
POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

DESIGN AND IMPLEMENTATION OF A QC-MDPC
CODE-BASED POST-QUANTUM KEM TARGETING

FPGAS

Doctoral Dissertation of:
Andrea Galimberti

Supervisor:
Prof. William Fornaciari
Co-supervisor:
Prof. Davide Zoni
Tutor:
Prof. Francesco Amigoni
The Chair of the Doctoral Program:
Prof. Luigi Piroddi

Year 2022 – Cycle XXXV

Abstract

Quantum computing is expected to break the traditional public-key cryptog-
raphy solutions in the upcoming decades, making it paramount to design
new security solutions that can also resist attacks carried out by quantum
computers. Post-quantum cryptography aims to design cryptoschemes that
can be deployed on traditional computers and resist both traditional and
quantum attacks. The deployed post-quantum cryptography solutions will
have to satisfy not only security requirements but also performance ones.
Providing effective hardware support for such cryptosystems is indeed one
of the requirements set by NIST within its ongoing post-quantum cryptogra-
phy standardization process, and it is particularly crucial to ensuring a wide
adoption of post-quantum security solutions across embedded devices at the
edge.

This thesis delivers a configurable FPGA-based hardware architecture
to support BIKE, a post-quantum QC-MDPC code-based cryptoscheme. In
particular, BIKE implements a key encapsulation mechanism, i.e., a cryp-
toscheme that generates and shares a symmetric key between two parties
by employing a public-private key pair. The proposed architecture aims to
improve performance over the existing state-of-the-art software and hard-
ware solutions, and it is configurable through a set of architectural and code
parameters, which make it efficient, providing good performance while
using the resources available on FPGAs effectively, flexible, allowing to
support different large QC-MDPC codes defined from the designers of the
cryptosystem, and scalable, targeting the whole Xilinx Artix-7 FPGA family.
The hardware components implementing QC-MDPC bit-flipping decoding,

I

binary polynomial inversion, and binary polynomial multiplication, i.e., the
three most complex operations employed within the BIKE cryptoscheme,
are indeed specifically designed in a parametric way to exploit parallelism as
desired according to the performance requirements and the area constraints
given by the target platform.

Two separate modules target the cryptographic functionality of the client
and server nodes of the quantum-resistant key exchange, respectively. This
thesis delivers a preliminary definition of a methodology to identify the best
parameterization of the configurable hardware components implemented
within the proposed architecture’s BIKE client and server cores. The method-
ology uses a complexity-based heuristic that leverages the knowledge of
the time and space complexity of such parametric components to steer the
design space exploration.

The proposed architecture’s performance was evaluated against state-of-
the-art software and hardware implementations. The proposed architecture’s
client- and server-side instances outperform the state-of-the-art reference
software, exploiting the Intel AVX2 extension and running on a desktop-
class CPU, by up to 1.91 and 1.83 times, respectively. Moreover, compared
to the fastest reference state-of-the-art FPGA-based architecture, which
targets the same Xilinx Artix-7 FPGA family, the architecture described in
this thesis provides a performance speedup of up to six times. In particular,
the proposed architecture executes the whole BIKE key encapsulation mech-
anism in a time ranging from 5.74ms to 0.61ms for AES-128-equivalent
security and from 19.35ms to 1.77ms for AES-192-equivalent security, with
the lowest performance obtained on the smallest FPGAs and the highest
performance when targeting the largest Artix-7 200 chips.

II

Sommario

Si prevede che i computer quantistici romperanno le tradizionali soluzioni
di crittografia a chiave pubblica nei prossimi decenni, rendendo fondamen-
tale la progettazione di nuove soluzioni di sicurezza in grado di resistere
anche agli attacchi effettuati dai computer quantistici. La crittografia post-
quantistica ha l’obiettivo di progettare schemi crittografici che possano
essere implementati sui computer tradizionali e che siano in grado di re-
sistere sia agli attacchi tradizionali che a quelli quantistici. Le soluzioni di
crittografia post-quantistica implementate dovranno soddisfare non solo i
requisiti di sicurezza ma anche quelli prestazionali. Fornire un supporto
hardware efficace per tali sistemi crittografici è infatti uno dei requisiti fissati
dal NIST nell’ambito del processo di standardizzazione della crittografia
post-quantistica attualmente in corso, ed è particolarmente cruciale per
garantire un’ampia adozione di soluzioni di sicurezza post-quantistica su
dispositivi embedded all’edge.

Questa tesi fornisce un’architettura hardware configurabile basata su
FPGA per supportare BIKE, un sistema crittografico post-quantistico basato
su codici QC-MDPC. In particolare, BIKE implementa un meccanismo di
incapsulamento della chiave, ovvero uno schema crittografico che genera
e condivide una chiave simmetrica tra due parti impiegando una coppia
di chiavi pubblica e privata. L’architettura proposta punta a migliorare le
prestazioni rispetto alle soluzioni software e hardware esistenti ed è config-
urabile attraverso una serie di parametri architetturali e del codice, che la ren-
dono efficiente, fornendo buone prestazioni e allo stesso tempo utilizzando
efficacemente le risorse disponibili sugli FPGA, flessibile, consentendo di

III

supportare diversi codici QC-MDPC di grandi dimensioni definiti dai pro-
gettisti del crittosistema, e scalabile, essendo rivolta all’intera famiglia di
FPGA Xilinx Artix-7. I componenti hardware che implementano la decod-
ifica bit-flipping di codici QC-MDPC, l’inversione di polinomi binari e la
moltiplicazione di polinomi binari, ossia le tre operazioni più complesse
impiegate all’interno dello schema crittografico BIKE, sono infatti apposita-
mente progettati in modo parametrico per sfruttare il parallelismo desiderato
in base ai requisiti prestazionali e i vincoli di area dati dalla piattaforma di
destinazione.

Due componenti distinti realizzano rispettivamente la funzionalità crit-
tografica dei nodi client e server dello scambio di chiave resistente ad
attacchi quantistici. Questa tesi fornisce una definizione preliminare di una
metodologia per identificare la migliore parametrizzazione dei componenti
hardware configurabili implementati all’interno dei core client e server BIKE
dell’architettura proposta. La metodologia utilizza un’euristica basata sulla
complessità che sfrutta la conoscenza della complessità temporale e spaziale
di tali componenti parametrici per guidare l’esplorazione dello spazio di
progettazione.

Le prestazioni dell’architettura proposta sono state valutate rispetto alle
implementazioni hardware e software dallo stato dell’arte. Le istanze lato
client e lato server dell’architettura proposta superano le prestazioni del
software di riferimento, eseguito su una CPU di classe desktop sfruttando
l’estensione Intel AVX2, rispettivamente fino a 1.91 e 1.83 volte. Inoltre,
rispetto all’architettura per FPGA di riferimento più performante, che ha
come target la stessa famiglia di FPGA Xilinx Artix-7, l’architettura descritta
in questa tesi fornisce un miglioramento delle prestazioni fino a sei volte. In
particolare, l’architettura proposta esegue l’intero crittosistema BIKE in un
tempo che va da 5.74ms a 0.61ms per una sicurezza equivalente ad AES-128
e da 19.35ms a 1.77ms per una sicurezza equivalente ad AES-192, con le
prestazioni inferiori ottenute sugli FPGA con meno risorse e le prestazioni
più elevate quando ha come target i chip di fascia più alta Artix-7 200.

IV

Contents

1 Introduction 1
1.1 Contributions . 8

2 Background 11
2.1 BIKE key encapsulation mechanism 12
2.2 BIKE . 12
2.3 BIKE primitives . 13

2.3.1 Key generation . 14
2.3.2 Encapsulation . 15
2.3.3 Decapsulation . 15

2.4 Binary polynomial arithmetic 16
2.4.1 Binary polynomial inversion 16
2.4.2 Binary polynomial multiplication 17
2.4.3 Binary polynomial exponentiation 20

2.5 Quasi-cyclic moderate-density parity check codes 23
2.5.1 Moderate-density parity-check codes 23
2.5.2 Circulant matrices 26
2.5.3 QC-MDPC codes 27
2.5.4 QC-MDPC bit-flipping decoding 27

3 State of the art 31
3.1 Binary polynomial multiplication 32
3.2 Binary polynomial exponentiation 35
3.3 Binary polynomial inversion 36

V

Contents

3.4 QC-MDPC bit-flipping decoding 38
3.5 KEM primitives . 41

4 Methodology 43
4.1 KEM primitives architecture and software profiling 44

4.1.1 Client architecture 44
4.1.2 Server architecture 46
4.1.3 Profiling of software performance 48

4.2 QC-MDPC bit-flipping decoding architecture 50
4.2.1 Dual-memory computing architecture 52
4.2.2 Complexity analysis 57
4.2.3 Modifications to implement Black-Gray-Flip decoding 60

4.3 Inversion architecture . 61
4.3.1 Architectural view 63
4.3.2 Algorithmic view 63
4.3.3 Optimized hardware scheduling 64
4.3.4 Complexity analysis 65

4.4 Dense-dense multiplication architecture 67
4.4.1 Karatsuba multiplier architecture 70
4.4.2 Comba multiplier architecture 72
4.4.3 Complexity analysis 73

4.5 Exponentiation architecture 74
4.5.1 Architectural view 75
4.5.2 Algorithmic view 77
4.5.3 Complexity analysis 77

4.6 Dense-sparse multiplication architecture 79
4.6.1 Complexity analysis 79

4.7 Other components . 80
4.7.1 SHA-3 architecture 81
4.7.2 Uniform pseudorandom number generation architecture 81

4.8 Design space exploration 82

5 Experimental results 85
5.1 Benchmark software performance 86
5.2 Benchmark hardware performance 88
5.3 Experimental setup . 89

5.3.1 BIKE code parameters 89
5.3.2 LEDAcrypt code parameters 89
5.3.3 Software setup . 91
5.3.4 Hardware setup . 91

VI

Contents

5.3.5 Functional validation 92
5.4 QC-MDPC bit-flipping decoding 94

5.4.1 Area results . 95
5.4.2 Performance results 98

5.5 Dense-dense binary polynomial multiplication 99
5.5.1 Area results . 100
5.5.2 Performance results 103

5.6 Binary polynomial exponentiation 104
5.7 Binary polynomial inversion 105

5.7.1 Area results . 107
5.7.2 Performance results 109

5.8 Dense-sparse binary polynomial multiplication 113
5.9 KEM primitives . 114

5.9.1 Area results . 115
5.9.2 Performance results 117

6 Conclusions 119

A List of publications 121
A.1 Main publications . 122
A.2 Other publications . 124

Bibliography 131

VII

CHAPTER1
Introduction

The last few decades have seen significant technological improvements in
the field of quantum computing. Since the first attempts in the early 1980s
to devise abstract models of computers based on the principles of quantum
physics [39], a vast amount of research has been carried out in the field of
quantum computing to develop novel algorithms and design actual quantum
computers.

The 1990s saw the introduction of the Shor’s [94] and Grover’s [47]
quantum algorithms for integer factoring and database search algorithms,
respectively, which highlighted the first notable examples of algorithms able
to solve in polynomial time problems that would instead be hard, i.e., require
exponential time for solving, on traditional computers. The first pioneering
works also emerged in the academic environment for what concerns the
realization of actual quantum computers, with the first 2-qubit quantum
computer based on nuclear magnetic resonance (NMR) being presented in
1998 [28] and the number of qubits later increased to 7 and 12 in 2000 [65]
and 2006 [79], respectively.

While NMR was discarded due to difficulty in scaling to a larger number
of qubits, a variety of new solutions arose in the following decade from
research on both the academic and industry sides. The rising commercial

1

Chapter 1. Introduction

2

8

32

128

512

2048

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

Q
ub
it
s

Year

MIT IBM Rigetti Intel Google Honeywell Xanadu IonQ USTC

*

*

Figure 1.1: Temporal evolution of the qubits per quantum computer by manufacturer. Data
points marked with * are forecasts.

interest for quantum computing saw indeed many of the largest tech com-
panies heavily investing in research in such field. Most current solutions
can be classified as either superconducting, photonics-based, or trapped ion
quantum computers, depending on the underlying technology.

On the superconducting side, IBM presented in 2016 its IBM Quantum
Experience, providing users from general public access to a five-qubit quan-
tum processor through a graphical interface over the cloud [57]. Further
research led IBM to introducing 27-, 65-, and 127-qubit superconducting
quantum computers through 2020 and 2021 [57], with the expectation of
presenting 433- and 1121-qubit models by the end of 2022 and 2023, re-
spectively [58]. Other large companies involved in quantum computing
research include Intel and Google, with the former introducing its Tangle
Lake 49-qubit superconducting chip in 2018 [52] and the latter claiming
for the first time the experimental demonstration of quantum supremacy in
2019 [8]. Photonics-based solutions were more recently introduced from
Canada-based Xanadu, with its 8-qubit X8 [7] and 216-qubit Borealis [71]
quantum processors presented in 2020 and 2022, respectively. On the aca-
demic side, Chinese USTC developed the Jiuzhang [108] and Zuchongzhi
2.1 [109] photonics-based quantum processors. Ion trapped quantum com-
puting solutions include those by IonQ, which presented a 32-qubit model
in 2020.

Although not yet widely available and powerful enough to be used in
real applications, it is widely expected that quantum computers will achieve
in the next decades a computing power that surpasses traditional ones in
certain applications [82]. While actual applications will indeed require a

2

number of qubits in the order of millions and an error rate lower than 0.1%,
Figure 1.1 highlights the exponential trend in the growth of the number of
qubits per quantum computer.

The architecture of quantum computers, intrinsically different from the
traditional one, allows them to efficiently solve operations research problems
and drastically speed up the computations in applications ranging from
machine learning to molecular docking. All these problems are instead
computationally complex on traditional computers, thus quantum computing
enables novel applications in a variety of fields, including finance, logistics,
and chemistry. However, the use of quantum computers also opens up the
implementation of mathematical algorithms that more efficiently solve the
problems underlying traditional cryptography, decreasing its security.

Particularly critical is the impact of Shor’s algorithm [94], which solves
the factorization of an integer in polynomial rather than exponential time,
and in a similar way can operate on the sum of two elliptic curves or compute
a discrete logarithm. The availability of quantum computers would therefore
make obsolete the currently used public key cryptosystems, whose security
relies on the difficulty in solving such mathematical problems.

On the contrary, Grover’s database search algorithm [47] highlights a
security reduction by 2× for AES and symmetric cryptoschemes and a 3×
security reduction for cryptographic hash functions such as SHA-2 and SHA-
3. To obtain the same security as nowadays, where the only threat is given
by traditional attacks, it will be sufficient to employ 2x larger symmetric
keys and 3x larger hash digests, respectively.

Traditional public-key cryptosystems, including RSA [90], ECDSA [16],
and Diffie-Hellman [31], underpin cryptographically secure key exchange
mechanisms and digital signature schemes. The secure exchange of a shared
secret is a fundamental component of secure communication protocols
such as TLS [99] and SSH [105], which employ this secret to generate
session keys, known to both parties of the communication, to be used within
symmetric ciphers, which are more performing than public-key ones. The
digital signature schemes also make it possible to guarantee the authenticity
and integrity of a message, i.e., that the message was actually produced by
its author and that it has not been modified by third parties.

Transport Layer Security (TLS) is a cryptographic protocol for secure
communication between two nodes on a TCP/IP network that operates
at the presentation layer. It is the basis of the HTTPS protocol, which
uses TLS to obtain an encrypted connection using public key cryptography.
TLS guarantees the confidentiality, authentication and integrity of the data
transmitted between sender and recipient [87]. The TLS protocol involves

3

Chapter 1. Introduction

Key generation

Encapsulation
with public key

Decapsulation
with private key

Client Server

Public key

Ciphertext
Private key

Ciphertext

Shared key

Public key

Shared key

Figure 1.2: Key exchange using a KEM.

first the exchange of keys through a public key cryptosystem, such as RSA
and Diffie-Hellman, and then a secure communication using symmetric
encryption, such as AES, using the previously exchanged keys.

The threat posed by quantum computers to public key cryptosystems
requires the definition and design of alternative cryptosystems that perform
the same functions, maintaining security against traditional computer attacks
but above all ensuring security against quantum computer attacks. Post-
quantum cryptography (PQC) aims to develop new cryptosystems that are
resistant to both traditional attacks and new quantum attack models, which
can be implemented on traditional architecture computers and on existing
devices, and that can be integrated into the networks and communication
protocols currently in use [17]. Indeed, it is important to distinguish be-
tween post-quantum cryptography and quantum cryptography. The latter
in fact specifically makes use of properties of quantum mechanics to en-
sure data security. For example, quantum key distribution (QKD) allows
exchanging a secret key, preventing an attacker from intercepting it without
this attack being detected by the two sides of the communication. To do
this, QKD systems require a dedicated infrastructure for the transmission
and detection of single photons. By making use of advanced, expensive,
and not commonly available technologies on devices currently in use, such
quantum cryptography techniques are therefore complex to deploy, unlike
post-quantum cryptography.

The National Institute of Standards and Technology (NIST), a USA gov-
ernment agency that has among its aims the definition of cryptographic
standards, is conducting a process for the standardization of PQC cryp-
tosystems, in particular key encapsulation mechanisms (KEM) and digital
signature schemes [76]. At the same time, the USA’s National Security
Agency (NSA) expects to complete the transition to quantum-resistant algo-

4

Table 1.1: Status of the NIST PQC standardization process after the third round [77].
Legend: L lattice-based, C code-based, I isogeny-based cryptoscheme.

Status KEMs Digital signatures

Selected for standardization CRYSTALS-Kyber L
CRYSTALS-Dilithium L

Falcon L

SPHINCS+ L

Advancing to the fourth round

BIKE C

Classic McEliece C

HQC C

SIKE I

rithms for national security systems (NSS) to be complete by 2035. Such
transition foresees the effective deprecation of the current public-key systems
currently employed in NSS, i.e., RSA, DH, ECDH, and ECDSA, and their
substitution with the post-quantum KEMs and digital signature schemes
defined in the NIST PQC standardization process [78].

A KEM allows to securely transmit, through a public key algorithm,
a shared secret, which can then be expanded to generate keys to be used
in a symmetric cryptosystem, more efficient for the transmission of long
messages than a public key cryptosystem [96]. After generating a ran-
dom element of the finite group that underlies the implemented public key
cryptosystem, such element is exchanged between the two parties of the
communication, which can finally derive the shared secret by applying a
hash function to the element of the finite group. A KEM consists of three
main primitives, namely the generation of a pair of public and private keys,
the encapsulation of the shared secret and its decapsulation. A key exchange
performed through a KEM is depicted in Figure 1.2.

After the third round of the PQC standardization process, NIST selected
the CRYSTALS-Kyber KEM for standardization, while appointing a fourth
round of evaluation to further analyze BIKE, Classic McEliece, HQC, and
SIKE, as shown in Table 1.1 [77]. Of particular importance for the eval-
uation of cryptosystems are not only the guaranteed security with respect
to traditional and quantum attacks as well as the performance of software
execution, but also the performance of the hardware implementations of
such cryptosystems. In particular, NIST takes Intel Haswell processors and
Xilinx Artix-7 FPGAs as references for software and hardware implemen-
tations, respectively. The latter FPGAs are specifically targeted by NIST
for the hardware ones in order to provide a fair comparison environment for
all proposals by avoiding differences due to the usage of different FPGA
technologies or technology nodes of ASIC implementations.

5

Chapter 1. Introduction

64

256

1024

4096

16384

128 512 2048 8192 32768 131072 524288 2097152

C
ip

he
rt

ex
t (

by
te

s)

Public key (bytes)

BIKE Classic McEliece HQC SIKE

Figure 1.3: Size in bytes of the public key and ciphertext of the KEMs advancing to the
fourth round of the NIST PQC standardization process [75].

Post-quantum KEMs can be mainly divided into lattice-based, code-
based, and isogeny-based cryptography schemes.

The family of lattice-based cryptosystems [73, 80], that are characterized
by a combination of good performance and small public key size, includes
the upcoming NIST PQC standard CRYSTALS-Kyber [20]. From the
mathematical point of view, a lattice L in is a discrete subgroup of Rn that
generates the real vector space Rn. That is, each lattice L in Rn is generated
from a base of Rn by means of linear combinations with integer coefficients.
The main computational problem based on lattices is the shortest vector
problem (SVP), which requires to search for the non-zero vector of a lattice
having minimum norm. This problem is considered hard for both traditional
and quantum computers [83].

Code-based cryptography dates back to the McEliece cryptosystem, in-
troduced in 1978, which is based on the difficulty of decoding a generic
linear code [72]. This problem is in fact recognized as NP-hard. The original
scheme proposed by Robert McEliece makes use of binary Goppa codes,
which allow a particularly efficient decoding [15]. More generally, the pri-
vate key is an error correction code for which an efficient decoding algorithm
is available and which is capable of correcting the desired number of errors.
BIKE [5], Classic McEliece [2], and HQC [1] are post-quantum code-based
cryptosystems in the fourth round of the NIST PQC standardization process.

Finally, isogeny-based cryptography builds its security on the problem of
identifying an isogeny between two isogenous elliptic curves [38]. Isogeny-
based cryptosystems are characterized by the smallest keys and cipher-

6

1

10

100

1000

BIKE HQC SIKE McEliece BIKE HQC SIKE McEliece

T
im

e
(1

06
cl

oc
k

cy
cl

es
)

AES-128-equivalent security

Key generation Encapsulation Decapsulation Public key Ciphertext

AES-192-equivalent security

Figure 1.4: Performance of NIST Round 4 KEMs on a x86-64 CPU, considering a 2000
cycles/byte transmission cost [77].

texts among the PQC solutions, although the complexity of the underly-
ing problem severely hinders their performance. SIKE is a post-quantum
isogeny-based cryptosystems currently in the fourth round of the NIST PQC
standardization process [61].

While NIST already selected a lattice-based post-quantum KEM, there
is a crucial need to differentiate on multiple cryptoscheme families that are
based on different computational problems, due to the uncertainty behind the
actual security of these problems against quantum attacks. BIKE or HQC
may represent the most attractive option for general-purpose applications
among the fourth round candidates. SIKE might be a better solution for
applications that need a very small ciphertext, but an attack was recently
demonstrated to break it in one hour on a single-core CPU [24]. For what
concerns Classic McEliece, it is not clear that there are any use cases that
justify its usage of massively large public keys, with a length in the order of
megabits [77].

In particular, BIKE is a KEM based on quasi-cyclic moderate-density
parity-check (QC-MDPC) codes [5]. These codes are used in a scheme
similar to that originally proposed by Niederreiter, which exploits the same
problem as the McEliece cryptosystem [81]. Compared to Classic McEliece,
that implements the traditional Niederreiter cryptosystem with binary Goppa
codes, BIKE has a particularly small public key size, thanks to the quasi-
cyclic nature and the reduced density of the QC-MDPC codes, which allow a
more compact representation [10]. The performances are however markedly
lower than those of Classic McEliece, which using binary Goppa codes has
a much more efficient decoding. BIKE distinguishes itself for two aspects

7

Chapter 1. Introduction

related to ciphertext and key lengths and performance. On the one hand,
compared to the other two code-based cryptosystems left in the NIST PQC
standardization process, as shown in Figure 1.3, BIKE has both public key
and ciphertext representations that are more compact than HQC, and a larger
ciphertext but also a dramatically smaller public key than Classic McEliece.
The key size of Classic McEliece is indeed a particularly critical aspect
that hinders the applicability of the cryptosystem in real-world scenarios.
On the other hand, BIKE has the most competitive performance among the
non-lattice-based KEMs [77], as depicted in Figure 1.4, which compares
BIKE to other candidate KEMs in NIST PQC Round 4, when considering
the impact of the transmission cost deriving from sending the public key and
ciphertext between the two nodes of the key exchange.

1.1 Contributions

Post-quantum security will be a crucial aspect across the whole contin-
uum of computing, ranging from the Internet of things to high-performance
computing, and the deployed PQC solutions will have to satisfy not only
security requirements, but also performance ones. Providing an effective
hardware support for post-quantum cryptosystems is indeed one of the
requirements set by NIST within its standardization process, and it is par-
ticularly paramount to ensuring a wide adoption of post-quantum security
solutions across embedded devices at the edge.

This thesis delivers a configurable FPGA-based hardware architecture
that implements the BIKE post-quantum QC-MDPC code-based cryptosys-
tem, with the aim of improving performance over the existing state-of-the-art
software and hardware solutions. The proposed architecture consists of two
client and server modules that support the BIKE KEM execution on the
respective nodes of the quantum-resistant key exchange. This research
provides three main contributions.

First, although there already exists a multitude of hardware solutions to
support QC-MDPC codes, those solutions are often tailored to codes with
dimensions in the order of hundreds of bits. Therefore, they cannot scale
effectively to tens of thousands of bits as required by PQC applications,
where there is a direct relationship between security of a cryptosystem
and the size of the underlying code. This thesis provides the design of
an architecture to effectively support QC-MDPC codes suitable to post-
quantum cryptography applications.

Second, the proposed architecture is not a hard-coded one that is custom-
tailored to a particular QC-MDPC code and to a specific FPGA target.

8

1.1. Contributions

Instead, the result of this research is a parametric architecture that is efficient,
providing good performance while using effectively the resources available
on FPGAs, flexible, allowing to support different large QC-MDPC codes
defined from the designers of the cryptosystem, and scalable, targeting the
whole Xilinx Artix-7 FPGA family, i.e., the hardware platform identified by
NIST for the proposals in its PQC standardization process.

Finally, this work provides a preliminary definition of a methodology to
identify the best parameterization of the configurable hardware components.
A complexity-based heuristic leverages the knowledge of the time and space
complexity of such parametric components to steer the design space explo-
ration and efficiently identify the combination of parameters that delivers
the best hardware support.

The rest of the thesis is organized as follows. Chapter 2 discusses the the-
oretical background for QC-MDPC code-based post-quantum cryptography
and BIKE. Chapter 3 overviews the state-of-the-art literature concerning
implementations of QC-MDPC code-based cryptography and in particular
of BIKE. Chapter 4 presents a top-down overview of the architecture that
implements the BIKE cryptosystem, starting from the KEM primitives and
then detailing the most complex operations, with a focus on the configura-
bility of the various components by means of parameters that allow tuning
their degree of parallelism. Chapter 5 discusses the experimental results
of the main components and of the whole architecture, comparing them to
reference state-of-the-art software and hardware implementations. Finally,
Chapter 6 presents the conclusions and future works.

9

CHAPTER2
Background

This chapter overviews the theoretical background that underlies the BIKE
post-quantum QC-MDPC code-based key encapsulation mechanism. Un-
derstanding such theoretical aspects provides the reader with knowledge
about how BIKE works, what makes it secure against both traditional and
quantum model attacks, and how it can be implemented in software and
hardware and optimized according to the desired figures of merit. The rest
of this chapter details the structure of a generic key encapsulation mecha-
nism, overviews the BIKE cryptoscheme and the three main primitives that
compose it, and outlines the theory and algorithms underlying the principal
operations associated with binary polynomials and QC-MDPC codes that
are employed in BIKE.

Parts of this chapter are derived from previously published works co-
authored by the author of this thesis. In particular, Section 2.1, Section 2.2,
and Section 2.3 derive from [41], parts of Section 2.4 come from [111]
and [43], and Section 2.5 originated from the work in [110]. More details
about the referenced publications are provided in Appendix A.

11

Chapter 2. Background

2.1 BIKE key encapsulation mechanism

A key encapsulation mechanism (KEM) is a public-key cryptoscheme that
performs the secure transmission between two communicating nodes of a
shared secret, which can then be expanded to generate keys to be used in
a symmetric cryptosystem, since the latter is in general more efficient for
the transmission of long messages than a public key cryptosystem [96]. As
previously shown in Figure 1.2, three main steps compose the key exchange
between client and server nodes performed by means of a KEM. Such
key exchange is the core task within the handshake phase between TLS
clients and servers. First, the client performs the key generation primitive,
producing a private-public key pair and sending the public key to the server.
The server node then generates a shared secret and encrypts it with the
public key of the client. Finally, the client retrieves the shared secret by
decapsulating with its own private key the ciphertext received by the server
node. As a result, the client and server endpoints obtained the same shared
secret.

Secure communication protocols such as TLS 1.3 mandate the usage
of ephemeral keys to enforce the perfect forward secrecy (PFS) property,
thus the design of a computationally efficient key generation primitive is
as important as for the encapsulation and decapsulation ones. It should
be noted that the use of static keys would instead make it possible for a
malicious attacker, once the private key has been compromised, to obtain all
the session keys generated from it. The attacker would therefore be able to
decrypt all the messages exchanged between the two secure communication
nodes. Employing ephemeral keys avoids this vulnerability, since each
session key is generated from a new public-private key pair.

2.2 BIKE

BIKE [6] is a QC-MDPC code-based KEM, based on the Niederreiter
cryptosystem, that leverages quasi-cyclic matrices with coefficients over
Z2. The employed quasi-cyclic (QC) matrices are composed of n0 circulant
blocks with size p × p, that can be equivalently represented by n0 binary
polynomials in Z2[x]/(x

p + 1), with coefficients equal to the first row of the
corresponding circulant blocks.

The arithmetic of p × p circulant matrices over Z2 is thus equivalent
to the arithmetic of binary polynomials in Z2[x]/(x

p + 1). The addition
of two binary polynomials in Z2[x]/(x

p + 1) corresponds to their bit-wise
XOR, while their multiplication consists in their carry-less multiplication

12

2.3. BIKE primitives

Table 2.1: Parameters of QC-MDPC codes for BIKE [6].

Code NIST security level Equivalent security p t v iter
B1 Level 1 AES-128 12323 134 71 5
B3 Level 3 AES-192 24659 199 103 5
B5 Level 5 AES-256 40973 264 137 5

followed by a modular reduction with respect to the xp + 1 irreducible
polynomial. Moderate-density parity-check (MDPC) codes feature sparse
parity-check H matrices, i.e., only a small percentage of values are set to 1,
allowing for a sparse representation by enumerating the positions of bits set
to 1. QC-MDPC codes possess both the quasi-cyclic and moderate-density
properties.

We describe BIKE by using the following notation:

• e = [e0|e1] is a random n-bit error vector with t ≈
√
n bits set to 1,

where n = n0 · p = 2p and each ei is a p-bit vector;

• H = [h0|h1] is the private key, composed of n0 = 2 circulant blocks hi

of size p× p, with v ≈
√
n bits set to 1 for each row of each block hi;

• h is the public key, which is a circulant block of size p× p;

• s is the p-bit syndrome;

• m, m′, m′′, and σ are 256-bit messages;

• c is the (p+ 256)-bit ciphertext;

• K is the 256-bit shared secret.

BIKE provides implementations for NIST security levels 1, 3, and 5,
each of them characterized by a different underlying QC-MDPC code. The
security levels 1, 3, and 5 correspond to AES-128-, AES-192-, and AES-256-
equivalent security, respectively. The employed QC-MDPC codes have a
2p-bit code word length and a p-bit information word length. For simplicity,
we denote each BIKE code as Bj, where j corresponds to the security level.
Table 2.1 reports the QC-MDPC code parameters for each security level of
BIKE.

2.3 BIKE primitives

The BIKE key encapsulation mechanism can be split into three primitives,
which are the key generation, the encapsulation, and the decapsulation. Their
corresponding algorithms are detailed in the rest of this section.

13

Chapter 2. Background

Algorithm 1 BIKE key generation primitive.

1: function [H,σ, h] KEYGEN ()
2: seed = TRNG ();
3: H = PRNG(SHAKE256(seed));
4: h−1

0 = INVERT(h0);
5: h = h1 ⊙ h−1

0 ;
6: σ = TRNG ();
7: return {H,σ, h};
8: end function

Algorithm 2 BIKE encapsulation primitive.

1: function [K, c] ENCAPS (h)
2: m = TRNG ();
3: e = PRNG(SHAKE256(m));
4: s = e0 ⊕ (e1 ⊙ h);
5: m′ = m⊕ TRUNC256(SHA3-384(e));
6: c = {s,m′};
7: K = TRUNC256(SHA3-384({m, c}));
8: return {K, c};
9: end function

2.3.1 Key generation

First, a 32-bit random seed must be produced by a true random number
generator (TRNG) (line 2 of Algorithm 1). Such random seed is then em-
ployed within the pseudorandom number generation (PRNG) of the private
key H = [h0|h1] (line 3), which is composed of two polynomials each with
Hamming weight equal to v, making use of the SHAKE256 extendable
output function [35]. seed is thus expanded into two uniform random se-
quences of v integer values comprised between 0 and p− 1, corresponding
to the positions of bits set to 1 within the h0 and h1 binary polynomials. A
binary polynomial inversion allows to compute h−1

0 starting from h0 (line
4). The public key h is computed from the binary polynomial multiplication
between h1 and h−1

0 , where h1 is sparse, with Hamming weight equal to
v, while h−1

0 is dense, i.e., it has a Hamming weight ≈ p/2 (line 5). In
addition, a 256-bit message σ is also obtained by a TRNG (line 6). The key
generation primitive outputs the private key H , the corresponding public
key h, and the 256-bit message σ (line 7).

14

2.3. BIKE primitives

Algorithm 3 BIKE decapsulation primitive.

1: function [K] DECAPS (H , σ, c)
2: s′ = h0 ⊙ s;
3: e′ = DECODE (s′, H);
4: m′′ = m′⊕ TRUNC256(SHA3-384(e′));
5: a = (e′ == PRNG(SHAKE256(m′′))) ? m′′ : σ;
6: K = TRUNC256(SHA3-384({a, c}));
7: return K;
8: end function

2.3.2 Encapsulation

Algorithm 2 details the encapsulation primitive, which takes as its only input
the public key h received from the client node after the key generation. A
256-bit random message m is first obtained by a TRNG (line 2 of Algo-
rithm 2). Such random seed is then expanded through the SHAKE256-based
PRNG into the n-bit error vector e = [e0|e1], which has Hamming weight
equal to t (line 3). The syndrome s is subsequently obtained by XORing
e0 and the product of the binary polynomial multiplication between e1 and
h, where e1 is a sparse polynomial with Hamming weight up to t (line 4).
m′ is the result of the XOR between m and the 384-bit SHA-3 [35] hash
digest of the error vector e′, after truncating the digest to 256 bits (line 5).
The concatenation of the syndrome s and the message m′ corresponds to the
ciphertext c (line 6). The shared secret K is instead obtained by truncating
to 256 bits the SHA-3 digest of the concatenation of m and c (line 7). The
encapsulation primitive outputs the shared secret K and the ciphertext c (line
8).

2.3.3 Decapsulation

Algorithm 3 details the decapsulation KEM primitive, which takes as its
inputs the public key H and the message σ stored on the client side as well
as the ciphertext c = {s,m′} received from the server node after the latter
executed the encapsulation. A binary polynomial multiplication between h0

and s, where the h0 operand is sparse with Hamming weight equal to v, first
produces s′ (line 2 of Algorithm 3), QC-MDPC bit-flipping decoding allows
retrieving the error vector e′, starting from the syndrome s′ and the private
key H (line 3). In particular, BIKE makes us of the Black-Grey-Flip (BGF)
variant of QC-MDPC bit-flipping decoding [34]. m′ is then XORed with
the 384-bit SHA-3 hash digest of the retrieved n-bit error vector e′, after
truncating the digest to 256 bits (line 4). Subsequently, e′ is compared to the

15

Chapter 2. Background

output of seeding the SHAKE384-based PRNG with m′′. If the two n-bit
vectors coincide, then a is assigned m′′, otherwise it is assigned σ (line 5).
Finally, the shared secret K is computed as the SHA3-384 hash digest of
the concatenation of a and c, that is then truncated to 256 bits (line 6). Such
256-bit shared secret K is the output of the decapsulation primitive (line 7).

2.4 Binary polynomial arithmetic

A finite field, also called Galois field, is a set that contains a finite number
of elements on which the addition, subtraction, multiplication and division
operations are defined. Z2, or GF (2), is the Galois field of two elements,
i.e., the smallest Galois field. The two elements of Z2 are usually referred
to as 0 and 1, and they are respectively the additive and the multiplicative
identities. The field’s addition operation corresponds to the logical XOR
operation, while the multiplication operation corresponds to the logical AND
operation.

Polynomials with coefficients in Z2, i.e., 0 and 1, form a Galois field,
which is commonly referred to as Z2[x] or GF (2)[x]. The Galois field of
binary polynomials with degree m − 1 also referred to as GF (2m). The
addition of two elements of such field corresponds to a bitwise XOR. The
multiplication, instead, consists in the multiplication of the two binary poly-
nomials, followed by a reduction with respect to an irreducible polynomial,
which is taken from the construction of the field. For example, Z2[x]/(x

p+1)
is the Galois field of polynomials with coefficients in Z2 for which the irre-
ducible polynomial is xp + 1, thus polynomials which belong to such field
have degree at most equal to p− 1.

2.4.1 Binary polynomial inversion

In Z2[x]/(x
p + 1), a multiplicative inverse for a polynomial a(x), denoted

by a(x)−1, is a polynomial that when multiplied by a(x) yields the multi-
plicative identity 1, i.e., a(x) · a(x)−1 = 1.

Inversion algorithms can be split in two families, deriving from Euclid’s
algorithm and from Fermat’s little theorem, respectively. Euclid’s algorithm
allows to compute the greatest common divisor between two polynomials,
and polynomial-time algorithms based on it are proposed by [18, 23, 66].
Algorithms based on Fermat’s little theorem date back to the Itoh-Tsujii
algorithm (ITA) introduced by [60] and are employed in the software im-
plementations of BIKE [33] and LEDAcrypt [14] and in the hardware
implementation of BIKE [89].

16

2.4. Binary polynomial arithmetic

Algorithm 4 Inversion procedure from [14]. a(x) is a binary polynomial in Z2[x]/(x
p +1)

with a multiplicative inverse, where p is a prime such that ord2(p) = p − 1. d(x) is the
multiplicative inverse of a(x), i.e., d(x) = a(x)−1.

1: function [d(x)] INVERSION(a(x))
2: b(x) = a(x);
3: c(x) = a(x);
4: for i ∈ 1 : (⌈log2 (p− 2)⌉ − 1) do
5: d(x) = c(x)2

2i−1

;
6: c(x) = d(x) · c(x);
7: if (p− 2)2[i] == 12 then
8: d(x) = b(x)2

2i

;
9: b(x) = d(x) · c(x);

10: end if
11: end for
12: d(x) = b(x)2;
13: return d(x);
14: end function

The inversion algorithm employed by the software implementation of
the LEDAcrypt-KEM-CPA cryptoscheme [14] is detailed in Algorithm 4. It
takes a Z2[x]/(x

p + 1) binary polynomial a(x) as input and executes a fixed
number of iterations to output its multiplicative inverse d(x) = a(x)−1. Each
iteration (lines 4-11 in Algorithm 4) consists of two exponentiations (lines
5 and 8) and two multiplications (lines 6 and 9). However, lines 8 and 9 of
iteration i are executed only when the condition at line 7 is verified, i.e., if
the i-th bit of p− 2 is equal to 1. Finally, a squaring operation produces the
inverse polynomial (line 12). Algorithm 4 requires (log2(p− 2) + hw(p−
2) − 1) multiplications and (log2(p − 2) + hw(p − 2)) exponentiations,
where hw(y) represents the Hamming weight, i.e., the number of bits set
to 1, of y. The amount of required operations depends thus not on the input
a(x), but exclusively on the polynomial length p, that is a fixed parameter
of the QC-MDPC code.

2.4.2 Binary polynomial multiplication

Multiplication in Z2[x] conceptually works like long multiplication between
integer numbers, except for the fact that the carry is always discarded instead
of added to the more significant position. This property derives from the fact
that the addition in Z2 corresponds to the logical XOR. For this reason, the
multiplication operation in Z2[x] is also commonly referred to as carry-less
multiplication.

17

Chapter 2. Background

A0A1A2

B0B1B2

A0B0

A1B0

A0B1

A2B0

A1B1

A0B2

A2B1

A1B2

A2B2

=

R0R1R2R3R4R5

=

(a) 3-digit schoolbook

A0A1A2

B0B1B2

A0B0
A1B0
A0B1

A2B0
A1B1
A0B2

A2B1
A1B2

A2B2

=

R0R1R2R3R4R5

=

(b) 3-digit Comba

Figure 2.1: Two multiplication methods implementing the long multiplication algorithm on
digital systems. The number of partial products and additions grows up quadratically
for both schoolbook and Comba algorithms. Comba offers a more efficient scheduling
of partial products, thus optimizing the memory write access pattern.

Considering the quasi-cyclic codes employed in many proposals for
post-quantum code-based cryptosystems, the arithmetic of p× p circulant
matrices over Z2 can be substituted with the arithmetic of polynomials
in Z2[x]/(x

p + 1). In code-based cryptosystems, matrix multiplication is
the most computationally intensive operation of the encryption primitives.
Since matrix multiplication corresponds to polynomial multiplication when
considering quasi-cyclic codes, it is crucial for the performance of these
post-quantum cryptosystems to implement the latter operation in an effective
way.

The rest of this section overviews a few state-of-the-art algorithms to
perform polynomial multiplication, i.e., the ones used in the proposed im-
plementation. It is important to note that the multiplication algorithms have
been selected to provide top-notch performance at reasonable complexity
cost, according to the range of sizes employed in quantum-resistant code-
based cryptography. The use of more complex algorithms provides no extra
performance but a non-negligible resource overhead, since they are expected
to perform better when the operand sizes are orders of magnitude higher
than what is needed to support code-based cryptography.

18

2.4. Binary polynomial arithmetic

Schoolbook multiplication

The schoolbook multiplication method implements the long multiplication
for the execution on a digital system. Starting from the binary representation
of the Z2[x] polynomials, each factor is split into digits according to the
actual operand size of the digital system, e.g., 32 or 64 bits on current general-
purpose computers. The long multiplication algorithm is then implemented
considering the digits as elementary units in the multiplication algorithm.

Figure 2.1a depicts the schoolbook multiplication between two polynomi-
als A and B. Each polynomial has been split in three digits Ai and Bi, where
their size is not explicitly reported since the method works for any possible
digit size and consequently number of digits. Remarkably, a larger digit size
corresponds to a smaller number of digits for each polynomial and therefore
a smaller number of corresponding partial products to be computed, thus
resulting in a faster computation. In particular, the number of AiBj partial
products and the number of additions increase quadratically with the number
of digits.

Comba multiplication

The Comba multiplication method [30] minimizes the number of memory
writes by optimizing the order of computation of the partial products (see
Figure 2.1b). In particular, the Comba algorithm requires exactly the same
number of partial products and corresponding additions as the schoolbook
approach, but it minimizes the number of bits required to store in memory
the sum of the partial products.

For example, the final value for the R0 digit is written in memory when
the A0B0 partial product is ready. Thereafter, the Comba method operates a
right shift of digit size to trash the lower part of the A0B0 partial product,
since it is not necessary anymore. In a similar manner, the final value for the
R1 digit is written in memory when the subsequent A0B1 and A1B0 partial
products have been computed and added to the upper part of A0B0. Once
again, the lower part of the intermediate result is trashed out since it is no
longer useful.

To this extent, the Comba method ensures a maximum of 2× size(digit)
bits for the intermediate result, while the schoolbook algorithm requires
at least N × size(digit) bits, where N is the number of digits of each
operand. In general, even though the number of required multiplications
and additions remains the same, the optimized memory access pattern of the
Comba solution provides better performance than the schoolbook approach.

19

Chapter 2. Background

A0A1

A0B0

A1B0

A0B1

A1B1

=

R0R1R2R3

=

B0B1

(a) 2-digit schoolbook

A0A1

A0B0

A1B1

A0B0

A1B1

=

R0R1R2R3

=

B0B1

(A1 A0)(B1 B0)

(b) 2-digit Karatsuba

Figure 2.2: Multiplication of two-digit polynomials considering schoolbook and Karatsuba
algorithms. Karatsuba optimizes the computation by leveraging the intuition for which
multiplications are more computationally expensive than additions in Z2[x]. In partic-
ular, schoolbook requires four multiplications and three additions, while Karatsuba
performs the same computation using three multiplications and six additions.

Karatsuba multiplication

The Karatsuba algorithm [64] optimizes the performance of the polynomial
multiplication by reducing the number of partial products to be computes.
This method leverages the intuition for which the multiplication is far more
computationally expensive than the addition in Z2[x]. Figure 2.2 depicts
the multiplication of two operands, each of them split in two digits, using
either the schoolbook (see Figure 2.2a) or the Karatsuba (see Figure 2.2b)
approaches. The schoolbook solution requires four multiplications and
three additions to perform the polynomial multiplication. In contrast, the
Karatsuba approach requires three multiplications and six additions.

The recursive application of the Karatsuba multiplication formula, i.e.,
computing the partial products through Karatsuba multiplications with
smaller operands, allows further reducing the time complexity compared to
schoolbook and Comba algorithms.

2.4.3 Binary polynomial exponentiation

Exponentiation in Z2[x]/(x
p + 1) is the operation that computes g(x) =

f(x)k, where the base f(x) and the result g(x) are polynomials in Z2[x]/(x
p+

1) while the exponent k is a number. If k is a positive integer, then the ex-
ponentiation corresponds to iterating k times the multiplication of the base
f(x). Squaring, i.e., g(x) = f(x)2, is a basic case of exponentiation, where
k is equal to 2. Notably, in Z2[x]/(x

p+1) it is computed by interleaving the

20

2.4. Binary polynomial arithmetic

Algorithm 5 Exponentiation procedure. f(x) is a binary polynomial in Z2[x]/(x
p + 1),

where p is a prime such that ord2(p) = p− 1. k is a non-zero positive integer, i.e., k > 0.
g(x) = f(x)k.

1: function [g(x)] EXPONENTIATION(f(x), k)
2: g(x) = 0;
3: for i ∈ 0 : (p− 1) do
4: g(x)[(i · k) mod p] = f(x)[i]⊕ g(x)[(i · k) mod p];
5: end for
6: return g(x);
7: end function

bits of the input polynomial f(x) with bits set to 0. Extending the squaring
case to the more general exponentiation in Z2[x]/(x

p + 1), the computation
of g(x) = f(x)k revolves around the idea that two consecutive elements in
f(x) will be separated by k − 1 other elements in g(x). Coefficients of g(x)
are initialized to 0. Bits in the f(x) polynomial are read one by one starting
from bit 0 up to bit (p− 1), and they are added (XORed, since coefficients
are in Z2) to the g(x) polynomial starting from bit 0 and incrementing each
time by k, with the increment operation being performed modulo p, until all
the p bits have been written.

For generic m and k, where m is the binary polynomial length, there
may be cancellations, i.e., there could be two 1s of the input polynomial
that contribute to the same bit of the result polynomial, thus canceling each
other because of the XOR operation. However, it is guaranteed that there
are no cancellations if m and k are coprime, i.e., their greatest common
divisor (GCD) is 1. In the considered application of QC-MDPC codes
to cryptography, i.e., the BIKE and LEDAcrypt cryptosystems, m values
are always prime numbers p, while k values are powers of 2, therefore
the coprimality condition is always verified and it is guaranteed that there
are no cancellations. The exponentiations can therefore be considered
equivalent to permutations. The g(x) = f(x)2

s exponentiation, where f(x)
and g(x) are polynomials in Z2[x]/(x

p + 1), p is a prime number, and s
holds a positive integer value, can be equivalently expressed as the Pi → Pj ,
j = (i · ((2s) mod p)) mod p permutation, where Pi and Pj indicate the
positions of coefficients in f(x) and g(x), respectively.

Restricting the exponentiations to the ones with power k equal to 2s, with
s holding a positive integer value, the computation can also be performed by
iterating s times the squaring of the f(x) polynomial.

Algorithm 5 details the procedure to compute the exponentiation of a
binary polynomial in Z2[x]/(x

p + 1). It takes as inputs the f(x) polynomial

21

Chapter 2. Background

Time

0

3
4
5
6

2

7
8
9
10
11

1

Figure 2.3: Example of exponentiation.

and the k non-zero positive integer value, which constitute the base and the
exponent, respectively, and it produces the corresponding g(x) polynomial,
where g(x) = f(x)k. The exponentiation procedure starts by setting the
g(x) polynomial to 0, i.e., its corresponding binary representation is initially
constituted by all p bits set to 0 (see line 2 in Algorithm 5). Then, for each
i ranging from 0 to (p− 1), the algorithm computes the value of the bit in
position i ·k mod p of the g(x) polynomial, i.e., g(x)[i ·k mod p], as the bit-
wise exclusive OR between the values of g(x)[i ·k mod p] and the i-th bit of
the f(x) polynomial, i.e., f(x)[i] (see lines 3-5 in Algorithm 5). Notably, if
k and p are coprime, each bit of g(x) is assigned exactly once inside the for
loop in Algorithm 5, hence each bit of g(x) can be computed independently
from the other bits of the same polynomial. Line 2 of Algorithm 5 thus
becomes g(x)[(i·k) mod p] = f(x)[i]. The coprimality condition is verified
in the considered application of QC-MDPC codes to cryptography, i.e., the
BIKE and LEDAcrypt cryptosystems.

Figure 2.3 shows an example of the iterative exponentiation procedure
in Algorithm 5 to compute g(x) as the 4-th power of f(x). f(x) and g(x)
are polynomials in Z2[x]/(x

p + 1) represented as p-bit binary values, where
k is equal to 4 and p is equal to 11. The procedure takes 12 timesteps. At
timestep 0, all bits in g(x) are cleared, i.e., set to 0. One bit of the f(x)
polynomial is then processed at each of the subsequent 11 timesteps, with
the i-th bit in the f(x) polynomial contributing to generate the bit in position
i · k mod p in the g(x) polynomial (see line 4 in Algorithm 5), where i

22

2.5. Quasi-cyclic moderate-density parity check codes

ranges from 0 to 10. For each timestep, the processed and generated bits in
f(x) and g(x) polynomials are highlighted in red. At the final timestep, the
value of g(x) is the result of the exponentiation, i.e., g(x) = f(x)4.

2.5 Quasi-cyclic moderate-density parity check codes

Quasi-cyclic low-density parity check (QC-LDPC) and quasi-cyclic moderate-
density parity check (QC-MDPC) codes emerged as viable solutions to
design post quantum cryptosystems due to two main advantages enabled
by their internal structure, i.e., their quasi-cyclicness and their sparse na-
ture. On the one hand, such structure allows a significant decrease of the
computational complexity of both the software and hardware implementa-
tions of KEMs that make use of such codes. On the other hand, the size of
the private-public keypair and the ciphertext is also significantly reduced,
resulting in a tighter memory footprint.

The rest of this section provides an overview of the basics of QC-LDPC
and QC-MDPC codes with a focus on their decoding algorithms.

2.5.1 Moderate-density parity-check codes

Low-density parity-check (LDPC) codes are linear error correction codes
that were first introduced by Gallager [44] and that allow transmitting mes-
sages over noisy channels. Their parity-check matrices are characterized by
a low Hamming weight, i.e., a low number of bits set to 1, which enables
a sparse representation. Moderate-density parity-check (MDPC) codes are
defined by parity-check matrices with a higher density than LDPC ones, but
they can still be represented effectively in a sparse way.

Without loss of generality, we are focusing on binary MDPC codes since
they were the most widely adopted in code-based post-quantum cryptogra-
phy. Starting from the definition of the Galois field of order 2, i.e., GF2, we
denote as GF k

2 the k-dimensional vector space defined over GF2. To this
end, a binary linear code denoted as C(n, k) is defined as a mapping which
univocally associates each binary k-tuple, i.e., the information vector, to a
binary n-tuple, i.e., the codeword (see Equation (2.1)).

C : GF k
2 → GF n

2 (2.1)

In general, an MDPC code C(n, k) is defined by its parity-check ma-
trix H that has r rows and n columns, where r = n− k [10]. Such matrix
can be graphically represented by the associated Tanner graph, that is a
bipartite graph made of n variable nodes and r check nodes. A codeword bit

23

Chapter 2. Background

C0

V0 V6V1 V2 V3 V4 V5

C1 C2

Variable nodes

Parity-check nodes

1 0 2 0 1 1 1 UPC vector

0 1 1 0 1 0 1 Received codeword

0 1 0 0 1 0 1 Updated codeword

1 0 1 Computed syndrome

0 0 0 Updated syndromeT5

T2

T1

T4

T3

Figure 2.4: Tanner graph of an MDPC code with n = 7 and r = 3. The steps of the
bit-flipping algorithm used to correct the bit of the codeword associated to the V6

variable node are marked from T0 to T4.

is associated to each variable node, while each parity-check bit is associated
to a check node. In particular, the set of all the parity-check bits defines
the so-called syndrome vector s. Each hi,j element of the H matrix set to
1 indicates that the j-th bit in the codeword participates in the i-th parity
check equation. The i-th syndrome bit is therefore computed as the bitwise
XOR of all the codeword bits involved in the i-th parity-check equation. For
example, the Tanner graph of a binary MDPC code with n = 7 and r = 3 is
depicted in Figure 2.4, while Equation (2.2) defines the corresponding H
matrix. For each parity-check node, the number of incoming edges is equal
to the number of ones in the corresponding row of the H matrix, while the
number of incoming edges to each variable node is equal to the ones in the
corresponding column of the H matrix.

H =

1 0 1 0 0 1 0

0 1 0 1 0 0 1

0 0 1 0 1 0 1

 (2.2)

Once a codeword is received, the decoding procedure analyzes the parity-
check equations by generating the syndrome s of the codeword c through
H , according to Equation (2.3).

s = c ·HT (2.3)

The received codeword is considered to be error-free when the syndrome is
a null vector. In case the received codeword contains errors, the error correc-
tion algorithm iteratively recovers such errors in the codeword until either all

24

2.5. Quasi-cyclic moderate-density parity check codes

the parity check equations are satisfied, i.e., the syndrome is the null vector,
or the codeword is declared unrecoverable and, thus, it has to be retransmit-
ted by the sender. We note that, regardless of the use of soft-decision, e.g.,
Logarithmic-Likelihood-Ratio Sum-Product Algorithm (LLR-SPA) [10], or
hard-decision, e.g., bit-flipping (BF), error correction algorithms, all the
available codeword decoding algorithms implement an iterative procedure.
Soft-decision decoders represent the most employed decoding solutions in
telecommunication applications due to their superior performance coming
from the exploitation of the available channel information [10]. In contrast,
the bit-flipping algorithm represents the most employed decoding solution
when no medium information is available, the floating point support is not
available, and an efficient decoder design is required [10]. Considering its
vast applicability and the possibility of delivering efficient decoders, the bit-
flipping decoding algorithm is the sole solution adopted by the code-based
cryptosystems participating to the NIST post-quantum competition.

Figure 2.4 depicts an example of the iterative bit-flipping decoding pro-
cedure, made of one iteration and five time-steps, i.e., T1-T5, to correct a
received codeword by means of the bit-flipping algorithm. At time T0 the
sender transmits the codeword c = 0100101, that is received with an error
by the receiver at time T1 as c = 0110101. In this example, the received
codeword contains an error in the bit associated to V2, i.e., its value is 1
instead of 0. The bit-flipping decoding algorithm associates each bit of the
received codeword to the corresponding variable node, and the syndrome is
computed at time T2 according to Equation (2.3). We note that the syndrome
is made of three bits, i.e., one bit for each parity-check node. In particular,
the parity-check equations corresponding to the parity-check nodes C0 and
C2 are not satisfied and, thus, the error-recovery strategy of the bit-flipping
algorithm takes place. For each iteration, the bit-flipping algorithm can flip
one or more bits in the received codeword according to the information
contained in the unsatisfied parity-checks (UPC) vector. For each variable
node, the corresponding UPC value corresponds to the number of failed
parity-check equations, i.e, the number of connected parity-check nodes
whose associated syndrome bit has a value equal to 1. The UPC vector is
defined by Equation (2.4) and it is computed at time T3 (see Figure 2.4).

UPC = s ·H (2.4)

Starting from the UPC vector, the bit-flipping algorithm flips each bit in
the codeword for which the corresponding UPC value is above a certain
threshold. We note that the threshold selection is a parameter of the bit-
flipping algorithm and it strongly depends on the specific MDPC code.

25

Chapter 2. Background

The threshold is selected to minimize the trade-off between the decoding
failure rate (DFR), i.e., the number of times the algorithm fails decoding the
received codeword, and the number of decoding iterations. At time T4, the
codeword is updated by flipping the bits corresponding to UPC values greater
or equal to the threshold (which, as an example, can be set to the maximum
of the values assumed by the UPC vector). In our case, the codeword
bit corresponding to the variable node V2 is flipped from 1 to 0, since its
UPC value is equal to 2 (the maximum value assumed by the UPC vector).
Finally, at time T5, the syndrome bits associated to the flipped codeword
bits are also flipped, which is a faster way to update the syndrome vector
than recomputing the vector-matrix multiplication in Equation (2.3). In the
example in Figure 2.4, the syndrome bits corresponding to parity-check
nodes C0 and C2 are both flipped from 1 to 0. Being the syndrome after T5

equal to the null vector, the decoding procedure can be interrupted since the
codeword has been certainly recovered correctly, i.e., all the transmission
errors have been corrected. Otherwise, if the syndrome vector were not a
null vector, the iterative procedure would have been continued by repeating
the steps executed at the time-steps from T3 to T5.

2.5.2 Circulant matrices

A circulant matrix is defined as a square matrix where each row is obtained
by shift-rotating the preceding row to the right by one position. By construc-
tion, a circulant matrix is therefore regular, i.e., both columns and rows have
constant weight. A p× p circulant matrix A, where each element is denoted
as ai with i ∈ [0, ..., p− 1], is shown in Equation (2.5).

A =

a0 a1 a2 ... ap−1

ap−1 a0 a1 ... ap−2

ap−2 ap−1 a0 ... ap−3

...

a1 a2 a3 ... a0

 (2.5)

We note that the arithmetic of circulant matrices of size p is isomorphic to
the arithmetic of the polynomials modulo xp − 1 over the same field as the
coefficients of the circulant matrices. The circulant matrix A is therefore
isomorphic to a polynomial a(x) with coefficients given by the elements of
the first row of the matrix, as shown in Equation (2.6).

a(x) = a0 + a1 · x+ a2 · x2 + ...+ ap−1 · xp−1 (2.6)

26

2.5. Quasi-cyclic moderate-density parity check codes

Considering the case of binary linear block codes, the arithmetic of p× p cir-
culant matrices over Z2 can be substituted by the arithmetic of polynomials
in Z2[x]/(x

p + 1), which provides a reduction in the storage requirements
and a faster execution of the arithmetic operations.

2.5.3 QC-MDPC codes

Quasi-cyclic (QC) codes are linear block codes C(n, k) whose parity-check
matrices H are composed of r0 × n0 circulant blocks, each of size p × p,
where n = n0 · p, k = k0 · p and r0 = n0 − k0. Considering post-quantum
code-based cryptosystems, we focus on the r0 = 1 case, for which the
corresponding family of QC codes has a rate of (n0 − 1)/n0. In this case,
the parity check matrix is defined by Equation (2.7), where each block Hi

with i ∈ [0, . . . , n0 − 1] is a circulant matrix of size p× p.

H =
[
H0 H1 ... Hn0−1

]
(2.7)

The structure of quasi-cyclic codes enables efficient encoding implemen-
tations by means of fast binary polynomial multipliers. However, the lack of
an efficient decoding support, due to the inherent structure of the H matrix,
prevented their widespread use for a long time. QC-LDPC and QC-MDPC
codes have been explored as particular classes of quasi-cyclic codes that
are characterized by parity-check matrices which are well-suited for LDPC
and MDPC decoding algorithms, where the matrix is sparse and it avoids
the presence of short length cycles in the associated Tanner graph [10]. In
particular, QC-LDPC and QC-MDPC codes combine the efficient decoding
and the low decoding failure rate (DFR) of LDPC and MDPC codes with
the efficient encoding and the small memory footprint of QC codes.

2.5.4 QC-MDPC bit-flipping decoding

This part overviews the baseline bit-flipping decoding algorithm for QC-
MDPC codes and its Black-Gray-Flip (BGF) variant, which is employed
within the BIKE cryptoscheme, highlighting their general structure as well
as the optimizations introduced by the BGF algorithm.

Baseline bit-flipping decoding

Algorithm 6 describes the baseline QC-MDPC bit-flipping decoding proce-
dure. The main bit-flipping decoder function, i.e., BFDecoding, executes
a predefined number of iterations (see lines 3-10 in Algorithm 6) to produce
the error vector (e) and the decoding failure boolean flag (fail) as outputs.

27

Chapter 2. Background

Algorithm 6 Bit-flipping decoding procedure for MDPC codes [12]. H is a p× n parity
check matrix, where n = p · n0. s is a p-bit syndrome vector. e is an n-bit error vector.
fail is a 1-bit flag that is set in case of decoding failure.

1: function [e, fail] BFDECODING(H, s)
2: e = 0; fail = 0;
3: for i ∈ 1 : itermax do
4: thr = THRESHOLD(s);
5: upc = s ·H;
6: ebf = (upc ≥ thr) ? 1 : 0;
7: e = e⊕ ebf ;
8: sbf = ebf ⊙HT ;
9: s = s⊕ sbf ;

10: end for
11: fail = (s == 0) ? 0 : 1;
12: return e, fail;
13: end function

Each decoding iteration consists of a sequence of six operations. First, a
threshold is computed as a function of the syndrome vector (line 4). Then,
the vector of unsatisfied parity checks (UPC) is computed as the product
of the syndrome vector s and the parity-check matrix H , treating both s
and H as integer numbers rather than values in Z2 (line 5). The obtained
integer UPC values are compared to the threshold value, producing an error
bit-flips vector (ebf) with bits set to 1 in positions corresponding to UPC
values greater than or equal to the threshold and set to 0 otherwise (line 6).
The error vector is then updated by XORing the error bit-flips vector (line
7), and the syndrome bit-flips vector sbf is computed through the carry-less
multiplication between ebf and H (line 8). Finally, the syndrome vector is
updated by XORing sbf (line 9). Once all the decoding iterations have been
executed, the fail flag is set to 1 to signal a decoding failure if the syndrome
has Hamming weight not equal to 0, while it is set to 0 otherwise.

From the computational complexity viewpoint, the UPC computation (see
line 5 in Algorithm 6) and the syndrome bit-flips computation (see line 8
in Algorithm 6) represent the two most critical operations. In fact, both
the UPC and the syndrome bit-flips computations impose a vector-matrix
multiplication, i.e., the former between the syndrome and the H matrix
and the latter between the error bit-flips vector and H . In particular, the
UPC computation is performed in the integer domain, while the syndrome
bit-flips computation is instead performed in the binary domain. Concerning
the remaining operations, the threshold computation procedure is usually
customized to minimize both the decoding failure rate (DFR) of the under-

28

2.5. Quasi-cyclic moderate-density parity check codes

Algorithm 7 BGF decoding procedure [34, 89]. H is a p× n parity check matrix, where
n = 2p. s is a p-bit syndrome vector. e is an n-bit error vector. black and gray are n-bit
vectors. fail is a 1-bit flag that is set in case of decoding failure.

1: function [e, fail] BGFDECODING(H, s)
2: e = 0; fail = 0;
3: for i ∈ 1 : itermax do
4: thr = THRESHOLD(s+ e ·HT);
5: e, black, gray = BITFLIPITER(s+ e ·HT , e, T,H);
6: if i = 1 then
7: e = BITFLIPMASKEDITER(s+ e ·HT , e, black,H);
8: e = BITFLIPMASKEDITER(s+ e ·HT , e, gray,H);
9: end if

10: end for
11: fail = (s == 0) ? 0 : 1;
12: return e, fail;
13: end function

14: function [e, black, gray] BITFLIPITER(s, e, thr,H)
15: black = 0; gray = 0;
16: for j ∈ 0 : n− 1 do
17: if upc(H, s, j) ≥ thr then
18: ej = ej ⊕ 1;
19: blackj = 1; grayj = 0;
20: else if upc(H, s, j) ≥ thr − 3 then
21: blackj = 0; grayj = 1;
22: end if
23: end for
24: return e, black, gray;
25: end function

26: function [e] BITFLIPMASKEDITER(s, e,mask,H)
27: for j ∈ 0 : n− 1 do
28: if upc(H, s, j) ≥ (((v + 1)/2) + 1) then
29: ej = ej ⊕maskj ;
30: end if
31: end for
32: return e;
33: end function

lying QC-MDPC code and the number of iterations required to decode a
codeword, and it is negligible from the computational viewpoint, similarly to
the other three operations, i.e., the error bit-flips computation and the update
of both the error and syndrome vectors, which consist of vector operations
with a linear complexity.

29

Chapter 2. Background

Black-Gray-Flip decoding

The BIKE cryptoscheme makes use of the Black-Gray-Flip (BGF) variant
of the QC-MDPC bit-flipping decoding algorithm. The BGF decoding algo-
rithm, which was introduced in [34], is listed in Algorithm 7. Similarly to
the previously detailed BFDecoding function, the BGFDecoding func-
tion, which implements the BGF decoding procedure, executes a predefined
number of iterations (see lines 3-10 in Algorithm 7) to produce the error
vector (e) and the decoding failure boolean flag (fail) as outputs.

The BGF decoding procedure differs from the baseline one only during
the first decoding iteration. In such case, two black and gray n-bit vectors
are generated, setting their bits to 1 if the UPCs in the corresponding posi-
tions are larger than thr (lines 17-19) and thr−3 (lines 20-21), respectively,
where thr is a threshold computed as a function of the syndrome, as in the
general bit-flipping algorithm. The black and gray vectors are thereafter
XORed, in two separate iterations (lines 7 and 8), with the error vector bits
corresponding to UPC values larger than (((v + 1)/2) + 1) (lines 32-33),
where v is the Hamming weight of a row of a Hi block of the parity-check
matrix.

Notably, the additional black and gray iterations introduced by the BGF
algorithm do not increase the complexity of the generic bit-flipping decoding
procedure, since they require simple comparison and XOR operations, over
n-bit vectors, which are thus characterized by linear complexity.

30

CHAPTER3
State of the art

This chapter provides an overview of the state-of-the-art literature concern-
ing the implementation of QC-MDPC code-based cryptosystems. Such
implementations comprise both hardware and software ones and range from
low-end embedded platforms up to higher-end desktop-class systems.

The state of the art is discussed by analyzing first the implementations
of standalone binary polynomial arithmetic and QC-MDPC decoding oper-
ations, and then the complete implementations of QC-MDPC code-based
cryptosystems with a particular focus on BIKE.

Parts of this chapter are derived from previously published works co-
authored by the author of this thesis. In particular, the multiplication state-of-
the-art discussion in Section 3.1 was adapted from [111], the exponentiation
and inversion literature analysis in Section 3.2 and Section 3.3 resulted
from [43], the decoding state-of-the-art discussion in Section 3.4 came
from [110], and parts of Section 3.5 overviewing complete cryptoscheme
implementations were taken from [41]. More details about the referenced
publications are provided in Appendix A.

31

Chapter 3. State of the art

3.1 Binary polynomial multiplication

The state-of-the-art contains several proposals that implement multiplication
for the Galois field of binary polynomials, both in the form of software
libraries, custom extensions to the instruction set architecture (ISA), and
hardware accelerators.

On the software side, the gf2x [22] software library is the de-facto refer-
ence for fast multiplication of polynomials over Z2, implementing several
multiplication algorithms to optimize the computation for different operand
sizes. In contrast, the NTL [95] library either implements only the Karatsuba
multiplication algorithm, or it can act as an overlay to the gf2x library, while
the MPFQ [45] library is specifically tailored to deliver high performance for
finite fields of moderate size, when the modulus size is known in advance.

From the ISA point of view, Intel introduced the PCLMULQDQ in-
struction and the corresponding hardware support in its Westmere archi-
tecture for the purpose of accelerating the computation of the AES Galois
Counter Mode (AES-GCM) authenticated encryption algorithm [48]. The
PCLMULQDQ instruction performs the carry-less multiplication of two
64-bit operands. The work in [32] leverages the VPCLMULQDQ instruc-
tion, which is intended to further accelerate AES-GCM and which is the
vectorized extension of PCLMULQDQ, to compute multiplications between
large-degree binary polynomials, i.e.. polynomials with degree greater than
511. In particular, results considering polynomials of degree up to 216 predict
a 2× speed-up compared to the previous computing platforms. Similarly, the
ARMv8-A architecture provides the VMULL.P64 instruction, which takes
as inputs two 64-bit NEON registers and outputs their product, computing
according to binary polynomial multiplication, on a 128-bit NEON register.

On the hardware side, the state-of-the-art contains several architectures
implementing ad-hoc hardware accelerators for the Galois field of binary
polynomials, either in the form of bit-serial, digit-serial, or bit-parallel
multipliers.

The bit-serial architectures have a low hardware complexity, thus they
are well-suited for low-power and resource-constrained implementations.
In particular, such hardware accelerators output the M -bit result after M
clock cycles, thus their latency strictly depends on the size of the input. [46]
presents a low-power bit-serial multiplier architecture for binary polynomi-
als for which an M -bit multiplier implementation requires 28 ×M gates.
The limited performance and flexibility in trading performance and area
utilization of bit-serial architectures, prevents their use to design multipliers
with operands of size in the order of tens of thousands of bits.

32

3.1. Binary polynomial multiplication

In contrast, bit-parallel architectures are intended for performance-oriented
implementations, since they perform the M -bit multiplication in one clock
cycle. However, they are characterized by a high critical path delay and a
high area consumption, which grows up more than linearly with the size of
the operands [36]. To this end, the bit-parallel multipliers in the state-of-the-
art are limited to relatively small operand sizes, i.e., one or two thousands of
bits at the most. [29] details the realization of the optimal bit-parallel design
given the structure of the target binary polynomial Galois field, i.e., the size
of the polynomials of the field and its associated irreducible polynomial.

We note that all bit-parallel solutions leverage the size of the operands
to deliver efficient ad-hoc architectures. To this end, each architecture is
customized for a specific Galois field and it is therefore not reusable. The
limited flexibility and the hardware complexity that grows with the size of
the operands make the bit-parallel architectures unsuitable to design large
binary multipliers intended to be implemented on a large variety of FPGA
devices, regardless of the size of the operands.

Differently from bit-parallel solutions, digit-serial polynomial basis mul-
tipliers offer a superior design flexibility. In particular, the operands are
organized in digits, i.e., chunks with a fixed number of bits, and the multipli-
cation proceeds on a digit-by-digit basis. The possibility to configure the
size of the digit allows to trade the performance with the resource utiliza-
tion. [84] presents a low-area and scalable digit-serial architecture to perform
polynomial basis multiplications over Z2[x]. Two digit-serial architectures
for multiplication over Galois fields employing the normal basis represen-
tation are presented in [9, 85]. By rewriting the multiplication equations
in a normal basis form, the design in [85] can reduce both the hardware
complexity and the combinational critical path. In contrast, the digit-serial
multiplier presented in [9] aims to speedup the exponentiation and the point
multiplication, in any case a double multiplication is required and traditional
schemes are performance-limited due to data dependences.

We note that the scalability offered by digit-serial solutions is limited to
the possibility of configuring the size of the digit, i.e., the number of bits that
are processed in parallel. Normally, state-of-the-art solutions are validated
on limited operand sizes, less than few thousands of bits, thus the scalability
issues of such solutions have not been fully highlighted. Differently, the
implementation of large binary multipliers requires to extend the flexibil-
ity of current digit-serial architectures with the use of fast multiplication
algorithms to aggressively reduce the number of computed partial products,
without increasing the design complexity.

In particular, several works in the state-of-the-art demonstrate the pos-

33

Chapter 3. State of the art

sibility of implementing the Karatsuba algorithm into the multiplier to
minimize the number of computed partial product and, thus, to improve the
overall multiplication performance. [101] proposes a hardware multiplier
employing an ad-hoc implementation of the Karatsuba algorithm for 240-bit
polynomials. The design takes 30 clock cycles to perform a single multi-
plication, but the ad-hoc combinational logic structure severely thwarts the
scalability of the multiplier. [40] presents a hardware multiplier relying on a
Karatsuba-like approach. Depending on the operand size, the solution opti-
mizes the performance by allowing to split the operands either into 4, 5, 6 or
7 blocks. However, the fixed architecture limits the scalability of the solution
in the exploitation of the resources available in large FPGAs. Moreover,
the design has been validated against polynomials of degree up to 99. [13]
compares two implementations of binary polynomial multipliers targeting
the encryption function of LEDAcrypt. Depending on the actual Hamming
weight of one of the two polynomials, i.e., the number of its coefficients
set to 1, the authors discuss the possibility of using dense-sparse binary
polynomial multipliers rather than traditional Karatsuba-like dense-dense
architectures. In particular, the dense-dense multiplier implements a single
iteration of the Karatsuba algorithm and either one serial or three parallel
Comba multipliers to compute the three partial products. Such multiplier
works at 100 MHz and the parallel and serial versions are provided as two
separate implementations.

Few hardware implementations of multipliers specifically targeting the
BIKE cryptosystem are also available in the state-of-the-art literature. [56]
considered the FPGA-based design of two polynomial multipliers for BIKE,
one implementing the multiplication between two dense operands and one
implementing the multiplications between a dense and a sparse operand. The
FPGA-based implementation by the authors of BIKE in [89] employed a
multiplication module that minimized the BRAM usage by parallelizing the
computation of a simpler schoolbook multiplication algorithm rather than
applying a more complex one such as Karatsuba’s. Such area-optimized
approach comes at the expense of performance, with the execution time
having a quadratic relation to the p/b ratio, i.e., O(⌈p/b⌉2), where p is the
polynomial length and b is the bandwidth of the multiplication module.
The latter is the only configurable parameter in the proposed multiplication
architecture. Finally, the later FPGA-based implementation of BIKE in [88]
only implements a dense-sparse multiplication module, which exploits the
sparse representation of one of the two operands in the binary polynomial
multiplication.

34

3.2. Binary polynomial exponentiation

3.2 Binary polynomial exponentiation

Few implementations of the exponentiation algorithm have been proposed
in the last decade to efficiently support the key generation algorithm in
post-quantum QC-MDPC code-based cryptosystems and more in general
the computation of binary polynomial inversion.

[33] proposed two main optimizations for the software computation of
GF (2m) exponentiations. First, the permutation corresponding to a f(x)2

k

exponentiation is fully precomputed by storing in a lookup table the positions
of bits in the inverse polynomial and indexing them by the original positions
in the input polynomial f(x). Lookup tables can be precomputed for all
values held by k during the inversion algorithm, which depend exclusively
on p. Second, f(x)2k exponentiations are executed faster as a chain of k
squarings, when k is smaller than a threshold value, which depends on the
underlying computing architecture. The authors exploited the Intel AVX2
and AVX512 extensions to further improve the performance of the software
computation.

However, the proposed lookup tables required p · (⌈log2(p− 2)⌉ − 1) ·
⌈log2 p⌉ bits of memory, and may thus not be suitable to constrained devices
such as microcontrollers. [14] optimized the memory requirements by using
a smaller lookup table, that holds only the (⌈log2(p − 2)⌉ − 1) values
obtained as 2i mod p, with i ∈ {1, 2, ..., ⌈log2(p − 2)⌉}. The position of
the j-th coefficient, where 0 ≤ j ≤ p − 1, of a(x)2i is instead computed
at run-time as (j · (2i mod p)) mod p, i.e., through a multiplication and a
modulus operation.

[89] proposed three different strategies for the computation of the f(x)2k

exponentiation with arbitrary k. The first one iterates k squaring operations,
i.e., f(x)2, processed by a squaring module. The second one implements
two modules, one computing f(x)2 and the other computing f(x)2

4 . The
latter is used as long as the remaining exponent of the squaring chain is
≥ 4, otherwise the iterative computation is done by the former. The third
strategy combines a fixed squaring module computing f(x)2 and a module
that directly computes f(x)2

k exponentiations with arbitrary k. f(x)2
k

exponentiations are executed by the latter module when k ≥ BW , where
BW is the width of the architecture datapath, otherwise they are computed
by iterative squaring. The third strategy was shown to provide the best
performance, while occupying slightly more resources than the first one.

35

Chapter 3. State of the art

3.3 Binary polynomial inversion

Several algorithms to compute the multiplicative inverses in GF (2m) and
their hardware implementations have been proposed since the 1980s. In
general, the state-of-the-art proposals can be split into two main families,
deriving respectively from Fermat’s little theorem and Euclid’s algorithm.

Fermat’s little theorem states that, if p is a prime number, then for any
integer a the number ap− a is an integer multiple of p, and it was at the core
of the first state-of-the-art proposals, such as [103] and ITA [60], and other
Fermat-based software and hardware implementations were later introduced
by [37, 55, 70, 86, 91, 92, 97].

Euclid’s algorithm computes the the greatest common divisor of two
natural, i.e., positive integer numbers, and it can be generalized to binary
polynomials. It was first adapted to compute multiplicative inverses in
GF (2m) by [23], which introduced the inversion procedure known as Brun-
ner’s algorithm. Subsequent proposals based on Euclid’s and Brunner’s
algorithms were [18, 49, 66].

The following paragraph details the earlier literature proposals for binary
polynomial inversion algorithms and their hardware and software imple-
mentations. [103] first proposed in 1985 an algorithm that required (m− 2)
multiplications and (m − 1) cyclic shifts, where m is the length of the
binary polynomials, and targeted a VLSI implementation. [60] proposed
the Itoh-Tsujii algorithm (ITA), requiring at most (m− 1) cyclic shifts and
2(log2(m−1)) multiplications, with a significant reduction from [103]. [37]
introduced an algorithm with O(m log2m) time complexity, that employs
serial-in-parallel-out multiplication and is suited for VLSI implementation.
While the previous proposals derived from Fermat’s little theorem, [23]
presented a design based on the Euclid’s algorithm. It computes the inverse
by repeated shifts and subtractions, enabling an efficient hardware imple-
mentation with O(m) complexity for both area and time. [49] proposed
a variant of the algorithm in [23] that made it more suitable to a systolic
architecture. The two proposed architectures are parallel-in parallel-out and
serial-in serial-out systolic arrays, with throughput 1 and 1/m, respectively,
and both with (8m− 1) cycles latency. [97] proposed a Fermat-based algo-
rithm that reduced the number of required multiplications by decomposing
m − 1 into several factors and a small remainder. Such decomposition is
applied recursively until finding the minimum required number of multi-
plications [91] proposed an efficient architecture based on ITA that makes
use of addition chains and targets FPGA devices. It is tailored to a special
class of irreducible trinomials, and results are shown for GF (2193). [92]

36

3.3. Binary polynomial inversion

further improved the performance on the same Galois field by deriving a
parallel formulation of the ITA. [86] modified the ITA algorithm to bet-
ter use the available FPGA resources and require shorter addition chains,
and showed the proposed method to be scalable for polynomial degrees
comprised between 100 and 300. [66] proposed an algorithm that targeted
modern CPUs with hardware support for fast carry-less multiplication. The
operations in several contiguous iterations of the extended Euclid’s algo-
rithm are represented as a matrix nd can then be performed at once by means
of a single carry-less multiplication instruction, resulting in fewer multipli-
cation and XOR instructions. [55] improved and parallelized ITA, targeting
FPGAs and polynomials with length in the order of hundreds. [70] modified
ITA to reduce latency by enabling the parallel computation between some
multiplications and squarings. It was implemented on FPGA and targeted
polynomials with degree in the order of few hundreds for elliptic curve
cryptography. [18] introduced a divide-et-impera strategy for computing
greatest common divisors and inverses for generic GF (pm) rings in constant
time.

Remarkably, all the previously listed state-of-the-art proposals targeted
binary polynomials with degree in the order of few hundreds at most, due to
the lesser requirements of traditional PKC and error control coding schemes.

Only few and more recent proposals target instead polynomials with de-
grees in the order of tens of thousands, that are thus suitable to post-quantum
QC-MDPC cryptography. They are software and hardware implementa-
tions of the BIKE and LEDAcrypt cryptosystems. The software ones target
modern x86_64 CPUs that support custom instructions for carry-less multi-
plication, while the hardware one targets Artix-7 FPGAs.

[33] introduced a constant-time algorithm for polynomial inversion,
targeting the software implementation of BIKE and based on Fermat’s little
theorem. The authors optimized the exponentiation operation and further
improved performance by means of a source code targeting the latest Intel
Ice Lake CPUs, that support the AVX512 and VPCLMULQDQ instructions.

[14] presented a Fermat-based algorithm, not dissimilar from the one
introduced in [33], that is employed in the software implementation of
LEDAcrypt and was previously detailed in Section 2.4.1.

[89] presented the FPGA-based implementation of BIKE that employs
an inversion algorithm based on [55]. The employed algorithm differs
from the one used in [33], requiring the same number of exponentiations,
but slightly less operations if the exponentiations are computed by means
of iterated squarings. Notably, the inversion algorithms employed in the
[14, 33, 89] implementations of BIKE and LEDAcrypt require the same

37

Chapter 3. State of the art

number of exponentiations and multiplications.
The authors of [89] later applied instead the extended Euclidean algorithm

first proposed by [18], rather than a Fermat-based one, to another FPGA-
based implementation of BIKE [88].

3.4 QC-MDPC bit-flipping decoding

LDPC and QC-LDPC codes have traditionally been used in telecommuni-
cation applications ranging from wired, e.g., 10GBase-T Ethernet [106],
to wireless ones, e.g. WiMax (IEEE 802.16e) and WiFi (802.11n) [50],
due to their superior error-correction capabilities [10]. However, the recent
advances in quantum computing highlighted the possibility of employing
the class of QC-LDPC and QC-MDPC codes as the codes underlying code-
based quantum-resistant cryptosystems [93]. QC-LDPC codes were indeed
employed by the LEDAcrypt cryptoscheme, which was admitted to the third
round of the NIST PQC standardization process [11], while BIKE, currently
a candidate for standardization in the fourth round, akes use of QC-MDPC
codes [5].

From the decoding point of view, the state of the art contains several
proposals addressing the optimized design of decoders to support QC-
LDPC codes. In the following we classified them in two main groups:
i) soft-decision decoders, e.g., Belief Propagation (BP), Sum-Product Algo-
rithm (SPA), and their variations, that employ a message-passing structure,
and ii) hard-decision decoders, i.e., bit-flipping algorithms, designed to offer
a simple decoder implementation. Traditionally, soft-decision decoders offer
superior decoding performance than hard-decision ones, i.e., bit-flipping so-
lutions, thanks to the use of the channel information. In contrast, bit-flipping
decoders have a favorable less complex design. The rest of this section
discusses the state-of-the-art proposals on decoding, targeting QC-LDPC
codes. We note that the review aims to highlight the main limitations and
constraints that prevent the use of current state-of-the-art solutions in the
design of QC-LDPC decoders for post-quantum cryptography.

Among the soft-decision decoders, [62] proposed a FPGA-based QC-
LDPC decoder for the Chinese Digital Television Terrestrial Broadcast-
ing (DTTB) standard, which is based on the soft-decision min-sum algo-
rithm. [104] describes a parallel GPU implementation of the soft-decision
min-sum decoder for QC-LDPC codes, targeting both the WiMax and WiFi
standards. Despite the interesting performance of the proposed parallel GPU
decoder, the underlying QC-LDPC C(n, k) codes for WiFi and WiMax have
the (n, k) pair of parameters equal to (1944, 972) and (2304, 1152) for WiFi

38

3.4. QC-MDPC bit-flipping decoding

and WiMax, respectively, thus tens of times smaller than the ones employed
in post-quantum QC-LDPC cryptosystems. An additional hardware imple-
mentation of a soft-decision decoder for the 802.11n WiFi standard, thus
targeting small codes, is proposed in [98]. In contrast, [107] presents a 90nm
CMOS implementation of a soft-decision decoder for QC-LDPC codes with
n values up to 96000 bits. Despite the code size is aligned with the one
employed in current QC-LDPC-based cryptosystems, the decoder in [107] is
tailored to a specific code structure that is intended for telecommunications.
To this end, the underlying code cannot offer the security margin required
by post-quantum code-based cryptosystems.

Considering telecommunication applications, the use of soft-decision
decoders represents the optimal choice due to the possibility of implement-
ing a system approaching the channel capacity limit [10]. However, such
superior performance is achieved by leveraging the channel information
in the decoding procedure. To this end, QC-LDPC and QC-MDPC codes
meant for post-quantum cryptosystems can not employ soft-decision algo-
rithms, since the cryptosystem is expected to operate even when the channel
information is not available, e.g., encryption and decryption of digitally
stored data. Moreover, the complexity of soft-decision decoders limits their
scalability in supporting large QC-LDPC and QC-MDPC codes [59]. The
state-of-the-art contains several families of proposals, i.e., Weighted Bit
Flipping (WBF) [68], Modified WBF (MWBF) [63], and Gradient Descent
Bit Flipping (GDBF) [102], aiming at optimizing the performance of the
baseline bit-flipping algorithm, i.e., hard-decision decoders. However, for
each of them, the performance improvement is obtained by leveraging some
sort of channel information, thus preventing their use in the design of de-
coders for post-quantum cryptosystems [59]. In summary, the baseline
bit-flipping algorithm represents the most important candidate to deliver
hardware accelerated decoders for quantum-resistant QC-LDPC and QC-
MDPC cryptosystems. We note that such design choice is also supported by
the fact that all the QC-LDPC and QC-MDPC code-based cryptosystems
participating in the third round of the NIST PQC standardization process
made use of the bit-flipping decoding procedure in its baseline version or in
a variant with slight modifications.

Among the hard-decision decoders, [53] presents a hardware implemen-
tation of the LEDAcrypt KEM submitted to the first round of the NIST
competition. Such version of the cryptosystem proposes a variant of the
bit-flipping decoder, i.e., the Q-decoder, that has been dismissed due to a set
of security vulnerabilities in the theoretical decoding scheme [4]. In fact, the
current LEDAcrypt submission to the third round of the NIST competition

39

Chapter 3. State of the art

employs a baseline bit-flipping decoder, thus making the work in [53] obso-
lete. [100] proposes a lightweight implementation of a bit-flipping decoder
for QC-LDPC codes. Despite the fact that the solution in [100] does not offer
a configurable area-performance trade-off, it suffers two other limitations.
On the one hand, the decoding execution time is in the order of tens of
milliseconds. Onthe other hand, the design is limited to small QC-LDPC
codes that offer an 80-bit security level, while post-quantum cryptography
mandates larger codes to achieve a security level comprised between 128
and 256 bits. The BIKE round 3 specification document [5] discusses the
decoder implementation of the BIKE QC-MDPC code-based cryptosystem,
that leverages a light variant of the bit-flipping algorithm. In particular, the
baseline bit-flipping algorithm has been slightly modified in its first iteration
to conditionally perform an additional error correction task. We also note
that a software implementation of the BIKE bit-flipping decoder employing
the Intel AVX512 extension is discussed in [34]. In a similar manner, both
the reference C11 and the optimized Intel AVX2 software implementations of
the bit-flipping decoder employed in the current version of the LEDAcrypt
cryptosystem, are discussed in its third round specification document [11].

All the previously listed solutions however either are software-implemented
ones, with a few of them specifically designed for post-quantum QC-LDPC
or QC-MDPC code-based cryptosystems, or hardware-implemented ones
that only target telecommunications QC-LDPC codes.

To this end, it is of paramount importance to provide efficient and scalable
hardware decoders to support the emerging QC-MDPC cryptosystems, since
the available software solutions reveal the impossibility to cope with the
required performance, more so when considering the steep increase of the
key length expected in the near future. Few recent works proposed hardware
bit-flipping decoders specifically designed to be suitable for post-quantum
QC-MDPC cryptography applications.

[67] proposed a bit-flipping decoder for QC-MDPC codes, that is, how-
ever, only configurable in the bandwidth of its datapath, with the goal of
supporting the LEDAcrypt PQC cryptosystem. [89] provided the first FPGA-
based implementation of the BGF decoder employed by BIKE. The proposed
decoding architecture is composed of three modules, respectively devoted
to computing the threshold function, computing the Hamming weight of
the updated syndrome vector, and updating the error vector in both the
traditional bit-flipping and black and gray iterations. The architecture is
configurable in the bandwidth parameter, which allows delivering different
decoding instances depending on the desired area and performance. For
instance, such parameter corresponds to the number of UPCs computed in

40

3.5. KEM primitives

parallel and to the number of error vector bits concurrently evaluated in the
bit-flipping phase. A later FPGA-based implementation of BIKE by the
same authors [88] also uses the same decoding architecture as [89].

3.5 KEM primitives

While several works focused on the optimal design of single key operations
to support QC-MDPC code-based cryptosystems, the literature also contains
few proposals that provide complete hardware or software implementations
of QC-MDPC code-based post-quantum cryptosystems.

[51, 100] proposed the implementation of the McEliece cryptosystem
with QC-MDPC codes on FPGAs. In particular, [51] targeted a performance-
oriented design while [100] focused on a resource-optimized one. [54] dis-
cussed a fast implementation of QC-MDPC Niederreiter encryption for
FPGAs, outperforming the work in [51] thanks to using a hardware module
to estimate the Hamming weight of large vectors and proposing a hardware
implementation tailored to low-area devices for encryption and decryp-
tion used in QC-MDPC code-based cryptosystems. The authors of BIKE
presented a VHDL FPGA-based implementation, targeting Xilinx Artix-7
FPGAs and providing support for the key generation, encryption, and de-
cryption KEM primitives on a unique design [89]. However, the proposed
architecture was custom-tailored to smaller FPGA targets, up to Artix-7 100,
and it employed the AES and SHA-2 cryptographic functions as random
oracles, thus supporting a now obsolete specification of BIKE. Finally, [88]
proposed an updated FPGA-based implementation that employed a Keccak
core rather than AES and SHA-2, as specified in the latest version of the
BIKE cryptoscheme [6]. The proposed architecture targets Artix-7 FPGAs
and the authors listed three instances implementing the whole KEM provid-
ing a range of area-performance trade-offs. The smallest one requires less
resources than the lightweight one from [89] and provides a more than 3×
speedup, while the largest one takes 3.7ms compared to the 4.8ms of the
high-speed one from [89] while also occupying a smaller area.

On the software side, implementations of QC-MDPC code-based cryp-
tosystems participating in the NIST PQC competition are open-source and
publicly available. Two separate software versions of LEDAcrypt, a refer-
ence one written in plain C11 and an optimized one that exploits the AVX2
extension for recent Intel Core CPUs, are available at [11]. [5] provides
instead two software implementations of BIKE, a reference one written in
plain C11 and an optimized one that exploits the Intel AVX512 extension.
Other works from literature provide software implementations for ISAs

41

Chapter 3. State of the art

other than the Intel x86 one, with [26] targeting ARM Cortex-M4 micro-
controllers and [27] introducing support for RISC-V computing platforms.
Further additional implementations of BIKE, including a fully portable
one, versions optimized for AVX2 and AVX512 instruction set extensions,
and implementations optimized for CPUs that support PCLMULQDQ and
VPCLMULQDQ instructions, are also publicly available on Github [3].

Finally, [74] proposed a mixed hardware-software (HW/SW) approach
that made use of three HLS-generated accelerators, each implementing
one of the BIKE primitives. The HW/SW approach allowed mixing the
usage of hardware acceleration for the most computationally expensive
primitives with the software execution of the least complex ones. The
proposed solution resulted in three different combinations of hardware-
implemented and software-executed KEM primitives on three chips from
the Xilinx Zynq-7000 family of heterogeneous SoCs, which feature ARM
CPUs coupled with programmable FPGA logic equivalent to the Artix-7
one.

42

CHAPTER4
Methodology

This chapter details the proposed hardware architecture by following a
top-down approach.

First, it provides an overview of the architecture of client and server top
modules implementing the three BIKE KEM primitives [41] and discusses
the performance profile of software across different computing platforms,
allowing to identify the operations on which to focus RTL design effort.
Then, it details the architecture of modules implementing such most com-
plex operations, namely bit-flipping decoding [110] and binary polynomial
inversion [43], multiplication [111], and exponentiation [43], as well as pseu-
dorandom number generation and SHA-3. Finally, it discusses a heuristic for
design space exploration that leverages the time- and space-complexity anal-
ysis of the employed configurable components to steer the fast identification
of the architectural parameters that deliver the best hardware support [41].

Parts of this chapter are derived from previously published works co-
authored by the author of this thesis. The description of the KEM primitives
architecture in Section 4.1 and of the complexity-based DSE heuristic in
Section 4.8 were derived from [41]. The architectural description of the
decoding component in Section 4.2 was updated from the one introduced
in [110]. The descriptions of the inversion and exponentiation components’

43

Chapter 4. Methodology

architectures in Section 4.3 and Section 4.5, respectively, originated from
[43]. Finally, the discussion of the dense-dense multiplication architecture
in Section 4.6 was derived from [111]. More details about the referenced
publications are provided in Appendix A.

4.1 KEM primitives architecture and software profiling

The proposed hardware architecture foresees separating the components that
implement the operations being carried out on the KEM client and server
nodes. The client node is tasked with performing the key generation and
decapsulation primitives, while the server one is limited to executing the
encapsulation, as previously discussed in Section 2.1, The two client and
server architectures are detailed separately in the following.

4.1.1 Client architecture

The client architecture implements the cryptographic core to support the
client-side execution of BIKE. The client architecture consists of two main
modules, key generation (KeyGen) and decapsulation (Decaps), which are
depicted in Figure 4.1a and Figure 4.1b, respectively. In order to minimize
duplicate hardware resources, the pseudorandom generator (PRNG) and the
multiplier (Mul) are shared between the KeyGen and Decaps modules
and are depicted as dashed blocks in Figure 4.1a and Figure 4.1b.

Key generation

The KeyGen module, depicted in Figure 4.1a, implements Algorithm 1.
It features a BW -bit input (trng_i) to receive a 256-bit random value
from the external true random number generator (TRNG), and outputs
the public (h) and private (H) keys using the pub_o and prv_o outputs,
respectively. Notably, the random output value σ that is part of the key
generation procedure (see Algorithm 1), is produced by the external TRNG
during the key generation procedure and output via the sig_o port.

The implementation of the key generation algorithm of BIKE requires
performing three subsequent hardware operations, namely pseudorandom
generation (PRNG), binary polynomial inversion (Inv), and binary poly-
nomial multiplication (Mul), each computed by a dedicated component.
The PRNG component is tasked with generating the private key H , that
is composed of the h0 and h1 binary polynomials. The h0 polynomial is
produced in both the sparse and dense forms, while h1 is stored only in its
sparse form. The dense-represented h0 polynomial is then inverted by the

44

4.1. KEM primitives architecture and software profiling

10
tr
ng
_i

B
W

B
W

B
W

P
R
N
G

S
H
A
K
E

se
ed
_i

do
ut
_o

B
W

so
ut
_o

B
W

10
B
W

B
W

h
0s

h
0d h
1s

In
v

op
_i

re
s_
o
B
W

B
W

B
W

B
W

M
u
l

op
d_
i

re
s_
o
B
W

op
s_
i

h
d

B
W

0
B
W

1

pr
v_
o

K
ey
G
enB
W

pu
b_
o

si
g_
o

B
W

(a) Key generation

100 1
B
W

B
W

h
1s

h
0d sd

B
W

B
W

B
W

B
W

B
W

B
W

m
'

B
W

pr
v_
i

B
W

ct
x_
i

B
W

D
ec
ap
s

B
W

ss
_o

M
u
l

op
s_
i

op
d_
i

re
s_
o

D
ec

s_
i

h1
_i

h0
_i

er
r_
o

B
W

S
H
A
-3

m
sg
_i

B
W

di
g_
o
B
W

B
W

m
''

B
W

P
R
N
G

S
H
A
K
E

se
ed
_i

do
ut
_o

0 1

B
W

B
W

K

B
W

10
B
W

20
B
W

1

0 1

B
W

si
g_
i

=

(b) Decapsulation

Figure 4.1: Top-view architecture of the key generation and decapsulation modules. The
blocks with dashed lines are shared by the two modules.

45

Chapter 4. Methodology

Inv component, and the result of the binary polynomial inversion is finally
multiplied by the sparse h1 polynomial within the Mul component, that
performs binary polynomial multiplication between a dense polynomial and
a sparse one. The output of the Mul component, i.e., the result of the binary
polynomial multiplication, corresponds to the public key h, that is output
through the pub_o BW -bit port, while the previously obtained private
key H is output through the prv_o BW -bit port.

Decapsulation

The Decaps module, shown in Figure 4.1b, implements Algorithm 3.
It features three BW -bit inputs to receive the private key H (prv_i),
σ (sig_i), and the shared secret encrypted by the server c (ctx_i), and it
outputs the shared secret K through ss_o.

The implementation of the decapsulation primitive of BIKE requires per-
forming a sequence of four hardware operations, namely binary polynomial
multiplication (Mul), QC-MDPC bit-flipping decoding (Dec), computation
of SHA-3 hash digest (SHA-3), and pseudorandom generation (PRNG),
each computed by a dedicated component. The dense syndrome s, which
is part of the ciphertext c, is first multiplied by the sparse polynomial h0

within the dense-sparse binary polynomial multiplier Mul. The resulting
product corresponds to the s′ vector, which is then fed to the bit-flipping
decoding component Dec together with the private key H to decode it and
obtain the e′ n-bit error vector. The latter is subsequently hashed by the
SHA-3 module and the resulting digest is XORed with m′, obtaining m′′.
Thereafter, if the result of the pseudorandom generation seeded by m′′ is
equal to e′, then the SHA-3 module computes the digest of {m′′, c}, i.e.,
m′′ concatenated to the ciphertext c, otherwise it hashes {σ, c} to avoid
information leakage while also raising a decapsulation error flag. In case
of a successful decoding, the resulting digest is the shared secret, which is
output by the ss_o BW -bit port.

4.1.2 Server architecture

The server architecture implements the cryptographic core to support the
server-side execution of BIKE. The architecture of the server consists of the
encapsulation module (Encaps). Although the software execution of the
encapsulation is significantly faster than the more complex key generation
and decapsulation, the web server scenario foresees a multitude of concur-
rently active connections, thus mandating for efficient hardware support also
for encapsulation.

46

4.1. KEM primitives architecture and software profiling

tr
ng
_i

B
W

P
R
N
G

S
H
A
K
E

se
ed
_i

do
ut
_o

B
W

so
ut
_o

B
W

10
B
W

B
W

e 1
d

e 0
d

e 1
s

S
H
A
-3

m
sg
_i

di
g_
o

B
W

B
W

B
W

E
n
ca
p
s

m

pu
b_
i

B
W

h
d

B
W

M
u
l

op
d_
i

op
s_
i

B
W

re
s_
o
B
W

B
W

s

10

B
W
ct
x_
o

B
W

ss
_o

B
W

10
B
W

B
W

K

B
W

B
W
B
W

m
'

10
B
W

B
W
B
W

10
B
W

20
B
W

1

Figure 4.2: Top-view architecture of the encapsulation module.

47

Chapter 4. Methodology

Encapsulation

The Encaps module, which is depicted in Figure 4.2, implements Algo-
rithm 2. It takes as inputs a 256-bit random message m and the public
key h through the BW -bit trng_i and pub_i ports, respectively, and
outputs the shared secret K, through ss_i, and the ciphertext c, i.e., the
shared secret encrypted with the public key received from the client, through
ctx_o.

The implementation of the encapsulation primitive of BIKE requires
performing a sequence of three hardware operations, namely pseudorandom
generation (PRNG), binary polynomial multiplication (Mul), and computa-
tion of the SHA-3 hash function (SHA-3), each computed by a dedicated
component. m is first expanded by the PRNG component to generate the
random error vector e = [e0|e1] with Hamming weight t, and the dense-
represented h is then multiplied by the sparse-represented e1 in the dense-
sparse binary polynomial multiplier Mul. The resulting product is then
XORed with e0, obtaining the syndrome s. m′ is computed by XORing
the message m with the SHA-3 hash digest of the error vector e, and the
concatenation of s and m′ corresponds to the ciphertext c. Finally, the
shared secret K is produced as the SHA-3 hash digest of the message m
concatenated to the ciphertext c. c is output through the ctx_o BW -bit
port, while the ss_o BW -bit port outputs the shared secret K.

4.1.3 Profiling of software performance

In order to understand on which parts of the BIKE cryptoscheme to focus the
design effort, we first evaluate how it performs when executed in software
on a range of different computing platforms. Such an analysis considers 32-
and 64-bit architectures, ARM and x86 ISAs, embedded- and desktop-class
processors, plain-C99 and AVX2-optimized software, and NIST security
level 1 and 3 instances of BIKE.

Table 4.1 details the performance profile of the software execution of
BIKE on the different computing platforms, highlighting the ratio of ex-
ecution time taken by the main operations on the client and server nodes
of the key exchange. The BIKE cryptoscheme was executed 100 times for
each considered combination of CPU, software implementation, and security
level, collecting the execution times and computing their average.

The performance profile data was collected on a 32-bit ARM Cortex-A9
CPU, on a 64-bit ARM Cortex-A53 CPU, and on a Intel Core i5-10310U
CPU. ARM Cortex-A9 is an embedded-class 32-bit processor implementing
the ARMv7-A instruction set architecture (ISA), ARM Cortex-A53 is an

48

4.1. KEM primitives architecture and software profiling

Table 4.1: Breakdown of the percentage execution times of BIKE for different security levels,
architectures, and software implementations. Legend: C client, S server node, Kg key
generation, En encapsulation, De decapsulation primitive, PRNG and H pseudorandom
generation, Inv. inversion, Mult. multiplication, Dec. decoding, Other other operations
executed in the KEM primitives, K and L SHA-3 hash function.

Target CPU, software version and NIST security level
ARM32 ARM64 Intel Intel

KEM KEM C99 [5] C99 [3] C99 [3] AVX2 [3]
node prim. Op. SL1 SL3 SL1 SL3 SL1 SL3 SL1 SL3
C Kg PRNG 0.1% 0.1% 0.8% 0.7% 0.5% 0.4% 1.0% 0.6%

Inv. 40.0% 41.9% 35.7% 36.5% 44.7% 45.7% 17.8% 16.9%
Mult. 1.6% 1.7% 1.8% 1.8% 2.2% 2.3% 0.8% 0.7%
Other 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.4% 0.1%

De Dec. 58.1% 56.2% 58.3% 58.1% 50.4% 49.8% 73.8% 77.3%
L func. 0.1% 0.1% 0.1% 0.1% 0.2% 0.1% 1.3% 0.9%
H func. 0.1% 0.1% 1.4% 1.3% 0.8% 0.7% 1.4% 1.0%
K func. 0.0% 0.0% 0.1% 0.0% 0.1% 0.1% 0.7% 0.4%
Other 0.0% 0.0% 1.6% 1.4% 1.1% 0.9% 3.0% 1.9%

S En H func. 5.8% 3.0% 39.7% 40.0% 25.1% 23.3% 32.5% 33.0%
Mult. 85.4% 90.9% 50.3% 54.5% 65.9% 71.2% 15.8% 22.7%
L func. 4.3% 2.7% 3.9% 2.6% 4.7% 3.1% 26.1% 26.1%
K func. 1.2% 0.8% 2.2% 1.4% 2.6% 1.6% 17.1% 13.6%
Other 3.3% 2.6% 3.8% 1.5% 1.7% 0.7% 8.5% 4.5%

embedded-class 64-bit processor implementing the ARMv8-A ISA, and
Intel Core i5-10310U is a desktop-class 64-bit processor implementing the
x86-64 ISA and providing support for the Intel AVX2 extension.

On the ARMv7-A platform, the execution of the reference implementa-
tion from the official BIKE NIST submission [5] resulted in a performance
profile characterized by binary polynomial inversion and BGF decoding
occupying up to 42% and 58% of the execution time on the KEM client
side, with binary polynomial multiplication taking instead up to 91% of the
execution time on the server side.

The execution of the portable additional implementation of BIKE, com-
patible with 64-bit ARM architectures and written in C99 [3], on the ARMv8-
A CPU highlighted binary polynomial inversion and BGF decoding taking
up to 37% and 58% of the execution time on the client side, with uniform
random number generation and binary polynomial multiplication taking
instead up to 40% and 55% of the execution time on the server side.

Executing the same C99 software [3] on the Intel x86-64 processor saw
client-side execution time being almost equally distributed between inversion
and decoding, taking up to 46% and 50%, respectively, while the server-side

49

Chapter 4. Methodology

execution is more unbalanced with multiplication taking up to 71% and
PRNG taking up to 25%. Overall, the results are quite similar to ARMv8-A
software execution, due to not using any Intel-specific optimization.

On the contrary, the execution of the AVX2-optimized software [3] on
the same Intel CPU produced quite different results. On the client side,
the decoding procedure takes a larger portion of the execution time, up
to 77%, while inversion only takes up to 18%. On the server side, the
execution time is distributed between SHA3-384 computation, PRNG, and
multiplication, taking up to 43%, 33%, and 23%, respectively. Notably,
AVX2 instructions provide the higher speedup to the operations in binary
polynomial arithmetic, namely multiplications and inversions, where the
latter is computed as iterated multiplications and exponentiations. Binary
polynomial multiplications and inversions end up therefore taking smaller
shares of the KEM execution time.

Overall, the obtained results support the decision to focus the design effort
for the proposed FPGA-based hardware architecture on the optimization
of the QC-MDPC bit-flipping decoding, binary polynomial inversion, and
binary polynomial multiplication operations. The architecture of each of
these components is described in detail in the following sections.

4.2 QC-MDPC bit-flipping decoding architecture

The decoding architecture implements the QC-MDPC bit-flipping algorithm
detailed in Algorithm 6. This section overviews the decoding component
introduced in [110] discussing its parametric architecture and outlining the
time and space complexity as functions of both the architecture and code
parameters.

Figure 4.3 shows the architectural top level view of the proposed de-
coder (BF-decoder). The BF-decoder takes the syndrome (s) and the
parity-check matrix (H) in input, and it outputs the error vector (e) and the
boolean flag (fail) to signal any failure in the decoding procedure.

From the computational viewpoint, the BF-decoder is made of two stages
to calculate the UPCs (calcUpc) and the syndrome bit-flips (calcBf).
We note that the decoding architecture is optimized by leveraging the sparse-
ness and quasi-cyclic properties of QC-MDPC codes. Indeed, only the
positions of the v ones of the first row of each Hi block are stored, since
each Hi block is both a sparse and a circulant matrix.

The calcUpc stage takes the syndrome and the blocks of the H matrix
in input and it outputs the UPCs and the weight of the syndrome. At the
beginning of a new decoding, i.e., when the isNewDec signal of MUX1

50

4.2. QC-MDPC bit-flipping decoding architecture

c
a
lc
U
p
c

U
P

C
i =

 s
 .

 H
*,

i

c
a
lc
B
f

s
B

f=
⊕

i(
e
B

f i
 .

 H
*,

iT
)

[H
0
,

..
.,

 H
n

0
-1

]

U
P

C
>

T
h

r
?

1
 :

 0

u
p
c
2
b
f

H
H

0

0 1M
U

X
1

|U
P
C

|
x
 B

W
B

W

s

B
W

s
W

e
ig

h
t

B
W

lo
g

2
(|

s
|)

fa
il

e

H
n

0
-1

..
.

e
 =

 e
 ⊕

 [
0
,.

..
,0

,e
B

f i
,0

..
,0

]

s
 =

 s
 ⊕

 s
B

f

B
F
-d
e
c
o
d
e
r

is
N

e
w

D
e
c

B
W

B
W

H

B
W

(x
>

0
)?

0
:1

Figure 4.3: Top-level view of the proposed bit-flipping decoding architecture.

51

Chapter 4. Methodology

is equal to 1, the initial syndrome is received from the primary inputs.
In contrast, for each subsequent iteration of the decoding algorithm, the
syndrome is updated with the syndrome bit-flip vector generated by the
calcBf stage. At the start of each iteration, the weight of the syndrome is
computed by the sWeight module, and its value is used by the upc2bf
module. The calcUpcmodule sequentially computes the UPCs for each Hi

block of the H matrix. Once the UPCs from the Hi block, i.e., UPCi, have
been computed, they are passed to the upc2bf module with a bandwidth
equal to BW times the size in bits of the maximum UPC value (which is v).
The upc2bf module filters the incoming UPCs by comparing them with
the UPC threshold to produce, as a result, the error bit-flip vector (eBfi).
We note that the eBfi vector is fed to the calcBf stage to i) compute the
syndrome bit-flips, and to ii) update the error vector.

Within each iteration of the bit-flipping algorithm, the calcBf stage
updates both the syndrome bit-flips and the error vector starting from any
incoming error bit-flip vector (eBfi). In particular, the chain made of the
calcUpc and the upc2bf modules produces a set of n0 eBfi vectors,
where each of them corresponds to a specific Hi block of the parity-check
matrix. To this end, the calcBf stage receives n0 eBfi vectors, i.e., one
for each Hi block in the H matrix, to compute the fully updated syndrome
bit-flip vector (sBf), as well as the update of the error vector.

We note that the error vector e is made by n0 blocks of size 1× p, thus
each error bit-flip vector (eBfi) updates a portion of the error vector (see the
e = e⊕ [0, ...,0, eBfi,0, ...,0] update equation in Figure 4.3). In contrast,
sBf is a 1× p row-vector obtained by performing the bitwise XOR of all
the received eBfi row-vectors (see sBf = ⊕i(eBfi ·H∗, iT) equation in
Figure 4.3). At the end of each iteration of the decoding procedure, i.e.,
lines 4− 8 in Algorithm 6, the bitwise XOR between the current syndrome
and the syndrome bit-flip vector is performed in the next iteration (see line
9). From the architectural viewpoint, the syndrome update is performed by
the calcBf module (see the s = s⊕ sBf equation in Figure 4.3).

4.2.1 Dual-memory computing architecture

Apart from the configurable bandwidth (BW) that is used to trade the
performance with the resource utilization, the proposed decoder implements
a dual-memory architecture to perform the efficient and scalable computation
of the two most time-consuming operations in the bit-flipping decoding
procedure, i.e., the UPC computation (UPCi = s ·Hi) and the generation
of the syndrome bit-flip vector (sBfi = eBfi ·HT

i).

52

4.2. QC-MDPC bit-flipping decoding architecture

A
A

A
B

B
B

B
B

P
of

fs
et

B
W

-T
of

fs
et

T
of

fs
et

B
W

vO
p

0 1 2

N
-1

N
-2

A
lig
n
B
u
f

B
W

A
A

A
B

B
B

B
B

M
re
s

|E
le

m
| *

 B
W

0 1 2

N
-1

N
-23

d
u
al
M
em

Z
Z

Z
Z

Z
A

A
A

C
o
n
ca
t

O
p
er
at
o
r

V
V

V
V

V
V

T

fo
r

i i
n

[0
,..

,N
-1

]

|E
le

m
| *

 B
W

0

is
R

st
M

re
s

B
W

v

T
1

T
2

T
3

T
4

T
5

M
v

ac
c

ca
lc

Figure 4.4: Detailed view of the proposed dual-memory architecture.

53

Chapter 4. Methodology

This section discusses the proposed dual-memory architecture that is
meant to perform the efficient vector-matrix multiplication between a vector
v and a sparse circulant matrix A. We demonstrate that the use of such an
architecture allows to adopt an efficient divide-and-conquer approach in the
computation, thus delivering an additional knob to trade the performance
with the resource utilization.

Figure 4.4 shows the dualMem dual-memory architecture as made of
three stages, i.e., vOp, calc, and acc. The operand (vOp) and accumula-
tor (acc) stages implement two memory elements to store the vector v and
the partial result vector, respectively. In contrast, the compute stage (calc)
performs the actual vector-matrix computation starting from the inputs from
both the accumulator and the operand stages. The dual-memory architecture
receives two inputs, i.e., the vector v and the position of the ones in the A ma-
trix, and outputs the vector resulting from the vector-matrix multiplication.
The v vector is actually a primary input of the dual-memory module and it
is stored in the memory of the operand stage (Mv). In contrast, the circulant
matrix A is never stored nor received as input in its dense representation.

We note that the computational efficiency of the proposed dual-memory
architecture sits on the possibility of substituting the time-consuming vector-
matrix multiplication with a set of fast shift-rotate additions due to the fact
that the A matrix, i.e., the Hi blocks of the H matrix in QC-MDPC codes, is
both circulant and sparse. In particular, it is sufficient to store the positions
of the ones in the first column of A.

To this end, each T value in input to the dual-memory module represents
the position of a one in the first column of the A matrix. For each T
value, the dual-memory module performs a shift-rotate of the v vector by
T positions before adding the result to the accumulator by means of the
compute stage (calc). We note that the generic ◦ operation performed by the
compute stage calc, can be specialized depending on the actually required
operation.

For example, Equation 4.1 shows the vector-matrix multiplication be-
tween a 4-bit row-vector (b) and a 4× 4, binary, circulant matrix (C).

r = b · C =

=
[
b0 b1 b2 b3

]
·

0 1 1 0

0 0 1 1

1 0 0 1

1 1 0 0

 =

=
[
b2 + b3 b0 + b3 b0 + b1 b1 + b2

]
(4.1)

54

4.2. QC-MDPC bit-flipping decoding architecture

In particular, the sparse representation of the C matrix, i.e., Csp, that
is made of the positions of the 1s in its leftmost column, is defined in
Equation 4.2.

Csp =
[
2 3

]
(4.2)

To this end, the vector-matrix multiplication between b and Csp can be
computed as the sum of the dense vector shift-rotated to the left by amounts
equal to the elements of Csp. This is shown in Equation 4.3, where b is
the dense vector and the sparse-represented positions of the 1s in C are
identified as Csp

i . The x <<< y notation specifies a left shift-rotate of
vector x by y positions.

r = b · C =
v−1∑
i=0

(b <<< Csp
i) =

= (b <<< 2) + (b <<< 3) =

=
[
b2 b3 b0 b1

]
+
[
b3 b0 b1 b2

]
=

=
[
b2 + b3 b3 + b0 b0 + b1 b1 + b2

]
(4.3)

From the computational viewpoint, the dual-memory module updates
the accumulator’s memory with a sequence of five steps for each T value
in input. At time T1 a new T position is received by the vOp module that
performs the readout from the Mv memory. We note that the T position
can be misaligned with respect to the BW -bit size of each line in the Mv

memory, thus the AlignBuf in the vOp module is used to store the trail
of the first readout line at time T2, e.g., AAA in Figure 4.4. After the first
clock cycle used to align the reads from the Mv memory, the vOp module
produces BW bits of data for the successive sets of clock cycles required to
completely readout the v vector. Each line produced by the vOp module is
obtained by concatenating the content of the AlignBuf with the initial part
of the next readout line from Mv. In particular, each readout line from Mv

has the first part used to compose the BW-bit output, while the remaining
part is stored in the AlignBuf buffer to be concatenated in the next clock
cycle. Considering the scenario depicted in Figure 4.4, the vOp module
outputs the first BW bits, i.e., AAABBBBB, at time T3. At the same time,
the Mres memory is completely read starting from line 0. In particular, the
content of each line q of Mres is combined with the output from the vOp
module at time T4, before being stored at the same q-th line of Mres at time
T5.

55

Chapter 4. Methodology

parDualMem

dualMem0

dualMemP-1

BW
v

|Elem| * BW

T0

Ta-1

T(p-1)*a-1

Tp*a-1

Asp=

op

Figure 4.5: Detailed view of the proposed parallel dual-memory architecture.

Divide-and-conquer approach

Figure 4.5 shows the parallel architecture (parDualMem) as composed of
a parametric number of dual-memory modules that are combined to perform
the vector-matrix multiplication efficiently. The parDualMem module
takes the vector v and the sparse representation of the binary circulant
matrix A (Asp) in input and produces the vector-matrix product in output.
Depending on the actual operator implemented in place of the generic ◦ one,
the size of each element of the output can vary. To this end, the bandwidth
of the parDualMem module allows to output BW elements of the result at
once, while |Elem| identifies the size of the generic element of the result
vector.

Starting from the sparse representation of the binary circulant matrix
A, each dual-memory module receives a subset of positions and, for each
of them, it accumulates the shift-rotate of the v vector. The final result is
obtained by combining the outputs from all the implemented dual-memory
modules operated by the op computing block (see Figure 4.5). We note
that the parDualMem architecture allows a design-time configurable par-
allelism ranging from 1 to the number of ones in the first column of the A
matrix.

Parallel architecture

Within the proposed decoder, the parDualMem architecture is employed
to efficiently perform the UPC computation in the calcUpc module (see
UPCi = s ·Hi in Figure 4.3) and the generation of the syndrome bit-flip
vectors in the calcBf module (see sBfi = eBfi · HT

i in Figure 4.3).
In particular, the UPC computation, i.e., upci = s · Hi, corresponds to a

56

4.2. QC-MDPC bit-flipping decoding architecture

vector-matrix multiplication in the integer domain. Thus, the configurable
calc stage in the dualMem module is customized to perform the integer
addition. Differently, the syndrome bit-flip computation, i.e., sbfi = ebfi ⊙HT

i ,
corresponds to a vector-matrix multiplication computed in the binary domain,
or equivalently, since circulant matrices are isomorphic to polynomials
modulo xp − 1, to a binary polynomial (or carry-less) multiplication. To this
end, the configurable calc stage in the dualMem module is customized to
implement the bitwise XOR operator.

Notably, each instance of the parDualMem module allows to indepen-
dently configure the level of parallelism between 1 and v, i.e., the number
of ones in each column of the parity-check matrix, thus providing a flexible
decoding architecture that can exploit different performance-area trade-offs.

4.2.2 Complexity analysis

This section discusses the complexity analysis of the proposed bit-flipping
decoding architecture in terms of both time and space. The goal is to
highlight the architectural optimizations that allow to implement a family
of decoders for large QC-MDPC codes across a wide range of resource-
performance trade-offs.

Time complexity

Equation (4.4) is a 6-parameter equation that defines the time required
to perform a complete decoding procedure (Tdec), expressed in terms of
number of clock cycles. The parameter itermax represents the maximum
number of decoding iterations, p is the number of syndrome bits, n0 is the
number of circulant blocks that compose the parity-check matrix H, v is
the weight of each column of the H matrix, BW is the bandwidth of the
decoder datapath in bits, and ParDec is the parallelism in the UPC and
syndrome bit-flips computation. Note that we do not have control over the
itermax, n0, p and v parameters, since they are parameters of the QC-MDPC
code. In contrast, the purpose of the proposed architecture is to provide an
efficient and scalable hardware decoder to support the implementation of
any QC-MDPC code-based cryptosystem.

Tdec = itermax · (n0 + 1) ·
⌈ p

BW

⌉
·
⌈

v

ParDec

⌉
(4.4)

More in detail, itermax is a parameter of the decoding algorithm, p, n0, and
v are parameters of the considered QC-MDPC code, while BW and par are
configurable parameters of the proposed decoding architecture that can be

57

Chapter 4. Methodology

Table 4.2: Temporal evolution of the pipelined execution of one iteration of the decoding
procedure, when the parity-check matrix H is composed of three blocks (n0 = 3).

Time epoch 1 2 3 4
H0 calcUpc calcBf
H1 calcUpc calcBf
H2 calcUpc calcBf

tuned to explore different resource-performance trade-offs.
Equation (4.4) is the product of four terms. Once the parameters of the code,
i.e., p, no, and v, are set, the first term, i.e., itermax, defines the maximum
number of iterations in the bit-flipping decoding procedure to achieve the
required Decoding Failure Rate (DFR). The second term, i.e., (n0 + 1),
accounts for the calcUpc and calcBf operations across the entire set of
blocks in the H matrix. In particular, the decoding architecture is optimized
to perform such processing in a pipelined fashion by leveraging two compu-
tational aspects. First, the computation on each block of H is independent
from all the others. Second, for each block of H, the computations within the
calcUpc and calcBf can be performed independently. Table 4.2 shows
the pipelined execution of the decoder to perform a single iteration when the
underlying code features a parity-check matrix H made of three circulant
blocks, i.e., the n0 code parameter is equal to 3. Time is expressed in time
epochs, i.e., 1, 2, 3 and 4, where the duration of each epoch depends on the
computational time required by the slowest of the calcUpc and calcBf
stages. The pipelined execution allows to reduce the computational time
from 2 ·n0, if the calcUpc and calcBf stages were completely serialized,
to (n0 + 1).

To optimize the performance of the pipelined architecture, the ParDec

and BW parameters are set to the same values for both stages. The stages
are thus balanced, i.e, they have the same execution time. The third term, i.e.,
⌈ p
BW

⌉, represents the number of memory lines to be read and written for each
1 position in the H matrix. As shown by Equation (4.4), the computational
time decreases when the bandwidth BW increases. Last, the fourth term,
i.e., ⌈ v

ParDec
⌉, accounts for the parallel computation of the ones of the H

matrix. Indeed, for each block in the H matrix, our decoding architecture
allows to configure how many 1 positions of H are processed in parallel in
the calcUpc and calcBf stages.

58

4.2. QC-MDPC bit-flipping decoding architecture

Space complexity

Equation (4.5) defines the memory requirement (Mdec) of the proposed
bit-flipping decoding architecture, expressed as the cumulative memory
required by the calcUpc and calcBf stages, i.e., McalcUpc and McalcBf ,
respectively. The memory requirement is provided in terms of number of
BRAM memories, that are the de-facto storage memory in the FPGA. We
note that the flip-flops, that represent the other type of memory resource
in FPGAs, are not accounted for in the rest of the analysis for two reasons.
First, their storage capacity is only a tiny fraction of the capacity offered
by BRAM memories. Second, flip-flops are usually employed to store
partial, i.e., temporary, results within a computational stage, thus minimally
affecting the memory space requirements.

Mdec = McalcUpc +McalcBf =

=
(
MH + ParDec · (Ms +Mupc)

)
+

+
(
MH + ParDec · (M bf

e +M bf
s) +Me

)
(4.5)

According to Equation (4.5), the calcUpc stage requires to store the H
matrix (MH) the syndrome (Ms), and the computed UPCs (Mupc). We note
that the term (Ms + Mupc) defines the memory requirement of a single
dual-memory component within the calcUpc stage. In particular, the
architectural parameter ParDec is the multiplier to the cumulative memory
requirement, that accounts for the possibility of implementing a parallel set
of dual-memory blocks to compute the UPCs in the calcUpc stage.

In a similar manner, the calcBf stage requires to store the H matrix
(MH), the error bit-flips (M bf

e), the syndrome bit-flips (M bf
s) and the error

vector (Me). In particular, the term (M bf
e + M bf

s) defines the memory
requirement of a single dual-memory component within the calcBf stage.
As for the calcUpc stage, the architectural parameter ParDec represents
the multiplier to the cumulative memory requirement, that accounts for the
possibility of implementing a parallel set of dual-memory blocks to compute
the bit-flips in the calcBf stage.

Given the bandwidth (BWBRAM) and the size in bits (SBRAM) of a single
FPGA BRAM memory, Equations (4.6)- (4.9) define the detailed memory
requirements to store each of these matrices and vectors. In particular,
Equation (4.6) defines the number of BRAM memories required to store the
syndrome (Ms), error bit-flips (M bf

e) and syndrome bit-flips (M bf
s) vectors.

59

Chapter 4. Methodology

We note that all of them share the same size of p bits.

Ms = M bf
e = M bf

s =

⌈
p

SBRAM

⌉
·
⌈

BW

BWBRAM

⌉
(4.6)

In a similar manner, Equation (4.7) defines the number of BRAM memories
necessary to store the error vector (Me).

Me = n0 ·
⌈

p

SBRAM

⌉
·
⌈

BW

BWBRAM

⌉
(4.7)

Last, the number of BRAMs required to store the UPCs (Mupc) and the
positions of the ones in the H matrix (MH) are defined by Equation (4.8)
and Equation (4.9), respectively.

Mupc =

⌈
p · log(v)
SBRAM

⌉
·
⌈

BW

BWBRAM

⌉
(4.8)

MH = n0 ·
⌈
v · log(p)
SBRAM

⌉
·
⌈

BW

BWBRAM

⌉
(4.9)

We note that the term ⌈ BW
BWBRAM

⌉ is common to Equations (4.6)- (4.9),
and it defines the integer number of BRAM memories as a function of
the bandwidth parameter (BW). In particular, a BW value exceeding the
available BRAM bandwidth imposes an integer increase in the number of
BRAMs, regardless of the actual occupation in bits of the stored element.
Given the code parameters, the space complexity highlights that the actual
memory requirement to implement the decoder is a function of the two
configurable architectural parameters, i.e., ParDec and BW , that allow to
regulate the resource-performance trade-off.

Considering Equation (4.6) and Equation (4.7), the term ⌈ p
BRAMsize

⌉
defines the number of BRAM elements as a function of the size of p with
respect to the storage capacity of a single BRAM, i.e., BRAMsize. The
additional n0 multiplier in Equation (4.7) highlights that the size of the error
vector is n0 times bigger than the syndrome. Considering Equation (4.8),
the term p · log(v) accounts for the need to store p UPCs, each of which
is the sum of v syndrome bits. In a similar manner, the term v · log(p) in
Equation (4.9) accounts for the need to store the v positions of the ones for
a block of the H matrix, where each of the v positions requires log(p) bits.

4.2.3 Modifications to implement Black-Gray-Flip decoding

The QC-MDPC bit-flipping decoding architecture detailed in the previous
parts was the subject of few minor modifications in order to implement

60

4.3. Inversion architecture

the Black-Gray-Flip (BGF) decoding algorithm, which is employed in the
BIKE cryptoscheme. The adoption of BGF decoding makes therefore our
decoding hardware implementation fully compliant with the latest official
NIST-submitted specification of BIKE [6].

As detailed in the theoretical background discussion in Section 2.5.4, few
changes must be applied to the generic QC-MDPC bit-flipping decoding
architecture. The logic for the bit-flipping iterations remains the same as
in the baseline algorithm, except for simple comparisons between the UPC
values and two threshold values in the first decoding iteration, which allow
obtaining the black and gray bitmasks. Such comparison components are
already part of the original baseline architecture. The main addition to the
updated BGF-compliant architecture consists in two n-bit BRAM memories
to store the black and gray bitmasks, which are then used in two separate
decoding iterations, i.e., the second and the third ones, by XORing them
with the error bits corresponding to UPC values greater than or equal to a
fixed threshold, which is equal to half the Hamming weight of a circulant
block of the H matrix.

Overall, the aforementioned architectural changes do not significantly
modify the previously detailed time and space complexity analysis. The
execution time can be computed according to the same formula, accounting
for the addition of the two black and gray decoding iterations within the
itermax parameter, while the memory occupation must account only for
additional memories storing the black and gray bitmasks, which correspond
to a total of four p-bit memories.

4.3 Inversion architecture

The binary polynomial inversion architecture implements the inversion pro-
cedure, based on Fermat’s inversion algorithm, detailed in Algorithm 4.
Such procedure consists of the iterated computation of binary polynomial
multiplications and exponentiations, which are performed by dedicated com-
ponents whose architecture is detailed later in Section 4.4 and Section 4.5,
respectively.

This section overviews the binary polynomial inversion component in-
troduced in [43] discussing its architectural and algorithmic aspects and the
optimized scheduling of the hardware operations that enables an efficient use
of the multiplication and exponentiation subcomponents. Finally, it outlines
the time and space complexity of the proposed inversion architecture as
functions of both the architecture and code parameters.

61

Chapter 4. Methodology

Ri
0

11
0

+1

0

1

0

1-1

f

t

c

Exp

Mul

0

1

0

1

Mc0

1

Mb

BW
BW

BW BW

BW

BW

Iter

DataMem

Muxx.sel

we

we

Muxy.sel

a(x)

d

Compute

d(x)

i

Inv

BW

doInv

FSM

Muxz.sel
Muxb.sel
Muxc.sel
Muxf.sel

Muxb

Muxc

Ri.weMuxx

Muxy

Muxz

Muxf

Mb.we
we Mc.we

(a) Inversion architecture

x

Mux.sel

1

FSM output control signals

y z b c f b c

M/R.we

1 1 1 1

1

0

0

1

1

10

0

01 1

0

0 0

00

0

0 0

0

0 0

0

i

1

1 0 0

000

0

0

0

0

0

0

0 00___

_ ____ _

__

_

_ _ _

__ __

(b) FSM control signals associated to the inversion algorithm

Figure 4.6: Top-view architecture of the inversion module, composed of the computational
datapath and of the finite state machine that drives the control signals according to the
execution of the inversion algorithm (Algorithm 4).

62

4.3. Inversion architecture

4.3.1 Architectural view

The architecture of the proposed inversion module (Inv) is shown in Fig-
ure 4.6a. The module takes as inputs the binary polynomial a(x) to invert
and the control signal doInv that starts the computation, and outputs the
binary polynomial d(x) that is the multiplicative inverse of a(x). The pro-
posed architecture, and in particular its FSM logic, is built upon the inversion
algorithm described in Algorithm 4, as shown in Figure 4.6b.

The Invmodule consists of four submodules, i.e., Compute, DataMem,
Iter, and FSM. The computational unit (Compute) implements the opti-
mized architectures to perform the binary polynomial exponentiation (Exp)
and multiplication (Mul). The memory module (DataMem) is meant to
efficiently store the input polynomial as well as the intermediate results of
the computation. The iteration module (Iter) produces the values of the
iterator i according to the implemented inversion algorithm (see Figure 4.6b).
Finally, the finite state machine controller (FSM) generates the control sig-
nals that drive the multiplexers of the datapath and the write enable signals
of the registers and memories, depending on the values of the iterator i, the
code parameter p, and the doInv input.

4.3.2 Algorithmic view

The proposed architecture is built upon the inversion procedure described in
Algorithm 4.6b.

The input phase starts when the doInv input signal is set to 1, storing
the binary polynomial a(x) received as an input to the Inv module in the
two memories of the DataMem submodule, i.e., Mb(x) and Mc(x). Such
hardware phase corresponds to the execution of the lines 2-3 in Figure 4.6b.

At the end of the input phase, the Inv module starts computing the
polynomial inverse by iteratively executing the hardware operations corre-
sponding to the instructions at lines 4-11 in Figure 4.6b. The FSM selectively
asserts the selectors of the multiplexers and the write-enable, i.e., we, con-
trol signals to ensure the correct execution of the inversion procedure. By
observing that the value of p is a fixed parameter of the cryptosystem, we
note that the FSM only requires the value of the i counter at each iteration
to correctly generate the values of the control signals, thus mimicking the
execution of the control instructions, i.e., the for loop and the if conditional
statement at lines 4 and 7 of the inversion algorithm. Figure 4.6b highlights
the values of the control signals within the proposed architecture during
the hardware execution of the inversion algorithm, where the "−" symbol
identifies don’t care values.

63

Chapter 4. Methodology

I2
I3
I5,1
I6,1
I8,1
I9,1

I5,3
I6,3
I8,3
I9,3

I5,2
I6,2

(p-2)2= 1 ... 0 1 0 1 1 2

I2
I3
I5,1
I6,1 I8,1

I9,1

I5,3
I6,3 I8,3

I9,3

I5,2

I6,2

Sequential execution Parallel executionTime

1

2

3

4

5

6

7

8

9

10

11

12

13

I5,4

I6,4

I6,4

I5,4
14

15 ...

...

...

... ...

Figure 4.7: Temporal evolution of the sequential and optimized executions of the inversion
algorithm for (p− 2) = 45910 = 1110010112. Ix(,y) represents the x-th instruction of
the inversion algorithm at the y-th iteration, where x ∈ {1 . . . 14} and y ∈ {1 . . . 4}.

Once all the iterations have been executed, the FSM forces the final
squaring of the c(x) polynomial (see line 12) and subsequently outputs the
obtained result d(x) = a(x)−1 (see line 13).

4.3.3 Optimized hardware scheduling

The proposed inversion architecture is designed to schedule the exponentia-
tions and multiplications to always use the Exp and Mul modules concur-
rently whenever possible, thus maximizing performance without duplicating
the instances of the computational resources. Starting from the analysis of
the inversion algorithm in Figure 4.6b, we identified two pairs of instructions
for which the computation can be optimized by means of a concurrent execu-
tion, since each pair of instructions shows no data dependence. Considering
the i-th iteration of the inversion algorithm (see lines 4-11 Figure 4.6b), the
multiplication and the exponentiation instructions at line 6 and 8, respec-
tively, can be concurrently executed on two separate functional units. In a

64

4.3. Inversion architecture

similar manner, the instructions at line 9 of the i-th iteration and at line 5 of
the (i+ 1)-th iteration can also be computed at the same time. We note that
the concurrent execution of the two pairs of instructions is constrained to the
validity of the condition at line 7 of the inversion procedure in Figure 4.6b,
i.e., (p− 2)2[i] == 1.

To demonstrate the effectiveness of the implemented hardware schedul-
ing, Figure 4.7 shows an example of the execution of the first four iterations
of the inversion algorithm, i.e., i ∈ {1, 2, 3, 4}, considering (p − 2) =
45910 = 1110010112. To better highlight the execution speedup due to the
proposed optimized hardware scheduling, Figure 4.7 unrolls the considered
for loop iterations. In particular, Ix(,y) identifies the instruction at line x
of the inversion procedure that is executed during the y-th iteration of the
for loop. The execution of the inversion algorithm takes advantage of the
optimized hardware scheduling for each i-th iteration of the for loop such
that (p− 2)[i] is equal to 1, since the validity of the condition at line 7 (see
Figure 4.6b) allows the concurrent execution of the two identified pairs
of multiplication-exponentiation instructions. Considering the example in
Figure 4.7, the optimized hardware scheduling and the non-optimized se-
quential scheduling execute the four considered iterations in 10 and 14 time
units, respectively.

The performance speedup of the proposed hardware scheduling is due
to the concurrent executions at iterations 1, i.e., I6,1-I8,1 and I9,1-I5,2, and
3, i.e., I6,3-I8,3 and I9,3-I5,4, respectively (see timesteps 4, 5, 8, and 9 in
Figure 4.7).

It is important to note that the actual performance speedup due to the
optimized hardware scheduling is a function of the number of ones in the
binary encoding of (p−2) (see line 7 in Figure 4.6b), where p is a parameter
of the cryptosystem. However, the selection of the value of p is subject
to a set of contrasting requirements to balance the decode failure rate, the
performance, and the security of the cryptosystem, thus preventing a choice
of its value that only favors the performance of inversion as also highlighted
in [6, 12].

4.3.4 Complexity analysis

This section discusses the time and space complexity of the proposed inver-
sion architecture, highlighting the design choices that allow its implementa-
tion across a wide range of resource-performance trade-offs.

65

Chapter 4. Methodology

Time complexity

The time complexity of the inversion procedure (Tinv) can be expressed
as a function of only the polynomial length p and the execution times of
the exponentiation (Texp) and multiplication (Tmul). Without considering
the proposed scheduling optimization, the inversion procedure requires one
exponentiation and one multiplication at each iteration of the for loop, and,
in addition, one more exponentiation and one more multiplication at each
i-th iteration corresponding to an i-th bit of (p− 2) that is equal to 1. The
number of executed iterations is equal to ⌈log2(p− 2)− 1⌉. In addition, one
final exponentiation at the power of 2 is performed.

The proposed scheduling optimization reduces the number of operations
that are required in the i-th iterations for which (p− 2)2[i] is equal to 1. In
such case, an iteration requires two times the execution time of the operation
taking the longest between exponentiation and multiplication, instead of
the execution time of two exponentiation and two multiplications. The
resulting time complexity can therefore be expressed in clock cycles as in
Equation 4.10.

Tinv = ((2 · (hw(p− 2)− 1))− 1) ·max{Texp, Tmul}
+ (zeros(p− 2) + 1) · (Texp + Tmul)

+ Texp

(4.10)

Notably, hw(p − 2) corresponds to the number of bits of (p − 2) set to
1, while zeros(p − 2) corresponds to the number of zeros of the binary
representation of (p− 2), that is equal to (⌈log2(p− 2)⌉ − hw(p− 2)).

Space complexity

The area occupied by the binary polynomial inversion architecture can be
expressed as the sum of the resources employed by the Mul and Exp com-
ponents, plus two memories storing the p-bit binary polynomials b(x) and
c(x) that are employed throughout the inversion procedure. Equation (4.11)
defines the number of BRAMs of the inversion module (Minv).

Minv = Mexp +Mmul + 2 ·
⌈

p

SBRAM

⌉
·
⌈

BW

BWBRAM

⌉
(4.11)

It has four parameters. Other than p and BW , SBRAM represents the size
of a BRAM, that may be either 16Kb or 32Kb in Artix-7 FPGAs, while
BWBRAM represents the data bandwidth of a BRAM, that may be either 32
bits for 16Kb memories or 64 bits for 32Kb memories.

66

4.4. Dense-dense multiplication architecture

MultIter 1st

BWext

R

BWextBWext

BA

BW

BW

BW

Comba

MultIter ith

MultIter (i+1)th

...

MultiplierTop BA

R

...

Figure 4.8: Top view of the dense-dense binary polynomial multiplication achitecture.

Equation (4.11) is the sum of three terms. Mexp and Mmul refer to the
space complexity of the exponentiation and multiplication modules, while
the third term corresponds to the two p-bit memories that store temporary
variables employed by the inversion algorithm.

The first factor of the latter, i.e., 2, represents the number of p-bit mem-
ories. The second factor ⌈ p

SBRAM
⌉ accounts for the number of BRAM

memories required to store a p-bit polynomial. The third factor ⌈ BW
BWBRAM

⌉
accounts for the number of BRAM memories necessary to provide the
required BW data bandwidth.

The complexity of the exponentiation and multiplication components are
instead discussed in detail in the following of this chapter, respectively in
Section 4.5.3 and Section 4.4.3.

4.4 Dense-dense multiplication architecture

The binary polynomial multiplication architecture introduced in [111] com-
bines, in a recursive fashion, the usage of the Karatsuba, Comba, and
schoolbook multiplication algorithms discussed in Section 2.4.2. Figure 4.8
depicts the architectural top view of the proposed MultiplierTop multi-

67

Chapter 4. Methodology

plier component, which receives as inputs two binary polynomial operands
A and B and outputs their product R. Both the operands and the result
of their multiplication are represented in a dense way, i.e., as p-bit strings
corresponding to GF (2m) polynomials, thus the multiplication operation is
also referred to as dense-dense multiplication.

To ease the integration of the proposed component in real designs, the
input and output interfaces offer a configurable bandwidth, BWext, as well
as input and output memory layers to store the inputs and the produced
output, respectively. Such design completely decouples the bandwidth of
the internal multiplier datapath (BW) from the available external bandwidth
(BWext). In particular, the former has no externally imposed constraints,
while the latter can be constrained by the pin count or the data channel width
of the system-on-chip that integrates the multiplier. The input and output
memory layers are crucial components to operate on large polynomials,
since no physical interface can accommodate a datapath width of dozens of
thousands of bits.

The architecture of the MultiplierTopmodule allows to implement a
configurable number of iterations of the Karatsuba algorithm, as depicted by
the nested MultIter blocks in Figure 4.8, thus aggressively reducing the
number of required partial products. At the end of the recursive application
of the Karatsuba algorithm, the Comba multiplication algorithm performs
the actual computation of the partial products (see Comba in Figure 4.8).
We note that the use of the Comba multiplication algorithm at the end of
the Karatsuba iterations allows to optimally schedule the computation of
each partial product, also considering that the size of the operands after the
recursive application of the Karatsuba iterations is still too large to fit into
the combinational BW × BW multiplier, which performs the carry-less
multiplication between two BW-bit digits.

The rest of this section is organized in three parts. Section 4.4.1 details
the architecture that allows recursively applying the Karatsuba algorithm for
a predefined number of times. Such a structure is meant to minimize the
number of required partial products and maximize the parallelism level to
compute the remaining partial products. Section 4.4.2 discusses the archi-
tecture to actually compute the partial products. Depending on the required
performance-resources trade-off, such configurable computing architecture
can implement either a single Comba multiplier, which computes the partial
products in a serial way, i.e., one at a time, or a set of parallel Comba mul-
tipliers, which compute multiple partial products simultaneously. Finally,
Section 4.4.3 discusses the time and space complexity of the multiplication
component as functions of both the architecture and code parameters.

68

4.4. Dense-dense multiplication architecture

0
1

S

B
W

B
W

B
W

0
1

S

0
1

S

0

S
1

F
S

M
cm

d
S

ig
n

al
s

A
S

A
1

A
0

B
S

B
1

B
0

0
1

0
1

0
1

0
1

2
3

B
W

R

0
1

0
1 P

1 1
P

1 0
P

S
1

P
S

0
P

0 1

P
0 0

B
0

A
0

B

1
A

1 B
W

B
W

B
W

M
u

lt
It

er
 ith

B
W

B
W

B
W

B
W

B
W

B
W

C
om

b
a

O
u

tp
u

t
in

te
rf

ac
e

C
om

p
u

te
st

ag
e

In
p

u
t

in
te

rf
ac

e

M
u

lt
It

er
(i

+
1)

th

B
W

A

B
W

B

(a) Serial architecture of nested ith and (i+ 1)th Karatsuba iterations

A
S

A
1

A
0

B
S

B
1

B
0

O
u

tp
u

t
in

te
rf

ac
e

C
om

p
u

te
st

ag
e

In
p

u
t

in
te

rf
ac

e

0
1

0
1

0
1

0
1

2
3

B
W

R

0
1

0
1 P

1 1
P

1 0
P

S
1

P
S

0
P

0 1

P
0 0

B
W

B
W

B
W

B
W

B
W

B
W

B
W

B
W

B
W

M
u

lt
It

er
 ith

B
W

A

B
W

B

B
0

A
0

B

1
A

1

C
om

b
a

M
u

lt
It

er
(i

+
1)

th
C

om
b

a

M
u

lt
It

er
(i

+
1)

th
C

om
b

a

M
u

lt
It

er
(i

+
1)

th

(b) Parallel architecture of nested ith and (i+ 1)th Karatsuba iterations

Figure 4.9: Architecture of the proposed Karatsuba multiplier, implementing a config-
urable number of nested Karatsuba algorithm iterations. Ai, Bi and Pjk are BW -bit
bandwidth memories.

69

Chapter 4. Methodology

4.4.1 Karatsuba multiplier architecture

The proposed architecture is based on a hybrid approach which leverages the
recursive application of the Karatsuba algorithm, to minimize the number
of partial products, and of the Comba algorithm, used as the leaf node of
the recursion, to optimally schedule the operations to compute each partial
product. Such design approach allows to separately optimize the modules
implementing the Karatsuba and Comba algorithms.

Figure 4.9 depicts the architecture of two nested Karatsuba iterations, ith

and (i+1)th, which is at the core of the iterative application of the Karatsuba
algorithm. In particular, the inner Karatsuba iteration can implement either
the serial (see Figure 4.9a) or parallel (see Figure 4.9b) computation of the
three partial products, thus allowing an additional level of flexibility to trade
the performance with the resource utilization. In the serial case, the three
partial products are computed by the same component in a sequential way.
On the contrary, in the parallel case, each partial product is assigned to a
dedicated multiplication component.

Regardless of its serial or parallel implementation, each Karatsuba it-
eration (MultIter) receives two polynomials in input and it outputs the
result of their carry-less multiplication. The input interface splits each one
of the two polynomials in two halves, according to the Karatsuba algorithm.
Each half of each polynomial, i.e., A1, A0, B1 and B0, is stored in a separate
memory element. In a similar manner, the output interface delivers the final
multiplication result by composing the computed partial products according
to the Karatsuba algorithm. We note that the proposed multiplier is paramet-
ric with respect to the implemented channel width, i.e., BW , that is used
as an additional configuration option to trade performance with resource
utilization.

The compute stage receives the operands from the input interface and
delivers the computed partial products to the output interface. The compute
stage implements the logic to perform the computation of the three partial
products required by the current Karatsuba iteration. We note that, instead
of directly computing the three partial products by means of either one
(serial) or three (parallel) Comba multipliers (see Comba in Figure 4.9a
and Figure 4.9b), a nested application of the Karatsuba algorithm can be
performed. In this scenario, the MultIter block represents the key el-
ement to implement the recursive application of the Karatsuba algorithm.
In contrast, the Comba module represents the leaf node at the end of the
recursive application of the Karatsuba algorithm.

From the architectural viewpoint, the use of either a parallel or serial

70

4.4. Dense-dense multiplication architecture

>> BW

BW

01

Combinational
BW x BW
Multiplier

BW

01

BW BW

2BW2BW

Comba
BW

A

BW

B

BW

R

BA

reg0reg1

Figure 4.10: Architecture of the proposed Comba multiplier. A and B are memories with a
BW -bit bandwidth, reg1 and reg0 are BW -bit registers.

implementation of the compute stage represents a configuration parameter
of the proposed dense-dense multiplier. The parallel implementation of the
compute stage only requires a proper connection of the input and the output
signals to the nested MultIter/Comba modules (see Figure 4.9b). The
serial implementation of the compute stage must orchestrate the computation
of the three partial products by leveraging the single, i.e., shared, computing
block (MultIter/Comba) (see Figure 4.9a). To this purpose, a simple
finite-state-machine drives the multiplexing infrastructures to forward the
correct part of the operands from the storage elements of the ith MultIter
module to the single compute unit, i.e., (i+ 1)th MultIter/Comba.

In summary, the proposed dense-dense multiplier architecture allows to
flexibly configure i) the number of Karatsuba iterations to be implemented,
ii) either the parallel or the serial computation for each of them, and iii)
the internal channel width BW. The MultIter module implements an
iteration of the Karatsuba algorithm, also offering the possibility to iterate
the procedure by nesting parallel or serial instances of the same module.

71

Chapter 4. Methodology

Algorithm 8 Bit-level combinational multiplication. A and B are BW -bit digits, R is
(2BW − 1)-bit long. A[i], B[i] and R[i] indicate single bits.

1: function [R] COMBINATIONALMUL(A,B)
2: for i ∈ 0 : BW − 1 do
3: for j ∈ 0 : BW − 1 do
4: R[i+ j] = R[i+ j]⊕ (A[i] ·B[j]);
5: end for
6: end for
7: end function

4.4.2 Comba multiplier architecture

The Comba multiplier (see Comba in Figure 4.9a and Figure 4.9b) is tasked
with the computation of each partial product in the innermost Karatsuba
multiplication modules. To this end, the Comba Multiplier module repre-
sents the terminal block, i.e., the leaf node, of the recursive application of
the Karatsuba algorithm.

Figure 4.10 depicts the architecture of the Comba module, which per-
forms the multiplication of the input operands according to the schedule
of the Comba algorithm [30]. We note that the iterative application of the
Karatsuba algorithm minimizes the number of required partial products,
while also halving the size of the operands at each iteration. However, the
size of the operands in input to the Comba multiplier module is still in
the order of thousands of bits, thus far too large to perform a single com-
binational multiplication. In contrast, the Comba multiplier assumes that
each operand is made of a set of BW -bit digits and performs the multipli-
cation, according to the Comba algorithm, in a digit-by-digit processing
fashion. At the core of the Comba module, the Combinational BW
x BW Multiplier performs the multiplication between two digits (see
Figure 4.10). In particular, Algorithm 8 details the steps to perform the
bit-level combinational multiplication of the two BW -bit digits according
to the schoolbook multiplication algorithm.

The Comba multiplier schedules the BW ×BW multiplications accord-
ing to the strategy proposed by Comba, i.e., producing a single BW -bit digit
of the result at a time, by computing all the partial products contributing
to it. This approach minimizes the number of bits required to maintain in
memory the sum of the partial products. To implement this strategy, two
BW -bit registers, reg1 and reg0, are employed to store the sum of all the
contributions to the said portion of the result. reg1 and reg0 store respec-
tively the BW most and least significant bits of the XOR of partial products
computed by the combinational multiplier. When the computation of the

72

4.4. Dense-dense multiplication architecture

sum is completed, the least significant BW bits, i.e., the BW bits stored in
reg0, are committed to the output of the Comba Multiplier, while the most
significant ones, i.e., the BW bits stored in reg1, are copied over in reg0.

4.4.3 Complexity analysis

This section discusses the time and space complexity of the proposed dense-
dense multiplication architecture, highlighting the design choices that allow
its implementation across a wide range of resource-performance trade-offs.
For the sake of simplicity, the complexity discussion only considers the
case in which each Karatsuba multiplier module computes its three partial
products by means of either three Karatsuba or Comba multipliers in a
parallel fashion, as depicted in Figure 4.9b.

Time complexity

Let ParDDMul be the parallelism parameter that expresses how many times
the Karatsuba recursion formula is applied, and BW be the bandwidth of
the multiplier datapath, then its time complexity can be expressed as in
Equation 4.12.

Tmul =

(
ParDDMul∑

i=0

2

2i

)
·
⌈ p

BW

⌉
+

⌈⌈
p

2ParDDMul

⌉
BW

⌉2

(4.12)

The first term refers to the data movement between the different layers of
Karatsuba recursion, while the second term refers to the execution time
required by the 2ParDDMul innermost Comba multipliers, each concurrently
computing one partial product of the Karatsuba formula.

Space complexity

The area occupied by the dense-dense binary polynomial multiplication
architecture can be expressed as shown in Equation (4.13), which defines
the number of BRAMs occupied by the multiplication module (Mmul).

Mmul =
(
3ParDDMul · 6− 4

)
·
⌈

p

SBRAM

⌉
·
⌈

BW

BWBRAM

⌉
(4.13)

It has five parameters. Other than ParDDMul, p, and BW , SBRAM represents
the size of a BRAM, that may be either 16Kb or 32Kb in Artix-7 FPGAs,
while BWBRAM represents the data bandwidth of a BRAM, that may be
either 32 bits for 16Kb memories or 64 bits for 32Kb memories.

73

Chapter 4. Methodology

Time

0

3
4
5
6

2
1

7

Figure 4.11: Example of parallelized exponentiation.

Equation (4.13) is the product of three factors. The first one, i.e.,
(3ParDDMul · 6 − 4), represents the number of p-bit memories. The sec-
ond factor ⌈ p

SBRAM
⌉ accounts for the number of BRAM memories required

to store a p-bit polynomial. The third factor ⌈ BW
BWBRAM

⌉ accounts for the
number of BRAM memories necessary to provide the required BW data
bandwidth. Most notably, the ParDDMul parallelism parameter has an
exponential impact on the occupied memory resources.

4.5 Exponentiation architecture

The binary polynomial exponentiation is a critical operation within the
inversion algorithm. The implementation of the exponentiation component
must therefore be carefully designed to optimize the area-performance
trade-off in order to enable the efficient computation of binary polynomial
inversion.

Starting from the the exponentiation procedure detailed in Algorithm 5,
the exponentiation architecture proposed in [43] leverages the possibility to
independently compute each bit of the result polynomial g(x) to deliver a
parallel architecture that allows the concurrent computation of ParExp bits
of g(x). The parallel architecture is achieved by employing ParExp separate
hardware memories. In particular, each memory manages the writing of
one of the ParExp bits of g(x). Once all p bits of f(x) have been processed
and written to the corresponding ParExp memories, their bit-wise XOR
produces the final g(x) polynomial.

To demonstrate the performance speedup due to the use of the proposed

74

4.5. Exponentiation architecture

parallel exponentiation architecture, Figure 4.11 details the computation
of the g(x) polynomial as the 4-th power of the f(x) polynomial using a
parallelism of 2, i.e., ParExp = 2. Notably, aside from the parallel com-
putation, the example in Figure 4.11 performs the computation previously
discussed in Section 2.4.3 (see Figure 2.3). At timestep 0, f(x) holds the
input polynomial, while the ParExp gi(x) polynomials, g0(x) and g1(x),
are set at 0. At each subsequent timestep, ParExp adjacent bits are read
from the f(x) polynomial, and each of them is written to the corresponding
gi(x) polynomial. Blue and red colors to highlight the bits processed at each
timestep as well as their positions in the gi(x) polynomials, where i ∈ {0, 1}.
Once all p bits of the f(x) polynomial have been read and written in the
correct position of the ParExp gi(x) polynomials, the gi(x) polynomials are
bit-wise XORed to produce the g(x) result polynomial, which is the 4-th
power of f(x).

The rest of this section first overviews the binary polynomial exponentia-
tion component introduced in [43] from the architectural and algorithmic
point of views and then outlines the time and space complexity of the pro-
posed exponentiation architecture as functions of both the architecture and
code parameters.

4.5.1 Architectural view

The Exp module in Figure 4.12 represents our architecture for polynomial
exponentiation. It has a BW-bit input f and an input t, corresponding to
the base polynomial f(x) and to the exponent 22t , respectively, and a BW-
bit output g that corresponds to the resulting polynomial g(x) = f(x)2

2t .
BW is a design-time parameter that defines the datapath bandwidth of the
exponentiation module.

The Exp module is designed as a two-stage architecture, composed of
the Stage1 and Stage2 modules. They contain a memory, composed
of FPGA BRAMs, that can hold p bits and has a BW-bit read/write data
bandwidth, and they respectively store the f(x) and gi(x) polynomials. The
PARE design-time parameter defines the degree of parallelism within the
exponentiation module, i.e., the number of Stage2 replicas that are instan-
tiated to parallelize the computation. To further improve the efficiency of
the proposed architecture, two lookup tables AddrIncr and AddrStart
are populated at compile time to provide the address increment and start
values for gi(x) memories. AddrIncr contains log2(p−2) entries, indexed
from 0 to (log2(p− 2)− 1), each containing the (ParExp · 22

t
) mod p value,

where t is the index of the entry. AddrStart contains log2(p− 2) sets of

75

Chapter 4. Methodology

g

st
ar

tE
xp

f t

B
W

E
xp

B
W

B
W

0

N
-1
N
-21

PA
R
E

B
W

PA
R
E

B
W

PA
R
E

PA
R
E

S
ta

ge
1

B
W

0 P
-1
P
-21

1

1

S
ta

ge
2

1

1
B
W

B
W

0

N
-1
N
-21

B
W PA

R
E
 r

ep
li

ca
s

of
 S

ta
ge

2

It
er

A
d

d
rI

n
cr

t

0 1

M
u

x S
2

+
w

rA
d

d
r

st
ar

tE
xp

0 1

M
u

x S
1

+
rd

A
d

d
r

0
PA
R
E It
er

A
d

d
rS

ta
rt

tt

0

K
-1
K
-21

Figure 4.12: Detailed view of the proposed exponentiation architecture. Legend: N =⌈
P

BW

⌉
, K =

⌈
P

ParExp

⌉
, PARE = ParExp.

76

4.5. Exponentiation architecture

entries, indexed from 0 to (log2(p − 2) − 1). Each set of entries contains
ParExp values equal to (s · 22t) mod p value, where s holds all integer val-
ues comprised between 0 and (ParExp − 1), referring to the corresponding
gi(x) memory, and t is the index of the set of ParExp entries.

4.5.2 Algorithmic view

The execution of the exponentiation can be seen as organized in three
phases, i.e., the Input, Computation, and Output ones. During the Input
phase, the Exp module stores the p-bit f(x) polynomial into the memory
component of the Stage1 module, passing BW bits per clock cycle through
the f input, while the Stage2 memory is reset to contain all 0 bits. At
the same time, the t value fed through the t input is used to index the
AddrIncr and the ParExp AddrStart values within the two respective
lookup tables. The Stage2 modules share the same AddrIncr value,
while the AddrStart values are correctly dispatched to the instances of
the Stage2 module. Thereafter, the Computation phase takes place. At
each clock cycle, ParExp bits are read and output from the memory of the
Stage1 module, from the least to the most significant bits of the p-bit f(x)
polynomial. These ParExp bits are split and each of them is fed as a single-
bit signal to one of the replicas of the Stage2 module. Each single-bit
input to a Stage2 module is written, one per clock cycle, into the Stage2
memory at a position that starts from the AddrStart value and that is
incremented (modulo p) at each clock cycle by the AddrIncr value. The
Computation phase ends when all p bits read from the Stage1 memory
have been written to their corresponding positions in the ParExp Stage2
memories. Finally, during the Output phase, the content of the Stage2
memories is output, BW bits per clock cycle, and the ParExp BW-bit outputs
are XORed. We note that p and 22

t are coprime, i.e., their GCD is 1, thus, it
is guaranteed that there can not be any bits set to 1 in two or more different
Stage2 memories, i.e., we cannot have any cancellations due to the XOR
operation. The result of the XOR operation corresponds to the actual g(x)
polynomial, which is output BW bits per clock cycle through the g port.

4.5.3 Complexity analysis

This section discusses the time and space complexity of the proposed ex-
ponentiation architecture, highlighting the design choices that allow its
implementation across a wide range of resource-performance trade-offs.

77

Chapter 4. Methodology

Time complexity

Equation (4.14) defines the time required to execute an exponentiation (Texp),
expressed in terms of clock cycles.

Texp =
⌈ p

BW

⌉
·
⌈

BW

ParExp

⌉
(4.14)

It has three parameters. p corresponds to the polynomial length. It is
a parameter of the QC-MDPC code and, thus, it can not be controlled
by the hardware designer. BW is the bandwidth of the exponentiation
datapath expressed in bits and ParExp is the parallelism implemented in the
exponentiation module. Both are configurable parameters of the proposed
architecture and can be tuned to explore different area-performance trade-
offs.

Equation (4.14) is the product of two terms. The first term ⌈ p
BW

⌉ repre-
sents the number of memory lines to be read from the input polynomial and
written into the output polynomial. The second term ⌈ BW

ParExp
⌉ accounts for

the parallel writing on separate BRAMs for the output polynomial. Equa-
tion (4.14) is fully independent from the input polynomial and depends
instead exclusively on the p code parameter and on the BW and ParExp

architectural parameters. Since the execution time of the multiplication
module is also independent from its input values, and the same holds for
the top inversion module, then our implementation guarantees constant-time
execution of binary polynomial inversion.

Space complexity

Experimental results showed empirically that LUT and BRAM relative
utilization of the available FPGA resources are similar to each other across
all hardware instances on the whole Artix-7 family and for all polynomial
lengths, with the LUT utilization being slightly larger than the BRAM one
on average. At the same time, flip-flops are mostly unused in the proposed
architecture. The number of BRAMs is therefore deemed a good metric for
the space complexity of the exponentiation module.

Our architecture requires one p-bit memory for the Stage1 module
and one p-bit memory for the Stage2 module. Due to the parameterized
replication of Stage2 modules, the overall exponentiation module requires
(ParExp+1) p-bit memories. Equation (4.15) defines the number of BRAMs
of the exponentiation module (Mexp).

Mexp = (ParExp + 1) ·
⌈

p

SBRAM

⌉
·
⌈

BW

BWBRAM

⌉
(4.15)

78

4.6. Dense-sparse multiplication architecture

It has five parameters. Other than p, BW , and ParExp, SBRAM represents
the size of a BRAM, that may be either 16Kb or 32Kb in Artix-7 FPGAs,
while BWBRAM represents the data bandwidth of a BRAM, that may be
either 32 bits for 16Kb memories or 64 bits for 32Kb memories.

Equation (4.15) is the product of three terms. The first term (ParExp +
1) represents the number of p-bit memories. The second term ⌈ p

SBRAM
⌉

accounts for the number of BRAM memories required to store a p-bit
polynomial. The third term ⌈ BW

BWBRAM
⌉ accounts for the number of BRAM

memories necessary to provide the required BW data bandwidth.

4.6 Dense-sparse multiplication architecture

The dense-sparse multiplication architecture introduced in [13] implements
a similar structure to the parDualMem parallel architecture employed in
the calcBf stage of the QC-MDPC bit-flipping decoder described previously
in Section 4.2.1. In particular, the underlying operations are performed in
the binary polynomial arithmetic. As in the case of the decoder architecture,
the configurable parallelism allows replicating the dualMem component to
speed up the computation.

The proposed dense-sparse multiplication architecture is designed to
outperform the dense-dense multiplication architecture in cases when one of
the two operands has a low Hamming weight, and can thus be represented in
a sparse form. Examples of such binary polynomials in the BIKE KEM are
the n-bit error vector, with Hamming weight t ≈

√
n, and the p-bit binary

polynomials corresponding to the two Hi blocks of the parity-check matrix,
each with Hamming weight v ≈

√
n. Instances of multiplications involving

sparse polynomials appear in all three BIKE KEM primitives.

4.6.1 Complexity analysis

This section discusses the time and space complexity of the proposed dense-
sparse multiplication architecture as functions of both the architecture and
code parameters, highlighting the design choices that allow its implementa-
tion across a wide range of resource-performance trade-offs.

Time complexity

Equation (4.14) defines the time required to execute a multiplication (Tdsmul),
expressed in terms of clock cycles.

Tdec =
⌈ p

BW

⌉
·
⌈

HW

ParDSMul

⌉
(4.16)

79

Chapter 4. Methodology

It has three parameters, namely the p polynomial length paramater of the
QC-MDPC code, the HW Hamming weight of the sparse operand, the BW
bandwidth of the dense-sparse multiplication datapath, and the ParDSMul

parallelism implemented in the dense-sparse multiplication module. The
latter two are configurable parameters of the proposed architecture and can
be tuned to explore different area-performance trade-offs.

Equation (4.16) is fully independent from the actual values of the input
polynomials, thus our implementation of the dense-sparse multiplication
provides constant-time execution of binary polynomial inversion.

Space complexity

The dense-sparse multiplication architecture occupies a number of BRAM
memories (Mdsmul) as defined in Equation (4.17).

Mdsmul =

(⌈
HW · log(p)

SBRAM

⌉
·
⌈

BW

BWBRAM

⌉)
+

+ 2 · ParDSMul ·
(⌈

p

SBRAM

⌉
·
⌈

BW

BWBRAM

⌉)
(4.17)

Equation (4.17) is the sum of two terms. The first one corresponds to the
memory required to store the sparse binary polynomial operand, which has
Hamming weight HW , while the second term of the addition refers to the
two memories of each of the ParDSMul parallel dualMem components.

4.7 Other components

The execution of the BIKE KEM primitives requires performing two more
main operations, namely, SHA-3 cryptographic hash and pseudorandom
number generation based on SHAKE. Notably, SHA-3 and SHAKE belong
to the same family of cryptographic functions.

The two operations are computed by dedicated accelerators that are
however not parametric and configurable. Their architecture makes use of on
already publicly available accelerators for the Keccak sponge function, that
is the core building block of both SHA-3 and SHAKE, applying the proper
modifications to satisfy the SHA-3 NIST standard [35] and to implement
the PRNG logic surrounding the SHAKE component. The implemented
hardware components are designed to provide effective support for the two
operations, even though they are not a critical target for optimization within
the shope of this PhD thesis.

80

4.7. Other components

seed_i

cmd_i cmd
logic

BW

shake_o

1

0 rd

log2 p
SHAKE

1

0

rs

Counter

1

start stop

send_out

sout_o

BW dout_o

pos_i
or_i

bram_i
cnt_o

flag_o

BW

PRNG

BW

BW

awbram

awbram

BW

Figure 4.13: Architecture of SHAKE-based PRNG.

The rest of this section briefly discusses the architectures of the SHA-
3 component and of the SHAKE-based uniform pseudorandom number
generation one.

4.7.1 SHA-3 architecture

The SHA-3 module implements the SHA3-384 cryptographic hash func-
tion [35]. It computes the 384-bit digest of the SHA3-384 cryptographic
function of the input message according to an architecture similar to the
high-speed core detailed in [19], which was modified to support the standard
SHA-3 cryptographic hash functions in place of the original, pre-standard
Keccak functions. The SHA-3 module takes as input the input message msg
padded according to the 01||10*1 SHA-3 padding scheme, and outputs the
384-bit hash digest dig, that is computed by executing one Keccak-f round
function per each clock cycle. The I/O operations are carried out through
the BW -bit data input and output ports of the module.

4.7.2 Uniform pseudorandom number generation architecture

The PRNGmodule, which is depicted in Figure 4.13, performs the generation
of a pseudorandom sequence of bits with fixed Hamming weight by making
use of an internal SHAKE256 component (SHAKE), which implements an
architecture that is similar to the one employed by the SHA-3 module dis-
cussed in Section 4.7.1, albeit producing a variable-length output according
to the needs of the surrounding pseudorandom generation logic. SHAKE256
is indeed an extendable output function, i.e., a function that outputs a digest

81

Chapter 4. Methodology

of any desired length, that is part of the SHA-3 family [35]. The digest out-
put by the SHAKE256 component is broken up in (log2 p)-bit chunks, each
possibly representing the position of a bit set to 1 within a p-bit vector. The
extracted values are evaluated to discard the values which have already been
previously extracted, thus avoiding cancellations and therefore enabling the
generation of a vector with the desired Hamming weight. Moreover, values
larger than or equal to p are also discarded, providing a uniform distribution
of bits set to 1 within the random-generated bitvector. Indeed, operating
on values larger than or equal to p to make them modulo-p values, e.g.,
through the modulo operator, would provide a biased distribution instead of
a uniform one.

The PRNG is constant-time with respect to the generated bitvector, mean-
ing that the execution time does not depend on the generated positions of 1s
within the bitvector, but on the number of values rejected due to repetition
or due to being greater than or equal to p. Such information would not be
exploitable by an attacker to retrieve the generated bitvector, i.e., the private
key and the error vector within the BIKE key generation and encapsulation
primitives [89].

4.8 Design space exploration

In order to provide the best hardware support, the proposed client and server
architectures leverage a set of state-of-the-art configurable accelerators
for the most complex operations employed within the KEM primitives.
However, such flexibility comes at the cost of a broad design space, which
imposes the use of an efficient search strategy to minimize the exploration
time.

Therefore, a four-step complexity-oriented heuristic proposed in [41]
drives the design space exploration according to the time and space com-
plexity of the most computationally intensive operations in the three KEM
primitives. Notably, the overall computation time on the client side can
be considered as the sum of the execution times of the key generation
and decapsulation KEM primitives [6], while encapsulation represents the
sole server-side functionality. Moreover, the configurable components em-
ployed to implement multiplication [13], inversion [43], and decoding [110]
highlight block RAM (BRAM) as the scarcest resource thus their space com-
plexity can be approximated as the sum of BRAMs used for key generation
and decapsulation, on the client side, and encapsulation, on the server side.

Remarkably, the application of the heuristic to the proposed BIKE archi-
tecture makes use of the time- and space-complexity formulas expressed for

82

4.8. Design space exploration

the configurable components, i.e., bit-flipping decoding, binary polynomial
inversion, dense-dense binary polynomial multiplication, binary polyno-
mial exponentiation, and dense-sparse binary polynomial multiplication.
Such complexity formulas were previously discussed in Section 4.2.2, Sec-
tion 4.3.4, Section 4.4.3, Section 4.5.3, and Section 4.6.1, respectively. Other
possible quantitative or qualitative metrics, e.g., estimating energy or power
consumption or providing a measure of information leakage against side-
channel attacks, are not instead considered in the design space exploration.

The complexity-oriented heuristic is composed of the following steps.

Step 1 - Starting from the computational time of the AVX2 implementation
of BIKE, the heuristic computes the fraction of time spent executing each
primitive in the server and the client. Intel AVX2 data in Table 4.1 shows
that the fraction of time for key generation and decapsulation is around 20%
and 80%, respectively, on the client side, while the encapsulation represents
the entire server time. Such ratios are used to assign the amount of resources
devoted to each KEM primitive module in the client and server architectures.

Step 2 - For each KEM primitive module, the heuristic identifies the opera-
tions executed by parametric components that require the largest fraction of
execution time. In particular, the heuristic considers the set of parametric
operations for which the execution time is at least 90% of the total exe-
cution time of the primitive or the entire set of configurable components
otherwise. For example, Table 4.1 shows that multiplication, which is the
sole parametric operation in our hardware implementation of encapsulation,
accounts for up to 23% of its execution time on Intel AVX2 platforms. In
contrast, decoding, which is also computed in hardware by a configurable
component, accounts for more than 90% of the execution time in the AVX2
implementation of decapsulation.

Step 3 - For each component or group of components, the heuristic explores
time- and space-complexity formulas to identify the combination of pa-
rameters that allows maximizing performance within the assigned resource
budget. The exhaustive search in the parameter space to find out the best
parameter configurations for each module is very fast since it leverages
the configurable components’ time- and space-complexity formulas with-
out involving any time-consuming hardware synthesis and place-and-route
tasks.

Step 4 - The heuristic implements the client and server designs employing
the configurations obtained at Step 3. Notably, our algorithm is robust and
conservative to account for i) the non-predictability of the synthesis and
implementation of EDA tools, and ii) the fact that a small change in the

83

Chapter 4. Methodology

parameters can severely affect the performance and resource utilization.
Therefore, the heuristic could land to an unfeasible configuration or to a
configuration for which not all the available resources can be used since
small increments in the parameters would make it unfeasible within the
resource budget. In the former case, the heuristic iteratively re-implements
the failed design by lowering the values of the parameters for which the
time-complexity formulas show the smallest performance degradation, and
this process keeps on until the design becomes feasible. In the latter case,
the heuristic iteratively re-implements the non-optimal design by increasing
the values of the parameters for which the space-complexity formulas high-
light the smallest resource utilization increase, until either the performance
improvement is lower than a certain threshold or the design saturates the
available hardware resources.

84

CHAPTER5
Experimental results

This chapter discusses the experimental evaluation of the proposed architec-
ture implementing the BIKE cryptoscheme. First, it details the performance
of existing state-of-the-art software and hardware implementations of BIKE,
which act as a benchmark for the performance of the proposed design. Then,
it discusses the experimental results for the components implementing the
most complex operations of BIKE, comparing their area and performance
to state-of-the-art ones and evaluating how they scale by varying the con-
figurable architectural and code parameters. Finally, it compares the area
and performance of the proposed implementation of the whole BIKE cryp-
toscheme against software and hardware ones from literature.

Parts of this chapter are derived from previously published works co-
authored by the author of this thesis. The experimental results for QC-
MDPC bit-flipping decoding discussed in Section 5.4 were obtained from
[110], while those for the dense-dense binary polynomial multiplication in
Section 5.5 and the binary polynomial inversion in Section 5.7 were derived
from [111] and [43], respectively. Finally, the experimental analysis of the
area and performance of the whole KEM client and server nodes provided
in Section 5.9 were adapted from the work in [41]. More details about the
referenced publications are provided in Appendix A.

85

Chapter 5. Experimental results

Table 5.1: Breakdown of the execution times of BIKE, expressed in milliseconds, for
different security levels, architectures, and software implementations. Legend: Kg key
generation, En encapsulation, De decapsulation primitive, PRNG and H pseudorandom
generation, Inv. inversion, Mult. multiplication, Dec. decoding, Other other operations
executed in the KEM primitives, K and L SHA-3 hash function.

Target CPU, software version and NIST security level
ARM32 ARM64 Intel Intel

KEM C99 [5] C99 [3] C99 [3] AVX2 [3]
prim. Op. SL1 SL3 SL1 SL3 SL1 SL3 SL1 SL3
Kg PRNG 0.88 1.24 0.44 1.20 0.04 0.10 0.01 0.02

Inv. 319.08 883.05 19.66 62.66 3.46 11.24 0.18 0.53
Mult. 12.77 36.64 1.00 3.05 0.17 0.56 0.01 0.02
Other 0.01 0.02 0.05 0.06 0.01 0.01 0.00 0.00

332.74 920.95 21.15 66.97 3.68 11.91 0.20 0.57
En H func. 0.86 1.24 0.79 2.24 0.07 0.18 0.02 0.03

Mult. 12.66 37.21 1.00 3.05 0.18 0.55 0.01 0.02
L func. 0.63 1.11 0.08 0.15 0.01 0.02 0.01 0.02
K func. 0.17 0.33 0.04 0.08 0.01 0.01 0.01 0.01
Other 0.50 1.05 0.08 0.08 0.00 0.01 0.00 0.00

14.83 40.94 1.99 5.60 0.27 0.77 0.05 0.09
De Dec. 463.15 1185.65 32.12 99.80 3.90 12.24 0.75 2.41

L func. 0.63 1.12 0.08 0.15 0.01 0.02 0.01 0.03
H func. 0.86 1.16 0.79 2.24 0.06 0.18 0.01 0.03
K func. 0.17 0.34 0.05 0.08 0.01 0.01 0.01 0.01
Other 0.00 0.00 0.89 2.39 0.08 0.21 0.03 0.06

464.82 1188.27 33.93 104.65 4.07 12.67 0.81 2.55
Total 812.38 2150.16 57.06 177.23 8.02 25.35 1.06 3.21

5.1 Benchmark software performance

Software performance of BIKE, collected on a range of computing platforms,
provides a benchmark for the quality of the proposed FPGA-based hardware
architecture. We consider computing platforms ranging from low-end ARM-
based embedded systems to desktop-class Intel CPUs. Moreover, different
computing platforms can exploit different versions of BIKE software im-
plementations. Our software performance analysis includes 32- and 64-bit
architectures, ARM and x86 ISAs, embedded- and desktop-class processors,
and plain-C99 and AVX2-optimized software.

The results of this analysis are detailed in Table 5.1. For each CPU
and software implementation, we executed BIKE 100 times and average
the collected execution times. Performance data for software execution
was collected on a 32-bit ARM Cortex-A9 CPU, on a 64-bit ARM Cortex-

86

5.1. Benchmark software performance

A53 CPU, and on a Intel Core i5-10310U CPU, which represent different
platform types across the computing spectrum.

ARM Cortex-A9 is an embedded-class 32-bit processor implementing the
ARMv7-A ISA. We execute BIKE on a ARM Cortex-A9 dual-core processor
featured on a Xilinx Zynq-7000 heterogeneous SoC, which couples the
ARM processor with programmable FPGA logic. The ARM CPU part has a
clock frequency up to 667MHz, and the external memory mounted on the
employed Digilent Zedboard development board, which houses the Zynq-
7000 chip, is a 512MB DDR3. The BIKE software [5] is executed on top of
the Xilinx Petalinux operating system.

ARM Cortex-A53 is an embedded-class 64-bit processor implementing
the ARMv8-A ISA. In particular, we consider the RP3A0 system-in-package
mounted on a Raspberry Pi Zero 2 W, that features a quad-core 64-bit
ARM Cortex-A53 processor clocked up to 1GHz and 512MB of SDRAM.
We executed the 64-bit portable C99 implementation of BIKE [5] on the
Raspberry Pi running the 64-bit Raspberry Pi OS Lite operating system, that
is based on Debian 11, and setting a fixed 1GHz clock frequency through
Linux cpupower tools.

Intel Core i5-10310U is a desktop-class 64-bit processor implementing
the x86-64 ISA and providing support for the Intel AVX2 extension. The PC
mounting the Intel CPU ran the Ubuntu 20.04.3 LTS operating system. We
executed the 64-bit portable C99 implementation and the AVX2-optimized
version [5]. The non-AVX2 executed at a 4.2GHz average clock frequency,
while the AVX2 one ran at 4GHz.

The range of computing platforms considered in the software benchmark-
ing phase resulted in significant differences in terms of absolute performance
when executing the BIKE software, as shown by data provided in Table 5.1.

On the lower end, the ARM Cortex-A9 platform, a 32-bit CPU running
at 667MHz, provided execution times of 812ms and 2150ms, i.e., in the
order of seconds, for BIKE instances with NIST security levels 1 and 3,
respectively.

Moving to a more efficient code that made use of 64-bit instructions, as
well as to a more modern and 64-bit ARMv8-A architecture, provided a
speedup of more than 10×. The performance on the ARM Cortex-A53 64-
bit CPU, also running at a higher 1GHz clock frequency, measured at 57ms
and 177ms for AES-128 and -192 security instances of BIKE, respectively.

Executing the same software implementation of BIKE on the Intel CPU
resulted in a further speedup of around 7×. The different architecture and
the higher clock frequency, in the order of 4GHz, allowed executing BIKE
instances with security levels 1 and 3 in 8ms and 25ms, respectively.

87

Chapter 5. Experimental results

Table 5.2: Breakdown of the execution times of AES-128 security instances of BIKE,
expressed in milliseconds, for different state-of-the-art FPGA-based implementations.
Legend: LW lightweight, TO trade-off, HS high-speed, HLS high-level synthesis.

KEM Reference implementation
primitive LW [89] HS [89] LW [88] TO [88] HS [88] HLS [74]
Key generation 21.90 2.69 3.79 1.87 1.67 137.84
Encapsulation 1.25 0.13 0.44 0.28 0.13 6.33
Decapsulation 13.35 1.97 6.90 4.21 1.89 135.48
Total 36.50 4.79 11.14 6.36 3.70 279.65

Finally, we evaluated the execution, on the same Intel CPU, of a software
implementation that made use of instructions from the Intel AVX2 extension.
The execution times of 1.1ms and 3.2ms are around 8× smaller than those
obtained by the plain-C99 software, which highlights the effectiveness
of those dedicated instructions in a software making wide use of binary
polynomial arithmetic.

5.2 Benchmark hardware performance

We evaluate the performance of state-of-the-art hardware implementations
of BIKE as a further benchmark for the quality of the proposed FPGA-
based hardware architecture. We consider both human-designed and HLS-
generated ones, all of them targeting FPGA architectures. The results of this
analysis are detailed in Table 5.2.

All the hardware state-of-the-art implementations target either Xilinx
Artix-7 FPGAs or Xilinx Zynq-7000 heterogeneous SoCs, which pair a
ARM CPU with programmable FPGA logic equivalent to the Artix-7 one.
Moreover, the Xilinx Artix-7 platform is the target for hardware implemen-
tations within the NIST PQC standardization process.

The lightweight instance of [89] is faster than 64-bit ARM software
execution, while the high-speed instance takes less than the Intel CPU
executing plain-C99 software, taking less than 5ms compared to just above
8ms.

The lightweight, trade-off, and high-speed FPGA-based implementations
of [88] range from 11.14ms to 3.70ms, further improving performance but
still slower than the AVX2 software executed on a Intel CPU with 4GHz
average clock frequency, which takes instead 1.06ms. The high-speed
instance is anyway more than two times faster than plain-C99 software
execution on the same Intel CPU.

Finally, the HLS-designed hardware implementation of BIKE [74] pro-

88

5.3. Experimental setup

vides a speedup up to 2.9× over the software execution on a ARM 32-bit
CPU, however requiring more FPGA resources than those available on the
target Zynq-7020 chip. A HW/SW approach executing encapsulation on
the CPU rather than implementing it on the FPGA still provides a 2.78×
speedup while satisfying the resources constraints.

The orders of magnitude of difference in the performance between human-
designed hardware implementations and HLS-generated ones highlight the
difficulty of HLS tools to make an efficient use of FPGA resources, in
particular for applications as complex as the BIKE cryptosystem.

5.3 Experimental setup

This section details the experimental setup for the overall architectures
implementing the client and server functionalities of the BIKE KEM. Further
details about the validation and evaluation of the single components that are
part of the whole KEM architecture are provided later in their corresponding
sections. Remarkably, the adoption of the LEDAcrypt PKC and KEM as
use cases for the evaluation of some components produces results that are
fully comparable to those that would be obtained by targeting the BIKE
cryptosystems. The LEDAcrypt and BIKE schemes are indeed QC-MDPC
code-based cryptoschemes, employ therefore the same underlying arithmetic,
and the code parameters are in the same orders of magnitude. The specific
code parameters are explicitly detailed whenever not targeting the BIKE
cryptoscheme.

5.3.1 BIKE code parameters

The proposed client and server architectures target the security levels 1
and 3 of the BIKE KEM, which correspond to AES-128- and AES-192-
equivalent security and each with a different underlying QC-MDPC code.
Such two security levels are also targeted by the reference software [5] and
hardware [25] implementations. The employed QC-MDPC codes have a
2p-bit code word length and a p-bit information word length. For each BIKE
code Bj, where j corresponds to the security level, Table 2.1 reports the size
p of hi blocks of H , the Hamming weight v of the rows of hi blocks, the
Hamming weight t of e, and the number of decoding iterations iter.

5.3.2 LEDAcrypt code parameters

As previously mentioned, part of the experimental evaluation of the para-
metric components employed within the proposed BIKE client and server

89

Chapter 5. Experimental results

cores targeted cryptoschemes from the LEDAcrypt cryptography suite. The
LEDAcrypt suite consists of QC-MDPC code-based post-quantum KEM
and PKC schemes, similar to the BIKE scheme. In particular, the proposed
architectures for QC-MDPC bit-flipping decoding, dense-dense binary poly-
nomial multiplication, and binary polynomial exponentiation were evaluated
considering the QC-MDPC codes employed by the KEM and PKC schemes
from the LEDAcrypt suite. Experimental results for the inversion module
target instead both LEDAcrypt and BIKE codes. This section discusses, for
each component evaluated targeting LEDAcrypt schemes, how the corre-
sponding code parameters relate to the BIKE ones.

The evaluation of the QC-MDPC bit-flipping decoder was carried out
considering QC-MDPC code parameters for the LEDAcrypt-KEM-CPA
scheme, which are reported later in Table 5.4. In particular, the C1 and
C4 codes are the most similar to those employed within AES-128- and
AES-192-equivalent security BIKE instances, i.e., B1 and B3 in Table 2.1.
Those codes share the same number n0 of blocks in the parity-check matrix
H , equal to 2, while the Hamming weight v of a row of the H matrix
of the C1 and C4 codes also corresponds to the v value of the B1 and
B3 codes, respectively. The p code parameters are in the same order of
magnitude, with LEDAcrypt-KEM-CPA codes having values of 10883 and
21011 compared to the 12323 and 24659 polynomial lengths of the BIKE
ones. Finally, the number of decoding iterations is also comparable, with
LEDAcrypt-KEM-CPA and BIKE schemes only differing by one iteration,
i.e., 6 and 5, respectively. Moreover, LEDAcrypt and BIKE schemes employ
similar bit-flipping decoding algorithms, with the only difference of the
additional black and gray iterations employed in the BGF decoding variant
implemented by the latter.

The dense-dense binary polynomial multiplier was evaluated consid-
ering the polynomial lengths employed by the nine configurations of the
LEDAcrypt PKC scheme. The range of values held by the polynomial
degree p across the different configurations of the LEDAcrypt PKC scheme
is similar to the values of p employed in BIKE. As listed later in Table 5.6,
the nine values of p considered for the experimental evaluation range from
8467 (P1) to 37619 (P9), whereas the BIKE B1 and B3 codes have values
of p equal to 12323 and 24659, respectively. In particular, the P2 and P3
codes, with polynomial lengths p of 9643 and 14717, respectively, can be
considered lower and upper bounds for BIKE’s B1 code, which has a p
value of 12323. Similarly, the P7 and P8 codes, with polynomial lengths p
of 24533 and 28477, respectively, can be considered lower and upper bounds
for BIKE’s B3 code, which has a p value of 24659.

90

5.3. Experimental setup

Finally, the binary polynomial exponentiation results are reported for
polynomials with length specified as in the C1, C4, and C7 LEDAcrypt-
KEM-CPA codes used for the QC-MDPC bit-flipping decoding experimental
evaluation, while binary polynomial inversion was evaluated against both the
nine LEDAcrypt-KEM-CPA polynomial lengths reported in Table 5.4 and
the BIKE B1 and B3 codes listed in Table 2.1 and targeted by the proposed
BIKE client and server architectures.

5.3.3 Software setup

The software implementation of BIKE considered as the software refer-
ence is the open source version freely available online [5]. It provides
both a baseline C99 portable software implementation and an optimized
code that employs the Intel AVX2 extension, thus providing higher perfor-
mance. The two software versions were executed on an Intel Core i5-10310U
desktop-class CPU, forcing a fixed operating frequency of 4.4 GHz to avoid
performance variability due to power management. For each BIKE code
configuration, the execution times of key generation, encapsulation, and
decapsulation for the C99 and AVX2 software have been obtained as the
average of 30 executions.

5.3.4 Hardware setup

The architectures discussed in Section 4.1 have been described in SystemVer-
ilog and implemented in Xilinx Vivado 2020.2, targeting Artix-7 FPGAs
and a clock frequency of 91 MHz.

The Xilinx Artix-7 FPGA family was selected as the target for the exper-
imental evaluation of the proposed architectures for multiple reasons. On
the one hand, the Xilinx Artix-7 family is the de-facto standard in academic
research, including the cryptography field, due to its wide availability and to
having the best price-performance ratio among FPGAs. On the other hand,
NIST targets specifically Artix-7 FPGAs for the hardware implementations
of cryptoschemes in its post-quantum standardization process, in order to
provide a fair comparison environment for all proposals by avoiding differ-
ences due to the usage of different FPGA technologies or technology nodes
of ASIC implementations.

All the identified instances of the proposed architectures satisfy the area
constraints given by the available resources on the target Xilinx Artix-7
FPGAs, which are listed in Table 5.3, and the timing requirements, i.e., a
91 MHz clock frequency. For each considered FPGA and code configura-
tion, in the following only the best hardware implementations, i.e., those

91

Chapter 5. Experimental results

Table 5.3: Available resources on FPGAs from the Xilinx Artix-7 family, expressed in terms
of look-up tables (LUT), flip-flops (FF), and block RAM (BRAM).

FPGA LUT FF BRAM
Artix-7 12 8000 16000 20
Artix-7 15 10400 20800 25
Artix-7 25 14600 29200 45
Artix-7 35 20800 41600 50
Artix-7 50 32600 65200 75
Artix-7 75 47200 94400 105
Artix-7 100 63400 126800 135
Artix-7 200 134600 269200 365

with the smallest execution time and which satisfy the area and timing
constraints, are reported. Such instances have been identified after a de-
sign space exploration that employed the four-step, complexity-oriented
heuristic described in Section 4.8 considering the configurable parameters
of the architecture, which are the parallelism of the dense-sparse multi-
plier (ParDSMul), of the bit-flipping decoder (ParDec), and of the dense-
dense multiplication (ParDDMul) and exponentiation components (ParExp)
within the inversion module. For simplicity, we fixed the bandwidths of
the dense-sparse multiplier (BWDSMul), bit-flipping decoder (BWDec), and
inversion module (BWInv) to the same value as the bandwidth of the client
and server top modules (BW).

The performance of the proposed architectures was collected by averag-
ing the execution times of 10000 operations of each analyzed component,
i.e., the client and server cores and the decoding and arithmetic modules,
while their area consumption was obtained as the FPGA resource utilization
after their implementation, i.e., place and route, in Xilinx Vivado 2020.2.

5.3.5 Functional validation

The proposed client and server architectures, as well as the components
implementing decoding and arithmetic operations, have been functionally
validated through both post-implementation timing simulation and board
prototype execution, checking the correctness of the obtained results against
the reference software implementation of BIKE [5].

Post-implementation simulation targeted the Artix-7 35 (xc7a35tcpg236-
1), Artix-7 50 (xc7a50tcpg236-1), and Artix-7 200 (xc7a200tsbg484-1)
Xilinx FPGAs, while board prototype execution targeted the Digilent Nexys
4 DDR board, that features an Artix-7 100 (xc7a100tcsg324-1) FPGA. In
both cases, we implemented instances of the proposed architectures for

92

5.3. Experimental setup

Functional Validation Architecture

Ctrl DUT

dutCmd
dutDataIn
dutDataOut
dutAck
dutDone

UART

cmdM2S
weM2S
dataM2S
dataS2M
ackS2M

tx
rx

clk
rst

Figure 5.1: Hardware setup for the functional validation.

each code configuration and for each target FPGA. Each hardware instance
executed 10000 operations, depending on the specific design under test,
and their results were compared with the corresponding outputs of software
execution to check their correctness.

Figure 5.1 describes the functional validation architecture used for both
post-implementation simulation and prototype execution. The functional
validation architecture is made of three parts. The FPGA controller (Ctrl)
communicates with the host computer to collect the input and return the
output, the UART module creates a communication channel between the
FPGA controller and the host computer, and the DUT block represents an
instance of the design under test. The DUT block corresponds indeed to ei-
ther a BIKE client or server core or to a QC-MDPC bit-flipping decoding or
binary polynomial inversion, multiplication, or exponentiation component.
To perform a DUT computation, the Ctrl module drives the cmdM2S and
weM2S signals to collect the inputs from the UART module. The FPGA
controller waits until the UART has sent the required data before closing the
communication, which implements a blocking protocol. Once the input has
been collected, the dutCmd signal is used to load the inputs into DUT and to
start the computation. BW bits per clock cycle of the input data are passed
to the DUT module through the dutDataIn signal. The DUT module sig-
nals the end of the computation through the dutDone control signal while
BW bits of c(x) per clock cycle are loaded into Ctrl through the c sig-
nal. The DUT and Ctrl modules exchange data through an acknowledged
protocol (see cmdDut and dutAck signals). Finally, the Ctrl module
sends the result back to the UART module through the dataM2S signal.
The Ctrl and UART modules also exchange data through an acknowledged
protocol (see cmdM2S and ackS2M signals).

93

Chapter 5. Experimental results

Table 5.4: Code parameters of the LEDAcrypt-KEM-CPA configurations [11].

Security LEDAcrypt-KEM-CPA Code parameters
level configuration n0 p v iter
AES-128 C1 2 10883 71 6

C2 3 8237 79 5
C3 4 7187 83 4

AES-192 C4 2 21011 103 6
C5 3 15373 117 5
C6 4 13109 123 4

AES-256 C7 2 35339 137 4
C8 3 25603 155 4
C9 4 21611 163 4

5.4 QC-MDPC bit-flipping decoding

The QC-MDPC bit-flipping decoding architecture discussed in Section 4.2
was evaluated with respect to its resource utilization on Xilinx Artix-7
FPGAs and to its performance compared to a reference software execution.

The proposed decoding architecture was instantiated for each of the
nine Ci LEDAcrypt-KEM-CPA code configurations listed in Table 5.4 and
compared to the corresponding software execution of two reference software
implementations of QC-MDPC bit-flipping decoding extracted from the
official implementation of the LEDAcrypt-KEM-CPA cryptoscheme [11].
The baseline C11 and AVX2-optimized software implementations of the
bit-flipping decoder were adapted to always execute iter iterations, i.e., early
termination when obtaining a syndrome with a null Hamming weight was
disabled to obtain a constant number of decoding iterations. The software-
implemented decoding was executed on an Intel Core i7-6700HQ processor,
which supports the Intel AVX2 extension and runs at a clock frequency up
to 3.5GHz.

The architecture for QC-MDPC bit-flipping decoding was implemented
on the Artix-7 12 (xc7a12tcsg325-1) and Artix-7 200 (xc7a200tsbg484-1)
FPGAs, respectively the lowest and highest end of the Xilinx Artix-7 family,
targeting a 100 MHz operating frequency, i.e., a 10 ns clock period.

The experimental results detailed in the rest of this section are reported
for only the best combination of parameters of each code configuration,
i.e., the set of parameters that produces the feasible decoder instance which
provides the best performance in terms of decoding execution time. Such
configurations have been identified after an extensive design space explo-
ration that explored four bandwidths (BWDec), i.e., 32, 64, 128 and 256

94

5.4. QC-MDPC bit-flipping decoding

Table 5.5: Configuration parameters for the decoder instances on Artix-7 FPGAs.

LEDAcrypt-KEM-CPA Artix-7 12 Artix-7 200
Configuration BWDec ParDec BWDec ParDec

C1 32 4 128 24
C2 32 4 128 32
C3 32 4 128 32
C4 32 2 128 24
C5 32 4 128 24
C6 32 4 128 24
C7 32 1 128 24
C8 32 2 128 24
C9 32 1 128 24

bits, and a set of values comprised between 1 and 32, i.e., 1, 2, 4, 8, 16, 24
and 32 bits, for the parallelism degree (ParDec) in the UPC and syndrome
update computation. The hardware decoding instances and their identified
architectural parameters are listed in Table 5.5.

5.4.1 Area results

The proposed decoder makes use of the BRAMs of the FPGA as the primary
means of storage for the inputs, the intermediate values and the result,
allowing the decoder to fit on tiny FPGAs even for codes with a large block
size p. In such a way, the maximum allowed dimension of the dense vectors
that store the syndrome, the error and the UPCs is not a function of the
available amount of flip-flops, that easily become the scarcest resources on
small FPGAs, but it is instead a function of the available BRAM storage
capacity. We note that a single BRAM can store up to 36kb and the smallest
considered FPGA features 20 BRAMs.

For each configuration of the LEDAcrypt cryptosystem, considering the
Xilinx Artix-7 12 and Artix-7 200 FPGAs, Figure 5.2 reports the normalized
resource utilization of the look-up table (LUT), flip-flops (FF), and block
RAM (BRAM) elements, as a percentage on the total available.

As expected, the use of BRAM resources dominates each design on both
the Xilinx Artix-7 12 and Artix-7 200 thus minimizing the use of flip-flops,
which are therefore never the scarcest resource. We note that even if the
flip-flop utilization is low, the unused flip-flop resources can not be exploited
to further improve the design. For example, on average the FF utilization on
the Xilinx Artix-7 12 is below 15%, while the BRAM utilization is above
95% (see Figure 5.2a). However, the entire Xilinx Artix-7 12 features 16,000
FFs, thus their contribution is lower that the storage capacity of a single

95

Chapter 5. Experimental results

(a) Xilinx Artix-7 12

(b) Xilinx Artix-7 200

Figure 5.2: Resource utilization of the proposed QC-MDPC bit-flipping decoder imple-
mented on the Xilinx Artix-7 12 and Artix-7 200 FPGAs. The utilization for LUT, FF,
and BRAM resources is expressed as a percentage of the available resources on the
target FPGA.

BRAM. In a similar manner, the FF utilization on the Xilinx Artix-7 200 is
lower than 15% for each LEDAcrypt configuration. Even in such scenario,
it is impossible to improve the design by leveraging on the FF resources.
Instead, the average BRAM resource utilization is 82%, thus the storage
capacity is never the bottleneck of the implemented designs. In contrast, the
limiting factor to a better resource utilization is the timing, which becomes
the bottleneck on the decoder implementations on the Xilinx Artix-7 200,
due to the massive parallelism that is achieved thanks to the vast amount of
available resources. However, a complete performance discussion is left to
the performance evaluation part in the following of this section.

Considering the LUT resources, we note an average utilization of 55%
and 50% on the Xilinx Artix-7 12 and Xilinx Artix-7 200, respectively.

96

5.4. QC-MDPC bit-flipping decoding

Although such resource type never becomes the scarcest one across the entire
set of considered decoder implementations, its utilization varies depending
on the actual level of parallelism of each implemented decoder, since LUTs
are used to implement the combinational logic of the decoder. Table 5.5
reports the level of parallelism for the two design-time knobs of our decoding
architecture for each combination of FPGA and LEDAcrypt configuration.
The 32-bit bandwidth (BWDec) is found to be the optimal value to implement
each LEDAcrypt configuration on the Xilinx Artix-7 12 FPGA, while the
optimal level of parallelism ParDec to maximize the computation of the two
vector-matrix multiplications in the bit-flipping procedure, i.e., UPC = H ·s
and s = H · e, ranges between 1 and 4, thus determining a variability in
the used LUTs depending on the implemented LEDAcrypt configurations.
For example, LUT utilization is around 60% for configurations in the range
C1−C6, while it drops down to 30% for C7 and C9 and it peaks to almost
90% for C8 (see Figure 5.2a). We note that ParDec is equal to 4 for C1−C6
configurations, thus determining a higher use of LUTs with respect to C7
and C9 configurations, while the latter decoder instances targeting larger
QC-MDPC codes are implemented with a ParDec value of 1. Similarly,
the large use of LUTs for C8 is motivated by both the larger QC-MDPC
code compared to the one of C1−C6 and the possibility of using a ParDec

parallelism of 2 without exceeding the available hardware resources of the
FPGA. Considering the implemented decoders on the Xilinx Artix-7 200,
the average LUT utilization is 50% with small variations between different
configurations (see Figure 5.2b). The 128-bit bandwidth has been found
optimal for the entire set of LEDAcrypt configurations, while a ParDec

value of 24 is employed for all the configurations but C2 and C3, for which
32 is used instead (see Table 5.5). Such increase in the parallelism for C2
and C3 impacts the used LUTs, for which a value slightly below 60% is
reported (see LUT for C2 and C3 in Figure 5.2b). We note one more
time that the impossibility of resorting to either a more aggressive level
of parallelism or a larger bandwidth for the decoders implemented on the
Artix-7 200 FPGA, is due to the imposed timing constraints equal to 10ns
and not to the available resources on the board. However, as explained in
the following, such decoder implementations still allow overcoming the
performance of optimized software-implemented decoders employing the
Intel AVX2 extension by 5 times, on average.

97

Chapter 5. Experimental results

Figure 5.3: Execution time (in milliseconds) of QC-MDPC bit-flipping decoding. Results
are shown for software decoding on the Intel i7 processor and for hardware decoding
on the Artix-7 12 and Artix-7 200 FPGAs.

5.4.2 Performance results

Figure 5.3 reports the performance results expressed as the execution time
to complete the bit-flipping decoding procedure for all the LEDAcrypt con-
figurations. The results are reported for each configuration considering the
two software implementations, i.e., C11 and AVX2, and the two hardware
implementations, which targets the Xilinx Artix-7 12 and Artix-7 200 FP-
GAs, respectively. As expected, the execution time increases with the size
and the weight of the QC-MDPC code for all the implementations. For
example, C11 takes 32 ms and 229 ms to complete the decoding of C1 and
C9, respectively (see Figure 5.3).

In order to highlight the actual performance speedup across the dif-
ferent implementations of the decoding procedure, Figure 5.4 reports the
performance speedup of the AVX2 software and of the two hardware im-
plementations, normalized with respect to the C11 software version. The
decoders targeting the low-end Xilinx Artix-7 12 FPGA show an execution
time comprised between 1 and 25 milliseconds, with a corresponding per-
formance improvement between 9 and 36 times (23 times on average) with
respect to the C11 software implementation.

We note that the optimized software implementation employing the Intel
AVX2 extension (AVX2) shows an average performance speedup of 108×
compared to the C11 reference software version. However, our decoders
targeting the Xilinx Artix-7 200 FPGA show a further average 5× speedup
against the performance-optimized software employing the Intel AVX2 ex-
tension (see Figure 5.4). Such results demonstrate the superior performance

98

5.5. Dense-dense binary polynomial multiplication

Figure 5.4: Performance improvement with respect to C11 software decoding executed on
the Intel i7 processor. Results are shown for AVX2 software decoding on the Intel i7
processor and for hardware decoding on the Artix-7 12 and Artix-7 200 FPGAs.

and scalability of our decoding architecture against optimized software so-
lutions exploiting custom and hardware-accelerated instructions offered by
recent high-end Intel processors.

5.5 Dense-dense binary polynomial multiplication

The dense-dense binary polynomial architecture discussed in Section 4.4 was
evaluated with respect to its resource utilization on Xilinx Artix-7 FPGAs
and to its performance compared to a reference software execution.

The proposed architecture was instantiated for each of the nine Pi
LEDAcrypt PKC configurations listed in Table 5.6 and compared to the
corresponding software execution of the binary polynomial multiplication
by exploiting the gf2x C library [21], in particular the 1.3.0 version. The gf2x
C library implements the Karatsuba, Toom-Cook and FFT multiplication al-
gorithms and represents the state-of-the-art for software-implemented large
binary polynomial multiplications. The software-implemented multiplica-
tion was executed on an Intel Core i7-6700HQ processor, which supports
the Intel AVX2 extension and runs at a clock frequency up to 3.5GHz.

The architecture for dense-dense binary polynomial multiplication was
implemented on the Artix-7 12 (xc7a12tcsg325-1) and 200 (xc7a200tsbg484-
1) FPGAs, respectively the lowest and highest end of the Xilinx Artix-7
family, targeting a 143 MHz operating frequency, i.e., a 7 ns clock period.

99

Chapter 5. Experimental results

Table 5.6: Code parameters of the LEDAcrypt-PKC configurations [11].

Security LEDAcrypt PKC Code parameters
level configuration n0 p
AES-128 P4 2 15013

P2 3 9643
P1 4 8467

AES-192 P7 2 24533
P5 3 17827
P3 4 14717

AES-256 P9 2 37619
P8 3 28477
P6 4 22853

5.5.1 Area results

The proposed dense-dense multiplier exploits a massive BRAM utilization to
store partial products and the final result with two positive side-effects. First,
the multiplier can be implemented on tiny FPGAs even for the multiplication
of large operands. In particular, the maximum allowed dimension of the
operand in bits is not function of the available amount of flip-flops, that
easily become the scarcest resources on small FPGAs, but it is function of
the available BRAM storage capacity. We note that a single BRAM can store
up to 36kbit and that the smallest considered FPGA features 20 BRAMs.
Second, the use of a nested structure to implement the multiplier where
storage elements surround the compute stage, optimizes the critical path by
construction. In particular, the critical path, which remains independent from
the number of implemented Karatsuba iterations, depends on the width (BW)
of the combinational multiplier. This, in turn, determines the critical path of
the proposed multiplier, that, however, cannot be improved by a reduction
of the value of BW. In fact, any reduction of the value of BW aiming to
optimize the critical path of the combinational multiplier generates a much
more severe overall performance degradation due to the underutilization of
the BRAM data-transfer bandwidth.

Figure 5.5 reports the normalized resource utilization for each polynomial
size of the LEDAcrypt cryptosystem considering the Xilinx Artix-7 12
and the Xilinx Artix-7 200 FPGAs. In particular, for each polynomial
size, the percentage utilization of LUT, flip-flops and BRAM elements is
reported. We note that the massive use of BRAM resources minimizes the
use of flip-flops, which are therefore never the scarcest resource, while LUT
and BRAM utilization are almost aligned even if the reported utilization
greatly differs between the two considered FPGAs. For each of the 9

100

5.5. Dense-dense binary polynomial multiplication

(a) Xilinx Artix-7 12

(b) Xilinx Artix-7 200

Figure 5.5: Resource utilization of the dense-dense multiplier implemented on Xilinx Artix-
7 12 and Artix-7 200 FPGAs. Relative utilization of LUT, FF, and BRAM resources is
expressed as the percentage of the available resources on the target FPGA.

LEDAcrypt configurations, both the Artix-7 12 and 200 FPGAs have the
internal bandwidth of the multiplier set to 64 bits, which corresponds to the
bandwidth of the BRAM memories available on the Artix-7 family, making
it an optimal choice. For Xilinx Artix-7 12, all the 9 considered polynomials
have their optimal hardware configuration with 1 Karatsuba recursion and
3 Comba multipliers, i.e., 3 partial products are computed in parallel. All
configurations almost saturate the FPGA resources in terms of LUT and
BRAM, while the low FF utilization, i.e., 8% on average, is due to the
massive use of BRAM to store intermediate values. We note that the unused
flip-flops cannot be efficiently employed, since even all together they cannot
contain the information stored in a single BRAM.

101

Chapter 5. Experimental results

Figure 5.6: Performance speedup with respect to the hardware multiplication performed
with 1 parallel Karatsuba iteration. Results are shown for hardware multipliers with a
number of parallel Karatsuba iterations varying between 2 and 5.

For Xilinx Artix-7 200, all the 9 considered polynomials have their
optimal hardware configuration with 3 Karatsuba recursion and 27 Comba
multipliers. However, the resource utilization for both the LUT and the
BRAM is limited to 50%. To better understand this supposedly low resource
utilization, we need to analyze the Karatsuba algorithm. In particular, such
algorithm allows to substitute a partial product computation with a few
binary additions in Z2[x] . Considering the proposed architecture, a new
set of BRAM is used at each iteration of the Karatsuba and additional
LUTs are used to perform the additional operations and to compose the
intermediate results into the final partial product. Moreover, the use of too
many nested Karatsuba iterations can negatively affect the performance
since the time spent to split the operands becomes bigger than the time
spent to actually perform the Comba multiplication, i.e., Comba operands
are too small. To this extent, only the use of a parallel Karatsuba iteration
offers a significant performance speedup with, however, a non-negligible
cost in terms of resource utilization. For each LEDAcrypt configuration, the
performance speedup due to the nested implementation of parallel Karatsuba
iteration is reported in Figure 5.6. The performance speedup is defined as
the ratio between the execution times on a hardware multiplier with only
1 parallel Karatsuba iteration and on hardware multipliers with a number
of parallel Karatsuba iterations comprised between 2 and 5. We note that

102

5.5. Dense-dense binary polynomial multiplication

Figure 5.7: Execution time (in microseconds) of a multiplication. Results are shown
for software multiplication on the Intel i7 core and hardware multiplication on the
Artix-7 12 and Artix-7 200 FPGAs.

its value is always significantly positive, while the number of required
BRAMs and LUTs grows 3× for each parallel Karatsuba iteration. To this
extent, the resource utilization on the Xilinx Artix-7 200 is motivated by the
impossibility to add another Karatsuba iteration due to resource limitation,
while by using a larger FPGA, such as those of the Xilinx Virtex-7 family,
the proposed multiplier can further improve its offered performance.

5.5.2 Performance results

Figure 5.7 reports the performance, i.e., the execution time, for all the 9 con-
sidered polynomial degrees, thus covering all the LEDAcrypt cryptoscheme
configurations. For each polynomial degree, results are reported for the
hardware implementations targeting the Artix-7 12 and 200 FPGAs and
for the software reference. Considering the LEDAcrypt PKC use case, a
multiplication executed with the gf2x library takes between 124 and 1510
microseconds, while our hardware multipliers implemented on the Artix-
7 12 and 200 FPGAs take respectively between 27 and 597 and between 4
and 50 microseconds.

We define the performance improvement metric as the ratio between
the execution times of a single multiplication on the software reference
implementation and on our hardware multipliers.

The Artix-7 200 implementation of the proposed multiplier, as shown

103

Chapter 5. Experimental results

Figure 5.8: Performance improvement with respect to C11 software multiplication executed
on the Intel i7 processor. Results are shown for hardware multiplication on the Artix-
7 12 and Artix-7 200 FPGAs.

in Figure 5.8, offers a performance speedup between 28.3 and 41.5 times
(33.3 times faster on average) compared to the software implementation.
Similarly, the Artix-7 12 implementation of the proposed multiplier offers a
performance speedup between 2.5 and 6.4 times (3.6 times faster on average)
compared to the software implementation. It is worth noticing that, despite
the ad-hoc hardware microarchitecture, the FPGA implementation works at
143 MHz while the software multiplication executed on an Intel i7 processor
clocked at 3.5 GHz.

5.6 Binary polynomial exponentiation

This section briefly discusses the resource utilization and performance of
the exponentiation architecture described in Section 4.5. Table 5.7 lists the
area and performance metrics for instances of the exponentiation module
targeting polynomials with length p values of 10883, 21011, 35339, as in the
L1.2, L3.2, and L5.2 LEDAcrypt KEM-CPA instances, respectively (see
C1, C4, C7 in Table 5.4). The experimental results are provided for differ-
ent values of the configurable parameters BW and ParExp to highlight how
their variations impact the area and performance metrics. The listed hard-
ware instances are synthesized and implemented on Xilinx Artix-7 FPGAs
targeting a 133MHz clock frequency, i.e., a 7.5ns clock period.

Results in Table 5.7 highlight a mostly linear impact of both the BW

104

5.7. Binary polynomial inversion

Table 5.7: Resource utilization and performance of the proposed exponentiation architec-
ture for different configurations of code and architectural parameters.

p BW ParExp LUT FF BRAM Latency [us]
10883 32 1 312 163 1 84.4

2 599 309 1.5 43.5
4 981 567 2.5 23.0
8 1891 1065 4.5 12.8
16 3501 2006 8.5 7.7
32 6451 3425 16.5 5.1

64 1 420 191 2 83.4
32 9743 4937 33 3.8
64 19291 8838 65 2.6

21011 32 1 341 177 2 162.6
32 8574 3732 33 9.9

64 1 426 203 2 160.4
32 9940 5337 33 7.4
64 17783 9331 65 4.9

35339 32 1 433 187 3 273.5
32 7982 4009 49.5 16.6

64 1 489 215 4 269.6
32 12410 5381 66 12.4
64 23812 9840 130 8.3

and ParExp configurable architectural parameters on the FPGA resource
utilization and on the execution time. Moreover, the p code parameter, i.e.,
the polynomial length, also shows a linear impact on both the area and
performance metrics. The specific inputs to the exponentiation, i.e., the
base polynomial and the integer exponent, do not impact instead in any way
the execution time of an exponentiation operation, which is computed in a
constant time for a given set of p, BW , and ParExp parameters.

Notably, the smallest instances for each polynomial length, i.e., instances
with BW and ParExp parameters set to 1 and 32, respectively, fit widely
even on the smallest chip from the Artix-7 family. The smallest instance for
polynomials with length 35339 occupies indeed 433 LUT, 187 FF, and 3
BRAM resources.

5.7 Binary polynomial inversion

This section discusses the area and the performance of the binary polynomial
inversion architecture described in Section 4.3 to demonstrate its efficiency
and scalability across the entire Xilinx Artix-7 family of mid-range FPGAs.

We adopted the LEDAcrypt-KEM-CPA [11] and BIKE [5] key encapsu-

105

Chapter 5. Experimental results

Table 5.8: Architectural parameters for hardware instances of the proposed inversion
architecture on Artix-7 12 and 200 FPGAs.

Artix-7 12 Artix-7 200
Code p BW ParExp ParDDMul BW ParExp ParDDMul

L1.4 7187 64 1 1 64 32 3
L1.3 8237 64 1 1 64 64 3
L1.2 10883 64 1 1 64 64 3
B1 12323 64 1 1 64 64 3
L3.4 13109 64 1 1 64 32 3
L3.3 15373 32 16 1 64 64 3
L3.2 21011 64 1 1 64 64 3
B3 24659 64 1 1 64 64 3
L5.4 21611 64 1 1 64 32 3
L5.3 25603 64 1 1 64 64 3
L5.2 35339 32 1 1 64 32 3
B5 40973 32 1 1 64 32 3

lation mechanisms as representative use cases to demonstrate the validity of
the proposed architecture, implementing the inversion module on all FPGAs
of the mid-range Xilinx Artix-7 family. Table 5.8 reports all the p code
parameters for BIKE and LEDAcrypt-KEM-CPA, ranging from 7187 to
40973.

The proposed architecture’s performance was compared against two
state-of-the-art software implementations running on an Intel Core i7 pro-
cessor [69] and against a state-of-the-art hardware implementation targeting
the Artix-7 FPGA family [25].

Each design instance of the proposed inversion architecture was imple-
mented at a 133MHz operating frequency,i.e., a 7.5ns clock period. For each
considered FPGA and code configuration, Table 5.8 lists the architectural
paramters of the best hardware implementation, i.e., the feasible one provid-
ing the shortest execution time for a binary polynomial inversion inversion.
Such instances were identified after exploring two bandwidths BW , 32 and
64 bits, three levels of multiplication parallelism ParDDMul, with 1, 2, and
3 Karatsuba recursions computed in parallel, and a large set of levels of
exponentiation parallelism ParExp, with values equal to the powers of 2
between 1 and BW .

The proposed architecture was compared to the reference inversion mod-
ule extracted from the hardware implementation of BIKE, that targets FP-
GAs and is freely available online [25]. The state-of-the-art reference was
implemented and simulated targeting Artix-7 FPGAs and using the same
synthesis and implementation directives used for the proposed inversion

106

5.7. Binary polynomial inversion

Table 5.9: Resource utilization, timing, and performance of the reference inversion hard-
ware instances [25].

Code BW LUT FF BRAM Freq. [MHz] Latency [ms]
B1 32 1776 342 3 100 25.20

64 4162 427 3 80 8.88
128 11721 733 6 74 3.36

B3 32 1585 311 3 100 110.02
64 4366 493 3 83 35.26

128 12025 660 6 74 12.04

architecture. We considered only the reference instances implementing the
third exponentiation strategy (see Section 3.2), since they show a lower or
equal area and higher or equal performance than the other two [89]. The
hardware reference implementation of BIKE is available in three bandwidths,
i.e., 32, 64, and 128 bits, for the security levels 1 and 3 of BIKE, while no
hardware support is available for security level 5. The proposed architecture
is hence compared to the 32-, 64-, and 128-bit bandwidth configurations
with exponentiation strategy 3 of the BIKE hardware implementation. The
instances with 32- and 64-bit bandwidth can be instantiated on an Artix-7 12
FPGA, i.e., the smallest Artix-7 chip, while the 128-bit instances must target
an Artix-7 25 or larger FPGA due to the required LUT resources. Resource
utilization, maximum clock frequency, and execution time for the reference
hardware instances of BIKE are detailed in Table 5.9.

On the software side, we compared the performance against two refer-
ence software versions of binary polynomial inversion extracted from the
implementation of LEDAcrypt-KEM-CPA. The C11 version was used as
the baseline reference design for performance evaluation, while the opti-
mized software implementation employing the Intel AVX2 extension was
considered as the top-notch reference from the point of view of performance.
Both are freely available online [69], and they were executed on an Intel
Core i7-6700HQ desktop-class CPU running at 3.5GHz.

5.7.1 Area results

The proposed architecture makes use of the BRAMs of the FPGA as the
primary means of storage, allowing the inversion module to fit on tiny
FPGAs even for codes with a large block size p. In such a way, the maximum
allowed dimension of the dense vectors that store the input, intermediate,
and output polynomials is not a function of the available amount of flip-
flops, that easily become the scarcest resources on small FPGAs, but it is

107

Chapter 5. Experimental results

(a) Xilinx Artix-7 12

(b) Xilinx Artix-7 200

Figure 5.9: Resource utilization of the proposed inversion architecture implemented on the
Xilinx Artix-7 12 and 200 FPGAs. The utilization for each resource type is expressed as
a percentage of the available resources on the target FPGA.

instead a function of the available BRAM storage capacity. We note that a
single BRAM can store up to 36kb and the smallest Artix-7 FPGA features
20 BRAMs and 16000 flip-flops, while the considered polynomial lengths
range from 7187 to 40973 bits.

Figure 5.9 reports the utilization of the LUT, flip-flop, and BRAM re-
sources as a percentage of the total available resources on the Artix-7 12
and 200 FPGAs, for polynomial lengths that suit the nine LEDAcrypt-KEM-
CPA cryptosystem configurations. Look-up tables are the most used FPGA
resource in smaller designs fitting on Artix-7 12 FPGAs. Indeed, most
best-performing designs that are still suitable for the smallest Artix-7 FPGA
require up to 99% of available LUT resources, while used BRAMs are
around 90-95%. Similarly, the majority of Artix-7 200 instances show a
slightly higher utilization of LUTs than BRAMs. Regardless of the dif-

108

5.7. Binary polynomial inversion

ferences in used FPGA resources, all designs targeting the whole range of
Artix-7 FPGAs are characterized by a wide usage of BRAMs, thus signif-
icantly minimizing the use of flip-flops. Even if the flip-flop utilization is
low, it must be noted that the unused FF resources can not be exploited to
further improve the design. For example, on average the FF utilization on
the Artix-7 12 is below 15%, while the BRAM utilization is above 90% (see
Figure 5.9a). However, an Artix-7 12 chip features 16000 FFs, thus its
storage capacity is lower than a single BRAM and insufficient to store p-bit
polynomials. In a similar manner, the FF utilization on Artix-7 200 is lower
than 10% for each LEDAcrypt configuration. Even in such scenario, it is
impossible to improve the design by leveraging the FF resources.

In contrast, we identified two main limiting factors to a higher grade of
parallelism. On the dense-dense multiplier side, increasing the ParDDMul

parallelism, i.e., implementing parallel computation of 4 or more Karatsuba
recursions, demands a number of LUTs and BRAMs that is not available on
any FPGA from the Artix-7 family. On the exponentiation side, a high level
of ParExp parallelism, which is nonetheless bounded by the BW bandwidth
parameter, may cause timing closure at implementation time to fail, thus
requiring to resort to instances with lower ParExp that work at the target
133 MHz clock frequency. As shown in Table 5.8, configurations such
as L5.4 have a ParExp value equal to 32, while other ones such as L5.3
have a ParExp value equal to 64, which is the maximum allowed value. A
lower exponentiation parallelism results in around 4% and 8% lower LUT
and BRAM utilization, respectively, on Artix-7 200 implementations with
ParExp 32 instead of 64. Notably, ParExp values comprised between 33
and 63, when coupled with a 64-bit BW bandwidth, would still require the
same exact amount of clock cycles as required by a ParExp value equal to
32, hence providing no actual advantage.

5.7.2 Performance results

The performance assessment is achieved by comparing the execution time
of the proposed inversion procedure to those of the software implementation
of LEDAcrypt and the hardware implementation of BIKE.

In particular, Table 5.10 reports the performance results for all LEDAcrypt-
KEM-CPA configurations, considering the two software references, i.e., C11
and AVX2, and the two hardware instances of the proposed architecture that
target the Artix-7 12 and 200 FPGAs. For example, C11 takes between
1.80 ms and 49.95 ms to complete the inversion, with the two extremes
corresponding to the L1.4 and L5.2 code configurations, respectively.

109

Chapter 5. Experimental results

Table 5.10: Execution times, expressed in milliseconds, of C11 and AVX2 software in-
version [69] run on a i7-6700HQ CPU and of hardware instances of the proposed
architecture on Artix-7 FPGAs.

Software [69] Proposed architecture
Code C11 AVX2 Artix-7 12 Artix-7 200
L1.4 1.80 0.20 1.18 0.10
L1.3 2.53 0.24 1.49 0.11
L1.2 4.46 0.35 2.10 0.16
L3.4 6.25 0.50 2.71 0.24
L3.3 8.11 0.78 8.56 0.28
L3.2 16.79 0.95 5.73 0.44
L5.4 19.58 1.24 6.09 0.51
L5.3 22.69 1.06 7.85 0.57
L5.2 49.95 2.43 47.61 1.11

Figure 5.10 reports the performance speedup of the AVX2 software
and the two hardware implementations, normalized with respect to the
C11 software, highlighting the actual performance improvement across
the different implementations of the inversion procedure. The performance
speedup of the x implementation is defined as the ratio between the execution
time of the C11 software (TC11) and the execution time of x (Tx), where x ∈
{AVX2, Artix-7 12, Artix-7 200}, as shown in Equation 5.1.

speedupx =
TC11

Tx

(5.1)

The inversion modules targeting the low-end Artix-7 12 FPGA show
an execution time comprised between 1.18 and 47.61 milliseconds, with a
performance speedup between 0.95 and 3.22 (2.08 on average). Notably,
the only LEDAcrypt-KEM-CPA configuration for which Artix-7 12 per-
formance is worse than C11 performance is L3.3, because of the reduced
bandwidth BW due to area constraints (specifically, LUTs). The optimized
AVX2 software implementation shows a performance speedup ranging be-
tween 8.9 and 21.4 (14.5 on average), while our inversion modules targeting
the Artix-7 200 FPGA show a performance speedup ranging between 18.3
and 45.2 (31.7 on average), compared to the C11 reference. Moreover,
our solution overcomes the AVX2 software implementation by 2.2 times
on average, thus demonstrating the superior capability compared to opti-
mized software solutions that exploit custom instructions offered by recent
high-end Intel processors.

Figure 5.11 shows the breakdown of execution times for the macro-
operations scheduled within the inversion procedure, highlighting the time

110

5.7. Binary polynomial inversion

0.1

1.0

10.0

100.0

L1.4 L1.3 L1.2 L3.4 L3.3 L3.2 L5.4 L5.3 L5.2

P
er

fo
rm

an
ce

 s
pe

ed
up

Configuration

Artix-7 12 AVX2 Artix-7 200

Figure 5.10: Performance speedup with respect to C11 software inversion. Software
inversion is executed on the i7-6700HQ CPU, while hardware inversion is implemented
on the Artix-7 12 and 200 FPGAs.

0%

20%

40%

60%

80%

100%

L1.4 L1.3 L1.2 L3.4 L3.3 L3.2 L5.4 L5.3 L5.2

E
xe

cu
ti

on
 ti

m
e

(%
)

Configuration

Exp Mul Exp+Mul Exp Mul Exp+MulA12 A200

Figure 5.11: Breakdown of the execution times of the inversion macro-operations, for
instances of the proposed architecture targeting the Artix-7 12 and 200 FPGAs.

spent computing exponentiations, multiplications, and concurrent exponen-
tiations and multiplications. For each configuration of the LEDAcrypt code,
the left and right columns specify the breakdown of the execution times for
instances of the inversion targeting the Artix-7 12 and 200 FPGAs, respec-
tively. We note that, for each reported result, the corresponding architectural
parameters and performance results are reported in Table 5.8 and Table 5.10,
respectively. Figure 5.11 highlights a large fraction of the execution time
spent in performing the concurrent execution of the multiplication and the
exponentiation. Such value is comprised between 20% and 57% (35% on
average) on Artix-7 12 and between 27% and 60% (41% on average) on
Artix-7 200 instances. Considering the performance benefit due to the op-

111

Chapter 5. Experimental results

0.1

1.0

10.0

100.0

B1 B3

E
xe

cu
ti

on
 ti

m
e

(m
s)

Configuration

B32BIKE B64 B128 Artix-7 12 15 25 35 50 75 100 200

Figure 5.12: Execution time of inversion. Results are shown for the reference hardware
implementation and for instances of our inversion architecture on all Artix-7 FPGAs.

timized hardware scheduling as well as its theoretical analysis detailed in
Section 4.3.4, we note that the fraction of the execution time spent perform-
ing concurrent exponentiations and multiplications grows higher according
to two factors, i.e., the Hamming weight of the binary encoding of the
(p− 2) value and the difference in execution time between exponentiations
and multiplications, which depends on the level of parallelism for each
module.

The performance achieved by the proposed architecture is also compared
to the BIKE reference hardware. Figure 5.12 reports the execution time
to complete the inversion procedure of BIKE for polynomial lengths re-
quired to implement AES-128 and AES-192 security, i.e., B1 and B3 in
Table 2.1. We note that the reference hardware does not support the BIKE
configuration with AES-256 security, thus we could not compare our ar-
chitecture performance with respect to the B5 polynomial length. Results
are reported for state-of-the-art hardware accelerators with 32-, 64-, and
128-bit bandwidth, and for instances of the proposed architecture targeting
each FPGA of the Artix-7 family. We remark that the reference hardware
instances of BIKE with 128-bit bandwidth only fit the Artix-7 25 and larger
FPGAs. In contrast, each of our inversion instances was chosen to provide
the best possible performance while satisfying the resource availability of
all the target FPGAs using a 133 MHz operating frequency. Compared
to the BIKE reference hardware, our solution provides a speedup ranging
from 1.4 to 18.1 for B1 and between 1.6 and 21.5 for B3. The minimum
and maximum speedup are achieved on the Artix-7 12 and 200 FPGAs,
respectively, while the other instances of our scalable architecture provide a

112

5.8. Dense-sparse binary polynomial multiplication

Table 5.11: Architectural parameters, resources, and performance of inversion instances
that target the B3 code.

Artix-7 BW ParExp ParDDMul LUT FF BRAM Latency [ms]
12 64 1 1 7954 1782 18 7.44
15 64 8 1 10180 2952 25 5.50
25 64 16 1 12568 4274 33 5.36
35 64 32 1 17291 6899 49 5.29
50 64 16 2 26787 7310 69 1.61
75 64 32 2 31547 9935 85 1.54
100 64 64 2 39319 14945 117 1.50
200 64 64 3 81928 24626 225 0.56

range of intermediate speedup values.
To further investigate the performance improvements, Table 5.11 reports

the architectural parameters, resource utilization, and performance of the
inversion instances on the Artix-7 FPGAs, considering the B3 polynomial
length (see Table 2.1). The experimental results confirm that the higher
time complexity of the multiplication with respect to the exponentiation (see
Section 4.4.3 and Section 4.5.3) may suggest favoring the optimization of
the former over the latter. For example, the execution time decreases from
1.50ms to 0.56ms by increasing the multiplication parallelism ParDDMul

from 2 to 3 (see lines Artix-7 100 and 200 in Table 5.11). However, results
in Table 5.11 also highlight the critical contribution to the overall perfor-
mance of inversion given by optimizing the exponentiation component. For
instance, the execution time drops from 7.44ms to 5.29ms by increasing the
exponentiation parallelism ParExp from 1 to 32 (see lines Artix-7 12 and
35 in Table 5.11).

5.8 Dense-sparse binary polynomial multiplication

This section briefly discusses the resource utilization and performance of the
dense-sparse multiplication architecture described in Section 4.6. Table 5.12
lists the area and performance metrics for instances of the dense-sparse
multiplication module targeting polynomials with length p values of 12323
and 24659, as in the SL1 and SL3 instances of BIKE, respectively (see B1
and B3 in Table 2.1). In addition, the SL1 case considers two different
Hamming weights HW of the sparse operand, which correspond to the v
and t parameters of the BIKE code. The experimental results are provided
for different values of the configurable architectural parameters BW and
ParDSMul to highlight how their variations impact the area and performance

113

Chapter 5. Experimental results

Table 5.12: Resource utilization and performance of the proposed dense-sparse multiplica-
tion architecture for different configurations of code and architectural parameters.

Code parameters Arch. parameters
p HW BW ParDSMul LUT FF BRAM Latency [us]
12323 71 32 1 435 237 1.5 278.34

4 1442 782 5.0 70.58
16 5274 2976 19.5 19.62

64 1 643 294 2.5 141.31
16 8604 3935 35.5 9.97
64 34235 15608 140.5 4.00

128 64 73480 27998 268.5 2.08
134 32 16 5274 2976 19.5 35.30

64 16 8604 3935 35.5 17.93
64 34235 15608 140.5 5.99

128 64 73480 27998 268.5 3.11
24659 103 32 16 6378 2865 35.5 54.41

64 16 8550 4306 35.5 27.46
64 35044 17098 141.5 7.86

128 64 72346 25376 269.5 4.00

metrics. The listed hardware instances are synthesized and implemented on
Artix-7 FPGAs targeting a 100MHz clock frequency, i.e., a 10ns period.

Results in Table 5.12 highlight the impact of the BW and ParDSMul

architectural parameters on the resource utilization and latency, with the
former increasing and the latter reducing, respectively, in a linear way as the
two parameters grow larger. Moreover, an increase in the Hamming weight
HW of the sparse operand is shown to result in a linearly proportional
increase in the multiplication latency, whereas the area occupation is un-
modified. Finally, the p code parameter also demonstrates a linear increase
impact on the execution time of the operation. Notably, the specific inputs
to the dense-sparse multiplication, i.e., both the dense and sparse operands,
do not impact instead in any way the execution time of a multiplication,
which is computed in a constant time for a given set of p, HW , BW , and
ParDSMul parameters.

5.9 KEM primitives

The complexity-oriented heuristic detailed in Section 4.8 drove the design
space exploration and led to the identification of the configurable parameters
for the various client and server core instances. The parameters identified
from the design space exploration are listed in Table 5.13. They refer to

114

5.9. KEM primitives

Table 5.13: Architectural parameters for the client and server instances of the proposed ar-
chitecture identified through the complexity-based heuristic. − denotes non-instantiated
components. Refer to Table 2.1 for the related BIKE code parameters.

Target Architectural parameters
Core Artix-7 Code BW ParDec ParDSMul ParDDMul ParExp

Client 50 B1 64 2 2 1 4
B3 64 2 2 1 2

200 B1 64 24 12 3 32
B3 64 20 12 3 32

Server 35 B1 64 − 12 − −
B3 64 − 10 − −

200 B1 64 − 136 − −
B3 64 − 104 − −

both client and server cores implementing NIST security level 1 and 3 BIKE
instances on the smallest feasible and largest Artix-7 FPGAs.

The rest of this section discusses the area and performance of such eight
proposed implementations while also comparing them to the state-of-the-art
reference ones.

5.9.1 Area results

The proposed architecture makes extensive use of the FPGA BRAM for
storage purposes, allowing the cryptographic core to fit on smaller FPGAs
even for codes with a large block size p. Flip-flops would otherwise quickly
become the scarcest resources on small FPGAs, due to the need to store
multiple p-bit vectors, where p ranges between 12323 and 24659. Indeed,
the smallest considered FPGA, i.e., Artix-7 35, features just 41600 flip-flops
while, instead, packing 50 36kb BRAM memories, that can store overall up
to 1843200 bits.

However, we identified a few factors that concurred to limit the maximum
degree of parallelism. For the multiplier component Mul, the ParDSMul

parallelism is bounded by the values of v and t. Concerning the inversion
component Inv, increasing the ParDDMul parallelism over 3, i.e., imple-
menting parallel computation of 4 or more Karatsuba recursions within the
multiplier functional unit, requires a number of LUTs and BRAMs that is
not available on any FPGA from the Artix-7 family. The ParExp parallelism
is instead bounded by the value of the bandwidth BW . Finally, the degree
of parallelism ParExp of the decoding component Dec is limited by the
imposed timing constraint of a 91MHz clock frequency.

The resource utilization, in terms of LUTs, flip-flops, and blocks of

115

Chapter 5. Experimental results

Table 5.14: Area results for the proposed client cores, expressed in terms of look-up
tables (LUT), flip-flops (FF), and block RAM (BRAM), and relative resource utilization,
expressed as a percentage within round brackets.

Artix-7 50 Artix-7 200
Code LUT FF BRAM LUT FF BRAM
B1 31792 17805 43.5 126510 51492 357

(98%) (27%) (58%) (94%) (19%) (98%)
B3 31411 20181 45.5 124891 53067 360

(96%) (31%) (61%) (93%) (20%) (99%)
Available 32600 65200 75 134600 269200 365

Table 5.15: Area results for the proposed server cores, expressed in terms of look-up
tables (LUT), flip-flops (FF), and block RAM (BRAM), and relative resource utilization,
expressed as a percentage within round brackets.

Artix-7 35 Artix-7 200
Code LUT FF BRAM LUT FF BRAM
B1 19804 11401 30 91422 46208 275.5

(95%) (27%) (60%) (68%) (17%) (75%)
B3 19979 12282 28 72725 37795 235.5

(96%) (30%) (56%) (54%) (14%) (65%)
Available 20800 41600 50 134600 269200 365

BRAM, for the instances targeting the Artix-7 35 and 200 FPGAs of the pro-
posed client and server architectures is detailed in Table 5.14 and Table 5.15,
respectively.

The reported results demonstrate how the proposed cryptographic cores
can scale from the smaller Artix-7 35 FPGA up to the larger Artix-7 200
FPGA. Moreover, they show that BRAM memories are the most used
resources, relatively to the ones available on the target chip, on the larger
Artix-7 200 FPGAs, while instances targeting the smaller chips are bounded
by the LUT utilization. The proposed architectures usually employ a large
fraction of the available look-up tables, while requiring a smaller fraction of
flip-flops.

On the contrary, as shown in Table 5.16, the state-of-the-art implemen-
tation [89] chosen as the hardware reference can not effectively use all the
resources available on larger FPGAs, since the high-speed instance employs
only 32%, 2%, and 11% of the LUT, FF, and BRAM resources available on
the largest Artix-7 FPGA, respectively.

116

5.9. KEM primitives

Table 5.16: Area results for the reference hardware implementation [89] split into client
and server cores, expressed in terms of look-up tables (LUT), flip-flops (FF), and block
RAM (BRAM), and relative resource utilization, expressed as a percentage within round
brackets.

Lightweight (LW) [89] High-speed (HS) [89]
Core Code LUT FF BRAM LUT FF BRAM
Client B1 11454 4602 14 43084 610 39

(55%) (11%) (28%) (32%) (2%) (11%)
B3 − − − − − −

Server B1 6730 3298 3 14829 3471 10
(32%) (8%) (6%) (6%) (1%) (3%)

B3 − − − − − −

Available 20800 41600 50 134600 269200 365

5.9.2 Performance results

The performance of the proposed architectures is assessed by comparing
the execution times of client-side and server-side computations to those of
the C99 and AVX2 reference software and hardware implementations of
BIKE. To better evaluate the performance compared to software execution,
we define the speedup as the ratio between the execution time of the AVX2
software and the one resulting from the execution on a specific software or
hardware instance. A speedup value greater than 1 indicates a performance
improvement over the AVX2 software while a value below 1 corresponds to
worse performance.

Table 5.17 reports the performance results for the two software references,
i.e., C99 and AVX2, the instances of the proposed client architecture that
target the Artix-7 50 and 200 FPGAs, and the lightweight and high-speed
instances of the reference hardware implementations [88, 89]. Performance
data are reported as the execution time, expressed in milliseconds, and
as the corresponding speedup over AVX2 software execution, reported
within round brackets. The instance of the proposed client architecture
targeting the Artix-7 50 FPGA provides a hardware support that is around
six times slower than the reference AVX2 software execution, as shown
by the speedup of 0.18× for the B1 and B3 BIKE configurations. On the
contrary, instantiating the client module on the Artix-7 200 FPGA results
in a significant performance improvement over the AVX2 reference, with
speedups of 1.78× for B1 and 1.91× for B3. Referring to the B1 use case
in the client scenario, our Artix-7 50 implementation is around six times

117

Chapter 5. Experimental results

Table 5.17: Client-side execution times, expressed in milliseconds, and speedup over AVX2
software.

CPU [5] FPGA Our FPGA [89] FPGA [88]
Code C99 AVX2 A7 50 A7 200 LW HS LW HS
B1 8.56 1.03 5.71 0.58 35.25 4.66 10.69 3.56

0.12× 0.18× 1.78× 0.03× 0.22× 0.10× 0.29×
B3 27.65 3.40 19.27 1.71 − − 35.75 11.32

0.12× 0.18× 1.91× 0.09× 0.30×

Table 5.18: Server-side execution times, expressed in milliseconds, and speedup over AVX2
software.

CPU [5] FPGA Our FPGA [89] FPGA [88]
Code C99 AVX2 A7 35 A7 200 LW HS LW HS
B1 0.28 0.05 0.03 0.03 1.25 0.13 0.44 0.13

0.18× 1.70× 1.70× 0.04× 0.38× 0.11× 0.38×
B3 0.92 0.11 0.08 0.06 − − 1.35 0.37

0.12× 1.38× 1.83× 0.08× 0.30×

faster than the lightweight instance of [89], while our Artix-7 200 client
implementation is around eight times faster than the high-speed instance
of [89]. The proposed Artix-7 50 and Artix-7 200 client modules also
outperform the state-of-the-art hardware implementations in [88], as shown
in Table 5.17. Considering both security level 1 and 3 instances of BIKE,
the lightweight and high-speed instances of [88] provide indeed speedups
up to 0.1× and 0.3×, compared to the speedups as low as 0.18× and 1.78×
of the smallest and largest instances of the proposed architecture.

Table 5.18 provides instead performance data for the server-side hardware
support. In the server scenario, both the Artix-7 35 and Artix-7 200 instances
improve performance over AVX2. Artix-7 35 provides speedups of 1.70×
and 1.38× for B1 and B3, while Artix-7 200 is 1.70× and 1.83× faster than
AVX2, respectively. Moreover, both the Artix-7 35 and 200 implementations
of our server architectures outperform the high-speed instances of both state-
of-the-art [89] and [88] hardware implementations. As shown in Table 5.18,
considering both security level 1 and 3 instances of BIKE, the lightweight
and high-speed instances of [88] provide indeed speedups up to 0.11× and
0.38×, compared to the speedups as low as 1.38× and 1.70× of the smallest
and largest instances of the proposed architecture.

118

CHAPTER6
Conclusions

The definition of novel cryptography solutions is paramount in the wake
of the advancements of quantum computing. The threat posed by quantum
computers, which are expected to make traditional public-key cryptography
solutions obsolete, is driving the research effort in the field of post-quantum
computing.

BIKE is a post-quantum KEM that is a candidate for standardization
within the NIST post-quantum cryptography standardization process. Newly-
defined standards for cryptography must not only provide the desired security
against both traditional and quantum attacks, but they must also provide a
performance that enables a satisfactory quality of service when deployed in
real-world use cases. While there already exist hardware solutions that can
support QC-MDPC code-based cryptography, most of them are tailored to
codes with dimensions in the order of hundreds of bits, while others either
do not provide sufficient performance or do not make an efficient use of all
the resources available on the target FPGA chips.

This thesis presented a configurable FPGA-based hardware architecture
that implements the BIKE QC-MDPC code-based cryptosystem, with the
aim of improving performance over the existing state-of-the-art software
and hardware solutions. The proposed architecture provides an effective

119

Chapter 6. Conclusions

FPGA-based hardware support for QC-MDPC codes that are suitable to
post-quantum cryptography applications. It exploits a set of configurable
code and architectural parameters that allow using a single design to support
different QC-MDPC codes underlying the PQC cryptosystems and to target
any FPGA chip from the Xilinx Artix-7 family. Different area-performance
trade-offs can be explored through the parametric configurability to satisfy
the performance requirements and the area constraints set for the overall
system that integrates the BIKE hardware support.

The proposed architecture implements two modules that support the
KEM primitives to be executed on the client and server nodes of the key
exchange, repsectively. The experimental evaluation carried out on the
proposed architecture highlight significant improvements over the state-of-
the-art software and hardware implementations of BIKE from the literature.

On the one hand, compared to the reference software implementation,
which exploits the Intel AVX2 extension on desktop-class CPUs, the client
and server instances provide a performance speedup up to 1.91× and 1.83×,
respectively. In addition, the instances of the proposed architecture targeting
the smaller Artix-7 50 FPGAs chips still outperform the software execution
of baseline, non-AVX2-optimized code on the same CPU.

On the other hand, the proposed FPGA-based BIKE architecture also
outperforms the other hardware implementations available from literature,
including both HLS-generated and human-designed ones, and provides a
speedup over the fastest state-of-the-art FPGA-based instance of up to 6×.

Future extensions of the work presented in this thesis include the develop-
ment of an ISA extension that allows an effective acceleration of QC-MDPC
code-based post-quantum cryptography on RISC-V CPUs.

120

APPENDIXA
List of publications

This appendix lists in detail the scientific publications resulting from the
research carried out during the PhD period.

Section A.1 lists the main papers related to this thesis, whose content
was presented in the previous chapters. The author of this thesis contributed
to the papers listed in Section A.1 for both the theoretical and experimental
parts, also in works where he was not the first author. Section A.2 lists
works covering other topics and resulting from the collaboration with other
researchers.

121

Appendix A. List of publications

A.1 Main publications

• Title: Flexible and Scalable FPGA-Oriented Design of Multipliers for
Large Binary Polynomials.
Authors: Davide Zoni, Andrea Galimberti, and William Fornaciari.
Journal: IEEE Access.
Year: 2020.
Volume: 8.
Pages: 75809–75821.
DOI: 10.1109/ACCESS.2020.2989423.
Cited as: [111].
Personal contribution: Contributed to the implementation and verifi-
cation. Also contributed to the writing of the paper.

• Title: Efficient and Scalable FPGA-Oriented Design of QC-LDPC
Bit-Flipping Decoders for Post-Quantum Cryptography.
Authors: Davide Zoni, Andrea Galimberti, and William Fornaciari.
Journal: IEEE Access.
Year: 2020.
Volume: 8.
Pages: 163419–163433.
DOI: 10.1109/ACCESS.2020.3020262.
Cited as: [110].
Personal contribution: Contributed to the implementation and verifi-
cation. Also contributed to the writing of the paper.

• Title: Efficient and scalable FPGA design of GF(2m) inversion for
post-quantum cryptosystems.
Authors: Andrea Galimberti, Gabriele Montanaro, and Davide Zoni.
Journal: IEEE Transactions on Computers.
Year: 2022.
DOI: 10.1109/TC.2022.3149422.
Cited as: [43].
Personal contribution: Design and implementation leader. Also
contributed to the writing of the paper.

122

A.1. Main publications

• Title: On the Use of Hardware Accelerators in QC-MDPC Code-Based
Cryptography.
Authors: Andrea Galimberti, Davide Galli, Gabriele Montanaro, William
Fornaciari, and Davide Zoni.
Book title: Proceedings of the 19th ACM International Conference on
Computing Frontiers.
Year: 2022.
Pages: 193–194.
DOI: 10.1145/3528416.3530243.
Cited as: [42].
Personal contribution: Contributed to the design, implementation,
and verification. Also contributed to the writing of the paper.

• Title: FPGA implementation of BIKE for quantum-resistant TLS.
Authors: Andrea Galimberti, Davide Galli, Gabriele Montanaro, William
Fornaciari, and Davide Zoni.
Book title: 2022 25th Euromicro Conference on Digital System Design
(DSD).
Year: 2022.
Pages: 539–547.
Cited as: [41].
Personal contribution: Contributed to the design, implementation,
and verification. Also contributed to the writing of the paper.

• Title: Hardware-Software Co-Design of BIKE with HLS-Generated
Accelerators.
Authors: Gabriele Montanaro, Andrea Galimberti, Ernesto Colizzi,
and Davide Zoni.
Book title: 2022 29th IEEE International Conference on Electronics,
Circuits and Systems (ICECS).
Year: 2022.
Pages: 1-4.
DOI: 10.1109/ICECS202256217.2022.9970992.
Cited as: [74].
Personal contribution: Contributed to the design, implementation,
and verification. Also contributed to the writing of the paper.

123

Appendix A. List of publications

A.2 Other publications

• Title: VGM-Bench: FPU Benchmark Suite for Computer Vision, Com-
puter Graphics and Machine Learning Applications.
Authors: Luca Cremona, Wiliam Fornaciari, Andrea Galimberti, An-
drea Romanoni, and Davide Zoni.
Book title: Embedded Computer Systems: Architectures, Modeling,
and Simulation: 20th International Conference, SAMOS 2020, Samos,
Greece, July 5-9, 2020, Proceedings.
Year: 2020.
Pages: 323–335.
DOI: 10.1007/978-3-030-60939-9_23.
Personal contribution: Contributed to the verification of the project.

• Title: An FPU design template to optimize the accuracy-efficiency-
area trade-off.
Authors: Davide Zoni, Andrea Galimberti, and William Fornaciari.
Journal: Sustainable Computing: Informatics and Systems.
Volume: 29.
Pages: 100450.
Year: 2021.
DOI: 10.1016/j.suscom.2020.100450.
Personal contribution: Contributed to the design, implementation,
and verification. Also contributed to the writing of the paper.

• Title: TEXTAROSSA: Towards EXtreme scale Technologies and Ac-
celerators for euROhpc hw/Sw Supercomputing Applications for exas-
cale.
Authors: Giovanni Agosta, Daniele Cattaneo, Wiliam Fornaciari, An-
drea Galimberti et al.
Book title: 2021 24th Euromicro Conference on Digital System Design
(DSD).
Year: 2021.
Pages: 286–294.
DOI: 10.1109/DSD53832.2021.00051
Personal contribution: Team member in the TEXTAROSSA EU
project on the power monitoring topic.

124

A.2. Other publications

• Title: Cost-effective fixed-point hardware support for RISC-V embed-
ded systems.
Authors: Davide Zoni and Andrea Galimberti.
Journal: Journal of Systems Architecture.
Volume: 126.
Pages: 102476.
Year: 2022.
DOI: 10.1016/j.sysarc.2022.102476.
Personal contribution: Contributed to the implementation and verifi-
cation. Also contributed to the writing of the paper.

• Title: On the Effectiveness of True Random Number Generators Im-
plemented on FPGAs.
Authors: Davide Galli, Andrea Galimberti, Wiliam Fornaciari, and
Davide Zoni.
Book title: Embedded Computer Systems: Architectures, Modeling,
and Simulation: 22nd International Conference, SAMOS 2022, Samos,
Greece, July 3-7, 2022, Proceedings.
Year: 2022.
Pages: 315–326.
DOI: 10.1007/978-3-031-15074-6_20.
Personal contribution: Contributed to the writing of the paper.

• Title: Towards EXtreme scale Technologies and Accelerators for eu-
ROhpc hw/Sw Supercomputing Applications for exascale: the TEX-
TAROSSA Approach.
Authors: Giovanni Agosta, . . . , Andrea Galimberti et al.
Journal: Microprocessors and Microsystems.
Year: 2022.
DOI: 10.1016/j.micpro.2022.104679.
Personal contribution: Team member in the TEXTAROSSA EU
project on the power monitoring topic.

125

List of Figures

1.1 Temporal evolution of the qubits per quantum computer. . . 2
1.2 Key exchange using a KEM. 4
1.3 Public key and ciphertext size of NIST Round 4 KEMs. . . . 6
1.4 Performance of NIST Round 4 KEMs on a x86-64 CPU. . . 7

2.1 Schoolbook and Comba methods for long multiplication. . . 18
2.2 Comba and Karatsuba methods for long multiplication. . . . 20
2.3 Example of exponentiation. 22
2.4 Tanner graph of an MDPC code. 24

4.1 Architecture of the key generation and decapsulation modules. 45
4.2 Architecture of the encapsulation module. 47
4.3 Top-level view of the bit-flipping decoding architecture. . . 51
4.4 Detailed view of the dual-memory architecture. 53
4.5 Detailed view of the parallel dual-memory architecture. . . . 56
4.6 Top-view architecture of the inversion module. 62
4.7 Temporal evolution of the inversion algorithm. 64
4.8 Top view of the dense-dense multiplication architecture. . . 67
4.9 Architecture of the proposed Karatsuba multiplier. 69
4.10 Architecture of the proposed Comba multiplier. 71
4.11 Example of parallelized exponentiation. 74
4.12 Detailed view of the proposed exponentiation architecture. . 76
4.13 Architecture of SHAKE-based PRNG. 81

5.1 Hardware setup for the functional validation. 93

127

List of Figures

5.2 Resource utilization of the QC-MDPC bit-flipping decoder. . 96
5.3 Execution time of QC-MDPC BF decoding. 98
5.4 Performance improvement with respect to software decoding. 99
5.5 Resource utilization of the dense-dense multiplier. 101
5.6 Speedup varying the number of parallel Karatsuba iterations. 102
5.7 Execution time of a multiplication. 103
5.8 Performance speedup with respect to software multiplication. 104
5.9 Resource utilization of the inversion architecture. 108
5.10 Performance speedup with respect to C11 software inversion. 111
5.11 Breakdown of the inversion execution times. 111
5.12 Execution time of inversion. 112

128

List of Tables

1.1 Status of the NIST PQC standardization process. 5

2.1 Parameters of QC-MDPC codes for BIKE. 13

4.1 Breakdown of BIKE software percentage execution times. . 49
4.2 Temporal evolution of the decoding pipelined execution. . . 58

5.1 Breakdown of the software execution times of BIKE. 86
5.2 Breakdown of the hardware execution times of BIKE. 88
5.3 Available resources on Xilinx Artix-7 FPGAs. 92
5.4 Code parameters of the LEDAcrypt-KEM-CPA configurations. 94
5.5 Configuration parameters for the decoder instances. 95
5.6 Code parameters of the LEDAcrypt-PKC configurations. . . 100
5.7 Area and performance of exponentiation. 105
5.8 Architectural parameters for inversion instances. 106
5.9 Area, timing, and performance of reference inversion instances. 107
5.10 Execution times of the inversion architecture. 110
5.11 Parameters, area, and performance of inversion. 113
5.12 Area and performance of dense-sparse multiplication. 114
5.13 Architectural parameters for client and server instances. . . . 115
5.14 Area results for the proposed client cores. 116
5.15 Area results for the proposed server cores. 116
5.16 Area results for the reference client and server cores. 117
5.17 Client-side execution times and speedup over AVX2 software. 118
5.18 Server-side execution times and speedup over AVX2 software. 118

129

Bibliography

[1] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jurjen
Bos, Jean-Christophe Deneuville, Arnaud Dion, Philippe Gaborit, Jérôme Lacan, Edoardo
Persichetti, Jean-Marc Robert, Pascal Véron, and Gilles Zémor. HQC website. https:
//pqc-hqc.org/, 2017.

[2] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja Lange, Ingo
von Maurich, Rafael Misoczki, Ruben Niederhagen, Kenneth G. Paterson, Edoardo Persichetti,
Christiane Peters, Peter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin
Tomlinson, and Wen Wang. Classic McEliece website. https://classic.mceliece.
org/, 2017.

[3] Amazon Web Services - Labs. Additional implementation of bike (bit flipping key encapsula-
tion). https://github.com/awslabs/bike-kem, 2020.

[4] Daniel Apon, Ray Perlner, Angela Robinson, and Paolo Santini. Cryptanalysis of ledacrypt.
In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO
2020, pages 389–418, Cham, 2020. Springer International Publishing.

[5] Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-
Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Güneysu, Carlos Aguilar Melchor,
Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, Valentin Vasseur,
and Gilles Zémor. BIKE website. https://www.bikesuite.org/, 2017.

[6] Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-
Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Güneysu, Carlos Aguilar Melchor,
Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, Valentin Vasseur,
and Gilles Zémor. BIKE: Bit flipping key encapsulation - round 3 submission. https:
//bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf, 2021.

[7] Juan M Arrazola, Ville Bergholm, Kamil Brádler, Thomas R Bromley, Matt J Collins, Ish
Dhand, Alberto Fumagalli, Thomas Gerrits, Andrey Goussev, Lukas G Helt, et al. Quantum
circuits with many photons on a programmable nanophotonic chip. Nature, 591(7848):54–60,
2021.

[8] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak
Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quantum supremacy
using a programmable superconducting processor. Nature, 574(7779):505–510, 2019.

131

https://pqc-hqc.org/
https://pqc-hqc.org/
https://classic.mceliece.org/
https://classic.mceliece.org/
https://github.com/awslabs/bike-kem
https://www.bikesuite.org/
https://bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf
https://bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf

Bibliography

[9] R. Azarderakhsh and A. Reyhani-Masoleh. Low-complexity multiplier architectures for single
and hybrid-double multiplications in gaussian normal bases. IEEE Transactions on Computers,
62(4):744–757, April 2013.

[10] Marco Baldi. QC-LDPC code-based cryptography. Springer Science & Business, 2014.

[11] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and Paolo Santini.
LEDAcrypt website. https://www.ledacrypt.org/, 2017.

[12] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and Paolo Santini.
LEDAcrypt: Low-density parity-check code-based cryptographic systems. https://www.
ledacrypt.org/documents/LEDAcrypt_v3.pdf, 2020.

[13] Alessandro Barenghi, William Fornaciari, Andrea Galimberti, Gerardo Pelosi, and Davide
Zoni. Evaluating the trade-offs in the hardware design of the ledacrypt encryption functions.
In 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS),
pages 739–742, 2019.

[14] Alessandro Barenghi and Gerardo Pelosi. A comprehensive analysis of constant-time polyno-
mial inversion for post-quantum cryptosystems. In Proceedings of the 17th ACM International
Conference on Computing Frontiers, CF ’20, pages 269–276, New York, NY, USA, 2020.
Association for Computing Machinery.

[15] E. Berlekamp. Goppa codes. IEEE Transactions on Information Theory, 19(5):590–592, 1973.

[16] Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography - PKC 2006, pages
207–228, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[17] Daniel J Bernstein and Tanja Lange. Post-quantum cryptography. Nature, 549(7671):188–194,
2017.

[18] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd computation and modular inver-
sion. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019(3):340–
398, May 2019.

[19] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny
Van Keer. Keccak implementation overview. https://keccak.team/obsolete/
Keccak-implementation-3.1.pdf, 2011.

[20] Joppe Bos, Leo Ducas, Eike Kiltz, T Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter
Schwabe, Gregor Seiler, and Damien Stehle. Crystals - kyber: A cca-secure module-lattice-
based kem. In 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pages
353–367, 2018.

[21] Richard P. Brent, Pierrick Gaudry, Emmanuel Thomé, and Paul Zimmermann. gf2x website.
http://gf2x.gforge.inria.fr/.

[22] Richard P. Brent, Pierrick Gaudry, Emmanuel Thomé, and Paul Zimmermann. Faster mul-
tiplication in gf(2)[x]. In Alfred J. van der Poorten and Andreas Stein, editors, Algorithmic
Number Theory, pages 153–166, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[23] H. Brunner, A. Curiger, and M. Hofstetter. On computing multiplicative inverses in gf(2/sup
m/). IEEE Transactions on Computers, 42(8):1010–1015, 1993.

[24] Wouter Castryck and Thomas Decru. An efficient key recovery attack on sidh (preliminary
version). Cryptology ePrint Archive, Paper 2022/975, 2022. https://eprint.iacr.
org/2022/975.

[25] Chair for Security Engineering @ Ruhr-Universität Bochum. Folding bike: Scal-
able hardware implementation for reconfigurable devices. https://github.com/
Chair-for-Security-Engineering/BIKE, 2021.

132

https://www.ledacrypt.org/
https://www.ledacrypt.org/documents/LEDAcrypt_v3.pdf
https://www.ledacrypt.org/documents/LEDAcrypt_v3.pdf
https://keccak.team/obsolete/Keccak-implementation-3.1.pdf
https://keccak.team/obsolete/Keccak-implementation-3.1.pdf
http://gf2x.gforge.inria.fr/
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://github.com/Chair-for-Security-Engineering/BIKE
https://github.com/Chair-for-Security-Engineering/BIKE

Bibliography

[26] Ming-Shing Chen, Tung Chou, and Markus Krausz. Optimizing bike for the intel haswell
and arm cortex-m4. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(3):97–124, Jul. 2021.

[27] Ming-Shing Chen, Tim Güneysu, Markus Krausz, and Jan Philipp Thoma. Carry-less to bike
faster. In Giuseppe Ateniese and Daniele Venturi, editors, Applied Cryptography and Network
Security, pages 833–852, Cham, 2022. Springer International Publishing.

[28] Isaac L. Chuang, Neil Gershenfeld, and Mark Kubinec. Experimental implementation of fast
quantum searching. Phys. Rev. Lett., 80:3408–3411, Apr 1998.

[29] A. Cilardo. Fast Parallel GF(2m) Polynomial Multiplication for All Degrees. IEEE Transac-
tions on Computers, 62(5):929–943, May 2013.

[30] P. G. Comba. Exponentiation cryptosystems on the ibm pc. IBM Systems Journal, 29(4):526–
538, 1990.

[31] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976.

[32] N. Drucker, S. Gueron, and V. Krasnov. Fast multiplication of binary polynomials with the
forthcoming vectorized vpclmulqdq instruction. In 2018 IEEE 25th Symposium on Computer
Arithmetic (ARITH), pages 115–119, June 2018.

[33] Nir Drucker, Shay Gueron, and Dusan Kostic. Fast polynomial inversion for post quantum
qc-mdpc cryptography. In Shlomi Dolev, Vladimir Kolesnikov, Sachin Lodha, and Gera Weiss,
editors, Cyber Security Cryptography and Machine Learning, pages 110–127, Cham, 2020.
Springer International Publishing.

[34] Nir Drucker, Shay Gueron, and Dusan Kostic. Qc-mdpc decoders with several shades of gray.
In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography, pages 35–50,
Cham, 2020. Springer International Publishing.

[35] Morris Dworkin. Sha-3 standard: Permutation-based hash and extendable-output functions,
2015-08-04 2015.

[36] Haining Fan and M. Anwar Hasan. A survey of some recent bit-parallel gf(2n) multipliers.
Finite Fields and Their Applications, 32:5–43, 2015. Special Issue : Second Decade of FFA.

[37] G.-L. Feng. A vlsi architecture for fast inversion in gf(2/sup m/). IEEE Transactions on
Computers, 38(10):1383–1386, 1989.

[38] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. Journal of Mathematical Cryptology, 8(3):209–247,
2014.

[39] Richard P Feynman. Simulating physics with computers. International Journal of Theoretical
Physics, 21(6):467–488, 1982.

[40] M. G. Find and R. Peralta. Better circuits for binary polynomial multiplication. IEEE
Transactions on Computers, 68(4):624–630, April 2019.

[41] Andrea Galimberti, Davide Galli, Gabriele Montanaro, William Fornaciari, and Davide Zoni.
Fpga implementation of bike for quantum-resistant tls. In 2022 25th Euromicro Conference on
Digital System Design (DSD), pages 539–547, 2022.

[42] Andrea Galimberti, Davide Galli, Gabriele Montanaro, William Fornaciari, and Davide Zoni.
On the use of hardware accelerators in qc-mdpc code-based cryptography. In Proceedings of
the 19th ACM International Conference on Computing Frontiers, CF ’22, page 193–194, New
York, NY, USA, 2022. Association for Computing Machinery.

133

Bibliography

[43] Andrea Galimberti, Gabriele Montanaro, and Davide Zoni. Efficient and scalable fpga design
of gf(2m) inversion for post-quantum cryptosystems. IEEE Transactions on Computers, pages
1–1, 2022.

[44] R. Gallager. Low-density parity-check codes. IRE Transactions on Information Theory,
8(1):21–28, 1962.

[45] Pierrick Gaudry, Luc Sanselme, and Emmanuel Thomé. Mpfq - a finite field library.
http://mpfq.gforge.inria.fr.

[46] J. Grossschadl. A low-power bit-serial multiplier for finite fields gf(2/sup m/). In ISCAS
2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196),
volume 4, pages 37–40 vol. 4, May 2001.

[47] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pages
212–219, New York, NY, USA, 1996. Association for Computing Machinery.

[48] Shay Gueron and Michael E Kounavis. Intel® carry-less multiplication instruction and its
usage for computing the gcm mode. Intel White Paper, pages 1–76, 2010.

[49] Jyh-Huei Guo and Chin-Liang Wang. Systolic array implementation of euclid’s algorithm for
inversion and division in gf(2/sup m/). IEEE Transactions on Computers, 47(10):1161–1167,
1998.

[50] Sindhu Hak Gupta and Bindya Virmani. Ldpc for wi-fi and wimax technologies. In 2009
International Conference on Emerging Trends in Electronic and Photonic Devices & Systems,
pages 262–265, 2009.

[51] Stefan Heyse, Ingo von Maurich, and Tim Güneysu. Smaller keys for code-based cryptog-
raphy: Qc-mdpc mceliece implementations on embedded devices. In Guido Bertoni and
Jean-Sébastien Coron, editors, Cryptographic Hardware and Embedded Systems - CHES 2013,
pages 273–292, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[52] Jeremy Hsu. Ces 2018: Intel’s 49-qubit chip shoots for quantum supremacy. IEEE Spectrum
Tech Talk, pages 1–6, 2018.

[53] J. Hu, M. Baldi, P. Santini, N. Zeng, S. Ling, and H. Wang. Lightweight key encapsulation
using ldpc codes on fpgas. IEEE Transactions on Computers, 69(3):327–341, 2020.

[54] Jingwei Hu and Ray C.C. Cheung. Area-time efficient computation of niederreiter encryption
on qc-mdpc codes for embedded hardware. IEEE Transactions on Computers, 66(8):1313–
1325, 2017.

[55] Jingwei Hu, Wei Guo, Jizeng Wei, and Ray C. C. Cheung. Fast and generic inversion
architectures over GF(2m) using modified itoh-tsujii algorithms. IEEE Transactions on
Circuits and Systems II: Express Briefs, 62(4):367–371, 2015.

[56] Jingwei Hu, Wen Wang, Ray C.C. Cheung, and Huaxiong Wang. Optimized polynomial
multiplier over commutative rings on fpgas: A case study on bike. In 2019 International
Conference on Field-Programmable Technology (ICFPT), pages 231–234, 2019.

[57] IBM. Ibm quantum processor types. https://quantum-computing.ibm.com/
services/resources/docs/resources/manage/systems/processors,
2017.

[58] IBM. Ibm’s roadmap for scaling quantum technology. https://research.ibm.com/
blog/ibm-quantum-roadmap, 2020.

[59] Mohamed Ismail, Imran Ahmed, Justin Coon, Simon Armour, Taskin Kocak, and Joseph
McGeehan. Low latency low power bit flipping algorithms for ldpc decoding. In 21st Annual
IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pages
278–282, 2010.

134

https://quantum-computing.ibm.com/services/resources/docs/resources/manage/systems/processors
https://quantum-computing.ibm.com/services/resources/docs/resources/manage/systems/processors
https://research.ibm.com/blog/ibm-quantum-roadmap
https://research.ibm.com/blog/ibm-quantum-roadmap

Bibliography

[60] Toshiya Itoh and Shigeo Tsujii. A fast algorithm for computing multiplicative inverses in
gf(2m) using normal bases. Information and Computation, 78(3):171–177, 1988.

[61] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess,
Aaron Hutchinson, Amir Jalali, Koray Karabina, Brian Koziel, Brian LaMacchia, Patrick
Longa, Michael Naehrig, Geovandro Pereira, Joost Renes, Vladimir Soukharev, and David
Urbanik. SIKE website. https://sike.org/, 2017.

[62] Nan Jiang, Kewu Peng, Jian Song, Chanyong Pan, and Zhixing Yang. High-throughput qc-ldpc
decoders. IEEE Transactions on Broadcasting, 55(2):251–259, 2009.

[63] Juntan Zhang and M. P. C. Fossorier. A modified weighted bit-flipping decoding of low-density
parity-check codes. IEEE Communications Letters, 8(3):165–167, 2004.

[64] A. Karatsuba and Yu. Ofman. Multiplication of many-digital numbers by automatic computers.
Proceedings of the USSR Academy of Sciences, 145:293–294, 1962.

[65] Emanuel Knill, R Laflamme, R Martinez, and C-H Tseng. An algorithmic benchmark for
quantum information processing. Nature, 404(6776):368–370, 2000.

[66] K. Kobayashi, N. Takagi, and K. Takagi. Fast inversion algorithm in gf(2m) suitable for
implementation with a polynomial multiply instruction on gf(2). IET Comput. Digit. Tech.,
6:180–185, 2012.

[67] Kristjane Koleci, Paolo Santini, Marco Baldi, Franco Chiaraluce, Maurizio Martina, and
Guido Masera. Efficient hardware implementation of the ledacrypt decoder. IEEE Access,
9:66223–66240, 2021.

[68] Y. Kou, S. Lin, and M. P. C. Fossorier. Low-density parity-check codes based on finite geome-
tries: a rediscovery and new results. IEEE Transactions on Information Theory, 47(7):2711–
2736, 2001.

[69] LEDAcrypt. Ledacrypt. https://github.com/LEDAcrypt/LEDAcrypt, 2021.

[70] Lijuan Li and Shuguo Li. Fast inversion in gf(2m) with polynomial basis using optimal
addition chains. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1–4, 2017.

[71] Lars S Madsen, Fabian Laudenbach, Mohsen Falamarzi Askarani, Fabien Rortais, Trevor
Vincent, Jacob FF Bulmer, Filippo M Miatto, Leonhard Neuhaus, Lukas G Helt, Matthew J
Collins, et al. Quantum computational advantage with a programmable photonic processor.
Nature, 606(7912):75–81, 2022.

[72] R. J. McEliece. A Public-Key Cryptosystem Based on Algebraic Coding Theory. DSN
Progress Report, pages 114–116, 1978.

[73] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post-quantum cryptogra-
phy, pages 147–191. Springer, 2009.

[74] Gabriele Montanaro, Andrea Galimberti, Ernesto Colizzi, and Davide Zoni. Hardware-software
co-design of bike with hls-generated accelerators. In 2022 29th IEEE International Conference
on Electronics, Circuits and Systems (ICECS), pages 1–4, 2022.

[75] National Institute of Standards and Technology (NIST) - U.S. Department of Commerce.
Nistir 8309, status report on the second round of the nist post-quantum cryptography stan-
dardization process. https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.
IR.8309.pdf, 2020.

[76] National Institute of Standards and Technology (NIST) - U.S. Department of Com-
merce. Post-quantum cryptography. https://csrc.nist.gov/projects/
post-quantum-cryptography, 2021.

135

https://sike.org/
https://github.com/LEDAcrypt/LEDAcrypt
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

Bibliography

[77] National Institute of Standards and Technology (NIST) - U.S. Department of Commerce. Nistir
8413, status report on the third round of the nist post-quantum cryptography standardization pro-
cess. https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf,
2022.

[78] National Security Agency. Commercial national security algorithm suite 2.0 (cnsa
2.0) cybersecurity advisory (csa). https://media.defense.gov/2022/Sep/07/
2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF, 2022.

[79] C. Negrevergne, T. S. Mahesh, C. A. Ryan, M. Ditty, F. Cyr-Racine, W. Power, N. Boulant,
T. Havel, D. G. Cory, and R. Laflamme. Benchmarking quantum control methods on a 12-qubit
system. Phys. Rev. Lett., 96:170501, May 2006.

[80] Hamid Nejatollahi, Nikil Dutt, Sandip Ray, Francesco Regazzoni, Indranil Banerjee, and
Rosario Cammarota. Post-quantum lattice-based cryptography implementations: A survey.
ACM Comput. Surv., 51(6), jan 2019.

[81] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Prob. Contr.
Inform. Theory, 15(2):157–166, 1986.

[82] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.

[83] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: Extended
abstract. In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing,
STOC ’09, pages 333–342, New York, NY, USA, 2009. Association for Computing Machinery.

[84] B. Rashidi. Throughput/area efficient implementation of scalable polynomial basis multiplica-
tion. In Journal of Hardware and Systems Security, Jan 2020.

[85] B. Rashidi, S. M. Sayedi, and R. Rezaeian Farashahi. Efficient and low-complexity hard-
ware architecture of Gaussian normal basis multiplication over GF(2m) for elliptic curve
cryptosystems. IET Circuits, Devices Systems, 11(2):103–112, 2017.

[86] Chester Rebeiro, Sujoy Sinha Roy, D. Sankara Reddy, and Debdeep Mukhopadhyay. Revisiting
the itoh-tsujii inversion algorithm for fpga platforms. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 19(8):1508–1512, 2011.

[87] Eric Rescorla et al. Rfc 8446: The transport layer security (tls) protocol version 1.3. Internet
Engineering Task Force (IETF), 25, 2018.

[88] Jan Richter-Brockmann, Ming-Shing Chen, Santosh Ghosh, and Tim Güneysu. Racing bike:
Improved polynomial multiplication and inversion in hardware. Cryptology ePrint Archive,
Paper 2021/1344, 2021. https://eprint.iacr.org/2021/1344.

[89] Jan Richter-Brockmann, Johannes Mono, and Tim Güneysu. Folding bike: Scalable hardware
implementation for reconfigurable devices. IEEE Transactions on Computers, 2021.

[90] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120–126, February 1978.

[91] F. Rodriguez-Henriquez, N. Cruz-Cortes, and N.A. Saqib. A fast implementation of multi-
plicative inversion over gf(2/sup m/). In International Conference on Information Technology:
Coding and Computing (ITCC’05) - Volume II, volume 1, pages 574–579 Vol. 1, 2005.

[92] Francisco Rodríguez-Henríquez, Guillermo Morales-Luna, Nazar A Saqib, and Nareli Cruz-
Cortés. Parallel itoh–tsujii multiplicative inversion algorithm for a special class of trinomials.
Designs, Codes and Cryptography, 45(1):19–37, 2007.

[93] N. Sendrier. Code-based cryptography: State of the art and perspectives. IEEE Security
Privacy, 15(4):44–50, 2017.

136

https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://eprint.iacr.org/2021/1344

Bibliography

[94] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In
Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134,
1994.

[95] Victor Shoup. Ntl: A library for doing number theory. https://www.shoup.net/ntl/.

[96] Victor Shoup. A proposal for an iso standard for public key encryption. Cryptology ePrint
Archive, Paper 2001/112, 2001. https://eprint.iacr.org/2001/112.

[97] N. Takagi, J. Yoshiki, and K. Takagi. A fast algorithm for multiplicative inversion in gf(2/sup
m/) using normal basis. IEEE Transactions on Computers, 50(5):394–398, 2001.

[98] Ioannis Tsatsaragkos and Vassilis Paliouras. A reconfigurable ldpc decoder optimized for
802.11n/ac applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
26(1):182–195, 2018.

[99] Sean Turner. Transport layer security. IEEE Internet Computing, 18(6):60–63, 2014.

[100] Ingo von Maurich and Tim Güneysu. Lightweight code-based cryptography: Qc-mdpc
mceliece encryption on reconfigurable devices. In 2014 Design, Automation and Test in
Europe Conference & Exhibition (DATE), pages 1–6, 2014.

[101] Joachim von zur Gathen and Jamshid Shokrollahi. Efficient FPGA-Based Karatsuba Multipliers
for Polynomials over F2. In Selected Areas in Cryptography, 12th International Workshop, SAC
2005, Kingston, ON, Canada, August 11-12, 2005, Revised Selected Papers, pages 359–369,
2005.

[102] Tadashi Wadayama, Keisuke Nakamura, Masayuki Yagita, Yuuki Funahashi, Shogo Usami,
and Ichi Takumi. Gradient descent bit flipping algorithms for decoding ldpc codes. IEEE
Transactions on Communications, 58(6):1610–1614, 2010.

[103] Wang, Troung, Shao, Deutsch, Omura, and Reed. Vlsi architectures for computing mul-
tiplications and inverses in gf(2m). IEEE Transactions on Computers, C-34(8):709–717,
1985.

[104] Guohui Wang, Michael Wu, Yang Sun, and Joseph R. Cavallaro. A massively parallel
implementation of qc-ldpc decoder on gpu. In 2011 IEEE 9th Symposium on Application
Specific Processors (SASP), pages 82–85, 2011.

[105] Tatu Ylonen. Ssh–secure login connections over the internet. In Proceedings of the 6th
USENIX Security Symposium, volume 37, 1996.

[106] Zhengya Zhang, Venkat Anantharam, Martin J. Wainwright, and Borivoje Nikolic. An efficient
10gbase-t ethernet ldpc decoder design with low error floors. IEEE Journal of Solid-State
Circuits, 45(4):843–855, 2010.

[107] M. Zhao, X. Zhang, L. Zhao, and C. Lee. Design of a high-throughput qc-ldpc decoder with
tdmp scheduling. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(1):56–60,
2015.

[108] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo,
Jian Qin, Dian Wu, Xing Ding, Yi Hu, Peng Hu, Xiao-Yan Yang, Wei-Jun Zhang, Hao Li,
Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang, Lixing You, Zhen Wang, Li Li, Nai-Le Liu,
Chao-Yang Lu, and Jian-Wei Pan. Quantum computational advantage using photons. Science,
370(6523):1460–1463, 2020.

[109] Qingling Zhu, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xiawei Chen, Tung-Hsun Chung,
Hui Deng, Yajie Du, Daojin Fan, Ming Gong, Cheng Guo, Chu Guo, Shaojun Guo, Lianchen
Han, Linyin Hong, He-Liang Huang, Yong-Heng Huo, Liping Li, Na Li, Shaowei Li, Yuan Li,
Futian Liang, Chun Lin, Jin Lin, Haoran Qian, Dan Qiao, Hao Rong, Hong Su, Lihua Sun,
Liangyuan Wang, Shiyu Wang, Dachao Wu, Yulin Wu, Yu Xu, Kai Yan, Weifeng Yang, Yang

137

https://eprint.iacr.org/2001/112

Bibliography

Yang, Yangsen Ye, Jianghan Yin, Chong Ying, Jiale Yu, Chen Zha, Cha Zhang, Haibin Zhang,
Kaili Zhang, Yiming Zhang, Han Zhao, Youwei Zhao, Liang Zhou, Chao-Yang Lu, Cheng-Zhi
Peng, Xiaobo Zhu, and Jian-Wei Pan. Quantum computational advantage via 60-qubit 24-cycle
random circuit sampling. Science Bulletin, 67(3):240–245, 2022.

[110] D. Zoni, A. Galimberti, and W. Fornaciari. Efficient and scalable fpga-oriented design of
qc-ldpc bit-flipping decoders for post-quantum cryptography. IEEE Access, 8:163419–163433,
2020.

[111] D. Zoni, A. Galimberti, and W. Fornaciari. Flexible and scalable fpga-oriented design of
multipliers for large binary polynomials. IEEE Access, 8:75809–75821, 2020.

138

	Introduction
	Contributions

	Background
	BIKE key encapsulation mechanism
	BIKE
	BIKE primitives
	Key generation
	Encapsulation
	Decapsulation

	Binary polynomial arithmetic
	Binary polynomial inversion
	Binary polynomial multiplication
	Binary polynomial exponentiation

	Quasi-cyclic moderate-density parity check codes
	Moderate-density parity-check codes
	Circulant matrices
	QC-MDPC codes
	QC-MDPC bit-flipping decoding

	State of the art
	Binary polynomial multiplication
	Binary polynomial exponentiation
	Binary polynomial inversion
	QC-MDPC bit-flipping decoding
	KEM primitives

	Methodology
	KEM primitives architecture and software profiling
	Client architecture
	Server architecture
	Profiling of software performance

	QC-MDPC bit-flipping decoding architecture
	Dual-memory computing architecture
	Complexity analysis
	Modifications to implement Black-Gray-Flip decoding

	Inversion architecture
	Architectural view
	Algorithmic view
	Optimized hardware scheduling
	Complexity analysis

	Dense-dense multiplication architecture
	Karatsuba multiplier architecture
	Comba multiplier architecture
	Complexity analysis

	Exponentiation architecture
	Architectural view
	Algorithmic view
	Complexity analysis

	Dense-sparse multiplication architecture
	Complexity analysis

	Other components
	SHA-3 architecture
	Uniform pseudorandom number generation architecture

	Design space exploration

	Experimental results
	Benchmark software performance
	Benchmark hardware performance
	Experimental setup
	BIKE code parameters
	LEDAcrypt code parameters
	Software setup
	Hardware setup
	Functional validation

	QC-MDPC bit-flipping decoding
	Area results
	Performance results

	Dense-dense binary polynomial multiplication
	Area results
	Performance results

	Binary polynomial exponentiation
	Binary polynomial inversion
	Area results
	Performance results

	Dense-sparse binary polynomial multiplication
	KEM primitives
	Area results
	Performance results

	Conclusions
	List of publications
	Main publications
	Other publications

	Bibliography

