
POLITECNICO DI MILANO

Dipartimento di Scienze e Tecnologie
Aerospaziali

Master of Science in Aeronautical Engineering

Master Thesis

Accelerating reactive flow
simulations via GPGPU ODE

solvers in OpenFOAM

Advisor:

prof. Federico Piscaglia

Co-advisor::

Federico Ghioldi

Candidate:

Filippo Trevisiol
921326

Academic year 2019/20

Abstract

The simulation of a combustion phenomenon is a challenging task in modern
Computational Fluid Dynamics (CFD) due to the high complexity of the exper-
iment. The stiffness of the chemical mechanism, in addition to a large compu-
tational mesh and the CPU serial architecture, can increase the computational
effort of several order of magnitude. In the last years, General Purpose Graphic
Processor Unit (GPGPU) computing has become very important in computer
industry thanks to its capability to exploit massive parallelization and achieve
great performance improvements. Thanks to this technique, it should be possi-
ble to obtain the same results of a Central Processing Unit (CPU) combustion
code while saving plenty of time. This master thesis offers a possible implemen-
tation of GPGPU computing in the chemistry combustion model that is present
in the open-source CFD software OpenFOAM. The code adopted is introduced
and main planning choices are described. An explicit adaptive Runge-Kutta
Cash-Karp of 4th and 5th order has been used. Different chemical kinetic mech-
anisms were tested, showing that accuracy is preserved when using an hybrid
CPU/GPU implementation. Furthermore, an increase of the performance has
been obtained for all the multi-cell test case. Low, medium and high-stiffness
combustion mechanisms performed more than 1.4, 3.5 and 4.3 times faster than
the original counterpart. Finally, possible future implementation were discussed
in order to achieve a better speed-up.

i

Sommario

La simulazione di fenomeni di combustione nella moderna CFD è un’operazione
ambiziosa a causa della sua enorme complessità. La rigidità (stiffness) del mec-
canismo chimico, la dimensione della mesh utilizzata e l’architettura seriale della
CPU possono andare ad aumentare il costo computazionale di diversi ordini di
grandezza. Negli ultimi anni la General Purpose Graphic Processor Unit (GPG-
PU) computing è diventata sempre più importante nell’industria informatica a
causa della sua capacità di sfruttare un’ingente parallelizzazione e ottenere gran-
di miglioramenti in termini di performance. Grazie a questa implementazione,
è possibile ottenere gli stessi risultati di un codice di simulazione di fenomeni di
combustione funzionante sulla CPU ma risparmiando molto più tempo. Questo
lavoro di tesi offre una possibile implementatazione della GPGPU per i solutori
della combustione presenti nel software open-source OpenFOAM. Si descriverà
il codice prodotto e le maggiori scelte progettuali adottate. Per poter portare
il codice in GPU, è stato scelto di utilizzare un metodo di integrazione esplici-
ta delle equazioni differenziali ordinarie derivanti dalla chimica, in particolare
il metodo di Runge-Kutta Cash-Karp del quarto e quinto ordine. Sono stati
testati meccanismi chimici differenti, andando a mostrare come l’accuratezza
delle soluzioni si preservi passando ad un’implementazione CPU/GPU ibrida
come quella descritta. Inoltre, per i casi multi cella si ottiene anche un sensibile
incremento nelle performance. I casi testati, a vari livelli di rigidezza nume-
rica, hanno ottenuto un miglioramento rispettivamente di 1.4, 3.5 e 4.3 volte
in confronto alla simulazione svolta totalmente in CPU. In conclusione, sono
state presentate alcune possibili implementazioni future per poter ottenere un
ulteriore miglioramento.

ii

Ringraziamenti

Desidero ringraziare innanzitutto il Prof. Federico Piscaglia per avermi dato
l’opportunità di poter lavorare con lui e poter portare avanti questo lavoro di
tesi, oltre che per il suo aiuto durante questi mesi.

Ringrazio inoltre il mio correlatore Federico Ghioldi per la pazienza avuta nei
miei confronti, per i numerosi consigli che sicuramente hanno ampliato il mio
bagaglio di conoscenze e per tutto il tempo dedicatomi durante la realizzazione
di questo lavoro.

Desidero poi ringraziare la mia famiglia che mi è stata accanto in questi anni
di studi, non facendomi mai mancare nulla e supportandomi sempre in questo
percorso universitario. Grazie per i sacrifici che avete fatto per permettermi di
completare questo percorso. Questa tesi è dedicata a voi.

Infine, desidero ringraziare i miei amici più cari ed Alberto per il supporto che
mi è stato dato e per tutte le esperienze che ho condiviso con loro in questi anni,
dandomi la giusta carica e serenità per vivere al meglio il periodo universitario.

iii

Contents

Abstract i

Sommario ii

Ringraziamenti iii

List of Figures vi

List of Tables ix

Nomenclature x

1 Introduction 1
1.1 Structure of the thesis . 5

2 An overview on GPGPU computing 7
2.1 History of parallel computation 7
2.2 Basic concept on parallel computing 10
2.3 Parallel computation with CUDA 14
2.4 Hardware used . 23

3 Physics of reacting flows 27
3.1 Governing equation for fluid motion 27
3.2 Governing equation for reacting flow motion 30
3.3 Numerical treatment of chemical ordinary differential equations 34
3.4 The Runge-Kutta Cash-Karp method 38

iv

4 Code implementation 41
4.1 Combustion solvers in OpenFOAM 41
4.2 GPU chemistry model . 44

5 Results and discussion 51
5.1 Single cell tutorials . 52

5.1.1 Hydrogen combustion mechanism 52
5.1.2 Methane combustion mechanism 60
5.1.3 Time performance . 64

5.2 Multi cell tutorials . 67
5.2.1 Simple methane combustion mechanism 69
5.2.2 Syngas combustion mechanism 72
5.2.3 Complex GRI-Mech 3.0 mechanism 76
5.2.4 Time performance . 79

6 Conclusion 87
6.1 Future developments . 88

A Solvers in OpenFOAM 91
A.1 chemFoam . 91
A.2 reactingFoam . 92

B Chemistry solution in OpenFOAM 97
B.1 RKCK45 . 99

References 101

v

List of Figures

1.1 Temperature profile of chemFoam/h2 tutorial (Ghioldi [6]). . . . 3
1.2 Computational time for runtime steps of chemFoam/h2 tutorial

(Ghioldi [6]). 4

2.1 Transistor per microprocessor from 1971 to 2018 (Published on-
line at OurWorldInData.org, [13]). 9

2.2 Serial and parallel computation. 11
2.3 Flynn’s taxonomy. 12
2.4 GPU VS CPU. 13
2.5 NVIDIA Maxwell Architecture 15
2.6 Simple representation of CUDA architecture. 18
2.7 Host and device communication. 20
2.8 CUDA indexing example. 21
2.9 Serial vs concurrency execution. 22
2.10 Performance of used GPUs based on techpowerup.com review

data "Performance summary". 25

3.1 RKCK45 OpenFOAM scheme [6] 37

4.1 chemFoam structure. 42
4.2 reactingFoam structure. 43
4.3 GPUChemistry model structure. 45
4.4 GPUChemistry structure. 47

5.1 Time evolution of temperature, single-cell hydrogen combustion. 53

vi

5.2 Time evolution of main species mass fractions, single-cell hydro-
gen combustion. 54

5.3 Time evolution of temperature, single-cell hydrogen combustion:
detail. 55

5.4 Time evolution of HO2 mass fraction, single-cell hydrogen com-
bustion: detail. 56

5.5 Relative error of the time evolution of temperature and species
mass fraction, single-cell hydrogen combustion. 57

5.6 Relative error of the time evolution of species mass fraction,
single-cell hydrogen combustion. 58

5.7 Relative error of the result for temperature and species mass frac-
tions, single-cell hydrogen combustion. 59

5.8 Time evolution of temperature and main methane combustion
species mass fractions, single-cell methane combustion. 62

5.9 Relative error of the time evolution of temperature and main
methane combustion species mass fractions, single-cell methane
combustion. 63

5.10 Relative error of the result for temperature and species mass frac-
tions with respect to reference solution, single-cell methane com-
bustion. 63

5.11 Time comparison, single-cell hydrogen combustion. 64
5.12 Time comparison, single-cell methane combustion. 65
5.13 Diffusion flame structure [28]. 68
5.14 Counter-flow flame boundary patches. 69
5.16 Time evolution of temperature and H2O mass fraction on central

probe, multi-cell simple methane combustion. 70
5.15 Time evolution of temperature, CH4 and O2 mass fraction on

fuel and air inlet, multi-cell simple methane combustion. 71
5.17 Spatial variation of temperature and mass fractions at time t =

0.15s, multi-cell simple methane combustion. 72
5.18 Front flame, multi-cell simple methane combustion. 73
5.19 Time evolution of temperature on fuel inlet, multi-cell syngas

combustion. 74

vii

5.20 Time evolution of H2 mass fraction on fuel inlet, multi-cell syngas
combustion. 74

5.21 Time evolution of CO2 mass fraction on fuel inlet, multi-cell syn-
gas combustion. 75

5.22 Time evolution of O2 mass fraction on air inlet, multi-cell syngas
combustion. 75

5.23 Time evolution of temperature, CH4 and O2 mass fraction on
different positions, multi-cell methane combustion. 77

5.24 Relative error on time evolution of CH4 and O2 mass fractions
on fuel and air inlet, multi-cell methane combustion. 78

5.25 Spatial variation of CH4 and O2 mass fractions at time t = 1 ×
10−3s, multi-cell methane combustion. 78

5.26 Computational mesh for different number of cells. 79
5.27 Time comparison, multi-cell simple methane combustion. 80
5.28 Speed-up, multi-cell simple methane combustion. 81
5.29 Time comparison, multi-cell syngas combustion (absTol = 1 ×

10−13, relTol = 1× 10−4). 82
5.30 Speed-up, multi-cell syngas combustion (absTol = 1 × 10−13,

relTol = 1× 10−4). 82
5.31 Time comparison, multi-cell syngas combustion (absTol = 1 ×

10−10, relTol = 1× 10−1). 83
5.32 Speed-up, multi-cell syngas combustion (absTol = 1 × 10−10,

relTol = 1× 10−1). 83
5.33 Time comparison, multi-cell methane combustion. 84
5.34 Speed-up, multi-cell methane combustion. 84
5.35 Time comparison, multi-cell methane combustion, different GPUs. 85

A.1 PIMPLE loop. 93

viii

List of Tables

2.1 Summary of most important memories features. 19
2.2 Technical specifications for each device. 24

3.1 Runge-Kutta Cash-Karp Butcher tableau. 39

5.1 Initial data, hydrogen combustion mechanism. 52
5.2 Simulation setup, hydrogen combustion mechanism. 53
5.3 Initial data, single-cell methane combustion. 61
5.4 Simulation setup, single-cell methane combustion. 61
5.5 Average and standard deviation of the computing time for all the

ODEs treatment adopted. 65
5.6 Counter-flow flame boundary conditions types. 69
5.7 Methane combustion boundary conditions. 70
5.8 Syngas combustion boundary conditions. 73

ix

Nomenclature

ω̇i rate-of-progress variable of i-reaction

ω̇k reaction rate of k-species

Q̇ chemical heat source

Ṫ temperature variation in time

[Xk] molar concentration of k-species

∆h0
f,k formation enthalpy of k-species at T0

µ cinematic viscosity

νk stochiometric coefficient of k-species

Ω control volume

ρ density

ρk density of k-species

τ viscous stress tensor

g gravity acceleration

I identity tensor

n normal versor

q heat flux

T shear stress tensor

x

U velocity field

Ub mesh velocity

Vk diffusion velocity

ATa collision frequency

cp heat capacity at constant pressure

cv heat capacity at constant volume

e specific internal energy

Ea activation frequency

h specific enthalpy

K specific kinetic energy

Kc equilibrium constant

kf forward reaction rate constant

kr reverse reaction rate constant

Mk k-chemical specie

p pressure

pk partial pressure of k-species

R universal gas constant

r specific heat source

S momentum source/sink

T temperature

t time

W molecular weight of mixture

xi

Wk molecular weight of k-species

Xk mole fraction of k-species

Yk mass fraction of k-species

xii

Chapter 1

Introduction

Computational fluid dynamics (CFD) simulations attempt to describe appro-
priately the fluid mechanics in different situations. Like in experimental tests
where a more powerful and precise equipment can bring a better insight on
the phenomena under consideration, usually in numerical experiment a more
accurate result is achieved increasing the complexity of the simulation in terms
of geometry and time discretization. This can cause a much higher cost of the
overall activity. Therefore, one of the most important issue when performing a
CFD test is the computational cost that could overcome the available resources.

In particular, an important research field in fluid dynamics is represented by
combustion problems. This world is extremely various, including very different
applications; many of them are present in every day life. Usually, different species
are introduced in a combustion chamber: the exothermic interaction between an
oxidant and a reductant (the fuel) releases heat that can be used as energy. Main
goals in combustion research are focused in increasing the heat generated by the
reaction, analysing the conditions for which combustion takes place, reducing
the level of pollutant generated, and much more. Nowadays, a computational
approach guarantees the same accuracy in the results as an experimental pro-
cedure. While a numerical simulation can be cheaper from an economic point of
view with respect to the experimental counterpart (that needs expensive tools,
a suitable place, safety procedures, ...), it can become very expensive regarding
the computational cost.

Since combustion problems require the solution of several chemical kinetics

1

1 – Introduction

ordinary differential equations (ODEs) for each computational cell, high compu-
tational power is needed in order to achieve good results in reasonable time. As
a matter of fact, the chemical differential equations were solved serially by CFD
software like OpenFOAM; thus, the cost increases with mesh refinement. Fur-
thermore, this particular equations can be hard to solve because of the chemical
stiffness and the large number of species and reactions involved in the mech-
anism. Solving reacting flows motion in huge domains for an important time
range can be exorbitant for companies and small institutions that usually do
not own great computational resources.

In the last decades, supercomputers and multi-core Central Processing Units
(CPUs) have progressively replaced single-core CPU computers. The massive
parallelization that can be reached with this type of systems has literally changed
the paradigm of scientific computing, allowing to sensibly reduce the computa-
tional cost. Regarding CFD, this is achieve by splitting the mesh through the
CPU cores. Anyway, this solution requires great CPU clusters to get enormous
advantages due to the fact that micro-transistors technology has almost reached
its maximum development. Thus, a cluster is very expensive and it can be pos-
sible for established companies and big institutions only. A more interesting
solution is the massive parallelization offered by the NVIDIA graphics card.
Many researches have shown that this approach can speed up the operations
about dozen of times, depending on the implementation and the hardware spec-
ifications; moreover, this tool can be useful for a large variety of problems. This
technique is called General Purpose Graphics Processor Unit (GPGPU) com-
puting and it can be implemented thanks to a specific programming language
(based on C++), named CUDA (Compute Unified Device Architecture) that
was developed by NVIDIA.

Several recent studies have investigated the usage of GPGPU for solving
chemical kinetics ODEs in parallel [1–5]. Spafford et al. [1] analyzed S3D, a
Fortran-based DNS solver for the fully compressible Navier-Stokes equations
coupled with chemistry. They reported a kernel speed-up of 31.4x for the single
precision version and of 17.0x for the double precision version with respect
to the CPU version. Niemeyer and Sung [2] implements Runge-Kutta explicit
integration methods to solve chemical mechanism with different stiffness level,
demonstrating that also high stiffness mechanism (i.e. ethylene oxidation) can

2

1 – Introduction

be solved with an explicit method on GPU. They obtained a 17x speed-up
with respect to six-core RKC on CPU implementation for about 30’000 ODEs.
Stone and Davis [3] import explicit and semi-implicit integration Runge-Kutta
methods on CUDA for solving independent chemical kinetics ODEs. They also
compared different algorithm showing the dependency of the results from the
number of ODEs solved in parallel.

While GPGPU has been used in a slight number of CFD solvers nowadays,
latest OpenFOAM version has not the possibility to use the advantages of a
graphic card utilization for combustion problems. Nevertheless, researches are
moving in this direction. In particular, a library written in CUDA-C was de-
veloped for chemical kinetics OpenFOAM solver (chemFoam) in Politecnico di
Milano by Ghioldi [6]. The work briefly analyzes a Runge-Kutta Cash-Karp
implementation in CUDA, showing same accuracy (figure 1.1) but better per-
formance in terms of speed referring to the original CPU version. In particular,
the research shows an operation speed-up of 2.4x with respect to the CPU for a
simple tutorial case (H2/O2 combustion); nonetheless, memory allocation and
data copying, as well as the activation of CUDA libraries, do not allow a fastest
overall simulation time, suggesting that the best results can be achieved with a
greater number of cells (figure 1.2).

 750

 1000

 1250

 1500

 1750

 2000

 2250

 2500

 2750

 0 0.0002 0.0004 0.0006 0.0008 0.001

T
e
m

p
e
ra

tu
re

 [
K

]

Time [s]

chemFoam/h2

OpenFOAM: Standard
OpenFOAM + CUDA: GPUStandard

Chemkin II

Figure 1.1: Temperature profile of chemFoam/h2 tutorial (Ghioldi [6]).

3

1 – Introduction

CPU CPU/GPU
0.000

0.001

0.002

0.003

0.004

0.005

0.006
Ti

m
e

[s
]

1.92E-5

1.3E-3

8E-6

4.8E-3

Computational time
Memory allocation and data coping
Operations
Back on GPU and memory freed

Figure 1.2: Computational time for runtime steps of chemFoam/h2 tutorial (Ghi-
oldi [6]).

Starting from Ghioldi’s work, the main goal of this master thesis is to val-
idate the GPU-based chemical solver in terms of results. To do this, different
chemical kinetics model will be tested with the single-cell OpenFOAM solver
chemFoam. Moreover, the code has been modified and improved in order to sup-
port multi-cells computing of reacting flows (reactingFoam). This solver is used
for spray-less reacting flows simulation and gives a better picture of the poten-
tiality of GPGPU chemistry application, while the single-cell implementation
can be very useful to test a new chemical mechanism but it does not reproduce
a concrete physical phenomenon. Also the multi-cell has been validated showing
the accuracy of results with respect of the CPU counterpart. Since the goal of
a GPU implementation is to reduce computational cost, speed test have been
performed in order to show improvements in terms of simulation times. Actually,
it is expected that best speed-up will be achieved for a great number of cells
and a complex chemical mechanism, while lower mesh size and simple reactions
will not greatly benefit from a graphic card implementation.

4

1.1 – Structure of the thesis

1.1 Structure of the thesis
The thesis is structured as follows:

• chapter 2 briefly presents the history of GPGPU and why it has been
introduced in computer market. Then CUDA programming language is
described, focusing on the main features. Finally, the hardware adopted for
the tests is illustrated.

• chapter 3 shows the physical and mathematical problem of the chemical
kinetics, highlighting the model equations of the problem and the solution
methods.

• chapter 4 describes how the physical problem has been implemented in
OpenFOAM thanks to the special features of GPGPU computing.

• chapter 5 presents the results of several test cases, focusing the attention
of the differences with the original OpenFOAM version.

• chapter 6 concludes the work, summarizing the topic analyzed and briefly
reviewing possible future implementations.

5

6

Chapter 2

An overview on GPGPU
computing

In this chapter, General Purpose GPU computing is presented. A short review
of the milestones in the history of CPU and parallel computing is first intro-
duce, to better motivate the purpose of this work giving it a contextualization.
Afterwards, principle of parallel computing will be defined. CUDA language
will be presented in order to highlight the most important general concepts.
These topics are principally taken from the documentation available with the
CUDA toolkit, in particular “CUDA C programming guide” and “CUDA C
Best practices guide” [7, 8]. Other concepts are taken from Professional CUDA
c programming [9] and CUDA by example: an introduction to general-purpose
GPU programming [10]. Finally, hardware specifications used for the goal of this
work will be presented.

2.1 History of parallel computation

In the last few years, parallel computation has become very important in the
computing industry because of its enormous advantages in computational speed.

For decades, CPU’s manufactures have tried to increase performance of de-
vices rising the processor’s clock speed. In 1965 the future co-founder of the Intel

7

2 – An overview on GPGPU computing

electronic company published “Cramming more components onto integrated cir-
cuits”, making an empirical observation that it would become famous as Moore’s
law [11]:

The complexity for minimum component costs has increased at a rate
of roughly a factor of two per year. Certainly over the short term this
rate can be expected to continue, if not to increase. Over the longer
term, the rate of increase is a bit more uncertain, although there is
no reason to believe it will not remain nearly constant for at least 10
years. That means by 1975, the number of components per integrated
circuit for minimum cost will be 65,000.

Assuming a proportional relation between number of transistor and chip com-
plexity, this statement has kept its validity for years. By the way, in the last
decades CPU producers have realized that Moore’s processor rate of growth has
slowed down. Year by year, transistors have become even smaller, reaching a size
limit. Furthermore, smaller transistors dissipate much more heat, that requires
bigger cooling systems (with cost increasing). Moore’s forecasts can not be ob-
served yet due to the rising of technology complexity. So CPU producers have
decided to add processors on personal computers instead of keeping on growing
computational clock speed [10]. Initially adopted in companies and researcher
supercomputer, this solution have reached the consumer PC market starting
the so called multicore revolution (Herlihy, [12]). Parallel computing was born
consequently: computation is divided in several blocks and is carried on by the
multiple cores in parallel.

Graphical Processor Units (GPUs) became important in the computer history
in the 90s when desktop computers began to spread among average consumers
and OS companies (i.e. Microsoft, Apple) implemented first software that re-
quired high graphical operations. Before 1991, all the graphics operations were
carried out by CPU. In 1991 S3 Graphics started selling the first graphics ac-
celerator. Users initially bought 2-dimensional graphic accelerators, while in the
same time Silicon Graphics developed and released its OpenGL library, intro-
ducing 3-dimensional graphics in the computer world. By the end of the 20th
century, the demand of GPU increases rapidily, thanks also to the even more
elaborated video-game industry. Companies such NVIDIA and ATI technologies

8

2.1 – History of parallel computation

Figure 2.1: Transistor per microprocessor from 1971 to 2018 (Published online
at OurWorldInData.org, [13]).

starts investing in these new technologies.

In 2001 NVIDIA released the GeForce 3 series, breaking into the graphic
processors market. These GPUs used a programmable arithmetic unit, called
pixel shader, to produce colors on each pixel on the screen. A pixel shader uses
the (x, y) position of each point on the screen, together with other additional
information (e.g. color, brightness, ..): through the combination of all the in-
formation, the picture can be displayed. Thus, the video output depended on a
combination of external inputs given by the programmer, so they start imple-
menting various computing language to deal with this possibility. In addition to
that, programmers discovered that inputs could be any kind of data. In other
words, giving a color input with a particular meaning (e.g. different levels of
brightness mean different numerical values) it was possible to obtain a result
that was derived by a numerical computation of the data, using the graphical
power of GPUs. What seems to be a great intuition, able to disrupt the way
of thinking scientific computing, was in the first years very limited. Color data
input and output were too much difficult to manage, in addition to the fact
that no appropriate debugging method existed. Again, it was only thanks to

9

2 – An overview on GPGPU computing

NVIDIA that in 2006 a new GPU architecture able to be programmed was re-
leased. General Purpose GPU (GPGPU) became popular and applied to a huge
field of applications.

In the last years, GPGPU has been developed for a great number of field
that have some common characteristics [14]. First of all, these applications de-
mand large computational requirement: GPUs in fact can executes millions of
operations at the same time, as real time rendering requires the contempo-
rary computation of millions of pixels. Second, they require parallelism. Third,
the throughput is more important than latency: modern processor takes some
nanosecond to perform operation, while a human is able to catch visual in-
formation on a millisecond scale; this huge gap implies that the latency is less
important than the quantities of information processed on a time interval. Some
of GPGPU applications are:

• scientific computing, like weather forecasting, climate researching, ray trac-
ing Montecarlo simulations;

• medical imaging;

• cryptocurrency mining;

• computational fluid dynamics (CFD) simulations.

In particular, computational fluid dynamics has exploited the great poten-
tial of GPU computing. The perspectives of achieving large parallelizations and
great speed-ups well fit with the large amount of data structure and the great
computational effort in CFD simulations. As it will be explained later, the abil-
ity of executing the same task concurrently can give huge advantage in fluid
dynamics, where all the finite volume in the computational domain do essen-
tially the same activities. The GPU implementation of chemical combustion,
topic of this work, will be described accurately later in chapter 4.

2.2 Basic concept on parallel computing
Before describing how parallel computation can be transposed in programming
language thanks to the NVIDIA tools, some definitions and concepts concerning
parallel computation are necessary.

10

2.2 – Basic concept on parallel computing

It is compulsory to define two basic concept, latency and throughput.
Latency indicates how long it takes from an instruction to be completed since
it has been issued. Throughput gives information about how many instruction
are processed in a time unit.

... ...

... ...
...

serial computing

parallel computing

Figure 2.2: Serial and parallel computation.

Talking about parallel computing, we refer to two different points: an hard-
ware aspect, that is due to the computer architecture, and a software aspect,
that consist in solving a problem concurrently with the power of the hardware
chosen.

First of all, in computer language a task is the elementary part in what
a computational problem can be broken down: a task receives an input, does
a function and gives back an output. A classification of programming can be
made from the point of view of how the task are executed during the program. In
serial (or sequential) programming each instruction is executed in a certain
order and each activity starts when the previous has ended. On the other side,
in parallel programming tasks are executed simultaneously. Figure 2.2 shows
schematically the two different implementations. Clearly, parallel computing can

11

2 – An overview on GPGPU computing

have some sequential part.
Two different types of parallelism are common these days, task and data

parallelism that differ in what is the object of parallelization. The first type
concerns parallelization of tasks among multiple threads, the second is related
to these kind of implementation where each core executes the same tasks but
with different data. CUDA language is better compatible with data parallelism.

SIMD MIMD

SISD MISD

d
a
ta

instruction

Figure 2.3: Flynn’s taxonomy.

Another classification is related to computer architectures (figure 2.3). It was
proposed by Flynn in 1966 and then in 1972 [15, 16] and it classifies computers
based on data and instruction streams concurrently executed. Even though more
detailed classifications have been made through the years, Flynn’s taxonomy is
still valid. Four different categories can be defined:

• Single Instruction Single Data (SISD): it is the simplest architecture,
with one single core. Instruction are executed serially on a single data.

• Single Instruction Multiple Data (SIMD): there are multi cores that
executed a single instruction, but on multiple different data. Usually, a
single central processor sends instructions to the cores that operates on
different data streams.

• Multiple Instruction Single Data (MISD): up to now, there are no
commercial implementation with this kind of architecture.

12

2.2 – Basic concept on parallel computing

• Multiple Instruction Multiple Data (MIMD): an example could be
computer clusters.

p
a
ra

ll
e
li
s
m

data size

CPU
serial computing

GPU
parallel computing

Figure 2.4: GPU VS CPU.

Computer architectures can also be classified on the base of their memory or-
ganization. In multi node systems (often referred as clusters), there is a series
of processors, each of them constituting a single engine, connected each other
with a common distributed memory. On the other side, in multiprocessors
systems there can be thousands of processors that are connected each other to
the same memory or have the same low latency link (as a PCI-Express bus).

In conclusion, it seems that GPU can always be the proper choice for pro-
gramming compared to a traditional CPU. Really, the usage of the two devices
depends on the particular programming case. While GPUs give the best results
with data-parallel computation task, CPUs reach better goals with control task.
For the best overall performance, both the devices should be used in what is
called heterogeneous computing that will be described accurately in section 2.3.
Figure 2.4 highlights the main differences between the two architectures. Small
amount of data and low parallelism are better handled by CPUs due to the abil-
ity of executed complex tasks and instruction levels parallelism; on the opposite,
GPU can work with large amount of data and massive parallelism.

13

2 – An overview on GPGPU computing

2.3 Parallel computation with CUDA

The computer graphics company NVIDIA had developed its own personal plat-
form to work with GPGPU computing on its GPUs. This architecture was in-
troduced in 2006 with GeForce 8800 GTX. CUDA stands for Compute Unified
Device Architecture and it refers to both the hardware architecture of the GPU
and the API needed to develop software.

A NVIDIA GPU is made of single components named Streaming Multi-
processors (SM). This element is the main responsible for the high grade of
parallelism that can be achieved in GPUs. SMs are very similar to the cores in
multi-core CPU implementation. There are several streaming multiprocessors in
a GPU, depending on the particular device.

An example of NVIDIA GPU streaming multiprocessor is shown in figure 2.5:
the NVIDIA GeForce 930MX, used for the purpose of this work, uses this exact
architecture, called Maxwell architecture. Of course other architecture exists and
the Maxwell architecture is a natural evolution of the previous architecture, the
Kepler architecture. The main components that are part of the streaming mul-
tiprocessor are the CUDA cores, 128 in Maxwell. They are also called streaming
processors and they are the smallest unit where the computation takes place.
Each CUDA core is composed of an aritmetic logic unit (ALU) and a float-
ing point unit (FPU) that executes one integer or floating point operation per
clock cycle. In addition to the cores, we can notice 32 load-store units (LD/ST or
LSU), that are responsible for the load of data from memory or store on memory
from the registers, and 32 special function unit (SFU), that execute transcen-
dental operations (e.g. sine, cosine, square root). It is noticeable that all these
elements are grouped and each group is controlled by an instruction buffer, a
warp scheduler and 2 dispatch units. Both the elements are in charge of orga-
nizing the way in which data and operation are processed by the GPU, as it will
be explained later on this section. In previous GPU architectures (as the Kepler
one), this partition does not exists and these scheduling elements control all the
cores. Finally, three different memory locations complete the Maxwell streaming
multiprocessor: a 64 KB shared memory that let the CUDA cores communicate;
4 registers memory; 2 texture/L1 Cache memory. A detailed description of the
different types of GPU memories will be presented later.

14

2.3 – Parallel computation with CUDA

Figure 2.5: NVIDIA Maxwell Architecture

15

2 – An overview on GPGPU computing

The CUDA execution model reflects the GPU hardware implementation. The
smallest element of CUDA parallelism is the thread. Threads correspond to the
CUDA cores in a streaming multiprocessor and each of them execute the same
instruction with different data inputs, thus it is possible to compute the same
task dozen of times concurrently on the same GPU. Threads are organized in
thread-blocks (or simple blocks): each of them is executed in a single SM and
its execution cannot be divided in multiple SM. The SMs can compute several
blocks, depending on hardware limitations. Also the thread-blocks can compute
parallel tasks. The main difference between a block and a thread is that the
latter can share information with other threads in a block, while communication
inter-blocks is not possible. This intra-block communication is possible thanks
to a special SM memory, named shared memory, that usually is very small
compared to other GPU memories (some KB) and consequently there are often
memory limitations on the number of threads that can be used for each block.
Finally, several blocks form a grid that can have more than one dimension:
multi-dimension grids are very important for graphical applications but less for
other uses so they will not be mentioned in the next pages.

Not all the blocks and the threads can be executed simultaneously on the
GPU. Threads are processed in groups of 32 elements, named warps. Of course,
blocks with more than 32 threads are organized in multiple warps and the num-
ber of warps is calculated as follow:

WarpsPerBlock = ceil(ThreadsPerBlock32) (2.1)

For an optimal performance, blocks should have a number of threads multiple
of 32. A warp can not be split between different blocks. When all the resources
of a block have been allocated on registers and share memory, the block is active
(and so the warps). A warp is defined as selected when it is ready to execute
the instruction and it is dispatched to the execution unit, as eligible when it
is ready but is not currently executing, and as stalled whenever the warp is
not read. The warp schedulers give the instruction to the warps that execute
the command concurrently (up to 64 simultaneous warps in the latest NVIDIA
architectures). When a warp finishes its directive, another one is activated by
the scheduler and executes the same instruction.

16

2.3 – Parallel computation with CUDA

This procedure has the important role of hide the latency by promoting the
throughput. Latency hiding is an important concept in parallelism. While
CPUs speed up program execution by minimizing the latency, GPUs manage
huge amounts of small threads maximizing the throughput. So the latency in
GPU is hidden by the computation of other warps. Most significant latency is
due to load-store operations (400-800 clock cycles), while arithmetical operation
have latencies of about 20-40 clock cycles.

An index of how the GPU manages the warp parallelism is expressed by the
occupancy, defined as the ratio between the active warps and the maximum
warps per SM. When a 100% occupancy is achieved, the maximum number of
warps are executed concurrently on a SM. Nevertheless, the number of resident
blocks or threads on the same SM is limited and depends on the particular
hardware utilized. In particular, it is related to three aspect:

• hardware restriction, as the maximum number of warps per SM (64) and
the maximum number of threads per SM (2048);

• shared memory per SM and shared memory per block;

• number of registers and register memory.

A good programmer has to manage all these three limitations in order to
find the best equilibrium. Notwithstanding, increasing the number of resident
blocks and warps per SM does not imply an increment of performance (Volkov,
[17]). Finally, a thread-block remains activated on a SM until all the tasks on
its threads are ended.

The NVIDIA GPU architecture, on the basis of the hardware and software
implementation previously presented, can certainly be classified as SIMD follow-
ing the Flynn’s taxonomy. Actually NVIDIA coined the term Single Instruction,
Multiple Threads (SIMT) because all the threads in a warp execute the same in-
struction on the same time. A problem that can arise when this does not happen
is called warp divergence. This can be caused when threads in the same warp
take different paths in a program due to a conditional statement (if, if-else,
switch). If threads in a warps diverge, each path is executed serially; threads
that are not part of the path currently executed are disabled until the branch

17

2 – An overview on GPGPU computing

is over. This causes poor performance of course. A simple scheme of the CUDA
blocks and threads division is shown in figure 2.6.

Grid 1

Grid 2

Grid 3

Block
(0,0)

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,0)

Block
(0,0)

Block
(1,0)

Block
(1,0)

Block
(2,0)

Block
(2,0)

Block
(0,1)

Block
(0,1)

Block
(1,1)

Block
(1,1)

Block
(2,1)

Block
(2,1)

Device Grid

Block (0,0) Block (1,0)

Shared memory

Registers

Local

memory

Local

memory

Registers

Thread
(0,0)

Thread
(1,0)

Shared memory

Registers

Local

memory

Local

memory

Registers

Thread
(0,0)

Thread
(1,0)

Global memory

Constant memory

Texture memory

Figure 2.6: Simple representation of CUDA architecture.

Computing elements of CUDA GPU can access different types of memories,
each of them having a different role in terms of parallelization, speed and storage.
The most important memories are:

• register memory;

• local memory;

• shared memory;

• texture memory;

• global memory;

• constant memory.

Register memory collects data stored by a thread and it is visible only by
the thread itself. When the thread becomes inactive after executing an instruc-
tion, data on registers are destroyed. Storage capacity is very small and there

18

2.3 – Parallel computation with CUDA

are limitation on the number of registers per thread due to the SM architecture.
Nevertheless, registers are very quick accessible locations. Like CPU registers,
the role of this memory partition is useful to store data that are frequently used
by processor, increasing the execution speed. Local memory has the same role
of register memory: it lasts until thread lasts but it performs slower. It has
also high latency and it can store bigger size data with respect to the register.
Shared memory is very important for parallelization because it allows data
communication inter-threads in a thread-block. It has an high bandwidth and
low latency, so it performs very fast. It lasts until the lifetime of the block.
There could be the problem of synchronization between the threads, so data in
shared memory must to be synchronize to perform exact calculations. Texture
memory is a read-only memory that is used in principal for two-dimensional
graphical tasks. Global memory is the most used memory and it has also the
biggest size (in the terms of GB). It is visible by all the blocks on the device
and it lasts until the allocation ends. Finally constant memory stores data
that are declared as constant in the code (__constant__), so it is a read-only
memory. It also has a small storage size. A schematic summary of the main
features of each memory is presented in table 2.1.

memory type scope size speed
registers thread very small very fast
local thread small very slow
shared block small fast
texture kernel small slow
global kernel high very slow

constant kernel small fast

Table 2.1: Summary of most important memories features.

GPU provides also cache memory, non-programmable fast memory that stores
data frequently requested for reducing memory latency. Type of cache memories
in GPU are: L1, L2, read-only texture, read-only constant.

CUDA parallel programming is based on the idea of heterogeneous com-
puting. CPU and GPU concurrently participate to the execution of the program
and each of them does different activities. Data transfer between the two com-
ponents is permitted by a PCI (Peripheral Component Interconnect) bus. The

19

2 – An overview on GPGPU computing

opposite programming structure is called homogeneous computing, where
tasks are performed by one or more processors (typically CPUs) with the same
architecture. Thus a CUDA application consists of two parts:

• the host code;

• the device code.

The host code refers to the CPU, the device code to the GPU. The code
is initialising in the host, where data is allocated in device memory and device
functions are called. Then in the GPU high performance operations are executed
in parallel. A typical CUDA program can be summarized in these steps:

1. allocating of GPU memory;

2. copying data from CPU to GPU;

3. invoking CUDA functions to perform specific computations;

4. copying data back from GPU to CPU;

5. destroying data on GPU.

CPU

DRAM

DRAM

local

memory

global

memory

GPU

Host Device

PCIe

Figure 2.7: Host and device communication.

20

2.3 – Parallel computation with CUDA

To execute the program on the device, the user has to write a particular
function, named kernel. This function uses a special qualifier, __global__, and
it has to be declared in the host code. The kernel is then invoked in the main
function as:

myKernel<<<nBlocks, nThreads, sharedMem, stream>>>
(

arguments
);

In addition to the function argument, the kernel has to be launched using
a particular execution configuration syntax in triple "≪ ...≫" brackets. The
kernel parameters are: the number of thread-blocks; the number of thread per
each block; the size of shared memory per block; the stream where the kernel is
executed (for concurrent operation).

CUDA gives specific built-in variable to get the index of each element. The
variable blockIdx.x gives the index of each block (in one dimension: other
dimensions are characterized by suffix .y and .z), while threadIdx.x gives the
index of each thread. There are also variables for size of the block (blockDim.x)
and the grid (gridDim.x). Most of the times, it is useful to create a global index,
to control all the threads of all blocks, in this standard manner:

tid = blockIdx + threadIdx * blockDim

An example of indexing with built-in CUDA variables is shown in figure 2.8.

0 1 2 3 ... 127 0 1 2 3 ... 127 0 1 2 3 ... 127 0 1 2 3 ... 127...

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 11

gridDim.x = 12

tid = threadIdx.x + blockIdx.x * blockDim.x

tid = 3 + 2 * 128 = 259

Figure 2.8: CUDA indexing example.

21

2 – An overview on GPGPU computing

The __global__ type functions are executed on the device but they are
callable from the host. New generation GPU architectures have allowed function
calling from the device as well. CUDA had defined other two function qualifiers:
__device__ and __host__. The former is executed on the device and is callable
from the device only. All the extern functions that are called by the kernel code
are of this type. The latter are executed by the host and are callable by the host
only, so it can be omitted.

Operations of allocating, copying and destroying memory are possible thanks
to specific CUDA functions, similar to the counterparts contained in standard
C library:

• for memory allocation: cudaMalloc (malloc in C);

• for copying: cudaMemcpy (memcpy in C);

• for memory destroying: cudaFree (free in C).

All those functions are synchronous, which means that they wait previous
operation to finish until they start. In fact, CUDA let the possibility to have
asynchronous functions that are called without waiting previous operations to
be finished (e.g. cudaMemcpyAsync). Thus, there is the possibility of running
the code in multiple concurrent streams that are asynchronous. Thanks to this,
a great time saving can be obtained, as show in figure 2.9.

copyHToD kernel copyDToH

time

serial execution

time

copyHToD kernel1 copyDToH1

kernel2

kernel3

copyDToH2

copyDToH3

concurrent execution

Figure 2.9: Serial vs concurrency execution.

22

2.4 – Hardware used

Finally, the apposite declaration specifier __shared__ has to be used to man-
age shared memory. Shared memory is usually declared dynamically in this form:

extern __shared__ variable_type myVariable;

and this structure is used when the amount of memory is unknown at com-
pile time. In this case shared memory size is specified as third option in the
kernel, giving the allocation size per block in bytes, and it is usually given
by sharedMem = sizeof(variable_type) * nThreads. When data is shared
between threads, one of the complex issues to manage is the synchronization
between threads. As a matter of fact, threads in a block do not really run in
parallel but the amount of resident units that can work simultaneously is lim-
ited by hardware specifications. To control this behaviour CUDA offer a built-in
function, _syncthreads, that acts as a barrier and stops execution until all the
threads in the same block have finished their activity.

2.4 Hardware used

Results obtained in chapter 5 have been obtained by means of three different
computing systems, each one equipped with a different graphic processor unit:

• the NVIDIA GeForce 930MX (GPU1);

• the NVIDIA GeForce GTX 1660 SUPER (GPU2);

• the NVIDIA TITAN V (GPU3).

The NVIDIA GeForce 930MX is a entry level mobile GPU, developed for
laptops and released on March 2016. It is based on Maxwell architecture (sm_50).
It has 3 streaming multiprocessors operating at 0.9 GHz with 384 total CUDA
cores, and it is equipped with 2 GB of DDR3 global memory. The NVIDIA
GeForce GTX 1660 SUPER is a performance-segment graphics card released on
October 2019. It has 1408 CUDA cores and 22 SMs and a 6 GB GDDR6 memory.
Finally, the NVIDIA TITAN V is a top-class GPU launched in December 2017.
Based on Volta architecture (sm_70), it mounts a 12 GB HBM2 memory and it

23

2 – An overview on GPGPU computing

GPU1 GPU2 GPU3
Microarchitecture Maxwell Touring Volta
Number of SMs 3 22 80

Number of CUDA Cores 384 1408 5120
Global Memory [GB] 2 6 12
Memory bus [bit] 64 192 3072
Bandwidth [GB/s] 14.40 336 651.3
Memory Type DDR3 GGDR6 HBM2

GPU max clock rate [MHz] 1020 1785 1455
Memory clock rate [MHz] 900 1750 848

Bus interface PCIe PCIe PCIe
3.0 x8 3.0 x16 3.0 x16

Constant Memory [KB] 64 64 64
L2 Cache size [KB] 1024 1536 4500

Max shared memory per SM [KB] 64 96 96
Max shared memory per block [KB] 48 48 96

Registers available per thread 255 255 255
Registers available per block 64 K 64 K 64 K
Registers available per SM 64 K 64 K 64 K

Max number of threads per block 1024 1024 1024
Max resident blocks per SM 32 32 32
Max resident warps per SM 64 64 64
Max resident threads per SM 2048 2048 2048

Table 2.2: Technical specifications for each device.

is equipped with 80 SMs and 5120 CUDA cores. Main technical specification of
the three devices are presented in table 2.2

The choice of using different GPUs with very different technical properties
is related to the intention of underlining how the time advantage is strictly
connected to the particular hardware used. As it will be cleared in chapter 5,
GPGPU can allow a huge time saving if the simulation is executed using a
powerful hardware; on the contrary, low-end GPUs does not allow to obtain a
sensible decreasing in computational time. For this reason, GPU1 represents
an entry-level device that can give little improvements in terms of time taken
for the simulation but has poor performances for complex calculation. GPU2

24

2.4 – Hardware used

is a little more powerful: most of simulations executed on this device take less
time than executing it on CPU. Nevertheless, it has not the best hardware
that the market can offer, so the speed improvements that can be achieved
are not the greatest. Finally, GPU3 represents the flagship device in terms
of technical specification; thus, it gives important results in terms of speed-
up. Figure 2.10 shows a performance comparison of the graphical processor
units based on techpowerup.com review data. Devices were tested at the same
condition and they are also compared with NVIDIA GeForce RTX 3090, the
most powerful GPU present on the market up today.

GeForce 930MX GeForce GTX 1660 SUPER TITAN V GeForce RTX 3090
0

250

500

750

1000

1250

1500

1750

Pe
rfo

rm
an

ce

GPU performance

Figure 2.10: Performance of used GPUs based on techpowerup.com review data
"Performance summary".

25

26

Chapter 3

Physics of reacting flows

Physics of reacting flows motion is now presented. First, the classical equations
of fluid dynamics are described. In particular, the attention is focused to the
role of the chemistry that increases the complexity of the system, adding further
relations to solve. Furthermore, chemistry is ruled by a set of ordinary differential
equations that has to be solved with numerical integration methods. Numerical
solution of initial value problems will be presented, with particular attention to
the Runge-Kutta Cash-Karp method that will be used in the implementation of
the code.

3.1 Governing equation for fluid motion

Navier-Stokes equations describe the motion of a fluid. From a mathematical
point of view, they can be seen as a system of 5 partial differential equations in 5
unknowns that expresses the conservation of three quantities: mass, momentum,
total energy. Usually, they are derived by taking a control volume immersed in
the fluid and by making a balance of the interested quantities. The form of
the conservation equation for the general scalar intensive variable φ, used in
OpenFOAM, can be:

∂

∂t

∫
Ω
ρφ dΩ +

∫
Ω
ρφ(U−Ub) · n d∂Ω =

∫
Ω

Λ∇φ · n d∂Ω +
∑

fφ (3.1)

27

3 – Physics of reacting flows

that is expressed in a integral form (it can be expressed also in a differential
form). The first two terms represent a material derivative of the scalar quantity
Dφ
Dt : the first term is the temporal variation of the conserved quantity in the
control volume over the time, the second is the convection term that represents
the motion of the quantity due to the fluid motion U. In the convective part,
there is also the contribution due to a possible mesh motion Ub. The third part
is the diffusive term that represents motion of the fluid by diffusion. The fourth
part includes source and sinks, surface and volume forces and other mechanisms
of transport that differ from the other two.

The Navier-Stokes equations will be now presented in differential form.

Mass conservation

The conservation of mass (called also the continuity equation) is ruled by:

∂ρ

∂t
+∇ · (ρU) = 0 (3.2)

It can be derived from equation 3.1 by using φ = 1. The mass rate of change
in time into the control volume is equal to the flux of mass entering and exiting
the control volume since mass is conserved.

When compressibility effects can be neglected, thus density can be considered
constant, the equation reduce to the simpler form ∇ ·U = 0.

Momentum conservation

The conservation of momentum can be expressed as:

∂(ρU)
∂t

+∇·(ρU⊗U) = (−∇p+2
3µ∇

2U)·I+∇·[µ(∇U+(∇U)T)]+ρg+S (3.3)

that can be interpreted as the general conservation equation 3.1 by using φ = U.
Here, the first 3 terms on the right hand side of the balance equation represent

the divergence of the shear stress tensor ∇ ·T that are the surface forces acting
on the fluid. The shear stress tensor represents the molecular rate of transport
of momentum and for a newtonian fluid it is written as:

28

3.1 – Governing equation for fluid motion

T = (−p+ 2
3µ∇U)I + µ[∇U + (∇U)T] = −pI + τ (3.4)

where I is the identity tensor and µ is the cinematic viscosity. The shear tensor
can be interpreted as the sum of a pressure contribution and a viscous part
contribution τ . Finally, the term ρg represents volume forces due to gravity (i.e.
buoyancy).

Energy conservation

Conservation of energy can be written in several forms. In the classical form,
the total energy is conserved:

∂(ρe)
∂t

+∇·(ρeU)+ ∂(ρK)
∂t

+∇·(ρKU) = −∇·(T ·U)+∇·q+ρr+ρg ·U (3.5)

that is the general conservation equation 3.1 with φ = e + K, where e is the
internal energy (thermodynamic term) and K = 1

2(U · U)2 is the kinetic en-
ergy (mechanical term). Terms on the right hand side represent respectively the
thermodynamic power and the mechanical power applied on the control volume.

In case of incompressible flows the mass and momentum balance equations
are decoupled from the energy equation, so they can be solved to obtain velocity
and pressure fields that are used in the last equation to get the total energy.

In OpenFOAM the energy equation can be implemented in another form as
conservation of total entalphy:

∂(ρh)
∂t

+∇·(ρhU)+ ∂(ρK)
∂t

+∇·(ρKU)− ∂p
∂t

= −∇·(T ·U)+∇·q+ρr+ρg ·U
(3.6)

remembering the relation between entalphy and internal energy:

h = e+ p

ρ
(3.7)

In OpenFOAM the energy equation is not in complete form, but some ap-
proximations are present: mechanical sources (∇ · (τU), ρg ·U) are neglected;
a heat flux of the form q = −α∇e is assumed where the thermal diffusivity α is

29

3 – Physics of reacting flows

the sum of a laminar and turbulent contribution; the thermal source term ρr is
modeled considering the specific solver.

3.2 Governing equation for reacting flow mo-
tion

Chemical thermodynamics of reacting flows

If the flow involved is a reacting flow (e.g. in combustion phenomena), chemistry
has to be considered when solving the Navier-Stokes equations. In fact, a multi-
component fluid contains several chemical species that can interact one with the
other producing new species and changing the thermal state. Usually combustion
happens after reaching an energetic state called the activation energy; the system
is then activated and the reaction can take place.

First of all, it is necessary to quantify the amount of each species when
working with mixture. Since the mass is conserved by equation 3.2, the most
appropriate quantity to describe the conservation of the species is the mass
fraction, defined as:

Yk = ρk
ρ

(3.8)

where ρk is the density of the k-species and ρ the total density. It is evident
that:

K∑
k=0

Yk = 1 (3.9)

since the summation of partial density is equal to the total density. Chemical
reactions are usually described with moles instead of mass: moles of different
species react together obtaining moles of products. Thus, the mole fraction
Xk is also used to describe mixture, defined as:

Xk = Yk
W

Wk
(3.10)

where Wk is the molecular weight of species k and W is the mean molecular

30

3.2 – Governing equation for reacting flow motion

weight of the mixture. Another way to describe species composition in a mixture
is by using the molar concentration [Xk]:

[XK] = ρ
Yk
Wk

= ρ
Xk

W
(3.11)

For a mixture with N species a partial ideal gas law can be defined for species
k:

pk = ρk
RT

Wk
(3.12)

where pk is the partial pressure of k-species in the mixture and p = ∑N
k pk.

The ideal gas law of the mixture p = ρRTW can be derived by summing equation
3.12 for all the N components.

For chemical reacting flows, there are several ways to define energy and en-
thalpy:

• sensible energy: esk =
∫ T

T0
cvk dT −R

T0

Wk
;

• sensible enthalpy: hsk =
∫ T

T0
cpk dT ;

• sensible and chemical energy: ek = esk + ∆h0
f,k;

• sensible and chemical enthalpy: hk = hsk + ∆h0
f,k;

where ∆h0
f,k is the mass formation enthalpy of species k at T0 (usually it is

taken at standard reference T0 = 298.15K) that can be written also in molar
values ∆h0,m

f,k by multiplying it it by Wk. Cvk and cpk are respectively the heat
capacity at constant volume and constant pressure. The heat capacity at con-
stant pressure of the mixture can be derived by summing the heat capacities
of each species weighted with their own mass fractions. So Cp depends on the
species composition and the temperature: as a matter of fact, for most hydro-
carbon/air flames where the nitrogen is the most important species, it can be
considered constant as it does not change excessively while T changes.

31

3 – Physics of reacting flows

Chemical kinetics mechanism

Considering N species, a reaction is typically written with the following formal-
ism:

N∑
k=0

ν ′kMk

k∑
k=0

ν ′′kMk (3.13)

where ν ′k and ν ′′k are the ith stochiometric coefficients of the reactants and the
products respectively and Mk is the kth chemical species of the mixture. Thus,
a general reaction can be written as:

A+B
 C +D (3.14)

where A,B,C and D are generic species. A reaction can be reversible (as in
equation 3.14) when reactants can become products and vice versa, coexisting
in chemical equilibrium, while in a irreversible reaction the equilibrium is
tended to reactants or to products. Combustion phenomena are a valid example
of irreversible reactions, since their main products (i.e. H2O and CO2) do not
react with each other.

Usually natural phenomena are not ruled by a single reaction but by a com-
plex chain of multiple elementary reactions. It is clear that each reaction occurs
at different rate that mainly varies the concentration of the species involved.
So the rate of change of a specie is called chemical reaction rate ω̇ and it
is defined as the time derivative of the specie concentration. Clearly, a negative
reaction rate will indicate a species consumption (referred to reactant) while a
positive reaction rate will indicate a specie production (referred to products).
It has been discovered experimentally that reaction rate depends on five condi-
tions of the system: concentration of the chemical species, temperature, pressure,
presence of catalyst or inhibitor and radiation [18]. In general:

ω̇ = 1
±νi

d[Mk]
dt

(3.15)

defines the law of mass action, that was confirmed by several empirical
observations.

Considering for instance a reversible reaction:

32

3.2 – Governing equation for reacting flow motion

A+B
kf ,kr

 C (3.16)

the rate of change of the species can be written as:

d[A]
dt

= d[B]
dt

= −kf [A][B] + kr[C] (3.17)

d[C]
dt

= −kr[C] + kf [A][B] (3.18)

This set of equations that can be built up for a multi-species flow represents
a system of n-Ordinary Differential Equations (ODE) that has to be solved in
order to find the n-reaction rate (one for each species). kf and kr are, respec-
tively, the forward and reverse reaction rate constants that indicate the
relation between the molar concentration and the reaction rate.

More general, the rate of production of the kth species can be written as
linear combination of the rate-of-progress variables of the reactions ω̇i:

ω̇k =
I∑
i=0

νkiωi =
I∑
i=0

(ν
′

ki − ν
′′

ki)ωi (3.19)

The rate-of-progress variable for the ith reaction is defined as:

ω̇i = kfi

N∏
k=0

[Xk]ν
′
ki − kri

N∏
k=0

[Xk]ν
′′
ki (3.20)

depending on the forward and reverse rate constants of the ith reaction. The
former value can be determined experimentally or using the Arrhenius Law,
that gives a relation with the temperature:

kf = ATae
− Ea

RuT (3.21)

where ATa is the collision frequency (that describes the rate of collision be-
tween two or more molecules in a define volume) and Ea is the activation energy.
The reverse reaction rate constant is derived from the forward reaction rate as
follows:

33

3 – Physics of reacting flows

kr = kf
Kc

(3.22)

where Kc is the equilibrium constant.

Mass conservation of species

Equations 3.19 represent a set of N ordinary differential equations, one for each
species. The concentration of the species involved changes due to the progress
in the reaction.

Even though the conservation of mass of the mixture is already enforced
through 3.2, conservation of mass of each species in the mixture has to be
applied due to the Lavoisier principle (Matter is neither created or destroyed).

The additional N -equations can be written in conservation form, so the kth

species relation is:

∂ρYk
∂t

+∇ · (ρ(U + Vk)Yik) = ω̇ (3.23)

for i = 1, ..., N . Vk is the diffusion velocity of the species k and accounts
for diffusion phenomena. The source/sink term is represented by the reaction
rate ω̇. Since combustion does not generate mass, total mass conservation is still
valid. Summing the N -mass conservation equations of the species and assuming

that
N∑
i=1

ω̇i = 0, one obtains:

∂ρ

∂t
+∇ · (ρU) = −∇ · (ρ

N∑
i=1

ViYi) (3.24)

Enforcing the right hand side of the equation to be zero as necessary condition
to conserve the mass, equation (3.2) is obtained.

3.3 Numerical treatment of chemical ordinary
differential equations

As mentioned above, fluid dynamics problems involving reacting mixture require
the solution of a set of coupled ODEs:

34

3.3 – Numerical treatment of chemical ordinary differential equations

d[Xi]
dt

= ω̇i (3.25)

Q̇ = −1
ρ

NS∑
i=1

hiω̇i (3.26)

Substituting the definition of species concentration in eq. 3.25 and remem-
bering the definition of entalphy in eq. 3.26, the two ODEs can be rewritten in
a more general form:

dYi
dt

= ω̇iWi

ρ
(3.27)

Ṫ = − 1
cp

NS∑
i=1

hiω̇i (3.28)

Typically species mass fractions and the temperature are combined together
in a vector u(t) and the system of differential equations becomes:

u̇(t) = f(u(t),q)
u(t0) = u0(q)

(3.29)

that is a initial value problem (IVP), with initial condition u0 and non inte-
grated parameters q. Ordinary differential equations can be solved numerically.

A first classification of the numerical methods for first-order IVPs can be
made considering the number of steps used for advancing the solution. Single-
step methods (like Euler’s method) require only the solution at previous time
t to compute the value at time t + 1. Runge-Kutta methods take some in-
termediate steps to compute the solution at time t + 1, but the intermediate
steps are then discarded. On the contrary, multi-step methods use interme-
diate solutions for the next steps, gaining accuracy and efficiency. Single steps
methods usually consider as Runge-Kutta methods of first order.

Another classification can be made regarding the approach used for comput-
ing the solution, talking about explicit and implicit methods. Explicit meth-
ods use the state of the system at current time tn to calculate the state at a
later time tn+1 while by means of implicit methods one has to solve a system

35

3 – Physics of reacting flows

of equations with both the current and the following time state. The former
have a simpler mathematical structure: small time steps must be used in order
to achieve convergence and great accuracy of results. Each time step have a
low computational cost. They give high quality results with smaller number of
computational cells combined with few chemical species and reactions. On the
other side, implicit methods can use larger time steps and so less chemical time
steps per fluid dynamics step, but increasing the cost per each one because they
are based on the calculation of a Jacobian Matrix. The choice of the method is
strictly dictated by the particular case. Anyway the best choice is the one that
gives the most accurate results at smaller computational time.

One of the biggest problem is represented by numerical stiffness. Stiffness
usually arises when a variable of the ODEs system changes rapidly during time,
for instance in a transient state [19]. Several definitions of stiffness are present
in literature. A common interpretation states as follows (Spijker, [20]):

For most explicit methods, stiffness occurs if the largest step size h∗n
guaranteeing numerical stability is much smaller than the largest step
hn for which the local discretization error is still sufficiently small (in
norm), i.e., h∗n � hn.

Another simpler definition, but more general, states as follows:

Initial value problems are stiff if they are (exceedingly) difficult to
solve by ordinary, explicit step-by-step methods, whereas certain im-
plicit methods perform quite well

As can be seen, explicit methods can not work as well as implicit ones for stiff
cases provided a large chemical sub-time step but they usually require smaller
time steps that roughly increase the computational cost. Chemical kinetics can
reach great sources of stiffness, as shown by Curtiss and Hirschfelder [21].

36

3.3 – Numerical treatment of chemical ordinary differential equations

StandardChemistryModel.C

::omega(p,T,c,li,deltaT)

::derivatives(time,c,li,dcdt)

::solve(const scalarField& deltaT)

::solve(const DeltaTType& deltaT)

Reaction.C

::omega(p,T,c,li,deltaT)

::omega(p,T,c,li,pf,cf,lRef,pr,cr,lRef)

- BasicChemistryModel<ReactionThermo>::correct()

- if (!this->chemistry)->

- calculate rho, T, p

- de�nes c0(nSpecies_)

- forAll(rho,celli)

- construction of species concentrations

- while t goes to �uid dynamic t (do steps related to tChem)

- calculate RR_ with new evaluated concentrations

this->solve(pi, Ti, c_, celli, dt, this->deltaTChem_[celli])

ode.C

::solve(p,T,c,li,deltaT,subDeltaT)

- if (odeSolver_-> resize())

- construction of complete vector cTp_

- odeSolver_->solve(0, deltaT, cTp_, li, subDeltaT)

adaptiveSolver.C

::resize(const label n)

::solve(odes,x,y,li,dxTry)

ODESolver.C

::solve(xStart,xEnd,y,li,dxTry)

::solve(x,y,li,step)

::normalizeError(y0,y,Err)

RKCK45.C

::solve(x,y,li,dxTry)

::solve(x0,y0,li,dydx0,dx,y)- store previous iteration dxTry

- truncation control on step and preparation

 to integral calculus till xEnd

- integrate as far as possible up to step.dxTry

- ode.derivatives(x,y,li,dydx0_))

- do err = solve(x,y,li,dydx0_,dx,yTemp_)

- if err > 1 then scale

- update the state

- if error is small than increase step

for (step<maxStep)

returns deltaT

evaluates the deltaTMin if
chemistry is on

resize function of considered
solver (RKCK45, seulex, ...)

returns maxError

LEGEND

gives as results

contains

sends to

Figure 3.1: RKCK45 OpenFOAM scheme [6]
.

37

3 – Physics of reacting flows

OpenFOAM provides a set of different integration methods. In particular, in
this work the explicit RKCK45 and the implicit seulex have been used for test-
ing. Moreover, RKCK45 has been chosen to be rewritten in CUDA-C language, in
order to achieve GPU parallelization. This choice has been made because of the
specific architecture of the GPU: the explicit method can be parallelized, while
the implicit method can not without introducing instabilities. In section 4.2 we
will give a detailed explanation behind the adopted solution. RKCK45 method
implementation in OpenFOAM is presented in figure 3.1 and is described accu-
rately in appendix B.

3.4 The Runge-Kutta Cash-Karp method

The Runge-Kutta Cash-Karp [22] is a Runge-Kutta explicit method developed
by Cash and Karp in 1990. A Runge-Kutta method has the general form:

yi+1 = yi + φ(xi, yi, h)h (3.30)

where the function φ is called increment function and it can be interpreted
as the slope over the interval [i, i+ 1]. This function is written as follows:

φ =
n∑
j=1

ajkj (3.31)

where aj are constants and kj are evaluated with a recurrence relation:

k1 = f(xi, yi)
k2 = f(xi + p1h, yi + q1,1k1h)
...

kn = f(xi + pn−1h, yi + qn−1,1k1h+ qn−1,2k2h+ ...+ qn−1,n−1kn−1h)

(3.32)

where pj and qj,j are constant and they are arrange in a table call Butcher
Tableau. A Runge-Kutta method can be of various orders, that is given by n.

38

3.4 – The Runge-Kutta Cash-Karp method

RKCK45 is a fourth-fifth order method: it uses six function evaluations to cal-
culate fourth and fifth-order solutions. Butcher tableau for Runge-Kutta Cash-
Karp method is:

0
1/5 1/5
3/10 3/40 9/40
3/5 3/10 -9/10 6/5
1 -11/54 5/2 -70/27 35/27
7/8 1631/55296 175/512 575/13824 44275/110592 253/4096

37/378 0 250/621 125/594 0 512/1771
2825/27648 0 18575/48384 13525/55296 277/14336 1/4

Table 3.1: Runge-Kutta Cash-Karp Butcher tableau.

The two solutions are then subtracted together and the difference is taken as
the error on the fourth-order solution:

∆n+1 = yn+1 − y∗n+1 (3.33)

and it is compared with a desired accuracy ∆0. When the error is higher than
the desire accuracy, the algorithm rejects the current solution and calculates
another step size. When the error satisfies the desired accuracy, the algorithm
accepts the step and calculates the next time step. For this reason RKCK45
is an adaptive method: the step size is not constant but changes due to great
variation of the solution. In fact, when the slope becomes very steep, a shorter
step size better catches the behaviour of the solution.

39

40

Chapter 4

Code implementation

The particular GPU structure gives the possibility to solve the chemical kinetics
problem without impacting too much on the computational resources thanks to
the massive parallelism that can be achieved. Benefits of GPGPU have been
presented so far, as well as the physical problem of the combustion. In this
chapter the adopted implementation is presented and a general description of
the code is offered.

4.1 Combustion solvers in OpenFOAM

OpenFOAM provides multiple combustion solvers (chemFoam, coldEngineFoam,
fireFoam, ...) and most of them are based on different combustion models. This
work is focused on two solvers only that work through the resolution of chemistry
kinetics ODEs:

• chemFoam, a single-cell solver. It is normally used to test the behaviour of
untested chemical reactions. Before simulating a complete test case, chem-
istry is evaluated without considering other parameters (e.g. geometry).
Similar software are Chemkin and Cantera;

• reactingFoam, a multi-cell solver. It is the most used OpenFOAM solver
for combustion fluid dynamics. It does not extend its capability up to the
spray treatment, as it is implemented in sprayFoam solver.

41

4 – Code implementation

The first solver is a simpler version of the second one (figure 4.1). A single
cell reactor is simulated and the fluid dynamics is not considered at all. Only
chemical ODEs are solved. Species mass fractions and temperature are update
at each chemical time step, until the end time is reached.

...

ODE solution, concentrations update

...

Y1 Y2 Y3 YN

Y1
' Y2

' Y3
' YN

'

T,p,

T',p', ' end subchemical timestep

start subchemical timestep

tn
+

1
 =

 t
n

 +

Δ
t

,Q
 . .

Figure 4.1: chemFoam structure.

In reactingFoam the algorithm becomes more complex. The solver uses the
PIMPLE algorithm, that is a combination of SIMPLE and PISO algorithm.
Chemical kinetics ODEs are solved for each mesh cell thanks to a forAll(rho,
celli) cycle, that is contained in the StandardChemistryModel.C file. Every
cell is independent from the others, so a set of n-cells independent ordinary

42

4.1 – Combustion solvers in OpenFOAM

differential equations is solved, each one with its own initial conditions. Fur-
thermore, the solution is obtained from the current simulation time t to t+ ∆t,
where ∆t is the fluid dynamics time step. When the chemistry is solved and
the reaction rates are computed, concentrations of the species and temperature
are updated in adiabatic, fixed-volume condition (dp

dt
= 0). Reaction rates and

chemical heat source are then used in the conservation of mass species (equation
3.23) and energy (equation 3.5) and, at the end, fluid dynamics quantities are
updated.

...

ODE solution, concentrations update

...

Y1 Y2 Y3 YN

Y1
' Y2

' Y3
' YN

'

T,p,

T',p', ' end subchemical timestep

start subchemical timestep

tn
+

1
 =

 t
n

 +

t

,Q
 . .

forAll(rho,celli)

update U

end �uid dynamic timestep

start �uid dynamic timestep

START SIMULATION

END SIMULATION

Figure 4.2: reactingFoam structure.

For a more detailed explanation of the implementation of these two solvers,

43

4 – Code implementation

see appendix A.

4.2 GPU chemistry model

Operations on chemistry in standard method on CPU are performed in a se-
rial way. Giving initial conditions all ODEs are solved in the aforementioned
forAll(rho, celli) cycle that can be very disadvantageous when solving a
huge number of cells. Added to this, complexity of the reactions in terms of
number of species and reaction chain affects the total computational time. These
problems can be solved if all these operations could be done in parallel rather
than one after another.

Two different strategies are possible to achieve parallelism [3]. The one-
thread implementation is based on the solution of the differential equation
on a single thread, that will perform also all the operations to get the chemical
reaction rates for each species. This approach permits to solve a large number
of ODEs at the same time, depends on the available hardware. However, it does
not use shared memory but global memory only. The great amount of data per
each ODEs that has to be used for computation cannot be stored in the lim-
ited shared memory. At the other end, in the one-block implementation the
differential equation is solved among the threads in a single block, so a GPU
computes several parallel blocks on each SM. In this case shared memory is
largely used to let intra-block cooperation.

A sort of one-thread approach was chosen to implement the code. Every
thread-block is associated with a mesh cell. The number of CUDA blocks to be
used in the kernel function is set in the constructor of GPUChemistryModel.C
considering the limitations in terms of the GPU compute capability and the
hardware. The difference between single and multi-cell solver is processed by
the use of a conditional statement on the variable meshDimension_. When this
value is not equal to 1, the number of block is chosen considering memory avail-
ability and hardware limitations. On the other hand, each thread represents a
single species so each of them is represented by an index thanks to the CUDA
variable threadIdx.x. This implementation gives the possibility to use the lim-
ited amount of shared memory to perform computation among the species to

44

4.2 – GPU chemistry model

solve the chemical ODEs. The large amount of data is stored in global mem-
ory, thus limitations on shared memory are reached only for extremely complex
reactions and high number of species, while for simpler reactions this does not
cause particular issues.

The implementation adopted is now shortly described. In addition to the
chemistry model available on the last OpenFOAM version, the new GPUChem-
istryModel.C (figure 4.3) has been attached as an extern OpenFOAM library.
GPUChemistryModel inherits the class StandardChemistryModel and rewrites
the functions that the latter provides to adapt them for parallel computation.

StandardChemistryModel
<ReactionThermo, ThermoType>

ODESystem

BasicChemistryModel

<ReactionThermo>

GPUChemistryModel
<ReactionThermo, ThermoType>

StandardChemistryModel

<CompType, ThermoType>

TDACChemistryModel

<ReactionThermo, ThermoType>

Extern "C" which sends

to __global__ solve __device__ CUDA_odeSolver

__device__ CUDA_error

__device__ CUDA_normalizeError

__device__ CUDA_derivatives

__device__ CUDA_omega __device__ CUDA_omega2

<CompType, ThermoType>

Figure 4.3: GPUChemistry model structure.

45

4 – Code implementation

This adds a new basicChemistryModel type that defines a new combination
method/solver, that has to be defined in constant/chemistryProperties as:

solver gpu;
method GPU;

This file defines a new solve function that overwrites the standard solve
function and calls for particular extern "C" functions, that are necessary to
compile extern CUDA ".cu" file on OpenFOAM. Data taken from thermophys-
ical properties are stored in one dimensional arrays thanks to CUDA template
class thrust. This particular one-dimensional structure is necessary due to in-
dexing offered by CUDA: as shown in chapter 2, it is practice in CUDA imple-
mentation to create a global index tid that takes in account of the possibility
to parallelize the code, so a linear array can be managed more easily than a
multi-dimensional array. The class thrust is based on C++ Standard Template
Library (STL) and gives the possibility to construct vectors of data in a sim-
ple way like template class vector in C++ (it shares together some objects and
functions). Data are stored in CPU memory host_vector and then are copied
into device global memory thanks to a similar container named device_vector.
The construction is developed thanks to a classical iterative for cycle in CPU.
As an illustration, the stoichiometric coefficients are referred for each species in
each reaction, so they need a double species-reaction for cycle; on the contrary,
the temperature varies cell by cell, so a different vector is needed.

At the end of this script, a this->solve() is present, sending on gpu.C file,
where another solve function sends to an extern CUDA file. Here the extern "C"
function is defined, sending to the __global__ function where the main com-
putation takes place. The kernel function globalCudaOdeSolver is launched.
Considering the one-thread implementation adopted, the kernel is invoked as:

globalCudaOdeSolve<<<nCells,nSpecies,nSpecies*sizeof(double)>>>
(arguments);

associating one block for one computational cell and one thread for one
species. Shared memory is dynamically allocated because the number of species
is not defined at compile time but depends on the particular test case. As men-
tioned in chapter 2, a typical CUDA program works following a common path:

46

4.2 – GPU chemistry model

...

ODE solution, concentrations update

...

Y1 Y2 Y3 YN

Y1
' Y2

' Y3
' YN

'

T,p,�

T',p',�' end subchemical timestep

start subchemical timestep

tn
+

1
 =

 t
n

 +

�

t

�,Q
 . .

for block cycle

mesh is divided
in several blocks,
each of them treated
separately in GPU

cells in parallel

each cell is assigned
to a thread-block,

data are copied to GPU

species in parallel
each specie is

assigned to a thread,
chemical subcycle

end chemical
subcycle

data are copied
back to CPU

another group of
cells is selected

computational mesh

Figure 4.4: GPUChemistry structure.

memory is allocated in the device where data are copied from CPU and then
the kernel is invoked thanks to pointers to the allocated data. Arrays of data
are copied in global memory by using the copy assignment operator "=". Then,
a pointer to the device vector is created and used as argument in kernel func-
tion. Operation of memory allocation and data copying are largely simplified
thanks to the CUDA thrust template class. First of all, memory allocation is
included in the copying operation from host_vector to device_vector. Sec-
ond, the template class gives built-in functions for creation of pointers like
raw_pointer_cast. A different construction has to be made for chemical ar-
rays of data that contain informations for species or reactions for each cell: the
entire vector was divided in sub-vectors (one per each cell); a pointer was as-
signed to every portion; a pointer to these pointers was created and used by the
kernel.

In the kernel function the shared memory variable shared is defined dy-
namically with type extern __shared__. Then, the solution cycle starts after

47

4 – Code implementation

a conditional checking for each block: the reaction happens only if the tem-
perature of the cell exceeds the reaction temperature. Finally, there is the call
to CUDA_odeSolver where computation takes place in the device (thus beinf
__device__ type). This function is defined in an extern ".cu" file that in turn
sends to other .cu file where other device functions are defined. The code is based
on the StandardChemistryModel and RKCK45 ODE explicit method adapted to
work in parallel. Shared memory is used to allow species data communication
among the threads for the solution of the chemical ODEs, while there is no intra-
block communication and mesh cells perform the computation independently.
After calculating the species mass fractions and temperature rate of variation
over time, the error is computed in order to check the goodness of the results.
If the normal error exceeds the unity, the algorithm finds a new chemical time
step and the computation restarts until convergence is reached. The algorithm
then progresses until chemical time has reached the fluid dynamics time step.

After the computation is over, the chemical reaction rate is computed and
stored in a device vector. The extern "C" function ends with the operation
of copying the chemical reaction rate and the chemical time step for each cell
back on CPU. Usually a CUDA program requires operations of deallocating
memory previously allocated in the device. Vectors created with thrust template
class are deleted automatically when the function execution is stopped, freeing
the memory. As might be expected, without the cudaFree functions a great
amount of time can be saved. These functions would be necessary if the thrust
library was not used in the program implementation. Finally, data calculated
are sent back to OpenFOAM and used in the species and energy equations. This
procedure is done several times concurrently depending on the number of cells
computed in parallel.

The final version of GPUChemistryModel was obtained after a great work
of code optimization. In fact, the original version worked well for single-cell
cases only, thus the first changes were aimed to make the code working for
multi-cell simulations. Since one of the goals of a GPGPU implementation is to
achieve better performances in terms of computational speed, the code has been
optimized in order to get better speed-ups while preserving the accuracy of the
results. All these changes will not be presented in this dissertation. However,
one needs to know that up to a 2x speed-up was achieved on the final code

48

4.2 – GPU chemistry model

version with respect to the original one.
Finally, the implementation of the explicit Runge-Kutta method instead of

an implicit one is soon explained. In a SIMT execution model (see section 2.3)
all the blocks and threads do their tasks simultaneously without gathering. The
only possibility to communicate is given by the shared memory, that allows com-
munication amongst threads of the same block only. Thus, there is the necessity
to decrease branching of the tasks and the requests of informations among dif-
ferent blocks to build a performing code. The RKCK45 algorithm meets these
requirements and it can be easily parallelizable. On the other side, an implicit
integration method works totally different: it requires the construction of a Ja-
cobian matrix and the solution of the system of equations must be found with
an LU decomposition and a backward substitution. To build the correspond-
ing triangular and diagonal matrices, each row of the matrix must know data of
other rows and large amount of data has to be shared amongst the matrix parts.
This matrix increases in shape with the mesh dimension, so in an hypothetical
CUDA implementation each element should be stored in a block rather than
in a thread (you should remember that the maximum number of threads in a
block is limited to 1024). Since communication amongst block is not possible,
data should be copied back and forth from global memory, causing a huge com-
putational effort since its high latency and low throughput. One might think to
construct only the Jacobian matrices of the chemical ODEs, one for each com-
putational cell, and store them into the blocks since they are much smaller for
simple chemistry mechanisms. Nevertheless, the solution of n different systems
could increase the computational time needed instead of decreasing it. Further-
more, an implicit method is used for its extended stability as the linear system is
completely solved considering every cell at the same time. Splitting the matrix
could produce numerical errors in the solution and the method could become
unstable.

49

50

Chapter 5

Results and discussion

In the last chapter the code has been analyzed exhaustively and all the main
parts of the code have been described qualitatively. Nothing has been mentioned
about the performance of GPUChemistryModel with respect to the original CPU
version. In this chapter, CPU and CPU/GPU version of OpenFOAM chemical
reaction solver will be studied with the aim of understanding whether or not
the hybrid code can indeed decrease the computational time without any lost
in performance. Consequently, results will be compared with CPU counterparts
to validate the accuracy of the result. Then, speed up will be analyzed.

To do the best analysis, both (chemFoam and reactingFoam) solvers were
used. In particular, the following simulations were performed:

• hydrogen combustion, single-cell;

• methane combustion (GRI-Mech 3.0), single-cell;

• simple methane combustion, multi-cell;

• simple syngas combustion (CRECK syngas), multi-cell;

• methane combustion (GRI-Mech 3.0), multi-cell.

Every test case is taken from OpenFOAM tutorial folder except the syngas
mechanism. Therefore, GPU results were compared with data validated with
OpenFOAM original chemistry model. Furthermore, chemical kinetics software
Cantera [23] was used to better analyzed single-cell tutorial cases.

51

5 – Results and discussion

5.1 Single cell tutorials

As previously mentioned, the single-cell case consists in a single element mesh
where fields are created from initial condition. There are no boundary conditions,
since it is a pure virtual simulation that can not be represented experimentally.
Fluid dynamics is not present at all, while temperature T and mass fractions of
the chemical species Yk are the only changing physical values.

5.1.1 Hydrogen combustion mechanism

The hydrogen/oxygen combustion is one of the most studied reactions system:
in fact, the utilization of hydrogen as fuel is very important. First of all, it has
a simple oxidation kinetics, with very fast mass diffusivity and low molecular
weight. Second, this fuel is very powerful as clean burning alternative due to the
fact that it does not produce CO2 as pollutant [24]. Third, molecular hydrogen
is easy to find in nature. It is widespread in space industry for rocket propulsion
applications due to its high specific impulse, i.e. the thrust per unit bi-propellant
flow rate [18, 25].

The hydrogen/oxygen chemical system is quite complex, although only two
species are involved. This test case is based on a reduced mechanism, containing
5 elements, 10 species and 27 reactions. H2/O2 mechanism can be summarized
by the simple reaction:

H2 +O2 → 2H2O + energy (5.1)

The reduced kinetic system considered has low numerical stiffness, so an ex-
plicit integration method performs accurately. All the informations about chem-
istry, as well as the other chemFoam tutorials, are written in the Chemkin II
format. Initial conditions and chemistry properties are presented in table 5.1
and 5.2.

T [K] p [atm] XH2 XO2 XN2

1000 2 1.00 1.00 3.76

Table 5.1: Initial data, hydrogen combustion mechanism.

52

5.1 – Single cell tutorials

∆t [s] tend [s] absTol relTol
1e-3 1e-7 1e-12 1e-1

Table 5.2: Simulation setup, hydrogen combustion mechanism.

Results are showed in figure 5.1 and 5.2. Here the evolution of temperature
and mass fraction of the species involved is represented. The explicit CPU/GPU
solution is compared with the explicit CPU counterpart, using the RKCK45
ODE scheme. The two results are then compared with the Cantera solution,
assumed as reference. As it might been seen the accuracy of the results is pre-
served, confirming the goodness of the work. Nevertheless, the three curves do
not perfectly overlap when the solution begins to vary strongly.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

1000

1200

1400

1600

1800

2000

2200

Te
m

pe
ra

tu
re

 [K
]

cantera
explicit CPU
explicit CPU/GPU

Figure 5.1: Time evolution of temperature, single-cell hydrogen combustion.

53

5 – Results and discussion

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

H2
 m

as
s f

ra
ct

io
n

cantera
explicit CPU
explicit CPU/GPU

(a) H2

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.12

0.14

0.16

0.18

0.20

0.22

O2
 m

as
s f

ra
ct

io
n

cantera
explicit CPU
explicit CPU/GPU

(b) O2

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

H2
O

m
as

s f
ra

ct
io

n

cantera
explicit CPU
explicit CPU/GPU

(c) H2O

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.000

0.002

0.004

0.006

0.008

0.010
OH

 m
as

s f
ra

ct
io

n
cantera
explicit CPU
explicit CPU/GPU

(d) OH

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.000000

0.000001

0.000002

0.000003

0.000004

0.000005

0.000006

0.000007

0.000008

H2
O2

 m
as

s f
ra
ct
io
n

cantera
explicit CPU
explicit CPU/GPU

(e) H2O2

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

HO
2

m
as

s f
ra

ct
io

n

cantera
explicit CPU
explicit CPU/GPU

(f) HO2

Figure 5.2: Time evolution of main species mass fractions, single-cell hydrogen
combustion.

54

5.1 – Single cell tutorials

Figures 5.3 and 5.4 focus their attention to the slope of the curves, from t =
2× 10−4 to t = 2.5× 10−4. In particular, the curve is simply translated and one
methods anticipates the other by few fraction of seconds (as the temperature,
figure 5.3). The HO2 mass fraction evolution behaves slightly different: again, it
is noticeable the time translation between explicit CPU and explicit CPU/GPU
method but there is also an oscillatory behaviour at the slope start where the
two methods are different.

0.00020 0.00021 0.00022 0.00023 0.00024 0.00025
Time [s]

1000

1200

1400

1600

1800

2000

2200

Te
m

pe
ra

tu
re

 [K
]

cantera
explicit CPU
explicit CPU/GPU

Figure 5.3: Time evolution of temperature, single-cell hydrogen combustion:
detail.

This is substantially due to the parameters used to compute the steps of the
chemical ODEs. In particular, CPU and GPU versions of RKCK45 execute the
same tasks but have a different truncation error, depending on the particular
hardware used. Thus, the same result can not be achieved with the same set of
ODE parameters, that might be slightly different in this case. This difference is
evident when the variable of the differential equation starts changing, while it
is not present when the solution stays quite constant.

This phenomenon is even more visible when plotting the relative error amongst
the solutions. In particular, all the data set were interpolated between two val-
ues in order to have the results on the same time. Results are shown in figures
5.5 and 5.6. For temperature and most of the species involved, the relative error

55

5 – Results and discussion

0.00020 0.00021 0.00022 0.00023 0.00024 0.00025
Time [s]

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

HO
2

m
as

s f
ra

ct
io

n

cantera
explicit CPU
explicit CPU/GPU

Figure 5.4: Time evolution of HO2 mass fraction, single-cell hydrogen combus-
tion: detail.

has its peak in the middle of the slope, as it can be seen for temperature and
O2 mass fraction. In particular, we can see that the max relative error of the
explicit CPU/GPU with respect to the Cantera solution reaches low values in
this case (up to 4% for oxygen, 2% for temperature). Furthermore, the max
error is even lower referring to the explicit CPU method (less than 1%), while
also the OpenFOAM RKCK45 does not match perfectly the reference solution.

Much more interesting is the behaviour of HO2 and H2O2, as highlighted
in figure 5.6. Here the relative error has an oscillatory behaviour and reaches
higher values (up to 20% for OH). Furthermore, also the CPU solution gives
similar errors with respect to the reference solution, revealing that the inexact
behaviour could be a consequence of the explicit ODE solution method adopted.
One should note that the highest relative errors are obtained when the value of
the solution is very small (less than 1e − 5 for OH and than 1e − 6 for H2O2

mass fraction). Thus, the weight of these errors on the solution is minimal and
it can be caused by the different machine arithmetic of the GPU as well as the
oscillations for small values of the solution. Anyway, the error does not seem to
propagate, especially when the solution reaches higher values.

56

5.1 – Single cell tutorials

0.00020 0.00022 0.00024 0.00026 0.00028 0.00030
Time [s]

1000

1200

1400

1600

1800

2000

Te
m

pe
ra

tu
re

 [K
]

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Re
la

tiv
e

Er
ro

r

explicit CPU-cantera
explicit CPU/GPU-cantera
explicit CPU/GPU-explicit CPU

(a) Temperature

0.00020 0.00022 0.00024 0.00026 0.00028 0.00030
Time [s]

0.12

0.14

0.16

0.18

0.20

0.22

O2
 m

as
s f

ra
ct
io
n

0.00

0.01

0.02

0.03

0.04
Re

la
tiv

e
Er

ro
r

explicit CPU-cantera
explicit CPU/GPU-cantera
explicit CPU/GPU-explicit CPU

(b) O2

Figure 5.5: Relative error of the time evolution of temperature and species mass
fraction, single-cell hydrogen combustion.

57

5 – Results and discussion

0.00020 0.00022 0.00024 0.00026 0.00028 0.00030
Time [s]

0.000

0.002

0.004

0.006

0.008

0.010
OH

 m
as
s f
ra
ct
io
n

0.00

0.05

0.10

0.15

0.20

Re
la
tiv
e
Er
ro
r

explicit CPU-cantera
explicit CPU/GPU-cantera
explicit CPU/GPU-explicit CPU

(a) OH

0.00020 0.00022 0.00024 0.00026 0.00028 0.00030
Time [s]

0.000001

0.000002

0.000003

0.000004

0.000005

0.000006

0.000007

0.000008

H2
O2

 m
as
s f
ra
ct
io
n

0.00

0.02

0.04

0.06

0.08

0.10

Re
la
tiv

e
Er
ro
r

explicit CPU-cantera
explicit CPU/GPU-cantera
explicit CPU/GPU-explicit CPU

(b) H2O2

Figure 5.6: Relative error of the time evolution of species mass fraction, single-
cell hydrogen combustion.

58

5.1 – Single cell tutorials

T AR H H2 H2O H2O2 HO2 N2 O O2 OH
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Re
la

tiv
e

er
ro

r

(a) Explicit CPU/GPU VS Cantera

T AR H H2 H2O H2O2 HO2 N2 O O2 OH
0.00

0.01

0.02

0.03

0.04

Re
la

tiv
e

er
ro

r

(b) Explicit CPU/GPU VS explicit CPU

Figure 5.7: Relative error of the result for temperature and species mass frac-
tions, single-cell hydrogen combustion.

59

5 – Results and discussion

Since it is important that the implementation gives the right final result, a
comparison between explicit CPU/GPU and the other two solution final results
(i.e. at end time) has been conducted. Figure 5.7 shows relative errors amongst
the end values. The highest relative error is related to H2O2; it is noticeable
that the error on the final value does not exceed 2% with respect to the Cantera
result, while it is slightly higher compared to the CPU result. Furthermore, one
can clearly see that the error does not propagate since its final value is smaller
than the intermediate one.

One can conclude that the explicit CPU/GPU method works correctly in
terms of accuracy of the results for low-stiffness chemical mechanism and single-
cell cases.

5.1.2 Methane combustion mechanism

The combustion of an aliphatic hydrocarbon consists in several reactions where
the original fuel is disintegrated in intermediate species, that can be fuel them-
selves. Final products usually are H2O and CO2, while other species (H2, CO,
OH, ...) are frequently present [18].

The following test case is based on the reduced chemical kinetics system
GRI-Mech, an optimized mechanism created to model natural gas combustion
[26]. This model was designed by the Gas Research Institute (GRI) and it was
updated several times. The current version is the 3.0 release. Methane is largely
present on Earth, making it one of the cheapest fuels, thus very attractive. It has
two main problems: first, it is challenging to manage it due to its gaseous state
at ambient temperature and pressure; second, it produces several pollutants,
such as CO2 or NO2, that are responsible of greenhouse effect. Thus, a key
research point in last years is the reduction of the emission of carbon dioxide,
aiming to delay climate changes effects as much as possible [27].

Unlike the hydrogen combustion mechanism, GRI-Mech is much more stiff.
Then, an implicit method should be much more suited for this mechanism ODEs
solution. It contains 5 elements, 53 species and 325 reactions, therefore its com-
plexity is higher than the H2 combustion mechanism. Initial conditions and
chemistry properties are presented in table 5.3 and 5.4.

The same analysis applied to the hydrogen combustion simulation has been

60

5.1 – Single cell tutorials

T [k] p [atm] XCH4 XO2 XN2

1000 13.5 0.50 1.00 3.76

Table 5.3: Initial data, single-cell methane combustion.

∆t [s] tend [s] absTol relTol
1e-5 7e-1 1e-16 1e-6

Table 5.4: Simulation setup, single-cell methane combustion.

carried out for this case. Figure 5.8 shows the time variation of temperature and
some of the most important species mass fractions.

In particular, explicit CPU/GPU and explicit CPU results are compared
up to t = 1 × 10−2s since the computational cost for this simulation is very
high, as it will be highlighted in subsection 5.1.3. It is noticeable that the two
curves overlap and they follow the reference Cantera solution. This observation
is strengthened by figure 5.9 that shows the relative error between the two
methods for temperature and some species mass fractions. As one can see, the
error stays small (it does not exceed 0.2% for species considered). Much more
interesting is the error trend, less regular than in the H2/O2 combustion. For
instance, temperature and O2 mass fraction do not show a well-defined trend
but the error oscillates reaching small instantaneous peaks.

This behavior can be caused from the adopted interpolation as well as the
fact that we are considering a time range when the reaction has not begun
to develop. Finally, figures 5.10 show the relative error calculated on the final
value obtained with the explicit CPU/GPU solution with respect to the Cantera
reference solution. Figure 5.10a presents the relative error of temperature and
principal species mass fractions, while figure 5.10b shows only those species with
the highest error on the final value. It is worth noting that the error does not
exceed 5% and the highest values are obtained for intermediate species like C3H7

and C3H8. Errors are much lower for main species: an error less than 1.5% is
obtained for CH4.

61

5 – Results and discussion

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Time [s]

1000

1250

1500

1750

2000

2250

2500

2750

Te
m

pe
ra

tu
re

 [K
]

explicit CPU/GPU
explicit CPU
cantera

(a) Temperature

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Time [s]

0.00

0.01

0.02

0.03

0.04

0.05

CH
4
m
as
s f

ra
ct
io
n

explicit CPU/GPU
explicit CPU
cantera

(b) CH4

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Time [s]

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

CH
3
m
as
s f

ra
ct
io
n

explicit CPU/GPU
explicit CPU
cantera

(c) CH

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12
CO

2
m

as
s f

ra
ct

io
n

explicit CPU/GPU
explicit CPU
cantera

(d) CO2

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Time [s]

0.00

0.05

0.10

0.15

0.20

O2
 m

as
s f

ra
ct
io
n

explicit CPU/GPU
explicit CPU
cantera

(e) O2

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Time [s]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

H2
 m

as
s f

ra
ct

io
n

explicit CPU/GPU
explicit CPU
cantera

(f) H2

Figure 5.8: Time evolution of temperature and main methane combustion species
mass fractions, single-cell methane combustion.

62

5.1 – Single cell tutorials

0.002 0.004 0.006 0.008 0.010
Time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Te
m

pe
ra

tu
re

 [K
]

+1e3

0.000000

0.000002

0.000004

0.000006

0.000008

0.000010

Re
la

tiv
e

Er
ro

r

explicit CPU/GPU-explicit CPU

(a) Temperature

0.002 0.004 0.006 0.008 0.010
Time [s]

1.0

1.5

2.0

2.5

3.0

CH
3
m
as
s f
ra
ct
io
n

1e−7

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

Re
la
tiv
e
Er
ro
r

ex licit CPU/GPU-explicit CPU

(b) CH3

0.002 0.004 0.006 0.008 0.010
Time [s]

0.000025

0.000030

0.000035

0.000040

0.000045

O2
 m

as
s f
ra
ct
io
n

+2.201e−1

0.000000

0.000001

0.000002

0.000003

0.000004

Re
la
tiv
e
Er
ro
r

ex licit CPU/GPU-explicit CPU

(c) O2

0.002 0.004 0.006 0.008 0.010
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0
H2

 m
as
s f
ra
ct
io
n

1e−8

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

Re
la
tiv
e
Er
ro
r

ex licit CPU/GPU-explicit CPU

(d) H2

Figure 5.9: Relative error of the time evolution of temperature and main
methane combustion species mass fractions, single-cell methane combustion.

T CH4 O2 N2 CO
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Re
la

tiv
e

er
ro

r

(a) Temperature and main species

C2H4 C2H5 C2H6 C3H7 C3H8 CH2CHO CH3CHO
0.00

0.01

0.02

0.03

0.04

0.05

Re
la

tiv
e

er
ro

r

(b) Highest error on final value

Figure 5.10: Relative error of the result for temperature and species mass frac-
tions with respect to reference solution, single-cell methane combustion.

63

5 – Results and discussion

5.1.3 Time performance

In this section, computational time for single cell simulations is presented. Fig-
ure 5.11 shows time taken to complete H2 combustion simulation (about 3829
chemical time steps for explicit CPU/GPU, 3831 for explicit CPU).

OpenFOAM GPU1 GPU2 GPU3
ODE integration method

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
[s

]

Time comparison, single-cell hydrogen combustion
explicit CPU
explicit CPU/GPU

Figure 5.11: Time comparison, single-cell hydrogen combustion.

It is clearly evident that the simulation performs much faster with default
OpenFOAM Runge-Kutta Cash-Karp method (less than 1 second), while execu-
tion with GPU takes much more time (i.e. five more times with faster NVIDIA
TITAN V and even eighteen more times with NVIDIA GeForce 930MX). This
confirms the assumption made before: GPU gets its best result when working
with a system that can be parallelized, while in this case only a single cell is
treated, thus a single block is created by CUDA. Furthermore, it is worth noting
the differences between the three GPU hardware: a 3.6x speed-up is achievable
with the NVIDIA TITAN V with respect to a low-end hardware.

Figure 5.12 shows time taken to complete methane combustion simulation.
Here the computational effort is much higher than the other test case since the
complexity of the mechanism. For this reason, we recorded the simulation time
with GPU3 only. It is noticeable that both the simulations take a large amount

64

5.1 – Single cell tutorials

of time to complete, but the original explicit CPU version takes an order of
magnitude lower than the CPU/GPU version to end.

OpenFOAM GPU3
ODE integration method

0

20000

40000

60000

80000

100000

Ti
m

e
[s

]

1E4

1E5

Time comparison, single-cell methane combustion
explicit CPU
explicit CPU/GPU

Figure 5.12: Time comparison, single-cell methane combustion.

Both the test cases highlight that, in single cell simulation, GPGPU comput-
ing seems that can not achieve an increment in performance. A large amount of
time of the simulation is used for the operations of copying data from host to
device and vice versa, for allocation on memory on GPU and for the initialisa-
tion of the libraries. In addition to this, the parallelization offered by the GPU
is not exploited at all.

Method H2 GRI
Avg [ms] Std [ms] Avg [ms] Std [ms]

Implicit CPU 0.0451 0.0159 0.5621 0.0099
Explicit CPU 0.0334 0.0193 0.2171 0.0295

Explicit CPU/GPU 0.8110 0.4205 9.3243 1.2786

Table 5.5: Average and standard deviation of the computing time for all the
ODEs treatment adopted.

Table 5.5 shows the time taken for each integration method to solve a single

65

5 – Results and discussion

chemical time-step. We add a timing function to the code, before and after the
implementation of the integration cycle, excluding all the operations of memory
allocation, data copying and vector construction. Results exhibit clearly that ex-
plicit CPU/GPU method would perform much worse than its CPU counterparts
(explicit and implicit). In particular, the hybrid CPU/GPU implementation is
more than 24 and 43 times slower with respect to the explicit CPU method in
both the test cases and more than 18 and 16 times slower than the implicit CPU
integration method. The comparison with the implicit method is less indicative.
In fact, an explicit method requires very small time steps, particularly in region
of high numerical stiffness, to fulfill convergence and accuracy of the results.
This leads to a low cost per time step but also to a greater number of steps,
while in an implicit method the discretize time step can increase in size, leading
to a smaller number of high-cost time steps. However, the comparison between
the explicit methods clearly underlines why latency hiding is very important on
GPUs. During CUDA kernel operations, a large amount of data are read on the
global memory and copied in registers or cache memory. These global memory
operations, as discussed in section 2.3, take more clock cycles to complete with
respect to arithmetic operations or other memory operations. This large amount
of time can be hidden when using lots of blocks, warps and threads in parallel:
when a warp is copying data from device memory, other warps hide the latency
by doing other operations. This procedure can not be exploited when launching
few blocks and threads, as in these single-cell simulations. Thus, latency can not
be hidden and the total computational time is higher than the original one.

Anyway, if it was possible to avoid the large amount of data transfer between
host and device memory, the hybrid integration method would perform better
than the CPU counterpart. A potential solution can be solving the numerical
integration of the chemical kinetics ODEs in a single step and then giving the
data back to OpenFOAM. In this way, the code would display the final re-
sult only, without showing intermediate values, and data would be stored in
low-latency memory and latency would be hidden. Another possible implemen-
tation could be the size adjustment of the fluid dynamics time step based on
whether or not the simulation is advancing in a low-stiffness region. In this case,
the fluid dynamics time step can be increased about 10-15 times with respect to
the chemical time step, while in a high-stiffness region the solver has to choose

66

5.2 – Multi cell tutorials

the original chemical time step. Hence, the number of iterations would decrease
and so the computational effort. Due to the particular OpenFOAM implemen-
tation, this data transfer is necessary. However, a new chemFoam-based solver
can be built in order to modify it and a speed-up might be reached in single-cell
simulations, too.

5.2 Multi cell tutorials
The parallelization offered by GPGPU computing can not give the best results
in terms of computational time when simulating a chemical mechanism in a
single cell reactor, even though it has the same accuracy with respect to the
OpenFOAM CPU version. A consistent improvement regarding the simulation
time can be achieved when treating a multi-dimensional geometry: here the
possibility to execute several cells at the same time can be a great advantage.

To better compare the effects of a GPU architecture on reactive flows sim-
ulations, the same geometry has been used for all the tutorials. Thereby, it
is possible to analyze the effect of the CUDA parallelization only, removing
other time consuming effects such as different complexities of the mesh. The
geometry chosen was the simplest possible: a bi-dimensional square in xy-plane
with rectangular mesh elements. Mesh could have different refinements on the
two dimensions. Since OpenFOAM is based on a finite volume method, the bi-
dimensional geometry is shaped as a regular hexaedra with a single cell in the
z-direction.

The physical phenomenon examined is a laminar diffusion counter flow flame.
A diffusion flame consists in a particular combustion class of phenomena where
the fuel and the oxidizer (in general air) are not mixed together, but they are re-
leased from different location in the combustion chamber. The reactants have to
be released into the reaction zone fast enough to let the combustion to proceed.
This class is different from the premixed flame, where the species are combined in
a mixture before reaching the flame. Diffusion flames have a recurrent structure,
shown in figure 5.13.

It is noticeable the presence of two diffusion zones, where the fuel (on the left)
and the oxidizer (on the right) are released; here temperature and mass fraction
are constant due to the boundary conditions. Between them, the reaction zone

67

5 – Results and discussion

Figure 5.13: Diffusion flame structure [28].

is characterized by a peak on the temperature profile (and the heat generated).
The maximum of these quantities outlines the flame front, defined as a discon-
tinuity surface that separates what is burnt from the unburnt. Of course, the
fuel decreases when moving through the oxidizer and vice versa, showing the
consumption of the reactants for the combustion; on the other hand, products
of the reaction (usually CO2 or H2O) show their maximum concentration in
the core of the combustion.

Figure 5.14 shows the boundary condition applied on the geometry. Three
patches are applied:

• fuel, on the left wall, where the fuel is released;

• air, on the right wall, where the oxidizer is released;

• outlet, on the top and bottom wall.

In addition to this, an empty condition is imposed on the front and the back
wall since equations along the third dimension are not solved. Species mass frac-
tions are fixed on the lateral walls, based on the structure of the diffusion flame
previously explained. A fixed value velocity boundary condition is enforced, too:
the two gases have a speed of 0.1m/s in opposite direction, due to the counter
flow configuration. Applied boundary conditions are described in table 5.6.

68

5.2 – Multi cell tutorials

BACK
F
U
E
L

IN
L
E
T A

IR
IN

L
E
T
FRONT

OUTLET

OUTLET

Figure 5.14: Counter-flow flame boundary patches.

fuel air inlet/outlet
T fixedValue fixedValue inletOutlet
p zeroGradient zeroGradient zeroGradient
Yk fixedValue fixedValue inletOutlet
U fixedValue fixedValue pressureInletOutletVelocity

Table 5.6: Counter-flow flame boundary conditions types.

5.2.1 Simple methane combustion mechanism

The simple methane combustion mechanism was created by Bui-Pham [29] to
simulate this particular counter-flow configuration, so the mechanism has to be
considered for research uses only. The mechanism is elementary and consists on
5 species, 3 elements and a single reaction:

CH4 + 2O2 → CO2 + 2H2O (5.2)

Due to the low complexity of the reaction, the purpose of this simulation
was to validate the multi-cell solver in terms of results more than showing a
performance improvement. The best effects of the GPU architecture occur when
complex reaction are treated; thus, no sensible speed-up is expected from a single
reaction mechanism. Boundary conditions and initial values of the test case are

69

5 – Results and discussion

presented in table 5.7.

fuel air inlet/outlet internal field
T [K] 293 293 293 2000
p [atm] zeroGradient 1e-5
YCH4 1 0 0 1
YO2 0 0.23 0 0
YN2 0 0.77 1 1

Ux [m/s] 0.1 0 0 0

Table 5.7: Methane combustion boundary conditions.

Figure 5.15 shows a comparison amongst the integration methods on different
locations. Two probes are considered: the former near the fuel inlet, the latter
next to the oxidizer inlet. Temperature is analyzed on both the location (5.15a,
5.15b), while CH4 and O2 are compared respectively on their own inlet(5.15c,
5.15d). You can notice that the three results taken from explicit CPU, explicit
CPU/GPU and implicit CPU (taken as reference) are overlapping.

Results overlap when checking other mesh location too, as it is shown in figure
5.16. Here a probe in the middle of the geometry is chosen while temperature
(5.16a) and H2O (5.16b) are compared.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Time [s]

1650

1700

1750

1800

1850

1900

1950

2000

Te
m

pe
ra

tu
re

 [K
]

implicit CPU
explicit CPU
explicit CPU/GPU

(a) Temperature, center location.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Time [s]

0.00

0.02

0.04

0.06

0.08

0.10

H2
O

m
as

s f
ra

ct
io

n

implicit CPU
explicit CPU
explicit CPU/GPU

(b) H2O, center location.

Figure 5.16: Time evolution of temperature and H2O mass fraction on central
probe, multi-cell simple methane combustion.

Another interesting comparison is about the spatial variation of the different

70

5.2 – Multi cell tutorials

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Time [s]

250

500

750

1000

1250

1500

1750

2000

Te
m

pe
ra

tu
re

 [K
]

implicit CPU
explicit CPU
explicit CPU/GPU

(a) Temperature, fuel inlet.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Time [s]

250

500

750

1000

1250

1500

1750

2000

Te
m

pe
ra

tu
re

 [K
]

implicit CPU
explicit CPU
explicit CPU/GPU

(b) Temperature, air inlet.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

CH
4

m
as

s f
ra

ct
io

n

implicit CPU
explicit CPU
explicit CPU/GPU

(c) CH4, fuel inlet.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Time [s]

0.00

0.05

0.10

0.15

0.20

O2
 m

as
s f

ra
ct

io
n

implicit CPU
explicit CPU
explicit CPU/GPU

(d) O2, air inlet.

Figure 5.15: Time evolution of temperature, CH4 and O2 mass fraction on fuel
and air inlet, multi-cell simple methane combustion.

quantities. This type of analysis was not possible in single-cell tutorials, while
it shows interesting features in multi-cell simulations. Figure 5.17 represents
comparisons of temperature and species variation along x-direction for different
integration methods. Data have been taken at time t = 0.15s. As happened for
the temporal variation, these plots highlight the perfect overlapping of the three
methods.

Finally, the front flame obtained with the hybrid code is represented in fig-
ure 5.18. The front flame surface is positioned at x = 0.012m, confirming the
OpenFOAM results with explicit and implicit integration methods.

71

5 – Results and discussion

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Position [m]

250

500

750

1000

1250

1500

1750

2000

2250

Te
m

pe
ra

tu
re

 [K
]

implicit CPU
explicit CPU
explicit CPU/GPU

(a) Temperature

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Position [m]

0.0

0.2

0.4

0.6

0.8

1.0

CH
4

m
as

s f
ra

ct
io

n

implicit CPU
explicit CPU
explicit CPU/GPU

(b) CH4

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Position [m]

0.00

0.05

0.10

0.15

0.20

O2
 m

as
s f

ra
ct

io
n

implicit CPU
explicit CPU
explicit CPU/GPU

(c) O2

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Position [m]

0.00

0.02

0.04

0.06

0.08

0.10

0.12
H2

O
m
as
s f

ra
ct
io
n

implicit CPU
explicit CPU
explicit CPU/GPU

(d) H2O

Figure 5.17: Spatial variation of temperature and mass fractions at time t =
0.15s, multi-cell simple methane combustion.

5.2.2 Syngas combustion mechanism

The term syngas derives from the union of two words, Syntethic gas. It is a
mixture of molecular hydrogen H2 and carbon monoxide CO, with the presence
of methane CH4 and carbon dioxide CO2. It is used for producing synthetic
natural gas (SNG), but also as fuel in internal engines; the process where the
syngas is created is called gassification. As previously mentioned in 5.1.1, hy-
drogen combustion is a very important phenomenon because of its efficiency as
propellant and the environmental impact that it has with respect to classical

72

5.2 – Multi cell tutorials

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Position [x]

250

500

750

1000

1250

1500

1750

2000

2250
Te
m
pe
ra
tu
re
 [K

]

0.0

0.2

0.4

0.6

0.8

1.0

M
as
s f
ra
ct
io
n

Front flame, simple methane combustion
CH4
CH4 (reference)
O2
O2 (reference)
CO2
CO2 (reference)
H2O
H2O (reference)

Figure 5.18: Front flame, multi-cell simple methane combustion.

fossil fuels [30].
The reduced chemical mechanism used in this test case was developed by

the Chemical Reaction Engineering and Chemical Kinetic (CRECK) lab from
Politecnico di Milano [31–33]. It consists on 6 chemical elements, 21 species and
62 reactions and it is a medium-stiffness mechanism. The boundary conditions
and the initial values of the simulation are showed in table 5.8.

fuel air inlet/outlet internal field
T [K] 1500 1500 1500 2000
p [atm] zeroGradient 1e-5
YH2 1 0 0 0
YCO2 1 0 0 0
YO2 0 0.53 0 0
YN2 0 0.47 1 1

Ux [m/s] 0.1 0 0 0

Table 5.8: Syngas combustion boundary conditions.

73

5 – Results and discussion

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

1650

1700

1750

1800

1850

1900

1950

2000

Te
m

pe
ra

tu
re

 [K
]

implicit CPU
explicit CPU/GPU
explicit CPU

(a) Temperature

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

1650

1700

1750

1800

1850

1900

1950

2000

Te
m

pe
ra

tu
re

 [K
]

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

Re
la

tiv
e

Er
ro

r

explicit CPU/GPU-explicit CPU

(b) Temperature, relative error

Figure 5.19: Time evolution of temperature on fuel inlet, multi-cell syngas com-
bustion.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.00

0.01

0.02

0.03

0.04

H2
 m

as
s f

ra
ct

io
n

implicit CPU
explicit CPU/GPU
explicit CPU

(a) H2

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.00

0.01

0.02

0.03

0.04

H2
 m

as
s f
ra
ct
io
n

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

Re
la
tiv
e
Er
ro
r

explicit CPU/GPU-explicit CPU

(b) H2, relative error

Figure 5.20: Time evolution of H2 mass fraction on fuel inlet, multi-cell syngas
combustion.

Since the GPU code has already been validated, it is not essential to develop
the combustion until the end. Moreover, the complexity of this test would have
caused a sensible increase in computational cost to reach the final time. Thus,
the simulation was stopped at t = 1× 10−3s and results have been compared.

74

5.2 – Multi cell tutorials

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.00

0.01

0.02

0.03

0.04

CO
2

m
as

s f
ra

ct
io

n

implicit CPU
explicit CPU/GPU
explicit CPU

(a) CO2

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.00

0.01

0.02

0.03

0.04

CO
2

m
as

s f
ra

ct
io

n

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Re
la

tiv
e

Er
ro

r

explicit CPU/GPU-explicit CPU

(b) CO2, relative error

Figure 5.21: Time evolution of CO2 mass fraction on fuel inlet, multi-cell syngas
combustion.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

O2
 m

as
s f

ra
ct

io
n

implicit CPU
explicit CPU/GPU
explicit CPU

(a) Temperature

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

O2
 m

as
s f

ra
ct

io
n

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

Re
la

tiv
e

Er
ro

r
explicit CPU/GPU-explicit CPU

(b) Temperature, relative error

Figure 5.22: Time evolution of O2 mass fraction on air inlet, multi-cell syngas
combustion.

Figures 5.19, ?? and 5.22 show the time evolution of temperature and most
important species mass fractions and the respective relative errors between ex-
plicit CPU and explicit CPU/GPU methods. Temperature (figure 5.19), H2 and
CO2 mass fractions (figure ??) were recorded at the fuel inlet, while O2 mass
fraction (figure 5.22) was taken at air inlet. One can note that the behavior
is respected with explicit CPU/GPU method even though the results are not

75

5 – Results and discussion

perfectly overlapping. This can be caused by the tolerances used for the ODEs
solution that do not allow the implicit and the explicit methods to give the same
result. In fact, the two explicit methods give overlapping solutions and this is
confirmed by the relative error computed on these two integration methods.
This does not exceed the 4% on CO2 (figure 5.21b) and it keeps low with the
other quantities, validating the accuracy of the results.

5.2.3 Complex GRI-Mech 3.0 mechanism

The following case is based on the GRI-Mech 3.0 combustion, already presented
in section 5.1.2 [26]. For the same reasons presented in subsection 5.2.2, the
simulation was stopped at t = 1 × 10−3s and results have been compared.
Even though the simple methane combustion (section 5.2.1) has been totally
simulated until the right end time, we did not find it necessary to do that with
this test case. In fact, the cost of this simulation is much higher than the previous
two multi-cell cases and it is possible to demonstrate the accuracy of the result
with the available data only.

Figure 5.23 shows a comparison among the integration methods on different
positions: fuel inlet, air inlet and a central position. Again, it is clearly noticeable
that the results are perfectly overlapping.

Figure 5.24 shows the relative error computed on fuel and air inlet, for CH4

and O2 mass fraction respectively. It is clearly evident that the error is higher
when the corresponding gas has not reached the probe location yet, thus for
lower time, then decreases to zero. The maximum error is less than 0.5% in
both cases, probably meaning that at smaller quantities values the GPU can
not have the same precision as the CPU.

A comparison was made also for the different methods along the x-direction,
at end time t = 1 × 10−3s. Results are shown in figure 5.25, highlighting good
overlapping. The relative error has been calculated (figure 5.25b and 5.25d):
again, biggest errors manifest when the quantities are smaller, confirming the
previous assumptions.

76

5.2 – Multi cell tutorials

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

800

1000

1200

1400

1600

1800

2000

Te
m

pe
ra

tu
re

 [K
]

implicit CPU
explicit CPU
explicit CPU/GPU

(a) Temperature, fuel inlet.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

1500

1600

1700

1800

1900

2000

Te
m

pe
ra

tu
re

 [K
]

implicit CPU
explicit CPU
explicit CPU/GPU

(b) Temperature, air inlet.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

CH
4
m
as
s f

ra
ct
io
n

implicit CPU
explicit CPU
explicit CPU/GPU

(c) CH4, fuel inlet.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
O2

 m
as

s f
ra

ct
io

n
implicit CPU
explicit CPU
explicit CPU/GPU

(d) O2, air inlet.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

CH
4
m
as
s f
ra
ct
io
n

1e 13
implicit CPU
explicit CPU
explicit CPU/GPU

(e) CH4, central inlet.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

O2
 m

as
s f

ra
ct

io
n

1e−14
implicit CPU
explicit CPU
explicit CPU/GPU

(f) O2, central inlet.

Figure 5.23: Time evolution of temperature, CH4 and O2 mass fraction on dif-
ferent positions, multi-cell methane combustion.

77

5 – Results and discussion

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

CH
4
m
as
s f
ra
ct
io
n

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

Re
la
tiv
e
Er
ro
r

explicit CPU/GPU-explicit CPU

(a) CH4, fuel inlet.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time [s]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

O2
 m

as
s f
ra
ct
io
n

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Re
la
tiv
e
Er
ro
r

explicit CPU/GPU-explicit CPU

(b) O2, air inlet.

Figure 5.24: Relative error on time evolution of CH4 and O2 mass fractions on
fuel and air inlet, multi-cell methane combustion.

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Position [m]

0.0

0.2

0.4

0.6

0.8

1.0

CH
4

m
as

s f
ra

ct
io

n

implicit CPU
explicit CPU
explicit CPU/GPU

(a) CH4

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

CH
4

m
as

s f
ra

ct
io

n

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Re
la

tiv
e

Er
ro

r

explicit CPU/GPU-explicit CPU

(b) CH4, relative error.

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Position [m]

0.00

0.05

0.10

0.15

0.20

O2
 m

as
s f

ra
ct

io
n

implicit CPU
explicit CPU
explicit CPU/GPU

(c) O2

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Time [s]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

O2
 m

as
s f

ra
ct

io
n

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Re
la

tiv
e

Er
ro

r

explicit CPU/GPU-explicit CPU

(d) O2, relative error.

Figure 5.25: Spatial variation of CH4 andO2 mass fractions at time t = 1×10−3s,
multi-cell methane combustion.

78

5.2 – Multi cell tutorials

5.2.4 Time performance

Computational time analysis for multi-cell simulations is now presented. Due to
the GPU architecture, a great speed-up can be achieved when treating multi-
ple cells with respect to the single-cell cases. Tests were made on the NVIDIA
TITAN V (GPU3) to have the maximum improvement possible. All the simu-
lations were carried out until the same end time t = 1× 10−5. Different number
of cells have been tested, as shown in figure 5.26.

(a) 800 cells (b) 3200 cells

(c) 9600 cells (d) 20000 cells

Figure 5.26: Computational mesh for different number of cells.

Figure 5.27 shows computational time of the explicit CPU/GPU integration
method compared with the explicit RKCK45 implemented in OpenFOAM of the
simple methane combustion (section 5.2.1). This case was tested up to 20000
cells. It is clearly evident that time decreases when using the GPU even though

79

5 – Results and discussion

there is not a great improvement.

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of mesh cells

500

1000

1500

2000

2500

3000

3500

4000

Ti
m
e
[s
]

Time comparison, multi-cell simple methane combustion
explicit CPU
explicit CPU/GPU

Figure 5.27: Time comparison, multi-cell simple methane combustion.

This is confirmed by figure 5.28 that shows the speed-up obtained when vary-
ing the number of cells. Some considerations can be made. A maximum 1.47x
speed-up can be reached. Thus, performance improvements can be achieved even
with a very simple reaction mechanism. This mostly confirms the goodness of
the optimization work, since no improvements were obtained in this test case
with previous versions of the code. Third, there is not a great improvement on
the speed-up when changing the number of cells (from 1.21x to 1.47x) due to the
low complexity of the chemical mechanism. Finally, an upper limit is reached
when increasing the number of cells; above that, the speed-up seems to become
uniform.

Figures 5.29 and 5.30 show the time comparison between the explicit CPU
and the explicit CPU/GPU methods and the speed-up at various number of cells
for the syngas combustion. Again, some interesting considerations can be made.
First of all, the maximum speed-up is 3.55x reached at 30000 cells, more than
twice the value obtained with the simple methane combustion. This confirms
that better results can be achieved when the involved chemistry mechanism

80

5.2 – Multi cell tutorials

800 3200 9600 15000 20000
Number of cells

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Sp

ee
d-
up

1.21x

1.36x
1.44x 1.42x 1.47x

Speed-up, multi-cell simple methane combustion

Figure 5.28: Speed-up, multi-cell simple methane combustion.

increases in complexity, while for simpler ones the CPU and the GPU take
about the same time to perform. Second, when treating complex chemical chains
the number of cells affects the speed-up much more than how it happens with
simpler ones. One can clearly see a wider range of speed-ups, from 1.12x to
3.55x, with respect to the simple methane mechanism.

Figures 5.31 and 5.32 show the same syngas combustion mechanism, but
with different ODEs integration tolerances: in particular, in this second case
the tolerances are coarser than the first case. It is worth noting that the max-
imum speed-up is slightly lower than the previous case and, in general, the
performances seem to be worst. Furthermore, speed-ups are much lower when
treating a low number of cells, at the point that explicit CPU is faster than
explicit CPU/GPU at 800 cells. Thus, we should say that at lower number of
cells the simulation is tolerance-dependent, i.e. a change in the tolerance can
improve or not the simulation time more than a different method can do. This
is not happening at higher number of cells, where tolerances change the results
but up to a less extent.

81

5 – Results and discussion

0 5000 10000 15000 20000 25000 30000
Number of mesh cells

0

1000

2000

3000

4000

5000

6000

7000
Ti
m
e
[s
]

Time comparison, multi-cell syngas combustion
explicit CPU
explicit CPU/GPU

Figure 5.29: Time comparison, multi-cell syngas combustion (absTol = 1×10−13,
relTol = 1× 10−4).

800 3200 9600 15000 20000 30000
Number of cells

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

d-
up

1.12x

2.14x

2.94x

3.28x 3.35x
3.55x

Speed-up, multi-cell syngas combustion

Figure 5.30: Speed-up, multi-cell syngas combustion (absTol = 1 × 10−13,
relTol = 1× 10−4).

82

5.2 – Multi cell tutorials

0 5000 10000 15000 20000 25000 30000
Number of mesh cells

0

1000

2000

3000

4000

5000

6000

7000
Ti
m
e
[s
]

Time comparison, multi-cell syngas combustion
explicit CPU
explicit CPU/GPU

Figure 5.31: Time comparison, multi-cell syngas combustion (absTol = 1×10−10,
relTol = 1× 10−1).

800 3200 9600 15000 20000 30000
Number of cells

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

d-
up

0.61x

1.45x

2.69x

3.02x
3.18x

3.35x
Speed-up, multi-cell syngas combustion

Figure 5.32: Speed-up, multi-cell syngas combustion (absTol = 1 × 10−10,
relTol = 1× 10−1).

83

5 – Results and discussion

0 10000 20000 30000 40000 50000 60000 70000 80000
Number of mesh cells

0

5000

10000

15000

20000

Ti
m
e
[s
]

Time comparison, multi-cell methane combustion
explicit CPU
explicit CPU/GPU

Figure 5.33: Time comparison, multi-cell methane combustion.

800 3200 9600 15000 20000 30000 50000 80000
Number of cells

0

1

2

3

4

Sp
ee

d-
up

3.28x

4.06x
4.35x 4.42x

4.22x 4.3x 4.23x 4.33x

Speed-up, multi-cell methane combustion

Figure 5.34: Speed-up, multi-cell methane combustion.

84

5.2 – Multi cell tutorials

Finally, the complex GRI mechanism results are presented in figures 5.33
and 5.34. Here the number of cells tested was increased up to 80000 to show
that, after a certain mesh dimension, the speed-up does not increase anymore.
The maximum speed-up achieved is about 4.42x with 15000 cells, but for higher
number of cells the results are still the same. It is noticeable that also for coarser
meshes the reached speed-up is high (greater than 3x). This highlights the dif-
ference between explicit CPU/GPU and explicit CPU when simulating complex
mechanisms.

GPU1 GPU2 GPU3
Code versions

0

50

100

150

200

250

300

350

400

Ti
m
e
[s
]

Simulation time, multi-cell methane combustion

Figure 5.35: Time comparison, multi-cell methane combustion, different GPUs.

A comparison among different GPUs was made for the complete methane
combustion mechanism, too. The simulation was run up to t = 1 × 10−6s in
order to execute a sufficiently large amount of time steps. As in the single-cell
case, one can see a huge difference among the three devices in terms of compu-
tational effort. In this case, the NVIDIA GeForce GTX 1660 SUPER and the
NVIDIA TITAN V are 15x and 68x faster than the NVIDIA GeForce 930MX.
This confirms that the results obtained are strictly related to the hardware used,
since the low-end GPU1 does not give any improvement in the performance with
respect to the CPU original version as GPU3 and GPU2 do.

85

86

Chapter 6

Conclusion

The project presented in this dissertation had the purpose of showing the po-
tentiality of GPGPU computing applied on CFD, particularly on combustion
problems. These class of fluid dynamics phenomena is very complex to simu-
late numerically. In addition to the fact that the involved chemistry kinetics
mechanism can be very complicated and have great mathematical stiffness, the
solution of the chemical ordinary differential equations has to be repeated for
all the computational cells of the mesh. This can cause huge demand of com-
putational resources, considering also the ODEs integration method used for
chemistry treatment. Thus, we wanted to demonstrate that a GPU implemen-
tation of the Runge-Kutta Cash-Karp integration method could improve the
performance with respect to the original OpenFOAM counterpart, without af-
fecting the accuracy of the results.

The proposed implementation of the explicit RKCK45 CPU/GPU method
has revealed itself appropriate to reach the aforementioned goal. After a gen-
eral overview about how GPGPU computing works, this implementation was
described accurately highlighting its main features. In particular, the thrust
library provided by CUDA allowed to manipulate large arrays of data in a sim-
ple manner: for instance, memory is freed automatically at the end of the code
thanks to this library and that gives a large benefit in terms of overall computa-
tional cost. Other implementation choices were particularly important, resulting
in a great increment of the performances. A general code optimization reduced
the computational effort, too. Very different test cases were simulated in order

87

6 – Conclusion

to evaluate the code. Hydrogen and methane combustion mechanisms were used
for single-cell simulations. Accuracy of the results was checked and small errors
on the final solutions were obtained (less than 5%). A general speed-up could
not be achieved in these cases since it is not possible to hide memory latency
due to the fact that only a single CUDA block is used. On the contrary, an
increment of the performance has been obtained in all the multi-cell cases sim-
ulated for different number of mesh cells and different stiffness-level chemical
mechanisms. With the low-stiffness simple methane combustion we reached a
1.5x speed-up with respect to the CPU original version. Better speed-ups were
achieved with the medium-stiffness syngas combustion (CRECK syngas mech-
anism), up to 3.6x. Finally, a 4.4x speed-up was obtain with the high-stiffness
methane combustion (GRI-Mech 3.0).

A natural conclusion can be that GPGPU computing applied on numerical
simulations of reactive flows combustion can really decrease the computational
effort and preserve the accuracy of the results at the same time. Surely, the
explicit method adopted has well-defined mathematical features and it is bet-
ter applied to low-stiffness-level chemical reaction problems. Thus, an implicit
method could be better in terms of time saving for stiff problems with respect
to the solution proposed since it uses less high-cost chemical time step per fluid
dynamics one.

6.1 Future developments

Despite the implementation adopted showed its potential and good speed-up
can be achieved, further developments are needed for improving the code and
exploiting all the advantage of GPGPU computing. Here the main features that
should be implemented are briefly presented.

1. chemFoam implementation. It has been underlined that the computa-
tional effort can not be reduced with the single-cell chemical kinetics solver.
In fact, data are copied to the device and back to host every single chem-
ical time step and the kernel has to access to high-latency global memory
several times during the computation since an explicit integration method
is used. This causes the code to perform slower than the original explicit

88

6.1 – Future developments

CPU method. A possible solution could be solving all the chemical prob-
lem without passing data every time step, giving the final result only. Data
will be stored in low-latency memory (registers, shared) that could decrease
the computational effort. Another possible solution could be to increase the
time step about 10-15 times with respect to the chemical time step in region
of low stiffness, while using the chemical time step for high stiffness regions.
Thus, the number of iteration would be reduced and the total simulation
time could be decreased.

2. Species limitation. As showed in 2.2, the maximum number of threads
per block is 1024. This means that we can treat reaction mechanisms that
have up to 1024 species. In addition to this, shared memory constraint adds
a further limitation in the number of species to be processed. A possible
solution could be to use more blocks for a single cell or to assign multiple
species to a single thread. The latter idea must be implemented considering
shared memory and registers limitations.

3. Multi-CPU. One might think to increase the speed-up of the simulation
by using the further parallelization offered by a multi-core CPU. The com-
putational mesh is divided in multiple sections, one per each core, thanks
to the OpenMPI library. Then, each core communicates with the GPU
separately and these groups of cells are further divided among the CUDA
blocks. Nevertheless, the achievable speed-up is quite low or insignificant
due to the fact that data transfer between host and device are limited by
the PCIe throughput. Solving this problem could cause a sensible increasing
in the performance.

4. Multi-GPU. Another way to improve performance by enhancing paral-
lelism could be a multi-GPU system. As with a multi-core CPU hardware,
the code should be modified in order to implement multi-GPU usage.

89

90

Appendix A

Solvers in OpenFOAM

A.1 chemFoam

chemFoam is a solver used for chemistry problems. It is designed for testing
chemical mechanisms in a single cell geometry and to compare them with other
chemistry solvers (Chemkin, Cantera, ...). The resolutive process is based on the
numerical integration of the chemical kinetics ordinary differential equations;
as opposed to other solvers, there is not a fluid dynamics field motion so the
momentum conservation has not to be enforced. Furthermore, the pressure stays
constant. The principal steps are now presented:

1. update time;

2. solve chemistry ODEs, returning the chemical time step and the heat source
Q̇ (the algorithm used for the integration of the chemical differential equa-
tion it will be presented accurately in appendix B);

3. calculate the integrated heat:

Q =
∫ tend

0
Q̇dt ≈

tend∑
t=0

Q̇t∆t (A.1)

4. solve the species conservation equations 3.23 without the convective term;

91

A – Solvers in OpenFOAM

5. solve the conservation of total entalphy:

h = h0 +Q (A.2)

6. if the volume is constant, update the universal gas constant:

Rspec = 1000R
N∑
k=0

Yk
Wk

(A.3)

and the pressure:
p = ρRspecT (A.4)

A.2 reactingFoam

reactingFoam is a transient compressible solver for combustion with chemical
reactions. It is very similar to another solver, rhoReactingFoam, except for the
psiThermo treatment of reactions and heat exchange. In fact, the thermopyhsical
model for the mixture accounts for compressibility:

Φ = 1
RT

(A.5)

and density is calculated from a closure relation (e.g. the equation of state).
On the other hand, rhoReactingFoam uses density to compute all thermopyh-
sical properties. Differences are also on the application: the former is used for
complex combustion problems, the latter for heat exchangers.

reactingFoam is based on the PIMPLE algorithm, that is a combination
of SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) and PISO
(Pressure Implicit with Splitting of Operator) algorithms. Both the procedure
are based on two main points: the derivation of an equation for pressure from
continuity and momentum equations; a corrector step for the velocity field in
order to satisfy the continuity constraint [34, 35].

92

A.2 – reactingFoam

tn+1 = tn + t

Compute rho
(mass equation)

Compute velocity
(momentum predictor)

Compute chemistry
and energy

Compute pressure
(pressure correction)

Correct velocity

Update turbulence

tn+1 < tend

outer loop

inner loop

non orthogonal correction

start simulation

end simulation

Figure A.1: PIMPLE loop.

93

A – Solvers in OpenFOAM

While the SIMPLE loop restarts the iteration from the momentum predictor
in order to guess the velocity field with the pressure update, the PISO loop
solves again the pressure equation only. The PIMPLE algorithm (figure A.1)
can be imagined as a SIMPLE algorithm for every time step. First of all, the
momentum predictor equation is solved and the initial prediction of the ve-
locity field is computed. Then the pressure equation, derived from continuity
and momentum equation, is solved and the velocity field is corrected. An inner
corrector loop (i.e. the PISO algorithm feature) is used to update the pres-
sure until it converges. On the other side an outer corrector loop is used to
control the field velocity convergence. When the outer loop converges, time is
updated. The number of the inner and outer loops are defined in system/fvSo-
lution through the dictionaries nCorrectors and nOuterCorrectors. Another
correction can be made on pressure when the computational mesh is not orthog-
onal (nNonOrthogonalCorrectors).

The procedure for t < tend, available in the file reactingFoam.C, is the
following:

1. evaluate the time step;

2. enforce the mass conservation and compute an initial density:

dρ

dt
+∇Φ = fvOptions(ρ) (A.6)

3. start the outer loop;

4. solve the momentum equation;

5. solve the chemical ordinary differential equation, calculate the chemical
reaction rates and the integrated heat;

6. if the chemical species is reactive, enforce the conservation of mass species
by using the reaction rates previously calculated and updating the mass
species:

dρYi
dt

+∇(ΦYi)−∇2(µYi) = RR(Yi) + fvOptions(ρ, Yi) (A.7)

94

A.2 – reactingFoam

For inert species:
Yinert = 1− Yreactive (A.8)

7. solve the energy equation (the form is chosen in constant/thermophysical-
Properties);

8. start the inner loop (PISO);

9. solve the pressure equation, that can also treat transonic conditions (in this
case the equation to be solved is slightly more complex);

10. solve again the mass equation since density has changes due to the variation
on p and phi;

11. update turbulence parameters;

12. update velocities and fluxes. If p does not converge, solve again the pressure
equation (PISO loop);

13. if U does not converge, guess another velocity value and restart the cycle.

95

96

Appendix B

Chemistry solution in
OpenFOAM

The resolution of chemistry in the two solvers chemFoam and reactingFoam
takes place in different ways even though the resolution method is the same
for both the OpenFOAM solvers. In chemFoam, this takes place in the solve-
Chemistry.H file, before the imposition of the species conservation in yEqn.H
file that requires the solution of the chemical ODEs. In the above file there is
chemistry.solve(), where chemistry is a reference to pChemistry in create-
FieldRefs.H file (that creates new variable referenced by other variables cre-
ated in createFields.H file). pChemistry is in turn associated with the Basic-
ChemistryModel template and by means of rhoReactionThermo is generated
as New(const ReactionThermo& thermo) by the selector in BasicChemistry-
Model.C. A selector is defined as a virtual function named New and it looks
through the function parameters to determine the typeName of the derived to
be constructed, then it uses it to look up in the hask table to return the con-
structor point. This file in turn invokes basicChemistryModel.H file that by ba-
sicChemistryTemplates.C reads and uses all the thermodynamic and chemistry
information contained in the constant case.

On the other side, in reactingFoam chemistry ODEs is resolved into the
PIMPLE loop, in particular through the presence of reaction->correct()
contained in the yEqn.C file. As the above pChemistry, reaction is defined in
createFields.H and associated with the CombustionModel template. Then, it is

97

B – Chemistry solution in OpenFOAM

generated as:

New(
const ReactionThermo& thermo,
const compressibleMomentumTransportModel& turb,
const word& combustionProperties

)

by means of psiReactionThermo, with the selector contained in line 47
of CombustionModel.C. The class CombustionModel is then inherited by the
class ChemistryCombustion, that uses the class BasicChemistryModel through
pointer chemistryPtr_.

Focusing on the aforementioned constant folder, there is the presence of the
chemistryProperties file where the method for solving the chemical ordinary
differential equations is defined. First of all, the method is chosen between two
possibilities:

• standard, that is selected by default and treats the ODEs using the re-
quired resolution method, providing the relative coefficients through the
dictionaries;

• TDAC, that is based on tabulated quantities through which a linear interpo-
lation is made.

Second, a solver can be chosen between EulerImplicit and ode: in partic-
ular, the second dictionary collects all the procedure to solve ordinary differen-
tial equation (RKCK45, seulex, ROsenbrok34, ...) and the tollerance parameters
(absToll, relTol, ...).

Referring to the latter solver, the connection between the ODE solver and the
chemistry model is made in the standardChemistryModel.C file where a chem-
istry variable is built thanks to the connection between the template instance
StandardChemistryModel<CompType,ThermoType> and the template class from
which it was instantiated from. In the above file there is also the presence of
three solve functions, of which the first has a dependence with BasicChem-
istryModel.C through the function correct(). Furthermore, this solve func-
tion calls the ode.C and then the odeSolver.C files, showing the aforementioned
connection.

98

B.1 – RKCK45

B.1 RKCK45

The main steps of the chemistry treatment with explicit RKCK45 method are
now presented, referring to figure 3.1.

1. in StandardChemistryModel.C file, the second of the three solve functions
creates the time step that is returned by the last solve function.

2. in the same file, the first solve is used. Thermodynamic quantities are
copied from thermo class, then in a forAll(rho,celli) cycle species con-
centrations are built (doing this operation once per cell). After the vector
constructions, the computation enters in a while(timeLeft>small) cycle,
where this->solve is present.

3. the above function sends to ode.C, where a cTp_ vector is created with
informations about concentrations, temperature and pressure. At the end,
an odeSolver->solve is present.

4. this function sends to the last solve function in ODESolver.C file. Here,
the chemical time step is created and another solve is present.

5. this sends to the penultimate solve function in the same file, that in turn
sends to RKCK45.C file, second solve function.

6. another solve sends to adaptiveSolver.C, where the main core of the inte-
gration method starts. The ode.derivatives function sends back to Stan-
dardChemistryModel.C file, where the function for the computation of the
derivatives dy/dx, needed for the advancing of the integration method in
time, is implemented.

7. in the derivative function, there is the presence of omega that sends
to another function of the standard chemistry file, that in turns sends to
Reaction.C file where omega is finally implemented.

8. after the computation of the derivative, a do-while cycle is performed using
the error as convergence parameter. In particular, the iteration takes place
until the normalized max error is less than unity. Inside the cycle, another

99

B – Chemistry solution in OpenFOAM

solve sends again to RKCK45.C file, where the Runge-Kutta algorithm
takes place.

9. in RKCK45.C, first solve function, several ode.derivatives are imple-
mented, that sends back to step 6. At the end, normalizeError function is
returned.

10. this sends again to ODESolver.C, where the normalized error that is needed
as convergence parameter is returned.

11. this completes first solve in RKCK45.C.

12. this in turn completes second solve function in adaptiveSolver.C

13. last two solve functions in ODESolver.C are completed, as well as ode.C.

14. finally, in StandardChemistryModel.C the chemical time step and the reac-
tion rates can be constructed and the minimum time step is returned.

100

Bibliography

[1] Kyle Spafford et al. “Accelerating S3D: a GPGPU case study”. In: Euro-
pean Conference on Parallel Processing. Springer. 2009, pp. 122–131.

[2] Kyle E Niemeyer and Chih-Jen Sung. “Accelerating moderately stiff chem-
ical kinetics in reactive-flow simulations using GPUs”. In: Journal of Com-
putational Physics 256 (2014), pp. 854–871.

[3] Christopher Stone and Roger Davis. “Techniques for solving stiff chemical
kinetics on GPUs”. In: 51st AIAA Aerospace Sciences Meeting including
the New Horizons Forum and Aerospace Exposition. 2013, p. 369.

[4] Yu Shi et al. “Redesigning combustion modeling algorithms for the Graph-
ics Processing Unit (GPU): Chemical kinetic rate evaluation and ordinary
differential equation integration”. In: Combustion and Flame 158.5 (2011),
pp. 836–847.

[5] Nicholas Curtis. “Accelerating Reactive-Flow Simulations via Vectorized
Chemical Kinetic Evaluation”. In: (2019).

[6] Federico Ghioldi. “Fast algorithms for highly underexpanded reactive spray
simulations”. In: (2019).

[7] “CUDA C programming guide”. In: Nvidia Corporation 107 (2012).

[8] “CUDA C Best practices guide”. In: Nvidia Corporation 107 (2012).

[9] John Cheng, Max Grossman, and Ty McKercher. Professional CUDA c
programming. John Wiley & Sons, 2014.

[10] Jason Sanders and Edward Kandrot. CUDA by example: an introduction
to general-purpose GPU programming. Addison-Wesley Professional, 2010.

101

BIBLIOGRAPHY

[11] Gordon E Moore. “Cramming more components onto integrated circuits”.
In: Proceedings of the IEEE 86.1 (1998), pp. 82–85.

[12] Maurice Herlihy. “The multicore revolution”. In: International Conference
on Foundations of Software Technology and Theoretical Computer Science.
Springer. 2007, pp. 1–8.

[13] Karl Rupp. “40 years of microprocessor trend data”. In: GitHub. 2018.

[14] John D Owens et al. “GPU computing”. In: Proceedings of the IEEE 96.5
(2008), pp. 879–899.

[15] Michael J Flynn. “Very high-speed computing systems”. In: Proceedings of
the IEEE 54.12 (1966), pp. 1901–1909.

[16] Michael J Flynn. “Some computer organizations and their effectiveness”.
In: IEEE transactions on computers 100.9 (1972), pp. 948–960.

[17] Vasily Volkov. “Better performance at lower occupancy”. In: Proceedings of
the GPU technology conference, GTC. Vol. 10. San Jose, CA. 2010, p. 16.

[18] Kenneth K Kuo. Principles of combustion. TJ254. 5 K85 2005. 2005.

[19] Steven C Chapra, Raymond P Canale, et al. Numerical methods for engi-
neers. Boston: McGraw-Hill Higher Education, 2010.

[20] Marc Nico Spijker. “Stiffness in numerical initial-value problems”. In: Jour-
nal of Computational and Applied Mathematics 72.2 (1996), pp. 393–406.

[21] Charles Francis Curtiss and Joseph O Hirschfelder. “Integration of stiff
equations”. In: Proceedings of the National Academy of Sciences of the
United States of America 38.3 (1952), p. 235.

[22] Jeff R Cash and Alan H Karp. “A variable order Runge-Kutta method
for initial value problems with rapidly varying right-hand sides”. In: ACM
Transactions on Mathematical Software (TOMS) 16.3 (1990), pp. 201–222.

[23] David G. Goodwin et al. Cantera: An Object-oriented Software Toolkit
for Chemical Kinetics, Thermodynamics, and Transport Processes. https:
//www.cantera.org. Version 2.4.0. 2018. doi: 10.5281/zenodo.1174508.

[24] NM Marinov, CK Westbrook, and WJ Pitz. Detailed and global chemical
kinetics model for hydrogen. Tech. rep. Lawrence Livermore National Lab.,
CA (United States), 1995.

102

https://www.cantera.org
https://www.cantera.org
https://doi.org/10.5281/zenodo.1174508

BIBLIOGRAPHY

[25] Robert J Kee, Michael E Coltrin, and Peter Glarborg. Chemically reacting
flow: theory and practice. John Wiley & Sons, 2005.

[26] Gregory P Smith. “GRI-Mech 3.0”. In: http://www. me. berkley. edu/-
gri_mech/ (1999).

[27] J Bibrzycki and T Poinsot. “Reduced chemical kinetic mechanisms for
methane combustion in O2/N2 and O2/CO2 atmosphere”. In: Working
note ECCOMET WN/CFD/10 17 (2010).

[28] Thierry Poinsot and Denis Veynante. Theoretical and numerical combus-
tion. RT Edwards, Inc., 2005.

[29] Mary N Bui-Pham. “Studies in structures of laminar hydrocarbon flames.”
In: (1993).

[30] Alan Kéromnès et al. “An experimental and detailed chemical kinetic mod-
eling study of hydrogen and syngas mixture oxidation at elevated pres-
sures”. In: Combustion and Flame 160.6 (2013), pp. 995–1011.

[31] Eliseo Ranzi et al. “Reduced kinetic schemes of complex reaction systems:
fossil and biomass-derived transportation fuels”. In: International Journal
of Chemical Kinetics 46.9 (2014), pp. 512–542.

[32] Eliseo Ranzi et al. “New reaction classes in the kinetic modeling of low tem-
perature oxidation of n-alkanes”. In: Combustion and flame 162.5 (2015),
pp. 1679–1691.

[33] ELISEO Ranzi et al. “Hierarchical and comparative kinetic modeling of
laminar flame speeds of hydrocarbon and oxygenated fuels”. In: Progress
in Energy and Combustion Science 38.4 (2012), pp. 468–501.

[34] Joel H Ferziger, Milovan Perić, and Robert L Street. Computational meth-
ods for fluid dynamics. Vol. 3. Springer, 2002.

[35] Tobias Holzmann. “Mathematics, numerics, derivations and OpenFOAM®”.
In: Loeben, Germany: Holzmann CFD (2016).

[36] Calvin Lin et al. Principles of parallel programming. Pearson Education
India, 2008.

[37] Gerassimos Barlas. Multicore and GPU Programming: An integrated ap-
proach. Elsevier, 2014.

103

	Abstract
	Sommario
	Ringraziamenti
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Structure of the thesis

	An overview on GPGPU computing
	History of parallel computation
	Basic concept on parallel computing
	Parallel computation with CUDA
	Hardware used

	Physics of reacting flows
	Governing equation for fluid motion
	Governing equation for reacting flow motion
	Numerical treatment of chemical ordinary differential equations
	The Runge-Kutta Cash-Karp method

	Code implementation
	Combustion solvers in OpenFOAM
	GPU chemistry model

	Results and discussion
	Single cell tutorials
	Hydrogen combustion mechanism
	Methane combustion mechanism
	Time performance

	Multi cell tutorials
	Simple methane combustion mechanism
	Syngas combustion mechanism
	Complex GRI-Mech 3.0 mechanism
	Time performance

	Conclusion
	Future developments

	Solvers in OpenFOAM
	chemFoam
	reactingFoam

	Chemistry solution in OpenFOAM
	RKCK45

	References

