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1. Introduction
The study of small solar system objects, such
as asteroids and comets, are a key instrument
to understand the formation of our solar system
and the origin of life. Current estimates indicate
that 16 % of the Near Earth Asteroid population
is made of binary systems. Future missions that
will investigate these binary systems could re-
quire planning a set of robust close proximity op-
erations around small bodies. Such operations
could be challenging and can be complicated by
numerous factors such as the irregular shape and
mass distribution of a body and its weak and un-
certain gravitational field. Due to such factors,
the orbital dynamics around small bodies could
deviate from the ideal Keplerian motion. The
knowledge of the dynamics driving the motion
of a body in the vicinity of a binary system is
then a key point for the success of the mission.
In [3, 4] a new method to investigate the grav-
ity field of an asteroid using a physics-informed
neural network (PINN) is presented. The model
seems to have a fast computation time once the
PINN is trained, it can describe the potential
of an asteroid with the same accuracy of other
models while using a smaller number of param-
eters to do so and can be also modeled using

only the acceleration measurements. The PINN
model could be also theoretically used in-situ to
model the gravitational acceleration.
This MSc Thesis main goal then will be to ex-
tend the work done by the author to a binary
asteroid system. In particular, the Didymos-
Dimorphos system gravitational field is studied.
This work is divided in two parts. The first part
is focused on modeling the gravity field of the bi-
nary asteroid system using PINN with data gen-
erated from some known model and compares
the results with other traditional methods. In-
stead, in the second part, the PINN are trained
from simulated acceleration measurements to
understand to what extend PINN can be used
to map the gravity field in-situ.

2. Methodology
2.1. Physics-Informed Neural Net-

work
An artificial neural networks (ANN) is a com-
puterized model inspired by the human brain’s
structure and functioning. It consists of inter-
connected nodes (neurons) organized in layers,
with each connection having a weight, and aims
to map input data to desired output by adjust-
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ing these weights during a training process. Es-
sentially, it’s a tool for solving complex prob-
lems and recognizing patterns in data. However,
one of the disadvantages of using ANN to rep-
resent a function found in physics is that the
learned representation may not satisfy the fun-
damental properties of said function. In [5] this
problem is addressed and a method to train the
ANN to ensure that the learned representations
obey the differential equations that govern the
system is proposed. To this end, PINN are in-
troduced. PINNs add the differential equations
into the cost function of a traditional neural net-
work and use automatic differentiation to ensure
that these equations are respected by the func-
tion learned by the network. These extra terms
serve as a form of regularization in the train-
ing process which can lead to improved solutions
that conveniently also satisfy important physics
properties. The PINN model could also be use-
ful to obtain a better approximation of the func-
tion in the presence of noisy training data. How-
ever, despite this additional robustness, these
constraints could increase the amount of training
time necessary for the PINN to converge given
the computational complexity of calculating the
derivatives of the function (especially when sec-
ond order derivatives or beyond are considered).
Also, in case multiple physics objectives are con-
sidered in the loss function, they could have
competing gradient flow dynamics (i.e. the dif-
ferent objectives have different learning behav-
iors which may prevent some objectives from be-
ing leveraged during training). In order to avoid
this, a weight could be associated at each physic
objective and also a learning rate annealing algo-
rithm can be implemented in order to adapt the
weights during the training. The derivatives of
the network output with respect to the network
inputs are taken with automatic differentiation
(AD). This is a method for calculating deriva-
tives of a function’s output with respect to its
input variables. It provides precise and efficient
gradients by decomposing the function into a se-
quence of elementary operations and applying
the chain rule.

2.2. Environment
In order to train the Neural Network, a reference
model is created in order to generate the data
required for the training. The gravity field of

Didymos is modelled using a polyhedron while
for Dimorphos a triaxial ellipsoid is used as a
reference. For both models a constant density
is assumed. Three reference frames are consid-
ered in this work, the two body reference frame
of each asteroid and an inertial reference frame
centered in the barycenter of the binary system.
In case the total acceleration r̈ provided by the
binary system must be computed, it can be de-
termined as the summation of the acceleration
provided by each asteroid as [1]:

r̈ = adidymos + adimorphos

Where adidymos and adimorphos represent the ac-
celeration provided by each asteroid in the iner-
tial frame.
The acceleration provided by each asteroid is
computed in the body frame of the same aster-
oid and both accelerations must be rotated in
the inertial reference frame.
The contributions of the solar radiation pressure
and of the third-body effects of the Sun were not
considered because for the training of the PINNs
only the acceleration provided by the asteroids
are required. In case the PINNs are trained us-
ing measurements of the total acceleration, it
is assumed that the instrument used is able to
measure directly the gravity field as it is in line
with real space instruments used.

2.3. Method implementation

Figure 1: Architecture of the model used for
mapping the gravity field when trained from to-
tal acceleration measurements
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The architecture of the PINNs used to model
the gravity field is build by taking inspiration
from [3, 4]. The model was implemented in
Python with the usage of TensorFlow 2.10. In
case only total gravitational acceleration mea-
surements are known, the architecture consists
of two separate networks trained in parallel with
a common loss function as shown in Figure 1.
In case the network is trained from some known
model, two separate PINNs can be trained inde-
pendently. Each PINN will be used to map the
potential of a single asteroid. The input for each
PINN is the relative position of the field point
with respect to the corresponding asteroid with
coordinates in the body frame of the same celes-
tial body and returns as an output the potential
of the asteroid in the field point. To train the
PINNs, the following algorithm is used:

Algorithm 1 How to train the Network
1: Collect training data from a known model or

from acceleration measurements
2: Non-dimensionalize the training data
3: for epoch in nepochs do
4: Convert the input position

(r=norm([x, y, z]), x/r=s, y/r=t, z/r=u)
5: Compute the output of both networks
6: Add the point mass model to both net-

works output
7: Re-scale the output of both networks
8: Auto differentiate the potential with re-

spect to the cartesian coordinates ex-
pressed in the body frame to compute the
accelerations

9: Compute the loss function
10: Update the parameters of the network
11: end for

After the training, the total gravitational ac-
celeration in a field point can be computed us-
ing automatic differentiation and by computing
the contribution of the singular asteroid accel-
eration. Then, both accelerations are rotated
from the body frame to the inertial reference
frame and are added together. The loss func-
tion used for the training depends if the network
is trained from total acceleration measurements
or a known model. In case the networks are
trained from some known models, two different
loss functions can be used. Each loss function
will be used to impose that the negative gradi-

ent of the potential of an asteroid is equal to the
acceleration provided by the asteroid:

J(Θ) =
1

N

N∑
i=0

∥atrue,i − (−∇UNN,i)∥
∥atrue,i∥

In case the model is trained from real accelera-
tion measurements, a single loss function is used
to impose the percentage error between the to-
tal acceleration measured and the sum of the two
accelerations provided by each asteroid equal to
zero. The accelerations are rotated from the
body frame of each asteroid to the inertial frame
before summing them. In case the potential is
known, the percentage error between the true
potential and the potential obtained from the
networks can be imposed equal to zero. Finally,
the curl of the acceleration and the laplacian of
the potential can be also imposed equal to zero
(or equal to the Poisson’s equation when inside a
body in the case of the laplacian). The curl and
the laplacian can be computed using AD, how-
ever this will increase the training time and the
memory needed as second order derivatives are
computed. In this work, all the different terms
of the loss function are tested to see which ones
produce the better performances. In addition to
these loss functions, an ANN is also considered.
In this case, the output of the Neural Network
is not the potential of the body but instead are
the three components of the acceleration.
All inputs and outputs are non-dimensionalized
in order to have values ranging from -1 to 1. 1/r,
s, t, u are used as input of the network in order
to improve the performances. The inverse of the
radius is used in order to have values ranging
from 1 to zero after the dimensionalization. The
point mass model is added to the output in order
for the PINN to not map this prominent and eas-
ily observable contribution. In this way, it can
focus on mapping the potential’s perturbations.
The potential is rescaled by dividing the output
by the cube of the radius in order to improve the
performance far away from the body.

3. Results
3.1. Training with a known model
The distances of the field points considered for
the training are between the surface of the as-
teroid up to a distance of 5 radii. The radius for
each field point is generated using a random uni-
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form distribution. All the field points are gener-
ated only in the exterior of the asteroids.
Between all the different loss functions used to
train the model, the one that includes the po-
tential and the acceleration seems to perform
slightly better with respect to the other loss
functions considered. In case the point mass
model is included in the model, an adaptive
weight of the terms of the loss function is nec-
essary if the laplacian and the curl term are
included. If the adaptive weight is not used,
the model in this case converge to the point
mass model independently on the number of
data and epochs used for the training. When
the adaptive weight is included, the performance
are pretty similar to the case where only the po-
tential and the acceleration where included in
the loss function. However, the time of train-
ing and the memory needed to train the model
are much greater due to second order derivatives
that must be computed.
A comparison of the PINN methods imple-
mented in this work with the traditional meth-
ods is made below:

Figure 2: PINN Didymos model compared with
traditional models

Figure 3: PINN Dimorphos model compared
with traditional models

The polyhedral and the ellipsoid models are used

as a reference, the mascon model is created by
dividing the polyhedron in a collection of tetra-
hedra and assigning the point mass in the cen-
ter of each tetrahedra. In particular, a single
mass was considered per tetrahedra for mascon
model, while 3 masses where considered for mas-
con model 3. For the spherical harmonics, the
spherical harmonics coefficients were computed
from the polyhedral shape. A spherical harmon-
ics of order 2 and order 8 were considered. As
we can see, the PINN methods performs better
with respect to the other models in proximity of
the surface. As the distance from the asteroid
increases, it seems that the spherical model gets
closer with the performances and at distances
near 10 radii the spherical model has errors in
the same order with respect to the PINN model.
The computational time can also be tested in or-
der to understand which method compute faster.
To do this, 1000 different field points are gener-
ated and the acceleration is computed for each
point individually. The time to compute each
single acceleration is measured and the mean
time is retrieved. The computer used for the
time comparison has an NVIDIA Quadro P1000
as a graphic card and an Intel core i7-8850h
CPU.

Model Time needed [s]

Point 3.52 e-6
Polyhedral Didymos 2.49 e-1
Ellipsoid Dimorphos 5.63 e-3

Mascon 1.07 e-2
Mascon 3 3.19 e-2

Spherical 2 1.01 e-4
Spherical 8 6.09 e-4

ANN 3.21 e-3
PINN 5.50 e-3

Table 1: Computational time

Besides the point model, the spherical harmon-
ics performs the fastest. It should also be noted
that the computational time of the PINN and of
the Ellipsoid model is pretty similar. It would
then be unnecessary to train the PINN in the
case of Dimorphos as the PINN model would
take the same amount of time to compute the ac-
celerations with respect to the reference model
and would only perform worse with respect to
it. A combination of PINN and spherical har-
monics or point model could be used in order to
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compute the acceleration of a field point. PINN
could be used to compute the acceleration of
field points in proximity of the surface while
faster models could be used when they are lo-
cated far away from the asteroid. In this way,
the accuracy would still be high while the overall
computational speed is increased.
In proximity of the asteroid the performance of
the network becomes worse, especially in the
case of Didymos. To solve this, the number of
data in proximity of the surface can be increased.
For example this can be done using an exponen-
tial distribution of the field points in proxim-
ity of the surface. These data are added to the
ones generated normally. Using data in proxim-
ity of the surface does increase the performance
in that region. However, the performance in the
rest of the domain gets worse when using the
same number of data. The generation of data in
proximity of the surface would then depend on
the requirements of the mission. If operations
in close proximity of the surface are required,
it is suggested to generate them, otherwise not.
Similar results could be obtained by changing
the loss function in order to give more weight to
field points in proximity of the surface.

3.2. Training with acceleration mea-
surements

In order to train the model with total accelera-
tion measurements, data are generated in prox-
imity of both Didymos and Dimorphos. The
field points are generated using a uniform ran-
dom distribution as before. However, in this
case, the field points used for the training must
be the same for both Didymos and Dimorphos.
The training set will be made by the union of
samples taken in proximity of both asteroids.
The loss functions trained in this section do not
consider the potential as it assumed unknown.
The training and the validation data are gener-
ated in a time domain between 0 and 250 hours
from the initial position and orientation of the
asteroids. The time domain is chosen by assum-
ing that a 30 seconds measurement time is re-
quired in order to measure each single accelera-
tion. This value is in line with real instruments
used in space applications. The test set is gen-
erated in a time domain that follows the time
domain of the training set in order to under-
stand if the PINN is able to map the gravity

field even for positions and orientations of the
asteroids never seen before. By changing the
sampling time domain, the performance of the
network do not change much. This is because
the acceleration of the asteroids is modelled in-
dividually and, given the same position of the
field point in the body frame, the acceleration
would be the same independently on the posi-
tion and on the orientation of the asteroids. For
this reason, by also changing the orbit and as-
teroids orientation the results do not change.
The results obtained from this training are
pretty similar to the ones obtained from the
case where each network was trained with its
own model when the same number of data and
epochs are considered.
In order to understand better the possible per-
formances of the model in real life applications,
some errors are added to the measurements. A
root mean square error (RMS) in the range of
[10−6, 10−8] is assumed.

Figure 4: Error comparison in proximity of
Didymos

Figure 5: Error comparison in proximity of Di-
morphos

The model is still capable of mapping the gravity
field even in the presence of errors although with
worse performances as the error gets bigger.
As the error in the measurements is increased,
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the performance when the loss function includes
the laplacian and curl term gets better with re-
spect to the case with only the acceleration term
when trained with the same data.
By training the PINNs using the point model as
a reference, one problem arises. It could be that
the mass that we have used is not the same of the
real asteroid. If an error of the mass is assumed,
the performance of the PINNs gets worse, espe-
cially when outside of the training data domain.
Before training the model, an estimation of the
mass of each asteroid shall be made in order to
reduce this error.
In order to understand if the sampling of data in
proximity of Didymos influences negatively with
the performances of the model in proximity of
Dimorphos and vice-versa, the number of data
used for the training set in proximity of both
asteroids is varied. In particular, the number of
samples in proximity of Didymos and Dimorphos
is changed. Only when a low number of samples
are considered in proximity of an asteroid the
mapping in proximity of the same asteroid gets
worse. In both cases, it seems that when con-
sidering 3000 or more samples the model starts
to converge in both regions for a total sampling
time of 50 hours as the sampling for each mea-
surement is assumed of 30 seconds.
It could be that the measurements near the sur-
face of an asteroid are not permitted. To simu-
late this case, a domain from 2 to 5 radii of dis-
tance from both asteroids is considered for the
training and validation set. In this case, only
the performance of the model in proximity of the
surface seems to be affected. Measurements in
proximity of the surface would then be advised
in order to map better the total acceleration in
that region. In the region with a corresponding
domain for both cases the performance seems
pretty similar.

4. Conclusions
This work demonstrates that the PINN is able
to produce high-accuracy models for the grav-
ity field of the Didymos(65803) binary system.
The PINN model can reach performances close
to the best known gravity field models of both
asteroids (polyhedral for Didymos and ellipsoid
model for Dimorphos) while increasing the com-
putational speed in the case of Didymos. In
the case of Dimorphos, the computational speed

is close to the reference model used, making
its usage for modeling the gravity field redun-
dant. Compared to spherical and mascon mod-
els, PINN performs better, especially in proxim-
ity of the surface. However, spherical model can
compute much faster with respect to the PINN
model. In order to map the whole gravity field,
a combination of PINN and spherical harmon-
ics could be implemented. PINN will be used
to map the acceleration in proximity of the sur-
face while spherical harmonics will be operated
when considering field points far away from the
asteroids.
The PINNs can also be used to map the grav-
ity field in-situ from real total acceleration mea-
surements using a fairly low number of data.
When considering errors in the measurements,
the PINN is still able to map the gravity field
fairly well. In this case, it is recommended to im-
pose the Laplacian of the potential and the curl
of the acceleration equal to zero with the loss
function while using an adapting loss weight.
This will decrease the error while mapping the
gravity field. However, this will increase the
training time and the memory needed for the
training.
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