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Abstract 

Structural Health Monitoring (SHM) is a critical process that involves various 

sensing and data analytics techniques to evaluate the current state of a structure's 

health and detect any damage at the earliest possible stage. However, structures are 

constantly subjected to varying environmental and operational conditions that 

induce changes in their dynamic response, posing significant challenges for accurate 

SHM damage detection. One possible solution by developing hybrid machine 

learning techniques to isolate indicators of structural damage from environmental 

impacts in SHM data is proposed, and demonstrated on a case study of a Livenza 

railway bridge monitoring system. A local outlier removing function is used to 

mitigate the operational variability and Dynamic regression with time lag of 24 hours 

prove optimal in predicting bridge response from temporal environmental patterns 

thereby removing environmental variability. Further filtering residuals with 

principal component analysis removes remaining unmeasured variability. Simulated 

damage scenarios validate the integrated methodology's ability to extract damage-

reflecting residuals by separating environmental and mechanical variability.  

 

Keywords: Structural health monitoring (SHM), machine learning, environmental 

variability, damage detection, Long Short-Term Memory (LSTM) networks, Principal 

Component Analysis (PCA), Dynamic Regression. 
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Abstract in lingua italiana 

Il monitoraggio dello stato di salute delle strutture (Structural Health Monitoring, 

SHM) è un processo critico che coinvolge varie tecniche di rilevamento e analisi dei 

dati per valutare lo stato di salute attuale di una struttura e rilevare eventuali danni 

nella fase più precoce possibile. Tuttavia, le strutture sono costantemente soggette a 

condizioni ambientali e operative variabili che inducono cambiamenti nella loro 

risposta dinamica, ponendo sfide significative per un accurato rilevamento dei danni 

SHM. Viene proposta una possibile soluzione sviluppando tecniche ibride di 

apprendimento automatico per isolare gli indicatori di danno strutturale dagli 

impatti ambientali nei dati SHM, dimostrata su un caso di studio del sistema di 

monitoraggio di un ponte ferroviario Livenza. Per attenuare la variabilità operativa 

viene utilizzata una funzione di rimozione degli outlier locali e la regressione 

dinamica con un ritardo temporale di 24 ore si dimostra ottimale nel prevedere la 

risposta del ponte dai modelli ambientali temporali, eliminando così la variabilità 

ambientale. Un ulteriore filtraggio dei residui con l'analisi delle componenti 

principali rimuove la variabilità non misurata rimanente. Gli scenari di danno 

simulati convalidano la capacità della metodologia integrata di estrarre i residui che 

riflettono il danno, separando la variabilità ambientale da quella meccanica.  

 

Parole chiave: Structural health monitoring (SHM), machine learning, environmental 

variability, damage detection, Long Short-Term Memory (LSTM) networks, Principal 

Component Analysis (PCA), Dynamic Regression. 
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Introduction and Research Objectives 

Structural Health Monitoring (SHM) utilizes various sensing and data analytics 

techniques to evaluate the current state of a structure's health and detect any damage 

at the earliest possible stage. However, structures are constantly subjected to varying 

environmental and operational conditions that induce changes in their dynamic 

response. For example, temperature fluctuations cause expansions and contractions 

that alter vibration characteristics. Similarly, traffic loads on a bridge lead to different 

strain patterns compared to periods of low use. 

This variability poses significant challenges for accurate SHM damage detection. 

Environmental and operational changes can mask underlying structural damage or 

produce false indications of damage where none exists. Without properly accounting 

for these effects, SHM systems are likely to suffer from frequent false alarms or 

missed damage events.[1] 

Several types of environmental factors impact structural response: 

• Temperature - Thermal expansion/contraction alters stiffness and induces 

strains. Daily and seasonal variations are common. 

• Wind - Wind loads directly add dynamic forces and can amplify vibrations. 

Speed and direction are often variable. 

• Humidity - Moisture absorption in some materials affects stiffness and mass. 

Rainfall causes sharp humidity spikes. 

• Solar radiation - Thermal gradients and deck deformation can develop under 

solar loading. Cloud cover leads to rapid fluctuations. 

Operational variability arises from changes in loading and usage patterns: 

• Traffic - Vehicular traffic adds moving dynamic loads. Congestion causes 

stress peaks during rush hours. 

• Special events – Construction work may alter bridge response. 
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Research Gaps and Objectives 

While numerous SHM algorithms have been developed, the critical problem of 

environmental and operational variability has received less focused attention. 

Additionally, most numerical simulations lack modelling of real-world variability, 

which limits their utility in validating SHM techniques. 

This thesis aims to address these research gaps by mitigating the influence of 

environmental and operational variability on SHM damage detection. The objectives 

are: 

1. Review existing methods, such as data normalization, that help reduce 

variability effects. 

2. Implement and evaluate suitable techniques on a case study of the Livenza 

Railway Bridge using real monitoring data. 

3. Draw general conclusions and recommendations for enhancing SHM 

robustness to variability. 

Although performed for a specific bridge, the research will focus on developing 

techniques broadly applicable to SHM systems in general. 

This thesis has been divided into four chapters. Chapter1 will begin with an 

introduction of Structural Health Monitoring and Machine Learning methods. 

Chapter2 will review the existing literature on machine learning models used to 

detect the structural damage. The main contribution is presented in Chapter3, which 

focuses on the case study of the Livenza bridge. This chapter describes the bridge 

and its structural health monitoring system. The performance of proposed machine 

learning models on data from the Livenza bridge is then assessed. This model aims 

to reduce the influence of changing environmental and operational conditions on 

damage detection. The thesis concludes by summarizing key findings and suggesting 

directions for further research.  
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1. Structural Health Monitoring and 

Machine Learning Methodologies 

It is crucial to continuously monitor the structure in order to enable early damage 

detection and give the ability to stop potential future structural failures because 

proper functioning of structures is fundamentally important from the perspectives of 

both user safety and economics. 

Condition monitoring (CM), non-destructive testing (NDT), damage prognosis (DP), 

statistical process control (SPC), and finally structural health monitoring (SHM) can 

be used to carry out this damage detection procedure. 

Condition monitoring (CM) involves monitoring the condition of machinery through 

various sensors and analysis techniques in order to detect potential faults or failures 

early. The key advantage is that it allows for predictive maintenance and avoiding 

catastrophic failures. Some disadvantages are the cost of sensors and data analytics 

systems, as well as the need for expertise in analyzing the data. Overall, condition 

monitoring provides critical insights into machine health to minimize downtime and 

maintenance costs when properly implemented.[2] 

Non-Destructive Testing (NDT) utilizes specialized techniques like x-ray, ultrasound, 

and eddy current to examine materials and structures without causing damage. NDT 

can reliably detect flaws, cracks, corrosion, and other damage through inspection. 

The drawback is that it usually requires direct physical access to the structure. There 

is also a need for skilled technicians to correctly conduct testing and interpret 

results.[3] 

Damage prognosis is the process of estimating the remaining useful life of an 

engineered system by assessing its current damage state through structural health 

monitoring, estimating future loading conditions, and predicting through simulation 

models how damage will accumulate over time. The main advantage of damage 

prognosis is that it enables more proactive maintenance and safety assessments. 

However, it requires developing and integrating several complex technologies like 

sensing systems, data analytics, and physics-based models, which is challenging.[4] 
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Statistical process control (SPC) is a statistical method for monitoring and controlling 

a process to ensure it operates at its full potential. It uses control charts to analyze 

variation in a process and signal when a process is not in control. Advantages of SPC 

include detecting early signs of process variation and reducing waste by minimizing 

over-adjustment. Potential disadvantages are it requires historical data to determine 

control limits, control charts may fail to detect small process shifts, and it can be 

labor intensive to monitor charts.[5]  

Structural Health Monitoring (SHM) utilizes integrated systems of sensors, data 

acquisition, and analytics to provide real-time damage detection. While extremely 

capable, SHM can be prohibitively expensive to scale across very large structures. 

Expert knowledge of sensors, data science, and structural analysis is also 

recommended to implement SHM effectively.[1] 

SHM utilizes an integrated network of sensors permanently installed across the 

structure to provide real-time monitoring data. The spatial distribution and 

continuous collection under diverse conditions provides extensive operational and 

environmental data. This enables robust baseline modelling and separation of 

environmental factors from damage effects. The customized sensor networks and 

analytical tools in SHM systems are specifically tailored to monitor relevant 

environmental factors and detect damage for the structure.[1] 

The long-term, rich data from a broad sensor network makes SHM the ideal platform 

for parsing environmental variability. Combined with physics-based and data-driven 

analytical capabilities, SHM provides the scale, customization, and analytical power 

needed for reliable damage detection in large, monitored structures with extensive 

sensor data. The integrated nature of SHM makes it a more holistic approach 

compared to standalone methods. 

1.1 Structural Health Monitoring 

In most cases, SHM refers to the process of monitoring a structure or mechanical 

system over time using periodically spaced dynamic and static response 

measurements, followed by the extraction of damage-sensitive features from these 

measurements, and the statistical analysis of the obtained features to ascertain the 

current state of system health. 
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The SHM system is implemented in four stages as shown in Figure 1.1 below. 

 

Figure 1.1: Stages of SHM system 

The operational evaluation phase, this first phase is to figure out how to define 

damage to the system currently in examination, for example, measuring cracks in 

concrete, corrosion levels in steel, etc. One also need to look at any limits on how to 

collect data on the system. For example, one may not be able to easily access part of 

the system to take measurements. The main goal at this stage is to specify what kind 

of damage one need to spot. So, there’s a need to set up ways to quantify and 

measure the damage. Later one can pick good sensors, collect useful data, and build 

models to detect that damage.[6] 

The process’s data collecting phase can begin once the operational evaluation phase 

is over. In this stage, the type and frequency of data collection, as well as the sensors 

and technology for storing, processing, and transmitting it, are chosen. This must be 

accomplished while making sure the data gathering system is adequately robust with 

regard to variations in environmental conditions and while also minimizing 

expenditures.[6] 

Feature extraction phase takes care of extracting the features that are dependent on 

damage. These features are measurements that were taken from structural response 

data and are related to the presence of structural deterioration. The damage sensitive 

feature should, ideally, alter consistently with the degree of damage to the structure. 

However, the more sensitive a feature is to damage, the more susceptible it is to 

shifting operational and environmental conditions, which might obscure damage-

related changes.[6] 
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Once the three aforementioned procedures have been completed, the process for 

developing the statistical model can begin using a variety of machine learning 

methods. [6] 

But, as mentioned above, due to the presence of environmental and operational 

variability, the damage related changes will get hidden. To overcome this problem, 

data normalization methods can be applied. This can be done using some machine 

learning or Deep learning algorithms which has been described in the following 

sections. [7] 

1.2 Data Normalization methods 

The normalization of data becomes crucial to the SHM process since data can be 

measured under various circumstances. The new technological advancements in this 

area aim to address the operational and environmental SHM problems listed above.  

There are three different scenarios for data normalization where operating or 

environmental variability is a problem.  

First, several types of regression and interpolation analyses can be carried out to 

relate measurements relevant to structural damage and those associated with 

environmental and operational variation of the system when direct measurements of 

the varying environmental or operational parameters are available. When a large 

number of extracted features and measured environmental factors are available, 

regression analysis, as illustrated in Figure 1.2a[8], can be used, for instance, to 

approximate the dependency of two-dimensional features on some environmental 

variable T. It should be noted that there may be some damage scenarios that, unless 

the environmental variable is observed, cannot be separated from the undamaged 

conditions. [8] 
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Figure 1.2: Two conceptual situation for data normalization a) Environmental 

variables available, b) Environmental variables not available.[9] 

On the other hand, there are circumstances in which it is impractical or challenging 

to obtain direct measurements of these operational and environmental parameters, 

and damage results in changes in the extracted features that are "orthogonal" to the 

changes brought on by the operational and environmental variation of the system 

(Figure 1.2b[8]), i.e. the changes in the extracted features due to damage are 

independent of or unrelated to the changes caused by operational and environmental 

parameters. Without measuring the operational and environmental parameters, it 

could be possible to separate the changes brought on by damage from those brought 

on by the system's operational and environmental variations in this case[9]. 

Some of the data normalization methods are described in the further sections. 

1.3 Regression 

Regression analysis is a statistical method used to uncover insights about how a 

response variable (dependent) relates to one or several predictor variables 

(independent). The purpose of regression analysis is to express the response variable 

as a function of the predictor variables.[10] The data used determines the fit's duality 

and the accuracy of the regression. As a result, non-representative or incorrectly 

prepared data result in poor fits and results. Thus, in order to perform regression 

analysis effectively, one must first evaluate the data gathering process, identify any 

limits in the data acquired, and limit results accordingly. 
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Once a regression analysis relationship has been established, it can be used to 

forecast response variable values, identify factors that have the greatest influence on 

the response, or confirm proposed causal theories for the response. Through 

statistical analyses of the estimated coefficients (multipliers) of the predictor 

variables, the value of each predictor variable can be determined. 

Regression analysis has three applications:  

1. Prediction - To forecast future results, regression analysis is frequently utilized. 

Following the creation of a regression model that illustrates the link between 

independent variables (X) and a dependent variable (Y), modifying the independent 

variables' values and using the model to forecast the predicted value of Y.[10] 

2. Defining the model - Another key use of regression analysis is quantifying the 

mathematical relationship between independent and dependent variables. The 

regression equation defines the model - it specifies the exact functional relationship 

between X and Y. Analysis of the regression coefficients provides insight into the 

strength and direction (positive or negative) of the impact of each independent 

variable on the dependent variable. Defining this mathematical relationship is useful 

for understanding causal connections and key drivers.[10] 

3. Estimating the parameters - Important model parameters can also be estimated via 

regression analysis using sample data. The intercept term, coefficients, and error 

term are only a few of the parameters that regression algorithms estimate. These 

estimates were chosen to reduce the sum of squared residuals between the values of 

the dependent variable that was observed and those that the model predicted. Based 

on the available data, these parameter estimations aid in describing the actual 

connection between X and Y. When using the model on fresh data, accurate 

parameter estimates are crucial for producing predictions that can be trusted.[10] 

Dynamic Regression 

By adding time series elements including trend, seasonality, and autoregression, 

dynamic regression expands on the normal regression model for time series 

forecasting. Dynamic regression methods allow the relationship between the input 

variables and the output variable to change over time, in contrast to classic 

regression models that assume the input variables are independent of time.[10] 

The fundamental principle of dynamic regression is to predict the future value of the 

output variable using the historical values of the input variables and the output 

variable. Lagged values of the input variables and the output variable are used as 

predictors in the regression model to achieve this. While the lagged values of the 

output variable account for the autoregressive effect, the lagged values of the input 

variables account for the impact of past values on the current value.[10] 
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The adaptability and flexibility of dynamic regression to various forms of time series 

data is one of its key benefits. It can deal with data that exhibit varying degrees of 

trend and seasonality as well as data that exhibit evolving relationships between the 

input and output variables across time. Exogenous factors may also be included, 

which could add to the information available, and boost forecast accuracy. 

Dynamic regression does, however, have significant drawbacks that must be taken 

into account. One of the major drawbacks of the model is its susceptibility to outliers 

and extreme data values, which might have an impact on the estimation of the 

model's parameters and the forecast's accuracy. Its reliance on the stationarity 

assumption, which might not hold for some types of time series data, is another 

drawback. Furthermore, dynamic regression models may require a significant 

amount of computer power, particularly when working with large datasets or 

intricate models.[11] 

Regression analysis approaches come in a wide variety, and the use of each method 

depends upon the number of factors. The kind of target variable, the pattern of the 

regression line, and the quantity of independent variables are some examples of 

these factors.  

The different regression approaches are discussed in sections below. 

1.3.1 Linear Regression 

One of the most fundamental kinds of regression in machine learning is linear 

regression. A predictor variable and a response variable that are linearly related to 

one another make up the linear regression model. Multiple linear regression models 

are linear regression models with multiple independent variables included in the 

data. [10] 

𝑦 = ß0 + ß1𝑥1 + ß2𝑥2+. … … + ß𝑛𝑥𝑛 + 𝜀                          (Eq 1.1) 

Where ß0, ß1, ß2…. ßn, are regression coefficients (model parameters), and ε is the 

error due to variability. 

Determining the model parameters: 

Considering a linear relationship between two variables x(independent) and 

y(dependent), one can suppose the relation, 𝑦 = 𝑓(𝑥) as: 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀                                            (Eq 1.2) 
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Where, 𝛽0 and 𝛽1 are model parameters (to be determined), and 𝜀 is random error 

component. The errors are assumed to have zero mean and uncorrelated.[10] 

Here, linear regression can be regarded as an optimization method. 

Least square estimation of the parameters: 

One approach to figuring out the values of the two parameters 𝛽0 and 𝛽1 based on 

the dataset is the least-squares approach. The goal is to figure out the values of 𝛽0 

and 𝛽1 that match the lowest possible sum of squared errors.[10] 

This is how an error is defined: 

𝜖𝑖 = 𝑦𝑖 − 𝑦(𝑥𝑖) = 𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖)                              (Eq 1.3)                                     

Where: 𝑦𝑖 is the exact value of y, and 𝑦(𝑥𝑖) is the predicted value of y. 

 

Figure 1.3: A line that fits to minimize the error. 

 

The sum of squared errors is defined as: 

𝐸(𝛽0, 𝛽1) = ∑ 𝜖𝑖
2𝑛

𝑖−1 = ∑ (𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)
2𝑛

𝑖=1                           (Eq 1.4) 

Where 𝑛 is number of observations in the dataset. 

Applying minimization problem to find the extremum 𝐸(𝛽0, 𝛽1) to find 𝛽0 and 𝛽1. 

Hence 𝛽0 and 𝛽1 can be given as: 

𝛽1 =
∑ 𝑥𝑖(𝑦𝑖 − �̅�)𝑛

𝑖=1

∑ 𝑥𝑖(𝑥𝑖 − �̅�)𝑛
𝑖=1

 

𝛽0 = �̅� − 𝛽1�̅�                                                          (Eq 1.5) 
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Where �̅� and �̅� are mean values of x and y respectively: 

�̅� =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

�̅� =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
                                                       (Eq 1.6) 

1.3.2 Normality test 

Checking for normality is an important preliminary step in statistical analysis, 

especially before applying parametric regression models. This involves evaluating 

whether the data follows a normal distribution, also known as a Gaussian 

distribution. The assumption of normality is essential for many statistical methods, 

including parametric regression, because violating this assumption can lead to biased 

estimates, inaccurate p-values, and unreliable predictions.  

Importance in Parametric Regression: 

Parametric regression models, such as linear regression, assume that the errors 

(residuals) are normally distributed[10]. When the data are approximately normally 

distributed, the model's assumptions are more likely to be satisfied, leading to valid 

inferences and reliable predictions. Violation of normality assumptions can lead to 

biased coefficient estimates and incorrect hypothesis testing, affecting the integrity of 

the regression analysis.  

Methods for Normality Testing: 

Several methods are available to test for normality. Some of the commonly used ones 

include: 

1. Graphical Methods: Histograms, Q-Q plots (quantile-quantile plots), and P-P 

plots (probability-probability plots)[12] provide visual insights into the 

distribution's departure from normality. 

Histogram: A histogram (Figure 3.11(a)) is a bar chart that displays the frequency 

distribution of data values in intervals or "bins." In a normal distribution, the 

histogram should exhibit a bell-shaped curve, with data points concentrated around 

the mean and tapering off towards the tails. Skewed or non-normal distributions 

may show uneven or asymmetric histogram shapes.  
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Q-Q plots: A Q-Q plot is a scatterplot that compares quantization of observed data 

with those of the theoretical normal distribution. If the data points are approximately 

along a straight line, it indicates that the data is normally distributed. Deviation from 

a straight line represents deviation from the normality.[12] 

 

Figure 1.4: Q-Q plot showing deviation from the normal distribution.[12] 

It is important to note that these methods provide visual cues but do not draw firm 

conclusions. Some deviations from the rule can be difficult to detect, and graphical 

methods can help identify potential problems that require further investigation. It is 

also important to use a combination of graphical methods and statistical tests for a 

more complete assessment of normality. 

2. Statistical Tests: Shapiro-Wilk test, Anderson-Darling test, and Kolmogorov-

Smirnov test are formal statistical tests that assess the deviation of data from a 

normal distribution. These tests provide p-values, which indicate the level of 

confidence in accepting or rejecting the null hypothesis of normality. 

 

Shapiro-Wilk Test for Normality: 

The Shapiro-Wilk test is a widely used statistical test to evaluate the normality of a 

data set. It is based on the idea of comparing observed sample data with what would 

be expected in a normal distribution. The experiment provides test statistics and p-

values that help determine if the data can be considered to come from a normal 

distribution.[13] 

Test Assumptions: 

1. The test assumes that the data are independent and identically distributed. 

2. The null hypothesis (H0) assumes that the data follow a normal distribution. 

3. The alternative hypothesis (Ha) assumes that the data do not follow a normal 

distribution. 
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Test statistic: 

Shapiro-Wilk test statistics are calculated using sorted sample data and some 

constants are obtained from the order statistics covariance matrix. The test statistic 

formula involves the sum of squares of the deviations between the observed values 

and the expected value under the assumption of normality. The statistical value of 

the test is compared with the critical values to determine the test result.[13] 

𝑊 =
(∑ 𝑎𝑖𝑥𝑖

𝑛
𝑖=1 )2

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

 

where x(i) is the ith ordered observation, �̅� is the sample mean, and 𝑎𝑖 are constants 

derived from the covariance matrix of the order statistics. 

 

Interpreting the Results: 

If the p-value is greater than the chosen significance level (usually set to 0.05), then 

one cannot reject the null hypothesis. This implies that there is not enough evidence 

to conclude that the data deviate significantly from the normal distribution. 

If the p-value is less than or equal to the significance level, reject the null hypothesis. 

This indicates that the data deviates significantly from the normal distribution.[13] 

Non-parametric regression is a type of regression analysis that does not assume any 

specific form of the relationship between the dependent and independent variables. 

Non-parametric regression can be useful when the data is not normally distributed, 

as it does not rely on the assumptions of parametric methods, such as normality, 

homoscedasticity, and linearity. Further section describes some of the non-

parametric regression methods. 

1.3.3 KNN regression 

KNN regression, commonly referred to as k-nearest neighbor regression, is a kind of 

machine learning technique used for regression problems. The fundamental principle 

of this technique is to forecast the output value for a new data point using the 

distances between the input data points and their k-nearest neighbors. KNN 

regression is a non-parametric technique that can discover intricate nonlinear 

correlations between input and output variables without relying on any 

presumptions regarding the distribution of the underlying data. 

The number of closest neighbors that the KNN regression method will take into 

account when creating a forecast for a new data point, k, must first be chosen. The 

algorithm calculates the distances between the new data point and each of the 

training data points after k has been determined. Then, the distance metrics are used 

to determine the k-nearest neighbors.[14] 
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The anticipated output value for the new data point is then determined by averaging 

the output values for these k-nearest neighbors. Using the same value of k, this 

procedure is repeated for each additional data point that needs to be forecasted.[14] 

Figure 1.5 shows a scatterplot of housing prices (y-axis) versus total square feet (x-

axis). The blue data point is the point whose price is to be forecasted. The three 

nearest neighbours to the blue data point are the three red points. The distance 

between each data point is calculated using a distance metric, such as the Euclidean 

distance. 

In KNN regression, the predicted price for the blue data point is calculated as the 

average of the prices of the three nearest neighbours. 

 

Figure 1.5: A KNN Regression Model for Predicting Housing Prices.[15] 

KNN regression has the benefit of being a straightforward, easy-to-implement 

technique that can be applied to both small and big datasets. Additionally, it can 

tolerate missing values and is robust to noisy data. KNN regression also has the 

benefit of being able to capture nonlinear relationships between the input and output 

variables, which makes it applicable to a variety of regression issues. 

KNN regression is a versatile machine learning approach that may be applied to a 

variety of regression problems. Its handling of nonlinear relationships and its 

tolerance to noisy data are just two of its many benefits. It does have some 

drawbacks, though, such as its sensitivity to the choice of distance metric and its 

potential computational cost for large datasets.[14] 
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1.3.4 Random Forest 

Random forest regressor is a non-parametric machine learning algorithm used for 

regression tasks that involve predicting continuous output values. A more precise 

and reliable prediction is made with this ensemble learning technique by combining 

the results of various decision trees. The fundamental concept of the random forest 

regressor is to build a collection of decision trees, each of which is trained using a 

random subset of the input features and a portion of the training data. To arrive at 

the final prediction, the output of each decision tree is then averaged. 

First, a random subset of the training data is chosen to be used for each tree in the 

random forest method. This method, known as bagging (bootstrap aggregation, 

contributes to the development of different, independent trees. Each node's split 

criteria for each tree are likewise chosen at random from a subset of the available 

input features. Through this procedure, the trees' individual accuracy is improved 

while the correlation between them is decreased.[16] 

As shown in Figure 1.6, the random forest regressor uses the newly constructed trees 

to forecast the output value for a fresh data point. The algorithm accomplishes this 

by passing each fresh piece of input through a tree and averaging the results to arrive 

at the final prediction. This procedure can help to lessen the effects of overfitting and 

data noise and can also add a certain amount of uncertainty to the forecast.[16] 

 

Figure 1.6: Representation of a random forest.[16] 
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Therefore, the Random Forest Regressor is a strong machine learning technique that 

may be used in a variety of regression applications. It can handle high-dimensional 

data with intricate nonlinear relationships and is resilient to noise and missing 

values, among other benefits. However, it also has certain drawbacks, such as the 

possibility of overfitting and the cost of calculation. Also, random forests are 

complex black-box models. Lack interpretability compared to simpler linear 

models.[16] 

1.4 LSTM 

The Long Short-Term Memory (LSTM) network is a type of Recurrent Neural 

Network (RNN) designed to address the vanishing gradients problem that can arise 

when training RNNs to model sequences with long-range dependencies. Unlike 

standard regression models, which assume the input variables are time-independent, 

LSTM networks utilize gated cell architectures that allow gradient information to 

flow unattenuated over many time steps. This enables LSTM regression models to 

capture time-dependent correlations between input and output variables, making 

them well-suited for time series forecasting problems.[17] 

Long Short-Term Memory (LSTM) is an abbreviation for the type of memory units 

utilized in the model. These memory units can recall or forget information from 

previous time steps selectively, allowing the model to represent both short-term and 

long-term dependencies in time series data.[17] 

An LSTM regression model's basic design consists of numerous layers of LSTM cells 

as shown in Figure 1.7, each of which has a set of memory units and gates that 

govern the flow of input. The model's input is a series of time steps, with each time 

step consisting of a collection of input features and the matching output value.[18] 

During training, the model learns to modify the weights and biases of the LSTM cells 

in order to minimize the difference between the expected and true output values. 

Typically, a gradient-based optimization technique such as stochastic gradient 

descent (SGD) or Adam is used for optimization.[18] 
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Figure 1.7: Flowchart of the genetic algorithm used to train the LSTM model for time 

series regression.[18] 

LSTMs can capture long-range dependencies in time series data due to their gated 

architecture that allows gradient information to flow unattenuated over many time 

steps. This makes them well-suited for modeling sequences with long-term 

correlations. Traditional regression models frequently fail to capture these 

dependencies because they only evaluate the input variables' most recent values.[17] 

However, there are several limits to LSTM regression models that must be 

recognized. One of the most significant disadvantages is their computational 

complexity, which can make it difficult to train and deploy on big datasets or on 

resource-constrained devices. In order to avoid overfitting and obtain acceptable 

generalization performance, they also require a substantial amount of training data. 

Also, determining the optimal hyperparameters (e.g., number of gates, memory 

units, layers) for an LSTM model can be difficult and problem specific.[17] 

1.5 Kalman Filter 

The Kalman filter is a powerful and widely used mathematical technique for 

estimating the state of a dynamic system from a series of noisy and incomplete 

measurements. It offers a methodical approach to combining ambiguous data with 

forecasts of how a system will behave over time, producing a more precise and 

trustworthy estimate of the real state. 
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Initially, control systems and navigation were envisioned to be applications for the 

Kalman filter. Since then, a wide range of disciplines, including aerospace, robotics, 

economics, signal processing, and more, have found use for it. When working with 

systems that are impacted by noise, uncertainty, and shifting situations, the filter is 

extremely helpful. 

Basic concept and methodology 

This dynamic estimating approach works by combining the prediction step with the 

update step. These actions, supported by a number of crucial components, allow the 

filter to produce accurate state estimations despite noisy observations and 

uncertainty. 

If one considers a system: 

�̇� = 𝐴 ⋅ 𝑥 + 𝐵 ⋅ 𝑢 

𝑧 = 𝐶 ⋅ 𝑥 + 𝑛                                                      (Eq 1.7) 

Components of the Kalman Filter: 

i. State Vector (x): This vector encapsulates the variables that describe the state 

of the system. It might encompass quantities such as position, velocity, 

orientation, and more. In present work, this is bridge response sensor value. 

ii. State Transition Matrix (A): The A matrix captures the system's dynamics by 

representing how the state evolves over time. It combines the current state 

with external influences or control inputs (B⋅u) if they exist. 

iii. Control Input (B): When present, this matrix accounts for external influences, 

like forces or commands, that affect the state transition. 

iv. Observation Matrix (C): The C matrix maps the state vector to the expected 

measurements. It outlines the relationship between the state and the 

measurements obtained from the system. 

v. Measurement Noise Covariance (R): The R matrix signifies the uncertainty 

associated with measurements. It captures the variance or covariance of 

measurement errors, reflecting their inherent imprecision. 

𝑅 = 𝐸[(𝑧 − 𝑦)(𝑧 − 𝑦)𝑇] 

vi. Process Noise Covariance (Q): This matrix captures the uncertainty stemming 

from the system's dynamics not accounted for in the state transition. It 

represents external influences, disturbances (w), or other factors. 

𝑄 = 𝐸[𝑤𝑤𝑇] 
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vii. Error Covariance (P): The error covariance matrix P is a crucial component in 

the Kalman filter that quantifies the uncertainty associated with the state 

estimate. It reflects how confident the filter is in the accuracy of its predictions 

and updates. 

𝑃 = 𝐸[(𝑥 − �̂�)(𝑥 − �̂�)𝑇] 

 

1. Prediction Step: 

In the prediction step, the Kalman filter leverages the current state estimate and the 

system's dynamics model to predict the state at the upcoming time step. 

• State Prediction: Utilizing the A matrix and, when applicable, the control 

input B⋅u, the predicted state at k+1 is formulated: 

�̂�𝑘+1|𝑘 = 𝐴 ⋅ �̂�𝑘|𝑘 + 𝐵 ⋅ 𝑢𝑘                                       (Eq 1.8) 

• Error Covariance Prediction: The error covariance P prediction portrays the 

uncertainty linked to the state prediction. It evolves using the state transition 

matrix A and the process noise covariance Q: 

𝑃𝑘+1|𝑘 = 𝐴 ⋅ 𝑃𝑘|𝑘 ⋅ 𝐴𝑇 + 𝑄                                      (Eq 1.9) 

2. Update Step: 

In the update step, the Kalman filter integrates a fresh measurement to correct and 

refine the forecasted state estimate. 

• Kalman Gain Calculation: The Kalman gain K blends the prediction's 

uncertainty and the measurement's uncertainty, regulating the measurement's 

influence on the update. It's determined through the error covariance 

prediction, the observation matrix C, and the measurement noise covariance 

R: 

𝐾𝑘+1 = 𝑃𝑘+1|𝑘 ⋅ 𝐶𝑇 ⋅ (𝐶 ⋅ 𝑃𝑘+1|𝑘 ⋅ 𝐶𝑇 + 𝑅)−1                  (Eq 1.10) 

• State Update: Incorporating the Kalman gain-scaled difference between the 

actual measurement 𝑧𝑘+1 and the predicted measurement 𝐶 ⋅ �̂�𝑘+1|𝑘, the 

updated state estimate emerges: 

�̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 + 𝐾𝑘+1 ⋅ (𝑧𝑘+1 − 𝐶 ⋅ �̂�𝑘+1|𝑘)               (Eq 1.11) 
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• Error Covariance Update: The updated error covariance takes into account the 

Kalman gain's impact on diminishing uncertainty due to measurement 

integration: 

𝑃𝑘+1|𝑘+1 = (𝐼 − 𝐾𝑘+1 ⋅ 𝐶) ⋅ 𝑃𝑘+1|𝑘                                     (Eq 1.12) 

The equations Eq 1.8 – Eq 1.12 combined makes Kalman forecaster algorithm. 

Terminology and Notation: 

k: Time index 

𝑢𝑘: Control input at time k 

x: State vector 

A: State transition matrix 

B: Control input matrix 

Q: Process noise covariance matrix 

C: Observation matrix 

R: Measurement noise covariance matrix 

P: Error covariance matrix 

𝑧𝑘+1: Actual measurement at time k+1 

I: Identity matrix 

Matrix 𝐴 and 𝐶 are determined using N4SID algorithm[19], which uses the 

observation to build the matrices. 

Predict Future Values: Once the filter has been initialized and the model parameters 

are set, one can also use it to predict future values of the time series by performing 

only the prediction step. The filter will incorporate new observations and adjust its 

estimates as new data arrives. 
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Figure 1.8: Kalman filter for tracking moving object.[20] 

1.6 Principal Component Analysis 

Definition 

Principal Component Analysis (PCA) is a multivariate statistical procedure that is 

used to analyze data by minimizing its dimensionality. It is frequently used in 

disciplines like machine learning, data analytics, and finance to reveal patterns and 

relationships in data that can be challenging to see in other ways. PCA enables to 

convert a high-dimensional dataset into a lower-dimensional space while 

maintaining most of the important data. 

In a dataset there are as many numbers of principal components as there are number 

of features. Each principal component explains a certain amount of variations in the 

dataset. The principal components are ranked according to how much variance they 

account for and are orthogonal to one another, making them uncorrelated. The first 

principal component, followed by the second principal component, and so on, 

explains the most variance. 

In order to prepare the data for machine learning algorithms, PCA is frequently 

utilized. It can assist in locating redundant or pointless data characteristics, which 

can result in overfitting and subpar generalization. The accuracy and effectiveness of 
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the machine learning model can be increased by using PCA to assist reduce the 

number of variables. 

Methodology 

PCA works by determining the eigenvectors and eigenvalues of the data's covariance 

matrix. The covariance matrix explains how the variables in the dataset are related to 

one another. The covariance matrix's eigenvectors reflect the highest variance 

directions in the data, while the accompanying eigenvalues represent the amount of 

variance explained by each eigenvector.[21] 

The method begins by normalizing the data so that each variable has a zero mean 

and a unit variance before using PCA as shown in Figure 1.9. This is crucial since the 

analysis will be dominated by variables with higher variances. The covariance matrix 

of the standardized data is subsequently computed. Each pair of covariances 

between the variables in the dataset are contained in the covariance matrix, which is 

a square matrix.[21] 

 

Figure 1.9: Normalizing data before using PCA.[22] 

The covariance matrix is known for being square symmetric. It is also known that the 

covariance matrix should ideally be a diagonal matrix with variances on each 

diagonal and zero values for all values off the diagonal. Here, the aim is to 

diagonalize this covariance matrix. [22] 

From linear algebra it is possible to create a matrix 𝐸 such that the following equation 

is true for a symmetric matrix 𝑆: 

𝑆 = 𝐸𝐷𝐸𝑇                                               (Eq 1.13) 
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where 𝐸 is a matrix with the eigenvectors of matrix 𝑆 stored in its columns and 𝐷 is a 

diagonal matrix. Eigenvalues and eigenvectors are always presented in pairs. The 

direction of the maximum variance is indicated by the covariance matrix's 

eigenvectors, while the proportion is indicated by the eigenvalues. In other words, 

the more information can be found in the direction of an eigenvector the higher its 

eigenvalue.[22] 

So, finding 𝐵 such that 𝑋 is transformed into �́�: 

𝑋𝐵 = �́�                                               (Eq 1.14) 

where 𝑋 is the data matrix that is to be transformed by means of the vector basis that 

is kept in the columns of matrix B. A new matrix �́� emerges from the transformation. 

Covariances of both 𝑋 and �́� are related by: 

𝐶�́� = 𝐵𝑇𝐶𝑋𝐵                                            (Eq 1.15) 

Since, 𝐶𝑋 is symmetric, it follows: 

𝐶�́� = 𝐵𝑇𝐶𝑋𝐵 = 𝐵𝑇(𝐸𝐷𝐸𝑇)𝐵                                (Eq 1.16) 

One may demonstrate that 𝐶�́� is diagonal if the matrix 𝐵 is chosen such that its 

columns contain the eigenvectors of the covariance matrix 𝐶𝑋 i.e., 𝐵 = 𝐸, One can also 

use the property of eigenvectors 𝐸𝑇 = 𝐸−1.[22] 

Thus, the eigenvectors of the covariance matrix of the measured data can be used to 

compute the principal components. 

Hence the next step after normalizing the data is to find the covariance matrix's 

eigenvalues and eigenvectors. The principal components of the data are represented 

by the eigenvectors, and the variance explained by each principal component is 

represented by the eigenvalues. The first eigenvector, which accounts for the most 

variation in the data, is followed by the second eigenvector, and so on, in the order of 

the eigenvectors and their corresponding eigenvalues.[22] 

By projecting the data onto the eigenvectors, one can then convert it into the 

principal component space as shown in Figure 1.10. The final dataset will contain 

fewer variables, each of which will correlate to a principal component, but it will also 

contain the same number of observations as the initial dataset.[22] 
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Figure 1.10: Dataset transformed into Principal component space.[22] 

1.7 Darts Python Library 

Darts is a Python machine learning library for time series forecasting that offers a 

variety of models, from classics such as ARIMA to state-of-the-art deep neural 

networks. The library focuses on providing modern machine learning functionalities, 

such as supporting multidimensional series, fitting models on multiple series, 

training on large datasets, incorporating external data, ensembling models, and 

providing a rich support for probabilistic forecasting.[23] 

One of the key features of Darts is its user-friendly and easy-to-use API design. All 

models in Darts support the same basic fit()/ predict() interface, similar to scikit-

learn, making it easy to train and forecast with different models without having to 

know their inner workings. Darts also supports training one model on a potentially 

large number of separate time series, which is beneficial for ML models that work 

best when trained on datasets containing multiple time series.[23] 

Here are some key features and functionalities of Darts: 

1. Time Series Representation: Darts has its own TimeSeries data container type, 

which represents one time series. TimeSeries are immutable and provide 

guarantees that the data represents a well-formed time series with correct 

shape, type, and sorted time index. TimeSeries can be indexed either with 

Pandas DatetimeIndex or RangeIndex. 

2. Unified High-Level Forecasting API: All models in Darts support the same 

basic fit(series: TimeSeries) and predict(n: int) --> TimeSeries interface to be 

trained on a single series and forecast n time steps after the end of the series. 
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This unified API makes it possible to seamlessly compare, backtest, and 

ensemble diverse models without having to know their inner workings. 

3. Training Models on Collections of Time Series: Darts supports training one 

model on a potentially large number of separate time series. The library 

provides various classes implementing different ways of slicing series into 

training samples. All neural networks in Darts are implemented using 

PyTorch and support training and inference on GPUs. 

4. Support for Past and Future Covariates: Several models in Darts support 

covariate series as a way to specify external data potentially helpful for 

forecasting the target series. Darts differentiates between past covariates, 

which are known only into the past, and future covariates, which are known 

into the future. The models accept past covariates and/or future covariates 

arguments, which make it clear whether future values are required at 

inference time. 

5. Other Features: Darts also offers additional features such as transformers and 

pipelines for data preprocessing, backtesting, hyperparameter search, 

extensive metrics, dynamic time warping module, ensemble models, and 

filtering models such as Kalman filters and Gaussian Processes. 

Overall, Darts provides a comprehensive and user-friendly environment for time 

series forecasting, with support for a wide range of models and functionalities. 

Due to its comprehensive features and user-friendly API, Darts library has been 

chosen for all the machine learning models in the present thesis work. 

1.8 Residual method 

In the context of machine learning, residuals are defined as the difference between 

the observed values of the dependent variable and the values predicted through 

regression or predictive modeling techniques. Formally, the residuals are defined as 

shown in Figure 1.11: 
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Figure 1.11: Residual calculation 

Residual Method's Importance: 

Accurate Structural Assessment: The residual approach makes it possible to 

examine the structural behavior of the bridge more precisely by removing 

environmental variables. This enables more accurate assessments and well-informed 

decision-making by enabling engineers and researchers to isolate and examine the 

response brought on by actual structural loads, degradation, or damage. 

Early Damage Detection: Because environmental factors can hide or obfuscate the 

presence of structural deterioration or damage, it can be difficult to spot warning 

signals of impending collapse. The residual approach aids in separating the impacts 

of damage from the overall reaction, making it easier to identify structural problems 

early on. Engineers can spot potential issues quickly by keeping an eye on how 

residuals vary over time. 

Cost-Effective Monitoring: The residual technique makes use of the already-existing 

sensor network and makes use of predictive models, so there is no longer a need for 

more sensors that are only used to monitor the environment. This method makes 

monitoring the health of bridges more affordable by lowering the expenses 

associated with sensor installation, upkeep, and data collection. 
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2. Literature review on damage 

detection 

The four fundamental components of data-based Structural health monitoring are 

[6]:  

(i) defining and quantifying the damage that needs to be identified.  

(ii) an ongoing network of sensors,  

(iii) an automated process for instantaneous or periodic feature extraction, and 

(iv) an effective novelty detection system.  

The second component has drawn a lot of attention over the past ten years, and 

thanks to tremendous strides in sensor and instrument technology, it is now possible 

to install very large sensor networks on structures and collect the measured data in 

central recording units at high sampling rates. The third component is still a 

challenge today and is a current area of research for the most often utilized features 

(eigenfrequencies and mode shapes). Several methods from statistics and machine 

learning have been used for the fourth component; the most popular ones are control 

charts, hypothesis testing, and outlier analysis using the Mahalanobis squared-

distance. 

This literature work focuses on the fourth component of a data-based Structural 

health monitoring system in the presence of environmental and operational 

variability. Several studies [24]–[27] have found significant variation in the dynamic 

characteristics of structures subjected to ambient vibrations. These 

researches highlight the fact that variations in dynamic features caused by 

confounding factors (temperature, humidity, traffic, solar radiation) can be of the 

same order of magnitude as, or higher than, variations caused by damage, making 

detection of the onset of damage difficult. 

In this chapter, a literature review pointing out different techniques used to filter out 

these environmental effects is carried out. The most basic methods rely on 

determining the linear subspace to which the environmental and operational factors 

belong in order to remove their influence on the monitored properties. Such methods 



28 2Literature review on damage detection 

 

 

are appropriate when the dimension of the feature vector is large enough to allow 

the identification of a linear subspace to which the confounding effects belong.[28] 

2.1 The Mahalanobis squared-distance outlier analysis. 

This section describes the mathematical basis of the approach suggested by 

Deraemaeker et el. 2018 to eliminate confounding effects using the Mahalanobis 

squared distance. 

Considering 𝑁 healthy state observations of a structure with 𝑛 features {𝑦𝑙̇}𝑛×1 with 

(𝑖 = 1. . . . . 𝑁), the covariance [𝐶]𝑛×𝑛 is calculated as: 

{�̅�} =
1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1                                                (Eq 2.1) 

[𝐶] =
1

𝑁−1
∑ ({𝑦𝑖} − {�̅�})({𝑦𝑖} − {�̅�})𝑇𝑁

𝑖=1                            (Eq 2.2) 

The features taken from the vibration data, such as a set of eigenfrequencies, mode 

shapes, FRF or transmissibility functions at specific frequencies, etc., can be 

represented by the multivariate feature vectors. The basic idea behind outlier 

analysis is to compute the Mahalanobis squared distance provided by, for each 

sample of the multivariate feature vector 𝑦𝑗. 

𝐷𝑗
2 = ({𝑦𝑗} − {�̅�})

𝑇
[𝐶]−1({𝑦𝑗} − {�̅�})                             (Eq 2.3) 

One can set a threshold and if 𝐷𝑗  of a new sample 𝑦𝑗 is above this threshold, it is 

considered as an outlier.[28] 

2.1.1 Spectral decomposition 

The covariance matrix is typically not diagonal, thus feature transformation is carried 

out to diagonalize the covariance matrix. 

{𝜂𝑖} = [𝑈]𝑇𝑦𝑖                                               (Eq 2.4) 

The new mahalanobis squared-distance is given by: 

𝐷𝑗
2 = ∑

1

𝜎𝑖
2 (𝜂𝑗𝑖 − 𝜂�̅�)

2𝑛
𝑖=1                                        (Eq 2.5) 

This demonstrates how the changed variables can each contribute independently to 

the Mahalanobis squared-distance. The weights of the contributions are determined 

by the inverse of the corresponding eigenvalues, 𝜎𝑖
2, which are the variances of the 
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newly converted variables. The contribution to the distance is little if the variation is 

high.[28] 

2.1.2 Filtering environmental effects 

The full variability in the feature vector collected from the healthy condition may 

frequently be explained by a smaller number of transformed features, which are 

typically referred to as the principal component, when the number of features is 

sufficient. In mathematical terms, this happens when part of the eigenvalues of [𝐶] 

equal zero. The training data's null-space is made up of the related eigenvectors. In 

reality, the eigenvalues are not absolutely equal to zero because of noise and 

problems with numerical precision, but a noticeable decline in the eigenvalues can be 

seen and used to determine how many principal components are responsible for the 

majority of the variability. The following indicator can be used to discover how many 

principal components can be used: 

𝐼 =
∑ 𝜎𝑖

2𝑝
𝑖=1

∑ 𝜎𝑖
2𝑛

𝑖=1

                                                    (Eq 2.6) 

A threshold can be set such that 𝐼 > 𝑒%, which means 𝑝 principal components are 

needed to explain 𝑒% of the variance. Thus, the mahalanobis squared distance can be 

decomposed into two parts, 

𝐷𝑗
2 = ∑

1

𝜎𝑖
2 (𝜂𝑗𝑖 − 𝜂�̅�)

2𝑝
𝑖=1 + ∑

1

𝜎𝑖
2 (𝜂𝑗𝑖 − 𝜂�̅�)

2
= 𝐷1𝑗

2 + 𝐷2𝑗
2𝑛

𝑖=𝑝+1             (Eq 2.7) 

the Mahalanobis squared-distance of 𝑦𝑗 projected on the principal components is 𝐷1𝑗
2 , 

while the Mahalanobis squared-distance of 𝑦𝑗 projected on the null-space of the 

principal components is 𝐷2𝑗
2 . 

Assuming environmental factors now provide a relatively high amount of variability 

in the feature vector retrieved from the healthy condition, if this variability is more 

significant than other causes like noise, it will fall within the category of the first 𝑝 

principal components. The distance will be particularly insensitive to environmental 

changes since the Mahalanobis squared-distance scales each independent component 

with respect to the inverse of its variance. The Mahalanobis squared-distance is 

rendered insensitive to the environmental conditions by adding the feature vector 

measured in all conceivable environmental conditions in the construction of the 

covariance matrix.[28] 

Application of the mahalanobis distance for outlier analysis can be found in [28]. 
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2.2 Principal component analysis for damage 

identification 

In this section, a different strategy based on principal component analysis (PCA) is 

suggested by Yan et el. 2005. This method does not rely on the measurement of 

environmental factors or the knowledge of underlying physical quantities. 

Environmental influences are instead considered embedded variables. The method's 

fundamental premise is that environmental fluctuations in measured features can be 

accounted for using PCA and that these variations are distinct from those caused by 

structural damage. Consequently, it is possible to identify them. The PCA model's 

prediction errors could be used as a damage indicator. To determine whether the 

features point to a divergence from previously predicted normal conditions or not, 

novelty analysis is used. In this study, the principal components linked to 

environmental influences were removed, and an outlier analysis was performed on 

the minor components to find damage. [21] 

2.2.1 Methodology 

It is well-known that changes in environmental factors (such as temperature, 

temperature gradients, humidity, wind, etc.) have a significant impact on vibrational 

characteristics. Environmental factors are typically not quantified; instead, their 

effects are just seen from variations in the measured properties.[21] 

PCA transforms data from original dimension n to a lower dimension 𝑝: 

𝑋 = 𝑇𝑌                                                      (Eq 2.8) 

𝑌 is original data containing 𝑁 number of observations and 𝑛 number of features. 

𝑋 is transformed data with lower 𝑝 number of features. 

Typically, the principal 𝑝 eigenvectors of the covariance matrix of 𝑌 can be used to 

calculate matrix 𝑇. But a more practical alternative is to use singular value 

decomposition of feature covariance matrix. 

                                                           𝑌𝑌𝑇 = 𝑈Σ2𝑈𝑇 

                                                          𝑈𝑈𝑇 = 𝐼 

   Σ = [
Σ1 0
0 Σ2

]                                                         (Eq 2.9) 

where 𝑈 is an orthonormal matrix, whose columns are principal components, whose 

active energy is given by diagonal terms of matrix Σ.  
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Σ1 = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, … , 𝜎𝑝) and Σ2 = 𝑑𝑖𝑎𝑔(𝜎𝑝+1, 𝜎𝑝+2, … , 𝜎𝑛) 

Also, 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑝 ≥ 𝜎𝑝+1 ≥ ⋯ ≥ 𝜎𝑛 → 0 

According to PCA, the structure's vibrational characteristics fluctuate mostly along 

the principal component directions that are linked to the highest energies. To put it 

another way, the vibrational features roughly stay on the hyperplane established by 

the 𝑝 principal components chosen. The choice of an acceptable dimension 𝑝 is not as 

important as it might first appear. It is possible to acquire steady monitoring results 

with various values of the order 𝑝 as long as the relative change of this hyperplane 

from the reference to the current states is taken into consideration. 

Thus, the matrix 𝑇 in Eq. (2.8) may be constructed using the first 𝑝 columns of 𝑈 to 

project the observed features into the space described by environmental factors. By 

re-mapping the projected data to the original space, the amount of information lost in 

this projection can be evaluated. 

�̂� = 𝑇𝑇𝑋 = 𝑇𝑇𝑇𝑌 

And residual error matrix is given as: 

𝐸 = 𝑌 − �̂�                                                   (Eq 2.10) 

The Novelty Index (𝑁𝐼) is calculated using the prediction error vector 𝐸𝑘 collected at 

time 𝑡𝑘 and is defined either using the Euclidean norm: 

𝑁𝐼𝑘
𝐸 = ||𝐸𝑘|| 

Or mahalanobis norm: 

𝑁𝐼𝑘
𝑀 = √𝐸𝑘

𝑇𝑅−1𝐸𝑘 

Where 𝑅 is feature covariance matrix.  

It is possible to do statistical analysis if it is additionally assumed that the Euclidean 

or Mahalanobis indices are normally distributed. 

A centerline (CL) at 𝑁𝐼 and two additional horizontal lines (UCL and LCL) versus 

the identification numbers are drawn to create an X-bar control chart, with 𝑁𝐼̅̅̅̅  and 𝜎 

defined as the mean value and standard deviation of 𝑁𝐼 for the prediction in the 

reference state respectively. A confidence interval of 99.7% can be chosen.[21] 

The hyperplane spanned by the vibration features of the reference state should 

contain the vibration features corresponding to the present data if there is no 

damage. Therefore, the current data's outlier statistics value should stay at the same 

level as for the reference data. In contrast, structural damage should result in a 

departure from the original hyperplane and a sharp increase in the outlier statistics 
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of the damaged state. The ratio 
𝑁𝐼𝑑

𝑁𝐼𝑟
 (𝑑 and 𝑟 stand for, respectively, the damaged and 

reference states) may also be employed as a quantitative indicator of damage level in 

addition to the outlier statistics.[21] 

2.2.2 Geometric Interpretation 

A geometric interpretation of two-dimensional data with two characteristics (y1 and 

y2) is used to illustrate the method under discussion. The characteristics are shown in 

Figure 2.1 as circles spaced out from their geometric center (point O'). Environmental 

differences are thought to be the main cause of the features' dispersal. This data set is 

subjected to PCA analysis, which produces PC-I and PC-II as the two principal 

components. The dominant environmental component or a mix of several factors, 

PC-I has the largest unique value and accounts for the majority of the feature 

variance. PC-II, on the other hand, symbolizes the impact of secondary factors. This 

method offers valuable insights into the underlying relationships and patterns in the 

data set.[21] 

 

Figure 2.1: Geometric Interpretation.[21] 

First, this 2D data is projected into the 1D space spanned by PC-I using Eq. (1), using 

point Y as an example. It yields a scalar with length OX1 as its value. This data point 

is remapped into the original 2D space to produce point Y1, and the length of 

segment Y1Y is used to calculate the residual error. 

Using point Z as an example for a damaged state, the residual error (Y1Z) greatly 

rises in comparison to Y1Y using the same projection method as for point Y. The 
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effect of environmental factors in such a comparison between healthy and damaged 

states has been roughly eliminated. 

It should be noted that the traditional PCA approach typically requires a data 

normalization process to produce variables with a zero-mean and a unit standard 

deviation. 

𝑦𝑘
∗ = (𝑦𝑘 − �̅�)/𝜎𝑦                                            (Eq 2.11) 

Where �̅� is mean, 𝜎𝑦 is standard deviation of dataset. 

Damaged-state data are normalized by subtracting always the reference data set's 

mean value rather than the damaged data's own mean value. Taking a closer look at 

the two distinct data sets in Figure 2.2 that represent the healthy (reference) marked 

with ∘ and damaged states marked with ×, respectively, to better understand this. 

Figure 2.2(a) demonstrates that the features belonging to the damaged state are 

combined with the features corresponding to the starting structure when the mean 

value of each data set is removed, rendering damage undetectable.[21] 

 

Figure 2.2: PCA geometric interpretation with data normalization: (a) Elimination of 

mean from both set separately; (b) Elimination of mean of damaged set from 

reference set.[21] 

Application of the mahalanobis distance for outlier analysis can be found in [21]. 

2.3 Linear regression for damage identification 

This section introduces a linear filter proposed by Sohn et el. 1999 for a large-scale 

bridge's damage detection system that adapts to environmental variations. This 

system predicts the underlying response variables of the structure based on a time-

environmental profile. In doing so, the system is able to distinguish between 
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response variable changes brought on by environmental changes and those brought 

on by structural degradation. For instance, the system can reliably indicate that 

structural changes are probably caused by variables other than 

environmental influence when the measured response departs from the expected 

confidence intervals. 

2.3.1 Model Formulation 

The first aim for this study is the prediction of the response variable. The changing of 

the response variable is thought to be mostly caused by changes in the bridge's 

temperature, and is assumed to be linearly correlated. 

A linear predictor is selected as the system architecture in light of these 

presumptions. Simply put, a linear filter makes an input-output mapping that is 

linear and one-to-one. The alternative coefficients can be explicitly calculated using a 

straightforward matrix calculation, and they can be modified in the future using 

adaptive least-mean-squares-error minimization. Training and prediction are the two 

modes in which the filter functions.[29] 

2.3.2 Training linear filter model 

The architecture of the linear filter produces a single output that corresponds to the 

estimated or expected response variable from a subset of temperature profiles as 

inputs. The filter, which is likewise a multiple linear regression model in this sense, is 

more frequently referred to as a predictor or estimator. The method of Least-Mean-

Squares (LMS) error reduction is used to calculate the coefficients of the predictor, 

and the variable selection problem, which is defined as selecting the suitable subset 

of the available temperature profiles, is explained in Section 2.3.3.[29] 

The linear filter creates a linear function to represent the relationship between the 

observed response variable, 𝑦, at the selected bridge temperature inputs, 𝑥, a column 

vector of 𝑟 inputs. 

𝑦 = 𝑥𝑇𝑤 + ԑ                                                   (Eq 2.12) 

Where, 

𝑥 = [1 𝑥1 𝑥2 ⋯ 𝑥𝑟]𝑇 
𝑤 = [𝑤0 𝑤1 𝑤2 ⋯ 𝑤𝑟]𝑇 

𝑤 is a coefficient vector to weight temperature inputs, and ԑ is residual error.  

The filter used to construct this model is shown in Figure 2.3. The temperature 

readings at the present time 𝑇𝑖 and the preceding time 𝑇𝑖
′ are utilized as input 
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variables in order to take into account both the temporal and spatial change of 

temperature. That means 𝑥 = [1 𝑇1 ⋯ 𝑇9 𝑇1
′ ⋯ 𝑇9

′]. In Figure 2.3 strict linear 

mapping is mandated by the filter. 

 

Figure 2.3: A linear adaptive filter.[29] 

Let's say there are 𝑛 observations available, and the 𝑖𝑡ℎ input-output pair is 

represented by 𝑥(𝑖) and 𝑦(𝑖). 

Matrix notation can be used to write Eq. (2.12): 

𝒚 =  𝑿𝒘 +  ԑ 

Where, 

𝑦 = [

𝑦(1)

𝑦(2)
⋮

𝑦(𝑛)

]; 𝑥 = [

1 𝑥1(1) 𝑥2(1) . 𝑥𝑟(1)

1 𝑥1(2) 𝑥2(2) ⋯ 𝑥𝑟(2)
. ⋮ . ⋱ ⋮
1 𝑥1(𝑛) 𝑥2(𝑛) ⋯ 𝑥𝑟(𝑛)

]; ԑ = [

ԑ(1)

ԑ(2)
⋮

ԑ(𝑛)

] 

The filter coefficients are estimated using the LMS error minimization method. The 

aim is to find filter coefficients vector that minimizes the predicted value of the 

square of the filter error. 

min 
𝑤

𝐸[𝜀(i)2] 

where 𝐸[𝜀(i)2] represents the average of the filter errors brought on by the 𝑛 

observations. It is possible to rewrite 𝐸[𝜀(i)2] as follows. For ease of notation, the 

index i is dropped after the first line. 

𝐸[𝜀(𝑖)2] = 𝐸 [(𝑦(𝑖) − 𝒘𝑇𝒙(𝑖))
2

] 

= 𝐸[(𝑦 − 𝒘𝑇𝒙)2] 

= 𝐸[𝑦2 + 𝒘𝑇𝒙𝒙𝑇𝒘 − 2𝑦𝒙𝑇𝒘] 
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= 𝐸[𝑦2] + 𝒘𝑇𝐸[𝒙𝒙𝑇]𝒘 − 2𝐸[𝑦𝒙𝑇]𝒘 

= 𝐸[𝑦2] + 𝒘𝑇𝑹𝒘 − 2𝒑𝑇𝒘                                       (Eq 2.13) 

Where 𝑝 = 𝐸[𝑦𝒙𝑇] is the cross-correlation between the intended output and the input 

vector and 𝑅 = 𝐸[𝒙𝒙𝑇] is the autocorrelation of the random input vector 𝑥. Here, it is 

clear that 𝐸[𝜀2] is quadratic with 𝑤 and can be calculated for a single extremum 

(minima) with regard to 𝑤. Eq. (2.13) is differentiated with respect to w to find the 

estimated coefficients, 𝒘, and the resulting value is set to zero: 

𝛻(𝐸[ԑ2])
𝜕𝐸[ԑ2]

𝜕𝒘
= 2(𝑹�̂� − 𝒑) = 0 

�̂� = 𝑹−𝟏𝒑                                                  (Eq 2.14) 

The Wiener-Hopf equation, or Eq. (2.14), is used to calculate the estimated 

coefficients, �̂�, for a set of input-output pairs. 

All input variables are taken into account in the derivation of Eq. (2.12) in order to 

predict the output response. However, in the majority of real-world applications, the 

analyst must assess the significance of each input and select an ideal subset from a 

set of potential inputs. This approach is covered in the following subsection and is 

equal to removing unnecessary or duplicated inputs from the filter of Figure 2.3.[29] 

2.3.3 Input variable selection 

Before estimating the filter coefficients, the choice of input variables should be made 

to minimize the size of the filter. A model with fewer input variables is often 

preferred because the variance of the prediction �̂� rises as the number of inputs does. 

Additionally, the expense of gathering data and maintaining the model rises when 

additional inputs are added. 

First, the relationship between the measured response variable and the nine 

temperature sensor readings is looked into. The outcome of the correlation matrix is 

shown in Table 1. The correlation matrix demonstrates a strong relationship between 

(𝑇3) and (𝑇4) temperatures. The temperature (𝑇6) and (𝑇8) have a high correlation. 

Because 𝑇3 has a stronger correlation with the observed output 𝑦 than 𝑇4, 𝑇4 is 

removed from the filter model.[29] 
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 y 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇7 𝑇8 

y 1.000          

𝑇1 -0-097 1.000         

𝑇2 0.435 0.835 1.000     Sym.   

𝑇3 0.608 0.684 0.941 1.000       

𝑇4 0.580 0.707 0.943 0.997 1.000      

𝑇5 0.485 0.787 0.969 0.966 0.966 1.000     

𝑇6 0.130 0.949 0.901 0.839 0.853 0.916 1.000    

𝑇7 0.741 0.396 0.750 0.910 0.909 0.807 0.605 1.000   

𝑇8 0.065 0.968 0.883 0.804 0.820 0.886 0.996 0.556 1.000  

𝑇9 -0-232 0.886 0.641 0.518 0.540 0.668 0.870 0-283 0.889 1-000 

Table 1: Correlation of the measured fundamental frequency and the thermometer 

readings 

2.3.4 Prediction 

The response variable of the bridge is estimated using the adaptive filter set up in the 

preceding section. The measured response value is then employed to separate the 

variations in the response variable brought on by temperature impacts from 

variations brought on by other potential structural problems. Let 𝑥0, for instance, 

stand for a vector of fresh temperature values. The response at the temperature 

profile is predicted at 𝑦0 as follows: 

�̂�0 = 𝑥0
𝑇�̂�                                                 (Eq 2.15) 

Where �̂� is weight vector. 

However, a perfect match between the predicted and measured modal parameters 

cannot be anticipated due to the model's shortcomings, a lack of training data sets, 

errors in the actual testing and measurements, and other factors. 
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One may believe with reasonable confidence that some variations in the underlying 

structural characteristic are caused by damage or other factors if the response 

variable is outside the confidence interval.[29] 

Figure 2.4 shows the predicted ∘ and measured × response variable as a function of 

temporal temperatures.[29] 

 

Figure 2.4: Reproduction of frequency using linear filter.[29] 

2.4 Combination of MLR and PCA 

MLR and linear PCA are coupled to possibly improve damage detection results. In 

the MLR-PCA combined technique, an MLR model is used first, and then PCA is 

applied to the residuals from the MLR model's Eq. (2.18). The MLR-PCA method is 

based on the premise that MLR removes the impacts of quantifiable predictors, and 

PCA removes the residual effects of unmeasured environmental and operational 

factors. It should be noted that a combination PCA-MLR model, with the order of 

PCA and MLR reversed, might also be proposed. However, if the operational and 

environmental factors that have the greatest impact on frequency data are accurately 

measured, then PCA-MLR technique would not perform any better than the MLR 

method alone because the PCA would remove the same amount of variance as 

regression analysis does.[30] 

Figure 2.5 shows the flowchart to make control chart from the residuals obtained 

from the PCA analysis. The control chart is a statistical tool that can be used to 

monitor the values of features that are insensitive to operational and environmental 

factors, in order to detect abnormal occurrences. The control chart consists of data 

plotted in the time order and horizontal lines, designated control limits, which 

indicate the amount of variation due to common causes. An observation outside the 

control region is considered to be an out-of-control observation, or in other words, an 
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observation suggesting a special cause of variation. This cause of variation may be 

linked to the occurrence of damage in the context of structural health monitoring.[31] 

 

Figure 2.5: A flowchart of MLR-PCA method that can be used to create control 

chart.[31] 

To make a control chart using a combination of regression analysis and PCA, the 

following steps can be taken: 

1. Use regression analysis to establish a model relating observed environmental 

or operational factors with estimated natural frequencies. This will help to 

eliminate the influence of these factors on the natural frequencies, so that 

small changes due to damages can be detected. 

2. Use PCA to reduce the dimension of the problem, by substituting a group of 

correlated variables by a new smaller group of independent variables, which 

are designated principal components. The original variables can be 

transformed into another set of variables by the application of an orthonormal 

matrix that applies a rotation to the original coordinate system. 

3. Apply the transformation expressed by the orthonormal matrix to new 

observations and calculate the residues following a specific equation. The 

residues can be used to detect abnormal occurrences that might be justified by 

the existence of damaged zones. 

4. Use control charts to monitor the values of the features obtained from the PCA 

analysis in order to detect abnormal occurrences. Control charts can be used to 

set a control region for future observations, taking into account the properties 
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of previously collected data. The verification of future observations can be 

performed by checking if each new observation lies within a previously 

defined 'safety' region. 

The residuals from MLR can be given as: 

𝐸𝑅 = 𝑌 − 𝛽𝑇𝑍𝑇                                            (Eq 2.16) 

Where 𝑌 is observation matrix, 𝑌 has dimensions 𝑛 × 𝑁, where 𝑛 is the total number 

of observations and 𝑁 is the total number of features. 𝛽 ∈ ℝ𝑁×(𝑃+1) is weighing 

matrix estimated using least square minimization method. 𝑍 is a matrix containing 

independent variables. 

The final residuals after MLR-PCA can be given as: 

𝐸 = �̂�𝐸
𝑇�̂�𝐸𝐸𝑅 

Where �̂�𝐸 is the reduced loading matrix of the residuals of the MLR model. This is 

computed by only retaining part variance.[30] 

It should be noted that the MLR filter's parameters and the appropriate selection of 

the number, 𝑙, of retained PCs are the key parameters influencing the combined 

method's results and necessitating some initial adjustment. 
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3. Livenza Bridge, Results and 

Discussion 

3.1 Bridge Description and monitoring system 

characterization 

The bridge under observation is a railway steel truss bridge with two spans that 

spans the Livenza River in Northern Italy. The primary span, with a length of 60 m is 

shown in Figure 3.1 and a model is represented in Figure 3.2, is used for this research 

without losing generality. The bridge is monitored by a permanent system that 

includes multiple sensors, as shown in Figure 3.3: the latter does not report all of the 

installed sensing devices, but only those that are located on the span of interest. 

Tiltmeters and displacement transducers (LVDTs) have sensor IDs reported.[32] 

 

Figure 3.1: Livenza Bridge.[32] 
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Figure 3.2: Structural model of the main span of Livenza bridge (length of 60.5 m). 

The letters identify different lower/upper chords sections.[32] 

The installed monitoring system additionally offers capabilities for the assessment of 

external variables (temperature, air humidity, etc.): therefore, the influence of 

seasonal fluctuations on sensor measurements (for inclinometers and LVDTs) may 

possibly be eliminated. The data from all sensors is continually logged at a low 

frequency (1 Hz).[32] 

 

Figure 3.3: Scheme of the sensors composing the monitoring system on the span of 

interest for the present work.[32] 

3.2 Susceptibility to Environmental and Operational 

factors 

From the Figure 3.4(a) and (b) which shows time series of Bridge response sensor – 

E35 and Environmental sensor – T39 respectively over a period of 1 week, it can be 

shown that the variations in bridge response sensor E35 are due to the fluctuations in 

temperature. This can also be proved statistically by analyzing the correlation matrix 

shown in Figure 3.12, which shows high correlation coefficient between the sensors 

E35 and T39. Similarly, it can also be shown for other bridge response and 

environmental sensors as well. 
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Figure 3.4: Time series of (a) Bridge response sensor E35; (b) Environmental sensor 

T39 

Moreover, some spikes can also be observed which might be due to the operational 

variabilities as discussed earlier. These can also be referred as local outliers and are 

addressed in Section3.4.2. 

3.3 Methodology 

Model building and residual calculation are the two steps used in the residual 

approach. In order to create correlations between the environmental variables 

(temperature, humidity, solar radiation) and the structural response variables (strain, 

displacement, and inclinometer readings), historical data is examined throughout the 

model building phase. To create predictive models that forecast the predicted values 

of the sensor data based on the known conditions at hand, a variety of statistical and 

machine learning techniques can be used. These models accurately reflect the innate 

relationship between environmental variables and structural response. 
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The sensor measurements that would be anticipated primarily owing to 

environmental factors are predicted using the models after they have been built. The 

residuals are then produced by subtracting these anticipated values from the 

corresponding real sensor data as shown in Figure 1.11 of Section1.8. The residuals 

represent the genuine structural response, free of environmental influences, and they 

offer valuable information about the condition and behavior of the bridge. 

A predictive model can be created using a variety of machine learning techniques in 

order to calculate the residuals. These techniques can be roughly divided into four 

categories: static regression, dynamic regression, principal component analysis 

(PCA), and PCA and regression analysis combined. 

Static Regression: Static regression techniques use a fixed or static model to represent 

the link between external parameters and bridge response sensor readings. Static 

regression methods including linear regression, KNN regression, and random forest 

regression are frequently employed. 

• Linear Regression: Linear Regression presupposes that environmental 

conditions and bridge sensor values have a straight-line relation. In order to 

forecast sensor measurements based on environmental parameters, it predicts 

the coefficients that best suit the data. 

• KNN Regression: KNN regression is a non-parametric technique that makes 

predictions about sensor readings by taking into account the k nearest 

neighbors in the training dataset. The average or weighted average of the 

nearest neighbor observations is used to get the expected values. 

• Random Forest Regression: Using a combination of different decision trees, 

random forest regression is a collective learning technique. It is appropriate 

for capturing intricate patterns in the data because it can manage nonlinear 

correlations and interactions between variables. 

Dynamic Regression: When the relationship between environment parameters and 

bridge response sensor readings demonstrates temporal dynamics, dynamic 

regression approaches are very helpful. Long Short-Term Memory (LSTM) 

regression is a dynamic regression method that is frequently employed. 

• LSTM Regression: Recurrent neural networks (RNNs) with the ability to 

detect long-term dependencies and temporal patterns in sequential data. It is 

useful for forecasting sensor measurements based on time-varying 

environmental conditions since it is well-suited for modeling time series data. 

Principal Component Analysis: The principal component analysis is primarily used 

for dimensionality reduction. In this case, it can be used to identify the most 

significant principal component that causes environmental variation. This 
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component can further be deleted and the remaining can be retained using residual 

method.  

Combination of PCA and Regression Analysis: For better environmental 

compensation, the residuals from the regression analysis can be fed into principal 

component analysis to remove the effects of some unknown variations and thus the 

residual method by this combination can be made more efficient. 

But before a model can be created, the data to be fed to the model should be good, 

i.e., it should be consistent, free from outliers and missing values, to ensure accurate 

and meaningful results. 

3.4 Data Preprocessing 

Any project involving data analysis or machine learning must start with data 

preprocessing. It entails converting unstructured raw data into an organized format 

that algorithms and models can use to their fullest potential. This procedure is 

essential for raising the data's quality and dependability, which raises the precision 

and effectiveness of any future analysis or prediction jobs. 

3.4.1 Data visualization and cleaning 

A crucial part of data preprocessing is visualization and cleaning, also known as data 

cleansing or data scrubbing. To make sure that the data is accurate, full, and 

dependable for further analysis, it entails locating and fixing flaws, inconsistencies, 

and inaccuracies within a dataset. The accuracy and effectiveness of subsequent 

analysis or prediction jobs strongly depend on the cleanliness of the data, hence data 

cleaning is crucial to raising the quality of the data. 

Data is prone to a wide range of problems and inaccuracies, which might come from 

several sources. For instance, human mistakes during data entry could lead to typos, 

missing numbers, or inaccurate data inputs. Additionally, defective sensors or other 

data collection equipment might compromise data, resulting in outliers or unusual 

values. Data analysis might also be complicated by incomplete records, inconsistent 

formats, or differences in measuring units. 

Finding and fixing these problems is the main goal of data cleaning in order to 

provide a trustworthy and consistent dataset. This entails using a variety of strategies 

and procedures that are suited to the particular dataset and the types of mistakes that 

are there. 

But to do data cleansing, visualizing the data is crucial. With the use of data 

visualization, one can immediately understand the meaning of the data. Charts, 
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graphs, and maps are examples of visual representations that offer a clear and 

succinct overview of the data rather than digging through rows and columns of 

figures. When data is presented visually, it is easier to spot patterns, trends, and 

anomalies, which aids in understanding the underlying data.  

Data visualization might assist in locating any potential data issues, such as 

inconsistencies, outliers, or missing values. It can also assist in better understanding 

the relationship between the dependent and independent variables. 

Sections below show different data visualization methods. 

3.4.1.1 Time series plots 

To see how data evolves over time, time series line graphs might be helpful. They can 

be used to spot patterns, outliers, missing data, and trends. Additionally, they can be 

used to compare various time series. 

 

Figure 3.5: Time series visualization for (a) I18 inclinometer; (b) LVDT25 

displacement; (c) E31 strain sensors 
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Figure 3.6: I15 sensor time series enlarged view. 

As it can be seen from Figure 3.6 that the data points for almost 15 days (from June 15 

to June 30) are missing in I15 inclinometer sensor, hence it’s not continuous, and in 

sensor E31 as shown in Figure 3.5(c) there are many anomalies before July and a 

sudden inconsistency in the data of LVDT25 sensor at around mid-July as can be 

seen in Figure 3.5(b). 

Imputing too many values can result in a number of potential issues. 

Bias in the data: When many missing values are imputed, the dataset may be biased 

since the imputed values may not be a genuine representation of the missing true 

values. As a result, the machine learning model may produce incorrect or misleading 

findings by distorting the relationships and patterns in the data. 

Overfitting: When imputing a lot of missing values, there is essentially addition of 

new data to the dataset. This might result in overfitting, when the model exhibits 

excessive sensitivity to the imputed values and exhibits poor performance on fresh, 

unforeseen data. 

So, it is better to remove this large inconsistent data before applying any machine 

learning method. This method of removing the data is referred as Exclusion. 

Thus, the data selected for the study was 14th July 2022 to 10th May 2023. 

Out of ['I15', 'I16', 'I17', 'I18', 'I19', 'I20', 'I21', 'I22', 'I23_X', 

       'I23_Y', 'LVDT25', 'LVDT26', 'LVDT27', 'LVDT28', 'IDR41', 'E29', 

       'E30', 'E31', 'E32', 'E33', 'E34', 'E35', 'E36', 'T37', 'T38', 

       'T39', 'T40', 'Patm', 'Int temp', 'Ext Temp', 'Int hum', 'Ext hum', 

       'W speed', 'W dir', 'Rain rate', 'Solar rad\n'] 

Only good performing sensors were selected, and faulty sensors were dropped. 
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Faulty sensors are I16', 'I17', 'I19', 'I20', 'I21', 'I22', 'I23_X', 'I23_Y', 'LVDT27', 'LVDT28', 

'IDR41'. 

Also, the sensors which are not useful in calculation of residuals can also be dropped, 

i.e., the sensors which have constant values over the period. 

'Patm', 'W speed', 'Rain rate' are sensors with almost constant value over the period 

of time considered as shown in Figure 3.7. 

 

Figure 3.7: Sensors with almost constant value over time period 

3.4.1.2 Scatter Plots 

Graphs that depict the relationship between two variables are called scatterplots. In a 

scatterplot, each data point is represented by a dot. Scatter plots allows to uncover 

relationships between two variables, helping discern correlations, clusters, or 

outliers. 

As can be seen from Figure 3.8, the pearson correlation factor is quite high between 

all the dependent and independent sensors, which indicates a strong linear 

relationship between these variables. 
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Figure 3.8: Scatter Plots 

The elimination of duplicate records is also a frequent task in data cleansing. Due to 

the fact that they essentially give the same information more than once, duplicates 

can skew analysis results and cause biases. Each data point is only used once in the 

analysis thanks to the detection and removal of these duplicates. 

3.4.2 Handling Outliers and Missing Values 

Outliers are data points that dramatically vary from predicted patterns or trends. 

Measurement errors, data entry problems, or truly extreme numbers in the dataset 

can all be causes of outliers. In the present case, the outliers are also said to be due to 

the operation of the bridge itself. This can be due to passing of a train which in turn 

changes the dynamic response of the bridge and can be seen in Figure 3.9(a) with red 

curve having spikes. These outliers can skew statistical measures, affect how 

variables relate to one another, and skew the findings of analyses. Therefore, it is 

crucial to identify outliers and deal with them effectively. 

The z-score method uses the mean and standard deviation to calculate a z-score for 

each data point. The z-score is calculated as: 

𝑧 =
𝑥 − �̅�

𝜎
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Data points with absolute z-scores greater than 3 are typically considered potential 

outliers. This rule is based on the empirical rule that 99.7% of observations from a 

normal distribution should lie within 3 standard deviations of the mean.[33] 

The interquartile range (IQR) method[33] is another approach that requires figuring 

out the range between the data's first and third quartiles (𝑄1 and 𝑄3). Outliers are 

data points that are outside the normal distribution of: 

𝑄1 − 1.5 × 𝐼𝑄𝑅 𝑜𝑟 𝑄3 + 1.5 × 𝐼𝑄𝑅. 

Several strategies can be employed to deal with outliers once they have been 

identified. Outliers are replaced with the nearest non-outlier values using the widely 

used Winsorization technique[34]. By reducing the impact of extreme numbers while 

maintaining the data's normal distribution, this strategy aids. Alternatively, if 

outliers are determined to be data anomalies or if they significantly impair the 

analysis results, they can be eliminated from the dataset. However, care must be used 

when eliminating outliers because doing so may result in the loss of important data 

or skew the study. 

Because this is a time series data, it is preferable to analyze local outliers rather than 

global outliers, so an approach that involves replacing outliers with more typical 

values based on adjacent data was used. A function was defined to remove the 

outliers. The steps to remove and impute outliers are mentioned below: 

1. Iterating through the Time Series: Ensuring that sufficient neighboring data 

points are available for comparison and replacement. 

2. Retrieving Neighboring Values: By considering a window of neighboring values, 

the function aims to capture the local context and assess whether the current 

value is an outlier or not. 

3. Comparing with the Mean: The function calculates the mean of the selected 

neighboring values. This mean value represents the local average and is used as a 

benchmark for comparison. 

4. Detecting and Replacing Outliers: The current value is then compared to the 

calculated mean. If the absolute difference between the current value and the 

mean exceeds the defined threshold, it is considered an outlier. In such cases, the 

outlier is replaced with the calculated mean value. 

5. Returning the Modified Time Series: Once all the iterations are complete, the 

function returns the modified time series with outliers replaced by the 

corresponding means. 
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Figure 3.9: (a) Local outlier removal; (b) Global outlier removal 

This function provides a simple method for removing outliers from a time series 

collection. It finds and substitutes probable outliers by taking into account local 

context and comparing values to the local mean, resulting in a more representative 

dataset. The pseudo algorithm for the function can be reported as in Algorithm 1 

below. 

Algorithm 1: Imputing local outliers/ operational data function 

 Input: Unfiltered dataframe 

 Output: Filtered dataframe 

 Defining Function: Replace Outliers (Input arguments – time series, number of 

neighbors, threshold) 

  for (i from number of neighbors to (size of time series − number of neighbors − 1) do 

   Slicing timeseries 

   if (absolute value of (current value−average of sliced timeseries)>threshold) then 

    Replace the value with the mean value of the window 

   end if 

  end for 

  return modified timeseries 
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However, a few assumptions while applying this function have been considered. To 

begin, the function is assumed to have a symmetric distribution of values around the 

mean. This strategy may not be appropriate if the distribution is severely skewed or 

has complex patterns. Furthermore, the function assumes that the given threshold 

accurately captures the extent of outlier departure. Setting an improper threshold 

value may result in the wrong removal or retention of outliers. 

Handling missing values is an additional essential component of data preprocessing. 

Data might be missing for a number of reasons, including the fact that it was not 

gathered or recorded for certain variables or circumstances. Missing values can 

significantly alter the outcome of analysis, producing skewed findings or insufficient 

insights. There are various strategies that can be used, depending on the percentage 

of missing values and the type of data. 

Exclusion, is a strategy for dealing with missing data which was already discussed in 

the Section3.4.1.1 and applied to the data, and entails deleting instances or variables 

with missing values from the analysis. However, if the missing data exhibits a 

pattern, this strategy should be utilized cautiously since it could result in the loss of 

important data or biased findings. 

Whereas Imputation is a popular method for dealing with missing values. It entails 

substituting estimated or expected values for the missing variables using the data 

that is already available. The process of imputation can be carried out using a variety 

of techniques, including mean imputation (replacing missing values with the 

variable's mean), regression imputation (forecasting missing values based on other 

variables), and sophisticated methods like multiple imputation that produce multiple 

imputations that are plausible and take uncertainty into account. 

Interpolation, which includes guessing the missing values based on the observed 

data patterns, is a useful method for handling missing data. The second-degree 

polynomial interpolation method is used to fill the missing data points as shown in 

Figure 3.10. 

A mathematical method called polynomial interpolation enables to approximate a 

function using a polynomial equation. When the data points display a curved 

pattern, second-degree polynomial interpolation, commonly referred to as quadratic 

interpolation, is especially helpful. It entails guessing the missing values based on a 

curve that is fitted to a quadratic equation using the data that are already available. 

For imputing missing data, the second-degree polynomial interpolation approach 

has a number of benefits. It can identify intricately curved patterns in the data and 

offer reasonably precise estimates for values that are absent. 
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Figure 3.10: Missing timestamp interpolation using second-degree polynomial. 

3.4.3 Feature transformation 

The raw values that come directly from the sensors are electrical voltages, so there is 

a need to transform these values to their respective physical values and units. So, an 

electrical to physical transformation was applied, which converts all data to physical 

units. Also, since large dataset close to 1 year is considered, a 1 min frequency of 

observations can be changed to 1 hour frequency by averaging the data over 1 hour. 

Further analysis is done considering dataset frequency of 1 hour. 

3.4.4 Normality test 

As discussed in Section1.3.2, the normality test was performed on the dataset to 

know the type of distribution. 

   

Figure 3.11: (a) Histogram probability plot; (b) Q-Q plot both showing deviation from 

normal distribution. 
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But it is not necessary to have a normal distribution to apply linear regression if the 

dataset is large because the Central Limit Theorem states that the regression 

coefficients will be normally distributed for large enough samples, regardless of the 

distribution of the response variable. This is because the regression coefficients are 

weighted averages of the response variable values.[35] 

3.5 Regression combined with PCA. 

3.5.1 Dimensionality Reduction and Feature Selection 

Predictive models might encounter issues including overfitting, increased computing 

cost, and diminished interpretability when working with datasets that have a lot of 

features or dimensions. Prior to executing these models, dimensionality reduction 

and feature selection approaches are frequently used to address these problems. 

The term "curse of dimensionality" describes the situation in high-dimensional 

spaces where the amount of data grows exponentially as the number of dimensions 

rises. Data becomes sparse as a result, which makes it difficult to identify significant 

patterns and linkages. This problem can be addressed in turn boosting the 

model’s efficiency by lowering the number of dimensions. 

Finding the most pertinent subset of features from the initial feature space is the goal 

of feature selection. Along with reducing dimensionality, this procedure also makes 

data more interpretable and less susceptible to overfitting. Typical methods for 

feature selection include: 

a. Filter Methods: Filter methods place features in a certain order depending on 

statistical characteristics like mutual information or correlation with the target 

variable. Independent of the selected learning algorithm, features are chosen 

according to predefined criteria. Chi-square, information gain, and correlation-based 

feature selection are a few examples of filtering techniques. 

The reduced feature set is fed into the regression model when the dimensionality 

reduction or feature selection phase is finished. The model can concentrate on the 

most useful variables by removing irrelevant or redundant features, which will 

enhance prediction accuracy, decrease overfitting, and improve interpretability. 
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Figure 3.12: Correlation matrix 

Observed from the correlation matrix, ‘W dir’ sensor data can be straightaway 

neglected since it shows very less correlation with all the sensors. Also, a threshold of 

|0.3| can be set and any correlation below this threshold can be neglected.  

So, these are the dependent and independent features considered: 
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Dependent Variables Independent Variables 

I15, I18 Ext Temp, T38 

LVDT25, LVDT26 T38, Int hum, solar rad 

E30, E31 Int temp, Ext hum, solar rad 

E34, E35 T40, Ext hum, sola rad 

E33, E36 Ext Temp, T38, Int hum 

E29, E32 Int temp, T39, Ext hum 

Table 2: Features corresponding to the predictor variables. 

3.5.2 Selection of best regression model 

The selection of the best regression model plays an important part in accurately 

estimating the true structural response by effectively removing environmental 

effects. This section discusses the methodology employed for choosing the most 

suitable regression model and presents an evaluation framework based on the root 

mean square error (RMSE) metric. 

RMSE is preferred over other performance metrics like mean absolute error (MAE), 

mean square error (MSE), mean absolute percentage error (MAPE) for several 

reasons: 

Sensitivity to Deviations: The average deviation between the anticipated and actual 

values is measured by the RMSE. It considers both the magnitude and the direction 

of the errors. The RMSE emphasizes greater errors by taking into account the 

squared differences, which makes it sensitive to significant variations between the 

expected and actual values. The accuracy of the regression models in capturing the 

relation between environmental effects and bridge measurement data must be 

evaluated in light of their sensitivity. 

Familiarity and Interpretability. 

Application to Outliers: In real-world situations, it is usual to run into outliers or 

extreme data values that can have a big impact on how well regression models work. 

By taking into account the squared errors, RMSE gives these outliers more weight, 
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thereby capturing their influence on performance as a whole. As a result, RMSE is 

robust and trustworthy when analyzing data that contains unusual or extreme 

observations. 

Comparison Among Models: RMSE makes it easy to compare and rank several 

regression models. It is simple to identify the model that, by successfully removing 

temperature influences, produces the most accurate estimations of the underlying 

structural response since lower RMSE values imply superior performance. Due to its 

comparability, RMSE can be used to choose the optimal regression model when 

attempting to eliminate external influences from bridge monitoring data. 

First, a wide range of models are taken into account. These models include popular 

and well-known machine learning methods such as linear regression, KNN 

regression, random forest regression, dynamic regressions, and also deep learning 

methods like LSTM. A Kalman forecaster is also taken into consideration. A dataset 

that includes environmental measurements and bridge response measurements 

gathered from the bridge monitoring system is used to train each model. 

The selection of independent and dependent features is already discussed in section 

3.5.1. 

Then the dependent variables are used to predict the target variables. And RMSE is 

calculated for each bridge response sensor using every regression model. A median 

RMSE is then calculated for each regression model. 

This median RMSE is used to assess the models' performance. The average difference 

between the true and predicted values is quantified by RMSE, which provides a 

measurement of prediction accuracy. A model that performs better at capturing the 

link between environmental data and bridge response data has a lower median 

RMSE value. One can determine which regression model performs best at identifying 

the true structural response after accounting for temperature influences by 

comparing the median RMSE values generated from each model. 
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Figure 3.13: Comparison of Model Performance and Efficiency. 

Figure 3.13 shows median RMSE versus time taken to fit and predict each model. 

This plot shows the medians of model performance and their respective running 

times for various regression models, aiding in model selection. 

This shows that the Dynamic regression ( ) considering time lag of 24 hours has the 

optimum performance.  

The evaluation of forecast accuracy might not, however, give a complete picture of 

how well the model eliminates environmental changes. Evaluation of the residual 

standard deviation (RSD) is crucial to ensuring the removal of environmental effects.  

The low RSD indicates that the dispersion of the residuals, which represent the 

remaining variation in the bridge response data after removing the environmental 

effects, is minimal. A reduced spread in the residuals suggests that the 

environmental-related variations have been successfully eliminated, as the residuals 

primarily capture the remaining sources of variation unrelated to environment. This 

observation reinforces the notion that the selected regression model is capable of 

effectively isolating and removing the environmental effects, resulting in a 

mechanical dataset that is more representative of the true structural response. 
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Model→ Linear KNN RandomForest Dynamic NaiveSeasonal KalmanForecaster LSTM 

I15 0.018 0.025 0.026 0.022 0.015 0.017 0.017 

I18 0.022 0.028 0.029 0.013 0.021 0.020 0.020 

LVDT25 0.449 1.595 0.497 0.385 2.535 0.441 0.449 

LVDT26 0.323 1.574 0.365 0.292 2.382 0.347 0.344 

E30 1.655 2.902 2.013 1.801 3.457 1.708 1.718 

E31 2.368 2.827 2.718 2.230 3.510 2.179 2.190 

E34 2.999 3.354 3.978 2.162 5.782 3.489 3.502 

E35 4.100 5.639 4.529 3.276 7.733 4.283 4.330 

E33 9.205 12.331 11.164 3.405 5.908 3.262 3.080 

E36 14.205 19.552 19.163 2.059 3.635 1.610 1.510 

E29 5.885 7.753 7.117 3.401 8.366 4.740 4.739 

E32 3.716 5.871 4.405 2.632 7.284 3.858 3.885 

Table 3: Residual standard deviation (RSD) of each bridge response sensor for 

different models. 

Table 3 shows that the RSD of mostly all sensors for Dynamic regression considering 

time lag of 24 hours has the lowest values which suggests this method is best in 

effectively removing the environmental effects. 

 

Figure 3.14: Scatter plot median RMSE vs median RSD 

From Figure 3.14 it can be inferred that the selected regression model not only 

accurately estimates the true structural response but also successfully removes the 

temperature effects from the bridge monitoring data. This finding reinforces the 

validity and reliability of the chosen model in mitigating the influence of 

temperature variations, ultimately leading to improved accuracy in assessing the 

structural health of bridges. 
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3.5.3  Selection of Principal component parameters 

Another machine learning method that can be utilized to remove the environmental 

effects from the bridge monitoring data is by removing the principal component 

which shows high variability in the data due to environmental effects. 

The processed dataset considering only bridge response sensors are scaled and then a 

PCA transform is applied to it, which transforms original data from original 

subspace to Principal subspace.  

Theoretically, the first principal component should explain the maximum variation 

due to environmental effects in the dataset, which can be proved by plotting a 

correlation matrix of all principal components and environmental data as shown in 

Figure 3.15. 

 

Figure 3.15: Correlation matrix for different principal components vs Environmental 

sensors 



3Livenza Bridge, Results and Discussion 61 

 

 

Figure 3.15 shows that the 1st principal component has highest correlation with the 

environmental data. 

By retaining this principal component and inverse transforming the 1st principal 

component from Principal subspace to original subspace, gives projected data which 

only has environmental variations. The residuals are calculated by subtracting the 

Projected data with actual data. Thus, these residuals will only have variations other 

than environmental effects. 

The RSD of each sensor using PCA is given in Table 4 below, and it is clear after 

comparing this with Table 3 that the dynamic linear regression performs better. 
 

PCA 

I15 0.017 

I18 0.024 

LVDT25 1.061 

LVDT26 1.105 

E29 5.904 

E30 1.705 

E31 2.881 

E32 3.701 

E33 11.543 

E34 4.838 

E35 4.071 

E36 19.959 

Table 4: Residual standard deviation of sensors for only PCA 

3.5.4  Applying PCA to regression residuals 

It is critical to distinguish between unmeasured variations arising from factors like 

sensor noise or environmental conditions and variations linked to structural damage 

when examining residuals obtained after subtracting temperature effects from bridge 

monitoring data. The Principal Component Analysis (PCA) transform is used to 

further clean up the residuals and pinpoint the changes linked to structural damage. 

So, the intention is to remove unmeasured variations while keeping the changes 

associated with structural damage by identifying the dominating component by PCA 

and subtracting it from the residuals. 

There are various benefits of using PCA-based residual analysis. First off, it makes it 

possible to find and remove unmeasured variations that could otherwise make 

residual analysis interpretation difficult. The improved residuals concentrate entirely 

on the differences attributable to structural damage by eliminating these unmeasured 

variations, improving the accuracy and clarity of the study. 
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In this approach, PCA is applied to the residuals obtained after removing 

temperature effects using the selected regression model. By performing PCA on the 

residuals, the principal components that capture the majority of the variations are 

extracted. 

One can evaluate the explained variance ratio of each major component in order to 

determine which one is the most significant. The percentage of the overall variance in 

the residuals that is quantified by each primary component is known as the 

explained variance ratio. Priority is given to the principal component that explains 

the most significant variations in the residuals by selecting the principal component 

with the highest explained variance ratio, in this case the 1st principal component as 

shown in Figure 3.16. 

 

Figure 3.16: Scree plot showing explained variance ratio for different principal 

components. 

Inverse transform is used to generate the projected data corresponding to the 

dominating principal component after identifying it. The projected data is rebuilt 

using this inverse transform into the original feature space. The changes related to 

the dominant component are then effectively eliminated by subtracting this projected 

data from the initial residuals. 

To evaluate the effectiveness of the proposed PCA-based method, a comparison is 

made between the refined residuals and the original bridge response sensor 

variations. This can be done visually by plotting the refined residuals against the 

original bridge response sensor variations as shown in Figure 3.17. 
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Figure 3.17: Variation of residuals and original bridge response for sensor LVDT25 

3.6 PCA combined with regression. 

Applying PCA to the data from the bridge response sensor is the first stage in this 

methodology. PCA enables to capture the most important variables while removing 

noise and redundant data from the dataset by portraying the data in a lower-

dimensional space. By using PCA, a set of orthogonal principal components are 

generated that are ordered according to how much variance in the bridge response 

data they contribute overall. 

The correlation coefficients between each PC and the environmental data are 

determined same as done before in section 3.5.3 in order to choose the PC that is 

most consistent with the environmental sensors. The PC with the highest correlation 

as shown in Figure 3.15 is picked as the main part for the analysis to come. The 

bridge response fluctuations that are significantly impacted by environmental 

variations are anticipated to be captured by this PC. 

Next, the best regression model is identified using Figure 3.18(b) which suggests that 

dynamic regression with 24-time step lag gives the optimum performance. The 

methodology to select the optimum regression model is already discussed above. 

The only difference is now the dependent variable is the selected principal 

component. Different regression models are trained with the selected principal 

component as the target variable and the environmental sensors as the feature 

variables. The RMSE is used as the performance metrics to capture the 
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environmental effects and RSD as shown in Figure 3.18(a) is used to evaluate the 

effectiveness of the model to remove the environmental effects. 

  

Figure 3.18: (a) RMSE vs RSD scatter plot; (b) Performance vs efficiency plot 

After selecting the dynamic regression model, the residuals are calculated by 

subtracting the predicted values from the actual values of the selected PC. The bridge 

response data that cannot be fully explained by environmental changes is 

represented by these residuals. The influences of environment have been eliminated 

using the regression modeling, therefore the residuals obtained through this 

procedure mostly represent the fluctuations related to structural degradation. 

To convert the residuals back to the original subspace, an inverse PCA transform is 

applied. This inverse transform reconstructs the residuals into the original feature 

space, allowing to obtain the refined residuals that reflect the variations attributed to 

structural damage. These refined residuals provide valuable information for damage 

detection and analysis. 

Refined residuals can be analyzed using various statistical analysis techniques, 

visualization methods as shown in Figure 3.19. The refined residuals enable the 

detection and interpretation of damage indicators within the bridge monitoring data. 

By focusing on the variations associated with structural damage and removing the 

confounding effects of temperature, the proposed PCA-based method enhances the 

accuracy and reliability of damage detection in bridge monitoring systems. 
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Figure 3.19: Variation of residuals and original bridge response for sensor E30 

 REG→PCA PCA→REG 

I15 0.020 0.003 

I18 0.016 0.001 

LVDT25 0.278 0.429 

LVDT26 0.261 0.411 

E29 3.179 0.431 

E30 1.272 0.356 

E31 1.515 0.129 

E32 2.561 0.648 

E33 4.832 1.068 

E34 2.138 0.244 

E35 2.246 0.687 

E36 1.790 2.539 

Table 5: A comparison of two methodologies 

As from the Table 5 the first column contains RSD of each bridge response sensor for 

the methodology described in section 3.5, whereas the second column contains RSD 

of the methodologies described in section 3.6. It is clear that the method where 

regression model is applied to the principal components performs better. 

Therefore, this methodology will be used to validate simulated damage scenario. 

The trained hybrid model when used on the sensor data from another railway bridge 

“Piave bridge” was also able to remove the environmental effects, this can be shown 

in figure below. 
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3.7 Introduction of simulated damage 

The design and appropriate tuning of the structural health monitoring system for 

damage detection and identification are based on a simulation of the bridge's 

structural response under operating circumstances, taking into account the 

occurrence of various forms of structural damage. Notional damage scenarios with 

varying damage magnitude and extent over the structure, in particular, have been 

investigated in order to capture the role of the various bridge components and 

characterize the order of magnitude of the expected variations of structural response 

indicators, such as displacements and rotations as measured by sensors, as well as 

natural frequencies and suitable norms of modal eigenvectors.[32] 

A virtual damage is induced to all of the mechanical sensors in the bridge monitoring 

system in order to assess the effectiveness of the Principal Component Analysis 

(PCA) and regression modeling combination that has been suggested for 

environmental effects removal. One may evaluate if the refined residuals obtained by 

selected method predominantly reflect the fluctuations caused by structural damage 

while successfully reducing the impacts of environmental variations thanks to this 

simulated damage. 

3.7.1 Damage induction 

The virtual introduction of damage involves altering the mechanical sensor 

measurements in a way that mimics the existence of structural damage. Different 

methods, such as changing strain values, sensor readings, or the relationships 

between sensor data, can be used to introduce this simulated damage. 

The investigated damage scenarios involve corrosion of single or multiple structural 

elements based on various corrosion propagation assumptions. In reality, corrosion 

may cause a considerable loss in load-bearing capacity as well as excessive 

displacements and rotations during the life of a bridge. Corrosion has been modelled 
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in this study by lowering the thickness of structural parts while considering varying 

levels of corrosion penetration. The notional damage scenarios have also taken into 

account possible member failures owing to local instability, as well as the potential 

collapse of bridge components and connections. Furthermore, the impacts of locking 

the support devices have been investigated in order to account for probable gradual 

degradation of the support devices owing to aging and deterioration. Finally, 

probable pile abutment settlements were investigated by employing a set of forced 

displacements at supports.[32] 

One possible scenario of the simulated damage that is used in the present work is 

shown in the Table 6 below. 

Livenza Bridge Response Sensors 
Intact 

Structure 
SCENARIO #14: Bottom, Top, 

Diagonal damage (δ=10%) 

Measurements Sensor ID Model ID Value (δ=0) Value Δ 

Rotation[deg] 
I15 1 -4.67×10-2 -4.81×10-2 -1.41×10-3 

I18 56 4.67×10-2 4.81×10-2 -1.41×10-3 

Longitudinal 
Displacement [mm] 

LVDT25 28 4.64 4.80 0.16 

LVDT26 56 4.64 4.80 0.16 

Strain (Delta in 
microepsilon) 

E29 1 -609.38 -581.94 9.79 

E31 1 -609.38 -581.94 9.79 

E30 41 -609.28 -581.84 9.79 

E32 41 -609.28 -581.84 9.79 

E33 33 974.16 918.67 -10.12 

E35 33 974.16 918.67 -10.12 

E34 73 974.15 918.65 -10.12 

E36 73 974.15 918.65 -10.12 

Table 6: Simulated Damage scenario 

A new dataset is generated by addition of these recognized virtual damage delta to 

the original bridge response values, which may be utilized for validation and 

comparison. 

3.7.2 Application of Model 

The previously learned PCA and regression model from Section3.6 is reapplied to 

this new dataset after the virtual damage dataset has been generated. On the data 

from the damaged bridge response sensors, the PCA step is used to identify the 

predominant modes of variations. The chosen principal component, which shows the 

best correlation with the environmental sensors, is then subjected to the regression 

model, which was trained on the original, undamaged data. The transformed 

damaged dataset is then projected back into original subspace, in a manner similar to 

the method employed for the undamaged data. These steps enables to anticipate and 

eliminate the environmental impacts from the damaged data. 



68 3Livenza Bridge, Results and Discussion 

 

 

The final phase compares the original undamaged residuals with the damaged 

residuals derived from the damaged dataset. While the effects of the environment 

have been successfully eliminated, the changes caused by the simulated damage 

should primarily be reflected in the damaged residuals. One may evaluate the 

effectiveness of this method for identifying the differences related to structural 

damage by contrasting the damaged residuals with the undamaged residuals. 

The plot below in Figure 3.20 shows the time series of original bridge response vs 

Damaged Bridge response without any processing of the data. As can be seen from 

the plot, the damage in the data cannot be seen. 

 

Figure 3.20: Unprocessed I15 and LVDT26 sensor data time series plot. 

Whereas, after processing the data through the PCA+Regression model described in 

previous section, the damage induced can be clearly identified as shown in the 

Figure 3.21. 
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Figure 3.21: Processed I15 and LVDT26 sensor data time series plot 

The ability of the refined residuals to primarily capture the variations due to induced 

damage while effectively removing temperature variations would demonstrate the 

success of this work. This outcome validates that the proposed combination of PCA 

and regression modeling has successfully removed the confounding effects of 

temperature and retained the variations linked to structural damage. The detection of 

damage patterns within the damaged residuals further confirms the accuracy and 

reliability of this method in damage identification and assessment. 
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4. Conclusions and Future 

Developments 

This thesis work sought to address the major objective of reducing the effects of 

environmental and operational variability on structural health monitoring (SHM) 

systems, applying proposed methods to the real-time full-scale data of the Livenza 

Railway Bridge, and validate the performance of model using a damaged simulated 

data. 

The methodology presented in Section.3.6 has been applied during this thesis. 

Initially, the Livenza Railway Bridge SHM system was described, and its 

susceptibility to environmental factors like temperature and operational factors like 

train loading was established. 

Even though the focus was on a specific bridge case study, the methodology 

generated to validate the machine learning models aimed to be applicable to SHM 

systems in general. 

Concerning the application of machine learning models to reduce environmental and 

operational variability: 

• Various visualization and statistical methods confirmed strong correlations 

between environmental factors like temperature and bridge response sensor 

data. Also, these techniques confirmed presence of operational effects. This 

highlighted the need for normalizing the data before applying damage 

detection algorithms. 

• The influence of train loading on bridge response sensors were effectively 

reduced by utilizing an outlier removal method described in Section3.4.2. 

• Different machine learning models were explored including static regression, 

dynamic regression, principal component analysis (PCA), and combinations 

thereof. Performance metrics showed dynamic regression with a 24-hour time 

lag to be optimal in predicting and removing temperature effects. 
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• Applying PCA on the regression residuals further filtered out unmeasured 

variations not accounted by the regression model. This integrated PCA-

regression approach reliably isolated indicators of structural damage from 

environmental impacts. 

• Simulated damage scenarios validated the effectiveness of the proposed 

methodology. While raw damaged data showed no visible indicators, the 

integrated model successfully extracted residuals reflecting the simulated 

damage patterns. 

The computational framework presented enables distinguishing between changes 

in bridge response due to external factors and underlying structural degradation. 

This allows more accurate SHM analysis by minimizing environmental 

variability. While demonstrated on bridge data, the machine learning methods 

have the potential to be extended to other SHM applications where 

environmental or operational conditions may mask damage. 

Several promising avenues exist to build upon the work presented in this thesis. 

Optimizing the LSTM model hyperparameters like number of layers, nodes, and 

regularization could further improve its performance. Additionally, more 

advanced system identification techniques like SINDy could derive an enhanced 

physics-based mathematical model tailored specifically to the dynamics of this 

bridge structure. Hybrid models that integrate machine learning techniques with 

physics-based principles also present a promising direction for further improving 

and isolating the environmental effects. 

For detecting damage from the normalized data, unsupervised learning methods like 

autoencoders could be investigated. 
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