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Abstract

In CSP applications, Beam-Down optics (BD) can play a major role in the future decar-
bonized energy scenario. The presence of a ground-mounted receiver avoids moving the
working fluid from the tower up to the power block and therefore decreases the thermal
and pumping losses. The thermal performances can be further boosted thanks to the in-
stallation of a tertiary concentrator, namely a Compund Parabolic Concentrator (CPC).
The redirection of solar rays from the heliostat field toward the ground is guaranteed by
the presence of a hyperbolic Secondary Reflector (SR).
The currently installed BD optic solar fields are made out of a circular surrounded pat-
tern. This thesis aims at investigating the possibility of generating an asymmetrical solar
field, so to exploit the most performing area of the site, in terms of cosine, at latitudes
far from the equator. It was chosen to perform the analysis for a 50 MWth, at receiver
aperture, solar field at a latitude of 25 ◦ North. The generation of the heliostat field is
of a radial staggered type and follows the procedure presented by Collado (code campo).
Furthermore, it was shown that the most performing area of the solar site, in terms of
cosine, is strongly influenced by the shadow of the hyperboloid and that the replacement
of mirrors in that part of the field, with farther ones, less shaded, can increase the annual
optical performance up to 3%.
On the other hand, the farther heliostat selection is strongly influenced by the geometry
of the CPC, and therefore a matrix optimization method is presented, to maximize the
annual optical-thermal performance of the system at different eccentricity values and aim
point heights. The results are also assessed in terms of economic parameters and the best
configuration was found for eccentricity equal to 3 and an aim point of 120 m. System
annual efficiency is 59.49 % based on a clear sky DNI model, the product of 67.63 %
optical and 87.96 % thermal efficiency, at receiver temperature of 750◦ C.
Moreover, a 1D thermal model is presented for different possible configurations of the SR.
The cooling power required to maintain the temperature of the silver reflective surface at
its limit value (65 ◦C) was found equal to 5.38 MW.
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Abstract in lingua italiana

Negli impianti a CSP, specialmente le torri solari, l’ottica a Beam-Down può svolgere
un ruolo importante nel futuro scenario energetico decarbonizzato. L’installazione del
ricevitore a terra evita di movimentare il fluido di lavoro dalla torre fino al blocco di
potenza, dimuinendo quindi, le perdite termiche e di pompaggio. Le prestazioni termiche
possono essere ulteriormente incrementate grazie all’installazione, sopra al ricevitore, di
un concentratore terziario, generalmente di tipo parabolico (CPC). Il reindirizzamento dei
raggi solari dal campo di eliostati verso il suolo è garantito dalla presenza di un Riflettore
Secondario (RS) iperbolico.
I campi solari a ottica BD attualmente installati sono costituiti da un campo circolare.
Questa tesi ambisce a valutare la possibilità di generare un campo solare asimmetrico, così
da sfruttare la zona di più performante del sito, in termini di coseno, a latitudini lontane
dall’equatore. È stato scelto di performare l’analisi per un campo solare da 50 MWth

all’apertura del ricevitore, a 25◦ di latitudine Nord. La generazione del campo di eliostati
è di tipo radiale sfalsato e segue la procedure presentata da Collado (codice campo).
Inoltre, è stato dimostrato che la zona più performante del sito solare, in termini di
coseno, è fortemente influenzata dall’ombra dell’iperboloide e che la sostituzione di specchi
in quella parte di campo, con altri più lontani e meno ombreggiati, può incrementare le
prestazioni annuali ottiche fino al 3%. La selezione degli eliostati più lontani è fortemente
influenzata dalla geometria del CPC e quindi un metodo di ottimizzazione a matrici viene
presentato, al fine di massimizzare le prestazioni annuali ottico-termiche del sistema a
differenti valori di eccentricità e altezza del fuoco superiore. I risultati sono analizzati
anche in termini di parametri economici e la configurazione migliore è stata trovata per
eccentricità pari a 3 e fuoco superiore a 120 m. L’efficienza annuale del sistema è del
59.49% sulla base di un modello DNI a cielo sereno, prodotto del 67.63% di efficienza
ottica e 87.96% termica, alla temperatura del ricevitore pari a 750 ◦C.
Inoltre, viene presentato un modello termico 1D per diverse possibili configurazioni del RS.
La potenza di raffreddamento necessaria per mantenere la temperatura della superficie
riflettente d’argento al suo valore limite (65 ◦C) è stata trovata pari a 5.38 MW.

Parole chiave: CSP, Beam Down, Riflettore secondario, Iperboloide, Eliostati, CPC
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Introduction

The anthropogenic intensification of climate change, the need for energy security, and the
depletion of fossil fuel reserves need an immediate global response.
Concentrating Solar Power (CSP) application can play an important role in the decar-
bonization of current thermal and electrical energy production.
The solar energy received by the worldwide desert regions within 6 hours is roughly es-
timated more than the energy consumed by humankind in a year. It’s enough to cover
the 1% of this area with solar thermal plants to satisfy the world annual power electric
consumption.
In CSP applications, direct solar radiation is concentrated on a receiver in order to obtain
high-temperature thermal energy that is generally utilized as a boiler for power generation
cycles. With respect to direct electricity conversion technologies like wind and solar PV,
CSP application favors high capacity factor guarantee by the presence of thermal energy
storage. Moreover, the inter-hour operation management allows the possibility of provid-
ing ancillary services including voltage support, frequency response, and regulation.
The current installed worldwide CSP electric power is around 6 GW, consisting in a 0.2%
share renewable energy market [1]. As presented by IEA, an annual averaged generation
growth of 31% is needed from 2020 to 2030 to achieve Net Zero power generation, corre-
sponding to around 6.7 GW of new capacity installed every year [20]. Actually, current
high production and manufacturing costs are limiting the competitive advantage in the
market in terms of Levelized Cost Of Electricity (LCOE), but an increase in the learning
rate is expected to allow CSP to actively participate in the future decarbonized scenario.

This thesis aims at investigating a particular CSP optic, called Beam Down, where thanks
to the installation of a secondary reflector, the solar radiation is redirected towards the
ground. Heliostats field design has to take into account the derating efficiency caused
by the secondary reflector shadow and reflectivity. So a solar field optimization will be
proposed, aiming at increasing the annual system efficiencies.
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0.1. CSP basic concept

Solar applications are continuously under the microscope of research. The main scope
is looking for new technologies that guarantee high conversion efficiency of solar energy,
that can be achieved utilizing higher receiver temperature (more than 1100 K) [43]. This
goal can be reached only by increasing the concentration ratio of the solar field.
Let’s consider a simplified optical analysis in which a collector of area Ac is facing a Direct
Normal Irradiance (DNI). The radiation is then redirected towards a receiver of area Arec.

Figure 1: Simplified collector-absorber model.

Due to the cosine losses, the effective value of the sun radiation, DNIeff , is lower.
The maximum power reflected by an ideal collector, Ẇsun, can be expressed as Equation 1.

Ẇsun = DNIeff · Ac (1)

On the other hand, the final useful effect has to take into account various losses happening
on the energy path from the sun source to the collector.
Not all the rays will be reflected towards the receiver due to reflectivity and intercept
losses. The percentage of reflection is governed by the reflectivity ρc.
The intercept factor points out that not all the ray pointing the collector, considering
optical error, will be captured due to finite receiver surface. Let’s identify it with the
letter γ.

γ =

∫ D/2

−D/2
ρc ·DNIeff dx∫∞

−∞ ·DNIeff dx
(2)

Where D is the receiver diameter and ρc the reflectivity of the collector. Moreover, the
receiver won’t behave as a perfect black body (αrec<1), so not all the incident radiation
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is absorbed.
The receiver at Trec is facing the ambient temperature and a mechanism of radiative and
convective heat transfer takes place. Let’s simplify the system by considering a universal
heat transfer coefficient U that takes into account both dissipating mechanism. The net
heat absorbed Ẇu can be evaluated as Equation 3.

Ẇu = ρc · αrec · γ ·DNIeff · Ac − U · (Trec − Tamb) · Arec (3)

The optical-thermal efficiency ηrec can be then calculated as Equation 4.

ηrec =
Ẇu

Ẇsun

= ρc · αrec · γ · −U · (Trec − Tamb)

DNIeff · Ac

Arec

(4)

The ratio Ac/Arec is called concentration ratio and the higher it is, the lower thermal losses
will be and so the higher the sun energy conversion. Moreover, a higher concentration
ratio allows also to higher receiver temperature and so higher cycle efficiency.
The overall system efficiency can then be performed by multiplying the optic-thermal
efficiency (ηrec) per the one of a thermodynamic cycle. By simplifying the concept, a
Carnot cycle can be considered, whose efficiency can be evaluated as Equation 5.

ηCarnot = 1− Tamb

Tabs

(5)

So the overall system efficiency is performed as ηsys = ηrec · ηCarnot.
As shown Figure 2, it exists a receiver temperature that maximizes the overall system
performance, for each value of concentration ratio and optical receiver properties.
For medium values of concentration ratio (CR=100), a low value of emissivity is needed
to ensure high system efficiency at receiver temperature over 800K.
By pushing the concentration ratio up to 1000 and the absorber material emissivity close
to zero, the thermal loss becomes negligible and the overall system efficiency follows the
Carnot efficiency trend.
When the optical energy reaching the receivers equals the thermal loss, ηrec is null. In that
condition, the receiver temperature reaches its maximum temperature, called stagnation
temperature.
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Figure 2: Overall system efficiency plot at different sola field concentration ratio and
absorber emissivity values (ε) [19].

On the solar field application, point-focus concentrator are the ones that guarantee the
highest concentration ratio. In this category, solar tower systems are the main character.

0.2. Beam down optic

The optic of a beam down system has been firstly introduced by Rabl et al. [47] and
further investigated by various scientist. The system is composed mainly of the heliostat
field, a secondary reflector, a possible tertiary reflector, and a receiver.
Two different foci characterize the system optic, an upper one which coincides with the
aim point of the heliostat field, and a lower one that corresponds to the entrance of the
tertiary concentrator, generally, a Compound Parabolic Concentrator (CPC), if present
or directly with the receiver aperture, as shown in Figure 3.
A surface that can direct the heliostat reflected radiation into a single point, ideally, is of
a Cartesian type. It’s composed by two foci and it’s generally represented by Equation 6.

z = f(x, y) =
(x2 + y2)/R

1 + [1− (1 + k)(x2 + y2)/R2]1/2
(6)

Where R is the vertex curvature radius of the surface and k is the conic constant. When
k<1 the equation speaks for a hyperboloid surface of two sheets [47]. The two foci corre-
spond to the upper and lower focus of the solar system.
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gaseous working fluid for the power cycle (i.e., pressurized sCO2) to 
extract heat directly from the receiver-storage module to increase the 
overall efficiency of CST plant. 

1.2. Beam-Down System: Concept and Optics 

The beam-down receiver (BDR) concept is based on Cassegrain re-
flectors, which are often used in telescopes and radio antennas to locate 
the final focal point on the same plane as the primary reflector. In case of 
concentrated solar energy, a beam-down receiver can be placed on the 
ground, on the same plane that the heliostat field. This is enabled by 
replacing the receiver at the top of the tower with a secondary reflector, 
which redirects concentrated radiation onto the ground-mounted 
receiver, close to the base of the tower. This design was originally pro-
posed in 1988 by Stern et al. [13], but it was not until early 2000 when 
the optics of this device were analyzed by Segal and Epstein [14]. They 
studied two reflector alternatives, an ellipsoid (concave) and a hyper-
boloid (convex) reflector, concluding that the hyperboloid provides the 
best optical efficiency for both small (<10 MWth) and large solar fields 
(more than 10 MWth). In theory, BDRs can achieve high concentration 
ratios and correspondingly higher thermal efficiencies. Thus, although 
their optical efficiency is slightly lower, BDRs benefit from their simpler 
tower structure, less parasitic pumping energy consumption, and the 
ease of maintenance of the ground-mounted receiver. 

A solar field with a BDR has three main components, as shown in 
Fig. 1: a) A heliostat field (HF, the primary optical element), b) a hy-
perboloid reflector (HB, the secondary optical element), and c) a tertiary 
optical element (in this case a CPC array). In this design, the heliostats 
point toward a focal point located at the top of the tower (F1). A hy-
perboloid sheet mounted on the tower intercepts these rays and reflects 
them to the ground, into the second focal point (F2), where the final 
optical device is located. The image reflected on the second focal point is 
larger than the original image located in F1. This is called the magnifi-
cation factor, a phenomenon which reduces the overall concentration 
ratio and potential operation temperature. To mitigate this, a tertiary 
optical element can be placed at the second focal point to reconcentrate 
the radiation and redirect it toward the solar receiver. Although several 
types of concentrators have been proposed for this final device, their 

optimal shape and size is not yet clear. In this work, an array of smaller 
concentrators is proposed, using CPCs with polygonal aperture, as pro-
posed by [15]. This approach effectively reduces the mirror surface area 
and increase the concentration ratio without excessive height. Although 
such a CPC array has been proposed in the prior literature [16], the 
geometric parameters of it have not been comprehensively compared 
with respect to the overall BDR optical efficiency. To address this gap, 
this work will compare five different proposed configurations, ranging 
from a single CPC to a 7 CPCs cluster, which are evaluated based on their 
optical efficiency and radiation flux homogeneity in the receiver surface. 

Since 2011, the Masdar Institute (now a part of KAUST) has been 
testing a beam-down system in the UAE [17], which is comprised of 
280.7 m2 of heliostats and reaches a nominal heat input power of 100 
kWth. At this site, the so-called CSPonD (Concentrated Solar Power on 
Demand Demonstration) beam-down concept was tested to determine 
its optical performance. The CSPonD was found to achieve a concen-
tration ratio of up to 600 and an optical efficiency ranging from 55% to 
77% (for a temperature range of 250–550 ◦C and an zenith between 0◦ to 
60◦) [18]. This system was coupled with a (600 kWh) molten salt storage 
tank [18,19], which would reportedly enable an up to 50 MWe plant to 
achieve a LCOE of ~0.1 USD/kWh [20], and an overall thermal per-
formance in the range of 24–28% (using an idealized Carnot cycle) [21]. 
Another experimental BDR test facility is located at the University of 
Miyazaki (Japan), which also has a 100 kWth nominal power output, but 
with a 176 m2 primary mirror area. Their system, built in 2012, uses an 
ellipsoid mirror to reflect radiation into a 1300 × 1300 mm2 CPC final 
optic receiver for thermochemical water splitting [22]. They have 
reached an experimental maximum radiation flux of 500 kW/m2. 
Finally, the Yumen Xinneng plant in China, is the first commercial beam- 
down CSP plant, with a capacity of 50 MWe using 15 modular beam- 
down tower modules [23]. The company aims to further this concept 
in subsequent installations to reduce the levelized cost of energy by 30% 
for larger plants, up to 200 MW. These experiences show that this 
technology is feasible and can have different applications, from elec-
tricity generation to thermochemical processes. 

The optics of BDRs have been studied analytically by several authors. 
Segal and Epstein [14] analyzed the magnification factor of BDRs, which 
was defined with respect to the ratio fv = zv/zf , where zv, zf are the focus 
and vertex heights of the secondary reflector. Based upon this, the 
optimal range for fv was found to be 

(
0.7 < fv < 0.75

)
, so the magnifi-

cation factor is lower than 1.5 and the expected thermal performance is 
around 80%. An additional study from the same authors [24] found that 
a BDR system with a tertiary (CPC) receiver can utilize a solar field area 
up to up 76,320 m2 (using 2,120 heliostats of 36 m2 each at a 35% of 
ground use percentage). This effectively places an upper bound on the 
size of the plant since it limits the thermal power of a BDR to ~50 MWth. 
In a 2008 study by the same authors [25], several parameters were 
analyzed for their influence on the magnification factor and the image 
size in the final receiver. This analysis considered the hyperboloid ec-
centricity (which is an alternative parameter to the vertex ratio, fv), the 
size of heliostats, and the size of a single CPC concentrator. A BDR ef-
ficiency of ηBDR = 92% was found for a small solar field with a radius of 
2zf . Wei et al. [26] presented ray tracing equations for a BDR and 
simulated a 31-heliostat solar field for different dates through the year, 
obtaining overall optical efficiencies in the range of 41–64%. However, 
these analyses employed analytic equations which depend on several 
simplifying assumptions, such as worst-case scenario for image distor-
tions, perfect reflective surfaces, or limited number of heliostats. 
Therefore, the available approaches in literature are unable to analyze 
more complex geometries (such as different CPC arrays) or obtain 
realistic radiation flux distributions. 

To properly assess the optical efficiency of beam-down receivers, the 
entire optical path must be modelled. The Monte Carlo ray tracing 
(MCRT) method was chosen as it has shown to be very effective for 
evaluating the interaction between complex optical geometries without 

Fig. 1. Main components of a beam-down receiver (BDR)-solar field tower. In 
blue, main components, in red main energy losses, in black, main geometric 
parameters. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

D. Saldivia et al.                                                                                                                                                                                                                                

Figure 3: Beam down optic scheme [39].

Two different quadratic surfaces are possible: a hyperboloid or an ellipsoid. As shown
in Figure 4, the hyperbolic shape guarantees a convex SR placed below the upper focus,
while the elliptical one is concave and installed beyond the aim point and so requires a
higher tower.

The optics of the solar tower reflector 233

Fig. 4. Magnification M given by a hyperboloidal mirror as a function of ratio f /f for fields with various radii.2 1

Fig. 5. Dependence of the reflector surface area, the RC acceptance angle and the ground image dimension on the position of the
tower reflector. The units of the vertical axis are normalized to aim point height:AP51.

(a) Hyperbolic shape
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Fig. 4. Magnification M given by a hyperboloidal mirror as a function of ratio f /f for fields with various radii.2 1

Fig. 5. Dependence of the reflector surface area, the RC acceptance angle and the ground image dimension on the position of the
tower reflector. The units of the vertical axis are normalized to aim point height:AP51.(b) Elliptical shape

Figure 4: Secondary reflector possible geometries [43].

The hyperbolic shape has been identified as the best trade-off between performance and
tower cost. Segal and Eipstein found that the elliptical shape requires twice as much
as the installation height and larger radius due to optical error amplification caused by
higher optical path [43].
The main advantage of the beam down optic is the cost reduction generated by the in-
stallation of the receiver at ground level. Lower pumping losses affect the system and the
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tower cost is diminished [16]. Moreover, a tertiary concentrator can be easily installed to
make a uniform distributed receiver image and further reduce the thermal losses. Gener-
ally, a Compound Parabolic Concentrator (CPC) is utilized. It’s a particular geometry
composed of two parabolas. Precisely, the focal point of one parabola A lies on the end
of the parabola B, as shown in Figure 5.

(A) (B)i < max i > max

Incident light Incident light

Figure 2.49
Optical path of a single CPC.

d1

d2

Light export

Focus FB Parabolic B was 
Cut part

Parabolic A

Axis of parabolic A

Symmetry axis of CPCLight entrance

Maximum receiving
angle amxAxis of parabolic B

Parabolic B

Focus FA
Parabolic A was 

Cut part

Figure 2.48
Structure of a CPC solar concentrator.
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Figure 5: Geometry of CPC solar concentrator [52].

Moreover, the angle created by the longitudinal axis and the connection line of the tip
of one parabola to the end of the other set the maximum incidence angle. Values higher
than the latter one, will be reflected back and not collected by the receiver.
The lower is the maximum incidence angle, the higher will by its concentration ratio,
the CPC is leaner but with sensible increased height. To limit the CPC longitudinal
extension, the latter can be placed in array configuration as shown in Figure 3. Moreover,
the shape can be circular or polygonal, based on techno-economical considerations.

the design process of CPC can be described as follows with the reference
to Fig. 1, which is called ‘edge-ray principle’ or the ‘string’ method
[41–43]: In the meridian section of a 3D CPC, assuming all of the rays
entering at the extreme collecting angle θc shall emerge through the rim
point P′ of the exit aperture, the parabolic curve with its axis parallel to
the direction θc and its focus at P′ will be derived as one branch of the
reflector shape; The complete CPC concentrator in 3D geometry is then
obtained by rotating the parabola about the concentrator axis (not the
axis of the parabola). If the diameter of the exit aperture is ′a2 and the
maximum allowable incidence angle is θc, and the overall length L is:= + ′L a a θ( )cot c (1)

The diameter of the entry aperture is= ′a a θ/sin c (2)

The geometrical concentration ratio is a critical parameter in the
design of nonimaging optics which is defined as the ratio of the aper-
ture area relative to the receiver's area. The theoretical concentration
ratio of CPC in 2D geometry is shown in Eq. (3) [44,45], which implies
that CPC becomes close to being an ideal concentrator [44]. ‘Ideal’
means all of the rays inside the maximum collection angle will not be
reflected back and emerge from the exit aperture. In addition, the
meridian section of CPC in 2D space is actually ideal and has the
maximum theoretical concentration ratio. The principles of designing
2D CPC are also provided in several U.S. patents [46–48].= ′ =C a a θ/ 1/sin c (3)

If taking the centre of the exit aperture as an origin for Cartesian
coordinates and taking z-axis along the concentrator axis as shown in
Fig. 1, the equation of the meridian section of a CPC can be expressed as
Eq. (4) [44] where the diameter of exit aperture is ′a2 and the accep-
tance angle (maximum allowable incidence angle) is θc. As the CPC
surface is obtained by revolving a parabolic curve about the z-axis, this
surface can be described by Eq. (4) with = +r x y2 2 2. Winston [44] also
presented the surface equations derived from the polar equation of the
parabola and azimuthal angle. Another study [49] provides a novel

method to calculate the maximum concentration of CPCs in direction
cosine space on a polar plane.+ + ′ + − ′ +− ′ + + =r θ z θ a θ r a θ θ z

a θ θ
( cos sin ) 2 (1 sin ) 2 cos (2 sin )

(1 sin )(3 sin ) 0
c c c c c

c c

2 2 2

2 (4)

2.2. Design considerations in structure

2.2.1. 2D and 3D CPC
Generally, CPC can be roughly classified into two categories which

are two-dimensional (2D) and three-dimensional (3D). The 2D CPC
refers to the CPC that has a longitudinal axis as shown in Fig. 2a). It can
also be called linear CPC or trough-like CPC for some special cases. 3D
CPC (Fig. 2b)) represents the CPC whose geometry is obtained by ro-
tating a 2D meridian section of CPC at an angular interval. CPCs can be
symmetric or asymmetric. The one with four parabolic surfaces and
square apertures are called crossed CPC (CCPC) or orthogonal CPC.
With the consideration of different geometrical translations, the optical
performance of various 3D CPCs were investigated by many re-
searchers. For example, Timinger et al. [50] investigated the optimi-
zation of faceted CPCs with discretization of the curvature in both the
circumferential and axial directions; van dijk, et al. [51] simulated the
relationship between transmittance and concentration ratio (C) of cir-
cular, square and hexagonal concentrators with reflectance (R) of 95%
as shown in Fig. 3, which illustrates that the more sides of CPCs aper-
tures has, the closer of optical performance approaches to ideal trans-
mittance; The study by Cooper et al. [52] also implies similar results, in
which the optical properties of CPCs with polygonal apertures having 3,
4, 5, 6, 8, 12 sides and circular aperture were compared.

2.2.2. Dielectric filled CPC (dCPC)
The dielectric CPC is filled with a dielectric material, which is used

to enlarge the acceptance angle of a CPC for the same geometry. The
dielectric filled 2D and 3D CPCs with total internal reflection were put
forward by Winston [54]. The acceptance angle ′θ c inside the dielectric
and the acceptance angle θc of dCPC are shown in Fig. 4(a). According
to the law of refraction, if the refractive index of the dielectric is n, the
maximum values of both internal and external acceptance angles that
can be designed under total internal reflection conditions at certain
refractive indices are shown in Fig. 4(b). In addition, there will be a
small enhancement on the angular acceptance of the dielectric-filled 2D
CPC for nonmeridional rays [44].

Therefore, the maximum theoretical concentration ratio of dCPCs
can be expressed as Eq. (5) where θc is the acceptance angle inside the
dielectric and the refractive index of air is assumed as 1. It is clearly to
see that the concentration ratio increases by the factor n or n2 com-
paring with reflective CPC.= =C n sinθ for trough CPC or C n sin θ for DCPC/ ( ) / ( 3 )c c

2 2 (5)

According to Snell's law (Eq. (6)), for the rays whose incidences are

Fig. 1. Construction of the CPC profile from the edge-ray principle [31].

Fig. 2. Example of 2D and 3D CPCs, a) 2D trough
CPC with a glass on top and PV on bottom [53]; b)
3D CPCs with polygonal apertures of 4, 5, 6, 8, 12
sides and revolved CPC (n = ∞) [52].

M. Tian et al. 5HQHZDEOH�DQG�6XVWDLQDEOH�(QHUJ\�5HYLHZV���������������²����

����

Figure 6: Possible CPC shape. n represents the number of faces [45].

On the other hand, the increased losses and maintenance costs caused by the presence of
a secondary reflector can lower the performance and increase the LCOE of the system.
Moreover, the hyperboloid affects negatively the heliostat field due to the shading effect
and introduces another loss related to the absorbed or transmitted power due to nonideal
mirror reflectivity properties.
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0.3. Demonstration plant

Despite the difficulties encountered in designing beam down systems, the topic is getting
a lot of interest in the research field and it will be expected that the technology will be
commercialized in the coming few years [16].
Current installations are present in Japan, Israel, United Arab Emirates, China, and Italy
and will be here presented briefly.

Solar site Miyazaki Weizmann Masdar Magaldi Yumen
Thermal design power 113 kWth 650 kWth 100 kWth 2 MWth 17 MWth

Heliostat field type Semi-surrounded Polar Surrounded Surrounded Surrounded
Heliostat number 88 64 33 786 2603

Mirror shape 10 Circular Rectangular Rectangular Rectangular Rectangular
Mirror dimension D = 0.5 m each 7x8 m 3.21x2.64 - -

SR type Ellipsoid Hyperboloid Hyperboloid Hyperboloid Hyperboloid
SR height 14 m 45 16 - 60

Table 1: Beam-Down demonstration plants main parameters.

University of Miyazaki, Japan

The beam down facility was built by the University of Miyazaki and Mitaka Kohki CO.
Ltd. as an R&D joint project for studying the feasibility of scaling up fluidized bed reactor
with solar system. The system occupies a land of dimension 60x60 m and it is composed
of 88 heliostats positioned at ground level and a 16 m central tower. Each mirror is
composed of 10 units of 50 cm in diameter each. The upper focal point is positioned at
14 m while the lower one is at 10 m above the ground.
The system is able to concentrate on a 1.3x1.3 m CPC aperture, 113 kWth at solar noon
on the 12 October with a DNI close to 900 W/m2 [23].
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first focal point at 14 m height and the second focal point at 10 m above ground level.  The beam-down system 
reflects the solar radiation with the heliostat mirrors toward the elliptic mirror placed on the central tower, to 
concentrate the radiation at the second focal point of the ellipse.  Whereas conventional tower-type systems 
concentrate the solar light onto the receiver located on the tower top, the beam-down system can concentrate light 
near the ground level.   
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Figure 7: Beam down solar field at University of Miyazaki [23].
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Weizmann Institute of Science, Israel

The solar tower system was built in 1988 at the Weizmann Institute of Science. It’s
composed of a tower of 56 m, 64 heliostats, and 54 m2 of mirror reflective surface. The
field is North-oriented and on the tower, there are installed 5 experimental levels. Bi-axial
heliostat tracking system can reflect the lights to any of these testing stations.
The prototype was built mainly for research in thermo-chemical conversion fields, like
methane cracking, hydrogen production, pressurized air heating for Brayton bottom cycle,
and others, but overall solar driven.
At the beginning of 1999, a secondary reflector was built on one of the 5 testing spots. A
hyperboloid shape of 75 m2 was chosen and a ground CPC with 2.2 m diameter aperture
and 5 m height capable of concentrating the incoming radiation by a factor of 25. The
design thermal power was accounted as 650 kW with an overall field concentration ratio
of 4000 [42].

an extractor was invented [15]. With this tandem of
concentrators-extractor, a concentration of 10,000 suns for
a power of about 100 kW has been achieved.

7 Beam-down concept

Usually in large solar power plants the receiver and the
turbine together with auxiliary equipment are too heavy a
load to be supported on the top of a tower structure. An
alternative option is to invert the path of the solar rays
originating from a heliostat field in such a way that the solar
receiver and the above-mentioned equipment can be placed
on the ground. In order to carry out this optical path
inversion, a supplementary reflector has to be installed.
This causes the rays oriented to the aim point of the field to
be reflected down to the receiver concentrator (RC)
entrance located near the ground [16]. From an optical
point of view, only a reflective surface having two foci is
capable of this mission, namely, each ray that is oriented
to one of its foci (which coincides with the aim point of
the heliostat field) will be reflected to the second focus
positioned at the entrance plane of the RC. From
mathematical point of view, this surface is a quadric,
namely, a hyperboloid (with two sheets, of which only the
upper one is used) or an ellipsoid. The comparison made
shows that the hyperboloidal surface is more promising
than the ellipsoidal one [17]. In this mode, we arrived at a
new optics named beam-down or tower reflector optics that

is today an important challenge for traditional optics. In a
series of papers [18–21], we established the most optical
aspects of this novelty. In order to prove this idea,
construction of a pilot station for 0.7MW thermal power in
WIS solar complex was started at the beginning of 1999.
These unique optics include a tower reflector shaped as a
section of hyperboloid revolution with one sheet, having a
reflective surface area of about 75 m2, and a ground level
secondary CPC with 2.2-meter entrance diameter and 5-
meter height and is capable of enhancing the incoming
radiation by a magnification factor of 25, providing, at the
design point, an amount of power about 650 kW at
an average concentration of about 4000. This secondary
concentrator, which was built in 2000, remains the biggest
of its kind in the world (Figs. 8–10).

Solar tests were carried out successfully throughout
2001 in order to demonstrate the feasibility of a large-scale
central solar receiver for future solar power plants.

8 Conclusions

The Weizmann Institute’s solar research complex is one of
the world’s most advanced, sophisticated and multiple-
discipline facilities for the implementation of concentrated
solar energy. Our research was always supported by
international and national programs and finance, and
results obtained during last 25 years’ activity are widely
used in the solar community.

Secondary

concentrators

Second focal point

Aim-point            First focal point

Heliostat fieldHeliostat field

Hyperboloidal mirror

Receiver

F1

F2

H

Fig. 8. Beam-down principle.

Fig. 9. The biggest concentrator from the world (5-meter height;
2.2-meter entrance diameter).

Fig. 10. The upper mirror (left: viewed from the compound parabolic concentrator [CPC] exit).

A. Segal: Renew. Energy Environ. Sustain. 1, 1 (2016) 5

Figure 8: Beam down solar field at Weizmann Institute of Science [42].

Masdar Institute, United Arab Emirates

The system, called Masdar Institute Solar Platform (MISP), was built in 2009 for R&D
purposes in solar tower systems and thermal energy storage.
The beam technology includes 33 ganged-type heliostats of about 8.5 m2 size. The mir-
rors are positioned in 3 equal circular sectors surrounding the tower and each of them is
formed by 43 facets arranged in three banks.
The secondary reflector is installed at 16 m height on 3 pylons of 20 m height and com-
posed of 45 mirrors disposed of in three multi-faceted rings. Each ring is related to a field
row of heliostats.
The solar site is composed of an oil receiver at ground level, capable of reaching a maxi-
mum temperature of 393 ◦C to avoid degradation and a design power output of 100 kW.
Furthermore, a Final Optical Element (FOE) was designed in order to increase efficiency
by reducing the receiver aperture. It was proved that a conical FOE performed better than
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a CPC and it also guarantee easy manufacturing. The prototype has an inlet diameter of
1.6 m, an outer one of 0.894 m and a 1.85 m height [10].

the lower focal point to capture spillage and direct it toward the re-
ceiver inlet. Such final concentrator is generally designed as a reflective
surface of revolution (Winston et al., 2005).

The optimal integration of beam-down concentrator elements (he-
liostat field, CR, and FOE) is not a simple task. The designer needs to
adjust properly the positions of both focal points, the sizes and shapes
of both the CR and FOE, and the layout of the heliostat field. Using the
original beam-down concept with a CR shaped as an ideal reflective
hyperboloid and a three-dimensional compound parabolic concentrator
(3D-CPC) as the FOE (Rabl, 1976), it is possible to derive some design
rules to dimension all the elements of the plant (Rabl, 1976; Segal and
Epstein, 2008; Leonardi, 2012; Sánchez-González and Gómez-
Hernández, 2020). However, practical considerations mediate against
beam-down designs that use the compound curved elements described
above in favor of flat reflectors on the CR and FOE. Although a number
of degrees of freedom are lost (Li et al., 2019), this simplifies installa-
tion, cleaning, and eventual replacement of reflective surfaces, which
are relevant concerns in facilities such as that on which this work is
based. For flat faceted CR structures, the original beam-down optical
concepts do not directly translate to cost-effective plants. Additional
design rules need to be developed.

In general, the components of a beam-down concentrator are opti-
mized independently. The heliostat field and CR are commonly de-
signed to minimize the spillage around the CR facets and the inlet of the
FOE, often assuming that the beam-down lower focal point should lie in
the plane of the inlet aperture of the FOE (e.g., Rabl, 1976; Segal and
Epstein, 1999; Segal and Epstein, 2001; Segal and Epstein, 2008; Li
et al., 2015), even though this may not be its ideal location (e.g.,
Leonardi, 2012). FOE designs are commonly optimized assuming a
uniform irradiation distribution on the inlet aperture plane (e.g.,
Timinger et al., 2000a; Timinger et al., 2000b; Jafrancesco et al., 2012).

Herein, a method is presented to seek the optimal configuration for
both the CR and FOE elements simultaneously as illustrated by the use
case of an existing beam-down concentrator (Hasuike et al., 2009;
Mokhtar et al., 2014) at the Masdar Institute Solar Platform, in Abu
Dhabi, United Arab Emirates. The objective function of this optimiza-
tion is the net power collected by a hypothetical solar receiver directly
below the FOE outlet modeled as a blackbody at constant uniform
surface temperature. The optimized CR and FOE geometries are pre-
sented as functions of the height of the inlet plane of the solar receiver-
FOE assembly and the reflectivity of the inner FOE surfaces (referred to
later as zin and ρ respectively). Although the results shown here are
directly applicable to the beam-down concentrator at Masdar Institute,
they illustrate trends that are likely to apply to simultaneous optimi-
zation of FOE designs under any faceted CR and heliostat field layout.

The next section describes the beam-down concentrator used in this
work and its ray-tracing model. Then the optimization procedure is
presented, followed by the results and trends observed in the simulta-
neous dimensioning of the FOE and configuration of the CR. Results are
analyzed and interpreted with suggestions for further research.

2. Methods

2.1. Baseline optical model

The beam-down solar concentrator at the Masdar Institute Solar
Platform (see Fig. 1) is fed by a symmetrical solar field of 33 ganged
heliostats (Ezawa and Kawaguchi, 2011). Each heliostat (see Fig. 2) is
composed of 43 facets grouped in 3 kinematically-linked banks. A
closed-loop tracking system ensures that the rays reflected from the
center of each heliostat’s control facet (located at the center of the
middle bank, see Fig. 2), are directed towards the upper focal point of
the beam-down facility, 20.3m above the ground. The rest of each he-
liostat’s 42 facets are canted so that their central rays converge near the
upper focal point when the control facet is properly oriented and the
solar incident angle is close to zero. The solar field is organized in 3
concentric heliostat rings, as shown in Fig. 3. These rings contain,
starting from the ring closest to the tower, 6 (A-ring), 15 (B-ring), and
12 (C-ring) heliostats. Each mirror on the CR platform intercepts the
solar radiation reflected by its corresponding heliostat and redirects it
towards the lower focal point. The inclinations of CR facets can be
adjusted independently as shown in Fig. 4.

Shadowing effects between CR facets are negligible due to their
distribution and typical canting. This allows to consider the contribu-
tion of each heliostat ring separately (i.e., depending only on the

Nomenclature

Aout Area of the FOE outlet aperture, m2

din Diameter of FOE inlet aperture, m
dout Diameter of FOE outlet aperture, m
h FOE length, m
hnc Natural convection heat transfer coefficient, Wm−2K−1

QĊR Power reflected by the CR towards the ground, W
Qi̇n Power admitted through the FOE inlet, W
Qȧbs Power absorbed by the FOE, W
Qṙej Power rejected by the FOE, W
Qȯut Power transmitted through the FOE outlet, W
Qṫh Receiver thermal losses (convective and radiative), W
Qṅet Net power recovered by the receiver ( −Q Q̇ ̇out th), W
T Receiver temperature, °C
T0 Ambient temperature, °C
zCRCP i, Height of the CRCP for rings =i A B C, , , m
zin Height of the FOE inlet plane, m

Greek letters

α Limit angle, –
ηcol Collection efficiency, –
ρ Reflectivity of FOE inner surfaces, –
σ Stefan–Boltzmann constant, − −W m K2 4

Abbreviations

CPC Compound Parabolic Concentrator
CR Central Reflector
CRCP Central Ray Convergence Point
FOE Final Optical Element
MADS Mesh-Adaptive Direct Search
VNS Variable Neighborhood Search

Fig. 1. Beam-down solar plant at the Masdar Institute Solar Platform.
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Figure 9: Beam down solar field at Masdar Institute [16].

Solar Thermo-Electric Magaldi, Italia

STEM-CSP is an innovative commercial product developed by Magaldi group. It’s com-
posed of a heliostats field, a secondary reflector, an integrated solar receiver, and a flu-
idizing air system.
The receiver is of a volumetric fluidized bed type able to let the storage up to 80 MWh
of thermal energy in a range of 350 to 620 ◦C [31].
The first installation was made in San Filippo del Mela (ME), with the collaboration of
A2A company. The solar system capacity is 2 MWth thanks to 786 heliostats and 2 field
hectares, capable of storing 550 kWhe or a daily produce 20.5 tons of steam.
The system behaves like a battery and can store energy up to 8 hours [29].

Figure 10: Magaldi beam down solar field [31].
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Yumen Xinneng, China

Yumen Xinneng 50 MW plant, signed in September 2016, is the world large-scale com-
mercial beam down CSP project in the world. The capital cost of the project is valued
at 75 million € with a payback time of 15 years.
The system is made of 15 mirror field modules, with a total of 624,720 m2 reflective area
and two tank 9-hour molten salt thermal system, reaching a maximum temperature of
570 ◦C [36]. Each field module can produce up to 17 MWth. The hyperboloid shape was
selected as a secondary reflector and its radius is around 60 m [15].

Figure 11: Yumen Xinneng beam down solar project [15].

0.4. Particle receiver

The particle receiver pathway has been identified by the National Renewable Energy Lab-
oratory (NREL) as one of the most promising solutions for the next generation Concen-
trated Solar Power (CSP) application, namely Gen3 pathways [33]. Figure 12 summarized
the technology upgrade, generation by generation, of solar tower CSP plants.
Different receiver configurations are possible that can be either down-flow, up-flow and
horizontal flow types. The main design challenges are guaranteeing enough particles res-
idence time and boosting the heat transfer performances [21].
The Heat Transfer Fluid (HTF) can be either enclosed or fluidized in tubes or directly
facing the incoming radiation. The first particle receiver type introduces additional heat
transfer resistance from irradiated walls to particles and moreover, if the mass flow and
cooling system are not properly maintained may cause failure or deterioration. On the
other hand, the main challenge on direct particle receivers is to reduce the convective and
radiative losses and effective particles heat exchangers for possible bottoming power cycle.
Suitable particles heat exchangers are still under investigation. Grains cause exponential
erosion effect on the heat-transfer tubes based on grains velocity.



| Introduction 11

Renewable and Sustainable Energy Reviews 155 (2022) 111828

3

R.P. Merchán et al.

Fig. 1. Classification by reflector geometry of the commonly accepted CSP systems. Yellow arrows represent Sun radiation, orange structures symbolize solar receivers, blue
structures correspond to solar reflectors and brown arrows with dashed lines show reflectors rotation axis.

Fig. 2. Scheme of the main characteristics of past and foreseen future generations of CSP plants as reported by He et al. [15].

1.2. CSP against other renewable or conventional technologies

The key advantage of CSP against other renewable energies like
photovoltaic (PV) energy, or wind power is its ability to store heat for
producing electric energy when desired. Hence, CSP can be coupled
with Thermal Energy Storage (TES) [5], but also with a combustion
chamber burning some conventional fuel or some biogas constituting
hybrid plants. Nowadays, other hybridization schemes are being inves-
tigated, as the coupling with photovoltaic, wind, biogas, or geothermal
systems [16–19]. Both these hybrid and TES systems allow for high
dispatchability and for stabilizing power output. Therefore, the gen-
eration can be shifted to non-Sun shining times, as cloudy periods
or even nighttime [20]. In this way, CSP plants can be designed for

covering baseload or demand peaks, a major advantage with respect
to PV or wind facilities [17]. Köberle et al. [21] presented in 2015 a
very complete comparative analysis on the techno-economic potential
of CSP and PV technologies.

As stated by Pietzcker et al. [22] during the last years PV has
undergone a very rapid growth, associated to a significant cost de-
crease. Nevertheless, the deployment of CSP is being quite slower.
Even International Energy Agency (IEA) [1] recognizes that PV rapid
deployment has been a barrier causing a delay in the deployment of
CSP. Partly this can be associated to the fact that CSP is more dependent
on the quality of the solar resource, direct solar irradiance over 5
kWh/m2 per day is usually considered as the minimum in order to be
economically interesting. On the contrary PV can work with diffuse

Figure 12: Solar CSP generation receiver temperature and technology [34].

Xie et al. proposed a novel downflow configuration in which particles flow is gravity-
driven on an inclined plane, as shown in Figure 13. The residence time is controlled by
a pneumatic control valve at the end of the inclined plate. The experimental shows that
with a total incidence power of 8 kW and a particle mass flow rate of 7.5 g/s, the outlet
temperature reaches 938 K. These performances are in line with the CSP Gen3 targets,
and this type of configuration is well suited for beam down system. The receiver can be
placed below the CPC and the hot particles directly stored in a silo.

(a) (b) 

FIGURE 2. Schematic of the receiver (a) and experimental setup of the receiver (b) 
 

There are three flow channels on the inclined plate for particle flows with different flow rates which are regulated 
by three pneumatic control valves respectively. It is because that the radiation flux distribution is not uniform under 
the solar simulator, and the peak flux is always on the center, as shown in fig. 1(b).   

SIMULATION METHOD 

Optical Simulation Method 

The optical simulation is basically based on the Monte-Carlo (MC) method. The idea of the MC method is to use 
probability concepts to model stochastic physical events such as ray emission, absorption, transmission and reflection. 
The MC method keeps tracking the paths of rays from the emission at some location and encountering with surfaces 
where the rays should be absorbed, transmitted or reflected decided by random number that are generated according 
to the properties of the surfaces. 

 For convenient calculation, the surfaces of the receiver are divided into wall surfaces, particle surfaces and glass 
surfaces which are composed of stainless steel, particle and quartz-glass respectively. The wall surfaces and particle 
surfaces are regarded as diffuse gray surfaces and the glass surfaces are regarded as specular surfaces. The gas inside 
the cavity is treated as radiatively non-participating. 

The optical efficiency of the particle receiver is defined by, 
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where incapeQ ,  is the incident power upon the aperture which was measured by a CCD-camera Lambertian 

method as mentioned above, rad_netQ  is the net radiation power of the particle receiver without considering the 
radiation loss  of the outside surfaces of the receiver, _increfapeQ ,  is the radiation power reflected by quartz-glass from 
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Figure 13: Promising down-flow particle receiver technology for beam down application
[49].
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Nevertheless, is difficult to analytically model the down-flow movement of particles. In
a quasi-static regime, they can be patterned as using the soil plasticity model since the
grain inertia is negligible. In a highly agitated regime particles act as a gaseous phase.
In between the two regimes, the dense particles flow can be modeled as a liquid and the
Bagnold avalanche theory holds [11].
A variety of particles material have been investigated by researchers where ceramic and
silica-based ones are identified as the current most suitable solution due to high durability,
high absorptance, and low cost.
On the other hand, particles receiver technology can sensibly increase the operational cost
of the system due to material losses caused by wind gusts. Recent studies on a 100 MWe

CSP system measured a 0.01% rate of mass loss that requires a 10% inventory replacement
every two years at a cost of around 1 million dollar [33].
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This work aims to create a suitable Matlab program to design a generic Beam Down (BM)
solar power plant at a specific latitude location.
Firstly, an ideal optical model is built considering randomly generated light points at
ground level. The secondary reflector geometric properties like radius, area, and instal-
lation height at different eccentricities are presented. Furthermore, a real optic model is
introduced and the error amplification eccentricity dependency is assessed.
In the second part, a novel 50 MWth solar field creation program is presented. Following
the field parameters and specifications utilized in designing solar power plants.
Subsequently, an optimization model is created to enhance the field performance consid-
ering the sensibly derating efficiency caused by the annual secondary reflector shadow.
The best configurations found are analyzed also in terms of economic parameters.
In the third chapter, a 1D thermal model is constructed in order to assess the silver reflec-
tive surface temperature on the secondary reflector surface and find possible configurations
to keep it under its maximum values.

Beam down optic

In this chapter, a secondary reflector of hyperboloid shape is considered due to better
optical performance concerning the ellipsoid one. A randomly generated light point dis-
tribution is created and all the equations regarding the aiming direction, the reflection,
and the ground receiver intersection are explained for an ideal optic model.
All the results are presented considering dimensionless, with respect to the aim point,
quantities.
The concept of secondary reflector eccentricity is introduced to distinguish a specific hy-
perboloid shape among the infinite ones and the geometric quantities like SR radius, area,
and installation height are presented.
Afterward, the Compound Parabolic Concentrator (CPC) geometry is presented aiming
at boosting the field thermal performances. The concentration ratio and the inlet accep-
tance angles are assessed at different eccentricities and field radii considering a 2D ideal
optic.
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Subsequently, a bivariate normal distributed real optic model is considered in order to take
into account sun, shape and slope errors. The aiming direction of each random light point
is then disturbed and the error amplification effect is assessed at different eccentricities.
The overall methodology is resumed in Figure 1.1.

Figure 1.1: Flow chart of the Beam Down optic chapter.

Heliostat field creation

Beam down solar fields has been always built following a surrounded circular configura-
tion. This thesis aimed to assess the possibility of asymmetric heliostats field pattern at
latitude far from the equator to favor of better cosine effect.
So, a Matlab program was built starting from a radial staggered heliostats layout bounded
between a minimum and maximum field radius. Furthermore, the shadowing and blocking
performance were evaluated following the Sassi method. The intercept factor was assessed
considering a randomly generated light point on the heliostats surface and optical errors.
To unconstrain the hyperboloid shape from the normal circular model, the solar field was
divided into sections of equal azimuth extension, so a sliced SR shape is created.
In BD optic, concerning solar tower, two other derating factors take place, namely the
hyperboloid reflectivity and its shadow effect. The first one is pretty straightforward, just
a few percent of the solar field radiation approaching the secondary reflector is reflected
towards the receiver. The second one was evaluated by generating a random point light
distribution on the free heliostats surface (neither shadowed nor blocked) and intersecting
them with the SR with the direction given by the sun vector. The number of rays that
don’t cross the hyperboloid surface defines the SR shadow efficiency.
Results showed that the SR shadow effect is non-negligible, especially in the best cosine
part of the field and at high eccentricity. So, an optimization model was built. Worst
annual performing heliostats are deleted in favor of farther less shadowed ones.
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Nevertheless, the selection of farther heliostats is limited by the CPC shape due to lower
intercept performances. So, starting from a circular heliostats design, the first value of
both the inlet radius and concentration ratio of the CPC is found and utilized as a first
guess for the optimization procedure. An iterative process was built, varying both CPC
parameters at a given eccentricity to find the best configuration possible.
Finally a techno-economic analysis is performed on the optimal fields found at differ-
ent eccentricities and aim point height in order to find the best configuration in terms
of minimum Levelized Cost Of Heat (LCOH). The overall methodology is resumed in
Figure 1.2.

Figure 1.2: Flow chart of the Heliostats field creation chapter.

SR thermal model

In this chapter, a 1D thermal model of the hyperboloid was built to assess the temperature
distribution on the SR. Different configurations were considered, like a sandwich, finned,
not finned, and dry cooled one. In the first one, both hyperboloid surfaces are made
out of a silver surface and a glass cover. In the second one, the upward-facing surface
is substituted by an aluminum fin installed on the same material support. The last
one considers the possibility of withdrawing a heat contribution from the upward-facing
surface in the metal configuration without fin to limit the silver temperature.
In all cases, radiative, convective, and conductive heat is deeply analyzed and the silver
temperature, namely the bottleneck one, is evaluated at different wind velocities.
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2| Beam Down optic

In this chapter, a simplified beam down model is presented where point light sources
randomly distributed on the field are considered as energy sources. The objective is to
introduce a simplified theory for a point-focus Beam-Down system both in term of ideal
and real optic behaviour.
Starting from an ideal optic the geometry of the secondary reflector is analyzed in terms
of radius and area variation at different eccentricities. Subsequently, optic errors are con-
sidered and the error amplification effect is assessed at different eccentricities.
To generalize the analysis all the calculus and results that will be shown are adimension-
alized by the aim point length.

2.1. Secondary reflector geometry

The secondary reflector is the main character in a beam-down configuration. As presented
before, a surface that can reflect a bunch of rays pointing an upper focus toward a lower
focus is of a Cartesian type, precisely in this work, a hyperboloid. In order to do so, the
two solar field foci correspond to one of the surface.
The secondary reflector considered in this work is of hyperbolic shape due to better optic
performances concerning the elliptical one. It’s generally expressed by the simplified
canonic form in Equation 2.1.

x2

a2
+

y2

b2
− z2

c2
= −1 (2.1)

If a = b the surface is a hyperboloid of revolution. The surface defined by Equation 2.1
is called also two-sheet hyperboloid since the surface is convex.
Considering a two-sheet hyperboloid, an important parameter utilized in a beam-down
system to identify one specific surface among the infinite ones is the eccentricity, defined
as Equation 2.2.
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e =
FocDist/2 + c

FocDist
(2.2)

Where FocDist is the distance between the upper and the lower focus and c is the semi-
minor axis, as shown in Figure 2.1.

Figure 2.1: 2D representation of geometry parameters for a hyperbolic secondary reflector.
FR is the Field Radius and AP the Aim Point height.

The value of eccentricity for a two-sheet hyperboloid is always greater than one. As the
eccentricity increases, as shown in Figure 2.2, the hyperboloid becomes more squeezed to
half of the focal distance, and its radius increase to catch the same amount of ray lights
coming for the ground.

Figure 2.2: 3D (left) and 2D (right) representation of hyperboloid at different eccentricity.
The surface radius is defined by an ideal optic, considering Field Radius (FR) over Aim
Point (AP) equal to 0.5, upper focus at z = 1 and lower at z = 0.
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2.2. Random light point distribution

In this preliminary analysis, the solar field is made by randomly distributed light point
sources along a circular field radius. The polar coordinates of a random i-ray origin in a
circle are created following Equation 2.3.

ri = R ·
√
rand, θi = rand · 2π (2.3)

Where R is the dimensionless (by the aim point) field radius and rand is a normally
distributed random number between 0 and 1. The polar coordinates are then translated
into Cartesian ones and a random light point sources distribution is created, as shown in
Figure 2.3.

Figure 2.3: Circular random point distribution for Field Radius (FR) over Aim Point
(AP) equal to 1.

2.3. Ideal optic model

The generic position of a point belonging to the i-ray, [xi, yi, zi], can be evaluated with
the ray origin position [xray,i, yray,i, zray,i] and a direction pointing towards the upper focal
point defined by [ua

x,i, u
a
y,i, u

a
z,i].

xi = xray,i + k · ua
x,i; yi = yray,i + k · ua

y,i; z = zray,i + k · ua
z,i (2.4)

In order to obtain the coordinates of intersection between the i-ray and the secondary
reflector, the system including Equation 2.1 and Equation 2.4 has to be solved for the
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parameter k and the coordinates of intersection [xint,i, yint,i, zint,i] are found.
The reflection at the hyperboloid intersection point is performed with the law of specu-
larity. Given the surface normal vector n̂, an incident versor î and a reflected versor r̂,
the following two equation hold.

î · n̂ = r̂ · n̂ (2.5)

(
î× r̂

)
· n̂ = 0 (2.6)

In ideal condition Equation 2.5 states that the angle between the normal vector and the
reflected one will be the same as the one between the normal and the incidence vector.
Equation 2.6 guarantee that all the vectors lay on the same plane.
Given a i-ray incidence direction expressed by the aim versor and the normal secondary
reflector versor evaluated as Equation 2.7, the reflected direction [ur

x,i, u
r
y,i, u

r
z,i] can be

found solving Equation 2.5 and Equation 2.6, as shown in Equation 2.8.

nx,i =
∂f/∂x

∥n∥

∣∣∣∣
xint,i,yint,i

; ny,i =
∂f/∂y

∥n∥

∣∣∣∣
xint,i,yint,i

; nz = −1; (2.7)

ur
x,i = ua

x,i − 2sc · nx,i; ur
y,i = ua

y,i − 2sc · ny,i; ur
z,i = ua

z,i − 2sc · nz;

sc = nx,i · ua
x,i + ny,i · ua

y,i + nz · ua
z,i (2.8)

Then, the ground image can be found knowing the position of intersection with the
hyperboloid and the reflected direction. So another k value exists, connecting the surface
intersection with a horizontal flat plane positioned at the lower focus and facing the aim
point. However, in the case of ideal optic behavior, the ground image collapses into a
point.



2| Beam Down optic 21

2.3.1. Geometrical consideration

Secondary reflector

As anticipated before, the more the eccentricity increases, the more the secondary reflector
will be crushed to half of the focal distance and that will cause a higher hyperboloid radius
as presented in Figure 2.4.

Figure 2.4: Hyperboloid radius variation at different eccentricity. The surface radius is
defined by an ideal optic, considering Field Radius (FR) over Aim Point (AP) equal to
0.5, 1 and 1.5. Upper focus at z = 1 and lower at z = 0.

At a given eccentricity the hyperboloid radius follows the increase of the field one to catch
the farthermost light point. To have a sensibility on the dimension of the secondary re-
flector in ideal optic, if we consider an aim point equal to 100 m and a field radius of 150
m, the hyperboloid radius will be 40 m for an eccentricity equal to 3, approximately half
of the field.
The radius trend can lead to thinking that the secondary reflector area increase as the ec-
centricity increase. As shown in Figure 2.5, this reasoning is confirmed for an eccentricity
value lower than 2.5, but then the hyperboloid area decreases as the eccentricity increase.
The area value, Ahyp, can performed by integrating Equation 2.1 in polar coordinates along
a circumference, between zero and the hyperboloid maximum radius, Rhyp, as shown in
Equation 2.9.

Ahyp =

∫ 2π

0

∫ Rhyp

0

f(rcos(θ), rsin(θ)) r dr dθ (2.9)
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Figure 2.5: Hyperboloid-field area ratio. The surface radius is defined by an ideal optic,
considering Field Radius (FR) over Aim Point (AP) varying from 0.5 to 4. Upper focus
at z = 1 and lower at z = 0.

Again if we consider the same field as before, FR/AP equal to 1.5, the area of the hy-
perboloid is almost 7% of the field one. The trend tends to flatten out for a bigger field
radius or lower aim point. At eccentricity equal to 1.5, the hyperboloid radius sensibly
reduces and so its area.
Moreover, as anticipated before, as eccentricity increases the secondary reflector squeezes
to half the focal distance. Therefore the center height, as shown in Figure 2.6, decreases
and so does the relative tower cost at the same weight.
At value of eccentricity over 10, the hyperboloid becomes a flat surface at half of the focal
point distance.

Figure 2.6: Hyperboloid vertex point height at eccentricities varying from 2 to 10.
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Compound Parabolic Concentrator

Another important geometric parameter to consider in designing a beam-down optic is
the Compound Parabolic Concentrator (CPC) entrance acceptance angle.
In the next paragraphs will be explained how the real optic causes error amplification on
the ground image and a concentrator is generally needed to decrease and homogenize the
receiver image in order to boost the thermal receiver performances.
As anticipated before the CPC is a particular concentrator in which the focal point of one
parabola coincide with the end of the other one.
Following Figure 2.7, if the inlet angle θi of the ray coming from the secondary reflector
is higher than the maximum one allowed by the CPC, θmax, the ray will be rejected out
and so it cannot be collected by the receiver. This angle is also defined as the half of the
angle between the connection lines of the upper and lower ends of the two parabolas.

the design process of CPC can be described as follows with the reference
to Fig. 1, which is called ‘edge-ray principle’ or the ‘string’ method
[41–43]: In the meridian section of a 3D CPC, assuming all of the rays
entering at the extreme collecting angle θc shall emerge through the rim
point P′ of the exit aperture, the parabolic curve with its axis parallel to
the direction θc and its focus at P′ will be derived as one branch of the
reflector shape; The complete CPC concentrator in 3D geometry is then
obtained by rotating the parabola about the concentrator axis (not the
axis of the parabola). If the diameter of the exit aperture is ′a2 and the
maximum allowable incidence angle is θc, and the overall length L is:= + ′L a a θ( )cot c (1)

The diameter of the entry aperture is= ′a a θ/sin c (2)

The geometrical concentration ratio is a critical parameter in the
design of nonimaging optics which is defined as the ratio of the aper-
ture area relative to the receiver's area. The theoretical concentration
ratio of CPC in 2D geometry is shown in Eq. (3) [44,45], which implies
that CPC becomes close to being an ideal concentrator [44]. ‘Ideal’
means all of the rays inside the maximum collection angle will not be
reflected back and emerge from the exit aperture. In addition, the
meridian section of CPC in 2D space is actually ideal and has the
maximum theoretical concentration ratio. The principles of designing
2D CPC are also provided in several U.S. patents [46–48].= ′ =C a a θ/ 1/sin c (3)

If taking the centre of the exit aperture as an origin for Cartesian
coordinates and taking z-axis along the concentrator axis as shown in
Fig. 1, the equation of the meridian section of a CPC can be expressed as
Eq. (4) [44] where the diameter of exit aperture is ′a2 and the accep-
tance angle (maximum allowable incidence angle) is θc. As the CPC
surface is obtained by revolving a parabolic curve about the z-axis, this
surface can be described by Eq. (4) with = +r x y2 2 2. Winston [44] also
presented the surface equations derived from the polar equation of the
parabola and azimuthal angle. Another study [49] provides a novel

method to calculate the maximum concentration of CPCs in direction
cosine space on a polar plane.+ + ′ + − ′ +− ′ + + =r θ z θ a θ r a θ θ z

a θ θ
( cos sin ) 2 (1 sin ) 2 cos (2 sin )

(1 sin )(3 sin ) 0
c c c c c

c c

2 2 2

2 (4)

2.2. Design considerations in structure

2.2.1. 2D and 3D CPC
Generally, CPC can be roughly classified into two categories which

are two-dimensional (2D) and three-dimensional (3D). The 2D CPC
refers to the CPC that has a longitudinal axis as shown in Fig. 2a). It can
also be called linear CPC or trough-like CPC for some special cases. 3D
CPC (Fig. 2b)) represents the CPC whose geometry is obtained by ro-
tating a 2D meridian section of CPC at an angular interval. CPCs can be
symmetric or asymmetric. The one with four parabolic surfaces and
square apertures are called crossed CPC (CCPC) or orthogonal CPC.
With the consideration of different geometrical translations, the optical
performance of various 3D CPCs were investigated by many re-
searchers. For example, Timinger et al. [50] investigated the optimi-
zation of faceted CPCs with discretization of the curvature in both the
circumferential and axial directions; van dijk, et al. [51] simulated the
relationship between transmittance and concentration ratio (C) of cir-
cular, square and hexagonal concentrators with reflectance (R) of 95%
as shown in Fig. 3, which illustrates that the more sides of CPCs aper-
tures has, the closer of optical performance approaches to ideal trans-
mittance; The study by Cooper et al. [52] also implies similar results, in
which the optical properties of CPCs with polygonal apertures having 3,
4, 5, 6, 8, 12 sides and circular aperture were compared.

2.2.2. Dielectric filled CPC (dCPC)
The dielectric CPC is filled with a dielectric material, which is used

to enlarge the acceptance angle of a CPC for the same geometry. The
dielectric filled 2D and 3D CPCs with total internal reflection were put
forward by Winston [54]. The acceptance angle ′θ c inside the dielectric
and the acceptance angle θc of dCPC are shown in Fig. 4(a). According
to the law of refraction, if the refractive index of the dielectric is n, the
maximum values of both internal and external acceptance angles that
can be designed under total internal reflection conditions at certain
refractive indices are shown in Fig. 4(b). In addition, there will be a
small enhancement on the angular acceptance of the dielectric-filled 2D
CPC for nonmeridional rays [44].

Therefore, the maximum theoretical concentration ratio of dCPCs
can be expressed as Eq. (5) where θc is the acceptance angle inside the
dielectric and the refractive index of air is assumed as 1. It is clearly to
see that the concentration ratio increases by the factor n or n2 com-
paring with reflective CPC.= =C n sinθ for trough CPC or C n sin θ for DCPC/ ( ) / ( 3 )c c

2 2 (5)

According to Snell's law (Eq. (6)), for the rays whose incidences are

Fig. 1. Construction of the CPC profile from the edge-ray principle [31].

Fig. 2. Example of 2D and 3D CPCs, a) 2D trough
CPC with a glass on top and PV on bottom [53]; b)
3D CPCs with polygonal apertures of 4, 5, 6, 8, 12
sides and revolved CPC (n = ∞) [52].
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Optical path of a single CPC.
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Structure of a CPC solar concentrator.
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Figure 2.7: 2D representation of a Compound Parabolic Concentrator (CPC) [45][52].

The theoretical 2D concentration ratio of the CPC can be evaluated as Equation 2.10.

CRcpc,2D =
1

sin(θmax)
(2.10)

Where θmax is the maximum value of incidence angle measured from the longitudinal axis
of the CPC. The theoretical value of the CR presented, is strictly true in 2D optic. Each
ray entering with an angle lower than the admissible one will be transmitted. That’s can
be also the case for a 3D shape only if all the incidence rays intercept the longitudinal
axis at the CPC entrance.
The higher will be the secondary reflector eccentricity, the higher will be the maximum
entrance angle into the CPC aperture, so the lower the concentration ratio. This is mainly
caused by an increase of the zenith angle of the hyperboloid normal vector as eccentricity
increases and by Snell law, a higher angle of reflection.
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(a) Acceptance angle (b) 2D concentration ratio

Figure 2.8: 2D variation of CPC entrance acceptance angle (left) and CPC concentration
rario (CR) (right). Ideal optic, considering Field Radius (FR) over Aim Point (AP) equal
to 0.5,1 and 1.5, upper focus at z = 1 and lower at z = 0.

As presented in Figure 2.8, the bigger the field radius at the same aim point height, the
higher will be the acceptance angle.
This effect is caused by an increased incidence angle on the hyperboloid surface of the
farthermost field light point, and so a related bigger reflected angle.
The 2D concentration ratio of the CPC ranges from 5 at eccentricity equal to 1.5 and
FR/AP equal to 1.5, till almost 1.5 at eccentricity equal to 10. The trend for a bigger
field is flattened out at eccentricity higher than 5.
The higher the CR of the CPC the smaller will be the outer image at the same inlet
radius. On the other hand, this is at the expense of the CPC height. The higher is the
CR the higher will be the CPC height. This value may reach a sensibly high number for
high CR. If we consider 1 m receiver aperture radius, for 2D CPC concentration ratio
equal to 3.5, the height of the tertiary concentrator reaches values around 15 m.
For that reason, generally, an array pattern is utilized. The same CR can be kept but
partitioning the receiver aperture can reduce the height of the tertiary concentrator.
Another possibility can be the truncation of the CPC. It consists of a height reduction
because in the upper half of the CPC, the increase in height along the longitudinal axis,
HT , is not followed by a sensibly increase in width, aT , as shown by the almost vertical
curve of Figure 2.9. Practise shows that even if the upper part of the CPC is deleted, the
CR doesn’t decrease so much.
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It is easy to obtain the concentration ratio of a CPC after truncation using the geometrical
relationship in Fig. 2.51 (Eq. (2.73)):

CT ¼ aT
a0

¼ f sinðqT # qaÞ
a0 sin2ðqT=2Þ

# 1 ¼ ð1þ sin qaÞsinðqT # qaÞ
sin2ðqT=2Þ

# 1 (2.73)

The CPC concentration ratio after truncation is related to the concentration angle after
truncation, qT, and the concentration angle of the original full-size CPC, qa. The analysis
shows that when the truncation ratio is less than 0.5, the change in concentration ratio is
small, especially when the original concentration angle is large. When the original
concentration angle is small, the concentration ratio will decrease dramatically when
the CPC is truncated by 0.5. The larger is truncation ratio is, the faster the drop is in the
concentration ratio. When the original concentration angle is large, as mentioned, the
reason for the slight influence of CPC truncation on the CPC concentration ratio is that
the increase in aperture width and height is not obvious. Apart from that, there are two
other reasons: (1) after the CPC is truncated, the light that is originally outside the
acceptance angle can be reflected to the exit; the incident angle of light jqj > qa, qa, is the
original CPC half-acceptance angle, whereas the original light with an incident angle less
than jqaj can still reach the light exit; (2) when the CPC is truncated, the reflection number
of some light within the CPC is reduced, which is also beneficial to the receiver.
Therefore, for a combination of several reasons the CPC truncation has little influence on
collector performance. In real practice, most CPC collectors are truncated.
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Effect of a truncated CPC on the ratio of height and width [21].
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Figure 2.9: 2D CPC truncation curves at different maximum acceptance angle. The
dashed line represents the full CPC geometry. θa is the maximum acceptance angle [52].

A complete 3D CPC is then obtained by the surface of the revolution of the 2D CPC
along its longitudinal axis and its concentration ratio will be the square of the 2D one.

CRcpc,3D =
1

(sin θmax)2
(2.11)

2.4. Real optic

2.4.1. Optical errors

In the real optic model, the ray is affected by deviation from the ideality of Snell’s law.
A general ray due to sun shape, material defects, and imperfections is scattered and not
perfectly reflected.
These types of errors can be divided into sun shape errors, slope errors, specularity errors,
tracking errors, and shape errors.

Sunshape errors

The sun viewed from the Earth appears as a disk, not as a point source. The sun shape can
be described by the normalized radiance profile L̂(θ) of the solar radiation that represents
the energy rate per unit of normal projected area and per unit of solid angle in a specific
direction.
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Considering a generic parabolic collector, normal to the sun and casting the rays towards
a solar concentrator with direction defined by (θ, ϕ), the radiant power transmitted can
be evaluated by Equation 2.12.

dq̂ = L̂(θ)sinθdθdϕcosθdA (2.12)

Where sinθdθdϕ is the solid angle and cosθdA is the area of the areola in perpendicular
direction to θ and ϕ, as figured in Figure 2.10.
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Figure 1. Geometry for the definition of the BRDF. 

 
The irradiance i i( , , )iE θ ϕ λ  is the radiant flux per unit area that is incident on a specified point in a 
specified surface expressed in W/m2 [6, 7]. Considering an element flux i id ( , , )F θ ϕ λ  flowing through 
a given direction i i( , )θ ϕ  relatively to an element dS of area, the irradiance is 
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The radiance r r( , , )rL θ ϕ λ  is the flux per unit projected area and per solid angle that is emerging from 
a specified point of a specified surface in a specified direction expressed in W·sr·m-2 (Figure 2) [6]. 
The defining equation of radiance is 
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where d d cosPS S θ= ⋅ , called projected area, is the area of the projection of elemental area dS onto a 
plane perpendicular to direction r r( , )θ ϕ . The solid angle dΩ (Figure 1) subtended by area dA at point 
O is the ratio of the area dA of a portion of sphere of center O to the squared radius R of this sphere 
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Figure 2. Geometry for the definitions of radiance and solid angle. 

 
The BRDF describes the complete optical behaviour of a surface and can be of huge interest for 
applications such as surface quality control [3], material development and coatings technology [4, 9–

Figure 2.10: Solid angle definition for a reflected direction identified by θ and ϕ [32].

The overall hemispherical radiant power can be then calculated by integrating Equa-
tion 2.12 in θ = [0, 2π] and ϕ = [0, π/2].
The ratio between the radiant power in a specific direction and the overall hemispherical
contribution, as expressed in Equation 2.13, express the probability of a ray leaving the
collector surface in a certain (θ,ϕ) direction [24].

P (θ, ϕ) =
L̂(θ)sinθcosθdθdϕ∫ 2π

0

∫ π/2

0
L̂(θ)sinθcosθdθdϕ

(2.13)

Slope errors

If we deepen our look at the surface of a generic object, we can detect some irregularities
caused by the process of fabrication. The specific industrial procedure can minimize this
effect but is nearly impossible to delete them or in general, will be a trade-off between
cost and performance of the object considered.
Slope errors, as shown in Figure 2.11, represent ideal surface deviation on a larger scale
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(local ripples or distortions) than specularity ones, which refer to the micro-surface aber-
ration effect.

This paper focuses on understanding the effect of the errors introduced by the various com-
ponents of the light harvesting system. In particular, both geometric and optical error sources
are numerically modeled and their influence on the size of the image on the receiver, and hence
the flux into the receiver, is quantified. These considerations should assist in reaching decisions
regarding accuracy and performance of selected components, helping to optimize the cost vs.
performance curve for each application. Heliostats are used as the concentrating technology in
the examples set forth. Despite this, results are pertinent and can be extended to other light-
harvesting techniques. The intention is to present a methodology that can be applied in future
codes predicting field performance to take into account the various error sources occurring.

II. ERROR SOURCES

Errors are introduced into a solar harvesting system from each component. Mirrors are not
perfect specular reflectors, the sun is not tracked continuously, mechanically holding mirrors in
place introduces stresses, and loads deform mirrors in a non-negligible way. These errors can
be separated into optical and geometrical errors, and will be discussed separately below.

A. Optical errors

Let us first consider optical errors arising from the surface finishing. A close inspection of
the mirror surface will reveal many peaks and valleys that cause the physical surface to differ
from its precise mathematical form. These imperfections have a spatial distribution and can be
Fourier-analyzed to obtain their spectrum. One can then define a cutoff length: imperfections
on a scale below the cutoff are considered to be surface roughness (a microscopic surface
effect) and above which they are considered to be slope error (a macroscopic effect).

Figure 1 schematically represents the surface and roughness errors and their effect on the
reflected beam. The surface slope error is the deviation of the local surface normal vector from
that of the mathematically ideal surface, causing a broadening of beam divergence. The rough-
ness, or specularity, error causes the reflected beam to leave at an angle slightly different from
the angle of incidence, causing beam scattering.

The two errors are combined to give the total optical error as follows:

ropt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

rough: þ 4 r2
slope

q
: (1)

Note that the optical error, ropt, is in terms of the reflected vector, as is the specularity error.
However, an error e in the slope results in a reflected vector error of 2 e (c.f. Fig. 1(a)), thus
yielding the factor of 4 in the rslope term.14

B. Geometrical errors

Errors are also introduced by the physical placement of the heliostats in a field and the
mechanism by which they track the sun. Three main sources of geometrical errors have been

FIG. 1. Illustration of optical errors, n̂ corresponds to the surface normal vector and r̂ to the ideal specular direction. In
each case, the angular error is denoted by e.
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Figure 2.11: Slope errors [9].

These irregularities can be modeled considering a statistically correlated perturbation,
p̂(θ), of the ideal normal surface so that the real reflection will differ from the ideal one.
Therefore the probability of a generic normal vector pointing in a generic direction (θ, ϕ)
is given by Equation 2.14.

P (θ, ϕ) =
p̂(θ)sinθdθdϕ∫ 2π

0

∫ π/2

0
p̂(θ)sinθdθdϕ

(2.14)

Specularity errors

We have seen as slope errors affect the surface scattering effect caused by deviation from
the ideal surface at a slightly larger scale. On the other hand, specularity errors, as shown
in Figure 2.12, are caused by the microscopy non-ideality of a surface.

This paper focuses on understanding the effect of the errors introduced by the various com-
ponents of the light harvesting system. In particular, both geometric and optical error sources
are numerically modeled and their influence on the size of the image on the receiver, and hence
the flux into the receiver, is quantified. These considerations should assist in reaching decisions
regarding accuracy and performance of selected components, helping to optimize the cost vs.
performance curve for each application. Heliostats are used as the concentrating technology in
the examples set forth. Despite this, results are pertinent and can be extended to other light-
harvesting techniques. The intention is to present a methodology that can be applied in future
codes predicting field performance to take into account the various error sources occurring.

II. ERROR SOURCES

Errors are introduced into a solar harvesting system from each component. Mirrors are not
perfect specular reflectors, the sun is not tracked continuously, mechanically holding mirrors in
place introduces stresses, and loads deform mirrors in a non-negligible way. These errors can
be separated into optical and geometrical errors, and will be discussed separately below.

A. Optical errors

Let us first consider optical errors arising from the surface finishing. A close inspection of
the mirror surface will reveal many peaks and valleys that cause the physical surface to differ
from its precise mathematical form. These imperfections have a spatial distribution and can be
Fourier-analyzed to obtain their spectrum. One can then define a cutoff length: imperfections
on a scale below the cutoff are considered to be surface roughness (a microscopic surface
effect) and above which they are considered to be slope error (a macroscopic effect).

Figure 1 schematically represents the surface and roughness errors and their effect on the
reflected beam. The surface slope error is the deviation of the local surface normal vector from
that of the mathematically ideal surface, causing a broadening of beam divergence. The rough-
ness, or specularity, error causes the reflected beam to leave at an angle slightly different from
the angle of incidence, causing beam scattering.

The two errors are combined to give the total optical error as follows:

ropt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

rough: þ 4 r2
slope

q
: (1)

Note that the optical error, ropt, is in terms of the reflected vector, as is the specularity error.
However, an error e in the slope results in a reflected vector error of 2 e (c.f. Fig. 1(a)), thus
yielding the factor of 4 in the rslope term.14

B. Geometrical errors

Errors are also introduced by the physical placement of the heliostats in a field and the
mechanism by which they track the sun. Three main sources of geometrical errors have been

FIG. 1. Illustration of optical errors, n̂ corresponds to the surface normal vector and r̂ to the ideal specular direction. In
each case, the angular error is denoted by e.
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Figure 2.12: Specularity error [9].

A general deviation from the specular reflection is again statistically correlated and the
probability can be evaluated with Equation 2.14. The only difference is that, while the
slope error affects the normal surface vector, the specularity error is generally defined as
a reflected ray variation.
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Shape errors

The last error that can be identified on a reflector geometry is the shape error. As shown
in Figure 2.13, heliostats are built by different facets and these facets may be oriented
incorrectly caused by, for example, thermal expansion and wind loads that can bend
the structure. This causes a scattering effect of the reflector that can be statistically as
Equation 2.14.

identified:4 (1) from the tilt of the heliostat pedestal with respect to the vertical, or azimuth
error, (2) canting non-orthogonality relative to heliostat centerline, referred to as canting error,
and (3) biasing in the encoder of the gear mechanism, or tracking error.

The azimuth error arises from the fact that the azimuthal plane of rotation is not perfectly
parallel to the surface of the earth, or, alternatively, can be thought of arising from the heliostat
pedestal not being perfectly vertical, as illustrated in Fig. 2. Note that this error is pertinent to
azimuth-elevation heliostat tracking systems.

Canting error arises when the individual heliostat facets are not canted in the correct direc-
tion. For example, assume a heliostat comprised of flat facets is to have a parabolic cant, as
illustrated in Fig. 3. The canting error is the deviation of the surface normal vector of each
facet from its ideal direction.

Tracking error occurs when there is an offset in the motor encoder between the real and
calculated positions. Alternatively, this error can be thought of arising from the time dependent
angular motion of the sun between discrete steps of the rotational mechanism motor.

When using a feedback system to aim the heliostat, some of the errors discussed, such as
azimuth and tracking error, become irrelevant; the heliostat is positioned based on the image it
produces on the target plane and not according to predefined equations. However, using an
open-loop control system simplifies the programming and reduces the number of sensors
required, thus reducing the overall cost of the heliostat field. Thus, these errors will be consid-
ered in the present analysis.

C. Other sources of error

Other sources of error include control system granularity, sun position algorithm, latitude and
longitude variation within the field, computational and transmission time errors, and algorithm

FIG. 2. Illustration of the azimuth error: an angular error in the pedestal causes the image centroid to be displaced.

FIG. 3. Illustration of the canting error: individual facets are incorrectly aimed.
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Figure 2.13: Shape error [9].

Tracking errors

In CSP application, heliostats have to change orientation systematically in order to follow
the sun’s movement and reflect the incident lights towards the aim point.
In order to attain these results, a motor-controlled tracking system is necessary. This
type of system is not perfect and causes angular offset.
Again this type of error can be modeled as the geometrical defection errors explained
before.

2.4.2. Combination of errors

In this work, was decided to neglect the contributions given by tracking error and shape
error. It’s really difficult to select individually the error value of each factor and we can
simplify the problem by considering the shape and tracking error as a part of the slope
error. This is a reasonable assumption because, despite the different mechanism that
creates the error, they behave equally as a scattered surface, and thereby the slope error
can be directly seen as the overall interference [24].
The probability function described in the previous sections for sun-shape model (Equa-
tion 2.13) and for geometrical distorsion (Equation 2.14) can be represented by a multi-
variate normal distribution.
Two angles θ and ϕ, representing the azimuth and zenith of a vector, can uniquely charac-
terize an ideal direction. Therefore, their value of disturbance δθ and δϕ can be modeled
by a bivariate normal distribution.
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The probability distribution can be simplified by considering the disturbances indepen-
dent one to each other. The distribution is represented by Equation 2.15.

f(δθ, δϕ) =
1

2πσ2
i

exp

(
−1

2

[(
δθ − µ

σi

)2

+

(
δϕ− µ

σi

)2
])

(2.15)

Where µ is the mean value and is equal to 0. σi is the standard deviation of the i-error
considered. The bi-variate normal distribution trend is highlighted in Figure 2.14.

Figure 2.14: Bi-variate normal probability function.

In a ray-tracing program, each disturbance is applied in the stage in which it occurs,
namely sunray and heliostat surface perturbation. On the other hand, a common method
is the convolution of the sun, slope, and shape errors on the heliostat aiming direction.
This method was firstly introduced in 1979 by the U.S. Department of Energy and it
states that an overall standard deviation, for each angular i-disturbance, can be evaluated
following Equation 2.16 [6].

σi =
√
σ2
sun + 4σ2

slope,i + σ2
spec,i (2.16)

Where σslope is multiplied by a factor 4 because a disturbation on the normal direction
causes a double error on the reflected one. The method guarantees reasonable accuracy
[30]. Given a reflected direction, a perturbation (δθ, δϕ) is applied on the ideal versor
defined by (θ, ϕ) and the new vector cosines are evaluated.
The convolution is being considered only for the heliostat’s geometric imperfection and
the sun shape. The hyperboloid optic error is directly applied at the secondary reflector.
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2.4.3. Error amplification effect

Ideally, all the field rays aimed at the upper focal point are concentrated in an infinitesimal
ground image. This effect is guaranteed by the hyperboloid surface properties.
In real optic behavior, a ray won’t reach perfectly the aim point due to optical disturbances
and its intersection with the secondary reflector is not the ideal one. For this reason, the
secondary reflector radius increases in order to catch the scattered rays.
Moreover, the optic error on the hyperboloid causes further aiming displacement and so
the ground image will be again bi-normal statistically correlated, as shown in Figure 2.15.

Figure 2.15: Ground image rays probability distribution. Simulation perform with 1
million rays.

Table 2.1 reports the value of optical errors considered.

Property Value [mrad] Description
σsun 4.1 Sun shape error
σslopef 1.53 Heliostats field slope error
σspecf 0.2 Heliostats field specularity error
σslopeh 1.53 Hyperboloid slope error
σspech 0.2 Hyperboloid specularity error

Table 2.1: Values of sun shape, slope and specularity errors considered. Values from
default SolarPILOT configuration.
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(a) Ideal Optic: e = 1.5 (b) Real Optic: e = 1.5

(c) Ideal Optic: e = 2.5 (d) Real Optic: e = 2.5

(e) Ideal Optic: e = 10 (f) Real Optic: e = 10

Figure 2.16: Hyperboloid 2D rays reflection. FR/AP equal to 1. Upper focus at z = 1
and lower at z = 0.
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If the same values of optical errors are considered, namely the ones of Table 2.1, the
bigger the distances between the ray ground position and the hyperboloid intersection,
the higher error will cause on the ground image, simply because the distances between
the ideal crossing and the real one in the secondary reflector is higher.
The error amplification effect at different eccentricity values is shown in Figure 2.16 and
Figure 2.17.

(a) e = 1.5 (b) e = 2.5

Figure 2.17: Ground image ray probability distribution. Bins 30x30. FR/AP equal to 1.
Upper focus at z = 1 and lower at z = 0. Simulation perform with 1 million rays.

Translating these arguments into eccentricity consideration, the lower will be the ec-
centricity (bigger hyperboloid squeezed to the half of the focal point, so less ray path
distances), the smaller will be the ground image, as shown in Figure 2.18. The scattering
effect on the results is caused by the number of rays considered.
Nevertheless, a ray count over a million is generally sufficient to properly analyze the
receiver flux [48]. A spillage factor of 1% was considered in order to avoid outlier values
on the ground image radius.
At a given field radius over the aim point, the trend of the ground image radius is flattened
out at an eccentricity higher than 4. By taking the same field example of before, FR/AP
equal to 1.5 and eccentricity equal to 3, the CPC inlet radius, if present, or the receiver
one is almost 5 m.
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Figure 2.18: Ground image radius at eccentricity varying from 1.5 to 10 and Field Radius
(FR) over Aim Point (AP) equal to 0.5, 1 and 1.5. 1 million ray simulation. Ground
image spillage equal to 1%.

Furthermore, if we consider a real flat heliostat and not a single light point source coming
from the ground, the aberration effect plays another big role in the ground image ampli-
fication effect. Given a sun position, the mirror rotates in order to cast the ray coming
towards the aim point. The movement is identified by the displacement of the normal
vector of the mirror and so the same normal direction is applied to every point of the
mirror, as figured in Figure 2.19. This causes a spread image at the upper focus and so
an even higher ground one.

power plant. Indeed, as firstly described in our previous
paper (Leonardi and D’Aguanno, 2011), the solar power
collected by the plant can be expressed as the product of
the DNI with an effective total area, Arec

eff , called “character-
istic function” of the solar plant (where the apex rec refers
to the receiver), which depends on the sun position (az and
c, respectively).

We note that, given a certain distribution of heliostats in
the solar field, the total solar power collected at the receiver
at a given time (that is, for a given value of az(t) and c(t)), is

P totðtÞ ¼ DNIðtÞ $ Arec
eff ðazðtÞ; cðtÞÞ; ð6Þ

where the DNI(t) and Arec
eff are expressed in W/m2 and m2,

respectively, and

Arec
eff ðazðtÞ; cðtÞÞ ¼

XNh

k¼1

Aeff
k ðazðtÞ; cðtÞÞ; ð7Þ

where Aeff
k ðazðtÞ; cðtÞÞ is the effective area of the heliostat k

once cosine, shading and blocking effects have been consid-
ered and it is computed as

Aeff
k ðazðtÞ; cðtÞÞ ¼ Rrefl

h Rrefl
hyp

XN 0t

j¼1

AjðkÞ cos hðkÞ
!

$
XN 0rays

i¼1

F i Rrefl
cpc;i

" #ni Atti

h i
9
=

;; ð8Þ

where Aj(k) is the area of the tessera j of the heliostat
k; hðkÞ ¼ acosðjnðkÞ

$$!
% s!jÞ; nðkÞ

$$!
is the normal to the surface

of the heliostat, s! is the sun ray unit vector, N 0t is the sub-
set of the Nt tesserae of the heliostat k which contributes to
solar power collection (not subject to shading and block-
ing), N 0rays is the subset of the Nrays rays of the bundle of
the solar beam which arrives to the receiver, Fi is the
weighting factor given in Eq. (1), Rrefl

h is the heliostat reflec-
tivity, Rrefl

hyp is the hyperboloid reflectivity, Rrefl
cpc is the CPC

reflectivity, ni is the number of reflections of the i-th solar
ray within the CPC surface, and Atti is the attenuation fac-
tor (depending on the path length of the i-th solar ray in the
atmosphere). The use of the “characteristic function” al-
lows to decouple the characteristics of the solar plant (solar
field arrangement and tower system design) and the ener-
getic properties of the solar plant, which are site dependent
(geographical coordinates and weather conditions)
(Leonardi and D’Aguanno, 2011).

3.1. Effect of the size and eccentricity of the hyperboloid on
the magnification of the sunshape

The size of the solar field has a first influence on the size
of the hyperboloid, in fact, to find the radius of the hyper-
boloid, it is necessary to consider the furthest heliostat of
the solar field. If we indicate with lh the half side of a
squared heliostat or the radius of a circular heliostat and
with h the height of the center of the heliostat above the
ground, the largest image projected on the hyperboloid

surface is obtained when the incident and reflected solar
rays are coincident (cosine effect equal to zero), and, in this
case, it is easy to demonstrate that az ¼ arctg F 1&h

D

" #
.

One can show that, if only the central ray of the solar
beam is considered, the radius of the hyperboloid, rhyp, is
related to the distance of the furthest heliostat of the solar
field through the following expression:

zmax & h& D1

D& rhyp þ D2
¼ F 1 þ D3 & h& D1

Dþ D2
; ð9Þ

where

D1 ¼ lh sin az ð10Þ
D2 ¼ lh cos az ð11Þ
D3 ¼ D2cotgaz þ D1 ð12Þ

zmax is the maximum height of the hyperboloid from the
ground and D is the distance of the projection of the center
of the furthest heliostat in the xy plane from the origin of
the system of coordinates. A picture of the system is shown
in Fig. 2.

As shown in Figs. 3 and 4, rhyp increases with e. >From
Fig. 4 one can note that the concavity of the hyperboloid
decreases while the eccentricity e increases. In particular,
for e!1, the hyperboloid is flat and it is located at half
the distance between F1 and F2. It is known that low values
of e implies high magnification of the sunshape image at
the lower focus of the hyperboloid, and thus at the
entrance of the CPC (Segal and Epstein, 2000). Just to have
an idea of the magnitude of such effect, in Fig. 5 the sun-
shape image at the horizontal plane containing the lower
focus (F2 = 5 m) is plotted for hyperboloids with e = 1.5,
2, 4.5, 9.5, and 1000, respectively, for a conic bundle of rays
reflected by the center of a heliostat located 150 m far from
the center of the system of coordinates, and at a height of
5 m above the ground. It is worth noticing that it is by
sheer coincidence that D = 2 $ F1. Instead, D = 150 m is
the maximum radius of the circular solar field analyzed
in a previous study (Leonardi and D’Aguanno, 2011) and
also considered in SubSection 3.4. The projected sunshape
image at the plane containing the aim point of the heliostat
field (F1) is also plotted in Fig. 5, and, as attained, it tends
to overlaps the projected sunshape at the plane containing

Fig. 2. Relationship between rhyp and zmax.

E. Leonardi / Solar Energy 86 (2012) 734–745 737

Figure 2.19: Aberration effect [25].
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In this chapter, the methodology utilized to build a 50 MWth beam-down solar field is
presented. Starting from the implementation of the radial staggered field method for
solar towers introduced by Collado et al. [13], the optical performance of each mirror are
evaluated considering the presence of a secondary reflector.
The intercept factor is assessed by a randomly generated rays distribution on the heliostats
surface. Shadow and blocking performance are calculated thanks to Sassi projection [40].
As anticipated before, current beam-down installations are composed of a surrounded
circular field. In this work, a possible asymmetric field pattern is presented to favor the
increased cosine efficiency at latitudes far from the equator. To do so, the secondary
reflector shape was unconstrained making use of a sliced surface.
The optic of a solar tower system is sensibly affected by various derating factors. Following
the sun rays’ path, not all of them will be redirected towards the upper focal point by the
heliostat’s surface due to the reflectivity effect. Moreover, neighbor mirrors can shadow or
block each other, diminishing the mirror’s effective surface. Shadows performance refers
to the sun vector while blocking ones take into account that a reflected sun ray from the
mirror surface can be blocked by another interfering heliostat.
Moreover, Beam-Down system introduces two other optical losses, namely the shadow
of the secondary reflector and its reflectivity effect. In this sense, it was found that the
hyperboloid shadow effect sensibly affects the best cosine part of the field, especially at
high eccentricity values (bigger secondary reflector). An annual optimization method will
then be presented where farther, less shadowed, heliostats are inserted in favor of deleted
inner worst performing ones.
Finally, an overall optimization considering the CPC geometry and the annual secondary
reflector shadow is introduced at different eccentricities and aim point values and the best
field configurations found are assessed also in terms of techno-economic parameters.
The mirrors will be considered rectangular and made by one facet.
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3.1. Radial staggered pattern

A possible heliostats field configuration can be the one of a radial staggered. This mirrors
pattern has been firstly introduced by the University of Houston and utilized in the
software for designing solar towers called DELSOL3 [22].
As shown in Figure 3.1, two main parameters identify the disposition of the mirrors, the
azimuthal distance ∆Az and the radial displacement ∆R.

Sustainability 2020, 12, 2402 8 of 22 

. 

Figure 5. Radial staggered configuration. 

The method for the generation of the radial staggered layout presented in [13] (campo) is applied 
here. One of the purposes of this code, developed by FJ Collado, is to improve the accuracy and speed 
with which the heliostat field is optimized and designed. This makes it convenient for the intended 
application here. Details of the campo steps are outlined in [13,51].  

The field is initially laid out by developing the densest field made up of concentric rows of 
heliostats. The field is gradually expanded by altering the radial separation distances, ΔR, during the 
optimization process. The parameters in the layout of the field are shown in Figure 6: 

 
Figure 1. Parameters defining the layout of the field. 

The densest field has Δ𝑅 , with the minimum radial increase at: 

Δ𝑅  =  𝐷𝑀 𝐶𝑜𝑠 30⁰ (16) 

where DM is the horizontal clearance, 𝑑𝑠𝑒𝑝, added to the heliostat diagonal length (DH). 

𝐷𝑀 =  𝐷𝐻 +  𝑑𝑠𝑒𝑝 (17) 

The heliostat field layout procedure for generating the heliostat configuration begins by placing 
the first heliostat tangential to the Y-axis (North) at radius distance R1 from the center, where the 
tower is situated. The second heliostat is placed at the same radius distance, at an azimuth angle 
distance, Δ𝑎𝑧 , from the initially placed heliostat. This placement continues through the entire row. 
This process is continued on subsequent rows of the field, with the first row being odd and the second 

Figure 3.1: Radial staggered layout [37].

The design considered has the main advantage of easy blocking heliostat individuation.
Considering a generic heliostat, three blocking mirrors can be identified: two in the outer
next row at both sides of the radial axis of the heliostat considered, named shoulder, and
one just in front in the outer second row, named nose.
In order to generate the heliostats field in Matlab, the campo code developed by Collado
et al. [13] were utilized and here presented.
Mirror rotates along two axes to displace their normal vector in the right position such that
the reflected ray is directed towards the aim point. However, this movement is confined
into a sphere of diameter equal to the heliostat diagonal DM . Moreover, a further security
displacement can be added equal to dsep. By saying that, as shown in Figure 3.2, the
densest heliostats configuration is the one that separates the center of each mirror, one
to another, by DM + dsep.
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efficient in codes like RCELL and DELSOL to optimize tower height
vs. receiver dimensions vs. field layout to achieve the lowest Lev-
elized Energy Cost [13]. So in the code campo, to address this
complex problem in a reasonable manner, the radial stagger
configuration [6e12,14,15] is also chosen as an optimal field layout.

Furthermore, we may take advantage of the regular distribution
of the radial staggered layout to locate the three blocking heliostats
easily in relation to the position of the blocked heliostat in the field
[6e9,19] as follows. Two heliostats in the outer next row at both
sides of the radial axis of the blocked heliostat, named “shoulder”
blocking, and onemore in the outer second row just in front (on the
same radial axis) of the problem heliostat i.e., “nose” blocking. This
configuration minimizes blocking, which would be rather signifi-
cant in big fields.

In contrast, the radial staggered distribution clearly creates “pre-
arranged” grids, i.e., the angular azimuth spacing should be kept
constant between contiguous heliostats in the same row
throughout each zone in which the field is divided. This azimuth
spacing is regularly decreased in passing to an outer zone. This
regularity of the azimuth spacing will be used to establish the
relative positions of the shadowing heliostats.

2.2. Relative location of shadowing heliostats

As the azimuth angular spacing is kept constant throughout each
zone, the problemof how to locate the shadowing heliostats relative
to the moving position of the analysed heliostat while the field is
expanded can be addressedwith some ease. The field is divided into
sectors inwhich the relative position of the shadowing heliostats is
kept constant. The selection tests of the shadowing heliostats for
each sector are made for the densest layouts, thus ensuring the
worst cases are covered. After many tests [21], it has been checked
that the shadowing heliostats for each sector are basically function
of the azimuth position. Furthermore a maximum number of three
shadowing heliostats have been chosen for each sector. This will be
analyzed later. Notice that the former three blocking heliostats are
also projected following the sun vector. Therefore, a total of six
heliostats are checked for shadowing and three for blocking i.e.,
a total of nine projections on the surface of the analysed heliostat.

2.3. Densest layouts to start off optimizations

On the other hand, we should clearly establish a large field of
a hypothetical set of discrete heliostat positions to start off optimi-
zations, as HFLCAL suggests [10,11]. Theoretically, in the absence of
shadowing and blocking, we should place the heliostats with the
highest possible density (less landused) in zones closer to the tower,
which have the highest optical efficiency. Unfortunately, shading
and blocking force us to space the heliostat rows out as we move
away from the tower.We are then forced to placemany heliostats in
zones with medium or low optical efficiencies. As the shading and
blocking factor is included in the optical efficiency, see Eq. (1),
a shadowing and blocking-mirror density trade-off arises [6e9].

Therefore, we suggest beginning optimizations with the highest
density fields, i.e., with the highest optical efficiency (except for fsb,
of course), but with the worst shadowing and blocking factor. From
this starting point, the direction to improve the annual energy of
this field would be quite clear, namely to expand the rows
progressively until a point at which fsb improvements were offset
by the drop in the rest of the energy factors in Eq. (1).

2.4. Expansion procedure of dense layouts

A semi-automatic generation of preliminary layouts including
thousands of heliostats was presented by the author elsewhere [4].

These preliminary layouts were based on an approximate calcula-
tion of the radial distance DR between consecutive staggered rows,
formerly derived in [19], keeping the blocking factor fb,ref constant
throughout the heliostat field,

DR ¼

"!
cos u
cos εT

" 

1"
#
1" fb; ref

$
wr

2wr "
# ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þwr2
p

þ ds
$

!#

LH; (2)

where LH is the height of the heliostat, εT is the elevation angle
(zenith origin) of the tower unit vector pointing from the centre of
the heliostat surface to the receiver, u is the incidence angle of the
sun rays onto the heliostat surface, wr is the width-height ratio of
the heliostat, and dsep ¼ ds*LH is any additional security distance
between adjacent heliostats in the same row, see Fig. 1.

This simplified expression was derived under some rather
strong assumptions [19] (in addition to assuming a constant
blocking factor for all the field) namely that the azimuth of the unit
normal vector of the heliostat is the same as the unit vector
pointing to the tower. This approximated equation was only
derived for the two “shoulder” heliostats blocking a heliostat in the
second row. So the growing azimuth spacing length (in meters)
between adjacent heliostats due to the staggered distribution was
not taken into account. Finally comment that the layout or radial
increments (constant in time) must be based on a particular instant
of time, which is included in the calculation of the incidence cosine,
cosu in Eq. (2).

In conclusion, the reference blocking factor fb,ref included in Eq.
(2) is a rough approximation and it definitely cannot be taken at all
as the actual blocking factor in the field.

However, Eq. (2) could be used to expand the rows easily during
the optimization process (higher fb,ref lowermirror density), looking
for reduce the shading and blocking. Furthermore, it would be easy
to assign different values to this reference blocking factor fb,ref in
different zones or even rows in the field. Notice that the radial
increment between rows will not be at all constant; DR will be
a strong function of the position of the heliostat i.e., from Eq. (2),
DR(x,y) ¼ cos u(x,y, time set)/cos εT(x,y)$const.

This fb,ref parameter would have the additional advantage of
allowing the identification of different layouts (thousands of

∆

∆

Fig. 1. Minimum radial increment, additional separation distance, and vertical and
horizontal clearances.
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Figure 3.2: Densest field layout configuration for radial staggered pattern [13].

Let’s consider a Cartesian plane where the X-axis is pointing East and Y -axis to North
and a minimum field radius R1 selected by the user. The azimuthal separation between
mirrors in the first row can be found with Equation 3.1. So the number of heliostats in
the first row, considering dsep equal to zero, is given by Equation 3.2.

∆az1 = 2 · asin [DM/ (2R1)] ∼= DM/R1 (3.1)

Nhel1 = 2π/∆az1 (3.2)

In order to insert an integer number of mirrors, the result from Equation 3.2 is rounded
and a new azimuth distance is found.
The first row can now be placed. Field rows, are divided into even and odd rows.
The first heliostat of an odd row, for example the first one, is placed at ∆az1/2 counter-
clockwise from the north, while the first one of an even row, for example the second one,
is placed at North, as presented in Figure 3.3.
The DELSOL3 correlation is utilized for the radial spacing between rows. As antici-
pated before, the equation is a curve fitting to optimized field layout by the University of
Houston [22].
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Given a generic row, the outer next one will be displaced by ∆R, expressed as Equa-
tion 3.3.

∆R =
(
1.1442 · cotan θl − 1.0935 + 3.0684 · θ2l

)
·HM (3.3)

Where:

• θl = π
2
− θt.

• θt is the zenith angle of the heliostat aiming vector.

• HM is heliostat mirror height.

Author's personal copy

coordinates) along the optimization process with only one value.
Indeed, it is also possible to expand the layout radially by changing
the instant of time set in the calculation of the incidence cosine in
Eq. (2).

Notice that Eq. (2) supplies methods to expand the field radially,
but without modifying the basic radial staggered layout, i.e.,
without changing the azimuth angular spacing between adjacent
heliostats in the same row. fb,ref is merely a parameter to control the
radial spacing along the field of expanded layouts. The actual
shadowing and blocking factor, fsb in Eq. (1), will be worked out
strictly, as mentioned above, for each and every heliostat in the
field through the outline projections of the neighbouring heliostats
using the Sassi procedure [18].

On the other hand, it is clearly possible to expand the field
azimuthally by increasing the additional safety distance dsep or ds
in Eq. (2). The other option is to modify the relation between the
number of heliostats in the first row Nhel1 and the distance DM
between the centres of adjacent heliostats for this row. These
parameters will be commented on in the next section.

3. Generation and data structure of the of the densest circular
heliostat fields

As we have commented on above, any optimization process
should start from the densest radial staggered layout, in which the
radial distance between consecutive rows is kept constant
throughout the field. This distance is set equal to the minimum
radial increment allowed by mechanical constraints DRmin [4,19].

Fig. 1 shows the basic parameters used to define this field layout
with the highest density. Densest fields will be the basis for the
later expanded layouts, with variable radial distances, which will
arise during the optimization process. This densest layout will be
made up of circular concentric rows of heliostats.

The assumedwidth and height of the heliostat are LW¼ 12.30m
and LH ¼ 9.75 m, respectively, which include gaps between facets.
They have been derived from the scarce data supplied in [22]
concerning a Sener heliostat design.

In Fig. 1, DM is the distance, on the X (towards the East) " Y
(North) plane, between contiguous heliostat centres and it is equal,
to the heliostat diagonal DH (15.7 m with the assumed heliostat
dimensions) plus any additional separation distance dsep. DM is
also equal to the heliostat width plus the horizontal clearance
hclear, which is defined with the vertical sides of the heliostat
parallel to the Y axis i.e.,

DM ¼ DH þ dsep ¼ LW þ hclear (3)

Now DRmin the minimum radial increment is practically the
height of an equilateral triangle of side DM

DRmin ¼ DM cos 30$ " hyDM cos 30$

¼ DM$
ffiffiffi
3

p
=2 ¼ 0:866$DM; (4)

where h ¼ R1 "
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R21 " ðDM2=4Þ

q
. However, h has been finally

neglected in Eq. (4) due to the usual large values of R1 (the radius of
the first row) in relation to DM. For the same reason, the azimuth
angular spacing Daz1 (radians) between adjacent heliostats in the
first row, which is kept constant in a zone, is simplified to

Daz1 ¼ 2asin½DM=ð2R1Þ(yDM=R1: (5)

Finally, the vertical clearance vclear is

vclear ¼ DRmin " LH: (6)

The values of hclear and vclear, the horizontal and vertical
clearances, respectively are significant in the maintenance of the
plant i.e., to clean the mirrors using a vehicle moving around the
heliostat field.

For the densest field, if dsep is set to zero in Eq. (3) then
DM¼ DH¼ 15.7 m. In addition, from Eq. (3), hclear is equal to 3.4 m
(about the standard width of a road lane). Now, from Eq. (4),
DRmin ¼ 13.6 m and then from Eq. (6), vclear ¼ 3.85 m.

The generation procedure for the radial staggered layout starts
at a radius R1 with the first heliostat placed tangent to the right of
the Y axis (North), see Fig. 2; the second one (with the same R1) is
placed clockwise at an azimuth distance Daz1 from the first helio-
stat, see Eq. (5), and so forth. Furthermore the azimuth angle (at) of
the unit vector pointing the tower from the heliostat centre has
South origin and positive clockwise. The first row would be an odd
row, and obviously the second one would be an even one, etc. The
even rows start on the Y axis to obtain a staggered configuration.

Neither Daz1 nor R1 have been defined yet. Here, both will be
a function of the number of heliostats of the first row Nhel1, so first
the radius of the first row R1 is derived from the number of helio-
stats of the first row Nhel1, which would be the same throughout
zone 1. Logically, Nhel1 will be related with the azimuth angular
spacing Daz1 through the circumference length (2p radians)

Nhel1 ¼ 2p=Daz1 ¼ 2pR1=DM0R1 ¼ ðDM$Nhel1Þ=2p; (7)

where Eq. (5) has been used to substitute Daz1.
Therefore R1 is a function of DM and Nhel1, the later being an

integer. After Nhel1 has been chosen, Daz1 is finally obtained from
Eq. (5).

Due to the radial stagger configuration [6e9], the length of the
azimuth spacing (in meters) between adjacent heliostats will
progressively growwith the radius of the row. Any zonewould then
be complete when we could place an extra heliostat between two
adjoining heliostats in the same row. Thus, the azimuth angular
spacing of the second zone Daz2 between adjacent heliostats in its
first row should be (see Fig. 2)

Daz2 ¼ Daz1=2yDM=R20R2y2ðDM=Daz1Þ ¼ 2$R1; (8)

where Eq. (5) has been included again.
As the radial increment between consecutive rows is kept

constant (DRmin) throughout the field, the number of rows in each
zone Nrows can be derived. For zone 1, it will be

Nrows1 ¼ ðR2"R1Þ=DRmin ¼ R1=DRminzroundðR1=DRminÞ; (9)

where the quotient is rounded off to the next lower integer because
Nrows1 is an integer.

Fig. 2. Generation of regular radial staggered layouts.

F.J. Collado, J. Guallar / Renewable Energy 46 (2012) 49e5952

Figure 3.3: Generation of radial staggered layout [13].

Furthermore, the field is divided into zones. Rows of mirrors that share the same azimuth
distance belong to the same zone.
Starting from the minimum radius selected and building row by row the field, at a certain
radius, the azimuth distance allows for the insertion of the double amount of heliostat of
a previous row, as shown in Figure 3.3. The azimuth distance ∆az2 become half of ∆az1

and a new zone is formed.
Normally, the threshold between the azimuth distance ratio of two neighbor zones can be
set a priori. In the case presented before where a new compressed row is started when the
ratio of ∆az1/∆az2 is equal to 2, the number of mirrors in the new zone will be double
of the previous ones.
Following SolarPILOT default configuration for radial staggered DELSOL3 heliostat field
creation setting, a new compressed row is started when ∆az1/∆az2 = 1.33, as shown in
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Figure 3.4. This lower threshold guarantees lower azimuth spacing at a higher radius, and
so a denser field layout.

Figure 3.4: Radial staggered layout zone identification. Minimum field radius equal to 50
m, maximum equal to 200 m. Rectangular heliostat 5x5 m.

Each i-heliostats in the field is then identified by its position xi, yi, and its installation
height zi and its aiming vector cosines [ua

x,i, u
a
y,i, u

a
z,i].

In order to rapidly access the heliostat variables, all the field is grouped into a Matlab
cell called campo. The cell is divided into K cells where each k-cell represents one zone of
the field. For each zone there are J-rows cells belonging to the k-zone and each j-row is
composed by I cells where each i-cell represent one heliostat of the considered zone and
row.
Moreover, every i-cell is composed of two other cells. In the first are inserted data re-
garding the position of the mirror in the field and the cosine of the aiming vector, and,
as will be explained later on, the subsection belonging to that mirror. In the second
cell are present information regarding the heliostat design performance (design optical
efficiency and secondary reflector geometry), the minimum and maximum radius, and
azimuth extension of the circular sector hyperboloid belonging to the i-mirror. The eval-
uation of the specifications regarding the second cell of the i-heliostat will be explained
in the section 3.3.
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3.2. Optical field efficiency

Ideally, in Concentrating Solar Plants (CSP), a generic surface can redirect the Direct
Normal Incidence radiation (DNI) towards the receiver. By saying that the ideal power
reflected by the i-mirror toward an infinite receiver can be evaluated as Equation 3.4.

Ẇsun = DNI · Ahelio,i (3.4)

Where Ahelio,i is the area of the heliostat surface. In reality, different types of losses
take place in the ray path from the energy source towards the receiver and so an optical
efficiency is defined. The latter, in the case of a Beam Down system, is presented as
Equation 3.5.

ηopt = ρhelio · ρSR · ηcos · ηsb · ηint · ηs,SR (3.5)

Where:

• ρhelio is the reflectivity of the mirror surfaces.

• ρSR is the reflectivity of the secondary reflector.

• ηcos is the cosine efficiency.

• ηsb is the shadowing and blocking efficiency.

• ηint is the intercept efficiency.

• ηs,SR is the shadow efficiency caused by the presence of a secondary reflector.

New terms like ρSR and ηs,SR appear in the beam-down application, concerning solar
tower, due to the presence of a secondary reflector. Each of these terms will be presented
in the following subsections.

3.2.1. Reflectivity

Taking into consideration a radiation source and a surface, reflectivity is defined as the
percentage of the reflected wave to that of the incidence wave. It’s generally a function
of the wavelength.
In beam-down system with respect to the solar tower, also the reflectivity, and so the
wasted energy, of the secondary reflector has to be considered.
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3.2.2. Cosine effect

It represents the most significant loss in solar tower technology. If we consider Snell’s law,
an incidence ray, ideally, is reflected in a specular direction with respect to the normal
of the surface considered. By saying that, the heliostat normal has to rotate to bounce
the reflected vector towards the aim point. As shown in Figure 3.5, the mirror won’t
be perpendicular to the source of radiation and the effective reflective area is the one
represented by the cosine of the ray incidence angle with respect to the mirror normal
surface.
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3.1. The parameters of the simulation 

The fixed parameters: 

Day: 19 

Month: February 

Height of tower: 50 meters 

Receiver Tilt: 20° 

Mirror reflection coefficient: 0.9 

The surface of the heliostat: 2x2m 

Variable parameters: 

Hours (07: 00 - 17: 00) 

Number of heliostat (9). 

3.2. Calculate the cosine loss in a solar tower (Robert, 2012) 

The following figure illustrates the image of a heliostat with the necessary 
parameters to determine the cosine effect. 

 

Figure 3. Effect of cosine loss on radiant power reflected by heliostat (sola 
power tower) (Robert, 2012) 

The equation of the loss due to the cosine effect is given by: 

𝑄(𝑒𝑓𝑓,cos  ) = 1 − cos 𝛽                                                   

Figure 3.5: Cosine effect [50]

Considering a generic sun ray versor ŝi, hitting the i-heliostat and its correspondent
specular reflection versor r̂i, the cosine efficiency can be evaluated as Equation 3.6.

ηcos,i = cos [arccos (ŝi · r̂i) /2] (3.6)

In solar power technologies, the cosine effect can give a first field shape. In the northern
hemisphere, where the sun is mainly in the South throughout the year, the heliostat
positioned on the North part of the field will perform better than the ones at the South.
If we consider a generic latitude and a maximum field radius, a annual cosine map can be
built, as shown in Figure 3.6. The cosine efficiency of each point is evaluated on a DNI
clear sky basis.
The cosine map can be utilized as the first field shape. However as it will be shown later
on, the other performance factor plays their role as well in the final configuration.
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Figure 3.6: Annual clear sky DNI weighted cosine efficiency at ground level. Latitude
equal to 25◦ N, aim point equal to 100 m. Field radius equal to 500 m.

3.2.3. Shadowing and Blocking

Shadowing loss takes place when the incidence radiation targeting a generic i-heliostat,
hits another interfering k-heliostat. On the other hand, blocking refers to the part of
radiation reflected by the i-mirror that doesn’t reach the receiver because it’s blocked by
an interfering k-heliostat. In practice, shadowing is defined on the sun vector pointing
the i-heliostat considered, while blocking refers to the reflected rays.
This loss can be both expressed as a number of rays of the i-heliostat that ideally reach
the receiver over the ones coming from the sun that were supposed to hit it or in terms of
area of the heliostat obscured by the interfering K-neighbour heliostats over the overall
one.
This type of loss, as the cosine one, is sun position-dependent and related to the reciprocal
position of the i-mirror over the one of the K-neighbours. For this reason, the Shadowing
and Blocking (S&B) efficiency is the most energivourous in terms of computational time
when a ray-tracing method is not utilized. The most time-consuming part result in the
individuation of the k-interfering heliostats over the i-heliostat analyzed at a given sun
position and a solar field.
The radial staggered configuration, as expressed before guarantees easy blocking individ-
uation, as shown in Figure 3.7. Taken into consideration a generic i-heliostat in the field,
three blocking k-heliostat can be easily found, two in front on the first inner row, named
shoulders, and one directly in front in the second inner row, named nose.
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Figure 3.7: Blocking heliostats identification for a radial staggered field pattern.

This is not strictly true for heliostat living in the first row (missing direct nose and shoulder
association) or second row of a new zone (missing the nose), so where a new compressed
row is started. The arrangement of the mirrors is changed and the identification of the
interfering heliostat has to be made by distances consideration.
The same procedure is utilized for possible shadow candidates. The only difference is that,
blocking selection is based on the aiming vector of i-heliostat −→ai while for shadowing the
sun vector pointing at the i-heliostat at a given sun position, −→si , is considered.
Let’s consider a vector

−→
ti , that can be either −→ai for blocking performance or −→si and a

i-heliostat defined by its normal vector −→ni such that −→si +−→ai =
−→ni .

It’s possible to calculate a length of interaction for the i-heliostat that represents the
farthest mirror projection point onto the ground in a 2D plane by solving the system of
a straight line passing from the highest point of the heliostat and a plane at z = 0, as
presented in Figure 3.8.

Lint =

(
hi +

DM
2

sin θ
)
·
√

t2x + t2y
tz

+DM cos θz (3.7)

Where DM is the mirror diagonal, hi the installation height and θz the zenit angle of −→ni .
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Figure 3.8: Shadowing and blocking length of interaction.

Equation 3.7 assumes that both mirrors have the same normal vector, namely the one of
the i-mirror analyzed, and that the worst-case condition is considered, the one in which
the highest point is defined by DM/2 · cos θ. The heliostat that has a distance from the
i-heliostat higher than Lint cannot interfere with shadowing or blocking.
All the mirrors that could be potentially individuated as blocking ones live in the inner
rows with respect to the i-heliostat considered, since −→ai is always pointing to the upper
focus. On the other hand, shadowing mirrors could be likely all around the heliostat
considered. Nevertheless, these mirrors have always a positive distance from a straight
line with normal −→si and pass through the center of the heliostat, so they are in front of
the i-heliostat at a given sun position, as shown in Figure 3.9.

Figure 3.9: Shading and blocking heliostats individuation. Sun elevation and azimuth
equal to 15◦ and -30◦.
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The S&B performance was implemented in Matlab utilizing the Sassi method [40] which
is explained in detail in Appendix A. Briefly, the method first projects the center point of
the k-interfering heliostat onto a plane defined by the normal vector of the i-heliostat −→ni .
Moreover, given the projection, the k-mirror is overlapped to the mirror considered. The
i-mirror of width (WM) and height (HM) is divided into two halves of equal geometry
WM and HM/2. Each half is discretized among WM in R-interval. For each step, if the
k-heliostat covers the overall interval r-extension, the area covered by that mirror will be
WM/R · hk, where hk is the height of the overlapping projection. Performing the same
method for all the K-heliostats, the S&B efficiency is evaluated as the "free" surface over
the overall one.
The main assumption of the procedure are that:

• All the interfering K-heliostat have the same normal vector as the i-mirror.

• The overlapping area of the k-mirror onto the i-heliostat is limited in height by half
of the mirror height (HM/2).

These two assumptions are reasonable since interfering heliostat live in the neighbor of the
i-mirror considered and the radial and azimuth distance between them guarantee limited
overlapping.

(a) Sassi projection method. (b) Interfering heliostats individuation.

Figure 3.10: Shadowing and Blocking performance calculation. ηsb evaluated equal to
84.93%. Sun elevation and azimuth equal to 15◦ and -30◦. Rectangular heliostats 5x5 m
size.
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3.2.4. Intercept factor

The intercept factor represents the percentage of the heliostat reflected image that reaches
the receiver over the overall one. This problem emerges from optic errors, as presented in
the previous chapter.
Ideally, every reflected ray will fall into an infinitesimal ground image. Actually, sun,
shape, and slope errors cause a ground image’s rays probability distribution.
A normal ray tracing will generate a probabilistic disturbance at every point where it takes
place. So the sun vector is affected by the sun shape error and so on. With sufficient
accuracy, the problem can be simplified by the convolution of the heliostat and sun error
on the mirror surface.
Considering a bunch of rays that leave the i-mirror, Nray,i, that are not blocked by any
other k-heliostat and that reach a perfect secondary reflector surface (ρSR = 1), the
intercept efficiency can be evaluated as Equation 3.8.

ηint,i =
Nrec,i

Nray,i

(3.8)

Where Nrec,i are the number of rays falling inside a specific dimension of the receiver from
the i-heliostat.
However, in beam down system, the ground image can be represented as a bivariate normal
distribution and so its boundary can be approximated to the one of a circumference.
Considering a generic i-heliostat, the intercept factor is assessed by generating a random
number of rays on the mirror surface, intersecting them with the secondary reflector, and
bouncing them on a selected receiver dimension.
In order to generate a random positioned bunch of rays inside a surface defined by its
normal vector −→ni , the light points are first randomly generated inside a horizontal plane
bounded by the geometric mirror dimension, width (WM) and height (HM), and then
rotated along the X-axis and Z-axis by respectively the zenith and azimuth angle of −→ni .
More precisely, the generation of a random point with coordinates [xj, yj, 0] inside a
rectangle centered in a XY Z plane, is governed by Equation 3.9.

xj = WM · rand−WM/2; yj = HM · rand−HM/2; (3.9)

Where rand is a uniform probabilistic distributed random number between 0 and 1.
Moreover, the point is rotated along X and Z axis, thanks to Equation 3.10.
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x
r
j

yrj

zrj

 = Rx ·Rz ·

xj

yj

0

 (3.10)

Where Rx and Rz are the two rotation matrixes expressed as Equation 3.11. ϕ and θ are
respectively the zenith and azimuth angle of the heliostat normal vector.

Rx =

1 0 0

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) cos(ϕ)

 ; Rz =

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (3.11)

As shown in Figure 3.11, each point is then translated by the i-heliostat field coordi-
nates [xi, yi, zi], where zi is the installation height. The procedure explained assumes an
azimuth-elevation sun-tracking method.

Figure 3.11: Random ray distribution on heliostats surface. Ray number equal to 300.
Rectangular mirror 5x5 m.

The number of randomly generated rays defines the system’s accuracy. However, this
value depends on the solar field size. Intercept error on heliostats close to the aim point
will be sensibly lower concerning mirrors positioned farther, at the same CPC geometry.
Moreover, too high rays number can sensibly increase the computational time without
any improvement in accuracy.
Furthermore, another CPC important characteristic, if present, is the maximum accep-
tance angle. Rays that fall inside a specific tertiary concentrator radius dimension with
an incidence angle higher than the acceptance one, will be rejected by the CPC.
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Precisely, this concept is strictly true of a ray that crosses the longitudinal axis of the
CPC at the inlet. Other rays, can still be collected by the receiver even if their incidence
angle is slightly different than the maximum one.
The overall intercept factor of each heliostat is represented by the bunch of rays that leave
the i-mirror, that is not blocked by any other k-heliostat, that reach a perfect secondary
reflector surface (ρSR = 1) and are reflected onto a specified receiver aperture. Among
these rays, the ones collected by the receiver, have an incidence angle lower than the
maximum one defined by the concentration ratio of the CPC and define the intercept
performance.

Figure 3.12: Intercept efficiency evaluation. Red cross fall outside of the CPC inlet radius.
Light blue cross are rejected due to incidence angle higher than maximum one set by the
CR of the CPC. Number of ray equal to 300.

3.2.5. Secondary reflector shadow

Another loss introduced by a beam down system with respect to a solar tower is the one
relative to the shadow formed by the presence of a secondary reflector. This effect cannot
be neglected, especially for a high value of eccentricity.
Defined a hyperboloid shape, the shadow performance of each i-heliostat has to be as-
sessed to calculate the effective instant power of the field at a given sun position.
Given a solar position and a i-mirror with normal n̂i such that the incidence sun vec-
tor, ŝi, is reflected towards the upper focal point, several rays are generated onto the
inclined heliostat surface as presented before for the calculation of the intercept efficiency.
Nevertheless, in this case, a part of the heliostats can be already shadowed or blocked
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by other interfering heliostats. To do not overestimate the SR shadow performance, the
random rays considered are only the ones laying on the free mirror surface, as shown in
Figure 3.13.

Figure 3.13: Random rays generation on heliostat free surface.

The randomly generated rays, with direction defined by ŝi are then intersected with an
infinite hyperboloid. The shadow performance is then evaluated as Equation 3.12.

ηs,SR,i = 1− Nin

Ntot

(3.12)

Where Nin is the number of rays that fall inside the given hyperboloid shape while Ntot

is the total number of rays generated on the heliostat surface.
In this case, with respect to intercept efficiency calculation, too high values of generated
rays can sensibly increase the computational time without any accuracy improvement.
Given a sun position, most of the field mirrors are either completely shadowed or not.
Just a few of them have an efficiency which falls in a value between 0 and 1.
Nevertheless, in the selection of the number of rays, also the heliostat size is an impor-
tant parameter. Even if the rays are generated randomly to follow a more probabilistic
approach, the mirror area can divide into the same number of pieces and so the value of
each ray can be directly referred to as a percentage of the heliostat surface obscured.
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3.3. SR section creation

Nowadays existent beam down solar application makes us of a circular field of heliostat
and so circular secondary reflector. To unconstrain the shape of the hyperboloid, the field
is divided into sections.
A section is defined as a circular sector of the field bounded by two angles. Every k-
section is then formed by J-rows that are the maximum number of rows present in a field
bounded by a minimum and maximum radius. Every row of the field will be called a
j-row, so every subsection can be defined by a combination (k, j).

Figure 3.14: Section division methodology. Number of sections equal to 10.

The hyperboloid shape is difficult and computational expensive if it would be created
considering heliostat by heliostat. This is mainly because neighbor mirrors share the
same secondary reflector area, as shown in Figure 3.15. Following the circular approach,
the section division allows to easily select circular sector of the field and so identify the
relative secondary reflector radius and azimuth boundaries.
The user can then select the number of sections preferred. This number has to be even for
field symmetry reason and, at maximum, the one that guarantees an azimuth difference
equal to the one between two generic heliostats in the first row. The field is then divided
into K-sections of equal azimuth range 360◦/K, starting from the north.
Each (k, j)-subsection has an efficiency equal to the mean one of the mirrors present in
that subsection. A common j-row hyperboloid shape is considered, defined by a mini-
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mum and maximum radius, rj and Rj and azimuth angle extension, ∆Az. These three
characteristics are obtained by the intercept factor calculation presented before. For each
i-heliostat it’s possible to assess a circular sector of the hyperboloid based on the min-
imum and maximum radius, rk,j,i and Rk,j,i, and the azimuth angle extension ∆Azk,j,i,
from a random bunch of ray generated at the inclined heliostat surface. The ∆Azk,j,i

is evaluated considering an intercept of 99% at each side in order to avoid unjustified
secondary reflector azimuthal extension.
For each (k, j)-subsection is then possible to evaluate rk,j, Rk,j and a ∆Azk,j of the hy-
perboloid as the minimum and maximum values among all the I-heliostat present in the
(k, j)-subsection.

(a) Hyperboloid relative to the (k, j, i)-heliostat (b) Hyperboloid relative to the (k, j)-subsection

(c) Hyperboloid relative to the k-section (d) Hyperboloid relative to the all K/2-sections

Figure 3.15: Secondary reflector construction methodology.
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A common value of rj and Rj is selected as the minimum and maximum radius found
among all the K-section of a certain j-row of the field. The angle extension, on the other
hand, is selected as the maximum one between all the (K · J)-subsections.
The hyperboloid for each section is then defined by a circular sector bounded between
two angles and with the radial extension defined by the rows present in the field.
The final secondary reflector shape is then the union of all the K circular sectors.
Selecting the right number of sections it’s strictly related to the secondary reflector shape,
but moreover to the heliostats related to that circular sector.
Let’s consider a solar field of a minimum radius of 50 m and a maximum one equal to 800
m. As anticipated before the minimum number of sections will be equal to the number of
heliostats in the first row, rounded to the lower even integer, while the minimum one is
equal to two. In the ideal condition, the hyperboloid azimuth extension for each section
will be 360/K, with K the total number of sections.
In real optic behavior, sun, shape, and slope errors distort the aiming direction. Therefore,
the real hyperboloid circular sector will be bigger, both in radius and azimuth extension.
Nevertheless, the section division is completely useless if the hyperboloid found for one
section overlaps completely with the one of the narrow section. In this case, the real
azimuth extension will be 3 times the ideal one.
Figure 3.16 represent the ideal and real azimuth extension over the number of sections
selected. The eccentricity is considered equal to 2, namely close to the minimum value
of 1. The solution is conservative, since as eccentricity decreases the hyperboloid will be
smaller but close to the aim point, so affected by higher optical error amplification.

Figure 3.16: Secondary reflector real and ideal optic azimuth extension. Maximum field
radius equal to 800 m. Eccentricity equal to 2.
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At number of sections equal to 12, the real azimuth extension is almost double the ideal
one. In this case, the azimuth of one section extends to the axis of symmetry of the
narrow field section. At a higher number of sections, the hyperboloid of each section
covers more than 50% the narrow one. As a good rule, the division in 12 slices can be
a good compromise between secondary reflector heliostats density and accuracy of the
simulation in terms of the number of heliostats selected, as it will be shown in section 3.4.
Moreover, the azimuth extension found is strictly dependent from the minimum field
radius chosen. Too low values, can sensibly reduce the possible number of sections, due
to increased secondary reflector slice overlapping.

3.4. Design field performance

In the following paragraphs will be presented in detail how a beam down optic solar field
at a given latitude and design condition is generated in Matlab.
The different inputs that the user can choose to obtain a specific solar field configuration
are:

• Latitude: expressed in degree (North positive), represent the geographic location
of the selected solar site.

• Minimum and maximum field radius: based on the available space of the
selected solar site.

• Design power: instant power produced at solar noon by the solar field at the
design day selected.

• Design data: expressed as design day chosen (summer solstice, equinox, winter
solstice) and Direct Normal Irradiance (DNI).

• Eccentricity: secondary reflector geometric parameter.

• Compound Parabolic Concentrator (CPC) geometry: defined by a inlet
radius (Rcpc) and a Concentration Ratio (CRcpc,3D), if present.

• Number of sections: the field is divided into K even sections with azimuth ex-
tension equal to 360/K.

• Heliostat geometry: dimension of rectangular heliostats in terms of width (WM)
and height (HM).

• Optical properties: optical error considered for each stage (sun, slope and shape
for heliostat, slope and shape for the secondary reflector).
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The first task computed by the program is the radial staggered field layout between the
minimum and maximum radius of the field selected. The sun position model utilized is
presented in Appendix B.
It was decided to base the heliostats selection criteria on the annual DNI cosine efficiency
multiplied by the intercept performance, considered constant along the year. Precisely,
the annual cosine efficiency is DNI weighted on four days, namely the two equinox and
the two solstices.
A more precise approach has to consider also the shadowing and blocking performance
along the year of every mirror. Nevertheless, the S&B procedure is computational expen-
sive and the use of DELSOLS3 radial spacing correlation guarantees to keep this value
high, almost 95% at equinox noon, 99 % at summer noon [12].
The mirrors are then separated into subsections, so the mean heliostats efficiency (annual
cosine and intercept) living in that subsection is utilized as a design criterion.
Moreover, the hyperboloid shape, as described before is found from the minimum and
maximum secondary reflector radius found at each field row and the azimuth range equal
to the maximum one found among all sections.
The first best efficient subsection is considered and inserted into the field. The subsection
selection considers half of the field to obtain regularity on the final field layout and faster
computational time. The efficiency of every subsection is homogenized with the corre-
spondent mirrored one, for more accurate intercept performance evaluation.
Afterward, a while loop starts, selecting at every iteration the best efficient subsection till
the design power is reached. Subsequently, the secondary reflector shape is created and
the shadow efficiency for the pre-selected N -mirrors is performed, so a new field instant
power as Equation 3.13.

Ẇu =
N∑
i=1

ηopt.i · Ahelio,i ·DNIdesign (3.13)

If the latter is higher than the design one, the program performs the shadowing and block-
ing efficiency for each mirror, otherwise, the subsection selection continues.
Again, the new power is compared to the selected one and if the target is reached the
program stop, otherwise the subsection selection continues. All the steps are summarized
in Figure 3.18.
The selection of the number of sections used in the simulation directly affects the model
accuracy. The minimum limit is defined by two sections, representing the two half of the
solar site. The simulation proceeds row by row till the design power is exceeded.
Generally, more heliostats than the ones needed to reach the design target are selected,
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worsening the model accuracy. On the other hand, the most precise configuration is the
one that divides the field into the maximum number of sectors possible.
Nevertheless, as anticipated before in the section 3.3, a good sections division in terms of
hyperboloid heliostats density can be the one of which its extension falls into the axis of
symmetry of the neighbor section. However, the model correctness is strictly related to
the nominal field power. At higher values, the field will be bigger, and also the number
of heliostats placed at the latest iteration.

(a) Heliostats field (b) Secondary reflector

Figure 3.17: 12 sections heliostats field creation. Latitude equal to 25◦. Nominal power
equal to 50 MWth at the receiver aperture. Eccentricity equal to 2.
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Figure 3.18: Flow chart of the field creation procedure.
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3.5. Receiver thermal losses

In this section, a simplified receiver thermal model is presented. The ray path concludes
at the receiver aperture where a Heat Transfer Fluid (HTF) is heated up and either stored
or used as a hot source of a bottom power cycle.
The absorbed net flux at the receiver aperture is then the difference between the inter-
cepted incoming radiation from the secondary reflector and the radiative and convective
losses.

Q̇net = Q̇sun − Q̇loss (3.14)

Where Q̇sun is the intercepted radiation coming from the secondary reflector.
The Compound Parabolic Concentrator (CPC), if present, is considered a perfect reflector.
If is not the case, a mutual receiver-CPC heat transfer takes place.
So, the radiative transfer will only consider the particles absorbed power, their emission,
and reflection. It is assumed that the HTF act as a grey opaque body, with hemispherical
emissivity and so absorptivity equal to 0.9 [51]. The radiative losses can be then evaluated
as Equation 3.15.

Q̇rad = εσSB(T
4
rec − T 4

sky)Arec + ρQ̇sun (3.15)

Where σSB is the Stefan-Boltzmann constant, Arec the receiver area, Tsky the sky tem-
perature which is assumed equal to the ambient one, and ρ the HTF reflectivity.
The convective loss is mainly gravity-driven since the wind is limited to reduce particle
loss. The heat transfer coefficient is then proportional to the Grashof and Prandtl num-
ber product, so Rayleigh (Ra). For the upper side of hot horizontal plates, the averaged
Nusselt can be found as Equation 3.16 [28].

NuL = 0.14 Ra
1/3
L (3.16)

Where in this case the choice of the characteristic length L is indifferent since both Nu

and Ra1/3 are proportional to it. The convective loss is then evaluated as Equation 3.17.

Q̇conv = h(Trec − Tamb)Arec (3.17)

Where Tamb is the ambient temperature. Precisely, the receiver is generally positioned at
the bottom of the CPC. Its shape won’t be perfectly horizontal to guarantee particle flow.
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Moreover, this approach is conservative since the buoyancy gravity-driven effect will be
limited by the CPC quadratic cone shape. Furthermore, this model assumes that if the
CPC is built on an array configuration, each tertiary concentrator has its receiver.
Finally, the thermal efficiency of the receiver is performed as Equation 3.18.

ηth,rec =
Q̇sun − Q̇rad − Q̇conv

Q̇sun

(3.18)

At receiver temperature close to particles receiver (750 ◦C) applications, the radiative
heat exchange dominates the thermal loss as shown in Figure 3.19. At constant receiver
and ambient temperature the convective and the thermal loss increase quadratically with
the CPC inlet radius. The convective heat transfer coefficient settles around values of 10
W/m2K.

Figure 3.19: Thermal efficiency loss for a receiver temperature of 750 ◦C and ambient one
equal to 25 ◦C. Inlet CPC radius varying from 1 to 15. CPC concentration ratio equal to
1.5. Particles emissivity equal to 0.9.
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3.6. Annual system performance

A simple clear sky model is utilized to evaluate annual performances of a solar field. The
DNI data are obtained thanks to Equation 3.19 [8].

DNI = I0 · 0.7AM0.678

(3.19)

Where AM = 1/cos(θz) is the Air Mass ratio with θz the zenith angle.
I0 is the extraterrestrial radiation computed as:

I0 = 1367.7 ·
(
1 + 0.033 · cos

(
360 ·D
365

))
(3.20)

With D the Julian day number of the year. Figure 3.20 represents the DNI distribution
for three representative annual days.

Figure 3.20: Clear sky DNI values at latitude equal to 25◦ N.

Considering every hour of the year, the annual field performance evaluation can be com-
putationally expensive. Instead just a subset of hours can be simulated with sufficient
accuracy [46]. For that reason, it was decided to simulate the field at every 15th of each
month of the year. The day hours are selected such that the sun elevation (El) is higher
than 15◦ [26].
The optical energy collected by the receiver at the 15th of the m-month is expressed as
Equation 3.21.

Wm =
∑

t,Elt≥15◦

N∑
i=1

[
ηopt.i · Ahelio,i ·DNIt − Q̇th,loss

]
(3.21)
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Where t is the hour of the D-day, varying from 1 to 24, but considering only the ones
with Elt ≥ 15◦.
Then the system annual efficiency ηann,opt can be evaluated as equation below.

ηsys,ann =

∑12
m=1Wm∑12

m=1

∑
t,Elt≥15◦ DNIt

(3.22)

Same reasoning holds for a single heliostat, where the same procedure can be followed
considering Wm,i as the optical energy produced by the single mirror instead of Wm and
so ηann,opt,i as Equation 3.22. Thermal loss is again neglected.
To obtain faster performance, the annual efficiency is evaluated over half of the field
considering full secondary reflector shape. Since solar angles and DNI are symmetric
along the day. The efficiency or the power at a certain hour, for half of the field, can
be found as the average between the morning hour (a generic hour from midnight to
noon) and its mirrored one in the afternoon, namely the one with the same elevation and
opposite sign azimuth.
Moreover, following the ray path, each specific optical annual contribution can be found.
Starting from the reflective losses, to the thermal ones, every specific optical efficiency is
evaluated following Equation 3.22 but considering at the denominator the available energy
at each step, as presented in Figure 3.21, so the product of each efficiency contribution
will give the overall system efficiency.

Figure 3.21: Sankey diagram of the optical and thermal energy path for point focus Beam-
Down application.
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3.7. Annual SR shadow optimization

In solar tower applications, different optimization can be made in terms of heliostats
position in the field, tower height, or receiver size. Collado et al., proposed an annual op-
timized radial staggered field layout where a constant value of the radial distances between
rows of the same zone is step by step increased till the maximum of annual efficiency is
reached [14]. The main objective of the work is based on the consideration that, starting
from a compressed field (no radial expansion between rows and zone), as the distance
between two neighbor row is increased the shadowing and blocking efficiency will improve
at the expense of lower cosine and attenuation ones.
The same consideration were utilized by Li et al., but the main objective of the optimiza-
tion was the energy produced over the solar field cost at the design day chosen [26].
Besarati et al. proposed an annually optimized spiral heliostats field patterns inspired by
the phyllotaxis disc following the same optimization methodology of Collado et al. [7].
Let’s consider a surrounded solar field placed at 25◦ N of latitude, with a hyperboloid of
eccentricity equal to 4 and maximum radius defined by an ideal optic.
The annual field hyperboloid shadow (ηs,SR,ann) and cosine (ηcos,ann) clear sky DNI weighted
efficiency at ground level is presented in Figure 3.22.

Figure 3.22: Annual clear sky DNI weighted cosine and secondary reflector shadow ef-
ficiency at ground level. Hyperboloid (red line) with eccentricity equal to 4 and radius
equal to 100 m. Latitude of 25◦ N, aim point equal to 100 m, lower focus at ground level.
Field radius equal to 500 m.
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The inner field part reaches annual cosine and secondary reflector shadow efficiency below
40%. In this direction, a Matlab optimization procedure was built.
Starting from the design solar field created following the procedure explained section 3.4,
the annual performance ηann is evaluated. Subsequently, the best design efficient new
possible (j, k)-subsection is considered. The selection is again made on the best averaged
annual cosine and intercept performances.
Adding another subsection into the field can either increase or decrease the design power.
The latter condition happens when the design power given by the new subsection does not
compensate for the decreased one caused by the presence of a bigger secondary reflector.
However, this condition is pretty rare. A new possible subsection slightly increases the
secondary reflector radius in the direction of the section considered because neighbor
heliostats share the same secondary reflector area. Moreover, heliostats are placed sub-
section by subsection, so the number of mirrors in farther rows is higher than the ones in
the inner part of the field. Therefore, generally, the increased power brought by the new
subsection is higher than the decreased one created by the bigger shadow effect.
Subsequently, the field is step by step thinned out, from the inner rows to the outward
ones, of the worst annual efficient subsection till again the design power is reached.
The simulation is performed on half of the field for faster performances and symmetry in
the final field pattern. The overall procedure is presented in Figure 3.23.
For every subsection elimination, the new heliostats field annual performance (ηann,new)
are evaluated and if its value is higher than the one of the base case (ηann), a new optimum
configuration is found. The latter is again analyzed for new possible subsections. The
optimization stops when the best possible heliostat field is found.
Precisely, every new possible row of a section of the field has to be performed, because
is not strictly true that adding the best design efficient one will improve the annual field
performance. Every new insertion increases the hyperboloid size in the direction of the
section chosen. The new circular sector can still get worse field performance if its shadow
projection affects an existent good performing part of the field.
Nevertheless, after many simulations, it was found that even performing every new pos-
sible row of each section, the best design efficient ones will be selected.
As said before, building a new possible subsection, slightly increases the hyperboloid
maximum radius in that direction and so the annual field performance is governed by the
cosine and intercept effect.
The number of field sections division can sensibly affect the annual optimization outcome.
A too high number can potentially increase the computational time without any accuracy
improvement. On the other hand, a small value can immediately stop the optimization
since the farthermost subsection introduces too high power.
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Figure 3.23: Flow chart of the field optimization procedure.
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3.8. Design parameter sensitivity analysis

Selected the latitude of the solar site, the design condition (DNI, day, power), the optical
and geometrical properties of each component, multiple parameters have to be considered
in designing the best field configuration.
Aim point height, CPC geometry (if present or the receiver one), and receiver temperature
cause efficiency variation of the solar system. The latter one is independent of the field
shape, but it has a huge impact on the possible receiver aperture.
In the following section, it will be assumed that a CPC is present and so defined by its
inlet radius, Rcpc, and its Concentration Ratio, CRcpc,3D.
A first value for the latter two parameters has to be set to build a plausible solar field.
Conceptually, the highest concentration ratio that can be reached, fixed an eccentricity,
an aim point, and a lower focus, is the one of a circular field. Values higher than the latter
cause very small intercept efficiency and so worse-performing field. These arguments are
not strictly true when also the thermal efficiency of the receiver is considered. Lower
inlet radius and higher CRcpc,3D, and so higher thermal efficiencies, can govern the field
performance.
In order to obtain a fast first value for the CRcpc,3D and the inlet radius of the CPC, a
simplified version of the field creation was designed.

Figure 3.24: Simplified surrounded heliostats field. Solar site characteristic as Table 3.1.

The solar field is built row by row, as shown in Figure 3.24, till the design power is reached,
considering the hyperboloid shadow effect. A surrounded field is then obtained following
the solar site characteristic of Table 3.1.
The rays of each heliostat are then projected at the lower focus and the ground image
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radius is found considering an intercept equal to 99 %. The value of spillage selected
seems a reasonable assumption in terms of power collected since, as shown in Figure 3.25,
the increased cumulative probability tends to flatten out after the identified radius, so
limiting the thermal performances of the receiver without sensibly increasing the power
collected.

Figure 3.25: Intercept factor (red line) at CPC inlet radius varying from 1 to 15. Simu-
lation with 2 million rays. Black line represents the identified radius (99% of intercept).
Solar site parameters as Table 3.1.

Moreover, the CPC inlet radius is analysed also in terms of incidence ray inclination, as
shown in Figure 3.26.

Figure 3.26: Rays incidence angle on receiver aperture. Simulation with 2 million rays.
Incidence angle is defined from the longitudinal axis of the CPC. Black line represents
the identified maximum acceptance angle. Solar site parameters as Table 3.1.
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Just a few percentages of rays enter with the uppermost angle and so it was decided to
set the maximum concentration ratio of the CPC as the one that intercepts the 99 % of
total rays entering into the receiver aperture selected. The CRcpc,3D found was equal to
4.15 and the ground image radius equal to 11.2 m.

In the following subsection, the contribution of the geometry of the CPC, the aim point,
and the eccentricity to the field shape and performance is assessed. Annual efficiencies
are DNI weighted on 12 days, precisely the 15th of each month.
In Table 3.1, all the constant parameters utilized in the following considerations and their
values, are summarized.

Latitude 25◦ N
Design Power 50 MW at the receiver aperture
Min. Field Radius 50 m
Max. Field Radius 800 m
Aim point height 100 m
Lower focus height 15 m
Number of sections 12
Design DNI 1 kW/m2K

Heliostat
Rectangular 5x5 m
Reflectivity = 0.95

Secondary reflector
Hyperbolic shape
Eccentricity = 2
Reflectivity = 0.9

CPC Reflectivity = 1

Optical error
Sun error = 4.1 mrad
Slope error = 0.95 mrad
Spec. error = 0.2 mrad

Receiver
Grey body
Emissivity = 0.85
Conv. HT coeff = 10 W/m2K

Ambient temperature 30 ◦C
Intercept rays number 300 per heliostat
SR shadow rays number 100 per heliostat

Table 3.1: Solar site input parameters.



3| Heliostat field creation 67

CPC Concentration ratio

The tertiary concentrator geometry sensibly affects the field shape and performance. More
precisely, the most influenced factors are the intercept, the cosines effect, and the thermal
efficiency of the receiver at a given temperature.
We have seen as annual cosine efficiency influence the field shape based on the solar site
location. Heliostats fields placed at the northern hemisphere generally have a more asym-
metric, North oriented, shape, mainly caused by better cosines. On the other hand, the
farther will be the mirror distance from the aim point, the higher will be its incidence
angle on the receiver aperture.
Let’s now consider two different receiver temperatures: 600 ◦C and 1000 ◦C and three
different Concentration Ratio (CRcpc,3D) of the CPC, 3.9, 4.15 (base case), and 4.40. The
receiver temperatures are selected as two different limiting values, respectively for molten
salts and particle heat transfer fluid [33].
The radius of the CPC is selected equal to 11.2 m, namely the one found in the surrounded
simplified configuration.
The annual optical field efficiencies obtained and the number of heliostats (#Helio) se-
lected, are presented in Table 3.2.

CRcpc,3D [-] θmax [◦] ηopt,ann [%] ηcos,ann [%] ηsb,ann [%] ηs,SR,ann [%] ηint [%] #Helio

3.90 30.42 68.84 82.00 97.91 96.70 98.26 2650
4.15 29.40 68.19 81.28 97.95 96.79 97.93 2644
4.40 28.47 66.51 80.90 97.98 96.84 96.01 2687

Table 3.2: Annual optical efficiency for CPC inlet radius of 11.2 m and CRcpc,3D of 3.90,
4.15 and 4.40. Solar field parameters as Table 3.1.

The receiver temperature does not change the field shape, since the design power is con-
sidered at the receiver aperture.
On the other hand, the CR variation, as presented before, influences the solar site arrange-
ment, as shown in Figure 3.27. At a lower CRcpc,3D value the field creation script pushes
for more cosine efficient mirrors selection and the field shape becomes more asymmetric.
The annual DNI weighted cosine effect slightly increase, passing from 81.28% to 82%. On
the other hand, the number of heliostats follows the same trend due to farther positioning,
passing from 2650 to 2644.
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(a) CRcpc,3D = 3.90, Rcpc = 11.2 m (b) CRcpc,3D = 4.15, Rcpc = 11.2 m

Figure 3.27: Field shape for CPC CRcpc,3D equal to 3.9 (left) and 4.15 (right) and same
inlet radius of 11.2 m. Solar site parameter as Table 3.1.

The intercept follows the same trend, slightly increasing from 97.92% to 98.26%. Al-
though, as presented in Table 3.3, the annual thermal efficiency slightly decreases, passing
from 91.88% to 91.48% at Trec = 600 ◦C.

ηth,ann [%]
CRcpc,3D [-]

3.90 4.15 4.40
Trec = 600 ◦C 91.48 91.88 92.98
Trec = 1000 ◦C 65.29 66.92 68.62

ηsys,ann [%]
CRcpc,3D [-]

3.90 4.15 4.40
Trec = 600 ◦C 62.98 62.57 61.37
Trec = 1000 ◦C 44.95 45.57 45.64

Table 3.3: Annual thermal and system efficiency for CPC inlet radius of 11.2 m and
CRcpc,3D of 3.90, 4.15 and 4.40. ηsys,ann is the product between ηopt,ann and ηth,ann. Solar
field parameters as Table 3.1.

On the other hand, at higher receiver temperature, Trec = 1000 ◦C, the higher optical
performance are not compensated by a decrease in the thermal efficiency, that pass and
from 66.92% to 65.29%, lowering the overall solar site annual ηann performance of 0.7 %
relative, as presented in Table 3.3.
An increase in the CRcpc,3D, from 4.15 to 4.40, directly affects the intercept efficiency that
moves from 97.93% to 96.01%. At Trec = 600 ◦C, the lower intercept does not compensate
the 1.2% relative thermal efficiency increase. That’s not the case for higher receiver tem-
perature where the annual system performance is almost constant, passing from 45.57% to
45.64%, as a trade-off between the lower cosine efficiency and increased thermal efficiency
that passes from 66.92% to 68.62%. Nevertheless, a higher concentration ratio slightly
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increases the number of heliostats, due to lower intercept efficiency.
The annual secondary reflector shadow performances and the heliostats shading and block-
ing ones reach values higher than 95% in every configuration.

CPC Inlet Radius

The CPC inlet radius is the second parameter that completely defines a CPC geometry.
Lowering the inlet radius of the CPC follows the same consideration made in the previous
subsection for higher CRcpc,3D. The performance of the field decreases in favor of better
thermal behavior.
On the other hand, pushing for a bigger inlet radius, increase the intercept and cosine
efficiency of the field. The first one is of pretty easy understating, higher radius can collect
more rays at a given field. The second is strictly related to the heliostat’s position.
As explained before, asymmetrically oriented configuration favors better cosine efficiency.
Nevertheless, the heliostats are placed farther from the aim point and the intercept factor
will diminish at the same receiver aperture due to optic error amplification.
The main constraint regarding the minimum possible receiver aperture radius, namely the
outlet CPC radius, is governed by the maximum heat flux. Due to the degradation effect,
for particle receiver technology, a maximum value of 3 MW/m2 has been set for ceramic
material. However the thermal flux distribution is not uniform and so a maximum peak
flux of 2 MW/m2 is considered [39]. So, the minimum inlet aperture radius Rmin of the
CPC, is related to the minimum exit one rflux,lim, namely the one of the receiver, by
Equation 3.23.

Rcpc,min = rflux,lim ·
√
CRcpc,3D (3.23)

Let’s consider again two receivers at different temperatures, a fixed concentration ratio
of the CPC equal to the one of the simplified circular surrounded field (CRcpc,3D = 4.15)
and inlet aperture radius equal to 10.7 m, 11.2 m (base case), and 11.7 m.
Results regarding the annual optical efficiencies and the number of heliostats (#Helio)
selected are presented in Table 3.4. The annual thermal and system efficiencies at different
receiver temperatures is presented in Table 3.5.
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Rcpc [m] ηopt,ann [%] ηcos,ann [%] ηsb,ann [%] ηs,SR,ann [%] ηint [%] #Helio

10.7 67.85 81.27 97.94 96.84 97.55 2644
11.2 68.19 81.28 97.95 96.79 97.93 2644
11.7 68.39 81.40 97.94 96.80 98.20 2614

Table 3.4: Annual optical efficiencies for CRcpc,3D of 4.15 and Rcpc of 10.7, 11.2 and 11.7
m. Solar field parameters as Table 3.1.

ηth,ann [%]
Rcpc [m]

10.7 11.2 11.7
Trec = 600 ◦C 92.56 91.88 91.07
Trec = 1000 ◦C 69.68 66.92 63.63

ηsys,ann [%]
Rcpc [m]

10.7 11.2 11.7
Trec = 600 ◦C 62.80 62.57 62.28
Trec = 1000 ◦C 47.28 45.57 43.52

Table 3.5: Annual thermal and system efficiency for CRcpc,3D of 4.15 and Rcpc of 10.7, 11.2
and 11.7 m. ηsys,ann is the product between ηopt,ann and ηth,ann. Solar field parameters as
Table 3.1.

At the same concentration ratio of the CPC, decreasing the radius at a constant tem-
perature, slightly affect the intercept performance. This value passes from 97.93% at a
radius equal to 11.2 m, to 97.55% at a radius equal to 10.7 m. Nevertheless the annual
system efficiency marginally increases, from 62.57% to 62.80%, governed by a 0.7% rela-
tive thermal performance growth at Trec = 600 ◦C. At higher receiver temperature this
trend is even marked, with a relative increase of 3.8% in the annual field performances
concerning the 11.2 m configuration, mainly governed by a 4.5% relative increase in the
thermal efficiency.
Actually, in both configurations, the same heliostats field is selected, namely the one in
Figure 3.27a. This can be related to a relatively small inlet radius variation into the
simulation and loss of accuracy caused by the field section division methodology.
Higher CPC inlet radius slightly increases the intercept and cosine efficiency. On the other
hand, the thermal performances decrease and govern the system’s annual performance.
Moreover, the field shape doesn’t change with respect to the one of Figure 3.27b, but
fewer heliostats are selected due to slightly higher intercept performance.
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Aim point

Aim point increases favors of better field cosines and so higher efficiency. Following the
simplified surrounded field approach, for every aim point will exist a starting value for
the concentration ratio and the inlet radius of the CPC, as represented in Table 3.6.

Aim Point [m] 80 100 120

Rcpc [m] 11.2 11.2 11.5

CRcpc,3D [-] 3.50 4.15 4.95

Table 3.6: Simplified surrounded field configuration CPC geometry at different aim point
height. Solar field parameters as Table 3.1.

Lowering the aim point, reduces the system focal distance and so the one of the secondary
reflector. The hyperboloid will be squeezed to a lower altitude and the average ray
incidence angle on the CPC aperture will increase. For that reason, the CR of the CPC
decreases to a value of 3.50 for an aim point equal to 80 m. The inlet radius of the CPC
doesn’t change, even if the ray path slightly decreases due to lower aim point height.
Same, but opposite, reasoning can be made for an aim point equal to 120 m. In this case,
the inlet radius of the CPC slightly increase to 11.5 m, due to optical error amplification.
Their value will be here utilized to study how the aim point variation affects the field shape
and performances. Moreover, the analysis is performed considering a receiver temperature
of Trec = 750◦C, namely the current technology limit for particle receivers [33].

AP [m] ηopt,ann [%] ηsys,ann [%] ηcos,ann [%] ηsb,ann [%] ηs,SR,ann [%] ηint [%] #Helio [-]

80 66.57 55.21 79.19 97.90 97.50 97.58 2733
100 68.10 58.21 81.28 97.95 96.79 97.93 2644
120 69.23 60.23 82.84 97.84 96.40 98.17 2557

Table 3.7: Annual optical efficiencies for aim point (AP) equal to 80 m, 100 m and 120 m.
CPC geometry defined by the simplified surrounded configuration. Solar field parameters
as Table 3.1.

Lowering or increasing the aim point from the configuration selected affect also the he-
liostat position in the field. As shown in Figure 3.28, at lower aim point, heliostats are
more affected by shadowing and blocking losses and so the DELSOL3 correlation tends
to increases the radial distance between rows.
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(a) Aim point = 80 m (b) Aim point = 120 m

Figure 3.28: Field shape for aim point equal to 80 m (left) and 120 m (right). CPC
geometry as Table 3.6. Solar site parameter as Table 3.1.

Moreover, pushing for higher aim points increases the annual DNI weighted cosine effi-
ciency that passes from 81.28% at aim point equal to 100 m to 82.84% at aim point equal
to 120 m. The higher concentration ratio of the CPC of the latter configuration also helps
reach higher thermal performance. Overall the annual field efficiency increased by almost
3.5% in relative terms with respect to the base configuration.
The hyperboloid shadow efficiency slightly decrease caused by a more compact field pat-
tern at an almost constant hyperboloid radius.
The opposite trend is followed by a decrease in the aim point height. Moving from 100 m
to 80 m, the cosine annual efficiency reduces by 2.6% in relative terms and even higher
variation is attained by the thermal efficiency that passes from 85.48% to 82.94% at same
receiver temperature, mainly governed by a lower CR of the CPC.

Eccentricity

The previous section has analyzed how the geometry of the CPC and the aim point affect
the field shape and the performance of a solar site. The eccentricity was kept constant
and equal to 2, for every configuration.
As described in the first chapter, the value that can uniquely characterize a hyperboloid
shape is eccentricity. As eccentricity increases, the secondary reflector crushes to half of
the focal distance. The radius increase to catch the same amount of radius, but on the
other hand, the area of the surface decrease at the same field radius, and the same trend
is also followed by the installation height at the fixed aim point. Moreover, the ground
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image will be smaller due to lower error amplification. Nevertheless, the maximum accep-
tance angle at the receiver aperture is higher, so a lower concentration ratio of the CPC
can be achieved.
The values of the CPC geometry obtained by the simplified surrounded configuration for
6 different eccentricities are listed in Table 3.8.

e [-] 1.5 2 2.5 3 3.5 4
Rcpc [m] 18.2 11.2 9.2 8.4 8.0 8.1

CRcpc,3D [-] 6.92 4.15 2.90 2.35 1.80 1.75

Table 3.8: Simplified surrounded field configuration CPC geometry at eccentricity varying
from 1.5 to 4. Solar field parameters as Table 3.1.

It’s interesting to notice that at eccentricity equal to 4, although the CRcpc,3D is still
decreasing, the inlet radius value settles. This can be considered as a good threshold
for the hyperboloid shape simulation range since the thermal efficiency will continue to
decrease due to lower CRcpc,3D and constant inlet radius.
Moreover, at the same design power, a bigger eccentricity will cause a bigger field due to
a non-negligible secondary reflector shadow effect.
The annual field optimization is performed for every configuration of Table 3.8, and the
results are presented in Figure 3.29.

Figure 3.29: Base and annual shadow optimized field configuration at eccentricity from
1.5 to 4. CPC geometry as Table 3.8. Solar field parameters as Table 3.1.
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From Figure 3.29, it’s noticeable how the shadow hyperboloid efficiency sensibly increases
in the optimized configuration, especially for high eccentricity. On the other hand, farther
heliostats are selected and for that reason the cosine and the intercept efficiency slightly
reduce.
The annual optical efficiency, as presented in Table 3.9, can be increased up to 2%.

ηopt,ann [%]
e [-]

1.5 2 2.5 3 3.5 4
BASE conf. 69.41 68.01 66.93 65.30 65.70 64.3
OPT conf. 69.41 68.44 67.85 67.10 66.50 64.71

Table 3.9: Annual optical efficiency for simplified surrounded field configuration (BASE)
and annual shadow optimized one (OPT). CPC geometry as Table 3.8. Solar field param-
eters as Table 3.1.

Furthermore, in the optimized configuration, as shown in Figure 3.30, the secondary reflec-
tor area is reduced, due to the selection of farther heliostats, following the ratio decrease
of the hyperboloid area over the field one presented in the previous chapter.

Figure 3.30: Heliostats number and hyperboloid area for the simplified surrounded con-
figuration (BASE) and annual shadow optimized one (OPT). CPC geometry as Table 3.8.
Solar field parameters as Table 3.1.
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At high eccentricity values, the hyperboloid shadow almost cancels the annual optical
performance of the nearest heliostats. Being deleted, their power, almost zero, is replaced
just by a few other heliostats. So, the overall final optimized heliostats count is reduced.
The previous results are influenced by the CPC geometry selected. As shown in Fig-
ure 3.31, the CPC radius and mainly the concentration ratio of the surrounded simplified
configuration are blocking the selection of possible new outer heliostats.

(a) Base configuration. (b) Optimized configuration.

Figure 3.31: Annual field performance for the base and optimized configuration. Eccen-
tricity equal to 4. CPC geometry as Table 3.8. Solar field parameters as Table 3.1.

3.9. Annual system optimization

It’s clear that exist an optimum of every of the pre-mentioned configuration that maxi-
mizes the annual efficiency of the field. As summarized in Figure 3.32, the best solution
will be a compromise between the CPC geometry and the field shape. A smoother CPC
will increase the cosine and intercept performances of the field while, on the other hand,
worsening the thermal performance.
Moreover, at higher eccentricity, the annual shadow optimization brings an important role
in increasing the system performance and it’s again governed by the CPC geometry.
So, in order to find the best configuration, an optimization methodology was built.
For every eccentricity, the starting value for the CPC geometry was considered equal to
the one given by the simplified surrounded circular configuration.
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Figure 3.32: Methodology concept for the heliostats field optimization.

Then the base tertiary concentrator geometry is varied, reducing and increasing the start-
ing values of both CRcpc,3D and inlet radius by a selected interval dimension. A 3x3 matrix
is then created, where each row corresponds to an inlet CPC radius, R, and each column
to a CR, as shown in Figure 3.33.
The center position of the matrix is occupied by the base configuration, found in the
simplified surrounded field creation.

Figure 3.33: Starting matrix for the optimization procedure. The middle cell is occupied
by the values found in the simplify surrounded configuration.

The inlet radius value of each CPC geometry is constrained between the minimum allowed
by thermal flux limit on the receiver aperture and the maximum one identified by a zero
thermal efficiency. Moreover, the CPC concentration ratio cannot go below 1. If a cell
departs from these limits, its simulation won’t be performed.
For every configuration, the annual optimization is carried out and the best efficient one
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is selected. The matrix is then translated with the center in the best geometry found and
new possible arrangements are identified.

Figure 3.34: Iteration matrix for the optimization procedure.

If the new best configuration varies both in terms of inlet radius and CR, five new possible
geometries are found and evaluated at the second iteration, as shown in Figure 3.34. If
one of the two CPC geometry parameters doesn’t change in the new configuration with
respect to the base one, just three new possible designs are performed. The optimization
continues till the annual best system efficient configuration is found in the center of a
N -iteration matrix, as shown in Figure 3.35.

Figure 3.35: Overall iteration matrices for the optimization procedure.

The optimization procedure was performed for two different aim point heights and with a
fixed receiver temperature equal to 750 ◦C. The final results are presented in the following
pages. However, the methodology presented is a simplification since a local maximum
can immediately stop the optimization process. Nevertheless, it is expected that the best-
performing configuration will be close to the circular surrounded field one. On the other
hand, performing every possible CPC geometry can sensibly increase the computational
time.
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Aim Point = 100 m

e [-] Conf. Rcpc [m] CRcpc,3D [-] ηsys,des [%] ηopt,ann [%] ηsys,ann [%] #Helio [-] Area SR [m2]

1.5
BASE 18.2 6.90 61.96 69.42 53.82 2644 5340.37
OPT 15.7 6.17 63.55 68.67 56.44 2685 5290.92

2
BASE 11.2 4.15 67.76 68.02 58.19 2644 6363.03
OPT 10.2 3.65 66.92 68.45 59.32 2685 5619.07

2.5
BASE 9.2 2.90 66.64 66.93 57.51 2687 6656.96
OPT 8.7 2.65 66.67 67.85 58.68 2692 5853.10

3
BASE 8.4 2.35 64.77 65.30 55.94 2760 6935.82
OPT 7.9 2.10 65.52 67.11 57.74 2724 6030.26

3.5
BASE 8.0 1.80 61.82 65.70 54.76 2808 6112.48
OPT 7.5 1.55 62.92 66.50 55.09 2754 6047.85

4
BASE 8.1 1.75 61.12 64.32 52.86 2826 6282.91
OPT 7.1 1.75 65.20 64.71 55.63 2740 6379.76

Table 3.10: Base and optimized configuration main parameters results at aim point equal
to 100 m. e is the eccentricity. ηsys,ann is the product between ηopt,ann and ηth,ann.
Trec equal to 750 ◦C. Solar field parameters as Table 3.1.

e [-] Conf. ρhelio [%] ηcos,ann [%] ηsb,ann [%] ηs,SR,ann [%] ρSR [%] ηint,ann [%] ηth,ann [%]

1.5
BASE 95.00 82.42 97.83 98.50 95.00 96.84 77.53
OPT 95.00 82.43 97.89 98.48 95.00 95.75 82.19

2
BASE 95.00 81.27 97.94 96.75 95.00 97.88 85.56
OPT 95.00 82.07 97.96 97.40 95.00 96.85 86.67

2.5
BASE 95.00 80.90 97.98 95.15 95.00 98.34 85.93
OPT 95.00 81.26 98.00 97.04 95.00 97.28 86.48

3
BASE 95.00 80.38 98.07 93.72 95.00 97.95 85.65
OPT 95.00 80.76 98.01 96.85 95.00 97.00 86.05

3.5
BASE 95.00 82.33 97.93 92.07 95.00 98.07 83.34
OPT 95.00 80.74 98.04 96.49 95.00 96.36 85.26

4
BASE 95.00 80.76 98.00 90.92 95.00 99.04 82.17
OPT 95.00 79.28 98.12 94.84 95.00 97.18 85.97

Table 3.11: Base and optimized configuration efficiencies at aim point equal to 100 m. e
is the eccentricity. Trec equal to 750 ◦C. Solar field parameters as Table 3.1.
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(a) Base configuration, e = 2 (b) Opt. configuration, e = 2

(c) Base configuration, e = 3 (d) Opt. configuration, e = 3

(e) Base configuration, e = 4 (f) Opt. configuration, e = 4

Figure 3.36: Solar field shape for base and optimized configuration at eccentricity values
equal to 2, 3 and 4. Aim point equal to 100 m. e is the eccentricity. Solar field parameters
as Table 3.1.
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Aim Point = 120 m

e [-] Conf. Rcpc [m] CRcpc,3D [-] ηsys,des [%] ηopt,ann [%] ηsys,ann [%] #Helio [-] Area SR [m2]

1.5
BASE 18.6 8.50 66.02 70.69 57.12 2580 6856.03
OPT 16.1 7.75 66.66 69.85 58.90 2626 6779.35

2
BASE 11.4 4.90 70.68 69.31 60.36 2644 7810.86
OPT 10.4 4.40 69.95 69.22 61.07 2557 7238.35

2.5
BASE 9.3 3.35 69.01 67.88 59.45 2641 8167.97
OPT 8.8 3.10 69.47 68.56 60.32 2616 7255.57

3
BASE 8.4 2.75 65.88 65.08 57.02 2755 8291.90
OPT 7.9 2.50 68.60 67.63 59.49 2654 7243.36

3.5
BASE 7.9 2.10 64.69 66.09 56.83 2781 7288.18
OPT 7.4 1.85 65.75 66.97 57.93 2708 7064.37

4
BASE 7.8 1.80 62.09 65.25 54.96 2817 6886.31
OPT 7.3 1.55 64.64 66.88 56.22 2703 6785.61

Table 3.12: Base and optimized configuration main parameters results at aim point equal
to 120 m. e is the eccentricity. ηsys,ann is the product between ηopt,ann and ηth,ann.
Trec equal to 750 ◦C. Solar field parameters as Table 3.1.

e [-] Conf. ρhelio [%] ηcos,ann [%] ηsb,ann [%] ηs,SR,ann [%] ρSR [%] ηint,ann [%] ηth,ann [%]

1.5
BASE 95.00 83.86 97.73 98.31 95.00 97.21 80.81
OPT 95.00 84.19 97.76 98.29 95.00 95.67 84.33

2
BASE 95.00 82.84 97.84 96.42 95.00 98.27 87.08
OPT 95.00 83.42 97.86 96.87 95.00 96.99 88.23

2.5
BASE 95.00 82.54 97.88 94.55 95.00 98.46 87.56
OPT 95.00 82.75 97.89 95.97 95.00 97.72 87.97

3
BASE 95.00 82.29 97.93 92.86 95.00 96.38 87.60
OPT 95.00 91.97 97.97 95.80 95.00 97.40 87.96

3.5
BASE 95.00 83.37 97.82 91.27 95.00 98.38 86.00
OPT 95.00 82.39 97.99 95.99 95.00 96.30 87.38

4
BASE 95.00 83.84 97.83 89.70 95.00 98.26 84.23
OPT 95.00 81.96 98.03 96.07 95.00 96.16 85.97

Table 3.13: Base and optimized configuration efficiencies at aim point equal to 120 m. e
is the eccentricity. Trec equal to 750 ◦C. Solar field parameters as Table 3.1.
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(a) Base configuration, e = 2 (b) Opt. configuration, e = 2

(c) Base configuration, e = 3 (d) Opt. configuration, e = 3

(e) Base configuration, e = 4 (f) Opt. configuration, e = 4

Figure 3.37: Solar field shape for base and optimized configuration at eccentricity values
equal to 2, 3 and 4. Aim point equal to 120 m. e is the eccentricity. Solar field parameters
as Table 3.1.
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The best heliostats field configuration is found at eccentricity equal to 2, in both aim point
simulations. For tower height equal to 100 m, the annual optical efficiency of the opti-
mized configuration settles down to 68.45%, with an annual thermal efficiency of 86.87%.
The overall solar field performance increases by 1.90% relative to the base configuration.
At the aim point equal to 120 m, the increased cosine and thermal performances, caused
by a higher concentration ratio, boost the overall solar field efficiency to a value of 61.07%.
These results are in line of what was presented by Segal et al. in the first beam down
optical analysis for a circular field, in which the best eccentricity value is found between
1.7 and 2.2 [43].
Starting from the base configuration the CPC inlet radius reduces in every simulation,
as a trade-off between thermal and intercept performances. The CR of the CPC follows
the same trend as a balance between optimized hyperboloid shadow, cosine, and intercept
efficiency.
So, the optimization tries to find a balance between the optical field performances in-
creased by lower CRcpc,3D and boosted thermal potential caused by the reduced CPC
inlet radius.
At low eccentricity, the optimized CPC geometry differs a lot from the base configuration
one. Error amplification causes too big ground image and although the CRcpc,3D obtained
is higher with respect to bigger eccentricity values, the optimization sensibly reduces the
intercept factor aiming at better thermal performances. For example at eccentricity equal
to 1.5 and aim point equal to 100 m, the optimized CPC inlet radius reduces to 2.5 m.
The thermal efficiency is boosted by 6% relative with a slight decrease of the intercept
efficiency, that pass from 96.84% to 95.75%, at almost constant other efficiency factors.
The optimization is completely thermal driven as confirmed by a 1% relative annual op-
tical efficiency decrease.
At higher eccentricity, the optimization is again mostly thermal driven. The hyperboloid
shadow performances, at aim point equal to 100 m, reach a value of 90% in the base con-
figuration at eccentricity equal to 4. The field is optimized by selecting farther heliostats
so to settle down this value around 95%. The CPC inlet radius is reduced as a trade-off
of decreased intercept and boosted thermal performances. Nevertheless, the field optical
performance is almost constant while the thermal efficiency increase by 4% relative to
the base case. The overall annual efficiency attains the highest variation from the base
configuration, with a 5% relative increase with respect to the base case.
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Figure 3.38: Relative percentage increase in the optimized configuration for optical, ther-
mal and system annual efficiencies. Aim point equal to 120 m. ηsys,ann is the product
between ηopt,ann and ηth,ann.

At eccentricity equal to 3, the optimization is almost field-driven. The CPC geometry
slightly changes and so do the thermal performances. On the other hand, the field optical
efficiency is boosted, passing from 65.30% to 67.11% at an aim point equal to 100 m,
mainly driven by a 3.5% relative SR shadow efficiency increase.
In every configuration, the annual field optimization reduces the hyperboloid area. As
presented in the first chapter, the selection of farther heliostats reduced the ratio of SR
area over field one. Moreover the heliostats number is reduced.
The highest variation is obtained at eccentricity equal to 4 and aim point equal to 100
m, with a reduction of around 1100 m2. The inner part of the field is sensibly affected by
the hyperboloid shadow attaining annual optical performances around 40%, as shown in
Figure 3.36 and Figure 3.37. Furthermore, the SR area is bigger at a higher aim point.
Error amplification and lower field radius over aim point ratio increases the hyperboloid
radius, so its extension.
The number of heliostats slightly increases in the optimized configuration at low eccen-
tricity governed by a lower intercept factor so to boost the thermal performance. On the
other hand, the shadow optimization at high eccentricity sensibly reduced the number of
the mirror caused by the removal of low-performing heliostats in the inner field part.
The shadowing and blocking efficiency attains in every configuration at values around
97%, caused by the DELSOL3 correlation utilized for radial spacing.
At the higher aim point, the error amplification causes a slightly higher ground image
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size. Nevertheless, the CRcpc,3D increases and compensates for the decreased thermal per-
formance. Higher cosine and thermal capabilities boost the annual solar field efficiency
that passes from 59.32% at aim point equal to 100 m and eccentricity equal to 2 to 61.07%
at aim point equal to 120 m.
Results for the best field configuration found at aim point equal to 100 m and 120 m,
namely the one with eccentricity equal to 2, are presented in Table 3.14.

AP [m] Rcpc [m] CRcpc,3D [-] ηopt,ann [%] ηsys,ann [%] #Helio [-] Area SR [m2] CRtot [-]

100 10.2 3,65 68.45 59.32 2685 4447.24 749.6
120 10.4 4.40 69.95 61.07 2557 6083.18 827.8

Table 3.14: CPC geometry and main field parameteres results for the optimized configu-
ration.

3.10. Techno-economic analysis

In this section, a techno-economic model will be presented in order to assess the Levelized
Cost Of Heat (LCOH). The aim is to justify also in terms of economic parameters, and
not only efficiency ones, the best field design found.
The analysis will be simplified since no information were found regarding the secondary
reflector tower cost. Concerning solar tower application, there is no receiver, nor piping
equipment, mounted at the top of the tower. In beam-down application, the secondary re-
flector installation is made only by the mirror’s facets mounted generally on steel support,
or as will be presented in the next chapter, in a sandwich configuration, in which both
upward and downward facing surfaces are composed by a silver glass mirror structure in
order to reflect the upward sun radiation.
No scientific articles were found regarding the specific weight of solar tower receiver and
piping facilities, useful to compare the two different optics. So, the tower cost is consid-
ered equal to the one found for a solar tower, but in this case, the installation height is
taken equal to the one attained by the hyperboloid vertex point, so the sum of the lower
focus, half of the focal distance and the semi-minor axis.
Furthermore, the same specific cost of the heliostats is considered for the secondary re-
flector mirror. No tracking system is installed on the hyperboloid mirror facets, but the
cost can be comparable due to higher installation complexity.
The LCOH evaluated considers constant annual energy production over the plant lifetime
and is based on a before-tax-revenues approach, so no tax and no financing are considered.
The Operation and Maintenance (O&M) are assumed constant along the plant lifetime
chosen. With these assumption the LCOH can be evaluated as Equation 3.24 [44].
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LCOH =
I · FCR

E
+

O&M

E
(3.24)

Where:

• I is the overnight investment.

• FCR is the Fixed Charge Rate.

• E is the annual thermal energy output.

• O&M are the Operation and Maintenance cost.

The FCR expresses the amount of revenue that must be annually collected in order to
cover the investment cost considering risk and inflation rates. If no tax scenario is con-
sidered, the FCR is equal to the Uniform Capital Recovery Factor (UCRF) evaluated as
Equation 3.25.

FCR = UCRF =
d(1 + d)N

(1 + d)N − 1
(3.25)

Where N is the lifetime period, assumed equal to 25 years, and d is the discount rate,
equal to 9%. The O&M cost for CSP application are in the range of 0.018-0.036 e/kWth

[2]. In this work it is assumed an O&M cost of 0.023 e/kWth, slightly higher than the
lower boundary due to increase optic complexity.

Lifetime 25 years [2]
Discount rate 9 % [2]
O&M 0.023 e/kWhth [2]
EPC & Cont. 40% of the investment [4]
DNI 7 kWh/day/m2 [35]
Field cost 9100 e/acre
Tower cost 2.73 · 106 e0.0113 TH e

Receiver cost 113 (1+10%) e/kWth [33]
Heliostat cost 132 e/m2

Table 3.15: Beam down optic investment assumptions. Field, tower and heliostat cost
from SolarPILOT default values.
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For the evaluation of the annual efficiencies presented in the previous section, a clear sky
approach was utilized. In order to compare the results with the literature, the same clear
sky system annual performance are considered, but the energy produced will be given by
an averaged annual DNI of 7 kWh/day/m2 and 365 days of annual operation.
The Engineering, Procurement, and Construction cost (EPC) and possible contingency
are assumed equal to 40% of the overnight investment [4]. Furthermore, the receiver cost
was increased by a 10% factor in order to take into account the presence of a CPC, since
no cost information was found about it. However, the concentration ratio and the inlet
radius can sensibly affect the reflected area of the component at different eccentricities.
Nevertheless, its cost investment share cannot be too high, otherwise, its installation will
not be justified.
The LCOH results for the simulated eccentricity and aim point height are presented in
Figure 3.39.

Figure 3.39: LCOH results for simplified surrounded field configuration (BASE) and
annual optimized one (OPT) at aim point equal to 100, 120 and 150 m. Economic
parameters as Table 3.15.

The best techno-economic configuration is found for eccentricity equal to 3 and an aim
point of 120 m. The eccentricity value of 2 and the same aim point height, namely the
best field configuration found in terms of annual performance, is affected by higher tower
costs. The tower height at the best techno-economic configuration decreases from 94 m
to 85 m. Furthermore, the slight increase of the heliostats number is compensated by a
diminish on the hyperboloid area (10% relative) caused by the shadow optimization.
At aim point equal to 150 m, the tower cost increase does not justify the better field
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performances and the LCOH is the highest at every eccentricities.
The annual thermal energy produced by the best techno-economic optimization is 100.85
TWhth. These results are in line of what was presented by Ali Hussaini et al. for a 50MWth

solar tower in Nigeria (latitude of 12.4◦). They found a LCOH around 36 e/MWhth, but
the design DNI was taken equal to 670 kW/mth and so an higher reflective area is attained
with an annual thermal generation of 150.77 TWhth, assuming an annual averaged DNI of
5.5 kWh/day/m2 and aim point equal to 100 m [2]. Moreover, also the mean DNI annual
system efficiencies are comparable, 59.49% obtained by the beam down optimization and
54.80% for the solar tower. Nevertheless, the lower DNI design value considered for the
solar tower application can sensibly reduce the annual performances.
As shown by Figure 3.40, the overall investment cost is mainly split by the receiver, tower,
heliostats, and EPC cost. The hyperboloid surface area is sensibly small with respect to
the field reflected ones and so is its investment cost share.

Figure 3.40: Specific cost share pie chart for the optimized configuration at aim point
equal to 120 m and eccentricity equal to 3.
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Concerning the solar tower system, the secondary reflector introduces another loss both in
terms of reflectivity and shadow effect. Furthermore, the thermal load on the hyperboloid
cannot be neglected. As figured in Figure 4.1, the heat flux can reach levels up to 18
kW/m2. The simulation was performed utilizing SolTRACE with a DNI of design of 1
kW/m2 and design solar angle. Furthermore, it was considered the best setup found both
in system efficiency and techno-economic consideration, respectively the ones at aim point
equal to 120 m and eccentricity equal to 2 and 3.

(a) Eccentricity equal to 2 (b) Eccentricity equal to 3

Figure 4.1: Secondary reflector heliostats radiation heat flux for optimized configuration
and aim point equal to 120 m.

At eccentricity equal to 2 the secondary reflector installation height is higher and the
surface is more concave, so its energy density in the center part. Moreover, the shadow
optimization is less dominant since the SR is smaller and so the best field cosine part is
preserved.
At eccentricity equal to 3, the most performing cosine part of the field is finned out and
so the decreased flux in the inner hyperboloid part. Moreover, the heat flux distribution
is more uniform due to lower installation height.
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In this chapter, a methodology to assess the temperature level on the SR will be pre-
sented considering different possible construction procedures, namely a sandwich, alu-
minum upward-facing surface with and without a fin, and the last few considerations are
made on a possible refrigeration system design.
Segal et. al. proposed a complete and detailed analysis for the beam down system at the
Weizmann Institute of Science and the same approach will be followed here with some
simplification [5].
All the considerations that will be made in the following sections are related to 1 m2 of
surface, namely a square of 1x1 m. However, this is a simplification, since the heat trans-
fer coefficient is strictly dependent on the characteristic length considered but results can
be useful in the first thermal analysis of the secondary reflector.

4.1. Secondary reflector model

Highly reflective surfaces are generally made by a thin silver film covered by glass in order
to avoid the fouling degradation effect. An example of solar film is the one proposed by
3MTM, called Solar Mirror Film 1100. With a thickness of 4.6 microns and a reflectivity
of 94% at air mass equal to 1.5, suits very well for the section approach presented in the
previous chapter.
The glass cover needs to be highly transmitting in order to limit the reflective losses of the
system. The type of glass utilized by the Weizmann Institute of science is the SCHOOT
Borofloat 33 [5]. As shown in Figure 4.2, it can be modeled as a semi-transparent grey
body across most of the spectrum, while an opaque grey body in the other.
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Figure 4.2: SCHOOT Borofloat 33 trasmissivity spectrum [41].
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The downwards facing part of the hyperboloid is then completed as the union glass-silver
facets. Moreover, the maximum operating temperature is imposed by the silver surfaces,
65 ◦C, since the glass one is 450 ◦C [17][41].
The upwards part of the secondary reflector, on the other hand, has to dissipate the high
thermal flux coming from the heliostats field and the direct sun radiation.
Two different configurations were individuated by the Weizmann Institute, a sandwich
configuration, in which two reflective sides are stick one to each other, or a finned one, in
order to increase the heat transfer area on the upper part of the hyperboloid, as shown
in Figure 4.3.

(a) Sandwich configuration (b) Finned configuration

Figure 4.3: Possible secondary reflector configuration individuated at Weizmann Institute
of Science [5].

Furthermore, two other configurations were added to this work. If the metal utilized for
the upward-facing surface is of a highly reflective type, like aluminium, and fins are not
installed, the solution can be comparable to the one of the sandwich type.
Moreover the latter configuration can be further improved with the installation of dry
cooling technology. A heat contribution is withdrawn from the upward-facing surface to
limit the silver temperature.
The nature of the heat transfer is of a convective, conductive, and radiative type. The first
one is between the secondary reflector and the surrounding environment. The second one
takes place in between the various surfaces, while the radiative one includes the incoming
heliostat radiation from the bottom and the sun one, plus the emission and absorption
between the surface, the sky, and the ground.
For simplicity, the hyperboloid is treated as a horizontal flat surface with a unitary view
factor on both sides, respectively with the ground and the sky. The presence of the he-
liostats is neglected for simplicity, or better considered in the incoming reflected radiation
and the ground emission.
Nevertheless, the horizontal assumption is conservative, especially for the diminished nat-



92 4| SR thermal model

ural convection on the downward-facing side since for inclined surface the Nusselt corre-
lation is proportional to Ra1/4, while for flat downward plates is Ra1/5, where Ra is the
Rayleigh number [28].
The gravity effect is limited in both situations. The first one is driven by the cosine of
the surface inclination while the second one is almost blocked.
Moreover, the radiative net flux is higher, since the bottom part is facing the incoming
heliostats reflected radiation.
In the following analysis will be used a 1D model. For simplicity, the tangential heat
transfer is neglected and it’s assumed that the incident radiation is perpendicular to the
secondary reflector surface [5]. The latter is a reasonable assumption since the incidence
ray direction is limited in the inner part of the field, namely the most performing one.
Convection heat transfer can be also of a forced type caused by the presence of the wind.

4.2. Physical properties

In the sandwich configuration, the system is composed of two adherent silver modules
covered on both sides by glass material. The properties of these two materials are taken
from the datasheet of the two components anticipated before, the SCHOOT Borofloat 33
glass and the silver film by 3MTM.
For the finned configuration is it assumed that the upward-facing surface is made out of
aluminium, both for the fin extension and its surface support.
If fins are not present, only the aluminium horizontal surface will be considered.

Silver-Glass module

Following the Fresnel refraction law and the Snell law, the reflectivity of a smooth trans-
parent surface facing air for normal incoming radiation can be evaluated as Equation 4.1
[18].

rg =

(
ng − 1

ng + 1

)2

(4.1)

Where ng is the refractive index of the glass and it’s considered constant among the spec-
trum. For simplicity, also the thermal conductivity is considered constant equal to the
one listed in Table 4.1.
As anticipated before, this type of glass can be modeled as a nearly perfect transparent
grey body in almost all the solar spectrum, precisely in a wavelength range between 325
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nm and 2500 nm, while the transmissivity then falls to zero for a longer wavelength. The
silver surface is assumed as an opaque grey body in the entire spectrum.
The effective contribution given in the two bands is evaluated considering the band emis-
sion factor for a black body at 5777 K, namely the sun temperature. It was found that
93.10% of the incoming solar radiation will be transmitted and absorbed by the glass,
while the surface results are opaque for the remaining interval.

Property Value Description
sg 5 mm Glass width
ng 1.4714 Glass refractive Index
τ g

T 0.92 Glass trasmissivity in the Transpartent band
ρg

O 0.08 Glass reflectivity in the Opaque band
ρs 0.94 Silver reflectivity
kg 1.2 W/mK Glass thermal conductivity at 90 ◦C

Table 4.1: Glass and Silver radiation properties [41][17].

The effective radiative properties of the glass can be predicted by an analytical ray-trace
approach. As shown in Figure 4.4, a unitary ray is approaching the glass surface. A part
of it will be reflected while the (1− rg) contributes transmitted. The ray path continues
along the glass width till the silver film is met. In this zone, again, a part of it will be
reflected, while the other transmitted and so absorbed by the silver film.

204 Radiation Transmission through Glazing: Absorbed Radiation

From Equation 5.1.3, the reflectance is

r(60) = 1
2

[
sin2 (−25.42)

sin2(94.58)
+ tan2(−25.42)

tan2(94.58)

]

= 1
2

(0.185 + 0.001) = 0.093
!

In solar applications, the transmission of radiation is through a slab or film of material
so there are two interfaces per cover to cause reflection losses. At off-normal incidence,
the radiation reflected at an interface is different for each component of polarization, so
the transmitted and reflected radiation becomes partially polarized. Consequently, it is
necessary to treat each component of polarization separately.

Neglecting absorption in the cover material shown in Figure 5.1.2 and considering for
the moment only the perpendicular component of polarization of the incoming radiation,
(1 − r⊥) of the incident beam reaches the second interface. Of this, (1 − r⊥)2 passes
through the interface and r⊥(1 − r⊥) is reflected back to the first, and so on. Summing the
transmitted terms, the transmittance for the perpendicular component of polarization is

τ⊥ = (1 − r⊥)2
∞∑

n=0

r2n⊥ = (1 − r⊥)2

1 − r2⊥
= 1 − r⊥

1 + r⊥
(5.1.7)

Exactly the same expansion results when the parallel component of polarization is
considered. The components r⊥ and r|| are not equal (except at normal incidence), and
the transmittance of initially unpolarized radiation is the average transmittance of the two
components,

τr = 1
2

(
1 − r||
1 + r||

+ 1 − r⊥
1 + r⊥

)

(5.1.8)

where the subscript r is a reminder that only reflection losses have been considered.
For a system of N covers all of the same materials, a similar analysis yields

τrN = 1
2

(
1 − r||

1 + (2N − 1) r||
+ 1 − r⊥

1 + (2N − 1)r⊥

)

(5.1.9)

Figure 5.1.2 Transmission through one nonabsorbing
cover.

Figure 4.4: Analytical ray tracing approach [18]

In Figure 4.4, it’s assumed perfect transmissivity property, so the ray energy along the
glass width is governed only by the reflection. In the real model, namely the one considered
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in this work, the final contribution will be the reflected one multiplied by the material
transmittance. The absorbance property of the glass in the glass transparent band can
then be evaluated thanks to Equation 4.2.

αT
g =

(1− τg)(1− rg)(1 + ρsτg)

1− rgρsτ 2g
(4.2)

Since is difficult to associate the absorption contribution at every point along with the
glass thickness, it is assumed that half of the contribution acts on the outer surface while
the other half at the silver surface.
The silver absorbance property in the glass transparent band can then be performed as
the non-reflected part of the radiation at the lower glass side.

αT
s =

τg(1− ρs)(1− rg)

1− rgρsτ 2g
(4.3)

Glue

In every configuration, the upward and downward facing surfaces are stick one to each.
The glue is considered to have a constant thermal conductivity of 0.4 W/mK and a 0.2
mm thickness [5].

Metal

In the finned configuration, the upward-facing hyperboloid surface is assumed made out
of aluminum and also its support. The thermal conductivity is assumed constant equal
to 239 W/mK [27].
The fins metal support thickness, namely the horizontal surface, is considered equal to 4
mm. Furthermore, it is assumed a grey body behavior in the entire wavelength spectrum.
The hemispherical emissivity of metals is a function of the temperature and resistivity,
Bartl et al. found out that the emissivity is linearly temperature correlated as Equation 4.4
[3].

ε(T ) = 8.3 105 T + 3.2 10−3 (4.4)

Thanks to grey body Kirchhoff law, the hemispherical absorptivity is equal to the emis-
sivity and the reflectivity will be 1− ε(T ). The absorbed radiation is again split equally
at the two nodes.
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Air

The cinematic viscosity νa, the thermal conductivity ka, and the Prandtl number Pra of
dry air are considered quadratic curves fitted from NBS database [5].

νa(T ) = 7.239× 10−6 − 1.295× 10−8T + 1.489× 10−10T 2 (4.5)

ka(T ) = 8.086× 10−5 + 9.715× 10−5T − 3.314× 10−8T 2 (4.6)

Pra(T ) = 8.271× 10−1 − 5.514× 10−4T + 5.143× 10−7T 2 (4.7)

The ground and sky emission is considered as a black body one at a temperature equal
to the ambient one (30 ◦C).

4.3. Energy Balance

The overall heat transfer is of radiative, convective, and conductive type. Every contri-
bution will be deeply analyzed in the following subsections.
Four nodes are identified in every configuration. In the sandwich one, the two outer glass
surfaces and the two silver ones. In the finned or not finned configuration, are the outer
downward facing glass surface, the silver surface, the inner metal surface stick to the glue
medium, and the upward facing aluminum support surface.
The temperature solution is then performed with the fsolve function in Matlab by solving
the heat transfer balance at each of the four nodes.

4.3.1. Radiative heat transfer

The radiative heat transfer takes place between the silver-glass module and the surround-
ing ambient. In the glass transparent band, the net contribution on the glass surface is
equal to the absorbed incidence radiation and the emission in that spectrum. However,
the latter factor is negligible since the emissivity is close to zero in the considered wave-
length range.
Moreover, as anticipated before, the mirror width is not negligible and so its absorption
contribution is divided half on the outer surface and half on the silver surface.
On the other hand, in the glass transparent band, the silver surface it’s opaque and so
its net contribution it’s pure of absorption and emission type. The latter can again be
neglected due to its high reflectivity value.
Furthermore, in the opaque glass spectrum, the net contribution on the outer glass surface
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is given by the difference between the absorption of the incident radiation and emission
as a grey body. The net radiative contribution on the silver surface is zero.
The overall heat flux net contribution at glass surface in the entire spectrum is evaluated
as equation below.

qradnet,g =
1

2
αT
g qincF

T +
[
(1− ρOg )qinc − (1− ρOg )σSBT

4
g

]
(1− F T ) (4.8)

Where the superscript T and O refer respectively to the transparent and opaque glass
spectrum. qinc is the incoming radiation that takes into account the sun or heliostats one
and the sky or ground black body emission. F is the transparent emission band factor.
Plus sign refers to absorbed contribution while minus to released one.
On the other hand, the net heat flux contribution on the silver surface is evaluated as
Equation 4.9.

qradnet,s =

(
1

2
αT
g + αT

s

)
qincF

T (4.9)

4.3.2. Conduction

The conductive heat flux follows the Fourier law expressed as equation below.

qcond = −k∇T (4.10)

Where k is the thermal conductivity. Nevertheless, since the heat transfer is simplified
as a 1D model, the temperature will vary only along the sandwich or metal configuration
width.
Furthermore is reasonable to assume linear distribution due to very thin materials and so
Equation 4.10 can be simplified as Equation 4.11.

qcond = −k∆T/d (4.11)

Where d is the thickness of the material considered and k is the thermal conductivity.

4.3.3. Convection

Convective heat transfer can be of a free or forced type. The first is related to gravity-
driven film on the surface, in nearly stagnant air. The second one dominates in presence
of wind or forced cooling technologies.
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The strength of natural convection is mainly governed by buoyancy expressed by the
Grashof number GrL while the forced convection is characterized by the Reynolds number
ReL, with L a characteristic length. When GrL/Re2L ≪ 1, the forced convection dominates
and the opposite for GrL/Re2L ≫ 1.
If the two dimensionless numbers are comparable we have a mixed convection process.
In this case, the heat transfer coefficient can be roughly estimated as the maximum one
between both. The error is often less than 25% with the maximum deviation at GrL/Re2L
close to unity [38].

Free Convection

The free convection is strictly dependent on the plate orientation and inclination. As
anticipated before, it will be assumed that the control surface considered is flat and
horizontal.
For upwards hot plates the boundary layer becomes unstable and separates at a relatively
low Grashof number. The convective heat transfer can be evaluated from the Nusselt
correlation of Equation 4.12.

NuL = 0.14 Ra
1/3
L (4.12)

With the Rayleigh number interval of 107 < RaL < 1011. L is the characteristic length
of the phenomena and in this case, the choice is indifferent because both NuL and Ra

1/3
L

are proportional to L, so the heat transfer coefficient is independent of L.
On the other hand, for downward-facing hot plate, the free convection phenomena are
stable and the heat transfer coefficient can be evaluated from Equation 4.13.

NuL = 0.58 Ra
1/5
L (4.13)

L is this case is the plate width and the correlation is valid for 106 < RaL < 1011 [28].

Forced Convection

Forced convection appears in presence of a velocity field around the geometry considered.
In this case, the heat transfer is related to the Reynolds and Prandtl number.
The velocity field can be either turbulent or laminar and assumed parallel to the surface
considered. The threshold can be set to ReL equal to 5× 105.
For laminar flow, the heat transfer coefficient can be evaluated from Equation 4.14, while
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for turbulent flow from Equation 4.15.

NuL = 0.664 Pr1/5Re
1/2
L (4.14)

Valid for ReL ≤ 5× 105 and 0.6 ≤ Pr ≤ 10.

NuL = 0.036 Pr0.43
(
Re0.8L − 9200

)
(4.15)

Valid for 2× 105 ≤ ReL < 5.5× 106 and 0.7 ≤ Pr ≤ 380.
In both correlations, L is the length in the velocity direction.

4.3.4. Finned configuration

The fins radiative heat transfer is neglected for simplicity. As anticipated before it is
further assumed grey body behaviour of aluminium in the entire spectrum, so the radiative
net trasfer is composed by the absorption, the emission and the reflection of the horizontal
metal surface.
The free convection relation is evaluated as Equation 4.16, where the characteristic length
is the fin height H [5],

NuH = 0.56 Ra
1/4
H (4.16)

For simplicity, the film temperature is evaluated as the reciprocal of the mean tempera-
ture between the ambient and the horizontal surface one.
The forced convection can still be evaluated with Equation 4.14 and Equation 4.15.
Furthermore, in this type of configuration two different surfaces participate in the con-
vective dissipation, namely the aluminium horizontal support and the fin extension.
The convective heat loss from a fin can be evaluated as Equation 4.17.

Q̇f = Ah(Tw − Tamb)η (4.17)

Where A is the fin convective area, h the averaged heat transfer coefficient, and η the fin
efficiency. The latter parameter represents the ratio between the heat dissipated by the
fin and the one released by an iso-thermal fin at the support wall temperature.
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Figure 4.5: Fin geometric parameters [5].

Equation 4.17 holds for the fin profile in which the temperature difference between the wall
temperature and the ambient one is much higher than the temperature difference in the
fin transversal direction. This condition is verified when the Biot number Bifin = h(A/P )

k

is much less than 1, with P the fin wetted perimeter.
It is further assumed that the dissipation from the thin lateral surface and from the fin tip
is neglected due to the small heat transfer area. By saying that the differential equation
solution for a non-isothermal fin with adiabatic tip holds and the efficiency is evaluated
as Equation 4.18.

η = tanh(mH)/mH (4.18)

Where H is the fin height and m is defined as:

m =

√
2h

ktf
(4.19)

With k the thermal conductivity of the fin.
The overall heat transfer coefficient, for both horizontal and vertical surfaces, can be
evaluated as Equation 4.20.

h =
Qconv

Lw(Tw − Tamb)
=

1

d
[2Hhvη + (d− tf )hh] (4.20)

Where the subscripts v and h represent respectively the vertical and horizontal surfaces.
An important characteristic in designing finned surfaces is the product mH. By looking
at the fin efficiency, the heat transfer cannot be sensibly increased for mH higher than



100 4| SR thermal model

3 [28]. In this sense, the fin height is limited by the latter threshold in the worst-case
condition, namely at zero wind velocity. The values found was equal to 50 cm.
For non-finned configuration, the heat transfer coefficient will be simply the one of the
horizontal surfaces.

4.3.5. Cooled configuration

The fourth possible configuration is the installation of a dry cooling or a similar refriger-
ation technology able to withdraw a heat contribution from the upward-facing surface to
limit the silver temperature.
The refrigerant power needed is evaluated considering a silver surface temperature equal
to 65 ◦C. So the non-linear equation system is solved again for the three remaining temper-
ature unknowns and the refrigerant heat contribution withdraw from the outer upward-
facing surface in the metal configuration without fins.
Nevertheless, this solution is a simplification since the upward-facing surface radiative and
convective heat transfer have to be properly recalculated due to the presence of possible
refrigerant tube bundles.
However, the results obtained can be considered as a first good first thermal analysis for
a m2 of hyperboloid surface considering also possible different refrigeration systems.
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4.4. Results

The silver temperature obtained in sandwich layout, in metal layout without a fin, and
with are represented in Figure 4.6a, 4.6b and 4.6c. The refrigerant power needed per
meter square of surface to keep the silver temperature under its maximum operating limit
at the design point is presented in Figure 4.6d.
All the configurations were analyzed for a range of wind velocities from 0 to 10 m/s.
The Gr/Re2 factor is plotted for the downward-facing surface.

(a) Sandwich configuration (b) Metal configuration w/o fin

(c) Metal configuration w/ fin (d) Dry cooler refrigerant power

Figure 4.6: Silver temperature and dry cooler refrigerant power for four different secondary
reflector configuration.
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It can be noticed how, for heat flux over 10 kW/m2 and stagnant air, any configuration
is valuable to limit the silver temperature except using refrigeration equipment.
The glass absorbance set to a value equal to 9%, while the silver one is almost 5%.
Taking the example of the sandwich configuration, at a velocity equal to zero, the convec-
tive heat transfer is of a free type. Increasing the wind velocity, at the downward-facing
surface, the convection starts to be mixed due to comparable Gr/Re2 factor and the
forced convection dominates. At the upward surfaces, the favorable buoyancy effect con-
tinues to dominates till wind velocity is equal to 4 m/s. This justifies the non-flat silver
temperature behavior at low velocity.
The Rayleigh number in every configuration is in the order of 1010, so the Nu correlations
boundaries are respected.
The forced convection is of a laminar type till velocity of 9 m/s and then turns into a
turbulent one. Furthermore, the temperature difference between the two outer surfaces
of the hyperboloid is in the range of 5-10 K due to the conductivity effect.
The metal configuration performs better than the sandwich one in both cases, namely
with and without fins. Due to the high reflectivity and conductivity of aluminum, the
upward-facing surface dissipation is favor both in terms of radiative and convective heat
transfer.
The fin appears to be oversized at high wind velocity, reaching values of mL close to 5
and so the fin efficiency that passes from 38% at stagnant air to 21% at wind velocity of
10 m/s.
If the incident heat flux on the meter square of surface considered doesn’t limit the silver
temperature to its maximum operating one, a refrigeration system is needed. As shown in
Figure 4.6d, in the metal configuration without a fin, stagnant air and heat flux equal to
20 kW/m2, the heat withdrawn from the upper surface is around 3.25 kW/m2. As wind
temperature increases, the refrigeration power decreases due to better convective transfer
dissipation.
The results are influenced by the characteristic length considered, namely 1 m. Neverthe-
less, considering a characteristic length of 50 m, the relative error on the results is lower
than 10% on the silver temperature. So, the analysis can be considered as a good first
value in analyzing the secondary reflector behavior. For every m2 at a given heat flux
and wind velocity, one of the possible four configurations has to be considered to limit
the silver temperature.
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Figure 4.7: Secondary reflector possible configuration to limit the silver temperature at
65 ◦C. Dashed isoline represent the refrigeration power.

If the silver temperature is limited to 65 ◦C, most of the secondary reflector needs to be
cooled down by a chiller.
At higher eccentricity, the flux distribution is more uniform and the area percentage to be
cooled can reach up to 45% at silver limiting temperature of 65 ◦C, as shown in Figure 4.8.

(a) e = 2, aim point = 120 m (b) e = 3, aim point = 120 m

Figure 4.8: Configuration area percentage coverage for 3 possible silver limiting temper-
ature. Wind velocity equal to 2 m/s.
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At Tsil,lim of 150 ◦C, in both configuration, almost 50% of the secondary reflector area can
be made out of sandwich or metal pattern. The choice will be based on techno-economic
and structural consideration.
As shown in Table 4.2, at higher eccentricity the refrigerant power increases, also caused
by a slightly bigger hyperboloid. The refrigerant power can be sensibly reduced up to 2.23
MW at design condition, and wind velocity of 2 m/s, if the limiting silver temperature is
pushed to 150 ◦C.

Q̇refr [MW]
Tsil,lim

65 ◦C 100 ◦C 150 ◦C
e = 2 4.54 4.18 2.63
e = 3 5.38 4.99 2.74

Table 4.2: Refrigerant power in order to keep the silver temperature under its limiting
condition. Wind velocity equal to 2 m/s.

Nevertheless, the model presented does not consider the horizontal flux dissipation. The
SR surface flux can be homogenized and sensibly reduced the cooling power needed per
meter square. Moreover, the glass transmittance and absorbance properties were simpli-
fied considering grey body behavior in almost the entire spectrum.
The BD design needs to be accompanied by thermal analysis of the secondary reflector.
In this sense, a lower design power solar field can possibly reduce the thermal load on the
hyperboloid and allows for simple, not cooled configurations.
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Conclusions

Nowadays, just a few Beam-Down systems are installed all over the world. The configu-
ration needs still to reach its learning rate in order to be competitive in the CSP market.
All the existing solar field makes use of a circular surrounded heliostats field pattern and,
moreover, their power is limited to 17 MWth (Yumen, China).
This works aim at generalized the Beam-Down solar field creation, considering the pres-
ence of a Compound Parabolic Concentrator (CPC) and the Secondary Reflector (SR)
shadow derating factor. In this sense, a 50 MWth point focus Beam-Down optimized solar
field at a given latitude is presented.
The overall optic and geometric characteristics were firstly analyzed making use of a ran-
dom light point distribution and optical error. The system was then coupled with a CPC
aiming at boosting the receiver’s thermal performance. The latter is completely defined
by two geometric parameters, the inlet radius, and the maximum acceptance angle. The
higher is the latter, the lower will be the CPC Concentration Ratio (CRcpc,3D).
The optic theory was then applied to a real heliostat’s solar field. The mirrors field pat-
tern considered was a radial staggered one and it was implemented in Matlab following
the campo code presented by Collado. The shadowing and blocking performance were
assessed thanks to the Sassi methodology.
To unconstrain the hyperboloid shape from the normal circular model, the solar field was
divided into sections of equal azimuth extension, so a sliced SR shape is created.
Then, the hyperboloid shadow was added, concerning solar tower application, and it was
found that the best cosine solar field part was strongly affected by the presence of an SR.
In this sense, it was found that possible farthermost heliostats, less shaded, can replace
worst-performing ones, increasing the annual optical performance up to 3%.
Nevertheless, the heliostats selection is sensibly influenced by the CPC geometry. Farther
mirrors selection are affected by higher receiver incidence angle and ground image size.
So an optimum system configuration (heliostats field plus CPC geometry) must exist as
a trade-off between optical and thermal performances.
Starting from a simplified surrounded field configuration, a first guessing value of the CPC
inlet radius and CRcpc,3D is found. Furthermore, the CPC geometry is varied in order to
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maximize the annual system performances. The receiver temperature was assumed equal
to 750 ◦C, namely the current limiting value for particles receiver application. The opti-
mization was performed at different eccentricity and aim point values.
System efficiency results were compared also on a techno-economic point of view, and
the best BD optimized configuration in terms of LCOH was found at eccentricity equal
to 3 and an aim point of 120 m. In this case, the optimization is mainly optical driven,
caused by a 3.5% relative percentage increase in the annual shadow hyperboloid efficiency
concerning the surrounded field configuration. The field shape becomes slightly asymmet-
ric, and North-oriented, resulting in an annual optical efficiency of 65.08% and a thermal
efficiency of 87.96%.
The CPC inlet radius settles down to a value of 7.9 m and the CRcpc,3D is 2.50.
Furthermore, the number of the mirror reduces from 2755 to 2654 and the same trend is
followed by the SR area which decreases by 12% relative. The annual energy produced
is 100.85 TWhth at averaged annual DNI of 7 kWh/day/m2. The LCOH settles down at
value of 57 e/MWhth.
These results are comparable of what was presented by Ali Hussaini et al. for a 50MWth

solar tower in Nigeria (latitude of 12.4◦ N). They found a LCOH around 36 e/MWhth,
but the design DNI was taken equal to 670 kW/mth and so an higher reflective area is
attained with an annual thermal generation of 150.77 TWhth, assuming an annual av-
eraged DNI of 5.5 kWh/day/m2 and aim point equal to 100 m [2]. Moreover, also the
mean DNI annual system efficiencies are comparable, 59.49% obtained by the beam down
optimization and 54.80% for the solar tower. Nevertheless, the lower DNI design value
considered for the solar tower application can sensibly reduce the annual performances.

Furthermore, a 1D SR thermal model for the temperature distribution along the hyper-
boloid was presented in order to evaluate whether it is necessary to install a refrigerant
system to keep temperatures to the values allowed by the specifications of each material.
Different SR configurations were studied, namely the sandwich, the finned or not one,
and the possibility of dry cooling technology.
The radiative properties of the glass silver surface were assessed by making use of an
analytical ray-trace approach. Both materials were considered to act as a grey body, in
almost the entire solar spectrum.
The convective loss was differentiated between natural and forced one, making use of the
Gr/Re2 factor. The characteristic length was assumed equal to 1x1 m in order to gener-
alize the analysis.
At the best techno-economic configuration, if the silver temperature is limited to 65 ◦C,
45% of the hyperboloid surface needs to be cooled down. If the silver temperature limit
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can be increased up to 150 ◦C, this value reduces to 14%. In the latter case, the fin
configuration occupies another 14%, the not finned one the 22.5 %, and in the remaining
part a sandwich configuration can be utilized.
The overall refrigeration heat settles down at 5.38 MW at a silver temperature of 65 ◦C,
to 2.74 MW at 150 ◦C.

Future work

The optic of a Beam-Down needs still to be fully comprehended. In the last years, the
number of scientific papers published has proved the research community’s interest in this
particular CSP application. The trend is confirmed by the first commercial BD power
plant installed in China.
The model presented lacks of accurate analysis in the receiver thermal behaviour and CPC
optic. In this sense, a suitable configuration of particle receivers needs still to be directly
associated and the thermal model deeply assessed. Moreover, an accurate approach for
the CPC transmissivity efficiency can be accompanied in order to improve the accuracy
of the intercept efficiency calculation.
The heliostats field was considered made of rectangular flat mirrors. The use of a parabolic
geometry can increase the intercept efficiency due to a reduced aberration effect. More-
over, the mirror size needs to be optimized as a trade-off between performance and cost
increase.
Valuable results in terms of system efficiency can then be obtained by selecting a proper
solar site and analyzing the real DNI distribution throughout the year.
The system can then be coupled with direct thermal storage and a bottom sCO2 power
cycle. The latter can favor high conversion efficiency, thanks to boosted receiver temper-
ature compared to the molten salt technology. The system optimization can then follow
a cost of sell maximization approach, so to minimize the LCOE.
Moreover, scaling up beam down solar system needs to take into account the thermo-
mechanical stress on the hyperboloid surface. In this sense, a 3D thermal model needs to
be considered in order to properly analyze the heat flux distribution. The design power
will then be a compromise between the refrigeration heat, material utilized and energy
produced.
Lastly, the cost of the tower needs still a proper value since no receiver is mounted on top
as for solar tower application. On the other hand, the wind loads can strongly decrease
the structural and optical performance.
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The Sassi methodology utilized for the evaluation of the shadowing and blocking perfor-
mance for every heliostat will be here presented.
Let’s consider a generic i-heliostat and a k-heliostat interfering for shadowing and block-
ing. The center of the i-heliostat lies in a cartesian XY plane at the point [0, 0], while the
generic center P of the k-heliostat lies into a 3D space with relative coordinates [xp, yp, zp],
as presented in Figure A.1
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images are supposed similar to the heliostat shape, because it is 
more recurrent and its mathematical development is easier. 

For each projection we have to consider the sides u and v of 
the overlapping rectangle. Each of thexe projections is either of 
a, b, c or d type, as shown in Fig. 3, as determined by the 
conditions: 

a i fx ,<Oandy~>O 
b i fx~>Oandye>O 
c i fxe<Oandy ,<O 
d if x~ >Oand y~ <0. 

(8) 

However, in each case the sides of the overlapping rectangle are: 

u = tx  -Ixel 
v = Lr - l yel' (9) 

If u -< 0 or v -< 0 the overlapping does not exist. 
Now we divide the sides 1 and 2 of the element into n intervals 

and define a function F of integer arguments which assumes a 
value equal to v for all the intervals belonging to the overlapping 
rectangle and a value equal to 0 for the other ones. On side l, the 
intervals are counted 1 to n proceeding from corner a to corner b 
and on side 2 are counted n + 1 to 2n from corner c to d. 

Fig. 3. Four different sort of overlappings between the element of the field and the generic projection. 

Figure A.1: Generic i-heliostat centered in the XY plane and the center P of the k-
heliostat [40].

Let’s consider the shadowing case and so the generic sun versor −→s defined by [sx, sy, sz]

pointing the i-heliostat. The same consideration can be made for blocking performance
considering the reflected vector of the i-heliostat.
The straight line passing through P with direction defined by −→s can be evaluated by
Equation A.1.

x− xp

sx
=

y − yp
sy

=
z − zp
sz

(A.1)
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The i-heliostat lies on a plane specified by its normal vector −→n as Equation A.2.

nx · x+ ny · y + nz · z = 0 (A.2)

The solution of equation Equation A.1 and Equation A.2 gives the projection of point P
into the i-heliostat plane.
The projected point and the heliostat plane can be then translated into a XY plane where
the edges of the heliostat are parallel to the Cartesian axis, and the new coordinate [xe, ye]

and ze = 0 of the point P are evaluated as Equation A.3.

xe = {[nx (sxny − synx) /Ω− ny]xp + [ny (sxny − synx) /Ω + nx] yp

+nz (sxny − synx) zp/Ω}/Φ

ye = [−sznxxp − sznyyp + (sxnx + syny) zp] / (ΩΦ) (A.3)

Where Ω = −→s · −→n and Φ =
√
n2
x + n2

y.
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images are supposed similar to the heliostat shape, because it is 
more recurrent and its mathematical development is easier. 

For each projection we have to consider the sides u and v of 
the overlapping rectangle. Each of thexe projections is either of 
a, b, c or d type, as shown in Fig. 3, as determined by the 
conditions: 

a i fx ,<Oandy~>O 
b i fx~>Oandye>O 
c i fxe<Oandy ,<O 
d if x~ >Oand y~ <0. 

(8) 

However, in each case the sides of the overlapping rectangle are: 

u = tx  -Ixel 
v = Lr - l yel' (9) 

If u -< 0 or v -< 0 the overlapping does not exist. 
Now we divide the sides 1 and 2 of the element into n intervals 

and define a function F of integer arguments which assumes a 
value equal to v for all the intervals belonging to the overlapping 
rectangle and a value equal to 0 for the other ones. On side l, the 
intervals are counted 1 to n proceeding from corner a to corner b 
and on side 2 are counted n + 1 to 2n from corner c to d. 

Fig. 3. Four different sort of overlappings between the element of the field and the generic projection. 

Figure A.2: Projection of k-heliostat on i-heliostat surface assuming same normal vector
for both mirror [40].
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The main assumption of the Sassi method is that the two heliostats have the same normal
vector. By saying that the k-heliostat interfere for shadowing if the condition of Equa-
tion A.4 are both fulfilled.
In a solar field, this is a reasonable assumption since interfering mirrors lie in the neigh-
borhood of the analyzed heliostat.

| xe |< WM ; | ye |< HM ; (A.4)

Where WM is the heliostat width and HM is the height.

Four different zones of overlapping are then identified as shown in Figure A.3.

Figure A.3: Four different sort of overlapping [40]

Let’s now define the variable u and v as Equation A.5, and divide the heliostat edges 1
and 2 (Figure A.3) into n equidistant interval.

u = WM− | xe |; v = HM− | ye | (A.5)

In order to quantify the part of the i-heliostat surface covered by the k-heliostat a function
F is defined, which for every discretization of side 1 and side 2, assume the value of v if
the k-mirror overlap the interval, or value 0 if not. For the four different projection shown
in Figure A.3, F is evaluated as Equation A.6.

F (j, k) = v



for 1 ≤ j ≤ u/d case a

for WM−u
d

≤ j ≤ n case b

for n+ 1 ≤ j ≤ n+ 1 + u/d case c

for n+ 1 + WM−u
d

≤ j ≤ 2n case d

(A.6)

Where d = WM/n is the width of each interval and j, varies from 1 to 2n.
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k denoted the heliostat considered, so the column dimension of F will be the number of
interfering heliostat considered.
By saying that the highest overlapping height R(j) for each interval will be the maximum
of the F rows wise, as expressed by Equation A.8.

R(j) = max(F (j, k)) (A.7)

With k varying from 1 to the total K interfering heliostats.
Finally, the overlapping area fraction Of is given by Figure A.2

Of =

∑2n
1 R(j)

n ·HM
(A.8)

So the shadowing efficiency ηsb will be equal to 1−Of .
All the equations presented are referred to the case of shadowing. The same procedure can
be repeated for blocking performance, considering the aiming vector −→a of the i-heliostat
instead of −→s .
Overall, in the quantification of the covered area, for each interval the highest overlapping
peak v(j) has to be selected between blocking or shadowing.
Another important assumption of the procedure is that the heliostat side 1 and 2 are
divided into n steps, so the maximum overlapping height in every j interval can be only
HM/2. However, this is a reasonable assumption in the range of solar angle simulated
in solar field application, considering a reasonable radial and azimuth distance between
heliostats.
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The solar position is evaluated utilizing spherical geometric relationship of the earth and
sun. Given a solar site with Latitude L, Julian day of the year D, and an solar hour of a
day H, the azimuth Az and elevation of the sun can be evaluated as set of Equation B.1
[18].

El = arcsin (cosL · cos δ · cosω + sin δ · sinL)

Az = sgn(ω)| arccos (sinEl · sinL− sin δ) / (cosEl · cosL)| (B.1)

Where:
ω = 15π (H − 12) /180; δ =

23.45π

180
sin

(
2π

284 +D

365

)
All the angles, have to be expressed in radiants. The Azimuth varies between ±180◦,
positive clockwise, starting from the South, as shown in Figure B.1 for a latitude of 25◦.

Figure B.1: Sun position polar plot for four intermediate annual angles. Latitude equal
to 25◦.
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Where w express the hour angle, so the angular displacement of the sun from the local
meridian due to rotation of the earth and it’s equal to 15◦ every solar hour.
δ is the declination angle, namely the angular position of the sun at solar noon with
respect to the equator [18].
The solar vector s⃗ in a XYZ plane with X pointing East, Y to North and Z to the Zenith,
can the be evaluated as Equation B.2.

s⃗ = (− cosEl sinAz, cosEl cosAz, − sinEl) (B.2)
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