 . The reason
why this particular value was chosen can be referred to it being in the range of current
European countries values [0, 120] €/tonCO2 [25]. To assess the impact of this value, in
section 3.2.10 a sensitivity analysis on carbon tax is carried out.

To summarize, table 3.2 shows all the conditions in which the model has been run to
obtain the following near optimal solutions.

Model framework

Cost relaxation 5%, 15% and 25%
Total number of solutions 21 (for every CR value)

Objective function Land
Policy PNIEC and carbon tax (80 €/tonCO2)
RES figure 3.1

Table 3.2: Conditions used to obtain near optimal solutions

3.2.1. Must-have technologies

Model results provide insights on the deployment of technologies in the period of study,
and the emissions and costs related to this deployment.

A first important insight on the near optimal strategies found can be given by an analysis
on must-have technologies. These are the generation and storage technologies which, no
matter the cost relaxation or the weights used in the objective function, are always present
in the new deployment between 2020 and 2050.

This kind of analysis, which is also present in the work by Lombardi et al. [10], is used
to assist policy makers in choosing the best possible energy mix based on their specific
needs.
Indeed, in this case study inspired by the Italian electricity sector, it is already possible to
understand which technologies the policy maker could avoid deploying during the planning
time, and which ones instead are present in every scenario.
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By looking at the new capacity installed for every technology, in the period 2020-2050,
it is possible to already understand what the must-have technologies in the near optimal
solutions are.
An interesting way to do so is by representing, for every technology, the dispersion of
values of new capacity installed in every solution. In figure 3.2, this is carried out, for
every cost relaxation value, with a box plot that also represents the median value of new
capacity installed and the percentiles of the dispersion. The colours of the different values
represent the least cost solution (in blue), the near optimal solution found with the land
objective function with no weights (in yellow) and near optimal ones with weights on the
function (in red). Therefore, in yellow it is represented the qualitative solution on the
minimization of land usage.

The values are represented for every cost relaxation, since this parameter could affect
which technologies are must-have and which are not.
Indeed, the first thing that it is possible to observe is that, depending on the cost relaxation
value, wind power plants are or are not must-have technologies for alternative scenarios
found under a land minimization approach.
For a value of 15% and 25%, it is not a must-have technology, due to the value of new
capacity installed being 0 in some near optimal scenarios. This means that, when the
objective is the minimization of land usage, policy makers know that there are some
alternative energy mixes in which no new capacity of wind is installed. This is true of
course, only under the condition that they are willing to spend up to 15 and 25 percent
more than in the least cost approach.
On the other hand, if the cost relaxation value is 5%, wind turbines become must-have
technologies, given that the value of new capacity installed never reaches zero. However,
remembering that wind on shore has a higher specific land usage value (table A.1) than
other renewables such as solar, geothermal and biofuels & waste, wind new capacity in
near optimal alternatives is always lower than in the least cost mix. For example, the
difference in wind new installed capacity, between a cost minimization approach and a
land minimization one (yellow solution), is around 50 GW.
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(a) Cost relaxation = 5%

(b) Cost relaxation = 15%

(c) Cost relaxation = 25%

Figure 3.2: New capacity installed in the period 2020-2050
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Solar photovoltaic is a must-have technology for all near optimal solutions, at every cost
relaxation value. Moreover, in some alternatives the new capacity installed of this tech-
nology is even higher than in the least cost energy mix.
This is a relevant result, as there could be policy makers who need to minimize land of
their territory and have a higher availability of solar energy rather than wind energy.
Indeed, these results show that these resource availability conditions are favourable for
them in the exploration of alternative strategies.

Another must-have technology is the production of electricity in natural gas power plants.
Indeed, the new capacity installed of these plants is always positive among all solutions
found.
In addition, it is possible to observe how the new capacity of gas power plants is always
higher in alternative strategies. This can be explained by the fact that this technology
has a specific land usage value which is lower than the ones of renewable technologies, by
several orders of magnitude.
However, the difference in new installed capacity of this technology, between a land and
a cost minimization approach, is limited to few GWs. The reasons can be identified:

• Near optimal solutions are obtained with a constraint on the total cost of the least
cost solution. Given that natural gas power production is more expensive than
renewables because of carbon tax and variable costs, the deployment of natural gas
power production is limited.

• The model runs following guidelines of PNIEC on the reduction of emissions, and
therefore, it must satisfy the policy-mandated minimum share of renewable tech-
nologies to be installed in the planning period.

While the installed capacity of power production technologies from renewable energy
sources significantly increases, even if their specific land usage value is much higher than
the one of natural gas power plants.

Hydroelectric power plants, both classic and pumped, are not must-have technologies
when looking at near optimal solutions found with a land minimization approach. While
in the least cost solution, both of these technologies are used up to their full potential
(Italian values as the case study is inspired by this country), in near optimal solutions,
their high specific land usage values make them a non essential technology.
This is an interesting aspect particularly for policy makers of those countries whose ter-
ritory does not have much hydroelectric potential left, if not any.

A similar discussion can be made for geothermal power plants. This technology, given the



44 3| Results and discussion

new capacity installed in the solutions found, cannot be considered a must-have technol-
ogy.
This is, once again, an advantageous aspect for those countries which do not have the
possibility to install much of this particular kind of plants.

Biofuels and waste power plants, on the other hand, are a must-have technology in the
solutions found. Indeed, even if the new capacity installed of these plants is relatively
low, the near optimal strategies always present a positive value for this technology, which
is also always higher than in the cost minimization approach.
The reason behind this is that biofuels and waste plants have the lowest value of specific
land usage among renewable technologies. Their role therefore is important in every
energy mix, even though it is limited by an overall low efficiency and high costs.

As far as storage is considered, electrochemical storage is considered a must-have tech-
nology, on the opposite of pumped hydroelectric storage, which almost in every land
minimization approach strategy does not see any new capacity installed.
The reason why the model prefers one with respect to the other, can be once again referred
to specific land usage values, the ones at the center of the land minimization approach.
The difference in order of magnitude among these two values makes also the quantita-
tive approach of assigning weights less relevant, so that all near optimal solutions have a
similar strategy regarding storage deployment.

Lastly, it can also be noted how the values for the new capacity installed of oil and solid
fossil fuel power plants are not reported. This is done, as section 3.1 explains, because in
the case study, after which these results are inspired, no new installed capacity of these
two technologies is scheduled from 2020 to 2050.

3.2.2. Policy relevant solutions

The results obtained with the methodology of this thesis allow to explore many different
energy strategies, which all produce the same amount of electricity in the same period
and respect the same constraints and policies (table 3.2 in section 3.2).
Starting from the energy mix in the cost minimization approach (figure 3.3), it is therefore
possible to observe all the alternative solutions found with a land minimization approach,
for every cost relaxation value (figures C.1, C.2 and C.3 in appendix C).

The whole spectrum of possible decarbonization strategies suggested by the near optimal
solutions can be seen in Appendix C. Here, a selection of policy-relevant examples will
be reviewed and analyzed, providing insights on how they could meet the needs of policy
makers around the world.
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Figure 3.3: Energy mix in the least cost scenario

To do so, first it is important to understand how the land objective function operates and
what the ways by which it is able to reach its target are. In fact, the function can follow
different paths when it minimizes the occupation of land through the years.

As the objective function focuses on land usage values of technologies, the model optimizes
by preferring technologies with lower land usage values. Moreover, the weights assigned
to every technology enable an increase or decrease in their land usage, making them more
or less preferable to the minimization target.
By doing so, land usage is reduced in every alternative strategy found, with respect to the
one obtained under a cost minimization approach. Moreover, this reduction is also the
maximum for scenarios number 2 at every cost relaxation value, given that they represent
the land minimization approach without any weights on the function (equation 2.1).
This can be observed in figure 3.4, which represents how much land usage in alternative
solutions decreases in percentage with respect to the cost minimization approach strategy.
The darkest colors of the heat map represent the scenarios in which land usage reduction
is the highest.
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Figure 3.4: Overall land usage difference with respect to least cost

However, this is not the only way by which the land objective function minimizes land
usage. Alternative solutions are found in the optimization by also maximizing the elec-
tricity production of every technology.
Being the objective function (equation 2.1), in fact, centered around the installed capac-
ity of all generation and storage technologies, there is no correlation between the energy
production and land usage. This is done rightly so, due to the fact that the actual size of
a plant does not depend on the amount of electricity produced, but rather on its installed
capacity.
For this reason, even if the production of electricity is virtually the same among all
solutions found, the total overall capacity installed of technologies is lower in a land min-
imization approach. This can be observed, for example with a cost relaxation of 15%,
in figure 3.5, where the total capacity installed in 2050 is represented in the different
scenarios (the colors meaning is the same as in figure 3.2).
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Figure 3.5: Total capacity installed in 2050, cost relaxation = 15%

Having a lower capacity installed, at the same electricity production, translates into a
higher capacity factor, as it can be deducted by its yearly definition (equation 3.1).

CF =
ElectricityProduction

InstalledCapacity · 8760h
(3.1)

A higher capacity factor can conceptually mean several things. In general, it can be
a representation of the increased availability of a technology, likely due to the positive
results of research and development done for its application or due to a higher availability
of energy resources [6].
In either case, it is something policy makers may be interested in, as it shows an overall
better management of resources through the whole value chain of generation and storage
technologies.

The alternative strategies found with a land minimization approach all have a higher
capacity factor in 2050 with respect to the least cost scenario, as shown in figure 3.6.
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Figure 3.6: Total capacity factor in 2050

From a policy maker perspective, this is an interesting result, as it gives the possibility
to focus on two different targets.
Indeed, the same objective function, by minimizing land usage in two different and com-
bined approaches, enables the user to explore alternatives. These alternatives can give
useful insights with a higher stress on either the quantitative land usage reduction with
respect to the cost minimization approach or the capacity factor of the whole electricity
system at the end of the planning period, year 2050.
It is useful for the aim of this thesis and for a better visualization of this concept, to
represent the total land usage reduction versus the capacity factors in 2050 for every so-
lution, at every cost relaxation value. In figure 3.7, this is done by giving a different color
to every cost relaxation value and to the least cost solution. Moreover, the shape of ev-
ery scenario indicates whether the solution was found with a cost minimization approach
(circle shape), or with a land minimization one (square shape for the ones with no weights
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and cross shape for the others with weights).

Figure 3.7: Overall land usage and capacity factor in 2050 for every solution obtained

Starting from figure 3.7, it is hence possible to identify strategies with three different
priorities:

• The strategies with the highest land usage reduction.

• The strategies with the highest capacity factor in 2050.

• The different cost relaxation values, with which the previous strategies are obtained.

These three priorities are tailored around the needs of policy makers, which for example
might be interested in obtaining the solution with the highest reduction of land used
throughout the years, with the lowest cost relaxation value. Or another example could be
a policy maker who is able to afford a higher cost relaxation value, but is rather interested
in the highest capacity factor.

The different combinations of these plausible policy makers needs, enables the individu-
ation of specific solutions among the ones found. These alternative strategies, together
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with their main characteristics, can be observed in the following subsections.

3.2.3. Highest land usage reduction, lowest cost relaxation

This strategy is particularly relevant for those policy makers who have urgent land occu-
pation issues, but a limited budget to face this problem. Countries with similar charac-
teristics are, for example, small-sized developing ones.

The strategy which would best fit their needs, according to the results found with a case
study inspired by the Italian electric sector, is solution number 2, at cost relaxation value
of 5% (figure 3.8). Indeed, solutions number 2, for every cost relaxation value, are the
ones with the highest land usage reduction, since they are obtained with a qualitative
land minimization approach (no weights on the function).

Figure 3.8: Scenario 2, cost relaxation = 5%

The energy mix of this strategy, which can be observed in figure 3.9, shows a significant
presence of solar PV at the expense of wind power plants, due to their high land usage
value. However, wind is still present in the mix in 2050.
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Figure 3.9: Electricity mix of scenario 2, cost relaxation = 5%

The main characteristics of this strategy are summarized in table 3.3. In general, it
emerges how this solution can be suitable for those countries, whose priorities are the
lowest land usage and lowest cost relaxation, and that in addition have rather a higher
availability of solar energy (global horizontal irradiation) than wind energy (average wind
speed), as the new total installed capacity of these technologies show in the table.
The capacity factor is not distant from the strategy in the cost minimization approach
(0.2085), showing how policy makers in this case do not have a particular interest in
improving technologies and the usage of resources.

Cost relaxation 5%
Land usage -33.78%

Capacity factor in 2050 0.3016
Total cumulative CO2 emissions [MtonCO2] 8.655

Solar PV new capacity [GW] 97
Wind PP new capacity [GW] 7.6

Table 3.3: Main characteristics of lowest land usage, lowest cost relaxation strategy
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3.2.4. Highest capacity factor, lowest cost relaxation

This scenario represents countries which have an interest in increasing the capacity factor,
and therefore in a more efficient management of resources in the energy technologies value
chain.
More precisely, this solution is relevant to those policy makers who wish to reduce the land
usage by having a more reliable electric system, rather than by looking at technologies
with higher specific land usage values. Therefore, they are also confident that the country
has the skills and the know-how to keep the same electricity production at a lower installed
capacity. However, policy makers in this particular situation wish to reach this target with
a limited cost increase with respect to the cost minimization approach.

Among the results found in this thesis, the scenario is represented by solution 14, for a
cost relaxation value of 5% (figure 3.10).

Figure 3.10: Scenario 14, cost relaxation = 5%

This strategy is the one, by definition, with the lowest total capacity installed in 2050.
Its energy mix, represented by figure 3.11, shows how the production coming from solar
PV is lower with respect to the previous case. Being, indeed, the capacity factor of solar
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the most limited by the availability of resources (solar energy), it is avoided in favor of
other technologies.

Figure 3.11: Electricity mix of scenario 14, cost relaxation = 5%

Therefore, policy makers who seek a reduction of land usage with the maximization of
the capacity factor in 2050, at a low cost relaxation value, have an advantage if they do
not intend to invest mostly on solar pv, but rather on other technologies.
The main characteristics of the scenario relevant to policy makers in this situation are
reported in table 3.4.

The difference in 2050 capacity factor, with respect to the strategy of section 3.2.3, is
almost 0.1, which is significant in terms of fewer capacity installed.
However, this comes with an increase of around 5 percentage points of land usage. Hence,
the issues related to the overall occupation of land by energy technologies should be less
stringent for policy makers in this scenario.
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Cost relaxation 5%
Land usage -28.68%

Capacity factor in 2050 0.3883
Total cumulative CO2 emissions [MtonCO2] 8.565

Solar PV new capacity [GW] 50
Wind PP new capacity [GW] 25.3

Table 3.4: Main characteristics of highest capacity factor, lowest cost relaxation strategy

3.2.5. Highest land usage reduction, intermediate cost relax-

ation

In this scenario, policy makers are interested in the maximum possible reduction of land
usage, with a cost budget that is higher than in section 3.2.3.
For example, this is therefore suitable for developed countries with very limited available
land for the deployment of energy technologies, and a financial budget that is also limited
(however not as much as the one of developing countries).

Figure 3.12: Scenario 2, cost relaxation = 15%
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Among the solutions found, the strategy which fits best the policy makers needs in this
case is scenario number 2, at a cost relaxation value of 15% (figure 3.12).

In this scenario, the production of technologies with the lowest specific land usage values
(natural gas plants, solar PV, biofuels and waste plants) increase at the expense of the
ones with higher values (hydroelectric and wind plants). This can be observed in the
energy mix of figure 3.13, where the production of wind and hydroelectric is significantly
reduced in 2050.

Figure 3.13: Electricity mix of scenario 2, cost relaxation = 15%

Countries who have a combination of particularly favorable conditions for the deployment
of solar photovoltaic and particularly disadvantageous ones for the deployment of wind
power plants, should hence pursue this strategy for the lowest land usage possible.
In particular, the land usage difference with respect to the least cost approach is around
45%, which is also around 12 percentage points more than in the cost relaxation case
of 5% (table 3.3). Thus, the higher the willingness to exceed the cost of the least cost
approach, the higher the reduction of land usage.
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Cost relaxation 15%
Land usage -45.60%

Capacity factor in 2050 0.3162
Total cumulative CO2 emissions [MtonCO2] 9.33

Solar PV new capacity [GW] 96.6
Wind PP new capacity [GW] 2

Table 3.5: Main characteristics of lowest land usage, intermediate cost relaxation strategy

3.2.6. Highest capacity factor, intermediate cost relaxation

In this case, countries with a similar financial situation of the previous section, intend to
minimize land usage by increasing the capacity factor as much as possible. Indeed, even
if this maximization comes with a higher land usage than in the previous case, their focus
is more on the optimization and management of resources regarding the energy sector,
which translates into a higher capacity factor.

Figure 3.14: Scenario 17, cost relaxation = 15%
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Policy makers of countries with these ambitions, should therefore have high level technical
and managerial skills, when it comes to the energy technologies sector.
The most suitable strategy, for policy makers with these needs, is best represented by
solution number 17 at a cost relaxation value of 15% (figure 3.14).

The energy mix in this scenario (figure 3.15) minimizes as much as possible the production
of solar PV (which however is still present as it is considered a must-have technology),
due to its low capacity factor.
Wind power production is also strongly limited, reaching a phase out in 2040. This hap-
pens due to a combination of difficulties in increasing its capacity factor and a high specific
land usage value.
Pumped and classic hydroelectric power plants are instead the real "winners" in this
strategy, as their production significantly increase with respect to the previous scenario
(section 3.2.5). The reason behind this is related to the technologies improvement in
capacity factor, leading to a decrease of installed capacity and a higher electricity pro-
duction.

Figure 3.15: Electricity mix of scenario 17, cost relaxation = 15%

This strategy therefore has a strong impact on the increase of capacity factor, as no new
capacity of wind is installed.
This is a particularly relevant result, as there could be countries who intend to work on
land usage reduction, without installing any new wind turbines. The reasons why they
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don’t want to use this technology could be numerous and related, for example, to their
visual impact or to low availability of wind energy.
However, this can be done if the country has a high potential for hydroelectric power
plants, and is willing to use around 7 percentage points more of land than in the previous
scenario (section 3.2.5).
Seven percentage points could really make a difference for some countries, but it still
has to be considered how the overall reduction of land usage with respect to the cost
minimization approach is of 38.8%, as it can be observed from table 3.6.

Cost relaxation 15%
Land usage -38.8%

Capacity factor in 2050 0.4791
Total cumulative CO2 emissions [MtonCO2] 9.277

Solar PV new capacity [GW] 46.9
Wind PP new capacity [GW] 0

Table 3.6: Main characteristics of highest capacity factor, intermediate cost relaxation
strategy

3.2.7. Highest land usage reduction, highest cost relaxation

In this scenario, the focus is shifted on the research of the strategy with the lowest possible
land usage, for countries with favourable economic conditions, as the cost relaxation value
is the highest.
Hence, given the correlation between cost relaxation and land usage (the higher the first
one, the lower the second one), this scenario is best suited for policy makers who are
looking for the maximum reduction of land occupied by energy technologies, among all
the solutions found in this thesis.
Countries with similar needs are, for example, developed ones with the most urgent issues
related to the usage of land.

The desired strategy is represented by the qualitative land minimization approach at the
highest cost relaxation value, which, in this thesis results, is scenario number 2 at 15%
cost relaxation (figure 3.12).
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Figure 3.16: Scenario 2, cost relaxation = 25%

In this strategy, which bases the optimization mostly on specific land usage values, solar
photovoltaic has an increase in electricity production (figure 3.17) with respect to all the
other strategies seen before, including the least cost one (figure 3.3).
In this particular case, this comes at the expense of wind turbines, whose production
slowly phases out in 2040 (no new capacity of this technology is installed), and classic
hydroelectric power plants, whose production phases out in 2050. It can also be observed
that the phase out does not happen for pumped hydroelectric power plants, as they have
a higher capacity factor. However, their production is also limited.

In general, countries with the biggest ambitions in reducing land usage, can adopt this
strategy, which consists of a strong deployment of solar panels. This technology, indeed,
benefits also from its ability to be deployed in a decentralized approach, which is not
possible for other technologies.
This deployment, however, is suitable for countries with high availability of solar energy,
like for example Italy, which is the inspiration of the case study of this thesis.
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Figure 3.17: Electricity mix of scenario 2, cost relaxation = 25%

In this scenario, it is possible to save throughout the planning period around half of the
land used in the cost minimization approach (table 3.7).
An interesting and relevant results for policy makers with very stringent issues of this
kind, who, however, should also have the conditions to install a new capacity of around
108 GW of solar photovoltaic.

Cost relaxation 25%
Land usage -50.7%

Capacity factor in 2050 0.2944
Total cumulative CO2 emissions [MtonCO2] 9.418

Solar PV new capacity [GW] 108.4
Wind PP new capacity [GW] 0

Table 3.7: Main characteristics of lowest land usage, highest cost relaxation strategy

3.2.8. Highest capacity factor, highest cost relaxation

Lastly, there may be some policy makers who wish to reduce land usage by maximizing
the capacity factor of the whole electric system. Moreover, they intend to do so with the
highest possible cost increase with respect to the cost minimization approach.
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They have this particular target since they not only have the skills required to enhance
the production per capacity of energy technologies, but they also have the budget to apply
these skills.

The best suited strategy for this case is then solution number 10 at a cost relaxation value
of 25% (figure 3.18), which appears to be also the strategy with the highest capacity factor
in 2050 among all the ones found in this thesis.

Figure 3.18: Scenario 10, cost relaxation = 25%

As it can be observed from the energy mix of this strategy in figure 3.19, solar and wind
electricity production strongly decreases in this scenario. This happens because of their
limited availability to their respective energy resources, and a cost constraint that allows
to depend less on these technologies.

Instead, the production mix depends more on other technologies, such as for example
biofuels and waste power plants. This technology has a significant increase in electricity
production, particularly during the last years of the planning period. This is relevant to
those policy makers who have high availability of biofuels and waste, as energy resource,
or intend to invest more in this technology.
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Figure 3.19: Electricity mix of scenario 10, cost relaxation = 25%

Moreover, enhancing the production coming from biofuels and waste is also an index of
the country pledge to depend on a more circular economy, another fundamental target of
the Paris agreement [24].

As it can be observed in table 3.8, the strong increase in 2050 capacity factor of this
strategy with respect to the cost minimization approach one (from 0.2085 to 0.5172) is
also accompanied by a decrease of land usage by around 43%.
Even if it is not as much as the highest reduction of land usage scenario (section 3.2.7),
it is still a relevant value, considering policy makers needs.
Moreover, it can also be noted that, between this scenario and the previous one, there is
a difference of new solar PV capacity installed of around 65 GW. This is a fundamental
result of the alternative solutions found in this thesis, as it enables policy makers to pursue
very different strategies and reach similar targets, on the basis of their specific needs.
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Cost relaxation 25%
Land usage -43.26%

Capacity factor in 2050 0.5172
Total cumulative CO2 emissions [MtonCO2] 9.347

Solar PV new capacity [GW] 42.2
Wind PP new capacity [GW] 0

Table 3.8: Main characteristics of highest capacity factor, highest cost relaxation strategy

3.2.9. Lowest emissions

It has been discussed in the previous sections how policy makers may seek different ob-
jectives when exploring alternative solutions, under a land minimization approach.
However, these objectives were all concerning different aspects of the reduction of land
usage, while policy makers could be also interested in an alternative strategy with a target
external to the optimization problem.

One example, which is at the center of this section, is that there might be countries
interested in the alternative strategy which comes with the lowest total CO2 emissions.
Therefore, while still pursuing a strategy that reduces the land used, policy makers are
able to choose the one with the least impact in terms of greenhouse gases emissions.
This could be very well the case for those nations who have issues related to land use,
but at the same time have committed to very stringent climate targets [24], that cannot
be neglected.

The CO2 emissions over the years of all the alternative strategies found in this thesis,
under the land minimization approach, are represented in figure 3.20. In it, every colour
represents a different cost relaxation value, together with the colour of the solution found
under the least cost approach.

First, it can be observed that the least cost solution fails to reach decarbonization target
by 2050. This could have been seen also earlier from the profile of the energy mix (figure
3.3), where there is still production of electricity from natural gas power plants in 2050.
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Figure 3.20: CO2 emissions over the years for every scenario

Not reaching this target is not a matter of the methodology used in the model, but rather
a matter of the policies implemented. Policies used to obtain these results are simply not
strict enough to get rid of natural gas dependency in the electricity sector. Moreover, it
is best to remember that a simplified reference energy system has been adopted, which
does not take into consideration other innovative technologies, such as for example carbon
capture and storage. Regardless, this theme is beyond the objectives of this thesis, which
are to find and analyze alternative strategies based on policy makers needs.

As far as these alternative strategies are concerned, in figure 3.20 is possible to observe how
they all have higher emissions with respect to the strategy found under cost minimization.
This can be explained by the higher deployment and electricity production of natural gas
power plants. Indeed, the significantly low specific land usage value of this technology,
coupled with the possibility to increase its capacity factor, increases its overall use in
every alternative strategy found. This was explained also in section 3.2.1, as natural gas
power plants are considered must-have technologies for every cost relaxation value.

However, the emissions differ among every alternative scenario, as the electricity mix
changes every time. This can be observed in figure 3.21, where the total emissions of CO2
of every strategy, summed over the years, are represented in a heat map.
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Figure 3.21: Total CO2 emissions of every scenario

The darker the colour of the map in figure 3.21 , the higher the total CO2 emissions. As
it was just mentioned earlier in the section, the alternative strategies found under the
land minimization approach all have higher values of total emissions than in the least cost
approach. However, what is far more relevant, as it is useful for policy makers needs, is
that it is possible to identify the alternative solution with the lowest value of total CO2
emitted during the planning period.

This particular strategy, which hence reduces land usage while minimizing the increase of
CO2 emissions with respect to the least cost one, is represented by scenario number 4, at
a cost relaxation value of 5%.

In the energy mix of this strategy, represented in figure 3.22, is possible to observe a
decreased production of electricity from natural gas power plants, with respect to all the
other alternative strategies seen before.
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Figure 3.22: Electricity mix of scenario 4, cost relaxation = 5%

This is possible thanks to an increased production of all the other technologies and, par-
ticularly for this scenario, the one coming from solar photovoltaic and wind power plants.
In this strategy, different from the ones seen before, a good combination of both technolo-
gies is present during the whole planning period, similar to the case of the solution found
under the cost minimization approach (figure 3.3).

As it can be observed in table 3.9, this scenario allows to save around a quarter of land,
with respect to the least cost one. While it is true that this reduction in land usage is the
lowest among the alternative strategies found, it is still a significant amount and relevant
to policy makers.

This strategy is therefore suitable for those nations that wish to obtain a reduction in
land usage, while not increasing too much natural gas production and, as a consequence,
CO2 emissions.
It is possible, even with the lowest value of cost relaxation, at the condition that the
country also has high resources availability, as far as solar and wind energy are concerned.
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Cost relaxation 5%
Land usage -24.37%

Capacity factor in 2050 0.2504
Total cumulative CO2 emissions [MtonCO2] 8.118

Solar PV new capacity [GW] 86.9
Wind PP new capacity [GW] 60

Table 3.9: Main characteristics of lowest emissions strategy

3.2.10. Sensitivity analysis

The analysis of the results just seen were obtained with the conditions of table 3.2, with
a fixed value of carbon tax. However, the carbon tax is a feature of Hypatia, whose
implementation is not explicitly related to the objective of this thesis.
Assessing its impact on the generation of near optimal solutions is therefore due, in order
to increase the validity of the results just seen.

The approach used in this thesis to assess this impact is a sensitivity analysis, which
consists of running the model every time with a different value of carbon tax. The values
are extracted from a range of reasonable ones, which for this particular case corresponds
to the range of actual current carbon taxes in European countries: [0,120] €/tonCO2 [25].
In particular, it was decided to run the model starting from a carbon tax value of 0
€/tonCO2 , and then proceed to 120 €/tonCO2 with a step of 20 €/tonCO2 .

Therefore, the conditions through which the solutions of this sensitivity analysis have
been obtained, can be summarized in table 3.10.

Model framework

Cost relaxation 15%
Total number of solutions 11 (for every carbon tax value)

Objective function Land
Policy PNIEC & carbon tax [0,20,40,60,80,100,120] €/tCO2

RES figure 3.1

Table 3.10: Conditions used to obtain near optimal solutions

The total number of solutions was decided on a computational effort basis, while the value
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for cost relaxation was set at 15% as it is the median value among the ones used for the
results of the previous sections.

As far as total emissions and cost are concerned, the impact of carbon tax on least cost
solutions is represented in figure 3.23. The colours in the figure indicate the different
carbon tax values, while the shapes represent whether the strategy observed was obtained
under a cost minimization approach (circle shape) or under a land minimization one
(square shape for the qualitative solution, cross shapes for all the others).
Being a carbon tax, by definition, a policy for the reduction of emissions, it is possible to
observe how the total emissions decrease as the value of carbon tax increases.
In addition, as also expected, a higher price on the amount of CO2 emitted corresponds
almost linearly to a higher total cost of the system.

What is however far more interesting and relevant to this thesis, is the impact of carbon
tax on the generation of near optimal solutions.
In fact, the diversity among this alternative strategies at every carbon tax value, does
not ensure the same correlation between total emissions and carbon tax, seen in the ones
found under cost minimization.
On the contrary, in the range 20-80 €/tonCO2 , it is possible to observe many near optimal
solutions which could potentially cross and lead to having, for example, a solution at 40
€/tonCO2 emit more CO2 than one at 60 or 80 €/tonCO2 .

Therefore, while for traditional least cost solutions we can state that a higher carbon tax
leads to lower total emissions, the same cannot be stated for near optimal solutions. The
diversity among near optimal solutions shows that an increase in the carbon tax does not
always entail a reduction in overall emissions.

Hence, as far as emissions are concerned, in near optimal solutions the impact of carbon
tax is less relevant than in traditional results. This results in the need of a more careful
and detailed exploration of all the alternative scenarios, if the focus of policy makers is
more on emissions or decarbonization pathways, rather than on the land minimization.

Regarding the financial aspect of results, a carbon tax does not have any impact on the
total cost of near optimal solutions. The reason behind this is related more to the way
these alternative results are generated rather than to the carbon policy.
Indeed, all near optimal solutions exploit as much as possible the cost constraint imposed
for their generation (section 2.3), resulting in an equal total cost value for each carbon
tax.
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Figure 3.23: Total cost and CO2 emissions at different values of carbon tax

Another consideration should be made on the impact of carbon tax values on the diversity
among near optimal solutions. Figure 3.23 already shows that the dispersion among
alternative scenarios does not indicate a specific trend, when varying the price of carbon.

This non-existing trend can be better observed in figure 3.24, which represents the value
of renewable capacity share in 2050 for every solution found, at different values of carbon
tax.
The fact that there is likely no correlation is relevant, as it shows that one of the desired
targets of the methodology implemented in this thesis, which is the diversity among the
alternative scenarios generated, does not seem particularly affected by an external policy
implemented in the model. On the contrary, the size of the dispersion of renewable
capacity share values remains approximately the same for every carbon tax value.
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Figure 3.24: Share of renewable capacity installed in 2050

The median value of renewable capacity share of each distribution ranges between 72 and
75%, while the dispersion size is around plus or minus 4% (figure 3.24.
However, there are some outliers for the carbon tax values of 20,40 and 120 €/tonCO2 ,
which are not present for other values. Indeed, these outliers represent respectively an
alternative scenario in which the share of renewable capacity installed in 2050 is higher
than 80%, and two alternative ones where the same share is about 65%.

These outliers may represent a small hint of a correlation between carbon tax values
and the diversity of alternative scenarios found. However, with the results given by this
sensitivity analysis, these outliers are not relevant enough to state that they show a specific
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trend, as they are likely more due to the weights used in the land objective function to
generate them (equation 2.1).

Moreover, the values of this renewable capacity share do not differ significantly when
varying carbon tax. The reason behind this is likely that the guidelines of PNIEC [12] on
the minimum production of renewable technologies have a stronger effect on the results
than the carbon tax policy.
Hence, the insights given to policy makers in the sections of this chapter are still valid
and relevant, even when the country intends to follow different values of carbon tax as a
policy to reduce CO2 emissions.

This sensitivity analysis concludes the results discussion chapter. It is now therefore
possible to proceed into delivering the final remarks of this thesis.
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developments

In the chapters of this thesis, the different steps in the exploration of alternative solutions
in energy system optimization models, beyond the cost optimal one, have been reported.

First, in chapter 1, an overview of all the existing methodologies to generate near optimal
solutions in ESOMs is conducted. Through a systematic literature research method on
Scopus, it was possible to perform multiple reviews, leading to a final one. The scientific
works obtained with the last research are then discussed, so to analyze the most relevant
ones for the targets of this thesis.
This discussion lastly leads to opt for the use of a combination of the most relevant works
for the definition of the methodology to be implemented in this thesis, for the generation
of near optimal solutions.

Then, in chapter 2, a thorough description of the methodology implemented in this thesis,
together with a short description of the supply-side energy system optimization model
used (Hypatia), is carried out.
This comprehends the definition of the two new objective functions to implement in the
model for the generation of near optimal solutions, according to the model to generate
alternatives (MGA) method developed by DeCarolis et al [5]. These new functions regard
two different topics related to issues policy makers often face when deploying energy
technologies. The first one is on the minimization of land usage by energy generation
and storage technologies, while the second one is on the minimization of energy balance
mismatch between regions or macroregions of the same country, through the use of the
Gini coefficient.
Moreover, according again to the MGA method, the description of the new cost constraint
to be implemented in the model is also reported in the methodology chapter.
Lastly, the new run module is also included in the same chapter as it shows the method
in which the model is able to run multiple solutions, with different optimization targets,
at the same time. The module, which is structured as a while-cycle, together with the
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objective functions and the cost constraint can be observed in appendix B written in
pseudocode (while in the model it is implemented written in the Python programming
language).

Finally, in chapter 3, the results of the methodology implemented are analyzed and dis-
cussed, only after a brief description of the reference energy system used for the case study
of the thesis.
The case study, inspired by a decarbonization of the electricity sector of Italy by 2050,
is represented by a simplified reference energy system, where the generation and storage
technologies meet a projected final demand of electricity, in the planning period 2020-
2050.
The results obtained are then discussed on the basis of policy makers plausible different
needs. Indeed, first it is performed an analysis on what technologies can be considered
must-have in any alternative scenario. Then, based on the different aspects of the new
optimization approach, which reflect real policy makers needs, some alternative strategies
found are described and discussed. Lastly, a sensitivity analysis on the impact of carbon
tax on the results of the model is carried out.

The results, obtained with a land minimization approach (therefore with the land objective
function), show the importance of going beyond least cost solutions in energy system
optimization models. Indeed, with the method used, it was possible to explore a number
of different strategies, tailoring them on the needs of policy makers.

Various examples of country needs are identified and the near optimal energy system
configurations best suiting such needs are obtained. As a first example, a country with
an interest in reducing as much as possible land usage, should pursue strategies which
comprehend a higher deployment of solar photovoltaic rather than the one of other tech-
nologies. Moreover, based on the increase of cost which policymakers are willing to pay
to pursue these alternative strategies, wind generation technology may or may not be
a must-have technology. As a second example, a country could be more interested in
pursuing land usage reduction by maximizing the overall capacity factor of the total elec-
tricity sector, even if does not lead to the largest reduction of land used. In this scenario,
the suggested strategy focuses on the increased electricity production of technologies not
strongly limited by energy resources, such as hydrolectric power plants (both pumped and
classic) and biofuels and waste power plants. An increased production of this last type
of technology can also help a country in becoming more dependent on a circular type of
economy, an important cornerstone to reach the targets of the Paris Agreements [24].

As a third example, countries might also be interested in the alternative strategy with
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the least possible amount of total CO2 emissions. Among the solutions found with the
methodology of this thesis, the most suitable strategy for this need comprehends an
energy mix which focuses strongly on the production of solar PV and wind power plants.
Particularly for this latter technology, the new capacity to be installed of it is the highest
among all alternative strategies found. Enforcing, thus, the importance of electricity
production from wind energy in the efforts to reduce greenhouse gases emissions.

A sensitivity analysis was carried out on the value of the carbon tax, given the high
uncertainty over this figure. Results show that this parameter has an impact on the
emissions of the alternative scenarios found. Meaning, hence, that a careful exploration
of the near optimal solutions found is required, if the policy makers targets are to obtain
lower emissions with higher carbon tax values, as there might not always be a direct
correlation.
While the total cost of alternative strategies is not affected by the value of carbon tax.
This is due to the cost constraint imposed for the research of near optimal solutions, which
forces the model in searching alternatives that exploit all the available cost budget.
Lastly, another important aspect evinced from the sensitivity analysis is how the diversity
among solutions is not affected by the carbon tax value. Resulting, thus, in making
stronger the insights given to policy makers about the different strategies.

The most evident limitation coming from the results of this thesis is how the near optimal
solutions were obtained only with one of the two new objective functions implemented.
Indeed, the alternative strategies which can be generated with an approach on the min-
imization of the energy balance mismatch between regions are not present in the thesis.
Unfortunately, the reason behind these missing results is linked to a shortage of time in
finding all the data and parameters required for the building of a multiregional reference
energy system.
However, being this mainly a matter of time availability, a possible future development for
this work is building a multiregional model inspired by the Italian electricity system, and
use the energy balance mismatch objective function to generate near optimal solutions.
The scenarios found can then be compared, not only with the one obtained with a cost
minimization approach, but also with the results of this thesis (strategies found under
land minimization approach).
This comparison could likely point out strategies which give more relevant insights to
policy makers, particularly on the possibility to solve multiple issues related to energy
technologies deployment at the same time.

Another theme of the thesis which can be analyzed further concerns the total cost of near
optimal solutions. Indeed, results obtained in this work were all found on the border
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of the cost constraint implemented. Meaning, hence, that all the alternative strategies
exploit as much as possible the financial budget, given by the cost relaxation on the least
cost strategy total cost.
This aspect is not conceptually negative, as there is no problem with obtaining strategies
that use all the available financial resources. However, finding solutions which are not
on the border of the cost constraint, but rather have a total cost in between the least
cost one and the highest possible one, might increase the diversity in the energy mixes of
the different strategies. As a consequence, the relevant insights for policy makers could
also increase, making the exploration of different strategies more tailored on their specific
needs.

Lastly, as also mentioned in section 3.2.9, the results of this thesis fail to reach decar-
bonization targets of the case study under analysis. This is not a target of this work,
given that the case study serves more as an inspiration for the research of alternative
energy strategies. However, it might be relevant, as far as insightful scenarios for policy
makers are concerned, to reach a decarbonized electricity sector in 2050.
To achieve this target, more stringent climate policies are required in the running of the
model. These policies can range from the highest minimum values of electricity produc-
tion from renewable sources, to a stronger presence of fiscal policies on emissions and
electricity production. Moreover, also a more detailed reference energy system, with the
presence of innovative technologies for the reduction and capture of CO2 emissions, would
likely contribute to making the electricity sector carbon neutral in 2050.

There are numerous ways in which the methodology implemented in this thesis could be
further tested. What instead remains the core key of this work is the importance of going
beyond a cost minimization approach in energy system optimization models. Doing so
guarantees indeed an exploration of alternative energy deployment strategies, which could
possibly solve important issues that affect the everyday life of people. This is fundamental,
as the energy transition most countries are currently undergoing right now must always
be as just and fair as possible for every single individual.
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A| Appendix A

Specific Land Usage

Technology Value Reference Unit of measure

Geothermal power plant 39255 [20] m2

MW

Solar PV 18000 [2] m2

MW

On-shore Wind 50505 [2] m2

MW

Hydroelectric power plant 141460 [7] m2

MW

Pumped Hydroelectric power plant 141460 [7] m2

MW

Geothermal heat plant 39255 [20] m2

MW

Pumped Hydroelectric storage 141460 [7] m2

MW

Electrochemical storage 6.25 [2] m2

MWh

Steam Methane Reforming 18.29 [2] m2

MW

Solid Fossil Fuels Power Plant 40 [2] m2

MW

Oil Power Plant 40 [2] m2

MW

Natural Gas Power Plant 30 [2] m2

MW

Oil refinery 323.49 [19] m2

MW

Natural Gas Combined Power Plant 22.5 [2] m2

MW

Biofuels and Waste Combined Heat Plant 1650 [2] m2

MW

Table A.1: Specific land usage values for every technology
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Algorithm B.1 Cost constraint "Close2optimalCost.py"
1: from hypatia import Utilities_close2opt
2: from hypatia.backend.constraints.Constraint import Constraint
3:

4: class Close2optimalCost(Constraint):
5: def rules(self):
6: rules = []
7: rules.append(
8: Utilities_close2opt.optimal_value · (1 +Utilities_close2opt.cost_relaxation) -
9: cp.sum(self.variables.totalcost_allregions_act) ≥ 0

10: )
11: return rules
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Algorithm B.2 Land objective function in "Build.py"
1: from hypatia import Utilities_close2opt
2: from hypatia.utility.constants import ModelMode
3:

4: if self.model_data.settings.mode == ModelMode.P lanning then
5: if Utilities_close2opt.Solution_number = 2 then
6: total_land_occupation = 0
7: for self.model_data.settings.regions do
8: for self.vars.land_usage[reg].keys do
9: randomic_matrix = np.ones ((len (self.model_data.settings.years), len

(self.model_data.settings.technologies[reg][key])))
10: total_land_occupation += cp.sum (cp.sum (cp.multiply (ran-

domic_matrix, self.vars.land_usage[reg][key]), axis = 0, keepdims =
True), axis = 1, keepdims = True)

11: end for
12: end for
13: self.global_objective = total_land_occupation
14: else
15: total_land_occupation = 0
16: for self.model_data.settings.regions do
17: for self.vars.land_usage[reg].keys do
18: randomic_matrix = np.tile(np.random.random ((1,len

(self.model_data.settings.technologies[reg][key]))), (len
(self.model_data.settings.years),1))

19: total_land_occupation += cp.sum (cp.sum (cp.multiply (ran-
domic_matrix, self.vars.land_usage[reg][key]), axis = 0, keepdims =
True), axis = 1, keepdims = True)

20: end for
21: end for
22: self.global_objective = total_land_occupation
23: end if
24: end if
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Algorithm B.3 Energy balance mismatch objective function "Build.py"
1: from hypatia import Utilities_close2opt
2: from hypatia.utility.constants import ModelMode
3:

4: if self.model_data.settings.mode == ModelMode.P lanning then
5: total_demand = { }
6: total_production = { }
7: for self.model_data.settings.regions do
8: for self.vars.demand[reg].keys do
9: total_demand[reg] = cp.sum(self.vars.demand[reg][key], keepdims = True)

10: end for
11: end for
12: if Utilities_close2opt.Solution_number = 2 then
13: for self.model_data.settings.regions do
14: for self.vars.production_annual[reg].keys do
15: randomic_matrix = np.ones ((len (self.model_data.settings.years), len

(self.model_data.settings.technologies[reg][key])))
16: total_production[reg] = cp.sum( cp.sum( cp.multiply(randomic_matrix,

self.vars.production_annual[reg][key]), axis = 0, keepdims= True), axis =
1, keepdims= True)

17: end for
18: end for
19: else
20: for self.model_data.settings.regions do
21: for self.vars.production_annual[reg].keys do
22: randomic_matrix = np.tile(np.random.random ((1,len

(self.model_data.settings.technologies[reg][key]))), (len
(self.model_data.settings.years),1))

23: total_production[reg] = cp.sum( cp.sum( cp.multiply(randomic_matrix,
self.vars.production_annual[reg][key]), axis = 0, keepdims= True), axis =
1, keepdims= True)

24: end for
25: end for
26: total_demand_array = np.array (list(total_demand.values()))
27: total_production_array = np.array (list(total_production.values()))
28: self.global_objective = Utilities_close2opt.Gini(total_demand_array, to-

tal_production_array)
29: end if
30: end if
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Algorithm B.4 Running module "Run.py"
1: from hypatia import Model
2: from hypatia import Utilities_close2opt
3:

4: define (optimization_mode, number_of_solutions, last_GINI_solution,
cost_relaxation)

5:

6: assert last_GINI_solution ≤ number_of_solutions
7:

8: solution_number = Utilities_close2opt.Solution_number
9:

10: while solution_number ≤ number_of_solutions do
11: model = Model(path = "sets path", mode = "Planning", optimization = optimiza-

tion_mode)
12: model.read_input_data("parameters path")
13: optimal_value = model.run(solver="Solver name")
14: model.to_csv(path = "results path" + "/results_" + str(solution_number),

force_rewrite = True, postprocessing_module = "it2020")
15:

16: if solution_number = 1 then
17: Utilities_close2opt.optimal_value = optimal_value
18: end if
19:

20: if optimization_mode = ”Single” then
21: break
22: else
23: solution_number = solution_number + 1
24: Utilities_close2opt.Solution_number = solution_number
25: Utilities_close2opt.cost_relaxation = cost_relaxation
26: Utilities_close2opt.Last_GINI _solution = Last_GINI _solution
27: end if
28: end while
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Algorithm B.5 Utility module (with Gini function) for near optimal solutions "Utili-
ties_close2opt.py"
1: Solution_number = 1
2: optimal_value = 1
3: cost_relaxation = 0
4: Last_GINI_solution = 1
5:

6: def Gini(demand,generation):
7: assert(len(demand) == len(generation))
8: bins = np.linspace(0., 100., len(demand))
9: total_demand = float(np.sum(demand))

10: total_generation = float(np.sum(generation))
11: for bins_values do
12: demand_vals = demand[demand ≤ np.percentile(demand, bins_values)]
13: demand_fraction = (np.sum(demand_vals) / total_demand) · 100.0
14: yvals_demand.append(demand_fraction)
15: generation_vals = generation[generation ≤ np.percentile(generation, bins_values)]

16: generation_fraction = (np.sum(generation_vals) / total_generation) · 100.0
17: yvals_generation.append(generation_fraction)
18: end for
19: perefect_equality_area = np.trapz(yvals_demand, x=yvals_demand)
20: lorenz_area = np.trapz(yvals_generation, x=yvals_demand)
21: gini_val = abs((perfect_equality_area - lorenz_area) /

float(perfect_equality_area))
22: return gini_val
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C| Appendix C

In this appendix, any additional figure is shown.

(a) Scenarios 2-5 (b) Scenarios 6-9

(c) Scenarios 10-13 (d) Scenarios 14-17

(e) Scenarios 18-21

Figure C.1: Energy mix of all the alternative strategies, cost relaxation = 5%
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(a) Scenarios 2-5 (b) Scenarios 6-9

(c) Scenarios 10-13 (d) Scenarios 14-17

(e) Scenarios 18-21

Figure C.2: Energy mix of all the alternative strategies, cost relaxation = 15%
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(a) Scenarios 2-5 (b) Scenarios 6-9

(c) Scenarios 10-13 (d) Scenarios 14-17

(e) Scenarios 18-21

Figure C.3: Energy mix of all the alternative strategies, cost relaxation = 25%
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Figure C.4: Total capacity installed in 2050, cost relaxation = 5%

Figure C.5: Total capacity installed in 2050, cost relaxation = 25%
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