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Abstract

The ways of harvesting power from the sea is a topic that has been studied
since the end of the past century. Given the importance that is nowadays
associated with the use of renewable energies, the number of studies on this
subject is quickly increasing. In this thesis, we consider wave energy converters
as cylindrical bodies whose dynamic behavior is modeled through a linear spring-
damper system.

Positioning these bodies into different configurations, the total power ex-
tracted by the array they compose varies according to the positions they take.
Interestingly, for some arrangements, it is possible to notice an increase in per-
formances with respect to the scenario where the bodies are isolated. This phe-
nomenon is called park effect. The extent to which the park effect contributes
to the produced power is evaluated through the interaction factor, which is
computed as the ratio between the power obtained by an array, and sum of the
powers that each device composing the array would produce if it were isolated
from all the other devices.

What we want to achieve with this thesis is the development of a design
strategy for a park of wave energy converters, that acts on both its geomet-
rical and physical characteristics. Concerning the geometry of the array, we
aim at computing the positions of its bodies, for which the interaction factor
is maximized. Similarly, the physics of the array is improved by computing
the damping coefficients that optimize the total extracted power. The biggest
novelty introduced in this thesis is the combined optimization of the positions
and of damping coefficients.

The first step towards our goal is the study of the mathematical model devel-
oped by Child [6], which describes the interaction between waves and cylindrical
bodies. A numerical implementation of this model is subsequently developed,
using Python as the chosen programming language. Afterward, we validate our
numerical implementation comparing the results that it produces, with the ones
obtained in other previously published studies.

Subsequently, to optimize the array, we develop the necessary mathematical
models. We start by detailing how to optimize the positions and the damping
coefficients individually. And we conclude by developing a model for the com-
bined optimization of the positions and of the damping coefficients. Concerning
the positions optimizations, we use the projected gradient method, where the
cost function, to be minimized, is the total power with opposite sign, and its
gradient is computed through a Lagrangian approach. We choose to use the
projected gradient method, because we want to study which are the optimal
positions of the bodies, under the constraint of them being fixed inside a given
domain. Also for the damping coefficients optimization algorithm, a gradient
method is used, with the requirement of the damping coefficients being positive
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at each iteration. Regarding the combined optimization, this is performed using
a two steps gradient method, in which, at each iteration, we first modify the
positions of the bodies, and subsequently their damping coefficients.

These optimization strategies are therefore implemented, once again in Python
to determine optimal configurations. We test them on arrays with different ini-
tial conditions, subject to different kinds of constraints. The obtained results
show that, after the optimization is performed, the performances are indeed im-
proved. This improvement amounts to different values according to the starting
configuration and the selected constraint. Further optimizations could be per-
formed using similar methods applied to other quantities, such as the bodies
stiffness coefficients or the body’s geometrical dimensions.
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Chapter 1

Introduction

This thesis is concerned with the optimization of arrays of wave energy convert-
ers.

The optimization aims at exploiting the so-called park effect, an important
property that is present not only in arrays of wave energy converters but also
of wind turbines and similar devices. Given an array of energy converters, the
park effect is the phenomenon that leads to different levels of power production,
based on how the bodies are positioned in the array with respect to each other.
The amount to which the park effect contributes to greater power production is
estimated through the interaction factor, which is a scalar quantity defined as
the ratio between the power produced by the array and sum of the powers that
each device composing the array would produce if it were isolated from all the
other devices.

The park effect is a consequence of the hydrodynamic interaction between
the various bodies composing an array that is subject to incident ambient waves.
Therefore, to study how to compute the optimal positions of the bodies, that
would correspond to a greater interaction factor, it is necessary to detail how
this interaction happens.

The first step in modeling this interaction consists in stating which kind of
flow model is selected. Most studies resort to a linear potential model, under
the inviscid and incompressible hypothesis. This model is convenient because
it allows for less computational effort, with respect to a nonlinear model, or to
a model with a viscous, compressible flow. In our study, we also consider this
kind of flow in the derivations of the interaction model. Only a few studies with
nonlinear theories were attempted. Some of them performed simulations using
the full set of Navier-Stokes equations, [8].

There are also multiple ways of modeling the actual interaction between the
incident ambient waves with the energy converter. Also concerning this choice,
there are multiple options. The path that has been pursued for longer, because
of the lower computational effort it requires, is one where the energy converter
is modeled as a point absorber [5] [10]. The drawback of this methodology
is that it neglects the interaction due to scattered waves. Later models were
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derived, which consider the interaction between bodies through planar waves,
neglecting the evanescent wave numbers [26]. Subsequently, methods, where
the radiation and scattering properties of the bodies are used to iteratively add
the reflected waves inside the array, were developed [24], [21], [20]. Lastly, we
have the direct-matrix method, which allows computing the flow-field without
the need of iterating the process [17]. This direct-matrix method is the one
used in our modeling. Further progress has been made either by improving the
direct-matrix method or developing more modern analytical methods, which,
as a trade-off, require larger computational effort, and are outside the scope of
this thesis.

Now, to compute the power produced by our array, it is necessary to compute
the equation of motion of our bodies, which can be derived only by defining the
dynamic properties of the bodies at study. There are multiple ways in which
an energy converter can function when it comes to the methods for extracting
energy from the waves, and, based on the way this happens, the dynamical
properties of the body are different. However, being a wave energy converter
a device that, placed in water, is moved by the ambient waves, and since the
energy is always obtained by damping the motion of the energy converter taking
energy from the wave, it is clear that the way the damping coefficient of the
structures is modeled is of key importance. The damping coefficient has to
consider both the physical properties of each body and how the mooring systems
interact with the above-mentioned bodies. The most common approach is to
use a linear damper [30], [18], [35], this is also how we model the damper in our
thesis. Few examples, where an approach using a nonlinear model for the spring
component is used, do exist. For instance, a coupled time-domain method has
been implemented to solve the energy converter motion and mooring line tension
simultaneously [13]. Another study modeled the mooring cables as catenary
lines in a quasi-static analysis [31], or again, in another one, a finite element cable
model is used to study arrays of different energy converters with a stochastic
method, focusing on power variations [3].

Given that our purpose is not only to compute the power produced by an
array but to maximize the extracted power, it is necessary to describe the opti-
mization strategies used in other studies and the one we choose to implement.

In many studies, rather than performing an actual optimization of parame-
ters, a comparison between different array configurations is performed [4], [9],
[27], usually without specifying why a specific configuration is chosen.

The second step that many studies take, in the direction of an actual opti-
mization, is sweeping over one parameter while keeping the others fixed [28], [23].
This allows one to find useful information and good values for certain parame-
ters, but it is not guaranteed that these are optimal solutions. In many of these
studies, not only the total power output is studied, but also the quality of the
power supplied to the electric grid, which comes in the form of a low variance
power output [29].

Now, we analyze the published articles that concern optimization problems.
One example is a study with the aim to optimize the damping and stiffness
constants of the device, making them time-varying parameters [32]. There are
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also studies that optimize the power produced, without the limitation of a fixed
geometry [22], [23], but all of them still use the point-absorber model, which,
as we previously stated, neglects some key wave-bodies interactions.

One important branch of optimization methods is the one recurring to meta-
heuristic methods. These optimization methods are more modern and very use-
ful when the optimization problem is very complex. The drawback of using these
algorithms is that the optimal solution is not found analytically and, therefore,
it is often suboptimal. An example of a metaheuristic algorithm is the genetic
algorithm (GA) [7], which mimics the process of natural selection. Starting from
a given configuration, mutations are added, and the best-performing new one is
subsequently modified again, until convergence. Another algorithm that is part
of this category is the particle swarm algorithm, which was found to outperform
genetic algorithms [11].

The optimization strategy we adopt differs from the previously listed strate-
gies because it is not based on the point-absorber model theory. As previously
stated, we choose a direct-matrix method to compute the extracted power, there-
fore our optimization strategy will refer to this method of computing the power
production. The process through which we build our optimization algorithm is
described in chapter 4 of this thesis and is here briefly discussed. We choose, as
the cost function to be minimized, the produced power with negative sign. We
proceed by stating the Lagrangian formulation of the problem. This consists
in augmenting the cost function with the state equation, which is given by the
direct-matrix method, multiplied times a vector of Lagrangian multipliers. We
proceed by computing the adjoint equations to compute the Lagrangian multi-
pliers, and subsequently the gradient of the cost function. Here, the gradient
is taken with respect to the parameter that we aim to optimize. In this thesis,
we consider three optimization problems. One for the positions of the bodies,
one for their damping coefficients, and one for the combined optimization of
their positions and damping coefficients. Therefore, both the gradient of the
cost function with respect to the positions of the bodies and the one with re-
spect to the damping coefficients of the bodies, are computed. Focusing on
the optimization of the positions, once we have computed the gradient of the
cost function with respect to the positions, we use it to implement a projected
gradient method, that projects the solution into a chosen admissible set. Also
concerning the damping optimization, an iterative gradient method is applied.
In this case, there is no need to project the solution, but we have to guarantee
that the damping coefficient is positive at each iteration. Lastly, the combined
optimization consists in adopting a 2-step method that, at each iteration, in the
first step, using the previously described position gradient, optimizes the posi-
tions of the bodies, and in the second one, optimizes their damping coefficients.
These optimization strategies are therefore numerically implemented and the
obtained results are commented on in chapter 5.

Having described the content of this thesis, we now detail how it is organized
in the various chapters. In chapter 2, taking as a reference Child’s thesis [6], we
go through the mathematical development of the model describing the interac-
tion between floating cylinder and monochromatic waves. We start studying the
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case of an isolated device, and we subsequently extend our analysis to the case
of arrays composed of multiple devices. In this chapter, we also describe how
to numerically implement the above-mentioned mathematical model. Next, in
chapter 3, we perform the validation of our implementation. This is performed
by comparing the results produced by our numerical implementation, with the
ones obtained in other previously published studies. In addition, some tests
are developed to verify that our implementation showcase some properties, of
arrays of wave energy converter, which are widely agreed on by the scientific
community. In chapter 4, we develop the optimization algorithms that allow
us to compute optimal configurations. We start by developing the algorithms
that optimize positions and damping coefficients independently. Subsequently,
an algorithm performing compound optimization of positions and damping co-
efficients is developed. All the above-mentioned algorithms resort to gradient
methods, whose exactness is verified by performing a convergence test with a
finite differences approach. Subsequently, in chapter 5, we show and comment
on the results obtained by running the optimization algorithms with different
starting configurations, and forcing the bodies of the array into admissible sets
of different sizes. Lastly, in chapter 6, we list the key findings of our studies
presenting its weaknesses and limitations. One of the most important obtained
result is the fact that the optimizations of the positions and of the damping
coefficients seem to happen almost independently. In addition, concerning the
positions of the bodies, we get that, under the constraints of our analysis, to
obtain an optimal configuration it is necessary to increase the spacing between
the devices as much as possible. At the same time, we obtain that it is necessary,
for the damping coefficients of the bodies belonging to the columns interacting
earlier with the ambient incident wave, to have higher values than the one of
the devices in the column placed further down the direction of the wave. We
also present some recommendations regarding possible future research on this
topic.



Chapter 2

Mathematical and
numerical modeling

The goal of this chapter is to provide a clear mathematical representation of the
object at study, together with the necessary information for a correct numerical
implementation.

In section 2.1, we start by describing all the hypotheses regarding the cylin-
drical bodies, which represent the energy converters, and the environment with
which they interact. Next, in section 2.2, we analyze how the presence of a single
body affects the flowfield around it when subject to an incident wavefield. In
section 2.3, we develop the complete model describing the flowfield modification
induced by an array of bodies.

Once this model is fully developed, we use it to compute many useful derived
quantities in subsection 2.3.4, such as the forces acting on the cylinders and the
power extractable from them. This is of particular interest since what we aim
to maximize is the interaction factor. That is a coefficient computed as the
ratio between the total power produced by an array of bodies, and the power
produced by a single one multiplied by the number of bodies in the array. It is an
important quantity because it represents to which degree the power production
can be improved by exploiting the park effect.

Lastly, in section 2.4, we describe how to correctly perform the numerical
implementation of the equations developed in the above-mentioned sections.

We specify that the content of this chapter follows the development of chap-
ters 3 and 4 of Child’s thesis. What we add to his work is a clear explanation of
the underlying physics of the mathematical quantities developed in this chapter.
Moreover, we create some graphs, as a support tool, to better visualize some of
the discussed quantities.
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2.1 Hypotheses

In this section, we discuss all the mathematical hypotheses used in our model,
and highlight their practical implications. The degree to which these hypotheses
worsen the truthfulness of our results is investigated, and the reason for their
necessity is explained.

2.1.1 Flow Hypotheses

The ultimate objective of the model we are about to describe is to be able to
give a reasonable estimation of the velocity field in the chosen domain. This is
why it is of crucial importance to describe the hypotheses regarding the flowfield
clearly. These are here conveniently listed:

• Linear theory. A linear model is useful for multiple reasons. First, it allows
us to write our problem into the typical matrix-vector multiplication of
linear algebra problems, which can be solved efficiently. Second, the use of
a nonlinear model would introduce a substantial degree of complexity, that
is outside the scope of this thesis. The drawback of using linear theory is
the fact that nonlinear phenomena appear, especially in the neighborhood
of the sharp edges of the cylinder, where turbulence is expected to be
generated.

• Irrotational flow. Thanks to this assumption the velocity field is written
as follows:

u = ∇ϕ, (2.1)

where ϕ is the scalar potential field associated to each point in our domain.

This hypothesis, that, considering the Helmholtz decomposition of the
velocity vector field, allows us to neglect the second component of the
velocity, is appropriate when the flow is close to being inviscid, which is
the case for our application, given the sufficiently high Reynolds number
it is associated to.

• Incompressible flow. Considering the flow to be incompressible is suitable
for water whose depth does not change drastically, and whose velocity
gradients are not too large, as in our case. That is because under these
assumptions we have that the Mach number is much smaller than one. In
mathematical terms this hypothesis is written as follows:

∇ · u = 0. (2.2)

• Surface tension neglection. This hypothesis concerns the interface between
the fluid and the above domain, representing the atmospheric air. It allows
us to simplify the model development without compromising accuracy.
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This is because, for low wavenumbers, which are the ones from which
most of the energy is extracted, the surface tension is really small being
the curvature small.

• Inviscid flow. This hypothesis is strongly connected to the one defining
the flow as irrotational. Moreover, this assumption neglects the contribu-
tion of skin friction forces, and prevents the description of flow separation
phenomena. The latter might become relevant when dealing with bod-
ies having sharp edges, originating nonlinear drag forces. Given that the
bodies we are considering are cylinders, the only points where these phe-
nomena might be relevant are at the bottom face circumference, especially
during the ascending motion of the body. This hypothesis is nonetheless
necessary, given that the numerical tools to simulate such nonlinear effects
are too computationally demanding.

2.1.2 Geometry Hypotheses

To complete the description of the hypotheses used to describe our model we
have to look into the ones used to describe the body of the energy converter
and the environment in which it is located.

We consider all energy converters to be identical. This not only simplifies
the mathematical development, but it is also a realistic assumption, since the
purchase of many energy converters for the installation of an energy park is
strongly governed by an economy of scale [14]. Hence, even if performances
could be improved by the use of a differently sized converter, we ignore this
aspect assuming that the potential benefit would still be marginal compared to
the greater purchase expenses.

We assume the converters to be perfectly cylindrical, with a radius r =
a. This hypothesis prevents us from considering the local effects that develop
around the body, such as the one caused by the effect of surface roughness.
However, it is still reasonable since the buoys used for these applications are
generally radially symmetric.

The last hypothesis, which could be eventually relaxed by adding a layer of
complexity, is that all the devices are located at the same depth, in a sea with
a flat bottom.

2.2 Single Body

Let us consider the case of a single body. The development of the model proceeds
as follows: first, we define the reference frame and all the relevant quantities;
second, we consider the different contributions to the potential due to different
effects; third, we define a set of basis functions whose span is able to represent
all the needed potential functions. We use image 2.1 as the reference for many
relevant parameters.

The now introduced parameters are the depth of the sea d, the position of
the frame of reference, whose origin is on the seabed, and whose z-axis is coaxial
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Figure 2.1: Side-view of a device with relevant parameters highlighted, figure
from [6].

with the cylinder pointing upward, the distance from the seabed to the bottom
face of the cylinder h, and the parameters related to the ambient incident wave,
such as the wavenumber k0, the amplitude H and the wavelength λ. From
this picture, we also see how the domain is split into 2 regions: an interior and
an exterior region. As we will detail later, we use different basis functions to
represent the potential in the interior and exterior regions.

2.2.1 Governing equation

By applying both the incompressibility and the irrotational conditions, we see
how the resulting governing equation becomes a Laplace equation in the variable
ϕ:

∇2ϕ = 0. (2.3)

This equation has to be satisfied wherever ϕ is defined.
To have a complete description of the problem we impose the following

boundary conditions:

• Imposing the vertical velocity component to be zero on the seabed:

∂ϕ

∂z
= 0 on z = 0. (2.4)

• Imposing the radial velocity on the lateral surface of the cylinder to be
zero:

∂ϕ

∂r
= 0 on r = a; h ≤ z ≤ d. (2.5)
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• Imposing the vertical velocity at the bottom of the cylinder to be equal
to the vertical velocity of the cylinder:

∂ϕ

∂z
= X ′ on z = h; a ≤ r ≤ 0. (2.6)

• Imposing the free surface condition relating the vertical velocity on the
free surface to the frequency of the wave (using the fact that we neglect
surface tension):

∂ϕ

∂z
=

ω2

g
ϕ on z = d; r ≥ a. (2.7)

Since this condition imposes a matching of velocity at the interface, it is
called kinematic condition.

On top of these boundary conditions, we have to add a condition that guar-
antees our flow to be radially bounded. This is because a radially unbounded
solution would not have any physical meaning, since its energy would be in-
creasing with r.

• This condition is called radiation condition, and it is mathematically rep-
resented as follows:

lim
r→∞

√
r

(
∂ϕ

∂r
− ik0ϕ

)
= 0. (2.8)

Now that we analyzed all the conditions that the potential ϕ is subject
to, we divide it into three different contributions: the scattered potential, the
incident potential, and the radiated potential. This subdivision is meaningful
only for the description of a single body, that is because, when multiple bodies
are considered, the scattered potential of a body is to be seen as the potential
incident to another.

The scattered potential from a body represents the wave generated from its
interaction with an incident wave, under the constraint of the body being kept
fixed in space. The incident potential to a body describes the ambient waves
together with the incident waves that are generated by the other bodies in
the array. Finally, the radiated potential portrays the contribution due to the
vertical movement of the cylinder with no external wave. The above concept is
formulated as follows:

ϕ = ϕS + ϕI + ϕR. (2.9)

It will be useful to differentiate between the ambient potential ϕA, which
represents the ocean wave from which we want to harvest energy, and the in-
cident potential ϕI , which also includes the incident waves that are coming
from the surrounding devices. Therefore, the incident potential ϕI describes a
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broader range of waves then the ambient potential ϕA, being ϕA only one of the
components that adds up to the complete incident potential ϕI .

Another useful definition is that of the diffracted potential, that is the sum
of the incident and scattered potential: ϕD = ϕI + ϕS .

Since each potential component is responsible for describing a different phe-
nomenon, the governing equation that each of them has to satisfy is subject to
different boundary conditions. This is the reason why each contribution needs
a different set of basis functions to be described. In the next parts of this chap-
ter, we describe in detail how to derive the wave basis of each of the different
potential components.

2.2.2 Scattered wave basis

In this section, we construct a basis of functions for the scattered wave potential.
Because of the cylindrical shape of the bodies, it is convenient to work in polar
coordinates. This implies that also the Laplace equation has to be rewritten in
polar coordinates,

∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
+

1

r2
∂2ϕ

∂θ2
+

∂2ϕ

∂z2
= 0. (2.10)

Assuming the solution to be separable, we write the general form of the
scattered potential as

ϕS(r, θ, z) = σr (r)σθ (θ)σz (z) . (2.11)

Now, we use the separation of variable approach, defining two separation
constants, µ and ν. Substituting into (2.10) we have

σ′′
r

σr
+

σ′
r

rσr
+

σ′′
θ

r2σθ
= −σ′′

z

σz
= −µ2, µ ∈ C, (2.12)

−µ2r2 − σ′′
r r

2

σr
− σ′

rr

σr
=

σ′′
θ

σθ
= −ν2, ν ∈ C. (2.13)

In the following subsections, we derive an expression for each of the three
components of the scattered potential highlighted in (2.11). We do it distin-
guishing between the interior and exterior region of the domain, being the
potential is subject to different boundary condition depending on the considered
region.

Exterior region

Zeta separation To compute the z-dependence of the basis functions of the
scatter potential, we refer to the right-side equation of (2.12). This, imposing
the boundary condition on the seabed (2.4), allows us to obtain

σz (z) = c1 coshµz, c1 ∈ C. (2.14)
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The values of the µ-coefficients are computed by imposing the kinematic
boundary condition at the free surface (2.7), which leads to

ω2

g
= µ tanhµd. (2.15)

This equation has a different solution based on µ being real or complex.
For µ real, we get the solution to be µ = k0, with k0 ≥ 0, which represents
the progressive wave number, or in other words the “spatial frequency” of a
traveling wave. Meanwhile, for µ complex, we get the solution to be µ = ikq,
with kq ≥ 0, and q ∈ N, which represents the evanescent wave-number, or in
other words the “spatial frequency” of a standing wave.

Now that the possible values of µ have been computed, we write the general
solution of the scattered potential in the exterior region,

σq
z =

{
N−

0

1
2 cosh k0z if q = 0,

N−
q

1
2 cosh kqz if q ≥ 1,

(2.16)

where the subscript q is used to represent that the solution exists for different
values of the wavenumber. From now on, a solution of the z-separation regarding
a specific wavenumber q will be called the q-th zeta-mode. The N0 and Nq

coefficients are normalizing factors defined as

N0 =
1

2

(
1 +

sinh 2k0d

2k0d

)
, (2.17)

Nq =
1

2

(
1 +

sinh 2kqd

2kqd

)
. (2.18)

This choice of normalizing factors gives us an orthonormal set of functions
with respect to the L2 product, this will be useful later on in the computation
of further coefficients.

θ-separation We proceed in a similar way to the z-separation but considering
(2.13).

By solving the right-side equation, we get the following expression for σθ:

σθ (θ) = c1e
iθν + c2e

−iθν . (2.19)

Since this function represents the θ-dependence of the potential, it has to
be periodic over a period of 2π, to guarantee continuity. This is obtained by
imposing ν to be an integer.

Moreover, given the case of ν = 0, we have the solution c1θ+ c2, which must
have c1 = 0 to satisfy continuity. This is because if c1 were different from zero,
we would have a function linearly growing with θ, and therefore not periodic
over a period of 2π. Since the solution for the ν = 0 case is a constant, it can
therefore be included in (2.19).
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The final solution for the θ-dependence of the scattered potential is finally
expressed as follows:

σθ
n = einθ, n ∈ Z. (2.20)

In analogy to the z-separation, the n subscript represents the n-th θ mode.

r-separation Since r is the third and last variable we do not need to define
any additional separation constant, instead, we simply use the previously defined
ones in (2.13) to obtain

−µ2r2 − σ′′
r r

2

σr
− σ′

rr

σr
= −ν2. (2.21)

For the progressive case, we notice that the change of variable r̂ = k0r,
σ̂r (r̂) = σr (r) leads to

σ̂′′
r r̂

2 + σ̂′
r r̂ +

(
r̂2 − n2

)
σ̂r = 0. (2.22)

This is a Bessel differential equation, whose solutions can be written as
Hankel functions of the first kind

Hn = Jn + iYn. (2.23)

Since we are interested in a set of basis functions, we define the solution as
the sum of Bessel functions of the first kind and Hankel functions of the first
kind,

σ̂n
r = c1Jn(k0r) + c2Hn(k0r) . (2.24)

We proceed in a similar manner for the progressive case, applying the change
of variable r̂ = kqr, σ̂r (r̂) = σr (r).

The resulting equation is the modified Bessel equation

σ̂′′
r r̂

2 + σ̂′
r r̂ +

(
−r̂2 − n2

)
σ̂r = 0. (2.25)

The solution of this equation is a combination of Bessel functions of the first
kind and one of the second kind,

σ̂q
r = c1In(kqr) + c2Kn(kqr) . (2.26)

We now enforce the radiation condition, guaranteeing also that the functions
have the correct phase. They must move toward infinity and not come from
infinity.

To guarantee that the scattered waves are traveling toward infinity we must
enforce the boundary condition

lim
r→∞

u(r, t) = Aei(kr−ωt). (2.27)

Since the asymptotic expansion of the H and J functions at infinity are
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Hn (r) ∼
√

2

πz
ei(r−(n+

1
2 )

π
2 ), (2.28)

Jn(r) ∼
√

2

πz
cos

(
r −

(
n+

1

2

)
π

2

)
, (2.29)

we see that H is the only contribution to the solution satisfying (2.27), hence
we have to discard the Jn functions from our solution. In an analogous manner,
one can prove the necessity of discarding the In functions.

Moreover, we normalize our solution to obtain the following final result,
which consists in the set of basis functions describing the radial dependence of
the scattered potential in the exterior region:

σq,n
r =

{
Hn(k0r)
H′

n(k0a)
if q = 0, n ∈ Z

,
Kn(kqr)
K′

n(kqa)
if q ≥ 1, n ∈ Z.

(2.30)

General solution Combining the previously obtained result, we write the set
of functions describing the scattered potential in the exterior region,

ϕS |qn =

 gH
ω N−

0

1
2 cosh (k0z)

Hn(k0r)
H′

n(k0a)
einθ if q = 0, n ∈ Z

gH
ω N−

q

1
2 cosh (kqz)

Kn(kqr)
K′

n(kqa)
einθ if q ≥ 1, n ∈ Z.

(2.31)

Interior region

We now proceed to compute the basis functions of the scattered potential in
the interior region. Following the same approach as for the exterior region, we
use the separation of variables approach to solve the Laplace equation in polar
coordinates, (2.11) - (2.13). The difference from the exterior region case, is in
the boundary conditions to apply.

z-separation Solving the right side equation of (2.12), we get the same gen-
eral solution (2.14). Applying the boundary condition at the bottom of the
buoy, we get the equation to compute the value of µ to be

sinh (µh) = 0, (2.32)

whose solution is the set of imaginary numbers

µ = i
sπ

h
, s ∈ Z. (2.33)

Hence, substituting these values into the general solution, and fixing the
constant coefficient to the desired value, we get the solution for the z-separation
to be

σs
z (z) =

{
1
2 if s = 0,

cos
(
sπz
h

)
if s ̸= 0.

(2.34)
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θ-separation For the interior region, we have the same governing equations
and boundary conditions in the θ variable as in the exterior region case. There-
fore, we get

σθ
n = einθ, n ∈ Z. (2.35)

r-separation Substituting the new values of µ (s ̸= 0) into (2.21), being µ
complex, we get a modified Bessel equation, whose solution is written as

σr (r) = c1In

(
shr

π

)
+ c2Kn

(
shr

π

)
. (2.36)

For the case of s = 0, we apply the usual change of variable r̂ = r
a , σ̂r (r̂) =

σr (r). The equation becomes, for n ̸= 0, an Euler equation in σ̂r, r̂,

σ̂r
′′r̂2 + σ̂r

′r̂ ± n2σ̂r = 0, (2.37)

whose solution is

σr (r) = c1

( r
a

)n
+ c1

( r
a

)−n

. (2.38)

For s = 0, n = 0, we get a simpler differential equation,

σ̂r
′′r̂2 + σ̂r

′r̂ = 0, (2.39)

whose solution is

σr (r) = c1 log
( r
a

)
+ c2. (2.40)

Since we are now in the interior region, we have to discard all the terms that
diverge for r → 0, because they are not physically meaningful. By doing so in
the s ̸= 0 case, we discard the Kn functions. For the s = 0 and n = 0 case,
we discard the log term. Hence, the solution reduces to a constant and can be
included in the general solution of the Euler equation.

The final expression for a set of basis functions for the scattered potential
in the interior region is

σs,n
r (r) =


In( sπr

h )
In( sπa

h )
if s ̸= 0, n ∈ Z,(

r
a

)|n|
if s = 0, n ∈ Z.

(2.41)

General solution Now that we have described the basis functions for the
three variables in the inner region for the scattered potential, we combine them
to obtain the general solution, that is

(
ϕ̃S

)n
s
=

 gH
ω cos sπz

h

In( sπr
h )

In( sπa
h )

einθ if s ̸= 0 n ∈ Z
gH
ω

1
2

(
r
a

)|n|
einθ if s = 0 n ∈ Z

(2.42)
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2.2.3 Incident wave basis

In this section, we describe the waves that are incident to the body neglect-
ing completely the presence of the body. This incident wavefield is described
by incident wavefield potential. To compute this potential we solve the Laplace
equation, first in the exterior region, and afterward in the interior region, follow-
ing the same logical order as in subsection 2.2.2. Now, the boundary conditions
are different from the one in subsection 2.2.2, which is the reason why we will
get a different solution.

We start by detailing the ambient wave, which are the incident waves to a
body coming from the ambient in the form of monochromatic planar waves. We
are allowed to consider monochromatic waves because of the linear nature of
our problem. Afterward, we also consider the contribution to the incident wave
due to the scattered and radiated waves from other bodies. Similarly to before,
we use the separation of variable approach to define the incident potential,

ϕI = σr (r)σθ (θ)σz (z) . (2.43)

Ambient

For ambient waves, we choose not to switch to polar coordinates, since a planar
wave is more naturally described in x, y, z coordinates. After applying the sep-
aration of variables in x, z (note that a planar wave traveling in the x-direction
has no y-dependence), applying boundary conditions, and considering only the
progressive case we get the solution to be

ϕA = CAe
ik0xN

− 1
2

0 cosh (k0z), CA ∈ C. (2.44)

Note that we are considering only the progressive case, because the evanes-
cent case is related to the non-ambient component of the incident wave.

Applying the free surface dynamic boundary condition

∂ϕ

∂t
= −gH cos

(
kx− ωt+

π

2

)
, (2.45)

we compute the value of the CA coefficient. Plugging CA into the previous
equation gives

ϕA =
gH

ω

cosh (k0z)

cosh (k0d)
eik0x. (2.46)

This expression, thanks to the identity [33] e
1
2 z(t−

1
t ) =

∑∞
k=−∞ tkJk(z), is

rewritten in polar coordinates centered on the device, and the x-traveling wave is
set to travel in any arbitrary direction tilted by β with respect to the x direction
modifying the θ-exponent term,

ϕA =
gH

ω

cosh (k0z)

cosh (k0d)

∞∑
n=−∞

Jn(k0r) e
i(π

2 +θ−β). (2.47)
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The complete ambient wave is in (2.47) expressed as a sum of infinite terms.
The accuracy of this expansion is greater the larger the number of considered
terms. For computational reasons, it is impossible to use an infinite amount
of terms, which would guarantee a complete representation. Hence, we wrote a
code to investigate how many terms are necessary to have a good approximation
of the incident wave. Analyzing the free-surface displacement as the real part
of a rotating vector, we plot its absolute value in figure 2.2, and its real part
in figure 2.3, varying the number of θ-modes used. We can see that a clear
improvement in precision is obtained by increasing the number of θ-modes. It
has to be noted that, when we have to consider to which number of θ-modes we
want to limit our analysis, we must focus only on enforcing that in the region
around the position of the body we have a good representation of the incident
flowfield. Therefore, despite being interesting to notice how using n = 30 θ-
modes we get almost no error in most of the domain, the actual number of θ-
modes necessary is definitely smaller. Later on, to actually choose the number
of modes to use in our simulations, we will perform a convergence analysis. This
will give more useful and less qualitative information.

Complete incident wave basis

The incident waves to each device do not only come from the ambient, but also
from the interaction of the ambient waves with other bodies. This will be later
exhaustively detailed in subsection 2.3.1, and in subsection 2.3.1. Taking into
account this additional contribution, we get the complete formulation of a set
of basis functions,

(ϕI)
m
n =

{
gH
ω

cosh (k0z)
cosh (k0d)

Jn(k0r) i
neinθ if m = 0, n ∈ Z,

gH
ω cos (kmz)In(kmr) einθ if m ≥ 0, n ∈ Z.

(2.48)

2.2.4 Diffracted wave basis

In this section, we construct a basis of functions for the diffracted wave potential.
We remind that diffracted waves are defined as the composition of the scattered
wave from a device and the incident wave to it.

The same logical structure of subsections 2.2.2 and 2.2.3 is also applied
here. First, we describe the behavior in the exterior region, and afterward, the
behavior in the interior region. To complete our description of the diffracted
wavefield, we have to compute some later defined coefficients. The method
through which we do so is explained at the end of this section.

Exterior region

Considering an incident wave of θ-mode n, and z-mode m, we have that, since
our body is radially symmetric, the resulting scattered wavefield maintains the
same radial dependence as the incident wave that generates it. This means that
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Figure 2.2: Absolute value of the free-surface displacement vector using n = 10
θ-modes for a wave of ω = 2 rad

s in a sea of depth d = 30 m, compared to the
case of n = 30 with the other parameters kept fixed.

Figure 2.3: Real part of the free-surface displacement vector using n = 10 θ-
modes for a wave of ω = 2 rad

s in a sea of depth d = 30 m, compared to the
case of n = 30 with the other parameters kept fixed.
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the diffracted wavefield, generated from the previously described incident wave,
can be mathematically represented as follows:

(ϕD)
m
n =

gH

ω
χm
n (r, z) einθ, (2.49)

where the radial and depth dependence is encapsulated in the χ function. To
compute the χ function explicitly, we must notice that we already developed a
set of basis functions for any scattered potential (2.31). Hence, to compute the
scattered potential generated by the selected incident wave, we simply need to
do a linear combination of the previously obtained basis functions. The resulting
χ-function, for the progressive case in the exterior region, takes the form

χ0
n = in

cosh (k0z)

cosh (k0d)

(
Jn(k0r)−

J ′
n(k0a)

H ′
n(k0a)

Hn(k0r)

)
+

+Dn
00N

− 1
2

0 cosh (k0z)
Hn(k0r)

Hn(k0a)
+

∞∑
q=1

Dn
q0N

− 1
2

q cos (kqz)
Kn(kqr)

K ′
n(kqa)

. (2.50)

The first term in the equation represents the incident wave. We added a
term in bracket to simplify the further computation of the D coefficients, when
applying condition (2.61). This additional term does not affect the final result,
since using the appropriate value of the Dn

00 coefficient, we can account for its
presence. Meanwhile, all the other terms that are multiplied times a Dn

00 or a
Dn

q0 complex coefficient, represent the previously mentioned linear combination.
In a similar manner, we represent the evanescent part of the solution as

χm
n = cos (kmz)

(
In(kmr)− I ′n(kma)

K ′
n(kma)

Kn(kmr)

)
+

+Dn
0mN

− 1
2

0 cosh (k0z)
Hn(k0r)

Hn(k0a)
+

∞∑
q=1

Dn
qmN

− 1
2

q cos (kqz)
Kn(kqr)

K ′
n(kqa)

. (2.51)

Interior region

For the interior region, the same consideration on the radial symmetry of the
body holds. Hence, the diffracted potential in the interior region is(

ϕ̃D

)m
n

=
gH

ω
χ̃m
n (r, z) einθ. (2.52)

For the χ̃-function, we use the same approach as before, noting that the
incident wavefield gives no contribution in this region. The expression of χ̃
takes the following form:

χ̃m
n =

Cn
0m

2

( r
a

)|n|
+

∞∑
s=1

Cn
sm cos

(sπz
h

) In( sπrh )
In
(
sπa
h

) . (2.53)
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Again, all the Cn
0m and Cn

sm coefficients are needed for the linear combination
of the previously computed basis functions of the scattered potential in the
interior region (2.42), and are complex quantities.

Coefficients computation

Equations (2.50), (2.51), and (2.53) are linear combinations of the basis func-
tions of the scattered potential. For now, we have not yet provided an expression
for the Dn

00, D
n
q0, C

n
0m and Cn

sm coefficients used to make these linear combina-
tions. Therefore, in this section, we focus on how to compute these coefficients
by exploiting the orthogonality of the depth functions, and the continuity of the
solution across the interior and exterior region.

Orthogonality of the depth functions holds

1

d

∫
σq
z(z)σ

m
z (z) dz =

{
1 if q = m,
0 if q ̸= m.

(2.54)

2

h

∫ h

0

σs
z(z) cos

(mπz

h

)
dz =

{
1 if s = m,
0 if s ̸= m.

(2.55)

Using this property, we write the following expressions for the coefficients:

Cn
sm =

2

h

∫ h

0

χ̃n
m(a, z) cos

(sπz
h

)
dz, (2.56)

Dn
0m =

1

k0d

∫ d

0

∂χn
m

∂r
(a, z)N

− 1
2

0 cosh (k0z) dz, (2.57)

Dn
qm =

1

kqd

∫ d

0

∂χn
m

∂r
(a, z)N

− 1
2

q cos (kqz) dz. (2.58)

This is clearly not enough to explicitly compute the values of the coefficients,
because they are still hidden inside the χ functions. Now, we impose continuity
of the solution in our domain. To do so, we require the solution to match at the
interface between the exterior and interior regions imposing

χn
m = χ̃n

m r = a, 0 ≤ z ≤ h, (2.59)

∂χn
m

∂r
=

∂χ̃n
m

∂r
r = a, 0 ≤ z ≤ h, (2.60)

∂χn
m

∂r
= 0 r = a, h ≤ z ≤ d. (2.61)

Now, we plug the expressions of the χ expansions (2.50), (2.51) and (2.53),
into the equations obtained thanks to the orthonormality condition (2.56), (2.57)
and (2.58), properly using the matching conditions (2.59), (2.60) and (2.61), to
prevent ending up with identities. An example of a wrong substitution that
generates an identity is plugging (2.53) into (2.56).
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This procedure leads us, after switching the order of integral and summa-
tion, to non null products of cosine and hyperbolic cosine, that are explicitly
computed using the relations∫ h

0

cos
(sπz

h

)
cosh (k0z) dz =

k0 (−1)
s
sinh (k0h)

k20 +
(
sπ
h

)2 , (2.62)

∫ h

0

cos
(sπz

h

)
cos (kqz) dz =

kq (−1)
s
sin (kqh)

k2q −
(
sπ
h

)2 . (2.63)

A further level of simplification is obtained by using the Wronskian identities

K ′
n(x) In(x)− I ′n(x)Kn(x) = − 1

x
, (2.64)

H ′
n(x) Jn(x)− J ′

n(x)Hn(x) = − 2i

πx
, (2.65)

which allow us the write the final linear systems of equations for the com-
putation of the coefficients as

Cn
sm +

∞∑
q=0

En
sqD

n
qm = Un

sm, (2.66)

Dn
qm =

∞∑
s=0

Gn
qsC

n
sm. (2.67)

Where all the E,G,U coefficients are computed using the previously men-
tioned relations, explicitly we have

En
sq =


− 2

h
Hn(k0a)
H′

n(k0a)
h2k0(−1)s sinh (k0h)

N
1
2
0 (s2π2+k2

0h
2)

s ≥ 1, q = 0,

− 2
h

Kn(kqa)
K′

n(kqa)
h2kq(−1)s sin (kqh)

N
1
2
q (s2π2+k2

qh
2)

s ≥ 1, q ≥ 1,
(2.68)

Gn
sq =



|n| sinh (k0h)

2ak2
0dN

1
2
0

s = 0, q = 0,

|n| sin (kqh)

2ak2
qdN

1
2
q

s = 0, q ≥ 1,

I′
n( sπa

h )
In( sπa

h )
sπh(−1)s sinh (k0h)

N
1
2
0 d(s2π2+k2

0h
2)

s ≥ 1, q = 0,

I′
n( sπa

h )
In( sπa

h )
sπh(−1)s sin (kqh)

N
1
2
q d(−s2π2+k2

qh
2)

s ≥ 1, q ≥ 1,

(2.69)

Un
sm =


4in+1(−1)sh sinh (k0h)

πa(s2π2+k2
0h

2)H′
n(k0a) cosh (k0d)

s ≥ 0, m = 0,

2h(−1)s+1h sin (kmh)
a(−s2π2+k2

mh2)K′
n(kma) s ≥ 0, m ≥ 1.

(2.70)
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2.2.5 Radiated wave basis

In this section, we construct a basis of functions for the radiated potential. The
radiated potential is the contribution to the total potential generated by the
vertical movement of a body in absence of incident waves. To compute the radi-
ated potential, we distinguish again between exterior and interior regions, and
we give particular attention to the way we compute some necessary coefficients,
as we did for the diffracted potential in subsection 2.2.4.

Exterior region

Given the linear nature of our governing equations, the radiated potential is
proportional to the body vertical displacement X. We actually use a nondi-
mensional displacement X̂ to represent this proportionality relation. We rep-
resent the displacement and its derivatives as functions of the nondimensional
displacement through the relations

X = HX̂, (2.71)

X ′ = −iωHX̂, (2.72)

X ′′ = ω2HX̂. (2.73)

On top of the proportionality of the radiated potential to the displacement
of the body, we affirm that, since our body is axial-symmetric, the radiated
potential has no angular dependence. The general expression for the radiated
potential hence becomes

ϕR =
gH

ω
X̂R(r, z) . (2.74)

Now considering the boundary conditions, satisfied by the governing equa-
tions in the exterior region, they are the same both for the radiated and the
scattering case. Hence, we can write the solution for the radiated field in the
exterior region as a linear combination of the previously defined basis functions
of the scatter waves in the exterior region (2.31). Keeping in mind that there
is no angular dependence, hence n = 0, we get our R-function in the radiated
potential to be

R (r, z) = DR
0 N

− 1
2

0 cosh (k0z)
H0(k0r)

H ′
0(k0a)

+

∞∑
q=1

DR
q N

− 1
2

q cosh (kqz)
K0(kqr)

K ′
0(kqa)

.

(2.75)
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Interior region

For the interior region, in addition to what we have already done for the scat-
tered wave basis development, we must also consider the condition imposed by
the vertical movement of the body. We define as R̃h the homogeneous part of
the solution, obtained when the body is kept still, and with R̃p the particular
part of the solution, obtained by imposing the boundary condition (2.6). The
general solution in the inner region is

ϕ̃R =
gH

ω
X̂R̃(r, z) , (2.76)

R̃ = R̃h + R̃p. (2.77)

For the homogeneous part, the problem is the same as the scattered potential
problem in the interior region, but considering only the radially symmetric cases,
n = 0. Hence, we write a linear combination of the basis functions (2.42),

R̃h =
CR

0

2
+

∞∑
s=1

CR
s cos

(sπz
h

) I0
(
sπr
h

)
I0
(
sπa
h

) . (2.78)

For this particular part, we simply have to find a solution that is compatible
with the boundary conditions, and such a solution can be verified to be

R̃p = − iω2

2gh

(
z2 − r2

2

)
. (2.79)

Coefficients computation

Same as for subsection 2.2.4, we have to explicitly compute the values of all
the coefficients we used while doing the linear combination of the scattered
potential’s basis functions. To do so we once again exploit the orthogonality of
the depth functions and the matching conditions at the interface between the
interior and exterior regions. Orthogonality holds

CR
s =

2

h

∫ h

0

R̃(a, z) cos
(sπz

h

)
dz, (2.80)

DR
0 =

1

k0d

∫ d

0

∂R

∂r
(a, z)N

− 1
2

0 cosh (k0z) dz, (2.81)

DR
q =

1

kqd

∫ d

0

∂R

∂r
(a, z)N

− 1
2

q cos (kqz) dz. (2.82)

The matching conditions hold

R = R̃ r = a, 0 ≤ z ≤ h, (2.83)
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∂R

∂r
=

∂R̃

∂r
r = a, 0 ≤ z ≤ h, (2.84)

∂R

∂r
= 0 r = a, h ≤ z ≤ d. (2.85)

We now proceed along the same line of section 2.2.4. We plug the expansions
(2.75), (2.78) and the expression (2.79), into the definitions of the coefficients
(2.80), (2.81) and (2.82). In doing so, we use the matching conditions (2.83),
(2.84), (2.85), and the definition of the solution as the sum of homogeneous and
particular contribution to avoid ending up with identities. The main difference
is the presence of the particular solution, which results in the appearance of the
following integral that is solved by a double integration by parts:∫ h

0

z2 cos
(sπz

h

)
dz =

2h3 (−1)
s

(sπ)
2 . (2.86)

All the other terms are straightforwardly integrated leading to the linear
systems of equations

CR
s +

∞∑
q=0

E0
sqD

R
q = QR

s , (2.87)

DR
q = SR

q +

∞∑
s=0

G0
qsC

R
s . (2.88)

Where E0
sq and G0

sq are defined in the same way as for the diffracted wave
basis analysis in (2.68) and (2.69). The other coefficients take the following
form:

QR
s =

 iω2

gh

(
h2

3 − a2

2

)
s = 0,

2iω2h(−1)s

gs2π2 s ≥ 1,
(2.89)

SR
q =


iaω2

2k2
0dghN

1
2
0

sinh (k0h) q = 0,

iaω2

2k2
qdghN

1
2
q

sin (kqh) q ≥ 1.
(2.90)

2.3 Array

Now that we completed the description of the behavior of a single device, we
have to analyze how the interaction between an array of devices and an incident
wave develops.

We start by introducing a new notation, called partial wave notation, that
allows us to write a linear combination of basis functions in a more compact
form. This notation shows its usefulness once we numerically implement the
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previously developed equations, since it allows us to reduce the complex prob-
lem we are describing to a simple matrix-vector multiplication. Afterward, we
analyze how to reinterpret radiated and scattered waves from a body as incident
waves to another body. This allows us to obtain the most general incident wave
approaching a body. The following step is computing the potential all around
the body, which is given by the complete incident wave, and its interaction with
the body. We focus in greater detail on the computation of the distribution
of pressure on the bottom surface of the cylinder, and we use it to compute
its equation of motion. In the last part of this section, known the equation of
motion of our body, we compute many useful derived quantities, such as the
amount of power that each device is able to extract from the waves, and the
interaction factor. The interaction factor is particularly interesting because, as
it is later better detailed, it represents to which degree using devices placed in
an array is more convenient than using them isolated from each other.

2.3.1 Partial wave notation

Having computed the basis functions for the various potentials adding up the
complete potential ϕ, it is necessary, to solve the problem, to compute the
coefficients of the linear combinations of the above-mentioned functions. To
make this task easier, we introduce the partial wave notation, which allows us
to write the linear combination in a more compact way. Using the partial wave
notation consists in listing all the basis functions in a vector, so that to make a
linear combination we simply have to perform a dot product between the partial
wave vector, and a vector of coefficients. The order in which the functions are
listed in the vector is not relevant, as long as it is kept consistent throughout the
theory development, especially in the numerical implementation. An additional
subscript is added to indicate to which body we are referring to.

For the scattered waves in the exterior region, the partial wave vector of
θ-mode n and z-mode m is

(
ΨS

i

)n
m

=

{
cosh (k0z)
cosh (k0d)

Hn(k0ri)
Hn(k0a)

einθi if m = 0, n ∈ Z,
cos (kmz)Kn(kmri)

Kn(kma) e
inθi if m ≥ 1, n ∈ Z.

(2.91)

For the incident waves in the exterior region, it is

(
ΨI

i

)n
m

=

{
cosh (k0z)
cosh (k0d)

Jn(k0ri)
Jn(k0a)

einθi if m = 0, n ∈ Z,
cos (kmz) In(kmri)

In(kma) e
inθi if m ≥ 1, n ∈ Z.

(2.92)

For the diffracted wave in the interior region, it is

(
Ψ̃D

i

)n
m

=


(
ri
a

)|n|
einθi if m = 0, n ∈ Z,

cos (mπz)
hi

In(mπri
h )

In(mπa
h )

einθi if m ≥ 1, n ∈ Z.
(2.93)
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Ambient wave on j-th body

Having multiple bodies in an array, a periodic wave is perceived with a different
phase by each of them. The phase shift is given by the relative position of each
body.

Having as a reference figure 2.4, we have that the phase-shift in exponential
form is equal to

Ij = eik0(xj cos (β)+yj sin (β)). (2.94)

Hence, the vector of coefficients that multiplies the incident wave partial
wave vector is

(aj)
n
m =

{
IjJn(k0aj) e

in(π
2 −β) if m = 0, n ∈ Z,

0 if m ≥ 0, n ∈ Z.
(2.95)

The ambient wave potential, written using the partial wave notation, is

ϕA
j =

gH

ω
aTj Ψ

I
j (2.96)

Scattered waves from i-th body

Now, we apply the partial wave notation to the scattered potential. The scat-
tered potential for the generic i-th body becomes

ϕS
i =

gH

ω
AT

i Ψ
S
i . (2.97)

Now, using Graff’s addition formulae

Hn(k0ri) e
inθi =

∞∑
l=−∞

Hn+l(k0Lij) Jl(k0rj) e
i(αij(l+n)+l(π−θj)), (2.98)

Kn(kmri) e
inθi =

∞∑
l=−∞

Kn+l(kmLij) Il(k0rj) e
i(αij(l+n)+l(π−θj)), (2.99)

we define a linear operator that re-scales the coefficients of the partial wave
vector of the scattered wave by body i, into the coefficients of the partial wave
vector of an incident wave perceived by body j.

This coordinate transformation matrix is defined for every pair of bodies,
such that i ̸= j. We also notice that this transformation does not affect the
z-mode m. Hence, the transformation of the scattered wave of θ-mode n into
the incident waves of θ-mode l takes the form
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Figure 2.4: Vertical view of two devices with relevant parameters highlighted.
Here, β is the angle formed by the ambient wave with the positive x-direction,
(xi, yi) and (xj , yj) are the coordinates of body i and body j respectively, and
Lij is the distance between the two bodies. Figure from [6].
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(Tij)
nl
mm =

{
Jl(k0a)
Hn(k0a)

Hn−l(k0Lij) e
iαij(n−l) if m = 0, n, l ∈ Z,

Il(kma)
Kn(kma)Kn−l(kmLij) e

iαij(n−l) (−1)
l

if m ≥ 1, n, l ∈ Z,
(2.100)

We wrote a code that investigates this transformation. In figure 2.5, we
show how, for different numbers of θ-modes, the modulus of the rotating vector,
representing the free-surface displacement, varies in the space, because of the
scattered wave produced by a body placed in coordinates (0,−10). In figure 2.6,
we show how the same vector’s modulus is reconstructed using the coefficient of
the incident wavefield to a second body placed in coordinates (0, 10). We notice
that in some regions the result diverges, but this is of little relevance, since we
care about reconstructing reliably the scattered potential as incident, only in
the region close to the second body. We also see a clear increase in accuracy
increasing the number of θ-modes n. This increase in accuracy is especially
highlighted by looking at how, for the case with a high number of θ-modes, a
much more distinct circular pattern is showcased. This circular pattern is a
well-known property of the wavefield scattered from cylindrical bodies subject
to planar waves [25], and it is here displayed once again.

By definition of the Tij matrix we get

ΨS
i = TijΨ

I
j . (2.101)

Furthermore, the scattered potential generated by the i-th body (2.97), is
written as perceived as incident by the j-th body using the following notation:

ϕS
i

∣∣
j
=

gH

ω
AT

i TijΨ
I
j . (2.102)

At this point, since the scattered and diffracted potential in the inner region
are equivalent, we write, using partial wave notation, the diffracted potential in
the inner region as

ϕ̃D
i =

gH

ω
ÃT

i Ψ̃
D
i . (2.103)

Radiated waves from i-th body

We now proceed in a similar way to the previous section, first rewriting the radi-
ated potential in partial wave notation, and second, reinterpreting the radiated
waves emitted by one body as incident waves perceived by another one. Having
each body an independent degree of freedom to allow the vertical displacement,
we rewrite the radiated potential in the exterior region from the generic i-th
body as

ϕR
i =

gH

ω
X̂iR

T
i Ψ

S
i . (2.104)

Regarding the interior region, we have, same as for the single body case, that
the solution is given by the sum of the homogeneous and particular solutions,
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Figure 2.5: On the right, the absolute value of the free-surface displacement
vector, generated by a scattered wave, represented using n = 7 θ-modes, born
from the interaction of an incident wave of ω = 1 rad

s and β = 0 rad with a
body of radius a = 4 m, draft d − h = 0.5 m, positioned in a sea of depth
d = 10 m at coordinates (0,−10) m. On the left, the case with n = 30 and the
other parameters kept fixed.

Figure 2.6: The absolute value of the same free-surface displacement vector as
in figure 2.5, but reconstructed, through the matrix Tij , using the coefficient of
the incident wave basis of a second body with the same parameters as the first
one, placed at coordinates (0, 10) m. Left and right are consistent with image
2.5.
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R̃i = R̃h
i + R̃p

i . (2.105)

The homogeneous part is expressed as a linear combination of the scattered
wave basis functions in the interior region, which are the same as the diffracted
basis functions in the interior region. Using the partial wave notation we have

R̃h
i = R̃T

i Ψ̃
D
i . (2.106)

Hence, the radiated potential in the inner region becomes

ϕ̃R
i =

gH

ω
X̂i

(
R̃p

i + R̃T
i Ψ̃

D
i

)
. (2.107)

Using again the coordinate transformation matrix 2.100, we interpret the
radiated field in the exterior region from body i as the perceived incident field
to body j writing

ϕR
i

∣∣
j
=

gH

ω
X̂iR

T
i TijΨ

I
i . (2.108)

2.3.2 Scattering equation

Having interpreted both the radiated and the scattered potential from one body
as the incident potential to another, we now combine all the previously described
incident potentials to obtain a complete incident potential description. By doing
so, we obtain that the total incident potential is

ϕI
j =

gH

ω

(
aTj +

N∑
i=1

(
Ai + X̂iRi

)T
Tij

)
ΨI

j . (2.109)

Having a wave described by this incident potential approaching a body,
we are now interested in computing the scattered potential from this body
after its interaction with this wave. To do so, we define a linear operator B,
which encapsulates the ratios of the coefficient of ΨS

j and those of ΨI
j . This

operator is called exterior diffraction transfer matrix, and allows us to compute
the coefficients Aj of ΨS

j as follows:

Aj = Bj

(
aj +

N∑
i=1

TT
ij

(
Ai + X̂iRi

))
. (2.110)

The B matrix is characteristic for each device, and since our body is radially
symmetric, it has zero entries for the coefficient relating different θ-modes of
the incident and scattered potential. The entries for the B matrix are
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(B)
nn
qm =



Hn(k0a)
Jn(k0a)

(
− J′

n(k0a)
H′

n(k0a)
+ i−nDn

00 cosh (k0d)

N
1
2
0 H′

n(k0a)

)
if m = 0, q = 0, n ∈ Z,

Kn(kqa)
Jn(k0a)

(
i−n Dn

q0

N
1
2
q K′

n(kqa)

)
if m = 0, q ≥ 0, n ∈ Z,

Hn(k0a)
In(kma)

(
Dn

0m cosh (k0d)

N
1
2
0 H′

n(k0a)

)
if m ≥ 1, q = 0, n ∈ Z,

Kn(kqa)
In(kma)

(
Dn

qm

N
1
2
q K′

n(kqa)

)
if m ≥ 1, q ̸= (0,m), n ∈ Z,

Kn(kma)
In(kma)

(
− I′

n(kma)
K′

n(kma) +
Dn

mm

N
1
2
mK′

n(kma)

)
if m ≥ 1, q = m, n ∈ Z.

(2.111)
Similarly, we define an interior diffraction transfer matrix, that represents

the ratio between the coefficients of the same complete incident wave-field to
those of the basis functions of the diffracted potential in the inner region.
Thanks to this matrix, we write the following expression for the Ãj coefficient
of the diffracted partial waves in the inner region:

Ãj = B̃j

(
aj +

N∑
i=1

TT
ij

(
Ai + X̂iRi

))
. (2.112)

The entries of the inner diffraction transfer matrix are

(
B̃
)nn
qm

=



Hn(k0a)
Jn(k0a)

(
− J′

n(k0a)
H′

n(k0a)
+ i−nDn

00 cosh (k0d)

N
1
2
0 H′

n(k0a)

)
if m = 0, q = 0, n ∈ Z.

Kn(kqa)
Jn(k0a)

(
i−n Dn

q0

N
1
2
q K′

n(kqa)

)
if m = 0, q ≥ 0, n ∈ Z,

Hn(k0a)
In(kma)

(
Dn

0m cosh (k0d)

N
1
2
0 H′

n(k0a)

)
if m ≥ 1, q = 0, n ∈ Z,

Kn(kqa)
In(kma)

(
Dn

qm

N
1
2
q K′

n(kqa)

)
if m ≥ 1, q ̸= (0,m), n ∈ Z,

Kn(kma)
In(kma)

(
− I′

n(kma)
K′

n(kma) +
Dn

mm

N
1
2
mK′

n(kma)

)
if m ≥ 1, q = m, n ∈ Z.

(2.113)

2.3.3 Equation of motion

In this section, we look into the derivation of the equation of motion of a body.
We model the power take-off of our device through a linear spring-damper sys-
tem, upon which act the external forces.
We start by computing the contribution to the force due to pressure on the
bottom face of the cylinder. This pressure is composed by two contribution, the
static and dynamic pressure,

pF = pS + pD. (2.114)
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The static contribution grows linearly with the negative z-direction, and at
the bottom face of the cylinder adds up to

pS = ρg (d− (h+X)) . (2.115)

The dynamic pressure is instead related to the potential describing the ve-
locity field through the following relation:

pD = −ρ
∂ϕ

∂t

∣∣∣∣
z=h

. (2.116)

The resulting force, due to these two pressure contributions, is given by
integrating them on the bottom face of the cylinder,

FF
j = −

∫∫
pF · nz dS, (2.117)

FS
j = ρgπa2 (d− (h+X)) , (2.118)

FD
j = iωρ

∫∫
ϕ(rj , θj , hj) dS. (2.119)

Since the body is in equilibrium while at rest, we have that its weight must
be equivalent to the weight of water displaced. Hence,

FW
j = −ρgπha2 (d− h) . (2.120)

We add up FW
j and FS

j to obtain the buoyancy spring force,

FB
j = FS

j + FB
j = −ρgπa2jXj . (2.121)

This is the force that allows the body to float. It is equal to the weight
of the water displaced by the body and hence, since it grows linearly with the
draft has the same behavior as a spring force. This is way it is called buoyancy
spring force.

To explicitly compute the dynamic component of the force, we recall the pre-
viously obtained equation representing the potential in the inner region, which
reads

ϕj =
gH

ω

((
aTj +

N∑
i=1

(
Ai + X̂iRi

)T
Tij

)
B̃T

j Ψ̃
D
j + X̂j

(
R̃p

j + R̃T
j Ψ̃

D
j

))
.

(2.122)
To have a cleaner formulation we define the following quantities:

Ỹ D
j =

∫∫
Ψ̃D

j (rj , θj , h) rj dθj drj , (2.123)

Ỹ R
j =

∫∫
R̃P

j (rj , h) rj dθj drj + R̃T
j Ỹ

D
j . (2.124)
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The only force contribution that we have not yet explicitly written is the
one due to the power take-off, which as previously mentioned takes the form

FG
j = −δjXj − λjX

′
j , (2.125)

where δj is the stiffness coefficient of the j− th body and λj is its corresponding
damping coefficient.

Now, defining the last quantity needed for simplicity (Wj), we write the
equilibrium of forces equation, from which we naturally get the equation of
motion.

Wj = Ỹ R
j − i

ρg

(
Mjω

2 − πa2jρg + iωλj − δj
)
, (2.126)

MjX
′′
j = FD

j + FB
j + FG

j , (2.127)

N∑
i1

(
RT

i TijB̃
T
j Ỹ

D
j

)
X̂i +WjX̂j +

N∑
i1

(
TijB̃

T
j Ỹ

D
j

)T
Ai = aTj B̃

T
j Ỹ

D
j . (2.128)

2.3.4 Derived quantities

In this section, using the previously obtained equation (2.128), we proceed to
compute many relevant quantities. First, we compute the dynamic force acting
on each body, detailing how to obtain the added mass and added damping to
each body. Second, we obtain an expression for the power that each body is
able to generate. This is of particular importance since it allows us to compute
the final and most relevant parameter, the interaction factor, which is described
in detail at the end of this section.

Hydrodynamic forces

Now, we describe how to compute the dynamic force acting on the bottom
surface of the cylinder. We first notice that we have already developed an
expression for this force in 2.119. Substituting in it the explicit expression of
the potential given by 2.122, and using the previously defined expressions 2.123,
2.124 we get

FD
j = iρgH

((
aTj +

N∑
i=1

(
Ai + X̂iRi

)T
Tij

)
B̃T

j
˜Y D
j + X̂j Ỹj

R

)
. (2.129)

We distinguish the different contribution present inside this force:

• Ambient force. The first term in the bracket represents the ambient force,
that is the force located at the body’s position that is present either with
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the body being there or not, it is due only to the ambient wave and its
expression is

FA
j = iρgHaTj B̃

T
j

˜Y D
j . (2.130)

• Incident force. This is the contribution due to the scattered and radiated
waves from the other bodies i, that are perceived as incident from our
single body j. The expression of this contribution takes the form

F I
j = iρgH

(
N∑
i=1

(
Ai + X̂iRi

)T
Tij

)
B̃T

j
˜Y D
j . (2.131)

• Radiated force. This last term represents the force perceived by body j
from his own radiated field. It is written as

FR
jj = iρgHX̂j Ỹj

R
. (2.132)

This component is of particular importance because it is the one we use
to define the added mass and added damping to the system. The added
mass m33 is the inertia added to the body because of the volume of water
it accelerates while it is moving. Similarly, the added damping b33 is
the amount of damping added to the body, which is commonly named
radiation damping. This radiation damping is a result of the energy of
the waves generated by the oscillatory motion of our body. This two terms
are related to FR

jj through

FR
jj = −

(
m33X

′′
j + b33X

′
j

)
. (2.133)

Hence,

m33 =
1

ω2H
Re
{
iρgHỸ R

j

}
, (2.134)

b33 =
1

ωH
Im
{
iρgHỸ R

j

}
. (2.135)

Power

In this section, we define the power that a body is able to generate, and we
develop a convenient formulation of it. The power is defined as the mean rate
at which the hydrodynamic force does work over a period T = 2π

ω . Hence, it is
written as

Pj =
1

T

∫ T

0

Re
{
FD
j e−iωt

}
Re
{
X ′

je
−iωt

}
dt. (2.136)

This expression is rewritten as follows:
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Pj =
1

2
Re
{
FD
j

(
X ′

j

)∗}
, (2.137)

where
(
X ′

j

)∗
is the complex conjugate of X ′

j . We now substitute the expres-

sion of FD
j obtained from (2.127). Since the only term that brings a non-zero

contribution is the damping term, we get

Pj =
λj

2

∣∣X ′
j

∣∣2 =
λjω

2H2 |Xj |2

2
. (2.138)

Interaction factor

Now, having an expression of the power, we compute the interaction factor q,
which we define as

q =

∑N
j=1 Pj

NP
, (2.139)

where N is the number of bodies in the array and P is the power extracted
by a single isolated body. Being this quantity defined as the ratio between the
power generated by an array composed of N bodies, and the power generated
by N isolated bodies, it measures to which degree placing bodies in an array
is beneficial. This quantity should always be kept into account while designing
a park of buoys, since it indicates whether we are working in a good operating
condition or not. For a good design, we aim to have q ≥ 1, but in many appli-
cations, where space is the limiting factor, we just have to avoid configurations
where the park effect acts too negatively, selecting the design that allows for
the highest q, despite it being < 0.

For completeness, we mention the following result, obtained by Wolgamot
et al. [34]:

1

2π

∫ 2π

0

q(β) dβ = 1. (2.140)

This result shows how, in an environment where there is no preferential
direction of the ambient waves, the park effect is always null. This conclusion
was first achieved only under the point-absorber assumption [12], but Wolgamot
extended its validity under more general hypothesis. He states that (2.140) is
valid for axisymmetric devices regardless of body dimension, and that it is true
not only for devices moving in heave, but also for ones moving in surge and
sway, or indeed, for any combination of three or fewer modes for which the
power absorbed by an isolated device is invariant with direction. This result
is of key importance and we will use it in subsequent sections to validate our
numerical implementation.
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2.4 Numerical Modeling

In this section, we explain how to numerically implement the previously devel-
oped equation. First, we clarify some aspects concerning the number of modes
to be used and the way to compute the evanescent wave numbers. Afterward,
we explain how to obtain the system of equations that we use to compute the
buoys’ displacements, and the coefficients of the scattered wave basis, for a given
sea state.

2.4.1 Number of modes

A first aspect that needs to be taken into account is that, in order not to modify
a signal represented through the linear combination of an infinite amount of
functions, e.g. the Fourier transform of a signal, one would have to compute
an infinite amount of coefficients. This is clearly unfeasible when talking about
running a simulation on a computer. Hence, in our case, the amount of θ-modes
and z-modes used has to be finite. And therefore, all the quantities, whose size
depends on the number of θ-modes and z-modes used, are approximations of
the exact quantities due to this truncation.

The number of θ-modes and z-modes used depends on the required level of
accuracy that we aim to achieve. Using N = 5 and M = 40, such that

0 ≤ m ≤ M, (2.141)

−N ≤ n ≤ N, (2.142)

where n and m are the numbers of the corresponding θ-mode and z-mode re-
spectively, turns out to be enough for most applications [6].

On a side note, we specify that the following rule is used to map the quantities
dependent on m or n, into their corresponding vectors:

m → m+ 1, m = 0, 1, ...,M,

n → n+N + 1, n = −N,−N + 1, ..., N − 1, N.
(2.143)

For vectors whose elements are associated with a pair of modes (m,n) we
use the mapping rule

(m,n) → (n+N)M +m+ 1;

m = 0, 1, ...,M, n = −N,−N + 1, ..., N − 1, N.
(2.144)

In both cases the presence of the +1 is needed only when working with coding
languages that start counting from 1, for example, it is not needed for a Python
implementation.
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2.4.2 Evanescent wave-numbers

Another aspect that is worth investigating is the computation of the evanescent
wave numbers. That is because, while for the progressive number the equation
(2.15) can be solved analytically, for the evanescent case the equation is tran-
scendental. Hence, to compute the values of the evanescent wave numbers we
have to numerically compute the zeros of

f(k) = −ω2 − gk tan (kd). (2.145)

To do so, one can use any of the numerical methods for computing the zeros
of a function, such as the Newton method. We must however pay attention to
the choice of the initialization value used in these methods. Being the tangent
a function of period π, we have to pick our initial values at distance π one from
the other, as

kguess =

{ π
2 + π (q − 1) + 0.1

d

}
, for q = 1, ...,M. (2.146)

2.4.3 Linear system

Now, having shed a light on the main ideas to apply while implementing a code
for our previously developed model, we look at how to form the linear system
that will allow us to compute the buoys’ displacements and the coefficients of
the scattered basis.

The equations that we need to couple are (2.110) and (2.128).
Rearranging the terms in the first equation, making explicit what multiplies

the unknowns Ai and Xi, we get

−Aj +

N∑
i=1

BjT
T
ijAi +

N∑
i=1

BjT
T
ijRiX̂i = −Bjaj , for j = 1, ..., N. (2.147)

Doing the same for the second equation we get

1

Wj

N∑
i=1

(
TijB̃

T
j Ỹ

D
j

)T
Ai +

1

Wj

N∑
i=1

(
RT

i TijB̃
T
j Ỹ

D
j

)
X̂i + X̂j =

aTj B̃
T
j Ỹ

D
j

Wj
.

(2.148)
Our objective is now to rewrite the above equations into a single linear

system in compact form, that written with a matrix-vector multiplication takes
the form

Mz = h, (2.149)

where z is
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z =

Ai

X̂i

 (2.150)

To rewrite the system as above described, we interpret the summations in
(2.147) and (2.148) as multiplications of each row of the matrix M , with the
column vector z and the presence of j body is considered by having 2j block
rows in the matrix. The 2 factor is present because we have two sets of equations
where j = 1, ..., N .

Hence, the expressions for M is

M =

M1 M2

M3 M4

 , (2.151)

where,

M1 =



−I B1T
T
21 · · · B1T

T
N1

B2T
T
12

. . .
...

...
. . . BN−1T

T
N(N−1)

BNTT
1N . . . BNTT

(N−1)N −I



, (2.152)

M2 =



0 B1T
T
21R2 · · · B1T

T
N1RN

B2T
T
12R1

. . .
...

...
. . . BN−1T

T
N(N−1)RN

BNTT
1NRN . . . BNTT

(N−1)NRN−1 0



, (2.153)
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M3 =



0 M21
3 · · · MN1

3

M12
3

. . .
...

...
. . . M

N(N−1)
3

M1N
3 . . . M

(N−1),N
3 0



, (2.154)

M4 =



1 M21
4 · · · MN1

4

M12
4

. . .
...

...
. . . M

N(N−1)
4

M1N
4 . . . M

(N−1)N
4 1



. (2.155)

Here, we have that:

• In M1, the BiT
T
ji elements are matrices, whose size is (2N + 1) (M + 1)×

(2N + 1) (M + 1), the same one of the identity matrices I.

• InM2, theBiT
T
jiRj elements are column vectors, whose size is (2N + 1) (M + 1)×

1, the same one of the vector 0, composed of zeros.

• In M3, the M ij
3 = 1

Wj

[
TijB̃

T
j Ỹ

D
j

]T
elements are row vectors, whose size

is 1× (2N + 1) (M + 1), the same one of the vector 0, composed of zeros.

• In M4, the M ij
4 = 1

Wj
RT

i TijB̃
T
j Ỹ

D
j elements are scalars.

To complete the description of the numerical model we report the expression of
h, that is
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h =

h1

h2

 =



−B1a1

−B2a2

...

−BNaN

− 1
W1

aT1 B̃
T
1 Ỹ

D
1

− 1
W2

a2TB̃
T
2 Ỹ

D
2

...

− 1
WN

aTN B̃T
N Ỹ D

N



, (2.156)

where, as previously highlighted the terms composing this vector can be divided
into two groups. The first one is made of the terms −Bjaj , which are the known

terms of equation (2.110). The second is made of the terms 1
Wj

aTj B̃
T
j Ỹ

D
j , which

are the known terms of equation (2.128).



Chapter 3

Validation of the numerical
model

In this chapter, we check the quality of the results given by our numerical
implementation. To perform this check, we compare the results obtained by
other published articles and studies, with the ones obtained by our simulations.

First, in section 3.1, we specify the hardware and software used to perform
our simulations. We also give information on how to access the code.

Afterward, in section 3.2, we use as reference the results obtained in chap-
ter 4 of Child’s thesis. We perform simulations, to obtain the same quantities
described in that chapter, using the same boundary conditions and parameters,
as the one adopted by Child. The quantities that we investigate in this section
are the frequency response of the dimensionless heave displacement, the dimen-
sionless added mass and added damping, and finally the magnitude and phase
of the ambient incident wave.

Next, in section 3.3, we use, for comparison, an article published by Göteman,
titled “Methods of reducing power fluctuations in wave energy parks” [16]. Here,
out of the many published results, we study the power generated by 3×3 square
array configurations, ranging the spacing between the devices, using different
incident wave field characteristics. Once again, we use the same parameters as
Göteman, where stated, highlighting that a mismatch between the results could
be found, due to the lack of statement for some parameters.

It is to be noticed that in both section 3.2, and section 3.3, we perform a
convergence analysis, showing how, changing the number of θ-modes and of z-
modes used, the accuracy of our solution improves. This is needed to select the
appropriate amount of modes to use for running the subsequent simulations.

Lastly, in section 3.4, we use the developed and implemented model, to verify,
sweeping different parameters of a selected configuration of bodies, if we obtain
results coherent with what is predicted by other published studies. This is also
the section where we start selecting some parameters, that are later used to set
the conditions in which we perform the optimization of the array, which will be

54
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the subject of the following chapters.

3.1 Numerical implementation’s information

Here, the hardware and software, adopted for performing the code validations
and, more generally, for running all the numerical implementations that provide
the results shown in this thesis, are shown.

Concerning the hardware, the employed processor is an Intel Core i7-6500U
CPU running at 2.5 GHz, using 12 gigabytes of RAM.

Regarding the software, the OS used is Linux, Ubuntu distribution, version
20.04. The selected programming language is Python, version 3.8.10. The choice
of using Python was also made considering that Python provides a library,
named SciPy, which contains all the Bessel and Hankel functions that were
necessary in our numerical model.

Lastly, all the scripts, used both for the validation of the numerical model
and for all the other sections of this thesis, can be found on GitHub in the fol-
lowing repository: https://github.com/JacopoGallizioli/floatcyl. For
fairness, we have to mention that our numerical implementation is the continu-
ation of Marco Gambarini’s work, which can be found here: https://github.
com/marcogambarini/floatcyl.

3.2 Child’s thesis review

In this section, we first perform a convergence analysis to compute which is the
sufficient number of θ-modes and z-modes to be used in our numerical imple-
mentation. Afterward, we validate our numerical implementation by studying
some of the test cases present in chapter 5.4 of Child’s thesis [6].

3.2.1 Convergence analysis

Here, we study the convergence of our numerical implementation, changing the
number of θ-modes and z-modes used. The quantity for which we check conver-
gence is the absolute value of the peak of the frequency response graph of the
heave-scaled displacement. The convergence should be checked by measuring
the absolute value of the difference between this quantity measured for different
values of N and M , and its exact value. Since we are not able to analytically
determine the exact value of this quantity, we choose to approximate it with
the value obtained using N = 8 and M = 50. These values are chosen keep-
ing into account both the available computational power, and the fact that the
convergence values obtained by Child [6] are significantly lower.

The obtained results are shown in figure 3.1, and the parameters used are
displayed in table 3.2. We can see that convergence is reached with relatively
low values of N and M . Hence, given that in most of our computations we use
N = 5 and M = 45, we can safely assume that the number of θ-modes and
z-modes used is sufficient.

https://github.com/JacopoGallizioli/floatcyl
https://github.com/marcogambarini/floatcyl
https://github.com/marcogambarini/floatcyl
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Figure 3.1: The magnitude of
the error, obtained computing
the non-dimensional heave dis-
placement, is shown in relation-
ship to the amount of θ-modes
and z-modes used.

3.2.2 Results comparison

As stated before, we now proceed in the comparison between the results ob-
tained by Child and ours. The quantities that we investigate in this section are:
the heave displacement frequency response, the added mass and damping for
different ambient waves, and the ambient force-frequency response.

Heave response

The first quantity that we look into is the buoy-scaled displacement. This
scaled displacement is a vector rotating with the same frequency as the one
of the progressive wave approaching the body. Therefore, we perform a spec-
tral analysis of this complex quantity X̂, by studying how its absolute value
and phase change, as the progressive wavenumber associated with the incident
ambient wave changes.

The comparison between our results and the ones obtained by Child is dis-
played in figure 3.2, and the parameters used for running these simulations are
reported in table 3.1.

Looking at the graphs of figure 3.2, we see that an almost perfect agreement is
found between our results and the one obtained by Child. The small mismatch,
appearing both in the graph describing the amplitude behavior and the one
showing the phase of X̂, is most likely a result of the graph digitizing process.

Added mass and damping

A second quantity computed by Child, that we use to verify the validity of our
code, is the added mass (2.134) together with the added damping (2.135). We
compute the dimensionless counterparts of these quantities, defined as

m̂33 =
m33

πρa2d
, (3.1)

b̂33 =
b33

πρa2dω
. (3.2)
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Figure 3.2: We show the non-dimensional amplitude and phase of the heave dis-
placement of an isolated device, as a function of the non-dimensional progressive
wave numbers of the incoming wave. In blue we have the results obtained by
Child and in orange the ones obtained by us.

The parameters used for the computation of these two quantities are the same
as before, listed in table 3.1. As shown by the graphs 3.3, there is an almost
complete correspondence between the value obtained by Child and our one.

Ambient Force

An additional comparison is made with the results concerning the ambient force
(2.130). We study again both the magnitude and the phase of the rotating
vector representing the ambient force in the location of our device. Note that,
the ambient force values are independent from the parameters chosen to describe
the body, since this force is present even when our body is not. Also in this case
the quantity we investigate are non-dimensional, that is to convey more general
information. These quantities are defined as

|F̂A| =
|FA|

ρgπa2H
, (3.3)

∠FAscaled =
∠FA − ∠FA(ω = 0)

π
. (3.4)
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Figure 3.3: We show the non-dimensional added mass and added damping as a
function of the frequency of the ambient wave approaching the body. In blue,
we have the result obtained by Child and in orange the one obtained by us.

Also in this case, as shown in figure 3.4, there is a good matching between the
results obtained by us and Child. Overall, the comparison between our results
and the one obtained by Child points toward the fact that our implementation
is correct.

3.3 Göteman’s article review

In this section, we simulate, using our numerical implementation, the results
published in an article by Göteman [16]. Our objective is, once again, to obtain
results that can validate our implementation.

We use the same approach previously adopted when using Child’s thesis
as a reference, that is first performing a convergence analysis, and afterward
computing the actual quantities present in the article.

3.3.1 Convergence analysis

Here, we study the convergence of our numerical implementation ranging the
number of θ-modes and z-modes used. The quantity, for which we check conver-
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Figure 3.4: We show the non-dimensional amplitude and phase of the ambient
force as a function of its frequency. In blue we have the result obtained by Child
and in orange the one obtained by us.

gence, is the average power produced by a 3 × 3 square configuration of bodies,
whose parameters are detailed in table 3.3.

The obtained results are displayed in figure 3.5. We can see that convergence
is reached relatively early. Hence, the choice of N = 5 and M = 45, which we
adopt throughout the simulations of this section, is good in terms of convergence.

3.3.2 Power of 3 × 3 configuration

Here, we choose to check the values obtained by Göteman in section IV.B.
In that section, they compute the total power generated by a 3 × 3 square
configuration of energy converter, for different sea states and for different values
of spacing between the devices.

The comparison between our results and the one obtained by Göteman is
displayed in figure 3.6. The parameters used to run our simulations and the one
used by Göteman are displayed in table 3.4.

By looking at the obtained results, we notice that the graph showcase an
expected behavior, which is the fact that our estimations of the values of the
powers are around double the ones obtained by Göteman. This is due to the
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Figure 3.5: The magnitude of
the error, obtained computing
the average power produced by
a 3 × 3 square configuration,
is shown in relationship to the
amount of θ-modes and z-modes
used. The parameters used are
shown in table 3.3

fact that Göteman uses a wave climate, which is the superposition of waves
with different periods. The Hs parameter he refers to in the article, simply
reported as H in table 3.4, is the significant wave height, which is computed
as the average height of the highest one-third of all waves measured [19]. On
the other hand, we use a monochromatic wave with the same energy period and
wave height.

When referring to the relation

Hs ∼ 4ηrms, (3.5)

Yoshimi states that this proportionality between the significant wave height and
the RMS surface elevation is confirmed by many wave observation data taken
throughout the world [15]. Hence, given that, for a monochromatic wave of
height Hm, ηrms can be computed as

η(t) =
Hm

2
cos(ωt), (3.6)

η2(t) =
H2

m

4
cos2(ωt), (3.7)

η2(t) =
Hm

8
, (3.8)

ηrms =
Hm

2
√
2
. (3.9)

We get that the relation between Hs and Hm is

Hm ∼ Hs√
2
. (3.10)

Therefore, since the power scales with the square of the wave height, we get
that the power, obtained using a monochromatic wave with same wave height
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Figure 3.6: The value of the average power per energy converter [kW] is shown
in relationship to the variation of spacing between devices. The graphs on the
left are the ones obtained by Göteman calculations, while the ones on the right
are the ones obtained with our calculations. In each pair of graphs, different
sea states with similar wave heights H but different periods are compared.
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as the significant wave height of a wave climate, is doubled with respect to the
one of the original wave climate.

Analyzing the general behavior of the graphs we obtained, we notice that,
in accordance with Göteman’s results, for a very low buoy separation distance,
the park effect acts destructively, reducing the average extracted power by a
significant amount. At the same time, it is interesting to notice that, after a
certain spacing threshold value of around 10 m, a further increase of spacing
does not improve consistently the value of extracted power. Also, it is worth
highlighting that the average powers per energy converter oscillate around the
same value both for ours and Göteman’s simulations, but the shapes of these
oscillations are different. This is most likely due to the use of different pa-
rameters, such as the value of the sea depth, in case they were not defined by
Göteman, or to the different modeling methodology applied. This also implies
that it is very difficult to exploit the positive aspects of the park effect, if one
acts only by modifying the spacing between the devices. Therefore, the spacing
constraint should be considered mainly to avoid operating in the condition of
spacing ≤ 10 m, for which we see that the park effect brings a large negative
effect.

Concluding, we see that, despite having a slightly different shape, both our
and Göteman’s results showcase the same trend. This suggests a correct nu-
merical implementation.

3.3.3 Power variance of 3 × 3 configuration

Here, we replicate another result obtained by Göteman in section IV.B. This
time we want to verify if our numerical model is able to accurately predict how
the power variance changes, as a function of the spacing between the devices,
for the same 3 × 3 square configuration, described again by the parameters of
table 3.4. Here we don’t simulate the results for all the sea states previously
analyzed, but only for the one corresponding to wave height H = 0.82 m and
energy period T = 4.86 s. This choice is arbitrary and it is made only because
this is the first sea state appearing in Göteman’s article.

The results obtained are displayed in figure 3.7. We can immediately no-
tice that, once again, using a monochromatic wave instead of a wave climate
leads to different results. We can nonetheless make some considerations, regard-
ing the obtained results, that can make us understand whether our numerical
implementation is correct or not.

One is to be made concerning the seemingly periodic nature of our result.
This characteristic is also naturally linked to the nature of the monochromatic
wave. That is because, having our incident wave a wavelength λ = 36.8 m, and
being the number of arrays odd along each dimension, we have that, for spacings
that are multiples of λ

2 , two devices oscillate with the same phase. This clearly
leads to a peak in the variance. On the other hand, if the spacing is a multiple
of λ

3 , but not of λ
2 , we have that the interaction between the bodies and the

wave is such that the ascendant and descendant movements compensate each
other, leading to an almost null variance. This fact can be better understood



CHAPTER 3. VALIDATION OF THE NUMERICAL MODEL 63

Figure 3.7: The value of the total power variance, normalized with the square
of the average total power, is shown in relationship to the variation of spacing
between devices. The blue line shows the results obtained by Göteman, who
used a wave climate of significant wave height Hs = 0.82 m. The orange line
represents the results obtained by us, using a monochromatic wave of wave
height H = 0.82 m.

by visualizing 2
3 of a period of a sine function. Splitting the support of this

function in three equal intervals, and evaluating the function on the nodes of
this partition, we obtain the z positions of a line of bodies when the ambient
wave has a wavelength equal to 3 times the spacing between the bodies. In
this configuration we get that the z-position of the first body is equal to zero,
meanwhile, the z-position of the second and the third bodies are equal but
opposite in sign. These positions highlight the above-mentioned property of the
ascending and descending movements compensating each other.

Concluding, we can say that, despite our results not matching with the
ones of Göteman, this difference is due to the different way used to model the
incident wavefield. Moreover, our results are consistent with the hypothesis of
monochromatic incident wave, suggesting a correct numerical implementation.

3.4 Configurations testing

Having checked the validity of our implementation, we now study the properties
of different arrangements of bodies, using the interaction factor, 2.139, as the
main parameter for measuring the performances of a given configuration. This
analysis is executed to perform an additional control on the consistency of our
results. The results have to be coherent with the theoretical knowledge we
developed studying the subject, and with results published in other related
works.

The first configuration we study is one with the devices displayed along



CHAPTER 3. VALIDATION OF THE NUMERICAL MODEL 64

a simple line. This case-study is useful to observe many general results that
we are going to exploit afterward. The second one consists in positioning the
devices along a semi-ellipses that share the line along which one of the two axes
is positioned.

The last configuration is one with 9 bodies displayed in a 3 × 3 square
configuration. Unlike before, this configuration is not explored to find greater
evidence of the exactness of our numerical implementation. We choose to carry
out the analysis of this configuration for the purpose of determining which is the
domain we should select for the optimization that will be carried on in section
5. This domain determines the area inside which our bodies are constrained,
and therefore highly affects the results of our optimization.

For all the results that are displayed, we specify the value of the parameters
used to obtain them for reproducibility.

3.4.1 Line

The first configuration that we want to try, is one where all the devices are
positioned along a straight line. Figure 3.8 helps us to visualize how the devices
are positioned in space.

β vs spacing

Now, we compute how the interaction factor changes, ranging simultaneously
the value of the incident angle β, and of the spacing between the devices. We
display the results in figure 3.9. These results are obtained using the values of
the parameters reported in table 3.5.

The first thing that we can notice analyzing our results, is that the interac-
tion factor is never greater than 1.02. This means that, with this configuration,
we cannot achieve an improvement of performance larger than 2%, with respect
to the case where all the devices are isolated. We can anticipate that, for most
configurations in this section, it will be impossible to obtain an interaction fac-
tor capable of improving performances substantially. The second consideration
that we make, is that, for certain combinations of β and spacing, the interac-
tion factor is smaller than 1, getting close to the value of 0.9. Hence, during
the design phase of a park of buoys, one should consider these results, to avoid
working in operating conditions associated with an interaction factor smaller
than 1.

Another consideration that can be made, is that the value of β for which we
can obtain the best interaction factor values, at relatively low spacing, is β = 0,
this result had been already found [23], and here it is confirmed.

Average q

Now, we want to analyze how the park operates in an environment where there
is no preferential direction of the incoming wave. To do so, one simply has to
compute the average interaction factor over the different values of β, obtained
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Figure 3.8: Magnitude of the
free-surface displacement gener-
ated by an ambient wave of am-
plitude H = 1 m, frequency
ω = 1 rad

s , traveling in the x-
direction, interacting with an ar-
ray of 5 buoys, of radius a =
1 m, draft d − h = 0.5 m,
spaced with a distance of 5m
along the y-axis, in a sea of
depth d = 10 m and water den-
sity ρ = 1000 kg

m3 .

Figure 3.9: Interaction factor as a
function of β and the spacing be-
tween the devices. The parameters
used are the one of table 3.5.

Figure 3.10: Interaction factor av-
eraged over the different value of
β, as a function of the spacing be-
tween the devices. The parameters
used are the one of table 3.5.
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for each value of spacing. The results of this computation are shown in figure
3.10.

Looking at this graph, one can see that the interaction factor is always
smaller than q = 1, and converges to 1 increasing the value of the spacing
parameter. This is perfectly consistent, given that, for high value of spacing,
we achieve a configuration where the devices can almost be considered isolated,
being very far from each other. In addition, we can see that the value of the
interaction factor, despite being always smaller than q = 1, is also very close
to 1, for all configurations with a high enough spacing. This is consistent with
(2.140), showcasing a good numerical implementation.

A second consideration concerns the value of the optimal spacing. That is,
the smallest possible value of spacing, which allows for a good average interac-
tion factor. We can see from image 3.10 that this value is around 16m.

3.4.2 Semi-ellipses

Here, we compute the interaction factor and the variance for an array of bodies
positioned on two semi-elliptical lines. The variance is considered normalized
with the square of the average buoy power. Figure 3.11, is useful to understand
how the bodies are positioned in space.

Figure 3.11: Magnitude of the
free-surface displacement gener-
ated by an ambient wave with
H = 1 m, ω = 1 rad

s , travelling
in the x-direction, interacting
with an array of 10 buoy, with
a = 1 m, d − h = 0.5 m, placed
along 2 semi-ellipses, spaced
with a distance of 8m along the
y-axis, in a sea with d = 10 m
and water density ρ = 1000 kg

m3 .

Before proceeding, we need to define the aspect ratio of an ellipse. Consid-
ering a semi-ellipse, symmetric with respect to the x-axis, whose semi-axes a
and b are aligned with the x and y-axis respectively, we define the aspect ratio
magnitude as

|AR| = a

b
, (3.11)

The sign of AR is taken positive if the semi-ellipse is in the first and second
quadrant, negative otherwise. This definition is necessary because we compute
how the power variance and the interaction factor changes in function of the
selected aspect ratio.
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Figure 3.12: Power variance as a
function of AR for a configuration
of bodies displaced along two semi-
elliptical lines. The parameter used
are the one of table 3.6.

Variance

Here, we study how the power variance changes as a function of |AR|.
We report the values of the parameters used for this simulation in table 3.6.

Since we are keeping β constant, we have to choose to which value we want to
set it. We choose to set it to the value for which we had optimal performance
for the straight line configuration, that is β = 0. The same rule is applied when
choosing to which value set the spacing parameter, that is spacing = 16 m. We
also specify that for spacing we mean the distance between the projection along
the y-axis of the centers of two consecutive bodies.

The results obtained from this simulation are displayed in Figure 3.12. An-
alyzing this image, we see that the variance decreases changing from a straight
line configuration to a semi-elliptical one. That is to be expected, given that
we are forcing our system with a monochromatic wave, that, when the bodies
are placed along a straight line, is perpendicular to the said line, making all the
bodies oscillate with the same phase. Meanwhile, increasing |AR|, the bodies
oscillate with different phases, which corresponds to lower variance. Once again,
our numerical implementation shows to be consistent.

Average interaction factor

Here, we first compute how the interaction factor varies for different values of
AR and β, to later compute how it is averaged over different values of β.

The values of the parameters used while running this simulation are shown
in table 3.7. Same as before, for the value of the spacing we chose the one that
granted us the best interaction factor in the straight line configuration, that is
spacing = 16 m.

The results we obtain are displayed in figure 3.13. We can see that, once
again, the best set of values for the interaction factor is found for β = 0.

We now study which aspect ratio corresponds to the best interaction factor
averaged on the different values of β. This is useful because it allows us to
consider the operating environment in which there is no preferential direction
of the ambient waves.
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Figure 3.13: Interaction factor as
a function of AR and β, for a semi-
elliptical configuration. The pa-
rameters used are the one of table
3.7.

Figure 3.14: Interaction factor av-
eraged over different values of β as
a function of AR. The parameters
used are the one of table 3.7.
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The results of this analysis are displayed in image 3.14. Looking at figure
3.14, we see that there is no AR value for which the average interaction factor
is greater than unity, if there is no preferential direction of the ambient wave.
Moreover, the average interaction factor is extremely close to unity for every
value of AR. This is a known result [34], confirmed by our numerical imple-
mentation. This also shows consistency with (2.140), since (2.140) is obtained
in optimal conditions, and here we are in sub-optimal operating conditions.

Considering then, which configuration has the greatest average interaction
factor, we get that the configurations with |AR| around 0.7, is the one that gives
the best average q. Previous studies already showed that, changing the curvature
of the line along which the energy converters are positioned, has the benefit of
creating a configuration less dependent on the ambient waves directions [9].
Here, we can see that our model confirms these results to be true.

3.4.3 3× 3 square

Here, we aim at defining the size of the domain, inside which we wish to constrain
the bodies composing the array that we wish to optimize. In the optimization
that we perform, whose model is detailed in section 4, nine bodies are located
in a fixed area, and we compute the configuration for which the produced power
is maximized. This kind of optimization, where the bodies are constrained into
a prescribed domain, tends to face the real-life problem of having a limited
amount of space for the installation of a park of energy converter. Given that,
we now run a simulation that computes how the interaction factor changes, for
a 3 × 3 square configuration, ranging the spacing between the bodies and the
staggering between the first and second line.

We define the staggering between two consecutive lines as the relative y-
displacement of one line with respect to the other. Actually, we consider the
non-dimensional staggering, scaling it with the spacing parameter. Here, only
the second line is considered to be staggered, meanwhile, the first and third
ones maintain the original position. Figure 3.15, is useful to understand how
the bodies are positioned in space.

Now, we run the simulation using the parameters of table 3.8, whose results
are displayed in image 3.16. From our results, we notice that changing the stag-
gering parameter has a minimal influence on the interaction factor. Meanwhile,
there is a strong dependence on the interaction factor from the value of the
spacing between bodies. We remind that we are looking for a domain, whose
purpose is to contain an array of wave energy converters, that allows for a good
interaction factor, minimizing at the same time the required space. Therefore,
we select a square domain, whose area is equal to 400m2, that is because, as we
have just shown, it allows for configurations with an interaction factor close to
unity.
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Figure 3.15: Magnitude of the
free-surface displacement gener-
ated by an ambient wave with
H = 1 m, ω = 1 rad

s , travel-
ing in the x-direction, interact-
ing with an array of 9 buoys,
with a = 1 m, d − h = 0.5 m,
placed in a 3 × 3 square with
staggering of 0.5 , with a dis-
tance of 8 m along the y-axis, in
a sea with d = 10m and water
density ρ = 1000 kg

m3 .

Figure 3.16: Interaction factor as a
function of spacing and staggering,
for a 3×3 square configuration. The
parameter used for this simulation
are displayed in table 3.8.



CHAPTER 3. VALIDATION OF THE NUMERICAL MODEL 71

Parameters comparison

Parameter Child’s values Our values

a aT m 1 m

draft bT = aT m 1 m

lambda λds
Ns
m λds

Ns
m

delta δds
N
m δds

N
m

depth dT = 8aT m 8 m

k0
1
a [0 4] 1

m [0 4] 1
m

Nn 0 0

Nq 33 33

rho 1000 1000 kg
m3

Table 3.1: Child’s parameters compared to the one used in our simulations, a
“?” is present when the parameter used by Child was not specified. δds and λds
are the damping and spring constants obtained with reactive (damping-spring)
tuning respectively. They take the following form: δds = ω2

0 (M +m33(ω0)) −
ρgπa2, λds = b33(ω0).

Parameter Value Parameter Value Parameter Value

a 1m d− h 1m λ 55000Ns
m

d 8m ω 1.978rads δ 4000N
m

β 0rad NN 4 NM 8

ρ 1000 kg
m3 N [1, 4] M [1, 8]

Table 3.2: Parameters used for convergence analysis of the peak of the heave
scaled displacement frequency response graph of an isolated body. N represents
the number of θ-modes used, M the number of z-modes.
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Parameter Value Parameter Value Parameter Value

a 2m d− h 0.5m λ 55000Ns
m

δ 4000N
m Nbodies 9 spacing 16m

d 20m ω 2π
4.86

rad
s H 0.86m

β 0rad NN 4 NM 7

ρ 1000 kg
m3 N [0, 3] M [4, 28]

Table 3.3: Parameters used for convergence analysis of Göteman 3 × 3 square
configuration. N represents the number of θ-modes used, M the number of
z-modes.

Parameters comparison

Parameter Göteman’s values My values

a 2 m 2 m

draft 0.5 m 0.5 m

lambda 55000 Ns
m 55000 Ns

m

delta 4000 N
m 4000 N

m

Nbodies 9 9

configuration square square

spacing [4 80] m [3 80] m

depth ? 20 m

omega [1.29, 1.29, 1.30, 1.15, 1.09,
1.34, 1.12, 1.01, 0.86] rad

s

[1.29, 1.29, 1.30, 1.15, 1.09,
1.34, 1.12, 1.01, 0.86] rad

s

H [1.53, 0.82, 1.14, 1.31, 1.03,
1.03, 1.13, 1.13, 2.37, 2.36] m

[1.53, 0.82, 1.14, 1.31, 1.03,
1.03, 1.13, 1.13, 2.37, 2.36] m

beta 0 rad 0 rad

Nn ? 5

Nq ? 45

rho ? 1000 kg
m3

Table 3.4: Göteman parameters compared to the one used in our simulations,
a “?” is present when the parameter used by Göteman was not specified.
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Parameter Value Parameter Value Parameter Value

a 1m d− h 0.5m λ 50000Ns
m

δ 4000N
m Nbodies 9 spacing [8, 24]m

d 10m ω 1 rad
s H 1m

β
[
−π

2 ,
π
2

]
rad Nn 5 Nq 45

ρ 1000 kg
m3 Nβ 20 Nspacing 20

Table 3.5: Parameters used for the computation of the interaction factor for
the straight line configuration. Nn represents the number of θ-modes used, Nq

the number of z-modes, Nbeta the number of nodes on the β-axis, Nspacing the
number of nodes on the spacing-axis.

Parameter Value Parameter Value

a 1m d− h 0.5m

λ 50000Ns
m spacing 16m

δ 4000N
m Nbodies 20

d 10m ω 1 rad
s

H 1m Nq 45

β 0rad Nn 5

ρ 1000 kg
m3 NLines 2

NAR 10 AR [0, 2]

Table 3.6: Parameters used for the computation of the power variance, for a
configuration of 2 elliptical lines, varying AR.
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Parameter Value Parameter Value

a 1m d− h 0.5m

λ 50000Ns
m spacing 16m

δ 4000N
m Nbodies 5

d 10m ω 1 rad
s

H 1m Nq 45

β
[
−π

2 ,
π
2

]
rad Nn 5

ρ 1000 kg
m3 Nβ 20

NAR 20 AR [−1, 1]

Table 3.7: Parameters used for the computation of the interaction factor for the
elliptical configuration, varying AR and β.

Parameter Value Parameter Value

a 1m d− h 0.5m

λ 50000Ns
m spacing [2, 18]m

δ 4000N
m Nbodies 9

d 10m ω 1 rad
s

H 1m Nq 45

β 0rad Nn 5

ρ 1000 kg
m3 Nspacing 4

Nstaggering 4 staggering [0, 1]

Table 3.8: Parameters used for the computation of the interaction factor for the
3× 3 square configuration, varying spacing and staggering.



Chapter 4

WEC arrays optimization

In this chapter, we explain how to develop the model to optimize the power pro-
duced by our array. The results obtained through the numerical implementation
of this model are later described in chapter 5.

We first describe, in section 4.1, how the power is optimized by modifying the
positions of the bodies. Later, in section 4.2, we see how further improvement
can be done by optimizing the damping coefficient of each device.

For both the optimization of the positions and of the damping coefficients, we
first describe how to compute the gradient of the cost function, that is the total
power with negative sign. Subsequently, we detail how to implement numerically
the appropriate gradient method for the computation of the optimal solution.
Finally, we check that the computed and numerically simulated gradients are
correct, by performing a convergence analysis.

4.1 Position optimization

In this section, we describe how to obtain the model to retrieve the optimal
configuration for an array of bodies, under the constraint of them being located
in a fixed selected area. In the first part, we formulate our optimization problem.
Later, we describe how to compute the gradient of our cost function. There, we
also check that the computed gradient is correct by performing a convergence
test with a finite difference approach. Finally, in the last part of this section, we
focus on how to use the computed gradient to implement the projected gradient
method.

4.1.1 Formulation of the optimization problem

Here, we describe how our optimization problem is formulated. The quantity
that we aim to maximize is the total power produced by the selected array of
devices. Therefore, since it is custom to formulate minimization problems, we
define our cost function as the total power with inverted sign, that is

75
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J = −1

2
ω2

Nb∑
i=1

λi|ẑi|2, (4.1)

where λi is the damping coefficient of the i− th body, ẑi its dimensionless heave
displacement, obtained solving 2.149, and Nb is the number of bodies composing
the array. This quantity can be defined in a more compact way as

J = −1

2
ω2zHΛz, (4.2)

where z is a vector of size Nb × 1, containing the heave displacements of all
bodies, the H operator applied to it is the Hermitian transpose, and Λ is a
matrix defined as

Λ =



λ1 0 · · · · · · 0

0 λ2 0 · · · 0
... 0

. . .
...

...
...

. . . 0

0 0 . . . 0 λNb


. (4.3)

Notice that Λ is diagonal (Hermitian) and positive definite.
In addition, we have to specify that our optimization problem is constrained

in the variable x. This means that before performing the optimization we have to
define an admissible set inside which we want our variable x to be constrained.
This is done to perform an analysis of the optimal configuration under the
constraint of the bodies being located inside a given area. The method through
which this constraint is applied is later defined when discussing the optimization
algorithm.

4.1.2 Derivation of the gradient of the objective function

Having defined the cost function to be minimized, we now proceed to compute
the gradient of this cost function, so that later a projected gradient method
could be applied to find the optimal solution. In order to derive the gradient of
the objective function, the first step consists in forming the Lagrangian function
L,

L(A, z;µ, ν;x, y) = −1

2
ω2zHΛz +Re

[
µH (M1A+M2z − h1)

]
+

+Re
[
νH (M3A+M4z − h2)

]
. (4.4)

Here, µ and ν are the Lagrange multipliers vectors, and A is the vector of
coefficients of the scatter wave basis obtained solving the state equation (2.149).
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Now, differentiating L with respect to µ and ν, we obtain once again the
state equation (2.149). Meanwhile, differentiating it with respect to A and z, we
obtain the additional equations necessary to compute the Lagrange multiplier.
Starting differentiating with respect to A, we get

dL
dA

δA = 0, ∀δA, (4.5)

⇔ Re
[
µHM1δA+ νHM3δA

]
= 0, ∀δA, (4.6)

⇔ Re
[
δAH

(
MH

1 µ+MH
3 ν
)]

= 0, ∀δA, (4.7)

⇔ MH
1 µ+MH

3 ν = 0. (4.8)

Meanwhile differentiating with respect to z, we have

dL
dz

δz = 0, ∀δz, (4.9)

⇔ −1

2
ω2δzHΛz− 1

2
ω2zhΛδz+Re

[
µHM2δz + νHM4δz

]
, ∀δz = 0, (4.10)

⇔ −ω2Re
[
δzHΛz

]
+Re

[
δzH

(
MH

2 µ+MH
4 ν
)]

, ∀δz = 0, (4.11)

⇔ Re
[
δzH

(
−ω2Λz +MH

2 µ+MH
4 ν
)]

, ∀δz = 0, (4.12)

⇔ −ω2Λz +MH
2 µ+MH

4 ν = 0. (4.13)

Writing the linear system of the coupled equations (4.8) and (4.13) in compact
form we get  MH

1 MH
3

MH
2 MH

4

 µ

ν

 =

 0

ω2Λz

 . (4.14)

This is the linear system that can be numerically solved to compute the values
of the Lagrange multipliers.

Now, having shown how to compute the Lagrange multipliers in vectors µ
and ν, we proceed to compute the gradient of J . To do so, one must compute
the derivatives of the Lagrange function L with respect to x and y. And then
assemble this derivatives vector into the vector ∇J . Computing the derivatives
with respect to the i− th body x-coordinate, xi, we get

∂L
∂xi

= Re

[
µH

(
∂M1

∂xi
+

∂M2

∂xi
z

)
+ νH

(
∂M3

∂xi
A
∂M4

∂xi
z

)]
, (4.15)
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where

∂M1

∂xi
=



0 · · · 0 Bi
∂T1,i

∂xi
0 · · · 0

...
...

...
...

...

0 · · · 0 Bi
∂Ti−1,i

∂xi
0 · · · 0

B1
∂Ti,1

∂xi
· · ·Bi−1

∂Ti,i−1

∂xi
0 Bi+1

∂Ti,i+1

∂xi
· · ·BNb

∂Ti,Nb

∂xi

0 · · · 0 Bi
∂Ti+1,i

∂xi
0 · · · 0

...
...

...
...

...

0 · · · 0 Bi
∂TNB,i

∂xi
0 · · · 0



, (4.16)

∂M2

∂xi
=



0 · · · 0
∂M1,i

2

∂xi
0 · · · 0

...
...

...
...

...

0 · · · 0
∂Mi−1,i

2

∂xi
0 · · · 0

∂Mi,1
2

∂xi
· · · ∂Mi,i−1

2

∂xi
0

∂Mi,i+1
2

∂xi
· · · ∂M

i,Nb
2

∂xi

0 · · · 0
∂Mi,1

2

∂xi
0 · · · 0

...
...

...
...

...

0 · · · 0
∂M

Nb,i

2

∂xi
0 · · · 0



, (4.17)
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∂M3

∂xi
=



0 · · · 0
∂M1,i

3

∂xi
0 · · · 0

...
...

...
...

...

0 · · · 0
∂Mi−1,i

3

∂xi
0 · · · 0

∂Mi,1
3

∂xi
· · · ∂Mi,i−1

3

∂xi
0

∂Mi,i+1
3

∂xi
· · · ∂M

i,Nb
3

∂xi

0 · · · 0
∂Mi,1

3

∂xi
0 · · · 0

...
...

...
...

...

0 · · · 0
∂M

Nb,i

3

∂xi
0 · · · 0



, (4.18)

∂M4

∂xi
=



0 · · · 0
∂M1,i

4

∂xi
0 · · · 0

...
...

...
...

...

0 · · · 0
∂Mi−1,i

4

∂xi
0 · · · 0

∂Mi,1
4

∂xi
· · · ∂Mi,i−1

4

∂xi
0

∂Mi,i+1
4

∂xi
· · · ∂M

i,Nb
4

∂xi

0 · · · 0
∂Mi,1

4

∂xi
0 · · · 0

...
...

...
...

...

0 · · · 0
∂M

Nb,i

4

∂xi
0 · · · 0



, (4.19)

Here, we have that:

• In ∂M1

∂xi
, theBi

∂TT
ji

∂xi
elements are matrices, whose size is (2N + 1) (M + 1)×

(2N + 1) (M + 1), the same one of the matrices 0, composed of zeros.

• In ∂M2

∂xi
, the

∂Mij
2

∂xi
= Bi

∂TT
ji

∂xi
Rj elements are column vectors, whose size is

(2N + 1) (M + 1)× 1, the same one of the vector 0, composed of zeros.

• In ∂M3

∂xi
,r the

∂Mij
3

∂xi
= 1

Wj

[
∂Tij

∂xi
B̃T

j Ỹ
D
j

]T
elements are row vectors, whose

size is 1 × (2N + 1) (M + 1), the same one of the vector 0, composed of
zeros.

• In ∂M4

∂xi
, the

∂Mij
4

∂xi
= 1

Wj
RT

i
∂Tij

∂xi
B̃T

j Ỹ
D
j elements are scalars.
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Now, for completeness, we list the elements of the derivatives of the coordinate
transformation matrix Tij .

(
∂Tij

∂xi

)nl

mm

=



Jl(k0a)
Hn(k0a)

[
H ′

n−l(k0Lij) e
iαij(n−l)k0

∂Lij

∂xi
+ if m = 0,

+Hn−l(k0Lij) e
iαij(n−l)i (n− l)

∂αij

∂xi

]
n, l ∈ Z,

Il(kma)
Kn(kma)

[
K ′

n−l(kmLij) e
iαij(n−l) (−1)

l
km

∂Lij

∂xi
+ if m ≥ 1,

+Kn−l(kmLij) e
iαij(n−l) (−1)

l
i (n− l)

∂αij

∂xi
n, l ∈ Z,

(4.20)
where the derivatives of the Hankel function H ′, and the one of the modified
Bessel function of the second kind K ′, can be computed using the following
recursive relationships [1]:

H ′
n−l(k0Lij) =

(n− l)Hn−l(k0Lij)

k0Lij
−Hn−l+1(k0Lij) , (4.21)

K ′
n−l(k0Lij) = −1

2
[Kn−l−1 (kmLij) +Kn−l+1 (kmLij)] . (4.22)

Hence, the last quantities that need to be computed to complete the description
of the derivative of the coordinate transformation matrix are the derivative of
Lij and αij , which are now described. Firstly, we write the polar expression for
the difference of x and y-coordinate of body i and body j, that is{

Lij cos (αij) = xj − xi

Lij sin (αij) = yj − yi .
(4.23)

Now, deriving with respect to xi, we obtain{
∂Lij

∂xi
cos (αij)− Lij sin (αij)

∂αij

∂xi
= −1

∂Lij

∂xi
sin (αij) + Lij cos (αij)

∂αij

∂xi
= 0 .

(4.24)

Now, we rewrite the system in matrix-vector multiplication form Ax = b, where

A =

[
cos (αij) −Lij sin (αij)

sin (αij) Lij cos (αij)

]
, (4.25)

x =

[
∂Lij

∂xi
∂αij

∂xi

]
, (4.26)

b =

[
−1

0

]
. (4.27)

At this point, to compute x, one has to invert matrix A. To check if this
operation is always allowed we compute the determinant of matrix A, that is
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det(A) = Lij cos
2(αij) + Lij sin

2(αij) = Lij . (4.28)

Hence, A is positive definite and can always be inverted allowing us to compute
the derivative of Lij , and αij , with respect to xi, for whatever couple of bodies.

Now, we have all the equations needed to compute
∂Tij

∂xi
, but to be able to

compute ∂L
∂xi

we are still missing the derivative of Tij with respect to xj . This
quantity has the same structure as (4.20), with the only difference being that
∂Lij

∂xi
and

∂αij

∂xi
are replaced by

∂Lij

∂xj
and

∂αij

∂xj
respectively. To compute these

new derivatives, one simply has to derive (4.23) with respect to xj , obtaining
once again a linear system to be solved.

Now we have all the equations that need to be numerically implemented to
compute ∂L

∂xi
.

The last step in the computation of the gradient of J is to compute ∂L
∂yi

. To
obtain this quantity one has to follow the exact same procedure previously de-
tailed, starting from (4.15), replacing, in each step, the derivatives with respect
to x, with the derivatives with respect to y.

Once this is done, we assemble the gradient of J as

∇J =



∂L
∂x1

∂L
∂x2

...

∂L
∂xNb

∂L
∂y1

∂L
∂y2

...

∂L
∂yNb



. (4.29)

Now, we perform a test to check that the computed gradient for the opti-
mization of the positions is correct. To be more precise, what we want to verify
is that the gradient defined through the Lagrangian approach is the same one
as the one obtained through the limit of the difference quotients. Starting from
the definition of the gradient of the function J as the limit for h → 0 of the
difference quotients of J , we have that

∇JT(x)h → J(x+ h)− J(x) for||h|| → 0, (4.30)

Therefore, we check that difference quotients converge to the gradient com-
puted through the Lagrangian approach. We do this computing how the dif-
ference between ∇JT(x)h and J(x + h) − J(x), changes for different values of
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Figure 4.1: Difference be-

tween ∇JT(x)h and J(x +
h) − J(x), for different val-
ues of h. Where h is a vector
representing the displace-
ment in the x-direction, of
magnitude h, of the bodies
in the middle line. The pa-
rameters used are shown in
table 4.1. The graph has
a logarithmic scale on both
axes to highlight the order
of convergence.

Parameter Value Parameter Value Parameter Value

a 1m d− h 0.5m λ 50000Ns
m

δ 4000N
m Nbodies 9 spacing 10m

d 10m ω 1 rad
s H 1m

β 0rad Nn 3 Nq 8

ρ 1000 kg
m3 Nh 10 h

[
0, 1

10000

]
m

Table 4.1: Parameters used for convergence analysis of the difference between
∇JT(x)h and J(x+ h)− J(x).
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h. The vector h is chosen to represent a displacement in the x-direction, of
magnitude h, of the bodies in the middle line of a 3× 3 square configuration of
bodies. The results obtained from this simulation are reported in figure 4.1, and
the data used are displayed in table 4.1. Looking at the graph we notice a clear
convergence for h → 0, as it should be. This hints toward a correct numerical
implementation of the function computing the gradient.

In the graph, we also check for the order of convergence of our method.
Given that the quantity we are computing is ∇JT(x)h and J(x + h) − J(x) as
h → 0, we can analytically compute the expected rate of convergence since
J(x+ h) can be expanded as

J(x+ h) → J(x) +∇JT(x)h+
1

2
hTHJ(x)h+O

(
h3
)
, for h → 0, (4.31)

where H is the Hessian matrix of function J in computed in point x. Substi-
tuting this expression into J(x + h) − J(x) − ∇JT(x)h, we get that the only
remaining terms are of second order and above, hence we expect a second order
convergence rate. Therefore, the graph in figure 4.1, confirms the predicted
results, showing a clear second order convergence rate, this is another strong
indicator of a correct numerical implementation.

4.1.3 Projected gradient method

Here, we give an overview on how the method of the projected gradient is used
to find the positions of the bodies, for which maximum power is produced.

The method requires a starting configuration. It is defined by specifying the
coordinates of all bodies as the entries of a single vector v0,

v0 =



x1

x2

...

xNb

y1

y2
...

yNb


. (4.32)

Here, the letter v is used to avoid confusion in the algorithm, where otherwise
it would seem that only the x-coordinate is modified.

Now, we have all the tools to develop our numerical implementation, whose
details are reported in algorithm 1.

We notice how, in our numerical implementation, we assemble all the ma-
trices needed to solve (2.149), apart from the coordinate transformation matrix
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Algorithm 1 Positions optimization algorithm

compute all the matrices to solve (2.149), apart from T
K = 0
define v0, t0, γ, m, maxit, tol

while K ≤ maxit and ||vK − vK−1|| > tol do
assemble T and all derivatives of T , according to (2.100) and (4.20)
assemble M
solve (2.149)
compute J(vK)
solve (4.14) to compute µ and ν
compute ∇J(vK)
t = t0
v∗(t) = PU2d

(vK − t∇J)
compute J(v∗(t))

while J(v∗(t))− J(vK) ≤ −γ
t ||v

∗(t)− vK ||2 do
t = mt
compute v∗(t)
assemble T and its derivatives using coordinates v∗(t)
assemble M
solve (2.149)
compute J(v∗(t))

end while

update vK+1 = v∗(t)
K = K + 1

end while
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T , before entering any cycle. That is possible because T is the only quantity
that will change based on the position of the bodies, and therefore needs to be
updated at each iteration.

To compute v∗, we first move in the direction opposite to the one defined
by the gradient, and we subsequently apply the projector operator PU2d

on
this obtained configuration. This is an operator acting on the configuration,
projecting it on the selected domain of feasible solutions. In case we choose
to limit the domain of feasible solutions to a square with sides of length s =
spc(Nb − 1), where spc is the spacing between two consecutive bodies in either
the x or y direction, the projector operator takes the form

PU2d
(v) =



min(max(x1, 0), s)

min(max(x2, 0), s)

...

min(max(xNb
, 0), s)

min(max(y1, 0), s)

min(max(y2, 0), s)

...

min(max(yNb
, 0), s)



. (4.33)

Also, some explanations regarding the second while-loop are needed. This
loop is done to perform a line search along the direction opposite to the gradient,
which means looking for an appropriate step to take in the selected direction.
The condition on this loop, called the Armijo rule, guarantees that a sufficient
decrease in the cost function is achieved at each iteration.
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4.2 Damping optimization

In this section, we show how to find the optimal damping for each individual
device composing an array of wave energy converters.

The logical process is very similar to the one adopted for the optimization
of the positions of the bodies. Firstly, we detail the formulation of the problem.
Next, we describe how to compute the gradient of the objective function. Lastly,
we detail how the above-computed gradient is used to define the optimization
algorithm.

4.2.1 Formulation of the optimization problem

Here, we formulate our optimization problem. The aim of this optimization is
to compute the values of the damping coefficients λi, associated with each of the
bodies composing the array, for which the total extracted power is maximized.
Once again, since it is custom to formulate a minimization problem, we define
our objective function as the total extracted power with inverted sign, as in
(4.2). This time, the only constraint acting on the optimization variables λi,
is that they must be positive at each iteration. This is done to allow only for
configurations where the power flow direction is correct.

4.2.2 Derivation of the gradient of the objective function

Now, to implement our optimization algorithm, we need to compute the gradient
of the cost function. This, similarly to before, is done through a Lagrangian
approach. Therefore, we start by formulation of the Lagrangian, which, similarly
to equation (4.4), takes the form

L(A, z;µ, ν;λ) = −1

2
ω2zHΛz +Re

[
µH (M1A+M2z − h1)

]
+

+Re
[
νH (M3A+M4z − h2)

]
(4.34)

.
Now, differentiating (4.34) with respect to µ and ν, we and end up with the

state equation (2.149). Meanwhile, differentiating it with respect to A and z, we
obtain the adjoint equation (4.14), which we can use to compute the Lagrangian
multipliers vectors µ and ν. Now, to compute the gradients of J with respect to
λ, what we have left to do is compute the derivatives of the Lagrangian (4.34),
with respect to each of the damping coefficients λi as follows.

∂L
∂λi

= −1

2
ω2zHi zi +Re

[
νH
(
∂M3

∂λi
A+

∂M4

∂λi
z − ∂h2

∂ci

)]
, (4.35)

where,
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∂M3

∂λi
=



0 · · · 0
∂M1,i

3

∂λi
0 · · · 0

...
...

...
...

...

0 · · · 0
∂Mi−1,i

3

∂λi
0 · · · 0

0 · · · 0 0 0 · · · 0

0 · · · 0
∂Mi+1,i

3

∂λi
0 · · · 0

...
...

...
...

...

0 · · · 0
∂M

Nb,i

3

∂λi
0 · · · 0



, (4.36)

∂M4

∂λi
=



0 · · · 0
∂M1,i

4

∂λi
0 · · · 0

...
...

...
...

...

0 · · · 0
∂Mi−1,i

4

∂λi
0 · · · 0

0 · · · 0 0 0 · · · 0

0 · · · 0
∂Mi+1,i

3

∂λi
0 · · · 0

...
...

...
...

...

0 · · · 0
∂M

Nb,i

4

∂λi
0 · · · 0



, (4.37)

∂h2

∂λi
=



0

...

0

1
W 2

i

[
aTi B̃

T
i Ỹ

D
i

]
ω
ρg

0

...

0



. (4.38)
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Here, we have that:

• In ∂M3

∂λi
, the

∂Mij
3

∂λi
= − 1

W 2
i

[
TjiB̃

T
i Ỹ

D
i

]T
ω
ρg elements are row vectors, whose

size is 1 × (2N + 1) (M + 1), same as the vectors 0, composed of zeros,
present in this matrix.

• In ∂M4

∂λi
, the

∂Mij
4

∂λi
= − 1

W 2
i

[
RT

j TjiB̃
T
i Ỹ

D
i

]
ω
ρg elements are scalars, same as

the 0 elements of this matrix.

• In ∂h2

∂λi
, the 1

W 2
i

[
aTi B̃

T
i Ỹ

D
i

]
ω
ρg elements are scalars, same as the 0 elements

of this vector.

Now, we have all the necessary items to build the gradient of J with respect
to λ as

∇λJ =



∂L
∂λ1

∂L
∂λ2

...

∂L
∂λNb−1

∂L
∂λNb


. (4.39)

Here, many of the considerations made for the position optimization problem
could also be applied. In particular, we focus on the fact that, following the
same consideration associated with (4.31), also in this case the convergence rate
of this method should be of the second order. Therefore, we check this to be
true, performing a test that computes the convergence rate of the difference
between ∇JT(λ)h and J(λ + h) − J(λ) for h approaching to zero. This is done
considering as h the increase in the damping coefficients of bodies composing a
3×3 array of wave energy converter. The parameters used to run this simulation
are listed in table 4.2, and the obtained results are shown in image 4.2. Looking
at the graph, we see a clear second-order convergence rate, in accordance with
the theoretical results. Therefore, this validates our numerical implementation
of the damping coefficients optimization algorithm.
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Figure 4.2: Difference between

∇JT(λ)h and J(λ+ h)− J(λ), for
different values of h. Where h is
a vector representing the increase
in the damping coefficient of each
body of the array. The parame-
ters used are shown in table 4.1.
We use a logarithmic scale to mea-
sure the convergence rate.

Parameter Value Parameter Value Parameter Value

a 1m d− h 0.5m λ0 20000Ns
m

δ 4000N
m Nbodies 9 spacing 10m

d 10m ω 1 rad
s H 1m

β 0rad Nn 3 Nq 8

ρ 1000 kg
m3 h [0, 10]m Nh 10

Table 4.2: Parameters used for convergence analysis of the difference between
∇JT(λ)h and J(λ+ h)− J(λ).
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4.2.3 Gradient method

Having computed the gradient of J with respect to the vector of damping co-
efficients, we now use it to implement an optimization algorithm based on the
gradient method. In order for this algorithm to function, it is necessary to find
an initial configuration to optimize. Then we list all the damping coefficients,
belonging to the above-mentioned configuration, into a single vector λ0, an in

λ0 =



λ1

λ2

...

λNb−1

λNb

 . (4.40)

The optimization algorithm is therefore implemented following a similar
structure to the positions optimization algorithm, as it is shown in algorithm 2.

Notice that, differently from the case of the position optimization algorithm,
here, we do not use the projected gradient method but the simpler gradient
method, that is because, engineering-wise, it is simple to modify the damping
coefficient of a body, meanwhile getting access to more space to install wave
energy converter is more troublesome.

Another difference is the fact that, in this implementation, the only matrix
that has to be computed at each iteration is W , being the only one depending
on λ.

We also notice that here an additional condition is present at the beginning
of the code, that is constraining λ to the set of positive values. This condition
is necessary to grant that the power flow is always achievable.

4.3 Combined optimization

In this section, we analyze how to build an optimization algorithm capable
of finding the optimal position and the optimal damping coefficient of each
device composing the array of bodies we want to consider. Finding the optimal
positions and damping coefficients at the same time has several advantages. One
of the most important, is that optimizing both parameters at the same time,
the problem of the positions gradient being affected by the value of the damping
coefficients, and at the same time of the damping coefficients gradient being a
function of the positions, is solved. This coupling problem is solved because,
as we will soon see in detail, while performing this combined optimization we
update both the positions of the bodies and their damping coefficients at each
iteration.

The procedure through which we obtain the optimization algorithm is de-
tailed in algorithm 3. Analyzing how this algorithm works, we start by stating
that also this time a gradient method is applied. More in detail, we execute a
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Algorithm 2 Damping coefficients optimization algorithm

Require: λ ≥ 0
compute all the matrices to solve (2.149), except for W
K = 0
define λ0, t0, γ, m, maxit, tol

while K ≤ maxit and ||λK − λK−1|| > tol do
assemble W and M
solve (2.149)
compute J
solve (4.14) to compute µ and ν
compute ∇J
t = t0
λ∗(t) = λK − t∇J
compute J(λ∗(t))

while J(λ∗(t))− J(λK) ≤ −γ
t ||λ

∗(t)− λK ||2 do
t = mt
compute λ∗(t)
assemble W and M
solve (2.149)
compute J(λ∗(t))

end while

update λK+1 = λ∗(t)
K = K + 1

end while
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2-steps algorithm. In the first step, the gradient of J with respect to the posi-
tions (4.29) is computed, and the positions are updated moving in the direction
opposite to this gradient. In the second step, the gradient of J with respect to
the damping coefficients (4.39) is computed, and again the damping coefficients
are updated moving in the direction opposite to this gradient.

It has to be noted that in this algorithm we introduce the presence of two
control variables, check1, and check2. These two are present because, in case the
convergence of the positions is obtained before the convergence of the damping
coefficients, the iterative process has to continue only for the damping coeffi-
cients. The same reasoning applies to the case where the damping coefficients
are the ones to converge earlier than the positions. Therefore, these variables
are used, as shown in algorithm 3, to allow the optimization of the parameter
that has not yet reached convergence to continue. Note that it might happen
that, since the value of the positions affect the value of ∇λJ , and since the
values of the damping coefficients affect the one of ∇vJ , one parameter, that at
a certain iteration had converged, at another subsequent one might need to be
updated, after the change of the other parameter. The use of the two control
variables allows this to happen.

Another aspect to highlight is that we use two different values of tol, t(0) and
γ. This is the consequence of v and λ being quantities of two different orders of
magnitude. For instance, being λ > v, the tol and t(0) associated to λ, will be
greater then the one associated to v.

This is also the reason why the two variables, v, and λ, are not jointed into
a single vector with a corresponding longer gradient vector consisting in the
merging of the gradient with respect to v and the one with respect to λ. If
this was done, a single value for tol, t(0) and γ, should have been chosen, which
could not be appropriate for both v and λ. By scaling one of the two variables
one could solve the problem for one of these parameters, but these would most
likely still lead to the other two not being set to the correct value, given that
there is not a linear law linking them.

Regardless, we don’t disregard the possibility of making an implementation
through a single vector of variables and a single gradient vector, given that
further analysis and parameters tuning are necessary for it to be correct.

Considering the gradients used in this optimization algorithm, they are the
same ones we previously developed, (4.29), (4.39). Therefore, there is no need to
verify the convergence of these gradients, since we already did it in the previous
sections. Also, the projecting strategy is the same as the one previously modeled,
(4.33).

Now that we have developed all the tools to compute optimal positions and
damping coefficients, we proceed, in the next chapter, to detail the results we
obtained after numerically implementing these models.
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Algorithm 3 Combined positions and damping coefficients optimization algo-
rithm

Require: λ ≥ 0
compute all the matrices to solve (2.149), apart from T and W
K = 0
define v0, λ0, t1(0), t2(0), γ1, γ2, m, maxit, tol1, tol2

while K ≤ maxit and (||vK − vK−1|| > tol1 or ||λK − λK−1|| > tol2) do
check1 = 0, check2 = 0
assemble W ,T , the derivatives of T , M and solve (2.149)
compute J(vK , λK)
solve (4.14) to compute µ and ν
compute ∇vJ(vK , λK)
t1 = t1(0), v

∗(t1) = PU2d
(vK − t1∇vJ(vK , λK))

compute J(v∗(t1), λK)

while J(v∗(t1), λK)− J(vK , λK) ≤ −γ1

t1
||v∗(t1)− vK ||2 do

check1 = 1, t1 = mt1
compute v∗(t1)
assemble T ,the derivatives of T , M and solve (2.149)
compute J(v∗(t1), λK)

end while

if check1 = 1 then
update vK+1 = v∗(t1)

else
update vK+1 = vK

end if
compute ∇λJ(v

∗(t1), λK)
t2 = t2(0), λ

∗(t2) = λK − t2∇λJ(v
∗(t1), λK)

compute J(v∗(t1), λ
∗(t2))

while J(v∗(t1), λ
∗(t2))− J(v∗(t1), λK)(λK) ≤ −γ2

t2
||λ∗(t2)− λK ||2 do

check2 = 1, t2 = mt2
compute λ∗(t2)
assemble W , M and solve (2.149)
compute J(v∗(t1), λ

∗(t2))
end while

if check2 = 1 then
update λK+1 = λ∗(t2)

else
update λK+1 = λK

if check1 = 0 then
Break

end if
end if
K = K + 1

end while



Chapter 5

Optimization results

In this section, the results obtained applying the optimization strategies detailed
in section 4 are shown and analyzed.

Following the same approach as in the previous sections, the data used to
run the simulations of this chapter are listed in tables, so that these tests could
be repeated. In addition, all the results are commented on, and the reason
behind the choice of performing each of the tests is explained.

We group our results based on the optimization that is performed. A further
classification is therefore applied, based on the chosen starting configurations.
Firstly, in section 5.1, we list the results obtained by optimizing the positions of
the bodies. Here, three different constraints will be considered concerning the
positions of the bodies: a square, a rectangle, and a semi-decagon. This last
configuration is chosen to mimic a natural bay area. Subsequently, in section 5.2,
we perform the optimization of the damping coefficients of the bodies composing
the array. We start considering the optimization of the damping coefficient of an
isolated device, to later move to the optimization of the damping coefficients for
a 3 × 3 square configuration subject to different ambient incident wave angles.
Next, in section 5.3, we consider the combined optimization of the damping
coefficients and of the positions of the bodies. A 3 × 3 square configuration is
considered in this section and the tests are run for different values of the starting
positions and damping coefficients. Lastly, in section 5.4, we take an overview of
some of the obtained results comparing the different optimization strategies. In
addition, some general considerations, concerning the optimal design of a park
of wave energy converter, are drawn.

5.1 Position optimization

Here, we consider the results obtained by optimizing the positions of bodies
composing arrays of wave energy converters.

We display results concerning arrays subject to different starting configu-
rations and constraints. The most important results, that we show for each

94
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simulation, are the final optimal positions of the bodies and the convergence of
the interaction factor (2.139) to its optimal value.

In every simulation, the number of bodies will be limited to nine. This choice
is made to balance the fact that a big enough number of bodies is needed to
observe a significant park effect [2], with the fact that the computational costs
grows quickly with the number of bodies considered, since this factor affects the
size of the matrices to be assembled to solve the state equation (2.149).

We investigate configurations subject to three different kinds of constraints.
The first one consists in having the bodies restricted into a square of a given
area. Under this constraint, we also check how the optimal positions change
with the angle of the ambient incident wave. The second configuration studied
is one where the bodies are forced into a rectangle. Afterward, we study which
optimal configuration is achieved by placing all the bodies inside a domain
designed to mimic a natural bay. This simulation is particularly useful because
it reproduces an area, the bay, that is a potential candidate for the installation
of arrays of wave energy converters.

5.1.1 Square constraint

In this section, we study how the optimization of the positions of the bodies
composing an array of wave energy converters, affects their distribution in space,
under the constraint of them being limited inside a square of fixed area.

Remembering that the size of this specific constraint was chosen based on
the considerations of section 3.4.3, we now have to choose the actual positions
of the bodies inside the allowed domain. The following subsections describe one
different simulation each. In the first three, the difference is in the choice of the
initial configuration. Meanwhile, in the last one, we investigate what happens
ranging the value of the ambient incident wave angle.

3x3 Large square

The first tested geometry consists in having the bodies displaced in the most
intuitive way, that is on a 3x3 square grid that fills as much space as allowed.
It is therefore clear that, at the beginning of the simulation, eight of the nine
bodies are positioned on the boundary of the admissible set.

The parameter used for running this simulation are listed in table 5.1, and
the obtained results are displayed in picture 5.1. Analyzing the graph showing
the interaction factor as a function of the iteration number, we see that the
optimization algorithm is working nicely, increasing the value of q monotoni-
cally. Sadly, we also notice that this increase in value, in absolute terms, is
very marginal. This is most likely because the initial configuration was already
close to a point of minimum. This conclusion, is strongly highlighted by the
plot showing the difference between the initial positions and the final positions,
where we see that the change in positions is almost unnoticeable. The fact that
this is close to an optimal position is somewhat reasonable, given that, for the
starting configuration the interaction factor was slightly less than one, therefore,
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Figure 5.1: In the image on the left the initial positions are displayed (red full
circle), compared to the final optimal positions (green empty circle). In the
image on the right, the change in interaction factor q is shown as a function of
the iteration number. The parameters used for running these simulations are
listed in table 5.1.

the bodies should tend to get further from each other to get closer to the con-
figuration where they are isolated, since it is associated to an interaction factor
of one. Given that is not possible, since the selected configuration is already
the one where the bodies are the furthest from each other, makes it reasonable
that we started the simulation already close to an optimal configuration. We
dig into this aspect in the next test, where we use, as the starting configuration,
one where the bodies are very close to each other, to see if they actually tend
to move apart from one another.

But before moving on, an additional consideration is made concerning the
shape of the graph describing the interaction factor in figure 5.1. We notice
that, in some points of the graph, there is a discontinuity in the first-order
derivative of the function. This comes from the fact that, during the process of
optimization, we perform a line search in the direction opposite to the one of
the gradient, to determine the optimal step to take in this direction. Here, the
points of discontinuity of the derivative, coincide with the iteration in which the
conditions on the line search algorithm result in the selection of a bigger step.

3x3 Small square

We now test how the position optimization algorithm changes the coordinates
of bodies, initially positioned into a 3 × 3 square array, when the distance be-
tween the bodies is such to have a starting configuration associated with a very
low interaction factor. Here, the bodies are nevertheless subject to the same
square constraint as in the previous configuration study, and they are initially
positioned in the middle of the above-mentioned constraint. The purpose of
this simulation is to first test if the expected behavior, consisting in the bodies
getting further away from each other, is exhibited, and in second place, to in-
vestigate if, in the process of getting further away from each other, they tend
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Figure 5.2: In the image on the left the initial positions are displayed (red full
circle), compared to the final optimal positions (green empty circle). In the
image on the right, the change in interaction factor q is shown as a function of
the iteration number. The parameters used for these simulations are listed in
table 5.2.

to abandon the square configuration or not.
The parameter used for running this simulation are listed in table 5.2, and

the obtained results are displayed in figure 5.2. Analyzing the results displayed
in the first plot of figure 5.1, we see that the bodies do indeed tend to drift away
from each other as expected. We also notice that the overall structure of the
configuration is maintained, however, the increase in the separation distance
is non-homogeneous. In detail, we see that the increase in the y-direction is
dominant, to the extent that the upper and lower constraints are active, while
the constraints on the sides are not. This consideration hints towards the fact
that, limiting our bodies in a rectangular constraint, we should achieve bet-
ter performances for rectangles that have the longer sides along the direction
perpendicular to the incoming wave. This will be later checked through an
appropriate test.

Taking into account the second graph displayed in figure 5.2, we notice that
there is once again a clear convergence of the interaction factor to values very
close to one. The value at which the algorithm converges is very close to the
starting one of the previous simulation, suggesting that, even assuming that
we are only capable of finding a local minimum of the cost function, under the
selected constraint, there is no significant configuration outperforming the ones
we found so far.

Circle

Now, we test what happens when we run the optimization algorithm selecting,
as initial condition, one where the bodies are positioned along a circle. This is
done for two different reasons. The first one, is that in many studies the circu-
lar configuration is selected as a candidate for a globally optimal configuration.
That is because its design implies having no dependence on the incident wave
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Figure 5.3: In the image on the left the initial positions are displayed (red full
circle), compared to the final optimal positions (green empty circle). In the
image on the right, the change in interaction factor q is shown as a function of
the iteration number. The parameters used for these simulations are listed in
table 5.3.

direction and a low variance power output. Given the qualities of this configu-
ration we want to check if, once optimized, it can retain its original properties,
increasing, on the other hand, the value of the produced power. The second
reason is to test if, selecting this configuration the bodies tend to find a local
optimum with an associated geometry resembling the original one, if the bodies
will drift towards the previously found optimal geometries, or if a new optimal
configuration will emerge.

The parameter used for running this simulation are listed in table 5.3, and
the obtained results are displayed in picture 5.3. Looking at the first image,
we see that the initial geometry is highly distorted, with most of the bodies
changing their location by a significant amount. We notice that the geometry
the circle configuration morphed into differs also from the rectangular one of the
previous simulations. Therefore, we state that a new local minimum is found.
Also, we comment on the fact that the body distribution tends to have a higher
density on the left side of the domain. This is probably connected to the fact
that the park effect, allows for a better interaction factor by making the bodies
in the front produce more energy than if they were isolated, penalizing at the
same time the bodies in the back.

Concerning the shape of the interaction factor graph, we see how the value
it converges to is very close to 1. This is a shared feature with the previous
simulations. An interesting aspect of this simulation is the fact that, despite the
initial interaction factor being much lower than 1, the optimization algorithm
makes it converge to a value very close to one of the previous simulations.
This hints towards the fact that whatever configuration is chosen, under this
constraint, the maximum achievable interaction factor is slightly below one.
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Figure 5.4: In the image on the left, the final positions of the bodies after
the optimization are displayed, the circles of the same colors correspond to
the same incident angle as follows: blue(β = { π

12 ,
5
12π}), cyan(β = {π

6 ,
π
3 }),

magenta(β = π
4 ). In the image on the right, the change in interaction factor q

is shown as a function of the iteration number for each different β value. The
parameters used in this simulation are listed in table 5.4.

Incident wave angle

Here, starting from the initial configuration, where the bodies are placed in a
3× 3 square geometry taking up all the available space, we perform a position
optimization ranging the value of the ambient wave incident angle. Performing
this analysis, we want to investigate to which amount the optimal positions differ
for different values of the incident angle. That is because, in most applications,
the bodies are not subject to mono-directional waves, and therefore it would be
pointless to point towards an optimal configuration for a given β, that provides
low performances for all other values of β.

The results obtained running this simulation are displayed in figure 5.4,
and the values employed for the different parameters are reported in table 5.4.
From the image showing the final positions of the bodies, we see that there
is no incident ambient wave angle for which the initial position is drastically
modified. This is a good result, indicating that the initial arrangement is close
to a local minimum for several values of the incident wave angle. We also notice
that the closer the incident angle is to β = π

4 , the greater the displacement of
the bodies.

Looking at the image displaying the behavior of the interaction factor as a
function of the iteration number, we see that some lines are overlapping. This is
due to the symmetric nature of the problem. Given that the square configuration
is two times symmetric, we get that an incident angle β = x should produce
the same results as with β = π

2 ± x. Our results are agreeing with the above-
mentioned principle, given that the plot corresponding to β = π

6 is completely
overlapping with the one associated with β = 5

12π, and the one associated to
β = π

12 with the one associated to β = 5
12π. From this image we also notice how

the interaction factor converges to higher values for the configurations associated
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Figure 5.5: In the image on the left the final positions of the bodies after the
optimization are displayed, and the circles of the same colors correspond to the
same initial configuration. In the image on the right, the change in interaction
factor q is shown as a function of the iteration number for each different AR
value. The parameters used in this simulation are listed in table 5.5.

to lower β, this is in agreement with results obtained in the previous sections.

5.1.2 Rectangle constraint

Here, we study how, by modifying the structure of the constraining geometry to
a rectangle, the optimal performances, and their associated geometries, obtained
through the optimization process, are modified. The changes to the optimization
algorithm, required to implement the new constraint, are quite simple and affect
only (4.33). There, the value s has to be replaced by the length of the side of the
rectangle in the x-direction when projecting the x-coordinates of our bodies, and
by the one in the y-direction when projecting the y-coordinates of our bodies.
Concerning the constraint, we choose to keep the area of the rectangle constant
and equal to the one of square of the previous simulation, this is done to avoid
favoring the cases where there would be more available space.

Similarly to the 3 × 3 square configuration, we perform our analysis both
with initial configurations where the bodies are using all the available space,
and with ones where the bodies are packed closer together, to see if in the
rectangular case the same considerations, developed for the square case, apply.

Big rectangles vs AR

Here, we study how performances and arrangements of arrays of wave energy
converters, subject to a rectangular geometrical constraint, are modified to op-
timize the positions of their bodies when the initial configuration of the bodies
consists in a 3 × 3 rectangle that takes up as much space as possible. The pa-
rameter that is ranged in this simulation is the AR of the rectangle, which is
defined as the ratio between the rectangle’s side lying on the x-axis and the one
lying on the y-axis.
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Figure 5.6: In the image on the left the final positions of the bodies after the
optimization are displayed, the circles of the same colors correspond to the same
initial configuration. In the image on the right, the change in interaction factor
q is shown as a function of the iteration number for each different AR value.
The parameters used in this simulation are listed in table 5.6.

The parameter used for running this simulation are listed in table 5.5, and
the obtained results are shown in picture 5.5. Looking at the results, we can see
how convergence is almost immediately reached for all the different configura-
tions, showing that, similarly to the scenario in which the bodies are placed in a
square of the maximum allowed size, the configurations in which the rectangles
take up as much space as possible are locally optimal solutions. A consideration,
that is not related to the optimization, but that is interesting regardless, can be
made concerning the value of the interaction factor for different aspect ratios.
This value can be seen to increase for values of AR that are smaller than 1.
This is in agreement with the results obtained in the simulation with the small
square in the square domain, which showing that the bodies to result on an
active constraint, after optimization, are the top and bottom ones, suggested,
as it is now confirmed, that configurations with aspect ratio lower than 1 tend
to perform better.

Small rectangles vs AR

Here, similarly to the analysis with the square constraint, we impose the initial
condition to be one where the bodies are packed very close to each other, in
a 3 × 3 square configuration. Once again, we want to check whether the rect-
angular geometry is preserved or modified after the optimization, and if there
are arrangements associated with performances greater than the one obtained
before, when the staring configuration was a rectangle taking up as much space
as allowed by constraints.

The results obtained from the simulations are displayed in image 5.6, and
the data used to obtain the shown results are present in table 5.6. Looking at
the image showing the final position of the bodies, we notice that, as expected,
they tend to to drift away from each other, and that similarly to the square
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Figure 5.7: In the image on the left the final positions of the bodies after
the optimization are displayed, the black line represents the boundaries of the
domain, the red circle represents the initial positions, and the empty green
ones, the final ones. In the image on the right, the change in interaction factor
q is shown as a function of the iteration number. The parameters used in this
simulation are listed in table 5.7.

scenario, they tend to preserve the initial rectangular geometry. What strikes
the eye, is the fact that the bodies in the middle column are displaced by a
larger amount than the ones in the first and last columns. We also notice that,
for configurations with low aspect ratios, the top and bottom constraints are
not active. Similarly, for configurations with a high aspect ratio, the constraints
on the sides are not active.

Looking at the plot showing the convergence of the interaction factor, we
highlight that clear convergence to values close to 1 is reached for all the config-
urations. Here, it is shown once again that some arrangements with AR lower
than 1, outperform the square configuration. As a side note, we mention that
the graph describing the behavior of the interaction factor for the configuration
with associated AR of 25

36 , doesn’t appear in the plot. That is because it is over-
written by the function describing the interaction factor of the configuration
with AR = 1, which has the exact same shape.

5.1.3 Bay constraint

Here, we analyze how the positions of the bodies composing an array of wave
energy converters, and its associated performances, are modified by the effect of
the position optimization algorithm, having the bodies constrained into half a
decagon. To implement this constraint, after having defined the vertices of the
half decagon, we have to compute the equations of the line passing through each
pair of consecutive vertices. Afterward, if moving in the direction opposite to
the gradient (4.29) leads to a point outside the semi-decagon, the projection of
the given point on the closest segment is computed, and its coordinates (xp, yp)
become the new coordinates of the given body in the following iteration.

This test is run to simulate the condition in which the bodies are placed in
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a natural bay. The importance of this simulation is therefore the fact that it
mimics natural conditions better than the previous ones.

The starting positions for the bodies will be a 3× 3 square, whose spacing,
together with all the other parameters used in this simulation, is shown in
table 5.7. The results obtained through the projected gradient optimization are
displayed in figure 5.7.

From the first image, we see that the bodies composing the array show the
usual behavior of getting further apart from each other. In addition, we see that
the square structure is preserved, having bodies on active constraint only in the
first and, partially, in the last column. A new feature, of this locally optimal
solution, is the fact that bodies in the middle column tend to stay closer to the
one of the first column rather than to the one belonging to the last one.

The interaction factor shows convergence to a value smaller than the one
obtained in the previous simulations, this is because in this analysis we confine
our bodies in a smaller domain.

5.2 Damping optimization

Here, we consider the results obtained by optimizing the damping coefficients
of bodies composing arrays of wave energy converters.

We first analyze the results obtained considering the optimization of an
isolated device. This is useful to determine the value of damping that is set as
the initial condition in the following tests. Next, we look into the optimization
of the damping coefficients for a 3×3 square array, where the area of the square
is chosen equal to 400 m2, similarly to the previous section. Here, tests are run
for different values of the incident wave angle. This is done to test how the
properties of the system change when breaking its symmetry.

5.2.1 Isolated body

Considering the optimization of the damping coefficient of an isolated body,
we run two different tests. In the first one, the chosen value of the starting
damping coefficient is equal to 50000 Ns

m . In the second one, it is equal to

25000 Ns
m . This is done to check if starting from different initial conditions,

convergence is reached at the same value of damping, or if there are multiple
optimal damping coefficients.

λ0=50000

We start with the isolated body configuration, characterized by the initial damp-
ing coefficient equal to 50000 Ns

m . This choice of the starting value is made
because this is the value of the damping coefficients we used in all previous
simulations. All the other parameters related to this simulation are displayed
in table 5.8. The obtained results are shown in image 5.8.

Looking at the first graph we see that the optimal damping coefficient for an
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Figure 5.8: In the image on the left, the damping coefficient at each iteration
of the optimization process is shown. In the image on the right, we display the
power extracted by the wave energy converter at each iteration. The parameters
used in this simulation are listed in table 5.8.

Figure 5.9: In the image on the left, the damping coefficient at each iteration
of the optimization process is shown. In the image on the right, we display the
power extracted by the wave energy converter at each iteration. The parameters
used in this simulation are listed in table 5.8, exception made for λ0, which is
set to 25000 Ns

m .
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Figure 5.10: Reference for the
index associated with each body.

isolated device is around the value of 31000 Ns
m . We also see that convergence is

reached and, as it was the case for the positions optimization the discontinuity
in the first-order derivative is a consequence of the line search process. In the
second graph, the power at each iteration is shown. There, we notice clear
convergence of the extracted power to a value close to 5800W . In addition, we
see that a substantial increase in performance is achieved, increasing the amount
of extracted power by almost 12%. This shows the importance of the choice of
a correct damping coefficient when designing a wave energy converter.

λ0=25000

Now, we consider the optimization of the same isolated body, but using a differ-
ent value for the starting damping coefficient, which is set to 25000 Ns

m . Here,
the starting configuration is chosen to verify that the same value for the opti-
mal damping is obtained, when starting the simulation with a different value
of damping. More in detail we want to check that convergence is reached by
approaching the solution from both sides.

The parameters used for this simulation are the same ones of table 5.8,
with exception made for λ0. The obtained results are shown in image 5.9.
These results are consistent with the one of the previous simulation, showcasing
convergence to the same value of extracted power, and damping coefficient.

5.2.2 3 × 3 square

Here, we analyze the results obtained by optimizing the damping coefficient of
each individual body of a 3× 3 square configuration of wave energy converters.
Since the optimal damping coefficients can differ from one body to another, we
use image 5.10 as a reference for the index associated with each body.

We start by simulating the case in which the ambient incident wave is per-
pendicular to the first line of bodies. Next, we break the symmetry of the
problem, analyzing the situation in which the ambient incident wave angle has
a value of π

6 . This is done to see if some results, that are later detailed, which
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Figure 5.11: In the image on the left, the damping coefficients of each body,
composing the 3 × 3 square array at study, are shown at each iteration of the
optimization process. In the image on the right, we display the power extracted
by the array at each iteration. The parameters used in this simulation are listed
in table 5.9.

appear to be consequences of the symmetry of the problem, disappear when
making the problem asymmetric.

We highlight that, in the simulations of this section, the starting value of
the damping coefficients is set to be λ0 = 31000 Ns

m . That is because we found
this value to be the optimal damping for an isolated device, and therefore, it is
our best candidate for the optimal damping also in the case of arrays composed
of multiple bodies. Another consideration is made concerning the position in
which the bodies are fixed. To obtain results that are comparable with the
previously performed optimizations of the positions, we choose to set bodies of
the 3 × 3 square configuration into a square of area equal to 400 m2, which is
the same one as the one we considered multiple times already in section 5.1.

β=0

Here, we show the results obtained by optimizing the damping coefficients of
bodies placed in 3× 3 square configuration, when they are under the influence
of an ambient incident wave with a null angle. The data used for this simulation
are listed in table 5.9, and the results obtained are displayed in figure 5.11.

From the second graph, we see that convergence is reached, and that the
optimization of the damping coefficients leads to a significant increase in perfor-
mance. This is very different from the optimization of the position, associated
with the same initial configuration, that was previously carried out. This simu-
lation hints towards the fact that the optimization of the damping coefficients,
is a key element in finding the globally optimal solution to the problem of de-
signing an array of wave energy converters.

Many considerations can also be made concerning the first graph. First of
all, we can see how choosing λ0 = 31000 Ns

m was a good guess, given that some
of the damping coefficients converged to a lower value than the starting one, and
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some other to a higher one. Next, we can see how the damping coefficients of the
couples of bodies (1, 3),(4, 6), and (7, 9) are exactly identical at each iteration
of the optimization process. To test if this property is a consequence of the
symmetry of the system, we test, in the following simulation, if these damping
coefficients keep being equal to each other when we change the value of the
ambient incident wave angle. Another consideration can be made concerning
the values to which the damping coefficients converge to. Looking at the values
to which the damping coefficients converge, we see that the bodies located in the
column that interact first with the ambient incident wave are the ones whose
damping coefficient is increased the most. Meanwhile, the further away we
go from the first line, the smaller the value at which the damping coefficients
converge. We also notice another characteristic of this system, which is the
fact that all the bodies belonging to the same column showcase a similar value
of damping coefficients, with the body in the middle being always associated
with the lowest value of the three. Most of these properties are probably the
consequence of underlying mathematical properties of the problem at study,
which we are currently unaware of, but that, if discovered, could lead to further
development in the optimization of parks of energy converters.

β=π
6

Now, we perform an optimization of the damping coefficients associated with
the bodies composing a 3× 3 square array of wave energy converter, when the
ambient incident wave angle is equal to π

6 . As we stated before, this test is
performed to check which of the previously observed properties of the system
are a consequence of its symmetry with respect to the direction of the ambient
incident wave.

The parameters used for running this simulation are the same as the previous
test, which are listed in table 5.9, exception made for the value of β, which is
set to π

6 . The obtained results are shown in figure 5.12.
From the second plot we can see that we have once again convergence of

the extracted power, and that the value we converge to is very close to the one
obtained setting β = 0.

Meanwhile, analyzing the first diagram, we see that the previously overlap-
ping curves, now display different values of damping at each iteration, showing
how the previously detailed behavior, consisting in the first and last body of
each column having the same damping coefficient, was a consequence of the sym-
metry of the problem. Moreover, the previously clear grouping of the damping
coefficients based on which was the column that they are associated with, now
disappeared. At the same time, the tendency of bodies interacting earlier with
the ambient incident wave to have larger damping coefficients, and similarly of
bodies interacting later to have lower ones, is preserved.
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Figure 5.12: In the image on the left, the damping coefficients of each body,
composing the 3 × 3 square array at study, are shown at each iteration of the
optimization process. In the image on the right, we display the power extracted
by the array at each iteration. The parameters used in this simulation are listed
in table 5.9, apart from the value of β, which is set to π

6 .

5.3 Combined optimization

In this section, we discuss the results obtained through the combined optimiza-
tion of the damping coefficients and of the positions of the bodies composing
an array of wave energy converters. The optimization algorithm, that we nu-
merically implemented to obtain the results analyzed in this section, is the one
described in section 4.3.

Here, three different numerical simulations are performed. All the simula-
tions consider identical bodies placed in a 3 × 3 square configuration, limited
inside a square domain of area equal to 400m2. This is done to obtain results
comparable with the ones displayed in previous sections. In the first test, we
define the starting positions as the ones that allows the bodies to fill up as
much space as they are allowed to. This configuration resulted close to optimal,
when performing an optimization affecting only the values of the positions. For
the damping coefficients, we choose values close to the one for which we had
optimal performances optimizing only the damping. These choices of initial
conditions are made to check if the combined optimization modifies the close-
to-optimal configurations found performing a single parameter optimization. In
the two following tests, the initial conditions are changed, deviating from the
close-to-optimal conditions of the previous simulation. This is done to allow the
optimization algorithm to actually change the value of the selected parameters.
In this way, we want the cross-influence, that the positions and the damping
coefficients exert on each other, through the gradient of J , to allow for the for-
mation of more interesting optimal solutions. Therefore, in the second test, the
value of the initial damping coefficient is reduced to 22500 Ns

m , and the initial
positions are selected to place the bodies in a more compact square centered in-
side the domain. Concerning the third and last simulation, the initial positions
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Figure 5.13: In the image on the left the initial and final positions of the bodies.
In red we have the initial positions, and in green the final optimal ones. In the
image on the right, the damping coefficients of each body, composing the 3× 3
square array at study, are shown at each iteration of the optimization process.
The parameters used in this simulation are listed in table 5.10.

Figure 5.14: In this image we display
the power extracted by the array at
each iteration of the combined opti-
mization of the positions and of the
damping coefficients. The parame-
ters used in this simulation are listed
in table 5.10.

are selected to be identical to the ones in the second simulation, meanwhile, the
bodies are over-damped, with damping coefficients being equal to 37500 Ns

m .

5.3.1 Big square, λ0 optimal

Here, we show the results concerning the combined optimization of the positions
and of the damping coefficients of a 3×3 square array of wave energy converters,
whose positions, as previously mentioned, allow for the bodies to fill up as much
space as they have available. The parameters used to run these tests are listed
in table 5.10, and the results are shown in images 5.13 and 5.14.

Looking at figure 5.14, we see that the extracted power converges as it should.
The increase in produced power is marginal and most likely mainly due to the
optimization of the damping coefficients. Analyzing the results in figure 5.10, we
see that both the positions and the damping coefficients of the bodies changed
by a very small amount. This suggests that the previously obtained optimal
positions solution is very weakly affected by a change in damping coefficients.
In this test, we do not see how, optimizing two parameters at the time, the cross-
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Figure 5.15: In the image on the left the initial and final positions of the bodies.
In red we have the initial positions, and in green the final optimal ones. In the
image on the right, the damping coefficients of each body, composing the 3× 3
square array at study, are shown at each iteration of the optimization process.
The parameters used in this simulation are listed in table 5.11.

Figure 5.16: In this image we display
the power extracted by the array at
each iteration of the combined opti-
mization of the positions and of the
damping coefficients. The parameters
used in this simulation are listed in ta-
ble 5.11.

influence that they exert on each other affects the optimal solution. It almost
looks like the optimization of the two parameters happens independently. To
verify that this is not the case we perform the following test.

5.3.2 Small square, λ0=22500

Here, we show the results obtained through the combined optimization of po-
sitions and damping coefficients of the bodies composing a 3 × 3 square array
of wave energy converters. The initial positions and damping coefficients of the
bodies are chosen in such a way to allow the cross-interaction between these two
parameters to emerge. The detailed values of the parameters adopted in this
simulation are listed in table 5.11, and the obtained results are shown in figures
5.15 and 5.16.

Looking at figure 5.16, we see the required convergence of the produced
power. Starting from a sub-optimal configuration we have that the initial ex-
tracted power is significantly lower than the final optimal one. We also see that
the value it converges to is very close to the one resulting from the previous
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Figure 5.17: In the image on the left the initial and final positions of the bodies.
In red we have the initial positions, and in green the final optimal ones. In the
image on the right, the damping coefficients of each body, composing the 3× 3
square array at study, are shown at each iteration of the optimization process.
The parameters used in this simulation are listed in table 5.12.

Figure 5.18: In this image we display
the power extracted by the array at
each iteration of the combined opti-
mization of the positions and of the
damping coefficients. The parame-
ters used in this simulation are listed
in table 5.12.

simulation, hinting at the fact that, under the given constraints, it is the max-
imum obtainable value of extracted power. From figure 5.15, we see the final
value of the positions and of the damping coefficients of the bodies. Starting on
purpose from a configuration associated with sub-optimal performances, we see
that both parameters are substantially modified by the optimization algorithm.
More in detail, we see that both the positions and the damping coefficients
tend to value similar to the one obtained when they were optimized individu-
ally. Once again the cross-influence these two parameters exert on each other
doesn’t play a significant role in the optimization process. What might be re-
lated to their cross-influence, is the shape of the second graph in figure 5.15, and
the number of iterations needed to reach convergence. Further testing would be
necessary to prove these aspects.

5.3.3 Small square, λ0=37500

Finally, the last configuration, consisting in a 3×3 square array with the bodies
packed together at a distance of 5 m from one another, is studied. Here, the
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initial damping coefficient is chosen to overdamp the system, to achieve a con-
figuration similar to the previous test, where, having suboptimal parameters,
we allowed the two optimization processes to affect each other. The parameters
used in this simulation are listed in table 5.12, and the obtained results are
displayed in figures 5.17 and 5.18.

Both the graphs describing the final positions and the extracted power show
no significant difference from the one obtained in the previous test. Looking at
the plot describing how the various damping coefficients change with the itera-
tion number, we see that, also in this case, all the damping coefficients converge
to values close to the one obtained by optimizing the damping coefficients when
the positions were kept fixed. Therefore, given that all the tests performed on
this configuration, no matter the initial conditions, provided the same final con-
figuration, we conclude that in terms of damping coefficients and positions, this
is the optimal solution.

5.4 Results overview

Here, a comparison between the results obtained with the different optimization
algorithms is performed. The data in this section are shown both in terms of
total extracted power and of the interaction factor of the configuration. Show-
ing the total extracted power makes sense given that this is the quantity that
the optimization algorithms maximize. The interaction factors are displayed
to analyze by which amount the performances of the array differ from the one
associated to the scenario where the bodies are isolated. An additional con-
sideration is to be made regarding the interaction factor shown in this section.
When the optimization of the damping coefficients is performed, we choose to
compute the interaction factor (2.139) keeping its denominator constant in each
iteration, and equal to the power extracted by a body with optimal damping
multiplied by the number of bodies in the array. This is done to answer the
question of whether it is possible or not to obtain more power than the sum of
the powers extracted by individually optimized isolated bodies. Therefore, we
do not update the value of the denominator at each iteration to avoid showing
misleading information. That is because, by updating the denominator, the
interaction factor would necessarily become greater than the one obtained by
keeping it constant to the previously defined value. After the comparison of the
results, some general considerations regarding the design of parks of wave en-
ergy converters are drawn. Since our optimizations deal only with the positions
and the damping coefficients of the bodies, these final considerations will also
only reflect on these two parameters.

5.4.1 Result comparison

Here, the results obtained using different optimization algorithms are compared.
We only compare the results concerning the 3 × 3 square configuration, given
that this is the one for which most tests were performed. We start by looking at
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the configuration where the bodies are positioned taking up as much space as
it is allowed by the selected admissible set. Subsequently, we analyze the case
of the smaller square.

3x3 Big square

For this specific configuration, the optimization was run concerning the positions
and the damping coefficients, both individually and in a combined optimization
process. The results obtained by these optimization processes are shown in
figures 5.19 and 5.20 in terms of total extracted power, and in figures 5.21 and
5.22, in terms of interaction factor. The data used for these optimizations are
displayed in table 5.1, 5.9, and 5.10.

Looking at the graphs showing the total extracted power, we see how the
different simulations, despite having the same starting geometry are associated
with different values of initial total power. This is due to the fact that the three
tests are executed using different initial damping coefficients. From a quan-
titative point of view, we can see how the combined optimization is the one
leading to the largest final total power. This was to be expected, given that the
combined optimization is the most complete optimization algorithm we devel-
oped. Analyzing the graphs displaying the interaction factors, we see that the
one associated with the position optimization is actually higher than the one
associated with the damping or combined optimization. This is only due to the
previously mentioned choice of fixing the interaction factor denominator as the
sum of the powers extracted by individually optimized isolated bodies, when
evaluating optimization processes that affect damping coefficients. Comparing
the interaction factor obtained through the damping optimization and the com-
bined one, we see that, as we expected, the combined optimization is the one
providing better performance. It is to be noted that, in no circumstance, the
obtained interaction factor is greater than unity. This shows that, constraining
the bodies in the selected domain, it is not possible to outperform isolated bod-
ies. Nonetheless, the reduction in performances is small compared to the case
of isolated bodies, and being these configuration space efficient, they are good
candidates for the creation of parks of wave energy converters.

3x3 Small square

Here, we compare how the total power extracted by a 3×3 square array of wave
energy converter changes at each iteration, according to the optimization process
it is subject to. We perform the comparison between the results we obtained
through the optimization of the position and the combined optimization. Here
we do not provide a comparison with the sole optimization of the damping
coefficient, since this is not a test we performed. The obtained results are
displayed in figure 5.23 in terms of total power and in figure ?? in terms of
interaction factor. The data used to obtain them are shown in tables 5.2 and
5.11

Once again, the total power at the first iteration is higher in the second test
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Figure 5.19: In this image we display the power extracted by the array at each
iteration of an optimization process. On the left, we have the results concerning
the optimization of the positions, whose data are in table 5.1. On the right, we
have the results concerning the optimization of the damping coefficients, whose
data are in table 5.9.

Figure 5.20: In this image we display
the power extracted by the array at
each iteration of the combined opti-
mization of the positions and of the
damping coefficients. The parame-
ters used in this simulation are listed
in table 5.10.
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Figure 5.21: In this image we display the interaction factor associated to the
array at each iteration of an optimization process. On the left, we have the
results concerning the optimization of the positions, whose data are in table 5.1.
On the right, we have the results concerning the optimization of the damping
coefficients, whose data are in table 5.9.

Figure 5.22: In this image we dis-
play the interaction factor associ-
ated to the array at each iteration
of the combined optimization of the
positions and of the damping coeffi-
cients. The parameters used in this
simulation are listed in table 5.10.
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Figure 5.23: In this image, we display the power extracted by an array at each
iteration of an optimization process. On the left, we have the results concerning
the optimization of the positions, whose data are in table 5.2. On the right we
have the results concerning the optimization of the damping coefficients, whose
data are listed in table 5.11.

Figure 5.24: In this image, we display the interaction factor associated to the
array at each iteration of an optimization process. On the left, we have the
results concerning the optimization of the positions, whose data are in table 5.2.
On the right we have the results concerning the optimization of the damping
coefficients, whose data are listed in table 5.11.
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because of the starting values of the damping coefficients. We also see that for
this initial configuration the optimizations of the positions allow for a significant
increase in total extracted power. That is because the initial configuration is
far from an optimal solution, differently from the previous case. Nonetheless,
the best-performing optimization algorithm is once again the one allowing for
a combined optimization of positions and damping coefficients. Looking at the
pictures showing the interaction factors at each iteration, the same considera-
tions, derived from the case where the starting positions of the bodies allowed
them to fill as much space as possible, are applicable here.

5.4.2 Design considerations

Here, we outline some useful guidelines for the process of designing a park of
wave energy converters. The consideration that we are about to state are the
result of the several tests and analyses performed throughout this thesis, and
only concern the positions where the bodies should be located and the damping
coefficients that should be associated with them.

Concerning the positions, we have that, in order to obtain an optimal config-
uration a trade-off between the amount of surface allowed and of power produced
should be considered. Therefore, positioning our bodies in the selected area for
installing the devices, to obtain maximum performance one should place them
as far as possible from each other. This is done to limit the negative effect that
is caused by the park effect on arrangements of bodies closely packed together.

Considering the values of the damping coefficients, we have that optimal
performances are obtained by setting them to different values, according to the
considered body. More in detail, we have that the bodies interacting earlier with
the incident ambient wave should be associated with higher values of damping
coefficients. Meanwhile, the further down the direction of the incident ambient
wave we move, the lower the value of the damping coefficient we should select.
The exact value to which these coefficients should be set to is difficult to estimate
and therefore running an optimization algorithm is advised.

Following these simple instruction prevents ending up in situations where
the park effect affects the performances of the arrays too negatively. To be
able to provide a more complete list of guidelines for the design of parks of
wave energy converters, more studies are necessary, where the optimization is
performed with respect to more parameters.
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Parameter Value Parameter Value Parameter Value

a 1m d− h 0.5m λ 50000Ns
m

δ 4000N
m Nbodies 9 spacing 10m

d 10m ω 1 rad
s H 1m

β 0rad Nn 3 Nq 8

ρ 1000 kg
m3 γ 10−3 m 0.5

tol 0.00001 t0 0.0001 maxit 4000

Table 5.1: Parameters used for the computation of the optimal positions for the
bodies in a 3 × 3 square array configuration, where the bodies are constrained
into a square.

Parameter Value Parameter Value Parameter Value

a 1m d− h 0.5m λ 50000Ns
m

δ 4000N
m Nbodies 9 spacing 5m

d 10m ω 1 rad
s H 1m

β 0rad Nn 3 Nq 8

ρ 1000 kg
m3 γ 10−2 m 0.5

tol 0.00001 t0 0.001 maxit 4000

Table 5.2: Parameters used for the computation of the optimal positions for the
bodies in a 3 × 3 square array configuration, where the bodies are constrained
into a square, which area is equal to 400m2.
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Parameter Value Parameter Value Parameter Value

a 1m d− h 0.5m λ 50000Ns
m

δ 4000N
m Nbodies 9 R0 9m

d 10m ω 1 rad
s H 1m

β 0rad Nn 3 Nq 8

ρ 1000 kg
m3 γ 10−2 m 0.5

tol 0.00001 t0 0.08 maxit 4000

Table 5.3: Parameters used for the computation of the optimal positions for the
bodies in a circular array configuration, where the bodies are constrained into
a square of side 20m.

Parameter Value Parameter Value Parameter Value

a 1m d− h 0.5m λ 50000Ns
m

δ 4000N
m Nbodies 9 β [ π12 ,

5
12π]

d 10m ω 1 rad
s H 1m

spacing 10m Nn 3 Nq 8

ρ 1000 kg
m3 γ 10−2 m 0.5

tol 10−3 t0 0.0004 maxit 4000

Table 5.4: Parameters used for the computation of the optimal positions for the
bodies in a square configuration, ranging β.

Parameter Value Parameter Value Parameter Value

a 1m d− h 0.5m λ 50000Ns
m

δ 4000N
m Nbodies 9 AR [ 19 , 1]

d 10m ω 1 rad
s H 1m

β 0rad Nn 3 Nq 8

ρ 1000 kg
m3 γ 10−2 m 0.5

tol 0.00001 t0 0.01 maxit 4000

Table 5.5: Parameters used for the computation of the optimal positions for
the bodies in a rectangular configuration, ranging AR, where the bodies are
constrained into a rectangle of fixed area equal to 400m2.
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Parameter Value Parameter Value Parameter Value

a 1m d− h 0.5m λ 50000Ns
m

δ 4000N
m Nbodies 9 AR [ 19 , 1]

d 10m ω 1 rad
s H 1m

β 0rad Nn 3 Nq 8

ρ 1000 kg
m3 γ 10−1 m 0.5

tol 0.00001 t0 0.0008 maxit 4000

Table 5.6: Parameters used for the computation of the optimal positions for the
bodies starting in a 3 × 3 square configuration with initial spacing of 3.33m,
where the bodies are constrained into rectangles of variable AR, with fixed area
of 400m2.

Parameter Value Parameter Value Parameter Value

a 1m d− h 0.5m λ 50000Ns
m

δ 4000N
m Nbodies 9 apothem 21

5

d 10m ω 1 rad
s H 1m

β 0rad Nn 3 Nq 8

ρ 1000 kg
m3 γ 10−1 m 0.5

tol 0.00001 t0 0.004 maxit 4000

Table 5.7: Parameters used for the computation of the optimal positions for
the bodies starting in a 3× 3 square configuration with initial spacing of 21

5 m,
where the bodies are constrained into half of a regular decagon.

Parameter Value Parameter Value Parameter Value

a 1m d− h 0.5m λ0 50000Ns
m

δ 4000N
m Nq 8 Nn 3m

d 10m ω 1 rad
s H 1m

ρ 1000 kg
m3 γ 100 m 0.5

tol 0.00001 t0 1024 maxit 4000

Table 5.8: Parameters used for the computation of the optimal damping coeffi-
cient for an isolated body.
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Parameter Value Parameter Value Parameter Value

a 1m d− h 0.5m λ0 31000Ns
m

δ 4000N
m Nq 8 Nn 3m

Nbodies 9 β 0 spacing 10m

d 10m ω 1 rad
s H 1m

ρ 1000 kg
m3 γ 10 ∗ ∗(2) m 0.5

tol 0.00001 t0 32000 maxit 4000

Table 5.9: Parameters used for the computation of the optimal damping coeffi-
cients of bodies displaced in a 3× 3 square configuration.

Parameter Value Parameter Value Parameter Value

a 1m d− h 0.5m λ0 31000Ns
m

δ 4000N
m Nq 8 Nn 3m

Nbodies 9 β 0 spacing 10m

d 10m ω 1 rad
s H 1m

ρ 1000 kg
m3 maxit 4000 m 0.5

tol1 0.00001 t1(0) 32000 γ1 102

tol2 3 t2(0) 3 γ2 3

Table 5.10: Parameters used for the computation of the optimal damping coef-
ficients and positions of bodies displaced in a 3× 3 square configuration.
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Parameter Value Parameter Value Parameter Value

a 1m d− h 0.5m λ0 22500Ns
m

δ 4000N
m Nq 8 Nn 3m

Nbodies 9 β 0 spacing 5m

d 10m ω 1 rad
s H 1m

ρ 1000 kg
m3 maxit 4000 m 0.5

tol1 0.000001 t1(0) 32000 γ1 10−0.8

tol2 0.001 t2(0) 0.08 γ2 102

Table 5.11: Parameters used for the computation of the optimal damping coef-
ficients and positions of bodies displaced in a 3× 3 square configuration.

Parameter Value Parameter Value Parameter Value

a 1m d− h 0.5m λ0 37500Ns
m

δ 4000N
m Nq 8 Nn 3m

Nbodies 9 β 0 spacing 5m

d 10m ω 1 rad
s H 1m

ρ 1000 kg
m3 maxit 4000 m 0.5

tol1 0.000001 t1(0) 32000 γ1 10−0.8

tol2 0.001 t2(0) 0.08 γ2 102

Table 5.12: Parameters used for the computation of the optimal damping coef-
ficients and positions of bodies displaced in a 3× 3 square configuration.



Chapter 6

Conclusions

This chapter concludes the study by summarising the research process, the key
research findings in relation to the research aims and questions, and discussing
the value and contribution thereof. It also reviews the limitations of the study
and proposes opportunities for future research.

The main objective that we set for this thesis was to develop a model capable
of determining optimal configurations of arrays of wave energy converters. To
achieve this purpose, we started by analyzing the mathematical model describing
the interaction between monochromatic waves and arrays of cylindrical floating
bodies. This part of the analysis was crucial, since, in order to later develop
the model for an array optimization algorithm, having a clear understanding of
the way this interaction happens is a pivotal factor. Another reason asserting
the importance of this step, is that this is the stage where the most relevant
assumptions are made. Therefore, given that most of the limitations associated
with our model derive from this step, this initial study is essential to be able to
define in which scenarios our model will be applicable.

After having analyzed this model, and having derived the equation of motion,
we realized that an optimization of the produced power was possible through
a projected gradient method. Therefore we developed a mathematical model
to optimize the positions of the bodies, and one to optimize the damping co-
efficients of the bodies. Lastly, a model for the combined optimization of the
positions and of damping coefficients was obtained.

The developed models were therefore numerically implemented and verified,
through a convergence analysis of the gradient. Subsequently, these models were
run to obtain results concerning significant arrays layouts.

The creation of these numerical implementations is already a good result
achieved by this research. Now, being the models openly available, they could
be used and further improved by the scientific community. A key element that
has to be improved, in case the research of this topic will progress in the direc-
tion we outlined here, is the time efficiency of the numerical implementations.
We already reached some degree of efficiency by improving the numerical im-
plementation, with respect to the first versions that we developed. Nonetheless,

123
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better-performing computational strategies can be found.
Once the optimization algorithms were implemented, we run them with dif-

ferent initial configurations, and constraining our solution into differently sized
domains.

We started considering the optimization of the positions of the bodies.
There, the first test we performed was one where the nine bodies, composting

the array to be optimized, were constrained into a square of side equal to 20 m.
We started testing them in a 3 × 3 square configuration that filled as much
space as possible, that is because through previous tests we figured that this
is a configuration with interaction factor q close to unity. What we found
was that the starting configuration was already close to a local optimum, and
therefore the positions of the bodies barely changed. Also, the improvement of
the interaction factor was marginal.

Subsequently, to simulate a scenario in which the bodies would change their
positions by a significant amount, we placed them in the same bounded domain
as in the previous test, but with a different starting configuration. This time,
they were still in a 3 × 3 square array, but packed closer together. Clearly,
this initial configuration was associated to a much lower interaction factor, and
the bodies tended to drift away from each other as expected. Here, a first
interesting result was found, that is that the bodies did not simply get as far
from each other as possible, trying to get closer to the configuration where the
interaction is equal to one by definition. They instead drifted away from each
other non-homogeneously, favoring displacements in the direction perpendicular
to the incoming ambient wave. From here, we had an idea for the development
of a subsequent test that is later described. Continuing with the same square
constraint, we performed another two tests. The first one consisted in testing
the circular geometry, this is done because the circular geometry has many
benefits, such as being associated with low variance power output, and having
no dependence on incident ambient wave direction. What we hoped to achieve
here, was to discover a configuration that preserved the positive aspects of the
circular configuration, while at the same time going beyond the limitation of the
low total produced power. The results didn’t match our expectations, given that
the performances were indeed optimized, to a level similar to the one associated
with the previously studied configurations, but the newly obtained arrangement
was a complete distortion of the original circular geometry, and therefore did
not carry all the benefits associated to the latter. The last test, performed
under the square constraint, is one where the bodies were placed in the same
way as in the first test, but the incident wave angle was ranged instead of being
kept constant. The obtained results, highlighted the symmetric nature of this
configuration and showed that the closer the angle was to π

4 , the lowest the value
at which the interaction factor converged. At the same time, the greatest overall
displacement that the bodies were subject to, was found in correspondence of
angles close to π

4 . The most important result obtained from this test is, despite
the bodies being displaced of different amounts based on the value of the incident
wave, the fact that this displacement was always very small, hinting towards
the fact that the square configuration, in which the bodies takes up as much
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space as possible, is close to an optimal solution independently of the value of
the incident wave angle.

Moving on from the square constraint, we adopted a rectangular constraint.
Here, the total area of the rectangles was kept equal to the one of the squares in
the previous tests. That is to avoid finding favorable solutions only due to the
fact that more space was allowed in this scenario. We performed two tests. Both
of them were run for different values of the aspect ratio of the rectangle. In the
first one, the bodies were positioned in such a way as to cover as much space as
possible. Starting from these initial conditions, the positions of the bodies got
modified only slightly, and we got a confirmation that some rectangles having
the side perpendicular to the ambient incident wave longer than the other, led to
greater performances, compared to the square configuration. The second test,
consisted in running the simulation but under different initial positions. We
chose to pack the bodies in smaller rectangles positioned at the center of the
allowed domain. This was done for the same reason related to the analogous
test with the square configuration. We found that, in this case, the bodies in
the middle column tended to move, in the vertical direction, more than the ones
in the first and last column. The obtained performances were not substantially
different from the previous test.

Lastly, we considered the body constrained into a semi-decagon. This was
done to simulate the more engineering-wise interesting scenario, where the bod-
ies are located in a natural bay. This configuration is of great interest, because
it simulates a possibly real application of wave energy converters. The results
showed lower performances than in the previous simulations, but this was to
be expected given that the area we constrained the bodies inside was smaller.
We found some bodies to be on the active constraint, and moreover, the middle
column to stay closer to the first one rather than to the last one.

After having optimized the positions, we moved on with simulating the op-
timization of the damping coefficients. We started optimizing the damping
coefficient of a single device, starting from an initial configuration associated
with a damping coefficient of 50000 Ns

m , since this is the value we used in the
previous tests. We obtained clear convergence of the damping coefficients to a
value close to 31000 Ns

m , and a significant improvement in the extracted power.
Subsequently, we repeated the same test with an underdamped system, and the
damping coefficient converged again to the same value. Moving on, we optimized
the damping coefficients of a 3×3 square array of wave energy converters. Once
again, the area of the square was set to be 400 m2. Here, the initial damping
coefficient was set to be equal to 31000 Ns

m , being the value associated with op-
timal performances of an isolated body. We obtained that the produced power
increased significantly, and that all the studied quantities reached convergence.
Some of the damping coefficients increased in value with respect to the initial
one, and some others got reduced. A trend was found, consisting in the bodies
interacting first with the incident wave having the greatest increase in interac-
tion factor. We also notices how the symmetry of the system played a significant
role in the results, having the top and bottom body of each column the same
value of damping coefficient at each iteration. The following test consisted in
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breaking the symmetry of the system, changing the value of the incident am-
bient wave angle. There, we observed that all the bodies damping coefficients
converged to different values.

As the last set of tests, we covered the combined optimization of the bod-
ies’ positions and damping coefficients. We always constrained our body into a
square of area equal to (400 m2). In the first test, we started from a 3×3 square
array configuration, with the bodies taking as much space as possible (400 m2),
combined with values close to the optimal ones we previously computed for the
damping coefficients. The results showed a little improvement in performance,
and a very marginal change in positions and dampings. Therefore, in the fol-
lowing test, to check if the cross-influence that the positions and the damping
coefficients exert on each other would lead us to different final configurations,
we considered an overdamped system, with the bodies packed close together in
a small square placed at the center of the domain. The results led to a config-
uration similar, both in terms of positions and damping coefficients, to the one
of the previous tests. Also repeating the test with an underdamped system, we
obtained the same results.

Therefore, we were able to show that our numerical implementation is indeed
able to optimize positions and damping coefficients of an array composed of
multiple bodies. And, given that no matter the initial condition we always
obtained the same final configuration, we obtained what is most likely, in terms
of positions and damping coefficients of the bodies, the optimal configuration of
our problem.

Through our analysis, we obtained many interesting results, but what mat-
ters the most is that we set the foundation for future studies on this topic.
Specifically, further progress could be done modeling the optimization algo-
rithms of other quantities of the body, such as the stiffness coefficients and its
geometrical properties. Only once the cost function will be optimized with re-
spect to all the quantities it depends on, one will be able to state that he found
the truly optimal solution to this problem. The formulation of this problem
could be made even more complicated, considering the combined optimization
of power produced and of the variance of the extracted power. To make an even
more complete analysis, also nonlinear effects should be taken into account, as
well as other factors such as the length of the cables connecting the bodies to
the electrical grid.

Given the current state of things, our research allowed for a small step in
the direction of making wave energy converters a competitive power source.
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