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Abstract

Over the last decades, research has been focused on introducing robotic systems in surgical
operations. This is supported by the idea that such systems can bring great advantages
to both the patient and the surgeon, improving the accuracy and safety of the procedure.
The use of robotic systems in spinal surgery is currently limited to a few procedures, such
as pedicle screw placement. This is mainly due to the complexity of the spine structure
which poses significant challenges in surgical operations, requiring a high level of precision
from the surgeon and carrying a significant risk of injury to the patient. The objective of
this work was to introduce a robotic manipulator that can assist surgeons in performing
vertebral osteotomy procedures, a type of spinal surgery that involves the removal of a sec-
tion of the vertebral bone while ensuring the preservation of delicate surrounding tissues
such as the spinal cord, nerve root, and blood vessels. The proposed approach involved a
variable impedance control scheme within a shared-control framework. This enabled the
surgeon to manually guide the robot, whose stiffness was adjusted in real-time based on
two control laws that considered the human intention, as extracted from the EMG signal,
and the contact force measured during the procedure. The control laws enabled the robot
to exhibit compliant behavior when in contact with bone-like material, and increased stiff-
ness parameters when in contact with critical tissues. The system was validated by means
of a user study in order to test the research hypothesis, i.e. the introduction of a vari-
able impedance control law could prevent users from damaging delicate structures while
allowing them to operate on a bone-like material. The proposed approach was compared
with a constant parameter impedance control, and the task was performed on different
materials with varying mechanical properties. The results indicated that the system suc-
cessfully reduced contact force and in-contact displacement when in contact with delicate
materials, demonstrating its ability to avoid damaging delicate structures. Furthermore,
a subjective survey showed that the proposed approach successfully prevented movement
when needed, as users felt unable to complete the task.

Keywords: Spinal surgery, variable impedance control, EMG





iii

Abstract in lingua italiana

Negli ultimi anni, numerose ricerche sono state svolte nell’ambito della chirurgia robot-
ica, con lo scopo di introdurre dei sistemi robotici a supporto del chirurgo. Questo è
supportato dall’idea che tali sistemi possano portare grandi vantaggi sia al paziente che
al chirurgo, migliorando la precisione e la sicurezza della procedura. L’uso di sistemi
robotici in chirurgia spinale è attualmente limitato a poche procedure, come il posizion-
amento delle viti peduncolari. Questo è principalmente dovuto alla complessità della
struttura spinale, che rende le operazioni chirurgiche particolarmente difficili, richiedendo
un elevato livello di precisione da parte del chirurgo e comportando un significativo ris-
chio di lesioni per il paziente. L’obiettivo di questo lavoro è stato quello di introdurre
un manipolatore robotico in grado di assistere i chirurghi nell’esecuzione di procedure di
osteotomia vertebrale, un tipo di intervento di chirurgia spinale che comporta la rimozione
di una sezione dell’osso vertebrale, garantendo la conservazione dei tessuti circostanti più
delicati, come il midollo spinale, tessuti nervosi e i vasi sanguigni. L’approccio proposto
ha previsto uno schema di controllo ad impedenza variabile, in un framework di controllo
condiviso tra robot e chirurgo. Ciò ha permesso al chirurgo di guidare manualmente il
robot, la cui rigidità è stata regolata in tempo reale in base a due leggi di controllo, che
tenevano conto dell’intenzione umana, estratta dal segnale EMG, e della forza di con-
tatto misurata durante la procedura. Le leggi di controllo hanno permesso al robot di
mostrare un comportamento flessibile quando era a contatto con materiale simile all’osso
e di aumentare i parametri di rigidità quando era a contatto con tessuti critici. Il sis-
tema è stato validato mediante uno studio sperimentale per testare l’ipotesi di ricerca,
ovvero che l’introduzione di una legge di controllo ad impedenza variabile potesse pre-
venire gli utenti dal danneggiare le strutture delicate consentendo loro di operare su un
materiale simile all’osso. L’approccio proposto è stato confrontato con un controllo ad
impedenza a parametro costante e il compito è stato eseguito su diversi materiali con
proprietà meccaniche variabili. I risultati hanno indicato che il sistema ha ridotto con
successo la forza di contatto e lo spostamento durante il contatto con i materiali più del-
icati, dimostrando la sua capacità di evitare danni a tali strutture. Inoltre, un sondaggio
soggettivo ha mostrato che l’approccio proposto ha impedito con successo il movimento



quando necessario, in quanto gli utenti si sono sentiti incapaci di completare il compito.

Parole chiave: Chirurgia spinale, controllo d’impedenza variabile, EMG
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1

Introduction

Vertebral osteotomy is one of the most common operations in spine surgery and it is a
procedure that involves removing a portion of the vertebra to correct spinal deformities[1],
such as kyphosis or lordosis (Figure 1).

Figure 1: Examples of spinal deformities. Kyphosis: excessive curvature in the upper
spine section. Lordosis: excessive curvature in the lower spine section

While vertebral osteotomy can be highly effective, it is a complex and delicate procedure
that requires a high degree of precision and skill from the surgeon. The difficulty and du-
ration of the operation can vary significantly depending on the classification of the spinal
osteotomy. Nowadays, the operation is performed manually by the surgeon, who makes
an incision on the back of the patient to access the affected vertebrae and uses various
surgical tools, including drills, saws, or an osteotome (Figure 2), to remove a portion of
the vertebra. After the bone removal, the remaining portions of the vertebra are reposi-
tioned and stabilized using screws, rods, or other spinal instrumentation. However, this
approach carries significant risks of nerve damage, spinal cord injury, bleeding, infection,
and other complications. For these reasons, in recent years, numerous support tools and
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techniques, such as image guidance, pre-operative planning with 3D models, and robotic
systems, have been developed.

Figure 2: On the left, a surgeon is depicted while using a small hammer and an osteotome
(or chisel). In the middle, different types of osteotome are shown. On the right, a surgeon
is holding a bone drill.

Over the last decades, many robotic systems have been successfully integrated into sur-
gical operations. The advantages offered by medical robots may be grouped into three
areas[2]. The first is the potential to significantly enhance surgeons’ technical capability
in performing procedures. While humans possess hand-eye coordination and can adapt
to various scenarios, they are susceptible to fatigue and distractions, which may lead to
errors. The movement of human hands may suffer from poor and limited accuracy in
following a trajectory, due to their susceptibility to tremors. In contrast, robotic systems
are not subjected to fatigue and provide a high level of geometric accuracy, as the position
and orientation can be controlled to follow and match a particular pattern or trajectory.
Secondly, medical robots have the potential to prevent surgical instruments from unin-
tentionally harming delicate structures, thanks to the use of active constraints like no-fly
zones or virtual fixtures. This lead to better surgical outcomes reduced surgery duration,
and less mental workload for the surgeon [3]. Finally, medical robots offer the ability
to maintain consistency during procedures and gather detailed online information about
the performance, using for example robot sensors and cameras. This information can be
saved and analyzed to to develop better surgical plans by examining multiple cases or to
monitor patient progress.

Human-Robot Interaction (HRI), in particular, is rapidly evolving and has the potential
to transform healthcare practices [4], but its use in the field of neurosurgery is still limited.
This is due to the critical nature of surgical interventions that involve neurological and
vascular structures, such as those in the brain or spinal cord, which require high precision
and accuracy. While HRI can improve surgical outcomes by enhancing precision and
reducing the risk of human error, its use is limited to procedures where the benefits
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outweigh the risks [5], and where the surgeon’s skills and experience can be effectively
leveraged. As a result, HRI is currently limited to a few specific procedures. For instance,
in brain surgeries, HRI is involved in biopsy targeting, electrode placement[6], and laser
ablative procedures[7]. Similarly, progress made in surgical techniques and technology for
spinal interventions has led to the development of robots that can successfully assist with
pedicle screw placement[8].

It is important to highlight that the goal of using robotic-assisted spine surgery is not to
replace the surgeon but rather to enhance their capacity to provide high-quality patient
care. Moreover, there is a growing interest in exploring the use of HRI for more com-
plicated spinal procedures, such as vertebral osteotomies and tumor resections. These
procedures require a high degree of precision and accuracy, as well as a thorough un-
derstanding of the complex anatomy of the spine. By leveraging the advanced sensing
and control capabilities of robotic systems, HRI has the potential to improve surgical
outcomes by providing surgeons with advanced tools to enhance their precision and dex-
terity. However, before HRI can be widely adopted for more complex procedures, several
technical and clinical challenges must be overcome. These challenges include developing
more advanced robotic control strategies and ensuring the safety and efficacy of these
systems through rigorous validation in clinical trials. Addressing these challenges is cru-
cial to unlocking the full potential of HRI in the field of neurosurgery and other medical
specialties.

The aim of this work is to develop a control strategy for robotic systems in hands-on ver-
tebral osteotomy procedures. In this scenario, the robot is equipped with the surgical tool
on the end effector, is not fully autonomous, and provides support to the surgeon, who
manually guides the robot with direct contact. For this reason, an adaptive impedance
control strategy was developed, such that, measuring the contact force between the end
effector and the material, and the human force exerted on the robot, the robot’s compli-
antness could be changed accordingly. In particular, when the robot was in contact with
critical tissues, the rigidity of the robot increased, and a position signal proportional to
the contact force was generated to reduce the risk of damaging such tissues. The contact
force was measured using a force sensor mounted on the end effector, while the human
force was estimated starting from electromyographic (EMG) signals. To ensure the sta-
bility of the system, a passivity filter was used to regulate the variations of the impedance
parameters. The ultimate goal of this study was to provide a control strategy that could
improve the safety of the operation while reducing the mental workload of the surgeon.

.
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The thesis is structured as follows:

• Chapter I: "Literature Review". It presents an overview of the present-day ad-
vancements in robotic systems used in spinal surgery, with a particular emphasis
on hands-on robotic-assisted procedures. Additionally, the chapter covers the latest
advancements in estimating human force using EMG signals.

• Chapter II: "Medical Scenario". In this chapter, the medical scenario is discussed.
A general overview of the structure of a vertebra is provided, followed by a detailed
description of the osteotomy procedure.

• Chapter III: "Materials and Methods". It presents an overview of all the components
used in the study, including the hardware and control strategy. The Kuka-LWR4+
architecture, as well as the force and EMG sensors, are discussed in detail. A
detailed description of the control law is reported, together with the stability and
passivity proof. Finally, the experimental setup is discussed.

• Chapter IV: "Results". The results of the performed experiments are reported and
further discussed in this chapter.

• Chapter V: "Conclusions and Future Developments". The chapter reports the final
conclusions of this study, along with future possible developments.
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1| Literature review

In this chapter, we take a closer look at the advancements in robotic technology for spinal
surgery, followed by a detailed examination of hands-on control robotic frameworks in the
second section. The third section focuses on the current state of the art in human force
estimation from electromyographic (EMG) signals.

1.1. Robotic systems in spinal surgery

Research in the field of robotics in spine surgery is motivated by the idea that robotic
systems can bring numerous advantages for both surgeons and patients. Robotic technol-
ogy has the potential to improve safety, accuracy, and efficiency in medical procedures.
The area of focus in this field is robotic-assisted spinal instrumentation, with a partic-
ular emphasis on pedicle screw placement operations, illustrated in Figure 1.1. Current
technologies include the ExcelsiusGPS (Globus Medical, Audubon, PA, USA), Mazor X
Stealth Edition (Medtronic, Dublin, Ireland), and the ROSA ONE Spine (Zimmer Biomet,
Warsaw, IN, USA) [9].

Figure 1.1: Pedicle screw operation outcome: screws are placed inside a vertebra to
stabilize the spine. Left: front view. Right: side view.

Several approaches have been studied for pedicle screw placement. A systematic review of
clinical studies was conducted by [10], covering the period from January 2000 to August
2021. The study compared traditional techniques with modern techniques, including
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robotic assistance, and found out that robot-assisted placement resulted in the highest
level of optimal screw placement and the lowest incidence of complications. On the other
hand, freehand placement had a higher incidence of complications and a greater margin
of error in screw misplacement.

The study described in [11] uses the Mazor X Stealth Edition Robotic Guidance System
(Figure 1.2). This system enables the surgeon to manually perform drilling and screw
insertion while the robotic arm changes its position and orientation to provide a pre-
planned screw trajectory and entry point. It is discussed that, compared to conventional
techniques, robotic-guided pedicle screw placement offers several benefits, including im-
proved accuracy and safety in screw insertion, precise planned screw positioning, reduced
radiation exposure for the surgeon and patient, and decreased operating time. Moreover,
no intraoperative complications related to the placement of the pedicle screws or the use
of the robot were observed.

Figure 1.2: Mazor X stealth edition platform. Navigation tracking camera (left), the base
station (middle), bed-mounted robotic arm with end effector (right)[12]

1.2. Hands-on control in surgical robots

Regarding HRI and more precisely hands-on control, impedance or admittance Control is
the most commonly used strategy for controlling robots [13]. The aim of this framework is
to regulate the robot-environment interaction by exploiting the robot’s impedance charac-
teristics, such as stiffness, damping, and inertia. By modifying these parameters, the robot
can react to external forces in a manner that suits the specific task. In the past three
decades, numerous studies have been conducted to adjust the robot’s impedance both
for robot-environment and human-robot interaction. Some of these studies have used
impedance/admittance models with fixed parameters, while others have focused on time-
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varying, state-dependent impedance control, and real-time online learning of impedance
parameters for different HRI applications. In [14], a constant impedance controller is de-
veloped for robotic-assisted needle operations. Using a fiber optic force sensor integrated
into the needle tip, the interaction force is used to recognize the different tissues, and the
impedance controller allows the robot to adjust its behavior. Experiments were performed
on layered pig tissue with an automatic robotic needle system, and the study proved that
the control strategy is effective to avoid excessive insertion force during the procedure,
reducing the risks.

There are various types of impedance control including velocity-based, force-based, and
EMG-based. All these methods, if required, allow to modulate dynamically of the robot’s
impedance parameters and tuning in real-time, based on the collaborative task objective
and the human’s physical behavior, aiming to improve the robot’s compliance and/or sta-
bility during interaction with the human and the environment. Velocity-based impedance
control focuses on precise task performance by using high impedance to emulate subtle
movements at low velocities. Conversely, the low impedance is used for performing large
movements at high velocities: depending on the task at hand and the required velocity,
impedance parameters can be set to obtain the desired performances. A similar approach
is used in [15], in which a variable damping controller is developed in order to help the
surgeon reach the surgical working area. In particular, given a visible surgical target, the
damping parameter is changed as the user guides the robot toward the target. The strat-
egy is compared to gravity compensation control and constant damping control, showing
higher pointing accuracy and intuitive convergence to the target, while reducing the user
effort.
Force-based impedance control is crucial for controlling the interaction force between the
robot and the environment. This type of control is particularly important in tasks that
require a certain level of force, such as industrial applications or to impose a direct HRI
force control[16]. The study proposed in [17] presents a force-based approach to achieve
compliant behavior of the end effector during micro-suturing procedures. The study uses
a variable control framework that successfully achieved co-manipulation accuracy or com-
pliance based on the intended motion of the human, measured using a 6-DOF force sensor.
In [18], a Remote Center of Motion (RCM) is imposed to guarantee the stability of the
robot’s motion. In Robotic-Assisted Minimally Invasive Surgery the surgeons performes
small incisions in the patient’s body to insert the trocar, a thin, elongated medical device,
into the patient’s internal organs, which is then manipulated by the surgeon. To avoid
complications, the incision walls should not be subjected to lateral forces. For this reason,
the incision is imposed as RCM and to yield this constraint a target admittance model is
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designed in joint space, which means that given as input the measurement of the human
force, joint position, and velocity references are generated accordingly. In particular, the
admittance model decouples the free motion and the RCM constraint motion, so that the
RCM constraint is not affected by human forces and that passivity is guaranteed. Results
successfully indicate a trocar displacement of less than 1 mm.

In HRI, communication between the user and the robotic system is key. In particular, the
robot needs to perceive and elaborate on the operator’s activities during the task, in order
to provide actual support. Human activity is usually represented by the force applied,
which can be directly measured with force sensors, or estimated starting from EMG
signals. In EMG-based impedance control, the stiffness of the robot is adjusted in real-
time by analyzing EMG signals from the user’s muscles, which estimate the human arm’s
stiffness or force. In [19], an electromyography-based strategy is proposed to distinguish
between operator forces and those resulting from interactions with the environment. To
estimate human force, data collection was performed by placing 8 EMG sensors on the
user’s shoulder, chest, and arm. The robot’s stiffness and damping are adjusted based on
both the contact force and the estimated human force. In addition to that, a passivity
filter is developed, and further explored in [20], to ensure system stability. Experiments
illustrated the advantages of this strategy when humans, robots, and the environment
interacted with each other. In [21], a sensor-free framework for robot-assisted arthroscopy
surgery is developed. In this procedure, the robot helps increase surgical accuracy and
precision, while providing physical support for holding the tool when the surgeon is not
using it, through impedance control. The study shows that the system is able to obtain
compliant behavior during physical HRI.

To enhance safety during surgery, robotic systems can provide constraints tailored to
specific operating regions. In [22], a control scheme based on dynamic active constraints
intended for hands-on robotic surgery was developed. This methodology used a com-
puter vision technique to produce a smooth and continuous function, which surrounded
the points of the surface to be constrained. In order to control the robot to lie on the
zero sets of this constraint function, a dynamic controller was derived and incorporated
with an impedance controller. The feasibility of the approach was demonstrated both in
simulation and with a Kuka LWR-IV+. In [23], a hands-on robot-assisted framework is
designed for mandibular angle split osteotomy. This framework measures the surgeon’s
applied force and divides the surgical areas into three categories based on tool accessi-
bility: allowed, marginal, and forbidden areas. A tanh function is used to adjust the
admittance behavior during human-robot interaction. The Virtual Fixtures-based policy
prevents sudden changes in motion, thereby improving safety performance.
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1.3. EMG Human force estimation

An EMG signal captures the electrical signals generated by muscle contractions, which
are controlled by the nervous system and can be measured through an electromyograph.
EMG has numerous clinical and biomedical applications and serves as a fundamental tool
in comprehending the behavior of the human body under both normal and pathological
conditions (Figure 1.3).

Figure 1.3: Examples of EMG usage in modern medicine. Electrodes are placed on
patients’ muscles to measure their activity. Patients are asked to contract or tighten the
involved muscles, i.e. closing the hand or bending the leg.

The muscle activation recorded in EMG signal can be used for various applications, rang-
ing from enhancing gesture recognition to controlling robotic arm-hand systems. Consid-
ering the latter, in [24] a multiclass classification was performed to characterize different
muscular co-activation patterns for reach-to-grasp movements. In particular, six different
classification techniques were used, with Random Forest being the most successful one.
In [25], MyoWristBand was used to get electromyography from the user’s arm, train a
model for hand gesture recognition for prosthetic arms.

There are several methods for estimating the force starting from EMG signals, including
model regressions, machine learning techniques, and neural networks. Linear regression
models can be used to estimate the force by determining the slope and intercept of the
linear correlation between the EMG signal and the force [26]. The model can be expressed
as:
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Fm = β0 + β1EMG (1.1)

where Fm is the force generated by the muscle, EMG is the EMG signal, β0 is the
intercept, and β1 is the slope of the linear relationship. In general, linear regression mod-
els have limitations given the fact that the relationship between the EMG signal and the
force generated by the muscle can be non-linear. For this reason, using non-linear models,
such as polynomial, exponential, or sigmoidal regression techniques, can be more useful
in certain applications. As reported in [27], a high number of non-linear mathematical
models were proposed in the literature, in the past years. In the study, a convex form
of an exponential EMG-to-force model is proposed, and each muscle’s coefficient is esti-
mated using Least Squared method. A statistical comparison between other estimation
methods like Regularized Least Squares, Support Vector Machines, and Artificial Neural
Networks shows that this technique gives better outcomes, even though it presents several
limitations, such as using a specific force trajectory for training, that could provide in-
formation about muscle excitation, instead of a random force trajectory. In recent years,
Neural Networks and Machine Learning algorithms became a popular technique that can
be used for force estimation (Figure 1.4).

Figure 1.4: Artificial neural networks can be used to estimate muscle forces from EMG
measurements

In [28], a convolutional neural network was implemented to provide a way of estimating
the interaction force between humans and robots in HRI frameworks, without using prior
knowledge of the arm biomechanical model. The proposed methods were compared with
other approaches, such as artificial neural networks and long short-term memory (LSTM),
showing a lower force error for the designed regression, guaranteeing a higher prediction
accuracy. In [29], the problem of force estimation starting from surface electromyography
signal was discussed. In particular, the signal was collected from an armband-like device
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and the work investigated the problem of channel selections. The study proved that six
channels are enough to provide an accurate force estimation, because, using a recurrent
neural network, the temporal relation between EMG and output force can be successfully
captured. In [30], considering an HRI framework, a deep neural prediction network using
a one-dimensional convolutional structure was proposed to learn the EMG features from
three-channel EMG signals. An estimate of the gripping force is obtained and compared
to the one obtained with a two-dimensional convolutional neural network method and a
feature-based linear regression, showing better prediction outcomes, in terms of R2 and
MSE.
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2| Medical scenario

The considered medical scenario is a vertebral osteotomy. In the following chapter, some
details about the structure of a vertebra and the surgical operation are given. In the last
section, the mechanical characterization is discussed.

The vertebra [31] is one of the bones that composes the spinal column. The spinal column
is divided into several sections, including the cervical spine (neck), thoracic spine (chest),
lumbar spine (lower back), sacrum, and coccyx. The vertebra is a complex structure,
made of various components, including the vertebral body, vertebral arch, and several
bony prominences as shown in Fig 2.1. The vertebral body serves as the primary load-
bearing element and is positioned at the anterior aspect of the bone. In contrast, the
vertebral arch is located at the posterior side and encloses the spinal canal, which houses
the spinal cord. Two of the bony prominences present in a vertebra are the spinous process
and the transverse process. The spinous process extends from the posterior aspect of the
vertebral arch, while the transverse processes protrude from its lateral aspects.

Figure 2.1: High level description of vertebral bones sections
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The vertebral body has a cylindrical shape, with a wider transverse dimension than the
anterior-posterior direction. The shape and size of the vertebrae vary depending on their
location in the spinal column. For example, the vertebrae in the cervical spine are gener-
ally smaller and more mobile than those in the thoracic or lumbar spine, which are larger
and more stable. The shape and structure of the vertebrae also play an important role
in supporting the weight of the body and protecting the spinal cord and nerves (Fig 2.2).
These structures are responsible for transmitting signals that enable the brain to control
movement and sensations throughout the body. Ensuring that the vertebrae prevent in-
jury and damage to these structures is essential for maintaining the proper functioning of
the body.

Figure 2.2: Vertebra top view: spinal cord position

Vertebral osteotomy is a surgical procedure that involves cutting and reshaping a vertebral
bone to correct a spinal deformity or to improve spinal alignment [32]. This procedure is
typically used to treat conditions such as scoliosis, kyphosis, and traumatic or degenerative
disorders. During a vertebral osteotomy, the surgeon makes an incision in the patient’s
back and exposes the affected vertebrae. A portion of the vertebral bone is then removed
using specialized surgical instruments, such as bone saws, osteotomes, or drills. The
remaining bone is reshaped to achieve the desired correction (Figure 2.3). The part of the
vertebra that is typically involved in vertebral osteotomy is the vertebral body, which is
the main weight-bearing structure of the vertebra. In some cases, the surgeon may also
remove or reshape the spinous processes and/or laminae. Vertebral osteotomy can be
used for tumor resection in some cases. The tumor can grow within the vertebral body
itself, which may require surgical removal of the affected bone to completely remove the
tumor. In these cases, a vertebral osteotomy may be performed to remove the affected
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portion of the vertebral bone, including the tumor. Note that vertebral osteotomy for
tumor resection is a complex procedure that requires a skilled and experienced surgical
team.

Figure 2.3: Example of the vertebral osteotomy. On the left, the side view of the spine is
shown. In red, the area of the vertebra that needs to be cut is represented. On the Right,
the improved spine curvature after the osteotomy procedure is shown.

In this procedure, it is important for the surgeon to take great care to avoid damaging
nearby tissues, such as the spinal cord, nerves, and blood vessels. The damage of the
spinal cord, in particular, can result in serious complications, including paralysis[33]. The
surgeon typically uses specialized instruments and imaging techniques, such as intraoper-
ative neuromonitoring to help ensure the safety of the procedure and to avoid damage to
critical structures.

These factors can significantly impact the complexity of the procedure, as well as the
surgical time required to complete it. As a result, the difficulty level of the operation
can vary widely depending on the specific type of osteotomy required. In addition, the
high level of precision and safety measures necessary during the procedure can contribute
to a significant mental workload and stress for the surgeon. Overall, the classification of
vertebral osteotomy is an important consideration in planning the surgical approach and
in assessing the potential risks and benefits of the procedure.

2.1. Mechanical characterization

In order to develop a proper control strategy, it is necessary to analyze the mechanical
properties of the human body parts involved in the operation. It is particularly important
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to examine the disparity between their respective Young’s moduli, which measures a
material’s ability to deform under the influence of an applied force. In particular, Young’s
modulus E is a measure of the stiffness of a material and is defined as the ratio of stress to
strain in the linear elastic region of the stress-strain curve. It is a fundamental mechanical
property that characterizes the material’s ability to resist deformation under load. The
Young modulus is expressed as:

E =
σ

ϵ
(2.1)

with σ being the tensile stress applied, in terms of force per unit area, and ϵ being the
tensile strain, so the extension per unit length.

Figure 2.4: Example of a stress-strain curve

Considering a vertebra is mainly composed of cortical bone, which can be associated with
a Young modulus Eb ≈ 15 − 20GPa [34]. Considering a vascular structure, e.g. a vein,
the considered Young modulus is lower, Ev ≈ 2− 6MPa [35].

These ranges will be taken into account in Section 3.4 of Chapter 3 in developing and
testing of the control strategy.
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The first section of the chapter discusses the architecture of the Kuka LWR 4+ robot,
including a brief overview of its kinematics and dynamic models, an introduction to its
primary control strategies, and the Fast Research Interface- In the second section, a
description of the sensors involved in the project is provided. Finally, the control strategy
is presented, together with the passivity demonstration of the system.

3.1. KUKA LWR IV+

In this project, the KUKA Light-weight Robot 4+ (LWR4+) is used. The LWR [36][37]
is an m = 7 degree-of-freedom robot arm, initially designed by the German Aerospace
Center (DLR) and currently manufactured by KUKA.

Figure 3.1: Picture of the KUKA LWR4+ at NEARLab

Lightweight robots are smaller, lighter, and can be easily integrated into a variety of
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workspaces and workflows [38], while traditional industrial robots are typically large,
heavy, and require significant safety measures to prevent injury. Their versatility makes
them suitable for a broad spectrum of industrial activities, including assembly, inspection,
material handling, and packaging, as well as for performing HRI tasks in the medical
sector.

The Kuka LWR4+ features brushless motors, harmonic drive gears, and multiple sensors
in each joint. Each joint is equipped with position sensors on the motor side, as well as a
joint torque sensor. With a weight of around 16 kg and a maximum reach of 936 mm, the
LWR is well-suited for a wide range of applications. Additionally, the robot comes with
the following pre-installed control strategies:

• Gravity compensation

• Position control

• Impedance control in the joint space

• Impedance control in the Cartesian space

The Kuka LWR has been developed to enable a range of applications that differ signif-
icantly from those possible with earlier generations of industrial robots. Unlike tradi-
tional industrial robots that excel in high precision, fast motion, robustness, and cost-
effectiveness, the LWR is designed to perform operations in unstructured environments
and facilitate interaction with human operators. By placing torque sensors in each joint,
it becomes possible to develop effective closed-loop control strategies and closely monitor
the interaction forces that act on the robot. These sensors are positioned near the joint
actuators, enabling them to measure joint vibrations and reduce the impact of inherent
joint elasticity. Moreover, the passivity-based nature of these strategies makes it possible
to control energy input and maintain system stability, even in unfamiliar environments.
Notably, the robot controller’s primary control loop can operate at a rate of up to 1 kHz,
ensuring the timely and precise execution of commands. The robot is controlled using
a computer with Robotic Operating System (ROS) on Ubuntu 16.04, connected to the
robot through the Fast Research Interface. In fact, another key feature of lightweight
robots is their ease of use and flexibility. They are often designed to be easy to program
and operate, using intuitive interfaces and programming languages that can be learned
quickly and easily. KUKA Robotics developed the Fast Research Interface (FRI), which is
a software interface that allows researchers and developers to directly control the KUKA
LWR IV+ robot arm in real-time using a standard computer. Further information on
FRI can be found in Section 3.1.3.
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3.1.1. Kinematics

In this section, the kinematic model of the Kuka LWR4+ is discussed. The robot is
characterized by seven revolute joints. Being n = 7 the number of joints and m = 6

the degrees of freedom of the end-effector, the degree of redundancy is obtained as rd =

n−m = 1. In order to accurately describe the kinematic chain and the reference frames
of the robot joints, the Denavit-Hartenberg convention is used: in Tab 3.1 the values of
the parameters are reported, while in Fig 3.2 the reference frames are shown, with the
robot in its zero configuration.

Figure 3.2: DH reference frames

Joints di(m) qi(rad) ai(m) αi(rad)

J1 A1 0 q1 0 π/2

J2 A2 0 q2 0 -π/2

J3 E1 0.4 q3 0 -π/2
J4 A3 0 q4 0 π/2

J5 A4 0.39 q5 0 π/2

J6 A5 0 q6 0 -π/2
J7 A6 0 q7 0 0

Table 3.1: DH parameters
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Given x the vector of position and orientation of the end-effector in the Cartesian space
and q the vector of the joint angle coordinates in the joint space, the forward kinematics
relation [39] between them is written as:

x(t) = f(q) (3.1)

where x(t) ∈ Rm and q ∈ Rn.
Deriving (3.1) it is possible to obtain the differential kinematic:

ẋ(t) = J(q)q̇ (3.2)

where ẋ(t) contains the velocities components of the end-effector, J(q) ∈ Rm × n is the
Jacobian matrix. The Jacobian matrix can be interpreted as a linear transformation that,
at a given joint configuration q, maps a vector from Rn to Rm. In particular, given the
input space Rn, it is possible to define two associated subspaces: the range and the null
space. The range of J , from a physical point of view, represents the joint velocities that
are mechanically possible to be generated by the manipulator’s drive mechanism. The
null space represents the achievable velocities, on the joints, such that a zero end-effector
velocity is obtained, in every Cartesian component.

By differentiating again 3.2, the secon-order differential kinematics is obtain:

ẍ(t) = J(q)q̈ + J̇(q, q̇)q̇ (3.3)

For robotic manipulators, a problem is represented by kinematic singularities. A config-
uration q is said to be singular if the matrix J(q) is singular. In these configurations,
end-effector velocities and accelerations may be impossible to be generated in certain
directions, or they exist but are unfeasible for any velocity commanded at the joints.

Regarding the inverse kinematics computation, it consists in deriving a mathematical
expression that allows to compute the joint-space variable, given the cartesian space
variables of the end-effector. For a non-redundant manipulator, it is possible to invert the
previous equations, while for a redundant manipulator, the computation of the Jacobian
pseudo-inverse Jpinv is required. In general various methods or approximations can be
used for this computation.
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3.1.2. Dynamic model

In this section, the dynamic model of the robot is discussed.
The Kuka LWR4+ is characterized by flexible joints. Under the modeling assumptions in
[2], the entire system, in contact with an environment, can be modeled as follows:

Mq(q)q̈ +Cq(q, q̇)q̇ + g(q)+Kq(q − θ) = τext

Bθ̈ +K(θ − q) = τm

(3.4a)

(3.4b)

The two vectors q ∈ Rn and θ ∈ Rn represent the link and motor positions. The first
equation is characterized by a second-order system on the left side. It describes the
dynamics of a rigid body through the following terms: the inertia matrix Mq(q), Coriolis
matrix Cq(q, q̇), gravity vector g(q). The term τext represents the external actions acting
on the system, which can be related to the force/torque vector applied on the end effector,
linked through the relation τext = JT (q)F , where J(q) is the robot Jacobian. The second
equation shows that the torque τm is dependent on the stiffness of the corresponding joint
and from the joint torque τj = Kj(θ−q). Matrix Kq is the matrix of joint stiffness and
it is diagonal and positive definite. Matrix B is the inertia matrix collecting the rotors’
inertial components around their spinning axes.

In general, the link and motors equations are dynamically coupled. Mathematically, the
coupling is due to τj and a matrix S(q) that express the inertial couplings between the
rotors and the previous links in the robot chain. Because of the presence of large reduction
ratios, the energy contributions due to the inertial couplings between the motors and the
links can be neglected. This corresponds to the state that the angular velocity of the
rotors is due only to their own spinning, and the model 3.4 can be obtained.

The main characteristic of this model is that the only dynamical coupling happens through
the elastic torque τj and the motor equations are expressed through a linear relation.
Moreover, other dissipative effects, such as viscous friction at both sides of the transmis-
sions and spring damping of the elastic joints is not considered. In principle, this type of
friction can be fully compensated by a suitable choice of control torque. The state of the
system can be identified in position and motor speed and joint torques, which are directly
measurable.

In the following table, the numerical values of joint position and torque limits are reported.
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qmin(degree) qmax(degree) τmax(Nm)

J1 -170 170 176

J2 -120 120 176

J3 -170 170 100
J4 -120 120 100
J5 -170 170 100
J6 -120 120 38
J7 -170 170 38

Table 3.2: Joint limits

3.1.3. Fast Research Interface

The Kuka LWR manufacturer developed software to enable communication between a
remote PC and the robot itself. This is the Fast Research Interface (FRI)[40], which is
embedded in industrial commercial controllers.
This interface allows to acquire several information about the robot, such as its state,
Jacobian, mass matrix, and position of the robot in the Cartesian space. Moreover, the
user can select the desired access rate during the activation of the interface. The control
system monitors the quality of communication constantly, once the communication starts.
The robot controller is equipped with the Kuka Control Panel (KCP), shown in Fig. 3.3,
which gives the user access to different operating modes. In this way, the user can interact
with the robot to test the programmed operations and can perform them with increased
safety. The controller is characterized by its own language: Kuka Robot Language (KRL).
To edit, display and execute KRL scripts, the panel can be used.
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Figure 3.3: Kuka Control Panel

The Kuka motion kernel provides different methods to generate pre-defined trajectories by
simple KRL commands. FRI interacts directly with the motion kernel: these trajectories
can be sent to the remote pc and modified. Moreover, since an impedance controller is
already available on the Kuka, it is possible to send a command that modifies the stiffness
and damping parameters of the impedance controller.

FRI allows also to use of generic variables to read or write digital I/O of the KRC, to
control the tool mounted on the robot end-effector, to read internal states to the KRL
program or to change the program flow of KRL scripts.

The communication between the remote pc and the controller uses a UDP protocol. Since
usually real-time communication between the remote pc and controller is required, it is
necessary to detect every packet loss and to monitor and measure the communication
delays and variations. So, the interface uses UDP sockets and implements its own packet
loss detecting and recovering mechanism.
FRI activation can be represented as a state machine (Fig 3.4) and has two modes:
Monitor (data provided, no cyclic commanding) and Command (data provided, cyclic
commanding required). When activated, FRI enters monitor mode and the KUKA con-
troller sends data to the remote computer, which must respond with commands within a
given timeframe to enter command mode.
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Figure 3.4: FRI state machine with monitor and command mode

In the context of usability, it is important to take into account safety concerns, including
both machine and user safety. As the system originates from industrial controllers, it
supports the "test" and "automatic" operating modes. During test mode, a three-way
engage switch is activated, enabling the user to test the software and immediately stop
the robot in the event of any obviously erroneous behavior.

To ensure safety, the remote site must comply with these safety modes and be informed
of the system’s activities. Additionally, joint speeds are closely monitored and restricted.
To test the interface and gain experience, the user can reduce the allowable limits for FRI,
ensuring that the robot will not execute erroneous commands. If the commanded values
exceed the limits or the timing requirements are not met, the KRC will enforce a fallback
to "monitor mode" and bring the robot to a safe state.

Control modes

In this section, the control modes available from the Kuka manual[41] are discussed, with
the notation used in the manual.

The first cyclic control mode available is the Joint specific position control. The command
is interpreted as follow:

qcmd = qFRI (3.5)

This means that the original command, from the KRC, is replaced by the external com-
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mand qFRI

Considering the Joint specific impedance control, the control law is the following:

τcmd = Kj(qFRI − qmsr)+D(Dj)+ τFRI + fdynamics(q, q̇, q̈) (3.6)

being Kj the joint stiffness diagonal matrix, Dj the normalized diagonal damping ma-
trix, qFRI the desired joint positions vector, and τFRI the superposed control torque,
all modifiable from the remote side. The damping term D(dj) and the dynamic model
fdynamics(q, q̇, q̈) are computed internally.

Finally, the Cartesian impedance control law is defined as follows:

τcmd = JT (Kc(xFRI − xmsr)+D(Dc)+ FFRI)+ fdynamics(q, q̇, q̈) (3.7)

with JT the transposed Jacobian matrix. Considering the other parameters: Kc is the
Cartesian diagonal stiffness matrix, Dc is the normalized damping, xFRI is the Cartesian
pose, FFRI is the superposed Cartesian force/torque term, and they are all modifiable if
desired. Finally, the damping term D(Dc) and the dynamic model fdynamics(q, q̇, q̈) are
taken care inside the motion kernel.

As a final note, here’s the list of available data that a remote computer can access from
the KRC:

• Joint sensor data, both position, and torque

• Cartesian measured data, both pose and estimated force/torque

• Information about interface state

• Information about robot state

• Current commanded values

• Current Jacobian matrix and mass matrix

• KRL interaction variables
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3.2. Sensors

This section provides an overview of the sensors incorporated into the project, namely a
six-axis force/torque sensor and the MyoWristband EMG sensor.

3.2.1. Force Sensor

Force/torque sensors are a type of sensor that measures the three components of force
and the three components of the moment with respect to a local reference frame. The
way the measurement is performed is based on strain gauges, for which given a strain,
tension, or compression applied, a variation in an electric circuit is caused, in particular
in the resistance. From the electric signal, it is possible to compute the force and torque
components.

The equipped force sensor is a M3815C six-axis force/torque load cell produced by Sunrise
Instruments.

Figure 3.5: 6 axis force/torque sensor, mounted on the KUKA

To improve the accuracy of the force sensor measurements, an exponential smoothing
filter was applied to the raw sensor readings, which are characterized by a sampling time
of 1000 Hz. The filter equation used is given by:

Ffilt = αfFraw + (1− αf )Ffilt(t− 1) (3.8)
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where Ffilt and Fraw represent the filtered and raw force values respectively, t denotes
the current time step, and αf is the smoothing factor. The exponential smoothing filter
uses an exponential window function to smooth the time series data. A larger value of
αf results in less smoothing effect, as the output series becomes closer to the current
observation (i.e., αf = 1). Conversely, when αf is close to zero, the filter has a greater
smoothing effect, but it is less responsive to recent changes in the force readings. The
value of αf was determined empirically and set to 0.05, resulting in a cutoff frequency of
50 Hz.

Then, to align the reference frame of the force sensor with the one of the end-effector,a
rotation matrix around the z-axis with an angle of θ of 20° was performed. This enabled
the force sensed by the force sensor to be expressed in the reference frame of the last joint.
Given FJ7 and Ffs the reference frame of the end-effector and force sensor, respectively,
the rotation between the two frames can be expressed as:

FJ7 =

cos θr − sin θr 0

sin θr cos θr 0

0 0 1

Ffs (3.9)

Figure 3.6: Representation of the calibration. In green, the reference frame of the seventh
joint is shown. In red, the sensor frame of the force sensor is shown, rotated by an angle
θr around the z-axis.
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Finally, the effect of the tool weight on the force measurement was removed. Since the
contribution of the tool gravity depends on the orientation of the end-effector, the relation-
ship between the force read and the end-effector orientation is non-linear. For this reason,
a MultiLayer Perceptron Regressor with one layer composed of 30 neurons was trained
(Figure 3.7). The network takes the end-effector orientation as input and predicts the
force read by the force sensor after removing the tool gravity contribution Feex ,Feey ,Feez .
The chosen activation function was the Rectified Linear Unit (ReLU), and the network
was trained using the Adam solver with a learning rate of 0.01 and an alpha of 0.01. The
network was trained with a dataset containing 14,926 data points. The orientation of the
end effector was used as input, and the force sensor readings as output. The dataset was
collected with the robot in gravity compensation mode and 30% of the data was used for
testing. After the training, the network takes as input the orientation of the end effector
and predicts the force read by the force sensor Fee, without the tool gravity contribution.

Figure 3.7: Scheme of the Multilayer Perceptron Regressor. Input: orientation of the end
effector. Output: component x, y, z of the force sensor.

In Figure 3.8, the processing of the sensor readings is represented.
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Figure 3.8: Scheme of the processing of the force signal: first an exponential smoothing
filter is applied. Next, The sensor reference frame is aligned with the frame of the seventh
joint. Then, the tool weight is compensated using a Multilayer Perceptron regressor.

3.2.2. Emg sensor: MyoWristband

An electromyogram (EMG) captures the electrical signals generated by muscle contrac-
tions, which are controlled by the nervous system.
In this project, the Myo Wristband is adopted as EMG sensor.

Figure 3.9: MyoBand electromyography sensor

The Myo Wrist Band (Myoband) is a bracelet produced by Thalmic Lab, equipped with
8 channels (Figure 3.9), used to elaborate the electric signals produced by the muscles
in the forearm. The sensor communicates with the user’s computer through Bluetooth,
and can be connected to ROS to elaborate the data. The 8 EMG raw signals have a
sample rate of 200 Hz and are processed by the sensor itself: the absolute value of the
signal was obtained with a full wave rectification and a low pass filter with a 50 Hz cutoff
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frequency was applied to extract the envelope of the original signal. As the user wears
the MyoWristBand, muscle activity can be elaborate in order to produce an estimate of
the force applied by the user Fh, in order to introduce this signal in the main control
scheme. This idea is supported by the fact that, in HRI, it is extremely useful to evaluate
human intentions. In Figure 3.10, a scheme of the processing phases of the EMG signal
is reported.

Figure 3.10: Scheme of the EMG signal processing. First, the muscle signals are sampled
at 200 Hz. Then, a full wave rectification is applied and the signal envelope is extracted
at 50 Hz.

In Figure 3.11, an example of the 8 filtered signals EMGf is shown.
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Figure 3.11: EMG processed signals for the 8 channels of the forearm muscle activity.

Estimation of human force

In this section, the process of human force estimation is discussed. The goal is to train an
offline model that can accurately map the signals of the EMG signal into a force vector
Fh:

Fh = Φ(EMGf ) (3.10)

where EMGf are output signals of the 8 channels, already filtered. Once the model is
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trained offline, it can be used online to evaluate the user’s force applied to the robot.

A dataset of approximately 14,000 data points was collected from users wearing the My-
oWristband on their forearm and placing their elbow on a steady constraint, as shown
in Figure 3.12, and divided into a training set (80%) and a testing set (20%). During
the acquisition of the dataset, users were instructed to grab the robot and move it along
the x, y, and z axes, while the force on the end-effector was measured by a force sensor.
The training set was first normalized using MinMaxScaler so that all data fall within
the same range, i.e. between 0 and 1. Next, a linear regression was used to weigh the
contributions of the EMG channels. The processed data was then used to train a neural
network, consisting of two LSTM layers with 100 units and a "relu" activation function,
one dropout layer, two dense layers with 64 and 32 units, both with a "relu" activation
function, and one final dense layer with one unit and a sigmoid activation function. The
model was trained for 500 epochs and the Adam optimizer was used. The Mean Squared
Error (MSE) loss function was used to evaluate the performance of the network.

Figure 3.12: The configuration used in the data collection process
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3.3. Control Strategy

In the following section, the proposed control strategy is discussed. First, an introduction
to the theory of impedance control is reported. Next, the control strategy is described,
together with the stability proof.

3.3.1. Theory and modeling of impedance control

Impedance control [13] is a method for controlling the interaction between a robot and
its environment. In impedance control, the robot is modeled as a mechanical impedance
that interacts with the environment. The impedance is characterized by three param-
eters: stiffness, damping, and inertia. Stiffness refers to the resistance of the robot to
deformation, damping refers to the dissipation of energy in the system, and inertia refers
to the resistance of the robot to changes in motion.

Figure 3.13: 1DOF impedance model representation. k, d and m represent the robot
stiffness, damping and inertia, respectively. Fee is the force exherted from the robot end
effector on the environment, while Fext is the external force acting on the robot.

The goal of impedance control is to control the interaction between the robot and the
environment by adjusting the stiffness, damping, and inertia of the robot’s impedance.
By changing these parameters, the robot can respond to external forces in a way that is
appropriate for the task at hand. For example, if the robot is grasping an object, it may
need to adjust its stiffness and damping to prevent the object from slipping or dropping.
In an HRI hands-on procedure, impedance control can be used to obtain a robot behavior
compliant with the user’s will.

Admittance control is a related method, based on the concept of admittance, which is
the inverse of impedance. Admittance control involves measuring the force applied to
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the robot by the environment and using this information to adjust the robot’s motion.
The robot is modeled as an admittance that interacts with the environment, and the
admittance is characterized by the same three parameters as the impedance.

In Figure (3.14), both control logic are represented.

Figure 3.14: Schemes of Impedance (upper) and Admittance (lower) control logic. In
Impedance control, given a position reference, the position error is changed into a force
signal. Conversely, an admittance controller receives as input a force error and gives as
output a position.

Both impedance control and admittance control are widely used in robotics and have
applications in a range of industries, including manufacturing, healthcare, and aerospace.
These methods allow robots to interact with their environment in a way that is safe,
effective, and appropriate for the task at hand.

Considering the transfer functions, in the case of impedance control:

Z(s) =
F (s)

V (s)
= ms2 + ds+ k, (3.11)

while considering admittance control:

Y (s) =
V (s)

F (s)
=

1

ms2 + ds+ k
(3.12)
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Note that, even though the definition expresses a relation between the force vector and
the velocity vector, in principle the relation can be expressed also between the force and
the position/orientation in both the joint space and the Cartesian space.

Considering the Cartesian space, the end-effector dynamic of the robot is:

Mxẍ+Cxẋ+ gx = Fc + Fext (3.13)

x ∈ Rn is the vector of end-effector pose, with n = 6, Mx ∈ Rn×n is the inertia matrix,
Cx ∈ Rn×n is the matrix of the end-effector’s Coriolis and centrifugal terms, gx ∈ Rn is
the vector of the gravitational wrench and Fc ∈ Rn is the control wrench in the Cartesian
space, Fext ∈ Rn is the external force.

The desired impedance behavior can be written as:

Md(ẍ− ẍd) +Dd(ẋ− ẋd) +Kd(x− xd) = Fext (3.14)

Md ≥ 0, Dd ≥ 0, Kd > 0 ∈ Rn×n are the inertia, damping and stiffness matrix, while
xd ∈ Rn is the desired end-effector pose, ẋd ∈ Rn is the desired velocity, ẍd ∈ Rn is the
desired end-effector. So, the interaction is characterized by the user-chosen impedance
parameters of equation 3.14. In HRI tasks, xd is the free Cartesian rest position, while
no acceleration and velocity reference is used. Usually, the impedance parameters are all
diagonal matrices, allowing the decoupling of the model according to the Cartesian axis
i ∈ [1, ..n].

In many application, an adaptive rule is used to adjust the impedance parameters, based
on the task at hand:

Md(t)ẍ+Dd(t)ẋ+Kd(t)(x− xd) = Fext (3.15)

3.3.2. Proposed control strategy

The goal of the proposed strategy was to change the impedance parameters of the robot
according to the material that is in contact with the end-effector. Considering the medical
scenario of vertebral osteotomy described in Chapter 2, a compliant behavior is required
as long as the end-effector is in contact with a material with a high Young’s modulus, such
as a vertebra. On the other hand, an increase in the robot stiffness is required whenever
contact with a material with a low Young’s modulus is detected.
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In this study, a variable impedance control scheme was developed. In Fig. (3.15), a
conceptual scheme of the overall system is reported.

Figure 3.15: Conceptual scheme of the system: impedance parameters are adapted based
on the EMG signals and the measured contact force between the robot and the environ-
ment.

The main control loop (Figure 3.16) was represented by a Cartesian impedance controller:
given as input a position setpoint xref in the Cartesian space, a torque command τcmd in
the joint space is generated according to:

τcmd = J−1
pin(K(xref − xcurr) +D(Dn, ẋcurr)) + fd(q, q̇, q̈) (3.16)

with J−1
pin ∈ Rm×n the pseudo-inverse of the Jacobian matrix. K ∈ Rn×n is the Cartesian

stiffness, Dn ∈ Rn×n is the Cartesian normalized damping, xref is the Cartesian reference
pose, given by the difference between the position displacement imposed by the human
xh ∈ Rn and the additional feedback xs ∈ Rn. xcurr ∈ Rn is the current Cartesian pose,
while q, q̇, q̈ ∈ Rm×m are the vectors of robot joint position, velocity, and acceleration,
respectively. The Cartesian damping contribute D(Dn, ẋcurr) and the inertial contribute
in the joint space fd(q, q̇, q̈) are computed by the robot internal controller. According to
the value of matrices K and Dn, the robot can be more or less compliant with respect to
the user’s intention.
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Figure 3.16: Scheme of the adaptive impedance control law with safety position feedback:
the Cartesian reference pose xref is obtained as the difference between the position im-
posed by the human xh and the safety position feedback xs, generated by multiplying
Fee and the gain matrix P . The position error x̃ is then calculated by subtracting xref

and the current Cartesian pose, xcurr. This error is multiplied by a variable stiffness
matrix K, controlled by an adaptive law which receives the human estimated force, Fh,
derived from an EMG signal and the contact force measured by the force sensor, Fee, as
inputs. Fee is measured from the force Fr that the robot exherts on the environment. The
current Cartesian velocity, ẋcurr, is used to compute the damping term D(Dn, ẋcurr),
where Dn is the normalized damping matrix. The torque command in the joint space
τcmd is generated by using the Jacobian pseudo-inverse J−1

pin and summing the inertial
term fd(q, q̇, q̈), q, q̇, q̈ are the vectors of robot joint position, velocity, and acceleration,
respectively.

Considering the adaptive law, the stiffness kz was changed at every time instant according
to the following formula:

kz = k0 + γ(k1 − k0) (3.17)

where k1 and k0 are the limits of range in which the stiffness parameter is allowed to
change. γ = γ(Fh,Feez) is a variable gain, such that 0 ≤ γ ≤ 1 ∀t, function of both the
user’s estimated force Fh and the end-effector measured force Feez :

γ = γ(Fh, Fee) (3.18)

In order to obtain the desired stiffness behavior in all situations, two different γ profiles
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were developed:

γ1(Fh,Feez) =
α|Feez |

α|Feez |+ ||Feez |+ Fh|
(3.19)

γ2(Fh,Feez) =
1
α
|Feez |

1
α
|Feez |+ ||Feez | − Fh|

(3.20)

with α being a user-chosen tunable parameter.
In the absence of any contact between the tooltip and the environment, the end-effector
measured force was negligible (Feez ≈ 0) and hence kz remained close to k0, resulting
in a highly compliant robot. When encountering a material with a high Young’s mod-
ulus, γ1 was maintained to keep the robot stiffness, kz, low and compliant during the
procedure. In contrast, when the robot made contact with a material with a low Young’s
modulus, such as a vein or spinal cord, γ2 was engaged, increasing the stiffness kz to
reduce the risk of material damage. To differentiate between environments with high/low
Young’s modulus, a threshold, Ftresh, on the contact force was used. However, the condi-
tion |Feez | < Ftreshold was satisfied during the initial phase of contact with both material
types and was insufficient to differentiate between them. The key difference between the
materials was their response to forces. A material with high Young’s modulus remained
undamaged, while one with low Young’s modulus started deforming. For this reason,
the displacement ϵ was defined such that, if |zcontact − zcurr| > ϵ the material with low
Young’s modulus was damaged, with zcurr the z component of the position vector of the
end-effector and zcontact the position in which |Feez | > 0. A position threshold, ztresh, was
chosen such that ϵ > ztresh and when |zcontact−zcurr| > ztresh and |Feez | < Ftreshold, γ2 was
used. In this way, the stiffness kz was increased in order to reduce the compliantness of
the robot. In Figure 3.17, a scheme of the four possible contact situations is represented.
In a real scenario, cases 1a and 2a correspond to the situations in which the surgeon is
drilling a vertebra. Case 1b represents the first phase of the contact for both materials,
while case 2b represents the contact with a material with low Young’s modulus.

In the hypothesis of an error in the procedure, it may become necessary for the robotic
system to counteract the user’s movements to prevent damage to an unintended structure.
To accomplish this, an additional position command, proportional to Feez , was generated
by the controller:

zs = ρFeez (3.21)
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Figure 3.17: Scheme of the four possible contact conditions. 1a and 2a: contact happens
with a material with a high Young’s modulus. 1b, first phase of the contact. 2b, the
material has a low Young’s modulus.

As the relation involved only one axis, the gain matrix P was reduced to the constant
scalar gain ρ. The logic of this additional feedback was to generate a signal that compen-
sates the user’s will, which, in this case, was an error. It is important to remember that
during the operation, the end effector is situated inside the patient’s body. Consequently,
it is preferable to prevent impulsive behaviors by the robot. Therefore, the generated
signal must be low enough to avoid the total loss of control of the robot, even for a short
amount of time, but sufficiently high to provide the user with a solid constraint. In the
event of an error, the user should be able to recognize it and move the robot up to a
safe vertical position. In Tab 3.1, a conceptual algorithm of the switching logic, between
the two profiles, is reported. In general, γ1 was kept as the default profile, as this pro-
file ensured a fully compliant behavior for the robot, while γ2 was used only when the
robot detected an error in the procedure, so when the end effector was in contact with
neurovascular structures.
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Algorithm 3.1 Conceptual algorithm of the switching strategy
1: No contact
2: γ(t) = γ1(t)

3: while |Feez | > 0 (Contact detected) do
4: Compute displacement from the contact point
5: if |∆z > ztresh| and |Feez | < Ftresh (Detected contact with delicate structure) then
6: γ(t) = γ2(t)

7: zs = ρFeez

8: else
9: γ(t) = γ1(t)

10: zs = 0

11: end if
12: end while

Finally, in order to ensure system stability, the profile of gamma was shaped through
a passivity filter. At each time instant t, its derivative γ̇ was chosen as the minimum
between three conditions, and then integrated to obtain the filtered γ. The details about
the filter are reported in the next section.

3.3.3. Passivity analysis

In this section, the stability of the system is proved, through the passivity theory. In
particular, given equation 3.17 and γ(t) such that 0 ≤ γ ≤ 1, the stability proof and
the passivity filter developed and discussed in [20] are valid. Here, the main passages of
both the proof and the theory of developing the passivity filter are reported, in the more
general matrix form, for the case in which both stiffness and damping are adapted.

Consider the model of a m-joint robotic manipulator:

Mq(q)q̈ +C(q, q̇)q̇ + g(q) = τc − J(q)Tfext (3.22)

From section 3.3.1, in the case of impedance control, the relationship between external
forces and system positions, velocities, and accelerations is the following:

Mëp +Dėp +Kep = fext (3.23)

with ep = xref − x ∈ Rn, where p is the robot end-effector pose and xref a reference
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motion. In this discussion, the matrices D(t) and K(t) are considered time-varying,
while M is assumed to be constant. From now on, time dependency will generally not
be mentioned in the notations for simplicity.

In order to investigate the stability of variable impedance control given by 3.23 with
varying stiffness and damping terms, first consider the following storage function:

V1 =
1

2
ėT
pMėp +

1

2
eT
pKep (3.24)

Since K and M are symmetric, differentiating V1 leads to

V̇1 = ėT
p fext + [

1

2
eT
p K̇ep − ėT

pDėp] (3.25)

If stiffness is constant or decreasing, V̇1 ≤ ėT
p fext, which leads to the following passivity

condition

V1(t)− V1(0) ≤
∫ t

0

ėT
p fextdτ (3.26)

With V1, passivity can only be guaranteed if the stiffness is constant or decreasing, using
it as a Lyapunov function to assess stability. Since stiffness can change with respect to
time, in equation 3.25 the sign of the term in brackets may change. This can cause a
violation of the passivity condition 3.26 in case of increasing stiffness. For this reason,
a more complicated storage function must be found. In order to facilitate the passivity
analysis, consider a filtered tracking error-like variable r ∈ Rm [42] :

r = ėp +αep (3.27)

where α ∈ R+ is a constant. As shown in [43], if r is bounded, then ep, ėp are bounded
and, in this case, if r → 0, then ep, ėp → 0. So, it is possible to write:

∫ t

0

rTfextdτ =

∫ t

0

rT (Mëp +Dėp +Kep)dτ

=

∫ t

0

rT (M(ëp + αėp)− αMėp +Dėp +Kep)dτ

(3.28)

Using equation 3.27 and its derivative it follows that
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∫ t

0

(rTfextdτ =

∫ t

0

rTMṙ + ėT
p (D − αM )ėp + eT

p (K + αD − α2M )ėp + eT
P (αK)ep)dτ

(3.29)

By introducing a symmetric, positive semidefinite, and continuously differentiable matrix
Cs, equation 3.29 can be written as:

∫ t

0

rTfextdτ =

∫ t

0

(rTMṙ + eT
pCsė

T
p +

1

2
eT
p Ċsep)dτ+

+

∫ t

0

(ėT
p (D − αsM )ėp + eT

p (αsK − 1

2
Ċsep + eT

p (K + αsD − α2
sM −Cs)ėp))dτ

(3.30)

which can be written as

∫ t

0

rTfextdτ = V2(t)− V2(0)+

∫∫∫ t

0

W2dτ (3.31)

with

V2 =
1

2
rTMr +

1

2
eT
pCsep (3.32)

and

W2 = ėT
p (D − αsM)ėp + eT

p (αsK − 1

2
Ċsep + eT

p (K + αsD − α2
sM −Cs)ėp) (3.33)

As reported in [20], by defining Cs = K + αsD − α2
sM , the candidate storage function

3.32 results in the stability conditions:

0 ≤ D − αsM (3.34)
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0 ≤ 2αsK − K̇ − αsḊ (3.35)

This choice leads to W2 ≥ 0, which allows to conclude on system passivity, by the fact
that equation 3.31 leads to

V2(t)− V2(0) ≤
∫ t

0

rTfextdτ (3.36)

The main limitation of this analysis is that, given a generic variable impedance profile,
passivity conditions 3.34 and 3.35 can be used only to verify whether passivity is guaran-
teed. A method to change this profile, in order to ensure passivity in every time instant,
is explored.

Consider the change in system impedance, with in general the stiffness and the damping
varying from K0 to K1 and from D0 to D1 respectively. Here, only the case K0 < K1

is reported. Now consider the following profiles for K and D:

K = K(t) = K0 + Γ(t)δK (3.37)

D = D(t) = D0 + Γ(t)δD (3.38)

with δK = K1 − K0, δD = D1 − D0, and Γ a diagonal matrix where all diagonal
terms γi are differentiable gains such that 0 ≤ γi ≤ 1. Since M , K, D were chosen to
be diagonal, the impedance behavior can be decoupled. In order to ensure passivity using
conditions on V2, K and D need to satisfy equations 3.34 and 3.35. Condition 3.34 allows
choosing α easily. Condition 3.35 implies that ∀i ∈ 1, 2, ..., n

γ̇i(αsδdi + δki)− 2αs(k0i + γδki) ≤ 0, (3.39)

with δk0 and δd0 the diagonal terms of δK and δD respectively, and k0i the diagonal
terms of K0. Assume that δdi ≥ 0. As δki > 0 and αs ≥ 0, then αsδdi + δki > 0.
Condition 3.39 can be rewritten as

γ̇i ≤ aiγi + bi, (3.40)
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with

ai =
2αδki

αδdi + δki
, bi =

2αk0i
αδdi + δki

(3.41)

Combining equation 3.39 with a low-pass filter, in order to ensure smoothness of γi, a
passivity filter can be designed in such a way that it takes as input the desired switching
profile γ̄i and generates an output profile γi that guarantees the system passivity. The
filter, as reported in the cited study, is defined by

γ̇i = min(β(γ̄i − γi), aiγi + bi) (3.42)

where β is the filter parameter. By integrating 3.42 it is possible to obtain γi that tracks
γ̄i in such a way that passivity conditions are respected. Again, in [20], less conservative
passivity conditions are searched, in order to obtain a better tracking performance..

To do so, the assumptions on 3.27 are modified, to replace αs by a time-dependent diagonal
matrix Bs with bounded eigenvalues:

r = ėp +M−1Bsep (3.43)

Considering 3.43 with M constant diagonal matrix and Bs a time-dependent diagonal
matrix with bounded eigenvalues. In this case, using the same strategy as before yelds
to:

∫ t

0

rTfextdτ = V3(t)− V (0)+

∫ t

0

W3dτ (3.44)

with

V3 =
1

2

[
ėp

ep

]T [
M Bs

Bs Cs +BsM
−1Bs

][
ėp

ep

]
(3.45)

and

W3 = ėT
p (D −Bs)ėp + eT

p (BsM
−1(K − Ḃs)−

1

2
Ċs)ep+

+eT
p (K −BsM

−1(D −Bs)− Ḃs −Cs)ėp

(3.46)
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The choice Cs = K + BsM
−1(D − Bs) − Ḃs allows canceling out the cross-terms.

Considering 3.46, the positivity of V3 is obtained if 0 ≤ Cs

The positivity of W3 is obtained if the following passivity conditions hold

0 ≤ D −Bs

0 ≤ BsM
−1(K − Ḃs)−

1

2
Ċs

(3.47)

Choosing Bs = D, C = K − Ḋ, a fourth storage function is then defined:

V4 =
1

2

[
ėp

ep

]T [
M D

D K +DM−1D − Ḋ

] [
ėpep

]
(3.48)

and the resulting passivity conditions are obtained:

0 ≤ K − Ḋ

0 ≤ 2DM−1(K − Ḋ)− K̇ + D̈
(3.49)

As previously, all matrices are chosen diagonal and the problem can be decoupled, thus
3.49 is equivalent to:

k̇i +
2

mi

diḋi − d̈i −
2

mi

kidi ≤ 0 (3.50)

resulting in

−a1iγ̈i + a2iγ̇i + a3iγiγ̇i − a4iγi − a5iγ
2
i − a6i ≤ 0 (3.51)

with

a1i = δdi a2i = δki +
2

mi

d0iδdi

a3i =
2

mi

δd2i a4i =
2

mi

(d0iδki + k0iδdi)

a5i =
2

mi

δkiδdi a6i =
2

mi

k0id0i

(3.52)

wich are all positive since δK and δD are positive. For pratical implementation, the term
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−a1iγ̈i is not considered in writing the final condition on γ̇i, because computing γ̈i can be
problematic, since γ̇i can be discontinuous. Therefore, the following conditions are used:

γ̇i ≤
δki
δdi

γi +
k0i
δdi

≜ h1i

γ̇i ≤
a4iγi + a5iγ

2
i + a6i

a2i + a3iγi
≜ h2i

(3.53)

The passivity filter is therefore obtained as:

γ̇i = min(h1i(γi), h2i(γi), β(γi − γi)) (3.54)

3.4. Experimental setup

In this section, the experimental setup is described. First, a technical characterization was
performed to evaluate the system’s performance in terms of the control strategy. Finally, a
user study was performed to determine whether the proposed system could reduce the risk
of damaging delicate materials, with respect to a constant impedance hands-on control.

3.4.1. System validation

A technical validation was performed to inspect the behavior of the overall control sys-
tem. First, the stability of the control scheme was tested. The task involved the user
wearing the MyoWristband on their forearm and using it to guide the robot end-effector
against a given material while applying a constant force and maintaining contact with the
material. The z position of the end effector (refer to Figure 3.6 in previous section) was
recorded to investigate the presence of oscillations and thus the stability of the system.
In particular, it was expected that, in the first phase of contact, the z position decreased
until zcurr > ztresh. Then, an equilibrium position is expected to be reached as long as
contact was kept with the material: the end effector position should remain almost con-
stant, with no significant oscillations. Then, in order to assess system reliability and test
the correct behavior of the control law, 10 repetitions of the same task were performed
on different materials. Four materials were chosen (Figure 3.18), based on the mechanical
characterization discussed in Section 2.1: a polyurethane sponge with a Young modulus
of ≈ 1 − 5MPa, foam rubber with a Young modulus of ≈ 10 − 15MPa, a polyvinyl
acetate (PVA) sponge with a Young modulus of ≈ 20 − 30MPa and a polylactic acid
(PLA) vertebra phantom, with a Young modulus of ≈ 5− 10GPa.
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Figure 3.18: Chosen materials: polyurethane sponges (upper left), foam rubber (down
left), PVA sponge (upper right), PLA vertebra phantom (down right).

The goal was to demonstrate that the strategy guaranteed an increasing profile for the
adaptive stiffness kz(t) when contact was made with a material with low Young’s modulus
and that a low value was reached otherwise. Moreover, to validate the behavior of the
safety feedback, the profile of zs(t) must be analyzed, which is expected to increase in the
range [0, 0.05]m for the first three materials. To assess this analysis, the average values
of stiffness k̂z and position correction ẑc on the 10 repetitions were computed.

3.4.2. User Study

A User Study has been performed, to compare the performance of a constant impedance
hands-on control (Mode 1) with the proposed control strategy (Mode 2). The goal was
to demonstrate that the proposed strategy prevented the users from damaging delicate
materials while allowing them to operate on a bone-like material. In these experiments,
three different materials have been used: the polyurethane sponge, the PVA sponge, and
the PLA vertebra phantom. They were placed inside a box, such that the user did not have
visual feedback on the contact surface. Users were instructed to guide the robot through
the object, apply a force as if attempting to perforate the material and maintain contact
for around 5 seconds. For each material, the task was repeated three times. Data have
been collected from 10 different users, with 3 repetitions for each material and all users
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gave their informed consent before participating in the study. To validate the research
hypothesis, the contact force, Feez , between the robot end effector and the materials and
the displacement zd were analyzed. The displacement (Figure 3.19) was computed from
the contact point, zcontact, between the end-effector and the material, to the minimum
point reached by the tooltip, zmin:

zd = zcontact−zmin

Figure 3.19: zd is computed from the contact point zcontact to the minimum z position
that the tooltip reaches zmin.

The average values F̂eez and ẑd were computed for each material m ∈ [1, 2, 3], according
to the following equations:

F̂m
eez =

∑r
i=1 F

i
eez

r
(3.1)

ẑmd =

∑r
i=1 |zid|
r

(3.2)

where r = 3 are the repetitions for each user. A lower contact force Feez and a lower
displacement zd were expected in case of contact with materials with low Young’s modulus
when using the proposed strategy. In the case of contact with materials with high Young’s
modulus, a similar performance between Mode 1 and Mode 2 was expected. In order to
assess the statistical validity of the collected data distributions, the Wilcoxon ranksum
test was performed. In fig 3.20 and 3.21, the experimental setup is depicted.



3| Materials and methods 49

Figure 3.20: Experimental setup in the User Study. The user guides the robot, equipped
with the force sensor against different materials, placed inside a box. In Mode 2, the user
is also wearing the MyoWristband on the forearm.

Figure 3.21: Experimental setup in the User Study: user perspective.

Finally, a qualitative analysis was proposed. After the repetitions, each user was asked to
fill out a form, in order to obtain a qualitative analysis of the performance of the system.
In particular, they were asked to express their level of agreement with eight statements,
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on a scale from 1 (totally disagree) to 5 (totally agree). Here are reported the eight
statements, proposed for both Mode 1 and Mode 2:

User study questionnaire
S1 The system was easy to use
S2 People can learn to use this system very easily
S3 It is required a priori knowledge in order to use this system
S4 The system was subjected to inconsistency among repetitions
S5 It was easy to damage the material
S6 I was able to distinguish easily the different materials, despite I had no visual feedback
S7 With some materials, the robot was not allowing me to complete the task
S8 The task was mentally demanding

Table 3.3: For both tasks, users were asked to express their level of agreement with each
of the 8 statements reported

3.4.3. Choice of control parameters

The experiments were performed using the LWR4+ (KUKA) as the robotic manipulator
and the MyoWristband for the EMG acquisition. The main impedance controller and
the adaptive law were written in C++ and they communicated with the FRI at 100
Hz, using ROS. The sensor force and EMG processed data were acquired at 50 Hz. For
both experiments, the following values for the parameters were adopted. In particular,
regarding the impedance controller and the adaptive law, a range of kz between k0 =

100N/m and k1 = 1000N/m was considered. Full compliantness can be obtained with
kz ≈ 0, but unfortunately, this choice could cause torque errors, related to the internal
decoupled motor controllers, especially on the orientation. For this reason, the lower
bound on the z-axis k0 was set to 100. Since the strategy was focused on the z-axis,
the stiffness component of the other axes was kept constant, more precisely, kx = ky =

100N/m, krx = kry = krz = 300N/m. The choice of the orientation parameters was due to
the fact that, during the repetitions of the tasks, the orientation of the end-effector should
remain constant. Regarding the damping parameters, while a low damping ratio typically
results in a more compliant manipulator, in the context of spinal surgery, a damping ratio
of 0.8 may be more appropriate to improve precision. Moreover, unlike in industrial
applications, high-velocity behaviors are not necessary for this context. For this reason,
this value was kept constant: di = 0.8 ∀i ∈ [x, y, z, rx, ry, rz]. Finally, a weight α = 0.1

was chosen, as a result of a compromise between the two performances required: γ1 low
at high contact forces and γ2 high at low contact forces. Regarding the switching logic,
a force threshold of Ftresh = 15 N was chosen, as a result of empirical considerations
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on different materials. As displacement treshold, ztreshold = 0.005 m was chosen. A
smaller threshold would have been irrealistic, due to the fact that in a real scenario, the
patient will not remain perfectly still, due to breathing and other complications that can
cause errors in the position measurement of the tooltip [44]. A bigger threshold however
could generate an overall unsafe procedure, caused by the unwanted drilling of the tissue
before the activation of the strategy. Considering the position correction generation, a
constant ρ = 0.004 m/N was chosen, based on empirical considerations. In this way, the
zs generated was in the range of centimeters, which was considered enough to increase the
safety of the operation, but also as small as needed to not generate unwanted behaviors
on the robot. It is important to remember that, as the end-effector proceeds with the
operation, the tip is located inside the patient’s body. Finally, for the User Study, the
stiffness of the constant impedance controller was set to kzc = 500 N/m.

The values of the parameters are summarized in Tab (3.4).

Control logic parameters
k0 100 [N/m]
k1 1000 [N/m]
di 0.8
α 0.1
ztreshold 0.005 [m]
Ftreshold 15 [N]
ρ 0.004 [m/N]
kzc 500 [N/m]

Table 3.4: Values of the parameters selected for the control strategy
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4.1. Force sensor

The MultiLayer Perceptron Regressor model was evaluated using the mean square error
(MSE) and the R2 score. The performance of the network is represented by an R2 score
of 0.96 and an MSE of 0.006, demonstrating its ability to accurately predict the force
read by the force sensor after removing the tool’s gravity contribution, regardless of the
end-effector orientation. In Figure 4.1, the comparison between the predicted and true
values is shown.

Figure 4.1: Validation of the force sensor tool weight compensation. In red, true force
values are represented, while in blue the force predicted by the MLP is shown.



54 4| Results

4.2. Human force estimation

The LSTM model has been validated with the remaining 20% of the data. The network
was evaluated using the mean square error (MSE) and the R2 score. The performance
of the network is represented by an R2 score of 0.558 and an MSE of 0.01. In Figure
4.2 the validation loss function is shown. These results suggest that the quality of the
signal produced from the trained network is low. Some improvements may be obtained
by including, in the input data, robots joint-specific information, such as position and
speed, or by considering alternative EMG sensors.

Figure 4.2: Loss function of training and validation dataset

In Figure 4.3, a plot of the human estimated force is shown. When the user applies a
force on the robot and moves it, high peaks are obtained. When the user removes the
hand from the robot and keeps it at rest, a low force value is obtained.
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Figure 4.3: Human force estimated online with the LSTM trained model. Depending on
the muscle activity of the user, the predicted force changes between high and low values.

4.3. Validation of control scheme

In the following section, the results of the validation experiment are reported. First, the
stability of the system is inspected by considering one repetition of the task described in
Chapter 3 and by looking at the measured position on the end effector zcurr when contact
is made. In Figure 4.4, the end effector z position is shown, with respect to time. For
completeness, the corresponding plots of the measured force, stiffness kz, and additional
position feedback zs are also reported.

In the first 4 seconds, the user is guiding the robot along the z-axis, toward the material.
At 4 seconds, contact with the material is made. When the displacement becomes higher
than ztresh, the safety feedback is generated and the end effector position stabilizes around
an equilibrium point without oscillations. At 14s, the user starts moving the robot back
to the initial position.



56 4| Results

Figure 4.4: Upper left: end effector z position, zcurr. Upper right: contact force,
Feez . Down left: robot stiffness, kz. Down right: position feedback, zs. Contact with
polyurethane.

After the stability analysis, the validation of the adaptive stiffness, kz, of the robot and
the generated position correction, zs, was performed. In fig 4.5 and 4.6, the boxplot of the
adaptive stiffness of the robot and the generated position correction of the 10 repetitions
is reported, for each material. An increasing stiffness profile, kz, can be seen in the
first three materials, with an average value of 658.28 ± 221.09 N/m for polyurethane,
624.75 ± 227.9 N/m for the foam rubber, and 397.5 ± 195.85 N/m for the PVA. The
value recorded in the PVA material is smaller than the one obtained in the other two
materials but it is compensated by a higher position correction, which reaches an average
value of 0.0339 ± 0.01m. For polyurethane and for foam rubber, an average value of
the generated position correction, zs, of 0.0182 ± 0.0053m and 0.0267 ± 0.0083m was
recorded, respectively. Moreover, high values in the standard deviation of the stiffness
can be observed but it can be justified by the fact that, at the beginning of each repetition,
the stiffness value is always very low. Considering the PLA vertebra, even though it was
not possible to drill it because of the limitations of the setup, the stiffness keeps a low
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value: k̂z = 140.85 ± 14.88 N/m with a low standard deviation. The test showed that,
when contact happens with materials that deform if subjected to low forces, the strategy
guaranteed an increasing stiffness, kz, and the generation of a safety command, zs, both
inside the defined ranges.

Figure 4.5: Validation experiments: comparison of the boxplots of the stiffness kz for all
the materials

Figure 4.6: Validation experiments: comparison of the boxplots of the safety position
correction zs for all the materials

4.4. User study

For each material, the average force and displacement among the 10 users were computed
for each modality. The Wilcoxon ranksum test was used to compare the two modalities
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with a statistical significance assessed at 0.05. In Figure 4.7 and 4.8 the corresponding box-
plots for each material are shown. The average displacement was found significantly lower
(p-value < 0.05) in Material 1 with a mean value of 0.0074±0.0018m and 0.019±0.0068m

for Mode 2 and Mode 1, respectively. Also for Material 2, a significant difference was found
(p-value < 0.05) when comparing Mode 2 with Mode 1 with an average displacement of
0.0079±0.0027m and 0.0171±0.003m respectively. The results in terms of displacement
show that the proposed strategy is able to recognize the type of material and prevent the
user from guiding the robot through it. Furthermore, a significant difference was found
in the force measured on the end-effector between Mode 1 and Mode 2 for both Material
1 and Material 2. In Material 1, Mode 2 resulted in an average force of −5.065± 1.45 N ,
which was significantly lower than the average force of −13.72±6.52 N measured in Mode
1. Similarly, for Material 2, Mode 2 had an average force of −5.65 ± 2.57 N , which was
significantly lower than the average force of −14.79 ± 5.15 N measured in Mode 1. The
lower measured force in Mode 2 when compared to Mode 1 shows that the system is able
to reduce the contact force between the tooltip and the material. In this way, the risk of
the material being damaged is successfully reduced. The results for Material 3 were not
statistically significant, with a p-value > 0.05 for both displacement and force. This was
expected since Material 3 has a high Young’s modulus, and the proposed strategy was
designed to keep the robot compliant during contact with such materials. Therefore, the
results of the study successfully demonstrated that the proposed strategy was effective in
preventing damage to delicate materials while still allowing for effective manipulation of
materials with a high Young’s modulus.

.
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Figure 4.7: Boxplots of the mean force F̂eez for each material

Figure 4.8: Boxplots of the mean displacement ẑs for each material

The comparison of the stiffness profile kz and the position feedback zs between the two
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modalities is meaningless, however, the average and standard deviations obtained in Mode
2, for all materials, are reported for completeness. For material 1 an average stiffness of
641.94±232.97 N/m and an average safety feedback of −0.015±0.0062m, were recorded.
For material 2 the average stiffness was 662.66 ± 223.35 N/m, with an average safety
feedback of −0.016 ± 0.0077m. The high values of the stiffness standard deviations are
justified by the fact that, at the beginning of each repetition, the stiffness value was
always very low. For material 3, the average stiffness was successfully kept low, equal to
141.27± 25.34 N/m, and no safety feedback was generated.
In Figure 4.9 and 4.10 the stiffness and safety feedback profiles obtained from one user in
Mode 2, for all materials, are reported.

Figure 4.9: Stiffness profile kz for all materials
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Figure 4.10: Safety position correction profile zs for all materials

For the qualitative analysis, the answers to the questionnaire described in Chapter 3 were
analyzed. In Figure 4.11, the results of the questionnaire are reported. The statistical
analysis showed that, for statements S1, S2, S3, S4, S8, the results were non significant,
with a p-value > 0.05. This corresponded to the expected outcome, and demonstrated
that the proposed control strategy is similar to a constant impedance strategy in terms
of usability, absence of inconsistency and mental workload. Looking at statement S5, S6
and S7, the results were significant, with a p-value < 0.05. In particular, regarding S5, the
users found the materials easier to damage with Mode 1. Moreover, it was easier in Mode
1 for the user to distinguish the materials, even without visual feedback (S6). This means
that the strategy simulate in an appropriate way a rigid behavior when contact was made
with a soft material. Finally, S7 suggests that the strategy successfully prevents movement
along the z-axis when needed, as users felt the inability to complete the assigned task.
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Figure 4.11: Questionnaire results
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5| Conclusions and future

developments

In this study, an adaptive impedance controller was developed to assist the surgeon in
vertebral osteotomy procedures. In this operation, the surgeon must avoid damaging the
critical structures in the proximity of the vertebra, such as the spinal cord and blood
vessels. The goal of the study was to change the stiffness of the robot, based on the
contact force between the robot tooltip and the environment and on the human estimated
force, obtained from the EMG signals of the user’s arm. Moreover, a safety position
command was generated when contact was made with delicate materials. Results showed
that the proposed strategy successfully increases the stiffness of the robot when contact
is made with delicate materials without causing end effector oscillations, and reduces the
risk of damaging such materials, in terms of end effector contact force and displacement,
compared to a constant impedance control strategy. The main limitation of this study is
the applicability in a real scenario since the analysis should be performed with a robot
equipped with a real surgical instrument. The force sensor is subjected to measurement
noise, which increases in time due to internal overheating. This problem should be assessed
since vertebral osteotomies are surgical operations that require several hours. The human
force estimate obtained from the EMG signals was not satisfying enough. To improve the
quality of the collected dataset, it would be interesting to substitute the MyoWristband
with electrodes, placed on the shoulder and chest areas. Finally, the different sponges
used in the experiments did not simulate accurately enough the properties of the spinal
cord and blood vessels. For this reason, a more realistic experimental setup should be
considered for future experiments.
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