
Executive Summary of the Thesis

Evolutional Deep Neural Networks for Partial Differential Equations

Laurea Magistrale in Mathematical Engineering - Ingegneria Matematica

Author: Luca Paparo

Advisor: Prof. Andrea Manzoni, Prof. Taraneh Sayadi

Co-advisor: Prof. Vincent Le Chenadec, Prof. Peter Schmid

Academic year: 2022-2023

1. Introduction
Partial Differential Equations (PDEs), repre-
sent a fundamental aspect of physical modeling.
Many problems, ranging from the diffusion of
the heat in a room, to the variation in prices in
the stock market can be modeled as PDE prob-
lems. The downside of those types of problems,
however, is that they become quite complex re-
ally fast, thus we can rarely expect a solution
in closed form to exist. A big discussion on
how to reliably, accurately and efficiently obtain
a solution for those problems has been, in the
last decades (and still is) under the spotlight:
many different methods (such as the Finite Ele-
ment Method (FEM), Spectral Methods, Finite
Volumes Method and many others) have been
proposed, developed and applied. While those
"classical" methods have shown to be reliable
and fast in a wide range of problems, they still
suffer from several limitations. Because of the
blooming of scientific machine learning in the
last decade, many neural network based meth-
ods have been proposed for the numerical ap-
proximation of PDEs; we will refer to them as
"Machine Learning Methods". Some of those
methods have demonstrated to outperform clas-
sical methods in terms of efficiency and accu-
racy for some problems. For example, Physics

Informed Neural Networks (PINNs) outperform
classical methods in some situations, where some
noisy solution data is available, or in condition
of uncertainty regarding equation’s parameters
(see [6]). Other methods, such as Fourier Neural
Operators [5], can accurately solve PDE prob-
lems for whole sets of initial conditions in sim-
ple geometries, and if a significant amount of in-
formation regarding the exact solution is avail-
able. In this thesis, we will discuss the Evo-
lutional Deep Neural Network (EDNN) method
[4], a machine learning based method for solv-
ing PDEs. We will delve into its advantages and
limitations with respect to both classic and ma-
chine learning methods. Moreover, we will ad-
dress some of the flaws of the method, proposing
possible solutions.

2. The EDNN Method
Let us consider a non-linear partial differential
equation in the form:

∂u

∂t
−Nx(u) = 0, x ∈ Ω ⊂ Rd, (1)

where d ∈ N \ {0} and Nx(·) is a non-linear op-
erator, while u(x) ∈ Ro, o ∈ N \ {0}. Let us
consider the following mapping carried out by a

1

Executive summary Luca Paparo

neural network:

uh : Ω×W → Ro,

where W is the set of admissible parameters of
the network. Suppose that the parameters of the
network depend directly on time, then, ∀t > 0:

uh = uh(x,W(t)), x ∈ Ω, W(t) ∈ W.

The initial set of parameters have to approx-
imate as well as possible the initial condition
u0 : Ω → Ro. This is easily achievable through
commonly used optimizers such as stochastic
gradient descent, or Adam. To advance in time
the solution, it is necessary to discretize the time
interval [0, T], where we want to integrate the
PDE, into a finite series of N + 1 times:

0 = t0 < t1 < · · · < tN = T.

Advancing the solution from time tn to time
tn+1 means finding a suitable set of parameters
W(tn+1) such that uh(·,W(tn+1)) ≈ u(·, tn+1).
To do that, we define and look for a minimizer
of the following functional:

J (γ) =
1

2

∫
Ω

∥∥∥∥∂uh

∂W
γ −Nx(uh)

∥∥∥∥2
2

dx, (2)

where the first term in the norm comes from
the chain rule ∂uh/∂t = (∂uh/∂W) ∗ (∂W/∂t).
Thus, the minimizer of the functional J is the
∂W/∂t that minimizes the L2 error of the equa-
tion. By selecting a set of M sample points
{xk}Mk=1 ⊂ Ω, the optimization problem can be
discretized to:

JTJ γ̂opt = JTN

[J]ij =
∂ui

h

∂Wj
, [N]i = Nx(u

i
h),

(3)

where ui
h := uh(x

i) and γ̂opt ≈ γopt, the mini-
mizer of Eq. (2). For further details, we refer to
[4]. Once Ẇ ≈ γ̂opt is computed, it is possible
to march from the current time tn to tn+1 us-
ing a generic explicit method. This is the main
principle of the EDNN method.

2.1. Embedded Boundary Conditions
In the EDNN framework, boundary conditions
are embedded in the framework, thus, showing
machine precision at the boundaries. On the

other hand, only periodic and Dirichlet bound-
ary conditions are treatable in this way.
The periodic boundary conditions are imple-
mented by transforming the initial coordinates
via a periodic function f in Ω̄, bijective in Ω.
Thus, the output of the network uh(f(x)) is pe-
riodic by construction.
The Dirichlet boundary conditions are enforced
by applying a function G to the network’s out-
put v, so that uh(x) := G(v(x),x) respects
the Dirichlet conditions. In a compact interval
I ⊂ R, for homogeneous Dirichlet conditions, a
possible choice of G would be:

G(v(x),x) = v(x) + ce(x)v(xe) + cw(x)v(xw),

where xe and xw correspond to the boundary
points and ce(·) and cw(·) are respectively -1 and
0 when computed in xe and 0 and -1 when com-
puted in xw. This can be easily generalized in
two or more dimensions.

2.2. Advantages and Limitations
The EDNN method allows to accurately com-
pute the solution in a broad range of test cases
and problems. The method shows clear advan-
tages when compared to some of the most dif-
fused machine learning methods for PDEs. By
construction, opposite to PINNs, the method
can solve seeminglessly for longer periods of
time. Fourier Neural Operators, on the other
hand, require a large amount of well structured
data from exact solutions, something not re-
quired by the EDNN method, which only re-
quires the initial and boundary values of the
problem. Finally, the method manages to solve
efficiently high dimensional problems [3], un-
reachable by classical methods due to the curse
of dimensionality.
On the other hand, EDNNs still present big lim-
itations, that can be grouped in two categories:
• efficiency problems: in lower dimension, the

integration of equations requires minutes,
rather than seconds as classical method;

• boundary problems: it is possible to enforce
only Dirichlet and periodic boundary con-
ditions and, even in those two cases, they
are applicable only in trivial geometries.

2.3. Our Contributions
This thesis presents two possible approaches to
tackle the limitations the method has. First

2

Executive summary Luca Paparo

of all, a way to implement a broader range of
boundary conditions is addressed. This will be
done by weakly enforcing the invariance of the
restriction of the function at the border. In
this way, with small implementation differences,
Neumann, Robin and many other boundary con-
ditions can be, with almost no effort, introduced
in the framework. Moreover, no particular con-
straint on the geometry of the problem is neces-
sary.
Furthermore, we propose an approach to de-
crease the computational time of the time in-
tegration. We will show that this can be done
by minimizing the equation error (see Eq. (2))
by transforming first the represented solution in
a spectral space, and then by computing this er-
ror using the transformed equation. By choosing
an orthogonal basis in the spectral space, we can
parallelize the evolution considering more than
one network, speeding up the advancement of
the solution.
In Section 3 our new approach to boundary con-
ditions is presented and discussed. In Section 4
we will discuss the EDNN method with Pseu-
doSpectral marching.

3. Weak Imposition of Bound-
ary Conditions

As previously pointed out, the EDNN frame-
work has more than one major limitation regard-
ing the boundary conditions. Besides the scarse
choice of currently available boundary condi-
tions embeddable in the network, it is only pos-
sible to solve for simple geometries. In this Sec-
tion, starting from the idea of invariances (pro-
posed in [1]), we will discuss a way to impose
generic boundary conditions in generic domains.
We will display two test cases:
• an advection-reaction-diffusion equation

with Dirichlet boundary conditions. By
solving them in an annulus, we will demon-
strate the ability of the approach to well
behave also in non trivial geometries;

• the homogeneous heat equation solved in 4,
5 and 7 dimensions with Neumann bound-
ary conditions, showing that the method
is able to solve for non-Dirichlet and non-
periodic boundary conditions in a multidi-
mensional setting.

3.1. Advection Reaction Diffusion in
an Annulus

3.1.1 Problem and Reference Solution

let us consider the following problem:
∂u

∂t
= µ∆u+ β · ∇u+ σu, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω̄,

u(x) = uD(x), x ∈ ∂Ω, t > 0,

where µ = 0.05, σ = 1 and β = [−0.5, 0]. The
domain Ω is the circular ring defined as:

Ω = {(x, y) ∈ R2 : x2 + y2 < a et x2 + y2 > b},

where the external and internal radii, are a = 1
and b = 0.3. Initial and boundary functions are
respectively:

u0(x) = 4(r − 1)(0.3− r)), r = ||x||, ∀x ∈ Ω̄;

uD(x) = 0, ∀x ∈ ∂Ω.

We solve the problem until the final time T = 2
and compare our results with the FEM solu-
tion obtained on a fine mesh counting more than
14000 nodes, selecting a time step of ∆t = 0.001.

3.1.2 The EDNN Approach

Since the geometry is non-simply-connected, it
is impossible to implement the boundary con-
ditions as described in Section 2. Instead, it is
possible to define the optimization problem in
the following way, to include invariant quanti-
ties [1]:

W(t) = argmin
γ∈Θ

J (γ)

s.t. Ik(W(t)) = Ik,0, k = 1, 2, . . . , t ≥ 0,

where J is the functional defined in Eq. (2),
Θ is the space of admissible parameters. Fi-
nally, Ik and Ik,0, for k = 1, 2, . . . , are respec-
tively a function of the parameters and its initial
value. Since any function of the solution (and its
derivatives) at each point is itself a function of
the parameters, we can choose the solution com-
puted in one boundary point as an invariant.
Thus, by picking a set of representative points
on the boundaries and imposing there the invari-
ance condition, it is possible to keep the solution
constant at the borders. In this case, we select

3

Executive summary Luca Paparo

equally spaced points on the internal and ex-
ternal boundaries, {xint,i}Nint

i=1 and {xext,i}Next
i=1 ,

where Nint, Next ∈ N are proportional to the in-
ternal and external radius, respectively. Thus,
we impose the following invariants:

Ik(W(t)) = uh(W(t), xint,k)

Ij(W(t)) = uh(W(t), xext,k),

∀k ∈ {1, . . . , Nint}, ∀j ∈ {Nint + 1, . . . , Nint +
Next}.
it is possible to incorporate the invariance con-
dition in the stepping of the solution by, first of
all, considering the problem in Eq. (3) in "least
squares form", i.e. as

γ̂opt := argmin
γ∈Θ

||Jγ −N ||22,

so as the solution in a least squares sense of the
problem J γ̂opt = N . The invariance constraint
can be weakly enforced, by advancing the solu-
tion through the following least squares problem
[2] (for t > 0):[

J(W(t))
∇IT (W(t))

]
γ̂opt =

[
N(W(t))

0

]
,

where I := [I1, . . . , INext+Nint].

3.1.3 Numerical Results

For this test, we consider a feedforward neural
network, with three hidden layers of 25 neurons
each. The activation function is the hyperbolic
tangent. We consider a time step ∆t = 0.01,
with a 4th order Runge-Kutta explicit marching
scheme. In Figure 1 we showcase the compari-
son between EDNN and reference solution. The
EDNN method with the new implementation of
the boundary conditions permits to accurately
integrate the solution. Throughout the simu-
lation, the maximum relative error stays below
2.39%, compared to the FEM solution.

Figure 1: On each row (from top to bottom)
reference solution, EDNN solution and relative
error between the two at (from left to right) t =
0, t = 1 and t = 2.

3.2. Multidimensional Heat Equation
The more general selection of possible domains
is not the only advantage this approach provides.
Since it is possible to impose the invariance con-
straint to every function of the parameter, we
can easily generalize this approach to the most
common boundary conditions. We take as an
example the homogeneous Neumann boundary
conditions. Although constraint of this kind are
necessary in many cases, no way to impose them
has been yet proposed. In the following, we will
show that our approach is viable to impose those
conditions also in multidimensional settings.
let us consider the following homogeneous Heat
Equation in N ∈ N \ {0} dimensions:

∂u

∂t
= ∆u, x ∈ ΩN :=

(
−1

2
,
1

2

)N

, t > 0

u(x, 0) =
1

N

N∑
i=0

(4x3i − 3xi + 1), x ∈ ΩN

∂u

∂n
(x, t) = 0, ∀x ∈ ∂ΩN , t > 0,

with N = 4, 5, 7. The same approach taken in
Section 3.1 would fail in this case for two reasons:
• computing the parameter’s derivative as
Jγ = N would require too many discretiza-
tion points;

• it is infeasible to take a representative set

4

Executive summary Luca Paparo

of points at the boundary and imposing the
invariance condition for each of them.

Instead, we solve the least squares problem[
JTJ(W(t))
∇IT (W(t))

]
γ̂opt =

[
JTN(W(t))

0

]
.

In this scenario, the solution’s quality, apart
from boundary conditions, hinges on the pre-
cise approximation of two integrals, as detailed
in [3, 4]. The integrals approximation is done us-
ing the basic Monte Carlo method, resilient to
increased dimensions. Furthermore, we choose
the L2 norm of the normal derivatives at the
boundaries as a singular invariant.
For a comparative analysis, we juxtapose the
EDNN solutions against approximations of the
exact solutions. This comparison involves ac-
counting for Nm,4 = 244 and Nm,5 = 165 modes
in the heat equation’s solution for 4 and 5 spatial
dimensions, respectively. These are integrated
using 354 and 165 Gauss-Legendre points for
each dimension. When extending to 7 spatial di-
mensions, approximating the exact solution be-
comes virtually impossible. Nonetheless, it can
be easily shown that the integral of the solution
remains constant, while the solution itself con-
verges to a constant value u∞,7 ≡ I/|Ω7|. Here,
I represents the integral of the solution over the
domain, and |Ω7| = 1 denotes the measure of
the domain.

3.3. Numerical Results
In our experiments, we employed a consistent
network configuration across all three cases.
Specifically, we utilized a feedforward network
comprising three hidden layers, each containing
25 neurons. The chosen activation function
was the hyperbolic tangent. For temporal
discretization, we set the time step ∆t = 0.01
and adopted an explicit Runge-Kutta method of
4th order for time stepping. The L2 error of the
invariant at the boundary was computed using
Gauss-Legendre integration. The integration
employed 153, 104, and 56 points for the 3, 4,
and 6-dimensional cases, respectively.
Figure 2 illustrates (projecting on the first two
dimensions) the results at time T = 1 for the 4D
and 5D scenarios. In these dimensions, the final
pointwise relative errors were approximately
5.68% and 8.25%, respectively. This approach
to handle boundary conditions demonstrates

the capability to accurately compute the solu-
tion of the problem, even in higher-dimensional
spaces. Furthermore, the significance of im-
posing boundary conditions is highlighted.
In Figure 3, we present a comparison of the
mean absolute error at the boundary under two
different scenarios. The constrained version of
our model successfully represents the solution
at the boundary with good fidelity throughout
its evolution.

Figure 2: EDNN solution and error at T = 1 in
4D and 5D.

Figure 3: Mean absolute error at the boundaries
with and without constraints in 4D and 5D.

The final section of our analysis presents the
mean and variance of the solution in a seven-
dimensional spatial domain. Notably, the mean
is equivalent to the integral, given that the
measure of the domain is 1. Additionally, we
compare these findings with those from the
non-constrained case. Although a direct com-
parison of the solution to a reference standard
is unfeasible, precluding definitive arguments
regarding its pointwise accuracy, the results
depicted in Figure 4 indicate that the weakly
constrained solution effectively preserves the
integral and successfully attains the correct
steady state.

5

Executive summary Luca Paparo

Figure 4: Mean and variance of the 7D solution
with and without constraints. The black dashed
line represents the exact value of the mean.

Our discussion has highlighted a new approach
of addressing boundary conditions, enabling the
resolution of higher-dimensional problems with
non-Dirichlet and non-periodic boundaries. Tra-
ditional methods and popular machine learning
techniques like PINNs and FNOs struggle with
these problems due to the exponential rise in
computational demands. However, the EDNN
method makes solving these complex, higher-
dimensional issues feasible. To illustrate this,
Table 1 presents the average processing times
and their standard deviations, aggregated over
10 separate runs. The simulations are run on
an Intel Core i5-11300H processor running at
4.4GHz and using 8Gb of RAM.

4D 5D 7D

Mean (s) 299.7 437.3 874.1
Standard Deviation (s) 1.418 3.274 5.156

Table 1: Mean computational time and standard
deviation over 10 runs.

Furthermore, it is important to note that in all
three scenarios, the solution is derived using be-
tween 1451 to 1526 parameters. This demon-
strates the feasibility of computing accurate so-
lutions with a relatively low number of degrees
of freedom.

4. PseudoSpectral-EDNN
In this section, we address a critical limitation
of the EDNN method: its high computational
cost in low-dimensional settings. To mitigate
this issue, we propose an approach that involves
transforming the equations into spectral space,
significantly reducing computation time. No-

tably, when a pseudospectral method is applica-
ble, it offers substantial improvements in compu-
tational efficiency while maintaining the mesh-
less structure of the method. We will further ex-
plore how this technique integrates with EDNN,
and discuss additional non-trivial benefits that
emerge from this integration.

4.1. The Methodology
Let us consider a transform T that maps a func-
tion space X into a finite function space V ,
dim(V) = N ∈ N \ {0}. Moreover, let us sup-
pose that B = {vk}Nk=1, vk ∈ V forms a basis of
V . Then, ∀v ∈ V , ∃! α̂ = [α̂1, . . . , α̂N] ∈ RN

such that:

v =

N∑
k=1

α̂kvk.

The choice of X depends on the activation func-
tions of the network and its structure. The
choice of V depends on the spectral method we
select and on X. Then, calling uh(·,W(t)) the
output of the network:

α̂(W(t)) ↔ v(W(t)) = T (uh(W(t))).

Considering that RN is isomorphic to V , we will
use the abuse of notation T (uh) = α̂ for simplic-
ity. Then, the time advancement is regulated by
the tranformed equation:

∂α̂

∂t
= T (N (uh)),

which is a system of ODEs. At each time step,
the functional presented in Eq. (2) is rewritten
as:

Ĵ (γ,W(t)) =
1

2

∣∣∣∣∣∣∣∣dα̂(W(t))

dW
γ − T (N (uh)))

∣∣∣∣∣∣∣∣2 .
Subsequently, this leads to a system of equations
akin to Eq. (3). The efficiency in computational
cost is enhanced due to two key factors:

1. The implementation of efficient spectral
space transformations, such as the Fast
Fourier Transform or the Fast Chebyshev
Transform, circumvents the need for com-
putationally intensive automatic differenti-
ation to compute the right hand side of the
equation at the collocation points.

2. The use of an orthogonal basis for B allows
for the (almost) independent advancement
of each αk, enabling parallel processing and
further improving efficiency.

6

Executive summary Luca Paparo

To better explain the second point, let us con-
sider two neural networks, denoted as NN1 and
NN2. These networks are associated with α̂1

and α̂2, chosen to form a partition of α̂. Fur-
thermore, let W be defined as W := [W1,W2],
where W1 and W2 represent the parameters of
the first and second network, respectively. The
Jacobian matrix, represented as [J]ij = ∂α̂i

∂Wj
,

takes the form of a block matrix:

J =

[
J1 0
0 J2

]
, where J1 =

∂α̂1

∂W1
, J2 =

∂α̂2

∂W2
.

Consequently, the construction of the Jacobian
and the resolution of the linear systems can be
independently executed by the two networks,
which only need to communicate for assembling
the right-hand side of the transformed equation.

4.2. A Test Case
We now consider the Allen-Cahn equation,
which is a well-known model in reaction-
diffusion systems. The equation is defined as:

∂u

∂t
= 0.0001

∂2u

∂x2
− 5u3 + 5u, x ∈ (−1, 1), t ∈ [0, 1]

u(x, 0) = x2 cos(πx), x ∈ [−1, 1]

u(t,−1) = u(t, 1), t ∈ [0, 1]

∂u

∂x
(t,−1) =

∂u

∂x
(t, 1). t ∈ [0, 1]

To analyze its evolution over time, we
adopt EDNNs with the Fourier pseudospectral
method. This approach transforms the problem
into Fourier space, where the equation is repre-
sented as:

∂uh
∂t

= 0.0001
∂2uh
∂x2

− 5u3h + 5uhw� F{·}
∂α̂

∂t
= −0.0001k2α̂− 5F{u3h}+ 5α̂.

(4)

In this context, F · denotes the discrete Fourier
transform operator, and k represents the array
of sampled frequencies. The transformation pro-
cess begins with computing the output of the
network across a set of nodes, where the quan-
tity of nodes matches the number of modes in
the system. This results in a vector that en-
capsulates the network’s output. Subsequently,
to transition into the Fourier domain, the fast
Fourier transform (FFT) algorithm is applied to
this vector. This application of FFT efficiently

converts the data into a series of coefficients, rep-
resented by the vector α̂. A separate FFT is ap-
plied to deal with the non-linear term. Finally,
the advancement is done as previously described.

4.3. Numerical Results
In the following, we will consider a feedforward
neural network featuring a hyperbolic tangent
activation function and three hidden layers, each
comprising 20 nodes. Our focus is on compar-
ing the performance in terms of computational
time and accuracy between one, two, and four
networks employing the PseudoSpectral-EDNN
(PS-EDNN) method. Each network configura-
tion tackles the equation, which involves 400
modes, in a distinct manner: a single network
processes all modes, while the two-network setup
divides them evenly, with each handling 200
modes. In the four-network arrangement, each
network is responsible for 100 modes. We bench-
mark these configurations against the classical
EDNN method, ensuring a fair comparison by
equating the size of the linear systems solved
by both the EDNN and the one-network PS-
EDNN. We consider this approach fair, since
the linear system’s dimension often represents
the main computational challenge. For consis-
tency, all simulations are conducted with iden-
tical initial training across different network se-
tups. This uniformity is feasible as the network
structures remain constant across all the simu-
lations, differing only in how the update law of
the parameters is computed.
The simulations are performed using a time step
of ∆t = 0.001 and are continued up to a final
time of T = 4. The marching rule applied is
an explicit 4th order Runge-Kutta scheme. Fig-
ure 5 illustrates the mean and standard devia-
tions of simulation times per iteration across 5
runs. The simulations are run on a MacBook
Pro with M2 processor and 16Gb of RAM. The
implementation of the PS-EDNN single network
scheme enhances processing speed. This im-
provement primarily stems from the integration
of the FFT, which simplifies the assembly of the
right hand side. This method proves more effi-
cient than the computation of derivatives at the
points of computation through automatic dif-
ferentiation, as required in the standard EDNN
framework. In scenarios involving multiple net-
works, the speedup is not linear, as expected.

7

Executive summary Luca Paparo

Nonetheless, configurations with two and four
networks demonstrate substantial time savings.

Figure 5: Computational time per iteration,
computing mean and standard deviation over 5
runs.

Specifically, the two-network setup achieves a
speedup of approximately 2.23× relative to the
standard EDNN, and the four-network arrange-
ment reaches about a 2.74× speedup. These
enhancements are achieved without compromis-
ing the accuracy of the final results. The mean
squared error for each case is consistently low,
as detailed in Table 2.

EDNN 1-net 2-nets 4-nets

MSE 9.25e-5 4.16e-5 1.18e-4 1.07e-4

Table 2: Mean Squared Error of the exact so-
lution compared to the reference one at T = 4.
From left two right: the EDNN, PS-EDNN and
mulit-net PS-EDNN errors.

5. Conclusions
This report has provided an overview of the Evo-
lutional Deep Neural Network (EDNN) method
for solving PDEs. The EDNN method shows
promise in accurately and efficiently solving
complex, high-dimensional PDE problems that
pose major challenges for traditional numerical
methods. However, some key limitations were
highlighted regarding efficiency in lower dimen-
sions and inability to impose diverse boundary
conditions in complex geometries. To address
these issues, two main contributions were pro-
posed and validated through numerical experi-

ments:
1. A technique to weakly impose bound-

ary conditions, enabling the imposition
of Dirichlet, Neumann, Robin, and other
boundary conditions in non-trivial domains.

2. An integration with pseudospectral meth-
ods to improve computational efficiency.

However, despite these improvements, the com-
putational time and accuracy still do not match
classical numerical methods. In conclusion, this
work has summarized recent advancements that
expand the applicability of EDNNs to broader
classes of PDEs. Addressing limitations related
to boundaries and efficiency represents an im-
portant progress toward positioning EDNN as a
versatile technique for scientific computing. Ad-
ditional efforts are required, particularly regard-
ing exploring additional enhancements in accu-
racy and efficiency.

References
[1] W. Anderson and M. Farazmand. Evolution

of nonlinear reduced-order solutions for pdes
with conserved quantities. J. Sci. Comput.,
44(1):A176–A197, 2022.

[2] W. Anderson and M. Farazmand. Fast and
scalable computation of shape-morphing
nonlinear solutions with application
to evolutional neural networks, 2023.
arXiv:2207.13828 [math.DS].

[3] J. Bruna, B. Peherstorfer, and E. Vanden-
Eijnden. Neural galerkin scheme with ac-
tive learning for high-dimensional evolu-
tion equations, 2022. arXiv:2203.01360
[math.NA].

[4] Y. Du and T. Zaki. Evolutional deep neural
network. Physical Review E, 104, 10 2021.

[5] Z. Li, N. Kovachki, K. Azizzadenesheli,
Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar.
Fourier neural operator for paramet-
ric partial differential equations, 2021.
arXiv:2010.08895 [cs.LG].

[6] M. Raissi, P. Perdikaris, and G.E. Karni-
adakis. Physics-informed neural networks:
A deep learning framework for solving for-
ward and inverse problems involving nonlin-
ear partial differential equations. J. Comp.
Phys., 378:686–707, 2019.

8

	Introduction
	The EDNN Method
	Embedded Boundary Conditions
	Advantages and Limitations
	Our Contributions

	Weak Imposition of Boundary Conditions
	Advection Reaction Diffusion in an Annulus
	Problem and Reference Solution
	The EDNN Approach
	Numerical Results

	Multidimensional Heat Equation
	Numerical Results

	PseudoSpectral-EDNN
	The Methodology
	A Test Case
	Numerical Results

	Conclusions

