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Abstract

The lack of microprocessor resources is currently preventing GNSS receivers targeted to

space applications from performing high-level tasks such as Precise Orbit Determination

post-processing on-board, thus limiting the achievable accuracy in real-time to about 1 m

Position, Velocity, and Time. Whereas this is sufficient for most missions, future applica-

tions will require better precision. New receivers also have to fulfill the needs of increased

PRN code length of the modernized GNSS signals and more satellites in line-of-sight due

to upcoming GNSS constellations like Galileo. Current state-of-the-art receivers, such as

the AGGA-4, are overloaded by the processing of the channels as part of code and car-

rier loops, in order to keep the incoming signal locked. In this thesis, I present a GNSS

sensor processing architecture for the novel DAHLIA, a very high-performance micropro-

cessor System-on-Chip with four Arm Cortex-R52 cores and an embedded FPGA, as a

feasibility study of using this system for performing GNSS sensor processing. I exploit the

Cortex-R52 Low-latency Peripheral Port for interfacing the GNSS hardware signal pro-

cessing module as a way of isolating the high-frequency channel processing task from the

main system bus, thus not affecting nor being affected by the shareability implications of

the main interconnect. I propose a memory layout to allow run-time critical software to

be placed on fast memories, the Cortex-R52 Tight Coupled Memories, in order to increase

algorithm determinism and performance. An implementation on an FPGA-based proto-

type is performed and the results extended to the ASIC point out to the NG-Ultra being

able to track 72 channels using less than 10% of CPU processing power, leaving room for

higher-level tasks such as Navigation and Precise Orbit Determination to be handled by a

single CPU core.

Keywords: GNSS Receiver, Space SoC, Arm Cortex-R52, DAHLIA, Sensor Processing.





Sommario

La scarsità di risorse computazionali è attualmente un fattore limitante nei ricevitori GNSS

destinati ad applicazioni spaziali, specie per attività quali il post-processing e il Precise

Orbit Determination direttamente a bordo dello sistema, limitando così l’accuratezza rag-

giungibile (Posizione, Velocità e Tempo) in tempo reale a circa 1 m. Nonostante questo

sia sufficiente per la maggior parte delle missioni, le applicazioni future richiederanno più

precisione. I nuovi ricevitori devono anche soddisfare le esigenze dei PRN più lunghi dei

segnali GNSS modernizzati e supportare più satelliti in line-of-sight resi disponibili dalle

nuove costellazioni GNSS come Galileo. I ricevitori all’avanguardia, come l’AGGA-4, sono

sovraccaricati dal processamento dei canali come parte dei code e carrier loop, al fine di

tenere in traccia del segnale in ingresso. In questo lavoro, presento un’architettura di

processamento di segnali GNSS per DAHLIA, un System-on-Chip ad alte prestazioni con

quattro core Arm Cortex-R52 e un embedded FPGA, come studio di fattibilità sull’uso di

questo sistema per eseguire processamento di segnali GNSS. Utillizo la Cortex-R52 Low-

latency Peripheral Port per interfacciare il modulo hardware di elaborazione del segnale

GNSS come un modo per isolare l’intensa attività di processamento dei canali dal bus del

sistema principale, quindi non influenzando né essendo influenzato dal nondeterminismo

temporale della main interconnect. Propongo un layout di memoria che permette software

time critical di essere allocati su memorie veloci, le Cortex-R52 Tight Coupled Memo-

ries, al fine di aumentare il determinismo e le prestazioni degli algoritmi. Viene eseguita

un’implementazione su un prototipo basato su FPGA e i risultati estesi all’ASIC indicano

che NG-Ultra è in grado di tracciare 72 canali utilizzando meno del 10% della potenza della

CPU, lasciando spazio per altre attività come Navigation e Precise Orbit Determination

ad essere gestite da un singolo CPU core.
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1 Introduction

As space is becoming more affordable and accessible, new space missions and applications

have been emerging with increasingly stringent requirements being imposed upon GNSS

receivers. These devices are widely used for real-time spacecraft navigation, timing, Pre-

cise Orbit Determination (POD), and scientific observations. For the time being, GNSS

receivers for space applications achieve about 1 m Position, Velocity, and Time (PVT)

accuracy in real-time. Whereas this is sufficient for most missions, some future applica-

tions require even better precision, thus requiring e.g. on-board POD post-processing.

The current state of the art method is to perform post-processing on-ground using precise

ephemeris to reach a level of accuracy on the order of 10 cm. The lack of microprocessor

resources is the major factor preventing current GNSS receivers from performing on-board

POD post-processing in near real-time. Other reasons include the lack of real-time precise

ephemeris and clock correction.

The current GNSS space receiver designed by Airbus Defence & Space and the Europen

Space Agency (ESA), AGGA-4 [1], includes a single-core LEON-2 FT processor that is

significantly loaded by the processing of the GNSS channels so that other high-level tasks

such as on-board POD cannot be performed since they would have limited microprocessor

resources allocated. Each channel encapsulates blocks for signal acquisition and tracking

that, in order to keep locked the phase-locked loop (PLL) and delay-locked loop (DLL)

for carrier and code corrections, requires a high-frequency task to update its numeric-

controlled-oscillators (NCOs). These tracking loops are necessary to overcome frequency

deviations arising (e.g. from Doppler Effects) during signal transmission from the GNSS

satellites to the receivers.

The signal acquisition and tracking in the channel task typically do not require much

RAM but a high microprocessor processing power due to the short millisecond interac-

tion time with the channels. The low communication bandwidth of the Advanced High-

performance Bus (AHB) interconnect, which is shared between modules, is the major per-

formance bottleneck in AGGA-4. Additionally, the next generation of receivers, AGGA-5,

is planned to have more than 72 channels, which would be impossible to process with this

1



current system architecture. Thus, a faster system is necessary to serve these needs and

be able to cope with the increased code length of the modernized GNSS signals.

Even though advanced Systems-on-Chip (SoCs) are being designed with newer gener-

ations of LEON processors, such as the LEON-3-FT and the LEON-4-FT, which offer

superior performance over the LEON-2-FT used in AGGA-4, these systems are still based

on AHB interfaces, posing doubts regarding their suitability for solving AGGA-4’s per-

formance limitations. An exception is the GR740 SoC [2], which includes two separate

AHB buses that could potentially dilute the traffic in the interconnect. However, it comes

with the downside of a very high cost of implementation. A more suitable system is the

NG-Ultra chip [3] which implements the DAHLIA SoC [4] that, besides a much cheaper

implementation, offers several other important advantages over LEON-based SoCs. This

novel system includes four Arm Cortex-R52 cores and uses the Advanced Extensible Inter-

face (AXI) protocol for the internal interconnect buses instead of AHB. The performance

is expected to be 20 to 40 times the performance of the existing SoC for space and more

than 2 times the performance of the future quad-core LEON4 chip, GR740 SoC. Addition-

ally, considering the Cortex-R52 performance and the frequency achievable on the targeted

STM 28nm Fully Depleted Silicon On Insulator (FDSOI) technology, the overall DAHLIA

SoC performance is estimated beyond 4000 DMIPS. Figure 1.1 presents a performance

comparison between the afore-mentioned SoCs.

Figure 1.1: Performance comparison between SoCs targeted to space applications [4].

The Cortex-R52 represents Arm’s most advanced processor for safety-critical applica-

tions. It allows the integration of complex software to be simplified through the strong sep-

aration of mixed-criticality without impacting real-time performance. It offers improved

signal processing with efficient parallel calculations using the NEON Single Instruction

Multiple Data (SIMD) and floating-point extension that is particularly interesting as it

has been shown that efficient floating-point handling provides great performance improve-

ment in the processing of the GNSS channels (see [5]).

The NG-Ultra presents also greater flexibility compared to other SoCs as it includes

on-chip an embedded FPGA. The GNSS hardware core and interfaces can be implemented
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in reprogrammable logic, making it possible to present several designs with custom char-

acteristics differing in the number of channels, interfaces, and input modules for different

RF front-ends. The implementation in FPGA also ensures potential issues to be fixed in a

very late stage of the design phase, avoiding costly metal-fixes. On the other hand, LEON

processors have been the baseline for European chips in many projects and missions (see

[6]) and there is a lot of heritage in the use of such processors. The use of a novel technol-

ogy is challenging and has a major risk for being still under development. Thus, besides

the benefits that this technology could bring to GNSS sensor processing, its immaturity

also justifies research before a major implementation.

In this thesis, I propose a GNSS sensor processing architecture for the DAHLIA SoC.

Taking as the baseline an FPGA design of a GNSS receiver based on AGGA-4, I go over

the necessary software and hardware modifications of the existing design for allowing it to

be integrated into the novel DAHLIA SoC. I present a memory layout for allowing run-

time critical software to be placed on fast memories, i.e. the Cortex-R52 Tight Coupled

Memories (TCMs), while non-time-critical software is allocated to standard RAM. I exploit

the Cortex-R52 Low-latency Peripheral Port (LLPP) for isolating the channel processing

high-frequency task from the main SoC AXI bus, thus not affecting nor being affected

by the shareability implications of this interconnect. I then perform an implementation

of this proposed architecture in an FPGA-based prototype and evaluate its performance.

Lastly, I estimate the design performance as if it were implemented as an ASIC, based on

the results obtained with the prototype and compare with the characteristics of AGGA-

4. I pay greater attention to GPS as its satellite signals are relatively easier to replicate

when compared to other GNSSs and therefore more suitable to create a deterministic test

environment. Nevertheless, the modifications to the sensor processing algorithm and the

challenges encountered during implementation are extendible to other GNSSs.

This work is organized as follows. In Chapter 2, I provide a theoretical background on

Global Navigation Satellite System (GNSS), give an overview of Arm Advanced Microcon-

troller Bus Architecture (AMBA) protocols, and present the laboratory tools used during

development and testing. In Chapter 3, I introduce the novel DAHLIA SoC and the Arm

Cortex-R52 it implements. In Chapter 4, I present AGGA-4 and hardware-related modi-

fications necessary to bring its GNSS sensor processing capabilities into the new SoC. In

Chapter 5, I go over the software-related adaptions to port the existing software to new

system architecture. In Chapter 6, I present results concerning different test cases and

estimations. Finally, in Chapter 7, I discuss the results and limitations of this work.
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2 Background

In this chapter, I review the basis of GNSS with a special look at GPS signals. I then

introduce the Arm Advanced Microcontroller Bus Architecture (AMBA) protocols for an

easier understanding of the devices presented in the following chapters. Lastly, I go over

the laboratory tools and software used during development.

2.1 Global Navigation Satellite System

Global Navigation Satellite System (GNSS) is the standard generic term for a constellation

of satellites providing signals from space that transmit positioning and timing data to GNSS

receivers, with global coverage [7]. The receivers then use this data to determine their geo-

location. Examples of GNSS include United States’ NAVSTAR Global Positioning System

(GPS) [8], Russian’s Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS) [9],

China’s BeiDou Navigation Satellite System [10] and Europe’s Galileo [11].

Although the first systems were originally intended for military usage, location awareness

has soon proven invaluable for many civilian applications. Examples of applications that

profit from GNSS include:

• Civil: pedestrian and outdoor navigation, games, carpooling, social networking.

• Aviation: autonomous flying, attitude determination, air traffic control, landing, and

take-off.

• Maritime: en-route navigation, dredging, rescuing.

• Roads: tolling, emergency services, traffic control, fleet management.

• Industry: precision agriculture, mining, heavy machinery.

• Surveying: land surveying, mapping.

• Space: precise orbit determination, satellite real-time navigation, satellite formation

flying.
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Three main segments make up a GNSS. The space segment, which comprises the satellites

themselves; the control segment, that is responsible for providing command and mainte-

nance services to the satellites; the user segment, represented by the receivers. The space

segment consists of a constellation of satellites transmitting radio signals to users. A GNSS

satellite constellation has to ensure that there are at least four satellites in view from virtu-

ally any point on Earth. Each satellite broadcasts a signal that identifies it and provides its

time, orbit, and status. These transmissions are controlled by highly stable atomic clocks

on-board the satellites. The control segment consists of ground facilities that monitor the

satellites’ transmissions, perform analyses, and send commands and data to the constella-

tion. These facilities are responsible for the proper system operation, performing services

such as satellite maneuvers and navigation data updates for all the satellites. The user

segment consists of the GNSS receivers and the user community. The receivers process the

incoming satellite signals and solve the navigation equations to obtain their coordinates

and provide very accurate time reference.

2.1.1 Fundamentals

The time required for a signal to travel from the satellite to the receiver is the basic

observable in a GNSS system. This traveling time, multiplied by the speed of light, provides

a measure of the apparent distance (pseudorange) between them [7]. The term pseudorange

comes from the fact that this value does not represent the real distance between transmitter

and receiver as it may be affected by various sources of errors.

The positioning principle of GNSS is based on solving a geometric equation, involving

the distances from the satellites to the receiver, using a technique commonly known as tri-

angulation but more precisely called trilateration [12]. Assuming initially as a simplifying

hypothesis that the receiver clock is perfectly synchronized with the satellite, processing

the signals coming from one satellite indicates that the receiver is somewhere on the sphere

that surrounds the satellite and is of a radius equal to the signal’s travel distance. With

information from a second satellite, the location can be narrowed down to the circle formed

by the intersection of the two spheres. Repeating to a third one, the receiver’s location is

limited to two possible points. On a more theoretical approach, one of these points can

be discarded, once its altitude will be illogical (e.g. far deep in space or inside Earth) and

three satellites would be enough for most situations. However, due to the inaccuracy of

the receivers’ inexpensive clocks, a fourth satellite is added to improve location accuracy.

Therefore, with four or more satellites in view, the receiver can determine the user’s lat-

6



itude, longitude, altitude, and clock deviation from satellite time. Figure 2.1 illustrates

this scenario.

Figure 2.1: GNSS trilateration [13].

2.1.2 Signal Processing

GNSS satellites continually broadcast navigation signals with their orbit status to allow

the receiver to compute its location. The navigation data are a data stream that is first

modulated onto a Pseudorandom Noise (PRN) signal, a carefully engineered code specific

to each satellite. PRN codes are designed in such a way they have a low cross-correlation

with other PRN codes and a good autocorrelation peak value. This allows the receiver to

identify from which satellite the navigation data are coming from during the demodulation

of the received signal, and the satellites to transmit on the same signal frequency without

suffering significant interference. After being mixed with the PRN code, the signal is

modulated onto a carrier sinusoidal wave at a higher frequency in order to be transmitted.

On the receiver side, local replicas of the carrier and code are mixed with the incoming

signal in order to extract the navigation message. Figure 2.2 illustrates the GNSS signal

transmission.

In GPS, the navigation data are sent at a 50-bits/s rate and then modulated by the

Coarse/Acquisition (C/A) code, also called civilian code, or the Precision (P) code which

is encrypted and for military usage. The carrier wave is at the so-called L1 band, centered

at 1575.42 MHz. The C/A code sequence is made up of 1023 chips with a duration of 1 us

each.
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Figure 2.2: GNSS signal transmission [14].

In order to extract the navigation message, the receiver must be synchronized with the

incoming signal. This is done by correlating the input signal with local replicas of the code

and carrier, and then sweeping these signals in time and frequency, respectively, until a

correlation peak is found. The frequency compensation is needed to eliminate the residual

carrier due to noise sources while the code matching synchronizes the receiver and satellite

time, an observable to calculate the pseudorange. When the correlation peak is found, the

receiver is able to lock the signal and from there on keep track of it. Figure 2.3 illustrates

this scenario.

Figure 2.3: Acquisition of GPS L1 C/A Signal [15].
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2.1.3 Error Sources

Measurement errors arise from many different sources, such as the signal attenuation by

the atmosphere (ionosphere and troposphere), relativistic effects, instrumental limited ac-

curacy, multipath, and receiver noise.

Doppler effects

Because the GNSS signals are originated from moving satellites, they are prone to frequency

shifting introduced by Doppler effects. This effect is reflected in a continuous movement

of the phase of the signal coming into the receiver. The frequency shifting in the incoming

signal can be greater in space applications when compared to receivers on Earth because

the receivers might be moving at a very high speed.

Multipath

Multipath is the phenomenon that results in signals reaching the receiver’s antenna by two

or more paths. Like any other wireless communication, GNNS is multipath prone, which

is accentuated in urban and indoor environments. It affects the phase measurements, as

well as the code measurements. In the case of the code, it can reach a theoretical value

of 1.5 times the chip’s wavelength. This means, for instance, that multipath in the GPS

C/A code can reach up to 450 m, although higher values than 15 m are difficult to observe.

Typically, it is less than 2 or 3 m [7].

2.1.4 Receiver architecture

Figure 2.4 presents a block diagram of a generic GNSS receiver. The GNSS signal is

captured by the antenna and first treated by an analog radio front-end responsible for

down-converting the signal to an intermediate frequency. This stage involves amplifying

and filtering the signal to recover a good signal-to-noise ratio. The signal goes through an

A/D converter with resolution varying from 1-bit (low-cost receivers) to 4 bits (high-end

receivers). At an intermediate frequency, the residual carrier frequency, mainly due to

Doppler effects, is then wiped off in the carrier’s loop, resulting in a signal in baseband

frequency. Further along the processing chain, the GNSS signal is correlated with the local

replica of the code, as part of the code loop, and the navigation data is extracted. The

tracking loops, a PLL and a DLL, are used to continuously lock the incoming signal.
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Figure 2.4: Generic GNSS receiver block diagram [14].

2.2 Advanced Microcontroller Bus Architecture

The Advanced Microcontroller Bus Architecture (AMBA) [16] is an open-standard from

Arm widely used for the connection of functional blocks in a SoC. It defines multiple

protocols targeted to different requirements.

2.2.1 APB

The Advanced Peripheral Bus (APB) is a simple non-pipelined protocol designed for low

bandwidth control accesses, presenting a low complexity signal list, not allowing burst

transactions. It is generally used for interfacing general-purpose peripherals such as timers,

interrupt controllers, UARTs, and I/O ports.

2.2.2 AHB

The Advanced High-performance Bus (AHB) is designed for high bandwidth interconnect

having a single-channel shared bus. Similar to APB, it is a shared bus protocol for multiple

masters and slaves, but higher bandwidth is possible through burst data transfers. The

AHB supports pipelined operation, with the address and data phases occurring during

different clock periods.

2.2.3 AHB-Lite

The AHB-Lite protocol is a simplified version of AHB. The simplification comes with

support for only a single master design that removes the need for any arbitration, retry,

and split transactions.
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2.2.4 AXI

The Advanced Extensible Interface (AXI) is targeted at high performance for low latency

and high clock frequency systems design. It overcomes the limitations of a shared bus

protocol about the number of agents that can be connected.

2.3 Laboratory Tools

In this section, I briefly introduce the laboratory tools and software used during project

development.

Arm Development Studio

Arm Development Studio (Arm DS) is an embedded C/C++ development toolchain de-

signed specifically for Arm-based SoCs [17]. I extensively used this tool to run and debug

the GNSS software in the FPGA evaluation board.

Arm DSTREAM

Arm DSTREAM is a high-performance debug and trace that enables software debugging

and optimization of any Arm processor-based hardware target, using a hardware interface

such as JTAG.

GNU Compiler Collection

The GNU Compiler Collection (GCC) [18] is a compiler system produced by the GNU

Project supporting various programming languages. It is free software distributed un-

der the GNU General Public License (GNU GPL). GCC was the compiler used for the

GNSS software and I extensively exploited this toolset for allowing different code and data

placement in the SoC.

Vivado Design Suite

Vivado is a software suite produced by Xilinx [19] for the synthesis and analysis of HDL

designs. I used Vivado for the generation of the AXI4-to-AHB-Lite bridge through its IP

Integrator tool for synthesizing the DAHLIA SoC with the new GNSS capabilities, and for

loading the FPGA bitstream into the evaluation board.
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HDL Designer

HDL Designer is a tool by Mentor Graphics that allows the user to graphically connect

different components described in VHDL/Verilog and automatically generate the necessary

code for that. I used HDL Designer in the first part of the hardware design process while

creating and evaluating the GPS C/A code generator and during the AXI4-to-AHB-Lite

bridge interfacing with the GNSS Module. The final integration into the DAHLIA SoC

was done in plain Verilog language.

Mentor QuestaSim

QuestaSim is a multi-language HDL simulation environment by Mentor Graphics for sim-

ulation of HDL designs. I used this tool to compile and simulate RTL designs during the

whole development flow. It offers a graphical interface with signal timing wave plotting

that was extremely useful.

MATLAB

MATLAB is a multi-paradigm numerical computing environment and proprietary pro-

gramming language developed by MathWorks [20]. I used MATLAB in this project for a

generating a sampled GPS C/A code dataset to be used in a look-up table used by the

GPS code generator, and also for signal tracking performance estimation.

Evaluation Board

I carried out development and testing on a Xilinx Virtex UltraScale+ FPGA VCU118 eval-

uation board together with a Xilinx FMC XM105 Debug Card to provide JTAG connection

to Arm DSTREAM.
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3 Deep Sub-micron Microprocessor for

Space Rad-hard Application ASIC

In this chapter, I introduce the novel DAHLIA SoC that will be implemented on the NG-

Ultra chip along with its system architecture and specification. Then, I give an overview

of the Arm Cortex-R52, highlighting the main features relevant to this study.

3.1 Overview

The deep sub-micron microprocessor for space rad-hard application ASIC (DAHLIA) is

a quad-core Arm-based System-on-Chip dedicated to both platform and payload appli-

cations. This chip is designed to boost competitiveness and ensure the strategic non-

dependence of future European space equipment [4], by a consortium of European compa-

nies with the supervision of European entities like ESA, EU, and CNES [21].

The project targets the STM 28nm Fully Depleted Silicon On Insulator (FDSOI) tech-

nology, providing a very good tolerance to radiation while its performance is expected to

be 20 to 40 times the performance of the existing SoC for space and more than 2 times

the performance of the future quad-core LEON4 chip.

The DAHLIA SoC is composed of two major groups:

• Hard Macroblocks: the NG-ULTRA SoC, a physical application-specific standard

product (ASSP) that comprises two main functional units:

– an ASIC digital processor subsystem, with four Arm Cortex-R52 cores.

– a large embedded FPGA (eFPGA).

• Soft Macrblocks: a collection of different soft IPs that implement peripheral I/O

functions typical of satellite computers, mapped onto the eFPGA fabric.

Figure 3.1 presents a block diagram of DAHLIA SoC.
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Figure 3.1: DAHLIA SoC block diagram [4].

3.2 Hard Macroblocks

The hard macroblocks are part of the NG-ULTRA SoC developed by NanoXplore, a high-

end radiation hardening-by-design (RHBD) FPGA device, stated as the most advanced

FPGA in the world to this time [3]. The available resources are the following:

• Logic: 536928 LUT4 + 505344 DFFs + 126336 CY chains.

• Memories: 672 BRAM blocks of 48kb (= 32256kb).

• DSP: 1344 DSP blocks which can be cascaded.

3.2.1 Processor Subsystem

The processing unit is constituted by two double-core Arm Cortex-R52 clusters and pe-

riphery to allow application software to be executed. A more thorough analysis of the

Cortex-R52 and its Armv8-R architecture is carried out in section 3.6.

SoC Serivces

The services module is a collection of IPs that guarantees the functional SoC’s behavior. It

includes PLLs and a clock generation subsystem, a JTAG connection, a Debug and Trace

14



module, power and error management IPs, security services, and others.

On-Chip Memory

DAHLIA includes on-chip a 128 KB eROM and a 4 MB eRAM. Flash and DDR memories

may be connected through an external memory interface.

3.2.2 Embedded FPGA

The embedded FPGA is the key aspect for providing flexibility to the applications since it

allows multiple design variants, changing requirements, and better performance by elim-

inating chip-to-chip delays. The eFPGA is a family of SRAM based programmable logic

blocks implemented with 4 inputs LUT and DFF fabric [3]. The high-end FPGA fabric is

meant to hold the soft macroblocks and the second layer of the interconnect and to provide

reprogrammable logic embedded in the DAHLIA chip to the application.

3.3 Soft Macroblocks

The soft macros provide complementary I/O functions and the IPs can be instantiated

with different configurations by the applications. It includes peripherals such as a Space

Wire controllers, a UART, CAN/SPI/I2C controllers, and others.

3.4 Network Interconnect

Even though the network interconnect is part of the macroblocks, I introduce it in this

separate section for a better understanding of the SoC architecture. The purpose of the

network interconnect is the connection and management of functional blocks inside the

SoC so that the different masters, such as the four CPU cores, can have access to different

interfaces and memory resources. Having the NIC-400 associated with QoS-400 features

as the interconnect baseline, DAHLIA implements an AMBA bus topology.

The interconnect has a multi-layer architecture that manages clock domain crossings,

data width, and arbitration between APB, AHB, and AXI protocols. The first layer is

fixed and responsible to handle the functions implemented in the ASIC part while a second

layer is implemented on the FPGA fabric, being adaptable to features implemented by the

application. A simplified view of the interconnect ASIC layer is given in Table 3.1. Table

3.2 identifies which master-slave connections are enabled. The module R52 Core-0 refers
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to the first CPU core inside the first cluster, while the other three cores are not shown as

they were not used in this project, as it will be better clarified in the next chapters.

Module Protocol Type Width Clock CPU Interface
R52 Core-0 AXI4 Master 128 bits 600 MHz AXIM
R52 Core-0 AXI4 Slave 128 bits 600 MHz AXIS
R52 Core-0 AXI4 Master 32 bits 600 MHz LLPP
eFPGA AXI4 Master 128 bits - (*) -
eFPGA AXI4 Slave 128 bits - (*) -
eFPGA AXI4 Slave 32 bits - (*) -
eFPGA APB4 Slave 32 bits - (*) -
eRAM AXI4 Slave 32 bits 400 MHz -
eROM AXI4 Slave 32 bits 200 MHz -
UART APB2 Slave 32 bits 200 MHz -
(*) Clock is provided by the eFPGA

Table 3.1: ASIC layer of the network interconnect.
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R52 Core-0 AXIM AXI4 (128 bits) X X X X X X
R52 Core-0 LLPP AXI4 (32 bits) X
eFPGA AXI4 (128 bits) X X X X X

Table 3.2: ASIC layer interconnect matrix.

As it can be seen, the AXI is the main interconnect in DAHLIA SoC, interfacing the

CPU cores, the eFPGA, the eRAM, and the eROM while the APB is used for interfacing

low bandwidth system peripherals such as the UART. The 32-bit AXI4 bus is instead a

separate bus, which is a direct connection from the LLPP interface of the R52 Core to the

eFPGA. It only goes through the interconnect for allowing clock domain crossing so that

clock synchronization does not have to be performed separately. This interface is better

explained in section 3.6.3.
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3.5 FPGA-based Prototype

Although DAHLIA SoC is intended to be an ASIC, a silicon chip is not yet available. I

carried out the development of the project on an FPGA-based design implemented in a

Xilinx Virtex UltraScale+ FPGA. Due to the limited logic gate space and lower frequency,

the prototype has several limitations concerning the ASIC design, including:

• Only the first CPU cluster is implemented, with its two cores.

• The clock frequencies are downscaled by a factor of 12 (roughly).

• The eFPGA is not included and its interfaces are mapped to the prototype’s FPGA

fabric.

• The eROM memory is a RAM and, therefore, reprogrammable.

• No flash memory is available.

Table 3.3 presents the ASIC interconnect layer that is implemented in the FPGA-based

prototype, highlighting the downscaled clock frequencies.

Module Protocol Type Width Clock CPU Interface
R52 Core-0 AXI4 Master 128 bits 50 MHz AXIM
R52 Core-0 AXI4 Slave 128 bits 50 MHz AXIS
R52 Core-0 AXI4 Master 32 bits 50 MHz LLPP
FPGA fabric AXI4 Master 128 bits - (*) -
FPGA fabric AXI4 Slave 128 bits - (*) -
FPGA fabric AXI4 Slave 32 bits - (*) -
FPGA fabric APB4 Slave 32 bits - (*) -
eRAM AXI4 Slave 32 bits 33 MHz -
eROM AXI4 Slave 32 bits 16.5 MHz -
UART APB2 Slave 32 bits 16.5 MHz -
(*) Clock is provided by the eFPGA

Table 3.3: ASIC layer of the network interconnect implemented in the
FPGA-based prototype.

Since the eFPGA is not present, its interfaces were connected to AXI Traffic Generator

IPs implemented in the FPGA fabric. These IPs provided by Xilinx can generate AXI4

transactions so that register access and data transfers are possible without getting the bus

into an error or timeout state.
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3.6 Arm Cortex-R52

As DAHLIA SoC implements a quad-core Arm Cortex-R52, it is crucial to understand its

characteristics. In this section, I introduce the main components of this processor core.

The figures and the majority of the information are taken from its technical reference

manual [22].

3.6.1 Overview

The Cortex-R52 is currently the most advanced processor in the Arm Cortex-R family,

a series of 32-bit RISC processor cores designed for real-time applications, offering high

standards of functional safety. It is 35 % faster than the previous generation Cortex-R5,

which is already deployed in a range of safety applications. This is the first processor

implementing the Armv8-R architecture, offering several error-resiliency features to ensure

accuracy. The multi-core lock step allows two cores to execute the same task in parallel for

redundancy. Hardware-enforced separation of software tasks ensures that safety-critical

code is fully isolated and virtualization allows for multiple tasks to be executed on the

R52 without interfering with each other. This enables fewer processors within the device

since these tasks can be consolidated onto a smaller number of processors. By ensuring

robust separation of software, the Cortex-R52 also decreases the amount of code that must

be safety-certified, speeding up development as software integration, maintenance, and

validation becomes easier. Figure 3.2 presents a processor example with two cores.

3.6.2 Exception Model

The exception model for the Cortex-R52 processor is mostly defined by the architecture it

implements, the Armv8-R AArch32 profile. The Armv8-R exception model defines three

exception levels EL0, EL1, and EL2 (lowest to highest priority) where:

• EL0 is called unprivileged execution, commonly used for applications.

• EL1 is described as privileged execution, commonly for OS kernels.

• EL2 is called hypervisor level and provides support for processor virtualization.

Due to the immaturity of the framework available for development, which still does not

handle access prioritization between these levels, I only considered the EL2. At this level,

the software has full access to all Cortex-R52 capabilities.
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Figure 3.2: Example of a Cortex-R52 implementation with two CPU cores (modified from
[22]).

3.6.3 Memory System

The memory system controls access to internal RAM, cache, external memory, and the

peripheral port. Its block diagram is presented in Figure 3.3.

In DAHLIA SoC, the implemented memory system consists of:

• 3 x 128 KB TCMs.

• 4 KB L1 instruction cache.

• 4 KB L1 data cache.

• LLPP master interface that conforms to AXI4 (32-bit).

• Flash interface that conforms to AXI4 (128-bit).

• AXIM interface that conforms to AXI4 (128-bit).

• AXIS interface that conforms to AXI4 (128-bit).
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Figure 3.3: Cortex R52 memory system block diagram [22].

The Cortex-R52 has a Harvard memory architecture, meaning that the core has inde-

pendent buses to access instructions and data. The instruction side fetches instructions

while the data side reads and writes data. Concurrent accesses to both sides can be done.

Tightly-Coupled Memory

Tightly-Coupled Memories (TCMs) are for highly deterministic applications, providing

low-latency memory that the processor can use without the unpredictability of caches.

This memory can be accessed by the CPU in a single cycle and it is unified, meaning

that it can hold both instructions and data, as shown in Figure 3.3. TCMs are suited for

holding service routines and data that require intense processing which cannot wait for

cache misses, such as interrupt handling routines, interrupt stacks and other critical data

structures, and data types whose locality is not suited for caching.

Level-1 Caches

The Cortex-R52 implemented in DAHLIA SoC includes both instruction and data 4 KB

caches. Instruction fetches from flash or AXIM interfaces can be cached in the instruction

cache, and when the instruction flow is sequential, the cache can automatically prefetch

the next line from memory. Data accessing from flash or AXIM interfaces can be cached

in the data cache depending on the configuration of the Memory Protection Unit (MPU).
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AXIM

The AXI-Master interface conforms to the AXI4 specification and is the main interface to

memories external to the core and device systems. In DAHLIA SoC, it is connected to the

main AXI interconnect.

AXIS

The AXI-Slave interface is shared between all cores in the processor. It provides external

access to the TCMs so they may be used by DMA controllers and other processor cores, for

example. This interface, in DAHLIA SoC, is also connected to the main AXI interconnect.

Flash Interface

The Flash interface provides access to an external read-only memory controller, but it is

not analyzed in this project once there was no flash memory in the FPGA-based prototype

used for development.

Low-Latency Peripheral Port

The Low-latency Peripheral Port (LLPP) provides direct access to external devices or small

specialized memory systems. It is intended to be used for private peripherals requiring

low-latency access and can run at the processor’s clock frequency consequently providing

real-time behavior. The LLPP conforms to a subset of the AXI4 specification.

Memory Protection Unit

The memory management in the Cortex-R52 is configured by the Memory Protection Unit

(MPU). It allows setting the attributes for each memory location such as permissions, type,

and cacheability. The MPU defines the permissions for each exception level and can be

controlled from EL1 and EL2.

3.6.4 Generic Interrupt Controller

The Generic Interrupt Controller (GIC) is a resource for supporting and managing inter-

rupts in a CPU cluster. It supports interrupt prioritization, interrupts routing to a core

or export port, interrupts preemption, and interrupts virtualization. A block diagram of

the GIC is given in Figure 3.4.

The GIC architecture is made of three main components: a Distributor, a Redistributor,

and a CPU interface. The GIC Distributor receives three types of interrupts: wired inter-
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Figure 3.4: Cortex-R52 GIC block diagram [22].

rupts from peripherals, so-called Shared Peripheral Interrupts (SPIs), Private Peripheral

Interrupts (PPIs), and Software Generated Interrupts (SGIs). The latter two are private to

each CPU core. The Distributor contains the prioritization logic which defines the highest

priority pending interrupt for each core. The Redistributor contains the registers support-

ing PPIs and SGIs. The CPU interface tracks the current running priority and virtual

interrupts, then determines whether the core is interrupted. The Cortex-R52 processor

implements one internal GIC CPU interface and one GIC Distributor per core.

In DAHLIA SoC there are implemented, per core, 16 PPIs and 16 SGIs. Table 3.4 gathers

some of the interrupts that can be signaled as PPI. Additionally, more than 100 SPIs can

be set to signals in the eFPGA. An interrupt is configured as either a Group 0 interrupt

or a Group 1 interrupt. Group 0 interrupts are signaled with fast interrupt request (FIQ)

while Group 1 interrupts are signaled with interrupt request (IRQ). FIQs are for fast, low-

latency interrupt handling, while interrupt request (IRQ) for general interrupts. An FIQ

always takes priority over an IRQ.

PPI
Non-secure physical timer interrupt
Virtual timer interrupt
Hypervisor timer interrupt
Virtual CPU Interface Maintenance interrupt
Cross Trigger Interface interrupt
Performance Monitor Counter Overflow interrupt
Debug Communications Channel interrupt

Table 3.4: Private Peripheral Interrupts assignments.
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3.6.5 Advanced SIMD and Floating-Point

The Advanced Single Instruction Multiple Data (SIMD) and floating-point module uses

NEON technology, providing improved signal processing with efficient parallel calculations.

It offers:

• Instructions for single and double-precision floating-point operations.

• Hardware support for conversion, addition, subtraction, multiplication, division, and

square-root operations.

• Hardware support for rounding modes.

NEON is a very advanced technology developed at first for audio and video encoding

and decoding, and graphics rendering and implemented in the Arm Cortex-A processor

series. It was then extended to the Cortex-R family and has shown great advantages for

intense signal processing applications other than multimedia.

3.6.6 Performance Monitor Unit

The Performance Monitor Unit (PMU) is a Cortex-R52 peripheral that enables gathering

various statistics on the operation of the core and its memory system during runtime,

providing useful information about the behavior of the processor. The PMU provides four

counters that can count system events, such as error events, memory request events, cache

predictions, memory access requests, and many others. Figure 3.5 shows a block diagram

of the PMU.
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Figure 3.5: Performance Monitor Unit block diagram [22].
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4 Hardware Design

In this chapter, I describe the design process from a hardware point of view. I first introduce

the GNSS receiver taken as starting point, describing its relevant modules and interfaces,

and then go over the adaptions needed to integrate it into DAHLIA SoC.

4.1 Advanced GPS/Galileo ASIC

The Advanced GPS/Galileo ASIC version 4 (AGGA-4) is a radiation-tolerant GNSS space

receiver designed by Airbus and ESA and fabricated by Atmel [1]. This receiver includes

on-chip the LEON-2 FT (Fault Tolerant) processor based on the SPARC V8 standard.

The processor and periphery consist of a cache subsystem, a memory controller, a GNSS

Interrupt Controller (GIC), a Communication Interrupt Controller (CIC), a Primary In-

terrupt Controller (PCI), four 32-bit timers, a watchdog, watchpoint registers, and a 32-bit

I/O-port. It includes also a Cobham Gaisler Floating-Point Unit (GRFPU). AGGA-4’s

block diagram is depicted in Figure 4.1.

The GNSS receiver taken as the baseline for this project was an FPGA design based on

AGGA-4. Although this receiver differs from AGGA-4 in a few aspects, the components

are here mentioned as from AGGA-4, referring to the functionalities derived from it. When

necessary, I point out the differences.

4.1.1 GNSS Core

The GNSS Core is the hardware component that processes GNSS signals. Together with

the AHB interface, DMA and synchronization controllers, it is referred to as GNSS Module.

In AGGA-4, this module is connected to an AHB interconnect with two interfaces: an AHB

master and an AHB slave interface. The AHB master interface is required to implement

DMA capabilities to the GNSS Module while the AHB slave interface is used to provide

access to the internal registers via read and write operations. These interfaces are shown

in greater detail in Figure 4.2.
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Figure 4.1: AGGA-4 block diagram [23].

Figure 4.2: GNSS Module block diagram [23].

Besides the AHB interfaces and the modules that handle DMA, there is a register con-

troller that arbitrates accesses to the GNSS Core between the AHB slave and the DMA

controller, and a synchronization module that guarantees that requests via AHB are syn-

chronized with the GNSS Core since they are placed in different clock domains. The AHB

address decoding is also done within this module. The peripheral that performs processing

of incoming GNSS signals is the GNSS Core. Figure 4.3 presents its architecture and the

components that make up this module. The Digital Beam Forming module and the Aiding

Unit inside each channel are not included in the FPGA design.
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Figure 4.3: GNSS Core architecture [23].

Input Module

The GNSS Core includes input modules that interface with the ADCs of the RF front-ends.

They support multiple input formats in baseband and intermediate frequency that perform

data sampling and formatting of the data before being introduced into the channels.

Power Level Detector Module

The Power Level Detector is used to monitor the input levels of the incoming signal for

allowing the Automatic Gain Control (AGC) of the RF Front Ends. It generates sample

statistics that are used by the software to calculate an appropriate AGC value for the RF

front-end.

Input Selector

The Input Selector selects between the I/Q signals coming from the Input Module or from

the previous channel if channel slaving is to be used. Each I/Q component is represented

in a 3-bit format.
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Final Down Converter

The Final Down Converter is responsible for removing the residual carrier and strip off the

Doppler frequency from the input signal by mixing it with the locally generated carrier.

Carrier Generator Unit

The Carrier Generator provides the carrier replica to convert the navigation signal to

baseband frequency. The carrier frequency is set via software, as part of the carrier loop.

Code Generator Unit

The Code Generator Unit is responsible for generating the channel’s local replica of the

PRN code. The code frequency is set via software, as part of the code loop.

Delay Line Unit

The Delay Line Unit controls the delay to be applied to the code correlators, generating

Early Early, Early, Punctual, Late and Late Late (i.e. EE, E, P, L, LL) samples of the

selected code sequence within the channel.

Correlator Unit

The Correlator Unit performs the cross-correlation between the input signal and the local

copy of the PRN code. The results of the integration are made available as code observables.

4.1.2 Other Peripherals

Debug Support Unit

The Debug Support Unit (DSU) offers hardware debug support to the LEON processor, in

order to aid software debugging on the target hardware. The DSU can put the processor in

debug mode, allowing read and write access to all processor registers and cache memories.

Primary Interrupt Controller

The interrupts generated by on-chip units are all forwarded to the Primary Interrupt Con-

troller (PIC). The controller core then propagates the interrupt with the highest priority

to the LEON processor. This module combines several sources of interrupts, including the

other interrupt controllers, onto a single output bus.
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GNSS Interrupt Controller

The GNSS Interrupt Controller (GIC) is located inside the GNSS clock domain and handles

signals coming from the GNSS Core before forwarding them to the PIC. Events such as the

status of integration epochs, DMA transactions, and others can be configured to trigger

an interrupt.

Communication Interrupt Controller

The Communication Interrupt Controller is similar to the GIC but manages signals related

to communication peripherals before forwarding them to the PIC.

Serial Peripheral Interface

The Serial Peripheral Interface (SPI) module works as an SPI master and is used to commu-

nicate with the RF front-end chipset. During the software initialization, the RF front-end

is configured through this interface.

UART

The GNSS Receiver Software needs to communicate to an Application Software that runs

externally and this is done via UART. It is also used for debugging of the LEON processor

as it allows access to all internal registers in the design.

4.2 Onto DAHLIA SoC

In this thesis, I propose an architectural solution for implementing an AGGA-4’s based

GNSS receiver on DAHLIA SoC. Given DAHLIA’s architecture, the hardware peripherals

necessary for performing GNSS signal processing are intended to be loaded in the repro-

grammable part of the SoC, the eFPGA. Even though the FPGA-based prototype available

did not include an eFPGA, these hardware components were restricted to only make use

of the eFPGA interfaces and consider their limitations. The following sections clarify all

modules from AGGA-4 necessary to provide GNSS capabilities to the new SoC along with

modifications to comply with the new system architecture. I also consider adaptions for

allowing subsequent testing and system verification.

Although DAHLIA SoC has on-chip four Arm Cortex-R52 cores, only one was used for

running the GNSS sensor processing algorithm. This was a design choice based on the

assumption that a single core has sufficient processing power budget to accommodate the
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software needs, taking into consideration the much greater expected performance of the

Cortex-R52 over the LEON processor (see Figure 1.1). As it is shown in the following

chapters, this assumption is verified. A second reason for making this choice was to spare

the other CPU cores for future applications. Lastly, it reduces the complexity and power

consumption of the overall system.

4.3 Clock Generation

The first design step was to decide the frequency in which the GNSS Core should operate.

A constraint concerned the generation of specif clock frequencies arose, once it would

require setting the PLLs in the evaluation board to the desired frequency, implying in

big design modifications as the clocks signals are generated by an IP produced externally

which I could not modify in order to not violate project requirements. Limited to use clock

signals already in the design or frequency factors of them, I selected a clock frequency that,

considering the ASIC to FPGA prototype frequency downscale factor of 12, would lead to

the best approximation of the GNSS Core running at 60 MHz, an actual target frequency

inside Airbus Defence and Space. Taking a clock signal at 39 MHz, I implemented a

simple frequency 8th divider, resulting in a signal at 4.875 MHz. In the ASIC, this would

be translated to the GNSS Core running at 58.5 MHz, a reasonable approximation to the

target frequency. The clock signal at 4.875 MHz is from here on referred to as GNSS Core

clock.

4.4 Signal Aquisition

Having a clock source created, I moved to the signal acquisition of GPS signals, analyzing

different possibilities and their feasibility, and then performing an implementation of the

selected solution.

Dealing with real GPS signals poses many challenges to the overall system. First, it

requires setting up an antenna which, considering that a receiver expects line-of-sight

visibility of at least four satellites to establish a reliable location, would be a hard limiting

for a prototype running at an indoor laboratory. Second, there is a need for an RF front-

end to bring down the incoming signal to an intermediate or baseband frequency, that

besides the extra device and its peripheral circuitry, demands also a careful noise power

level calibration. Additionally, interfacing this front-end with the FPGA prototype requires

setting up its I/O ports.
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Software-generated GNSS signals could be used instead of real signals, from simulators

such as the JC Air GPS emulator. The problem with this solution is that GPS signals

generated by this tool are not repeatable and, consequently, a replicable test case cannot be

created, affecting comparisons between different designs. An alternative software could be

the Spirent GNSS emulator, which allows simulating the entire GPS satellite constellation

in static and dynamic scenarios, granting repeatable signals and, therefore, more accurate

performance comparisons between test cases. These solutions, however, still do not tackle

the need for an RF front-end and interfacing with the FPGA prototype.

To overcome these challenges encountered during signal acquisition, I opted to create

a GPS signal generator as close to ideal as possible, with signals already in baseband

frequency and integrate it directly into the GNSS Core, to be synthesized together with the

whole design. This solution solves the problems presented so far and, although acquiring

real GPS signals is critical to demonstrate the GNSS capabilities of this new device, this

has to happen in a later stage when the framework is fully functioning with signals close

to ideal.

By making this choice, there was no need anymore for the Front-End Interface in Figure

4.3, with its Input Modules and Power Detector Module, as these components are respon-

sible for acquiring the GNSS signals being output by the ADC in the RF front-end. I then

removed the connections from the Input Modules to the Input Selector, to later on let

the synthesis tool optimize out these modules. In addition to the front-end modifications,

given the limited gate space in the FPGA prototype, I also opted to reduce the number of

channels in the Channel Matrix to four.

Regarding the signal generator, the target signal was the GPS C/A in the L1 band, where

the navigation data broadcast by a satellite is first modulated by a 1.023 MHz C/A code

and then by a 1.57542 GHz carrier wave. As the generator was meant to be placed inside

the GNSS Core, the signal frequency was required to be already in baseband. For the sake

of simplicity, I set the signal’s residual carrier frequency to be zero, considering a case with

no error sources affecting the signal carrier frequency. The constraint on clock generation

formerly presented posed an issue on the C/A code generation, once 1.023 MHz is not an

exact division of the GNSS Core clock frequency. For this reason, I opted for creating

a sample counter looping over a look-up table (LUT) with signal sampled-data, in the

way that a new sample is put out on every GNSS Core clock cycle and when the counter

reaches the last sample in the look-up table, it loops back again to the first one. The

outputs with the in-phase and quadrature samples were then linked to the channels’ Ipunt
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Selector with a 3 bits representation of the range [-7,-5,-3,-1,+1,+3,+5,+7], complying to

AGGA-4’s specification. The input selection was done via software.

The sample-data were generated in MATLAB. Setting the carrier wave frequency to

be zero implied in identical I/Q samples at each point in time, with only a C/A code

sampled. By distributing a whole C/A sequence, i.e. 1023 code chips, over an integration

epoch with 1 ms period, the code frequency is fcode =
nchips

∆IE
= 1023 [chips]

1 [ms] = 1.023MHz, as

desired. In order to avoid phase shifting between integration epochs, the LUT should have

to be looped over on every new integration epoch and this was accomplished by setting

the number of samples to be:

nsamples = fCoreClock · ∆IE = 4.875 [MHz] · 1 [ms] = 4875 (4.1)

Therefore, the look-up table was generated by distributing 1023 chips over 4875 sam-

ples. The modified GNSS Core architecture with the GPS C/A code generator included is

depicted in Figure 4.4.

Figure 4.4: GPS C/A code generator
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4.5 Bus Interface

The eFPGA can be accessed by the CPU core through a 128-bit AXI4, a 32-bit APB, or

a 32-bit AXI4 interface, as previously shown in the interconnect matrix (see Table 3.2).

The first two happen through the Cortex-R52 AXIM interface, on the CPU side, while the

latter is done via LLPP.

As formerly presented in Figure 4.2, the GNSS Module is connected to AGGA-4’s AHB

with both a master and a slave interface. The AHB master is used to provide DMA

capabilities but it is not used by the GNSS software, as it will be shown in the next

chapter. The AHB slave is responsible for read and write transactions and it has to be

accessible by the R52 core. The DAHLIA SoC, however, does not include an AHB interface

on the eFPGA. Therefore, I had to implement a sort of protocol translation. The APB was

discarded straight away, as the communication on this bus has a rather slow bandwidth.

The choice between using the 128-bit AXI4 and 32-bit AXI4 had to be analyzed, and this

was done from a CPU perspective.

4.5.1 LLPP over AXIM

The R52 core has two fast interfaces that provide access to the eFPGA, the AXIM and

the LLPP. The AXIM is connected to the main AXI interconnect, shared between external

memories and system devices. The LLPP is instead a direct link between the R52 core

and the eFPGA. This bus is not shared with other devices and only passes through the

interconnect for allowing clock domain crossing and synchronization.

Given the shared bus, transactions via AXIM are prone to latencies introduced by wait-

states when the bus is busy being used by other SoC components. This could become

an issue when the interconnect is under high processing from other modules, for instance,

the other 3 CPU cores. Additionally, when a request arrives on the 128-bit AXI bus on

the eFPGA side it has to still pass through the second layer of the interconnect for the

management between multiple devices that can be loaded in the reprogrammable fabric.

Another issue concerns the bus width of the 128-bit AXI4 interface. The AHB interface

in the GNSS Module has a 32-bit data width bus, so if it had to be connected to the AXI,

only a quarter of the transaction width would be used. Additionally, an extra decoder

would have to be designed to make the addresses in the 128-bit range which are not used

by the GNSS Module available for other systems loaded in the eFPGA, or even the GNSS

Module would have to be redesigned to a 128-bit architecture.

Choosing to use the LLPP for interfacing the GNSS Module solves all issues discussed
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above. It is a CPU port designed for real-time peripherals with same bus width as the GNSS

Module, eliminating the need for an architectural redesign of this module. In addition,

the LLPP is separate from the main interconnect. Such characteristic isolates the main

interconnect from the overhead introduced by the high bus usage of the channel processing

task writing data to the GNSS Core. The same applies to the other way around, the channel

processing task is not affected by other applications using the main AXI interconnect.

Even though the LLPP is a better choice over the AXIM, it still complies with the

AXI4 protocol, unlike the AHB in the GNSS Module. To make this connection possible, I

added an AXI4-to-AHB bridge between the LLPP and the AHB interface. The bridge used

was from the Xilinx IP libraries and is presented in the following section. The complete

interface is illustrated in Figure 4.5.

Figure 4.5: Hardware connection scheme between the Cortex-R52 Core-0 and the GNSS
Module.

The interfaces of the NIC-400 interconnect were omitted for simplicity while the Sync

Module was highlighted inside the GNSS Module because it had to be modified to comply

with the bridge interface and the LLPP address range. I explain this better in the following

sections.

4.5.2 AXI4-to-AHB-Lite Bridge

The AXI4-to-AHB-Lite Bridge translates AXI4 transactions into AHB-Lite transactions.

The bridge functions as a slave on the AXI4 interface and as a master on the AHB-

Lite interface. This IP was taken from the Xilinx LogiCORE IP and was generated and

customized with the Vivado IP integrator tool. The AXI4-to-AHB-Lite Bridge diagram is

shown in Figure 4.6.

The AXI4 address and data bus width were configured to have 32 bits and, by design, the

AHB-Lite interface has the same data width that the AXI4 interface. The Timeout Module

was set to generate a timeout when the AHB-Lite slave does not respond for 256 clock

cycles. The bridge was configured to respond to the 4 MB address range correspondent

to the LLPP and the address that is presented on the AHB-Lite is exactly as received

on the AXI4. The bridge is a synchronous design and uses the same clock signal at both
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Figure 4.6: AXI4-to-AHB-Lite bridge block diagram [24].

interfaces.

4.5.3 Bridge Connection

The above-described bridge includes an AHB-Lite interface. This protocol is a simplified

version of the full AHB specification, which in turn is used in the GNSS Module. For this

reason, I had to make some adaptions.

The AHB-Lite protocol is used with a central read data multiplexor interconnection

scheme. The master drives out the address and control signals to all the slaves with an

address decoder selecting the appropriate slave. Any response data from the selected slave

passes through the read data multiplexor to the master. Figure 4.7 shows the multiplexor

interconnection structure for an example implementation with three slaves.

Given that the GNSS Module was the only slave to be connected to the master interface, I

simply connected the HRDATA bus and HRESP directly to the bridge, without implement-

ing a multiplexor. I then connected the HREADYOUT coming from the GNSS Module to

the HREADY signal of the bridge and also fed this signal back into the HREADY input

of the GNSS Module. For better visualization, a complete signal diagram of an AHB-Lite

slave is shown in Figure 4.8. Regarding the input address and control, and data signal

groups, I simply connected them directly from the bridge to the GNSS Module. I then

attached the HSEL to a constantly HIGH signal, leaving the GNSS Module constantly

selected, thus not having to implement any decoder. Finally, I connected the clock and

reset signals to the Clock Generator formerly presented in section 4.3.

Besides the signals shown in Figure 4.8, the GNSS Modules has also an input signal
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Figure 4.7: AHB-Lite block diagram for one master and three slaves [25].

HMASTER that is used to provide information about which master is currently accessing

it. The AHB-Lite protocol supports only a single master, thus the bridge does not have this

signal as output. For this reason, I simply attached the HMASTER signal to a constant

LOW signal, making the GNSS Module identify every transaction as coming from the same

master.

A problem arose with this implementation because the GNSS Module turned out to

be non-compliant to the standard AHB. The specification states that the HREADYOUT

signal when set to HIGH indicates that a transfer has finished on the bus and it may be

driven LOW to extend a transfer. The GNSS Module, however, outputs a double-cycle

pulse when a transaction has finished. This signal is actually generated by the Sync Module

and indicates when the synchronization is done after a transaction has completed. This

is because, in AGGA-4, there is an arbiter at a higher level of the design that converts

this non-standard HREADYOUT synchronization signal before feeding it to a multiplexor

structure similar to the one illustrated in Figure 4.7. To overcome this incompatibility, I

modified the Sync Module to output a custom signal instead of the synchronization one.

I implemented a simple logic based on internal signals to drive this custom signal LOW

when the Sync Module is accessed and drive it back HIGH once the synchronization pulse

has been generated. It is important to notice that both the bridge and the GNSS Module

have the same clock source, therefore all signals in these modules are always synchronized

to each other.

Regarding the connection between the bride’s AXI4 interface and the NIC-400, all signals
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Figure 4.8: AHB-Lite slave interface [25].

were compatible and no adaption was needed.

4.5.4 Address Map

The LLPP is constrained to a 4 MB address range. However, the GNSS Module address

map in AGGA-4 has a very sparse structure that exceeds this LLPP address limit. To

make all peripherals accessible, I defined a new address table to be used by the GNSS

Receiver Software that could fit in the 4 MB range. Opting for a less intrusive solution, I

added an address decoder inside the Sync Module to translate this new address map back

to the original AGGA-4’s sparse structure.

4.6 Interrupt Signals

In AGGA-4, many signals can trigger an interrupt of the CPU core. They are used for

handling communication, watchdog functions, timer overflows, and to signal the GNSS

Core status and readiness. These signals are handled by the interrupt controllers PIC,

CIC, and GIG. When integrating the GNSS Module into DAHLIA SoC, I had to make a

design choice whether to include these controllers in the new system or to solely use the

Cortex-R52 GIC. The advantage of keeping the AGGA-4 interrupt controller is that less

code would have to be changed in order to handle the interrupts used by the GNSS Receiver

Software, as the configuration of these peripherals is already done, such as setting up

the timers, masking and unmasking the interrupt sources, setting the interrupt priorities.
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These modules, however, would be loaded into the eFPGA which is in a slower clock domain

than the CPU, introducing an unnecessary latency that is critical in interrupt handling.

Furthermore, this choice would also implicate greater logic gate usage in the FPGA fabric.

For these reasons, I opted for only use the Cortex-R52 GIC. As I better explain in the

next chapter, the interrupts coming from hardware timers in AGGA-4 were replaced by

resources available in the Cortex-R52. Additionally, DAHLIA SoC includes more than 100

eFPGA signals connected to the GIC, more than enough to accommodate all interrupt

signals in the GNSS Module.

4.7 Peripherals

In this section, I discuss theoretical solutions for some system peripherals in AGGA-4 which

were not implemented in this project but are necessary to be integrated into the DAHLIA

SoC for the full functioning of the given GNSS Receiver Software.

Only two peripherals from AGGA-4 other than the GNSS Module are necessary for

implementing all the original features of the GNSS Receiver Software, a UART and an

SPI module. In reality, as these modules implement widely used communication proto-

cols, other IPs could be used for providing their functionalities, although it might require

modifications in the software drivers.

The SPI module is fully dedicated to the communication with the RF Front End chipset,

which is programmed and initialized through this interface. In AGGA-4, this peripheral

is connected to the interconnect via a 32-bit APB. Fortunately, DAHLIA SoC includes a

32-bit APB interface on the eFPGA, as already shown in Table 3.2, meaning that this

module simply would have to be connected to this interface.

The UART is for communication with the Navigation Module, which will be presented

in the next chapter. In AGGA-4, this module is interconnected via a 32-bit AHB interface.

To allow the R52 core to access such a peripheral, a bridging solution similar to the one

adopted for interfacing of the GNSS Module would have to be performed. This solution is

not optimal, as it requires a greater logic gate usage in the eFPGA and the performance

is affected by the latency introduced by the bridge. The advantage is that no changes

in the software driver would be necessary. If performance is not critical whatsoever, this

module could even be connected to the 32-bit APB interface of the eFPGA or replaced

by the UART already present in the DAHLIA SoC. If performance does matter, a UART

with a 32-bit AXI4 could be the best solution. As one can see, that are many options

for integrating this module to the new system but more in-depth analysis and following
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implementation are objects for future research.

4.8 FPGA Design Synthesis

The logic synthesis of the RTL design proved to be very challenging. Given the complexity

of the SoC design, the synthesis tool would take up to five days to finish generating an

FPGA bitstream, running on a machine with an 8th generation Intel i7 processor and

16 GB of RAM. I faced several problems when including external IPs and could not find

synthesis and place-and-route strategies that would not lead to timing violations in the

final routed design. These timing violations would then make the debug interface to not

work, precluding software tests to be performed. For the evaluation, I then considered

tests of the GNSS software without the GNSS Module integrated into the DAHLIA SoC

together with results obtained during simulation of the RTL design.
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5 Software Design

In this chapter, I discuss the GNSS Receiver Software. I first present this multi-module

application while retaining greater attention to the components responsible for the pro-

cessing of the GNSS channels. Then, I describe the porting process of GNSS software to

the new SoC, explaining the design choices I made along the way. Lastly, I propose a new

memory layout aiming to exploit new features introduced by the Arm Cortex-R52.

5.1 GNSS Receiver Software

The GNSS software taken as the baseline for this project is composed of two modules,

depicted in yellow in Figure 5.1. The Application Software calculates the receiver position,

velocity, and precise time (PVT) based on attitude and acceleration information from the

on-board computer (OBC) and signal measurements coming from the Receiver module

such as pseudorange and range rate, and navigation data retrieved from GPS satellites like

almanac and ephemeris. It delivers channel predictions and clock corrections towards the

Receiver Software. The Application Software runs on an Arm Cortex R5 processor and is

referred to as Navigation Module. The analysis of this module is out of the scope of this

thesis. The Receiver Software, instead, is where hard real-time processing is performed,

running on a LEON processor synthesized in a Spartan-6 FPGA. It has the Receiver

Framework that manages the processor low-level configuration and the Sensor Module,

which contains the code and carrier loops for searching and tracking the signals broadcast

by GPS.

5.1.1 Sensor Processing Module

The Sensor Module contains all the functions needed to acquire, track, and decode GPS

L1 C/A signals. A functional overview is depicted in Figure 5.2, with software components

being represented in yellow and hardware in grey.
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Figure 5.1: GNSS baseline software block diagram [26].

Figure 5.2: Sensor Module block diagram [26].
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This module receives as input the GPS L1 RF signal coming from the RF front-end and

channel predictions from the Navigation Module. It then outputs measurements on the

individual GPS satellite, such as pseudorange and range rate, and navigation data like the

almanac, ephemeris, and iono. As the Receiver Software is running bare metal, after a first

initialization is done, the processor is kept in an infinite loop, waiting for an interrupt to

happen. Three possible interrupts may occur, and each block from Figure 5.2 is assigned

to one of these interrupts as shown in Table 5.1.

Interrupt Functional Blocks
Channel Controller Interrupt Channel Controller

Measurement Epoch Interrupt
ACG Control
ME Measurement Generation
Time Management

One Second Interrupt Nav Data Decoding and Tables
One Second Measurement Generation

Table 5.1: Interrupt assignment of the functional blocks in the Sensor Module .

The Channel Controller Interrupt has the highest priority and is triggered by a hardware

timer overflow signal every 500 us (2 kHz). The Measurement Epoch Interrupt is invoked

whenever a Measurement Epoch (ME) event occurs, which happens roughly every 20 ms

(50 Hz). The ME event is acknowledged by the Channel Controller that, from software,

forces the Measurement Epoch Interrupt to be triggered. Within the Measurement Epoch

Interrupt the receiver time is maintained. Once the time management detects a second

rollover, it triggers the One Second Interrupt, which then executes all the procedures related

to this module. Table 5.2 summarizes the characteristics of the Sensor Module’s interrupts,

specifying the priority scheme, the invoking frequency, and how they are triggered.

Interrupt Priority Frequency Source
Channel Controller Interrupt High 2000 Hz Timer
Measurement Epoch Interrupt Medium 50 Hz Software generated
One Second Interrupt Low 1 Hz Software generated

Table 5.2: Characteristics of the Sensor Module’s interrupts.

At system startup, all channels are idle until the Channel Controller receives predictions

for the individual channels containing e.g. the PRN which shall be processed within the

requested channel number. The software keeps checking for new predictions in the endless

loop. When a prediction is received, the Channel Controller then runs the search initial-

ization task for configuring the carrier and code NCO values and the initial integration

time. Once the signal is found, the Channel Controller moves to a tracking state.
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GNSS Core Device Driver

The GNSS Core Device Driver implements a hardware abstraction layer for the application

software for accessing all AGGA-4 hardware registers. A function in the device driver is

implemented for every hardware feature accessed via software. It controls access to the

PIC, the SPI interface, and the GNSS Core.

Channel Controller/Manager

The Channel Manager configures all channel parameters. After each Integration Epoch

(IE) the channel generates new IE observables. They are used by the Channel Controller

to compute new correction values for the code and carrier NCOs. They are re-programmed

at the rate of the integration epoch to make sure that the channel keeps the tracking

with the carrier and code phase of the incoming GNSS signal, as part of the code and

carrier tracking loops. After the acquisition, the estimation of the code phase and carrier

frequency is used to check whether it is possible to lock the loops or not. This is done at

1 ms integration time. If its is possible to lock the signal, then it is tracked from there on

and the loops are switched to a 4 ms integration time. Otherwise, the Channel Controller

goes back to the search procedure. The tracking state machine is shown in Figure 5.3.

The Channel Controller processes new IE observables with a rate of up to 1000 IE

observables per second per channel, during acquisition and tracking. Given this high

processing rate, the Channel Controller is responsible for most of the CPU usage.

Figure 5.3: Signal tracking sequence inside the Channel Controller [5].
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Nav Data Decoding and Table

The Navigation Data Decoding block decodes the navigation data out of the signal and

fills the Navigation Data Tables with data such as the ephemeris and almanac. These data

are fetched by the Application Software to be used in navigation planning.

AGC Control

The Automatic Gain Control (AGC) is used to keep the noise floor of the RF front-end

at an optimum level such that the ADC operates at its optimal range. The AGC can

compensate for noise power fluctuations caused by e.g. temperature or aging effects.

ME Measurement Generation

The ME Measurement Generation block processes the ME observables from AGGA-4.

While the IE observables contain the correlation results and are used for acquisition and

tracking of the individual GNSS signals, the ME observables contain the raw measurement

results of the individual GNSS signals and are used to produce raw measurements such as

the pseudorange, and phase and range rate measurements.

One Second Measurement Generation

The One Second Measurement Generation module is executed once per second and gathers

the raw measurements which the ME Measurement Generation produced. From these data,

the final one-second measurements are calculated.

Time Management

The Time Management block is responsible for the time management in the receiver. It

keeps the receiver time based on the hardware internal time and the time retrieved from

the navigation data.

5.1.2 CPU Usage

The CPU usage of the GNSS Receiver Software is currently increasing linearly with the

number of used channels either in acquisition or tracking state. With every added channel

more time is spent in the Channel Controller, ME Measurement Generation, and One

Second Measurement Generation. The Channel Controller is using by far most of the

processing time since it is executed 2000 times a second. While this rate poses no issues

with only one channel, it becomes an issue when multiple channels are being processed in
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parallel, so optimizing the Channel Controller for performance gives the best improvements

in timing. The CPU load in the ME Measurement Generation is increasing with every

channel which is not in the idle state, as more measurement observables generated by the

hardware must be filled in the measurement data queues. Nevertheless, since it runs every

20 ms, it does by far not consume as much CPU load as the Channel Controller. The same

applies to the One Second Measurement Generation, which runs at an even lower rate.

5.2 Onto DAHLIA SoC

The porting process of GNSS software to the new SoC can be summarized in three main

sequent conceptual steps. The first refers to the modifications needed in the software to

compile for the new processor architecture with the new compiler. The second step was to

adapt the software to the new processor architecture, including fixing the functionalities

that were lost in the first phase, in order to recover the GNSS signal processing. The third

step relates to the software adaptions to take advantage of the new processor’s features for

optimizing the algorithm performance.

5.3 SPARC Assembly Code

Being architecture-dependent and specific to the LEON processor, all the code written

in SPARC assembly language had to be removed. I did it using C compiler directives,

replacing the inline assembly code segments and functions by empty stubs. I then removed

the assembly files from the compilation list. This strategy adopted was meant to be less

intrusive than removing all function calls in the code and I fixed the affected functionalities

later with the Cortex-R52 features. The modules affected relevant for the tracking of signals

were the Debug Support Unit, in which assembly was used to implement timing routines

such as delay functions; the Serial General Purpose Output (SGPO) driver, the peripheral

port used to output debug text messages; and the interrupt and exception handlers.

5.4 Dependences on SPARC Compiler Definitions

Due to a combined framework of the Application Software and the Receiver Software, some

pieces of code rely on data structures and definitions coming from the SPARC compiler and

the Real-Time Executive for Multiprocessor Systems (RTEMS). As they are simply defined

in plain C language, I added the files containing the used definitions to the compilation

list, causing no impact on functionality.

46



5.5 Floating-Point Support

After every integration epoch, the Channel Controller reads out all correlator results from

the AGGA-4 hardware and transforms them on floating-point values for further processing.

These values are used either by the acquisition or tracking, which includes several filters

that contain additions, multiplications, and other floating-point operations. The GNSS

software requires double-precision floating-point calculations to process the integration

epoch observables and produce the measurement epoch data, such as the pseudorange,

phase, and range rate. At first, to get the code compiled, I set the compiler directives to use

software emulated floating-points, as it can handle all kinds of numbers representations and

precisions. Later, however, considering that double-precision software emulated libraries

require many more accesses and have a performance up to 50 times slower than a hardware

Floating-Point Unit (see [27]), I switched to using the Cortex-R52 Advanced SIMD and

floating-point unit.

5.6 Serial Debug Messages

The purpose of the SGPO peripheral is to output debug text messages and even though

it could have been also integrated into the SoC, I replaced it for the UART available in

DAHLIA. The main reason being the extra work needed to integrate it into the design and

have a connection from the evaluation board to the computer. As the SGPO uses a FIFO

scheme, this design choice is likely to introduce some extra latency during the software

execution but it is not critical once text messages are output only during the initialization

phase and once a second during the tracking phase. Furthermore, it is included only in

debug mode.

5.7 Time Management

One of the observables in a GNSS application is the receiver time, hence time functions

are constantly invoked during the execution of the receiver software. In AGGA-4, the DSU

is responsible for providing timing information and management to the LEON processor.

For DAHLIA, I implemented a custom library based on the CPU counter-timer available

on the Cortex-R52 and replaced the calls to the DSU with this library. The CPU counter-

timer is placed in a clock domain slower than the one that the CPU cores are at. In the

FPGA prototype, this counter runs at 6.35 MHz. This means that the time management

library is limited to a precision of t = 1
6.35·10−6 ≈ 157ns. This precision is enough for the
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delay functions as they are used during the software initialization only, to make the CPU

wait for the reset and initialization of the GNSS Core, which is not timing critical. On

the other hand, the tracking loops highly rely on timestamps to adjust the carrier and

code NCOs during signal tracking and this limited precision is likely to introduce phase

errors and mismatches, thus limiting the accuracy that can be achieved with the FPGA

prototype. Nevertheless, the CPU counter-timer in the ASIC design is in a clock domain

at 80 MHz, leading to the same time precision that the current system with the LEON

processor offers, known to be enough for the GNSS application.

5.8 Interrupt Handling

The Cortex-R52 defines three types of interrupts: Shared Peripheral Interrupts (SPIs), Pri-

vate Peripheral Interrupts (PPIs), and Software Generated Interrupts (SGIs). In AGGA-4,

the Channel Controller Interrupt is triggered by a hardware timer. To replace this inter-

rupt’s source, I set the Hypervisor Timer to trigger a PPI when an overflow occurs and

wrote an interrupt routine that reloads the timer every time it is executed, with the value

corresponding to a 500 us period. This routine calls the Channel Controller Interrupt han-

dler. As the Measurement Epoch Interrupt and the One Second Interrupt are software-

generated, I attached each one to an SGI. The former to SGI0 and the latter to SGI1. I

then wrote simple functions to force the activation of these interrupts and replaced them

in the Sensor Module code where they were previously forced in AGGA-4. To not interfere

in the algorithm’s logic, I replaced the interrupts’ masking and enabling at the same places

where they were before. Since I did not wire any hardware peripheral from the eFPGA to

the GIC, no SPI was used.

Even though fast interrupts (FIQs) requests were available, I opted for signaling all three

interrupts as normal interrupt requests (IRQs), thus setting them to the GIC’s Group 1

of interrupts. Given that a signal processing algorithm is executed inside the interrupt

handlers, the interrupt invoking latency is negligible when compared to the handler’s ex-

ecution time. FIQs were left for higher priority sources, as watchdog timers, semaphores,

and others. Finally, to allow interrupt preemption, I configured the interrupts’ priorities

in the same way as described in Table 5.2. At this point, the full execution of the Sensor

Module was recovered.
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5.9 Address Map

The Receiver Software makes use of three main structures. One related to the LEON

configuration registers, one to the DSU registers, and one to the GNSS Module. They are

combined structs to append in one variable all registers with the right offset. As presented

in the last chapter, I had to shrink the addresses in the GNSS Module so they would fit the

4 MB LLPP range. In addition, I reduced the number of channels down to 4. Therefore, I

had to restructure the GNSS struct by setting new memory offsets and set the base address

of the GNSS struct to point to the base address of the LLPP. As the DSU and the LEON

registers were not included in the new design and their functionalities were accordingly

replaced with features of the DAHLIA SoC, I removed all references to them from the code

using compiler directives.

5.10 Configuration Parameters

Some software definitions were fixed for the application type and some depended on the

building tools used. To comply with the new system, I had to redefine several of these

parameters. The number of channels and input modules present in the GNSS Core, so

the loops and minimum and maximum checks would properly work; the clock frequency

used to calculate timespans to the frequency of the CPU-counter-timer; several compiler

directives.

5.11 Navigation Dependence

At system start, all channels are in an idle state and after channel predictions have been

received, the Channel Controller enters a searching state and starts sweeping the locally

generated codes and carrier trying to find the incoming signal from the predicted satellite.

In order to bypass these predictions coming from the not present Navigation Module, I

created a function to locally force these predictions into the Channel Controller. This

method is called after the initialization phase has finished and before entering the endless

loop, and forces all channels into searching state.

5.12 Instructions and Data Placement

Regarding instructions and data placement, at first, I allocated code and data to the

eRAM and setup the stack on TCMC. Later, aiming to exploit the full capabilities of the
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Cortex-R52, I analyzed a new memory layout. The goal was to take advantage of the

TCMs for allowing run-time critical software to be placed on these fast memories while

non-time-critical software to be kept in the eRAM. The single-cycle access TCMs provide

a much faster code execution as instructions and data do not have to undergo the shared

interconnect to access the memory and it is in the same clock domain as the CPU.

The first step was to define which components in the Sensor Module should be considered

as run-time critical. Among the interrupts in Table 5.1, the Channel Controller Interrupt

is the most recurrently invoked and it demands intensive calculations in the tracking loops,

to search and lock signals. It is, therefore, reasonable to consider the Channel Controller/-

Manager that runs inside this interrupt handler as run-time critical. Another time-sensitive

block is the GNSS Core Device Driver, which contains driver functions to control the regis-

ters in the GNSS Module. On every Channel Controller Interrupt, new values are written

to the carrier and code NCOs inside the GNSS Core, so one should expect performance

improvement by optimizing this task. Therefore, the GNSS Core Device Driver was also

considered as run-time critical. Besides the critical parts in the GNSS software, I defined

as run-time critical also the reset vector table, the interrupt service routines, and the C

libraries such as libc, memcpy, and math.

In order to redefine the target memory layout of the output binary file, I needed to in-

terfere in the linking phase of the code build process. The first step was to split all object

files generated after the compilation and assembling of every source file into two groups:

criticalsw_objects, the group containing all the software blocks defined as run-time crit-

ical; and noncriticalsw_objects, the group containing the remaining files, categorized

as non-run-time critical. Each group is then first linked to a single object: libcritsw.o

and libnoncritsw.o. These two objects are next passed to the GNU linker and a custom

linker script is used to drive it and generate the output file. The instructions (.text sec-

tion) of the object libcritsw.o are mapped to the TCMA while the data sections (.bss and

.data) put on TCMB. All the sections of the object libnoncritsw.o are allocated to the

eRAM. Finally, the stack is placed at the end of TCMC. The software does not perform

any dynamic allocations, so there is no need for allocating a heap. The final memory layout

is shown in Table 5.3.

It will be shown in the next chapter that, in theory, the whole Sensor Module could fit

inside the 3 TCM’s. Even so, I did not consider this approach because the software for

the next generation of receivers aims to process many more GNSS signals such as Galileo

and Glonass, rather than only GPS C/A in L1. Thus, it is reasonable to expect greater
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Memory Unit Memory Content

TCMA

Reset vector table
Interrupt handlers
System libraries (math, libc, memcpy)
Channel Controller (text)
GNSS Core Device Driver (text)

TCMB Channel Controller (data and bss)
GNSS Core Device Driver (data and bss)

TCMC Stack
eRAM Non-critical code (text, data and bss)

Table 5.3: Memory layout.

memory usage.

Even though accesses to the TCMs are unified, meaning that both instruction and data

can be placed on the same memory, separating instruction code and data code into separate

TCMs can lead to performance improvement. The reason is that all 3 TCMs can be

accessed simultaneously. Therefore, splitting code and data into different TCMs avoids

waiting states being introduced on concurrent accesses from the data and instruction buses,

once each TCM can only be accessed by one source at a time. Furthermore, according to the

Cortex-R52 Technical Reference Manual, TCMA is optimized for the reset vector table and

exception handler code and, when using bus ECC protection, the TCMA is also optimized

for instruction fetching while TCMB and TCMC are optimized for data fetching. This

explains the design choices I made even if ECC protection is optional and not present in

DAHLIA.

In a case where an external device accesses the TCMs via the AXIS interface, such

as another CPU core or a DMA controller, a better memory layout can be designed. For

instance, data accessed by different masters could be placed into different memories making

simultaneous accessess possible.

5.13 Profiling

To allow performance profiling and dynamic code analysis, I wrote a HAL library for the

Cortex-R52 Performance Monitor Unit (PMU) and configured it to count events such as

LLPP read and write requests, instruction and data cache misses, and CPU cycles between

consecutive integration epochs.
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6 Evaluation

In this chapter, I first present code correlation tests, where I assure that the PRN code

generator is producing a signal compatible with the local replica in the channels and

meaningful observables are produced. Then, I evaluate the latency of accesses to the

eRAM which are done through the AXIM interface and to the GNSS Module through the

LLPP. Finally, I present a code profiling of the GNSS Receiver Software, evaluating its

memory usage and estimating the channel tracking performance for both the FPGA-based

prototype and the ASIC.

6.1 Correlation Tests

I performed the code cross-correlation tests using the software Mentor QuestaSim, where

I set a testbench to input control signals to the GNSS Core modified with the PRN code

generator, as previously depicted in Figure 4.4. By sending inputs via a TCL script, I first

configured Channel 0 to be active and preloaded its primary RAM with the chosen PRN

code. The code stored in this memory is forwarded by the Code Unit Generator towards

the Correlator Unit. I selected the following channel configuration:

• fclock = 4.875 MHz

• fcarrier = 0 Hz (input signal without carrier)

• fcode = 1.023 MHz

• Inegration epoch = 1023 chips

These settings lead to an integration epoch’s period of ∆IE = 1023 [chips]
1.023 [MHz] = 1 ms. I

then set a delay in the PRN code generator to have its signal being output at the same

clock cycle as the code from the Code Generator Unit, right at the beginning of a new

integration epoch.

Figure 6.1 presents signal timing waves from a watchpoint placed at the input of the

Correlator Unit, where it is possible to see the input code, at the bottom, matching exactly
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the code generated in the channel, on top. Throughout an integration epoch, which covers

1023 PRN chips, only a few samples from the input generator differed from the code

locally generated in the channel as highlighted in red in Figure 6.2. We can see that these

mismatches last only one clock cycle, so we may expect good cross-correlation between

both signals. Indeed, that is the case. In Figure 6.3, if we first look at the accumulator

signal, we see random values when the input generator has not started yet and then the

increasingly accumulated value result of the codes’ correlation as the integration happens.

At the end of this integration epoch, identifiable by a sharp spike in its signal wave, we

see the accumulated value being flushed for the next epoch and the integration observables

changing from very low values to very high values.

To have a quantitative comparison, a precise code match would lead to an integration

value of:

IntV aluemax = fclock · ∆IE = 4.875 [MHz] · 1 [ms] = 4875 (6.1)

Whereas, from the timing waves, we have the following integration observables:

• IntV alue_EarlyEalry = 2715 ≈ 55.7%

• IntV alue_Early = 3739 ≈ 76.7%

• IntV alue_Prompt = 4763 ≈ 97.7%

• IntV alue_Late = 3963 ≈ 81.3%

• IntV alue_LateLate = 2939 ≈ 60.3%

We verify a very high correlation value in the prompt signal that perpetuates over the

following integrations epochs, once the PRN generator loops over other 1023 code chips

as new integration epoch begins. This means that once the signal is tracked, the tracking

loops do not need to modify the code frequency in the Code Generator Unit. This is a

good result because we can proceed to test cases with a replicable input scenario, removing

the uncertainty usually present during the acquisition of GNSS signals. We also verify that

the correlation observables follow the trend in Figure 2.3, that is, once the signal is tracked

we have a correlation peak in the prompt signal that diminishes as we move towards early

and late samples. Lastly, the period of an integration epoch seen in the timing waves is

∆IE = 999999 ns ≈ 1 ms, which in line with our expectations.
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6.2 Memory System Latency Analysis

To perform latency analysis I used the Mentor QuestaSim software with the DAHLIA SoC

design using the Arm Design Simulation Model (DSM) for the Cortex-R52. The DSM offers

full device functionality, meaning that the simulation model fully matches the architecture

and functionality of the RTL model. Additionally, it is cycle-accurate, exhibiting the same

intra-cycle timing as the RTL model.

I set up a testbench with a command sequence to initialize all modules in the SoC and

configure the R52 Core-0 to incrementally fetch instructions from the eROM and, at the

beginning of the simulation, load the eROM content with an external HEX file. In this

way, I could externally compile a small test case in Assembly language, and generate a

HEX file with the instructions to be executed by the CPU core.

6.2.1 eRAM Transactions

When data are loaded into cache memory, access times for subsequent loads and stores

are reduced, due to the one-cycle access, resulting in overall performance benefits. An

access transaction to information already in a cache is known as a cache hit while other

accesses are called cache misses. When a cache miss occurs, the processor has to go fetch

the instruction or data in the device or external memory, requiring many more CPU cycles

to complete the task.

The tests presented in this section aimed to analyze the latency of accesses of data stored

in the eRAM, representing the case where a data cache miss occurs, to then compare with

the case as if these data were located in a TCM. Four test cases were considered: a read

of a single word, 32 bits; a burst read of two single-words, 64 bits; a write of a single

word, 32 bits; a write to four words, 128 bits. As the R52 core accesses both eRAM and

eROM via the AXIM interface, I opted for small-size burst transactions so there would be

no instruction fetching on the eROM between reads and writes to the eRAM. The signals

analyzed were from the CPU side, i.e. from the AXIM interface.

Read

The timing waves of a read transaction of 32 bits are shown in Figure 6.4. It is possible to

identify a reading request being issued by the R52 core when the ARRVALID signal, which

is steadily LOW, becomes HIGH and the ARADDR signal is set to a memory address in

the eRAM. The read data are valid and in the read bus, RDATA, 22 CPU cycles later,

identifiable by a data change in the read bus and by the pulse in the RVALID signal.
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Therefore, a read to a single word takes:

∆read =
ncycles

fCPU
=

22

50 [MHz]
= 0.44 us (6.2)

Burst Read

A burst read of two words is presented in Figure 6.5. By following the same analysis proce-

dure done in the last case, we see that the CPU reads the first word 22 cycles after issuing

the request and the second word 2 cycles later, thus summing 24 cycles to complete the

transaction, that in time is 0.48us. It is important to notice that a burst read transaction

size larger than two words has to be interrupted by a new CPU instruction fetch, leading

to a case similar to a new transaction.

Write

Considering now a case of a write transaction of a single word, the test results are shown

in Figure 6.6. We can spot the moment when the write request is issued by looking at the

AWADDR signal when it changes to an address inside the eRAM and the data become

available on the WDATA bus. The confirmation that these data have been successfully

written in the memory is identifiable by the BVALID signal switching from LOW to HIGH.

This takes 23 CPU cycles, that in time is 0.46 us.

Burst Write

A burst write of 4 words is shown in Figure 6.7. Again, following the same procedure, we

find that this transaction is concluded in 31 CPU cycles. In time, it is 0.62 us.

Analysis

For performance comparison between the TCM and the eRAM, considering the case of a

single read operation to a TCM, the R52 takes one cycle to finish it, since these memories

have a zero wait-state. For the eRAM, a read operation also takes one cycle in the case of

a cache hit. If we have instead a cache miss, the same operation takes at least 22 cycles to

complete. It is important to notice that these test cases consider the best possible scenario

where the AXI bus is not being used by other SoC peripherals, so there is no waiting time

from the moment that a request is sent by the R52 core until it is actually propagated in

the bus. In a more realistic scenario, the actual latency of each transaction is likely to be
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greater and will highly depend on the system and how much the AXI interconnect is being

stressed.

Altogether, it is verified that a cache miss of data placed in the eRAM will imply in an

access time at least 22 times slower than if these data were placed in a TCM but, even

though this performance difference is notorious, one should expect a great impact on the

overall software performance only if cache misses frequently happen and the CPU core has

to then fetch the data from the external memory. Thus, it is important to estimate how

often this situation is encountered. I perform such an evaluation in section 6.3.2.

6.2.2 LLPP Transactions

Moving onto a latency analysis of LLPP transactions, the scope of the following tests was

to estimate how long the R52 core takes to access registers in the GNSS Core. As the GNSS

Module is not able to perform burst transactions, only single read and write operations

were considered. The signals of the intra-components (see Figure 4.5) that perform each

operation were analyzed to break down the overall latency and expose possible modules

that could be optimized.

In Figure 6.8 and Figure 6.9, the LLPP0_Master group of signals refers to the LLPP

interface on the R52 core, where we can spot when a read or write operation request is sent

by the CPU core. The LLPP0_Slave represents the AXI interface in the AXI4-to-AHB-

Lite bridge, i.e. the AXI signals after they have passed through the interconnect. The

group labeled as Sync_module is the AHB slave interface of the GNSS Module. Finally,

the GNSS Core group refers to the signals at the front interface on the GNSS Core such

as chip select signals, address and data buses.

Read

A read operation of a 32-bit register inside GNSS Cores’s Channel 0 is presented in Figure

6.8. The read request is sent by the R52 core when the signal ARVALID in LLPP_Master

switches from LOW to HIGH. It then takes 21 CPU cycles for the request to reach the

AXI4-to-AHB-Lite bridge. This latency is due to the interconnect synchronization between

the different clock domains. Now in the GNSS Core clock domain, the bridge spends 2

GNSS Core cycles on the protocol translation until the AHB request is available for the

Sync_module. This moment is identifiable by the address change in the Sync_module’s

HADDR bus. This component performs an address decoding, then the register address

is sent out to the GNSS Core 2 clock cycles later. The GNSS Core takes 2 more cycles
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to fetch and output the data on the DataOut bus. These data are available back in the

Sync_module 2 cycles later. Another 3 cycles until finally reach the bridge’s AXI interface.

The read operation finishes 1 CPU cycle later after the synchronization has finished and

the data are finally available in the CPU core. Table 6.1 summarizes the latency introduced

on each stage of the transaction.

Interface Latency Latency
R52 core -> AXI4-to-AHB Bridge 21 CPU cycles 0.420 us
AXI4-to-AHB Bridge -> Sync Module 2 GNSS Core cycles 0.410 us
Sync Module -> GNSS Core 2 GNSS Core cycles 0.410 us
GNSS Core -> GNSS Core 2 GNSS Core cycles 0.410 us
GNSS Core -> Sync Module 2 GNSS Core cycles 0.410 us
Sync Module -> AXI4-to-AHB Bridge 3 GNSS Core cycles 0.615 us
AXI4-to-AHB Bridge ->R52 core 1 CPU cycle 0.020 us

Table 6.1: Latency introduced by each component in a read operation through the LLPP.

It is worth it reminding that the Sync Module is not performing any sort of synchro-

nization in this new system since the AHB interface and GNSS Module are placed in the

same clock domain. This task is performed by the interconnect. The synchronization time

is variable and depends on the relative phase mismatch between the clock edges of the

CPU clock and the GNSS Core clock at the time when a request is sent. Nevertheless, the

average value can be estimated. For the crossing from the CPU clock to the GNSS Core

clock, we have:

1 · TCPU + 1.5 · TGNSS < ∆t < 1 · TCPU + 2.5 · TGNSS (6.3)

0.338 us < ∆t < 0.533 us (6.4)

That on average will result in ∆t ≈ 0.435 us. On the other hand, for the crossing from

the GNSS Core clock to the CPU clock, we have:

1 · TCPU < ∆t < 2 · TCPU (6.5)

0.020 us < ∆t < 0.04 us (6.6)
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That on average will result in ∆t ≈ 0.030 us. Summing the latency introduced by each

stage and considering average synchronization times we get the overall read transaction

latency of ∆read ≈ 2.720 us.

We notice that the bridge is responsible for a big part of the overall latency as it requires

5 GNSS Core clock cycles during the whole transaction. A more adequate solution would

be to remove this component and substitute the Sync Module by an AXI4 slave interface,

sparing these 5 extra clock cycles and resulting in a transaction latency of ∆read ≈ 1.695us,

more than 37 % faster than the current approach.

A GNSS Core clock frequency of 4.875 MHz was considered for these calculations, which

translates to the GNSS Module running at 58.5 MHz in the ASIC. If this frequency could

be pushed to 80 MHz or even 100 MHz, which for the FPGA-based prototype would be

approximately 6.667 MHz and 8.333 MHz respectively, we would have ∆read@6.667MHz ≈

2.000 us and ∆read@8.333MHz ≈ 1.610 us, by following the same procedure done above and

considering the bridge included. If we instead consider an AXI4 slave interface in the place

of the bridge and Sync Module, we get ∆read@6.667MHz ≈ 1.250 us and ∆read@8.333MHz ≈

1.010 us. Table 6.2 summarizes the afore-mentioned results.

AXI4-to-AHB bridge AXI4 slave interface
GNSS Module @4.875 MHz 2.720 us 1.695 us
GNSS Module @6.667 MHz 2.000 us 1.250 us
GNSS Module @8.333 MHz 1.610 us 1.010 us

Table 6.2: Latency summary of a read operation through the LLPP of a register located
in the GNSS Core.

Write

Figure 6.9 shows a write operation of a 32-bit register inside Channel 0 of the GNSS Core.

By doing the same analysis of the signal timing waves, we get the results presented in

Table 6.3 and Table 6.4. This case differs from a read operation because as soon as the

Sync Module sends out the write request to the GNSS Core, the bridge signals back to the

R52 core that the transaction has finished even if the register has not been actually written

yet. Therefore, the latencies reported in Table 6.4 do not account for the overall latency

that turns out to be the sum of the stages reported in Table 6.3. Naturally, a following-up

write request will last longer than accounting only the components in Table 6.3 as the

Sync Module would have to wait until the GNSS Core has finished writing the data from

the first operation. However, this situation is not encountered during the execution of the

timing-critical routines of the GNSS Receiver Software. The ChannelController, while in
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tracking state, updates the values of the carrier and code NCOs with some data processing

in between these two write transactions, thus giving room for the GNSS Core to properly

finish handling a write request before another one is made. This means that the effective

CPU halt time is the sum of the latencies reported in Table 6.3, that is ∆write ≈ 1.490 us.

As for the case of a read operation, I considered the average synchronization times.

Interface Latency Latency
R52 core -> AXI4-to-AHB Bridge 14 CPU cycles 0.280 us
AXI4-to-AHB Bridge -> Sync Module 3 GNSS Core cycles 0.615 us
Sync Module -> AXI4-to-AHB Bridge 2 GNSS Core cycles 0.410 us
AXI4-to-AHB Bridge ->R52 core 1.5 CPU cycles 0.035 us

Table 6.3: Latency introduced by the first components group in a write operation through
the LLPP.

Interface Latency Latency
Sync Module -> GNSS Core 2 GNSS Core cycles 0.410 us
GNSS Core -> GNSS Core 4 GNSS Core cycles 0.820 us
GNSS Core -> Sync Module 2 GNSS Core cycles 0.205 us

Table 6.4: Latency introduced by the second components group in a write operation
through the LLPP.

We verify also in this case that the bridge is responsible for the majority of the transaction

time. If it were replaced by an AXI4 slave interface, instead of 5 GNSS Core clock cycles

spent by the bridge, only 3 cycles would be necessary to receive the request, the data, and

signal back to the core that the transaction has finished. The overall write latency would

then be ∆write ≈ 1.080 us, an improvement of more than 27%.

Estimating this latency for the case where the GNSS Core is running at a higher fre-

quency, we get ∆write@6.667MHz ≈ 1.100 us and ∆write@8.333MHz ≈ 0.890 us if we consider

the bridge, and ∆write@6.667MHz ≈ 0.800 us and ∆write@8.333MHz ≈ 0.650 us if we consider

an AXI4 slave interface. Table 6.5 summarizes the results.

AXI4-to-AHB bridge AXI4 slave interface
GNSS Module @4.875 MHz 1.490 us 1.080 us
GNSS Module @6.667 MHz 1.100 us 0.800 us
GNSS Module @8.333 MHz 0.890 us 0.650 us

Table 6.5: Latency summary of a write operation through the LLPP of a register located
in the GNSS Core.
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Analysis

By extending the analysis procedure followed above to a more general case, I obtained in

MATLAB the plots in Figure 6.10 and Figure 6.11. They present curves of how the latency

of read and write transactions vary as a function of the GNSS Core clock frequency. We

verify that removing the bridge considerably decreases the latency in these accesses. In

both cases, the access time exponentially decreases as the GNSS Core clock frequency is

increased and to evaluate how this affects the overall GNSS Receiver Software performance,

I needed to evaluate the overall CPU load for different GNSS Core clock frequencies. I

perform such an evaluation in section 6.3.2.

Figure 6.10: Latency of a read transaction through the LLPP over the GNSS Core clock
frequency.

6.3 Code Profiling

I obtained a code profiling by instrumenting the binary executable using the GCC toolset

and through the statistics produced by the event-based Cortex-R52 PMU. Even though

these events were exported to the Embedded Trace Macrocell (ETM), they could not be

accessed due to the unavailability of a trace connection in the evaluation board. Neverthe-

less, the CPU core can access the event counters in run-time so I set the counter values to
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Figure 6.11: Latency of a write transaction through the LLPP over the GNSS Core clock
frequency.

be stored in an unused memory region of the eRAM which I could then export via Arm

DS debug interface. All tests described in this section were performed with the GCC -O2

optimization level, which provides maximum optimization resulting in a smaller and faster

executable.

6.3.1 Memory Budget

Table 6.6 presents the size of each segment of the output binary. The text section refers to

executable instructions; the data segment contains all initialized global variables and static

variables; the bss accounts for all global variables and static variables that are initialized

to zero or do not have explicit initialization in the source code without including the stack,

which is reported separately.

Text Data Bss (no stack) Stack
88488 bytes 9324 bytes 100696 bytes 65536 bytes

Table 6.6: Segments’ size of the code output binary.

The memory usage in the case where all software is located in the eRAM is reported in

Table 6.7, where we see that the whole software needs less than 5% of the memory available
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in the eRAM. The stack is placed in TCMC.

Memory Unit Available Used (bytes) Used (%)
TCMC 128 KB 65536 50
eRAM 4 MB 198508 4.7

Table 6.7: Memory budget with all code loaded in the eRAM.

Table 6.8 presents how much each memory unit is occupied when considering the splitting

of run-time critical and non-critical code into different memories. The eRAM usage is

reduced to 2.5% while all the TCMs are far from being full.

Memory Unit Available Used (bytes) Used (%)
TCMA 128 KB 60520 46.2
TCMB 128 KB 32064 24.5
TCMC 128 KB 65536 50
eRAM 4 MB 105924 2.5

Table 6.8: Memory budget with splitting of run-time critical and non-critical code into
different memories.

Analysis

We notice that the use of TCMs is advantageous for reducing eRAM usage that is a shared

resource between the other CPU cores. In fact, we see that the TCMs are sufficiently large

to hold the entire GNSS software. Nevertheless, I did not consider this scenario because

the code size could potentially increase in the case where the software processes signals

other than GPS C/A in L1.

6.3.2 Signal Tracking Performance

Given the problems I encountered during the FPGA bitstream generation, I could not

run tests on the GNSS Receiver Software with the GNSS Module integrated into the SoC

design. For the software tests, there was an AXI Traffic Generator connected to the LLPP

interface that guaranteed that every transaction could complete without errors even if with

meaningless data. To still evaluate the signal tracking performance in the DAHLIA SoC,

I moved onto estimating the CPU usage considering the access timing to registers inside

the GNSS Core through the LLPP that were obtained during the simulations with the

Cortex-R52 Arm DSM presented in the previous section. The DSM exhibits the same

intra-cycle timing as the RTL model which ensures accuracy in these estimations.

As one may expect, the software flow highly depends on data coming from the GNSS
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Core and is likely to run into error states if this component is not present, due to the lack

of coherent data. To overcome this issue, I manually set all the conditional expressions

to make the CPU core follow the expected program flow as if it were in a situation with

coherent data. However, the scenario with channels in searching state proved difficult to

ensure correctness in the software execution flow due to the constantly changing conditional

trees. Thus, I considered all channels in tracking state.

As discussed before, the tracking state executes the PLL and DLL as part of the carrier

and code loops which are responsible for the majority of the CPU load in AGGA-4. I did

not consider the Measurement Epoch Interrupt and the One Second Interrupt because,

out of the three interrupts in the GNSS Software, the Channel Controller Interrupt is the

one that consumes by far more CPU resources since it runs 2000 times per second, which

makes it the one worth analyzing.

I set the PMU to count the number of CPU cycles spent during 1000 Channel Controller

Interrupt elapses together with the number of instruction and data cache miss occurrences.

I computed the timespan of a single interrupt occurrence based on the CPU clock frequency.

In every test that I performed with either all software allocated in the eRAM or split be-

tween TCMs and eRAM, no cache misses occurred whatsoever. Since a cache hit takes one

CPU cycle to complete, both cases presented the same results. Therefore, all estimations

in this section apply for both memory layouts. Table 6.9 gathers the results considering

cases with different numbers of channels active at the same time, with the Advanced SIMD

and floating-point unit enabled.

Channels used Timespan (us)
0 9.575
1 20.297
2 31.685
3 42.591
4 53.396

Table 6.9: Measured Channel Controller Interrupt timespan for different number of active
channels in tracking state.

Resorting to the least-squares method, I generated the plot in Figure 6.12. As we can

see, all measured samples fit well the least-square curve meaning that the processing time

of each channel is very deterministic and follows the relation described in equation 6.7.

∆ttotal = ∆toffset + ∆tchann
· nchannels = 9.5216 + 10.9936 · nchannels (6.7)
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Figure 6.12: Least-square curve of the Channel Controller Interrupt timespan as a function
of the number of active channels in tracking state, with the Advanced SIMD
and floating-point unit enabled.

Figure 6.13: Least-square curve of the Channel Controller Interrupt timespan as a function

of the number of active channels in tracking state, with software emulation

floating-point support.
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Doing the same analysis but considering software support for floating-points, Figure

6.13 was obtained. Overall, it presents a performance ≈ 55 times slower when compared

to hardware floating-points handling.

Back to the Advanced SIMD and floating-point unit enabled, we see that the R52 core

spends ∆tchann
= 10.9936 us processing each active channel in tracking state plus an over-

head of ∆toffset = 9.5216 us that is present even if there is no channel being processed.

By inverting equation 6.7 and extrapolating to a timespan value up to 800 us that, consid-

ering that the integration epoch period was set to 1 ms, represents a CPU usage of 80%,

we get the maximum number of channels that can be in tracking state at the same time,

nchannelsmax = 69. Figure 6.14 shows this projection. In this analysis, I assumed no cache

misses occurring and accounted for 2 Channel Controller Interrupts happening during an

Integration Epoch, with interrupt latency of a single interrupt being 11.11 us, which was

measured in a separate test.

Figure 6.14: Number of tracked channels as a function of an interrupt timespan extrapo-
lated up to a CPU usage of 80%.

These results come with the use of an AXI Traffic Generator connected to the LLPP

which does not represent the actual influence of the GNSS Module latency in the software

execution. With a setup similar to the previous test, I measured the CPU processing
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time spent in single read and write transactions to the LLPP considering this AXI Traffic

Generator, getting the results shown in Table 6.10. In this case, the results came from

averaging 100000 samples and are presented in microseconds for easier comparison with

the latencies obtained in simulation with the Cortex-R52 Arm DSM, summarized in Table

6.2 and Table 6.5.

LLPP read LLPP write
0.35702 us 0.08000 us

Table 6.10: Latency of read and write operations with an AXI Traffic Generator connected
to the LLPP.

On each integration epoch, the Channel Controller performs two write operations to

registers in the GNSS Core for each channel in tracking state, which are new computed

values for the carrier and code NCOs. Recalculating ∆tchann
by substituting the time

contribution of these transactions with the AXI Traffic Generator by the latencies of the

each case reported in Table 6.5, we get the ∆tchann
values shown in Table 6.11. Naturally,

∆toffset is not affected since it does not depend on the LLPP transactions inside the

channels.

AXI4-to-AHB bridge AXI4 slave interface
GNSS Module @4.875 MHz 13.8136 us 12.9936 us
GNSS Module @6.667 MHz 13.0336 us 12.4336 us
GNSS Module @8.333 MHz 12.6136 us 12.1336 us

Table 6.11: Interrupt timespan recalculated with the write through the LLPP latency val-
ues obtained in simulation with the Arm DSM.

To then find out how many channels nchannelsmax that could be processed under 80%

of CPU usage, I used the same extrapolation technique of inverting equation 6.7 but with

the recalculated ∆tchann
values. The results, rounded to the nearest smaller integer, are

presented in Table 6.12.

AXI4-to-AHB bridge AXI4 slave interface
GNSS Module @4.875 MHz 55 58
GNSS Module @6.667 MHz 58 61
GNSS Module @8.333 MHz 60 62

Table 6.12: Maximum number of channels that could be tracked at the same time consid-
ering different GNSS Module configurations.

Performing the same analysis procedure for different GNSS Core clock frequencies, via

MATLAB, I obtained Figure 6.15. It presents a general curve of the maximum number of

channels that could be tracked in parallel for a given GNSS Core clock frequency.
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Figure 6.15: Maximum number of channels that could be tracked at the same time as a
function of the GNSS Core clock frequency.

Extending these results to the ASIC scenario, where the clock signals are 12 times

faster, and doing a similar analysis for this case, I could obtain the maximum numbers of

channels that could be ideally tracked as a function of the GNSS Core clock frequency.

The resulting plot is shown in Figure 6.16 while Table 6.13 highlights the values for the

GNSS Core running at 58.5 MHz, 80 MHz, and 100 MHz. They point out to a processing

capacity of more than 600 channels for every GNSS Module configuration considered so

far. Naturally, this scenario is not realistic because the number of GNSS satellites is way

below that.

AXI4-to-AHB bridge AXI4 slave interface
GNSS Module @58.5 MHz 660 700
GNSS Module @80 MHz 698 732
GNSS Module @100 MHz 721 750

Table 6.13: Maximum number of channels that could be tracked at the same time in the
ASIC considering different GNSS Module configurations.

For a more realistic scenario, I then considered 72 channels being tracked in parallel and

calculated the CPU usage for this case. This is the actual target for the next generation

of GNSS receivers, AGGA-5. Figure 6.17 shows how the CPU usage varies with the GNSS
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Figure 6.16: Maximum number of channels that could be tracked at the same time in the
ASIC as a function of the GNSS Core clock frequency.

Core clock frequency for the case of the GNSS Module having an AHB interface while

Figure 6.18 considers an AXI4 interface. The figures specify the amount of the total

usage that is due to the interrupt latency, the channel processing task timespan without

considering accesses to the GNSS Module, and the latency of these accesses themselves.

Table 6.14 highlights the CPU usage for the GNSS Core running at 58.5 MHz, 80 MHz,

and 100 MHz.

AXI4-to-AHB bridge AXI4 slave interface
GNSS Module @58.5 MHz 8.62% 8.13%
GNSS Module @80 MHz 8.16% 7.80%
GNSS Module @100 MHz 7.91% 7.62%

Table 6.14: CPU usage ins the ASIC with 72 channels in tracking state considering different
GNSS Module configurations.

72



Figure 6.17: CPU usage ins the ASIC with 72 channels in tracking state as a function of
the GNSS Core clock frequency, considering the GNSS Module with an AHB
interface.

Figure 6.18: CPU usage ins the ASIC with 72 channels in tracking state as a function of

the GNSS Core clock frequency, considering the GNSS Module with an AXI4

interface.
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Analysis

The statistics for these estimations were collected for a maximum number of active channels

varying from 0 to 4. Hence, those considering a number of channels greater than 4 assume

no cache misses occurring whatsoever. Although this might be the case for several channels

in tracking state, this assumption is not likely to hold for a very high number of channels

such as the results found for a CPU usage of 80% in the ASIC. In this case, the performance

is expected to drop since a cache miss is at least 22 times slower than a cache hit. Thus, it

is reasonable to expect a lower maximum number of channels in the ASIC than what the

estimations indicate. Nevertheless, these results are still valid if the allocation of run-time

critical code into the TCMs is considered.

The software processing burden added by each channel proved to be very deterministic

leading to a processing capacity in the FPGA-based prototype of 55 channels if we consider

a CPU usage of 80% in the implemented solution that has the GNSS Module running at

4.875 MHz and interfaced with an AHB-to-AXI4 bridge.

Moreover, increasing the GNSS Core clock frequency from 58.5 MHz to 100 MHz indi-

cates that the ASIC would be able to track about 50 channels more. Nevertheless, this

represents less than 1% decrease of the overall CPU load and raise questions if worthwhile,

given the greater power consumption that comes with increasing the design frequency.

6.4 FPGA Logic Gate Count

Table 6.15 reports a rough post-placement gate count of the GNSS Module in the FPGA

prototype. The values are relative to the total FPGA resources. GNSS Module accounts

for the AXI4-to-AHB bridge and does not include any channel in the Channel Matrix.

Channel represents the gate count of a single channel, thus increasing with every added

channel in the GNSS Core.

LUTs FFs BRAMs
GNSS Module 0,26% 0,16% 0.15%
Channel 0,20% 0,13% 0.02%

Table 6.15: GNSS Module gate count in the FPGA prototype.
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7 Conclusion

In this work, I sought to provide a GNSS sensor processing architecture for the novel

DAHLIA SoC. Exploiting the Cortex-R52 LLPP has allowed accesses to the GNSS Module

by the high-frequent channel processing task to be isolated from the main AXI interconnect,

precluding the latter from the overhead of the writing transactions to the carrier and code

NCOs and preventing the real-time channel task from being affected by traffic on the main

AXI bus from other SoC components. The LLPP is a direct connection from the CPU core

to the eFPGA, meaning that these transactions do not undergo the long shared multi-layer

interconnect. Additionally, this choice tackles problems that would come along with the

bus width of the 128-bit AXI interconnect, e.g. eliminating the need for redesigning the

32-bit GNSS Module to a 128-bit architecture.

When considering a maximum CPU usage of 80%, the implementation performed in the

FPGA prototype exhibited an expected capacity for processing 55 channels in tracking

state. Extending the results to the ASIC showed that DAHLIA SoC should be able to

track 72 channels using less than 10% of CPU processing power for every case analyzed.

In addition, increasing the GNSS Core clock frequency from 40 MHz to 100 MHz led to an

expected decrease in the overall CPU load of around 1.5%, raising questions if worthwhile,

given that a higher switching activity implies greater dynamic power consumption. More-

over, this study also showed that if the AHB interface of the GNSS Module along with the

AXI4-to-AHB bridge were replaced by an AXI4 interface, read and write operations would

be performed more than 37% and 27% faster, respectively.

The Cortex-R52 TCMs proved to be large enough to hold run-time critical routines

including the main parts of the GNSS Receiver Software. This memory placement increases

determinism in the channel processing and overcomes the performance drop expected when

the data limit that the cache memories can process is reached, avoiding accesses to the

eRAM that take at least 22 longer to complete. This memory layout also reduces eRAM

usage, sparing it for other applications running in the SoC.

Altogether, the performance exhibited by DAHLIA SoC opens new possibilities for future

GNSS sensor processing. The low CPU usage gives room for higher-level tasks such as
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Precise Orbit Determination to be performed on-board the GNSS receiver using a single

Cortex-R52 core. Also, new searching techniques can be exploited like multiple channels

being set to search for the same satellite signal, potentially reducing the Time-To-First-Fix

(TTFF) e.g. after a satellite reboot. Beyond sensor processing, the navigation software

can be thought of being integrated into the same CPU core, given that it currently runs

on an Arm Cortex-R5 processor.

7.1 Future Work

The implementation presented in this thesis has some limitations that are meant to be

overcome in future works, which include:

• Complete FPGA synthesis and validate the results and estimations in the FPGA

prototype.

• Validate the results and estimations in the ASIC.

• Determine data limit of the cache memories and validate the advantages of the mem-

ory layout that allocates run-time critical software into the TCMs.

• Evaluate performance with channels in searching state.

• Validate design with real GPS signals, requiring integration of an SPI module and

front-end circuitry.

• Replace AHB interface of the GNSS Module for an AXI4 interface and validate

results.

• Implement capabilities for allowing communication with the Navigation Module.
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