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Abstract

Nowadays, service robotics has to face dynamic and unstructured environments, which
make sensorial information less reliable and autonomous decision-making harder. Fast
adaptation control strategies and versatile hardware solutions are fundamental to make
actions effective and grant safety. The incorporation of human intelligence through tele-
operation and the design of bio-inspired components represent a promising solution. In
particular, the use of bionic hands as end-effectors of manipulators can make robots suc-
cessfully interact with highly irregular environments. Underactuated bionic hands are
especially suited thanks to their simplified driver structure, compactness and effective-
ness. Teleoperation control of bionic hands can be intuitively achieved by capturing the
human operator’s hand motion and mapping it to the bionic hand. The hand motion
capture technologies mainly used in teleoperation are sensorized mechanical gloves and
vision-based tracking devices. In general, while the former proved to be more stable and
robust, the latter allow more natural movements and grant higher user comfort. Although
the characteristics of the two different approaches are clear, literature lacks robust com-
parative studies between them when applied to teleoperation, as a basis to select the most
appropriate method. Moreover, most of the works related to the development of teleoper-
ation systems are oriented toward self-validation, which ultimately prevents a meaningful
comparison between different works.

Given such premises, in this thesis, two teleoperation systems were designed to intuitively
control the same underactuated bionic hand using a glove-based method and a vision-
based technique, respectively. The two systems were tested within the same experimental
setup to verify their usability and obtain a robust comparison of the two motion capture
technologies, in terms of both control accuracy and resulting performance in a realistic
scenario. First of all, the bionic hand fingers motion was calibrated using an optical track-
ing device. The resulting non-linear inverse kinematic model was employed to develop an
accurate actuation controller for the bionic hand. Then, the two tracking systems were
configured to extract novel-defined features to describe the motion of the human hand
fingers. So, the tracking stages were coupled with the actuation controller to achieve
a simple and intuitive mapping between human and robot hand poses. Lastly, the ob-
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tained teleoperation systems were compared through both static and dynamic accuracy
experiments and a usability grasping test performed by several users.

Both the developed systems proved to be exploitable in both powered and precise grasp
tasks. Nevertheless, while the glove-based method proved good accuracy performance,
the vision-based technique showed an accuracy level that may be insufficient in real ap-
plications concerning fine manipulation of objects. The user experiment underlined that
such worse accuracy may also influence the grasping performance. The worse performance
is attributable to the limited accuracy of the vision camera device, thus, further research
is needed to develop more robust algorithms for image-based hand pose estimation. The
user study also underlined that the glove-based method brings a worse comfort and higher
effort by the user. Therefore, the glove design must be improved taking user comfort into
account.

Keywords: human-robot interaction, hand motion capture, bionic hand, teleoperation
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Abstract in lingua italiana

L’allargamento delle applicazioni della robotica di servizio, registrato negli ultimi vent’anni,
richiede ai moderni robot di interagire con ambienti sempre più dinamici e meno strut-
turati, che rendono le loro informazioni sensoriali meno affidabili, quindi i processi deci-
sionali da essi affrontati più complessi. L’adozione di strategie di controllo adattativo e di
componenti meccanici versatili è quindi fondamentale per rendere le operazioni dei robot
più efficaci e sicure. L’incorporazione dell’intelligenza umana nel sistema di controllo,
attraverso la teleoperazione, e la progettazione di componenti bio-ispirati rappresentano
una soluzione promettente. In particolare, l’utilizzo di mani bioniche come effettori può
rendere più semplice l’interazione fra il robot e ambienti altamente irregolari. Le mani
bioniche sottoattuate si rivelano specialmente adatte allo scopo, grazie alla loro semplifi-
cata struttura di controllo, compattezza ed efficacia. Il controllo delle mani bioniche in
teleoperazione può essere ottenuto intuitivamente catturando il movimento della mano
dell’operatore umano e mappandolo sulla mano bionica. Le tecnologie di acquisizione del
movimento della mano principalmente utilizzate a tal fine sono guanti meccanici sensoriz-
zati e dispositivi di cattura basati sulle immagini. In generale, mentre i primi hanno dato
prova di essere più stabili, i secondi consentono movimenti più naturali e garantiscono un
maggiore comfort per l’utente. Sebbene le caratteristiche dei due diversi approcci siano
chiare, in letteratura mancano solidi studi comparativi fra i due qualora applicati in tele-
operazione, come base per la selezione del metodo più appropriato. Inoltre, la maggior
parte degli studi legati allo sviluppo di sistemi di teleoperazione sono orientati all’auto-
validazione, che, in definitiva, impedisce un confronto significativo tra studi diversi.

Date tali premesse, in questo lavoro sono stati progettati due sistemi di teleoperazione per
controllare intuitivamente la stessa mano bionica sottoattuata, utilizzando rispettivamente
un metodo basato sull’utilizzo di guanti sensorizzati e una tecnica basata sulle immagini,
in particolare sulla visione stereoscopica. I due sistemi sono stati testati all’interno dello
stesso setup sperimentale per verificarne l’utilizzabilità e ottenere un solido confronto tra
i due metodi di cattura utilizzati, in termini sia di accuratezza del controllo che della
risultante prestazione in uno scenario applicativo realistico. Innanzitutto, il movimento
delle dita della mano bionica è stato calibrato utilizzando un sistema di tracciamento ot-



tico. Il modello cinematico inverso non lineare risultante è stato impiegato per sviluppare
un accurato controllore per l’attuazione della mano bionica. Dunque, i due sistemi di
cattura sono stati configurati per estrarre variabili motorie di nuova definizione capaci
di descrivere il movimento delle dita della mano umana, dopodiché sono stati accoppiati
con il controllore di attuazione per ottenere una mappatura semplice e intuitiva tra la
posa della mano umana e quella della mano bionica. I sistemi di teleoperazione così ot-
tenuti sono stati confrontati tramite tre esperimenti per valutare l’accuratezza statica e
dinamica, l’usabilità e l’esperienza dell’utente.

Entrambi i sistemi sviluppati si sono rivelati efficaci nel controllare la mano bionica per
afferrare oggetti, tramite sia impugnature di potenza che di precisione. Tuttavia, mentre
il metodo basato sull’utilizzo dei guanti ha dimostrato buone prestazioni di accuratezza,
la tecnica basata sulla visione ha mostrato un livello di accuratezza che potrebbe essere
insufficiente in applicazioni reali riguardanti la manipolazione fine di oggetti. Il grasp
test ha sottolineato che tale limite di accuratezza può avere un’influenza sulle prestazioni
dell’utente. La limitata accuratezza è attribuibile al software per la cattura del movi-
mento, pertanto, ulteriore ricera si rende necessaria per sviluppare algoritmi più robusti
per la stima della posa della mano basata sulle immagini. Lo studio riguardo l’eseperienza
degli utenti durante il grasp test ha altresì registrato che il metodo basato sui guanti porta
a un comfort ridotto da parte dell’utente. Pertanto, il design del guanto deve essere miglio-
rato tenendo maggiormente conto di tale aspetto.

Parole chiave: interazione uomo-robot, acquisizione del movimento della mano, mano
bionica, teleoperazione
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1| Introduction

1.1. Context of bionic hands teleoperation

Robotics as a research and technological field was born in the early 1960s to relieve
humans from hard, risky or unpleasant tasks in the context of industrial production. For
thirty years, industrial needs have polarized robotics research towards the optimization
of interaction with highly controlled environments. Starting from the 1990s, thanks to
technological progress in both hardware and software, robotics spread outside factories
evolving into service robotics [1]. According to ISO 8373: 2012 [2] a service robot is a robot
that performs useful tasks for humans excluding industrial automation applications. From
such a generic definition it is clear that the number of application scenarios increased,
as well as the complexity of the operation environment and of the tasks humans ask
robots to execute. In the most complex cases, the robot has to interact with dynamic
and unstructured environments. Such a situation poses challenges that cannot easily be
addressed by approaches developed for highly controlled environments like traditional
industrial assembly lines. In unstructured environments, robot sensorial information is
less reliable [3]. The robot cannot completely trust its knowledge about the surroundings,
thus decision-making becomes a hard challenge if it is based on robotics techniques that
rely on perfect knowledge of the world. Then, variability related to dynamicity may lead
to unexpected events the robot cannot promptly react or adapt to. In such situation,
providing the machine with robust adaptive control and flexible hardware solutions is
fundamental to make its actions effective and to prevent it from damaging itself, the
environment or surrounding people, if present.

Concerning the control, although artificial intelligence reached good results in the last
decades, standard intelligent programming based on automatic optimizing planners is not
enough reliable to manage the aforementioned situations yet [4]. Teleoperation control of
the robot by a remote human operator is still the best solution because it incorporates
human intelligence to manage variability, poor sensing and unexpected events. The as-
sistance provided by humans depends on the uncertainty degree and it can be classified
into three levels [5]: supervised control, if the machine performs tasks autonomously and
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the human operator merely supervises the execution; direct control, if the robot entirely
follows the commands coming from the human operator, lacking any autonomous capa-
bility; shared control, if the robot is only partially autonomous and the operator has an
active but not complete role in control.

Concerning the hardware, an innovative approach to implement robotic mechanical struc-
tures able to effectively interact with complex environments is provided by bionics, which
is the application of structural and functional rules found in nature to design engineering
systems. In particular, the human hand is an extremely adaptable mechanical structure.
Millions of years of evolution have shaped it to be very sophisticated and versatile, allow-
ing our species to interact profitably with a wide range of objects and environments, thus
making it one of the most adaptable on the planet. It consists of 27 bones, reciprocally
articulated in such a way to achieve 20 local degrees of freedom (DoF), as depicted in
figure 1.1. Additionally, six global DOF are provided by the wrist to change the hand
orientation. Besides the mechanical structure, the actuation and control systems are in-
tricate too. Thirty-four extrinsic and intrinsic muscles provide strength and precision
respectively, receiving control signals from the central nervous system via three different
nerves, which also send somatosensory feedback generated by 17000 mechanoreceptors [6].

Figure 1.1: Human hand structure. (a) Bones and joint classification. (b) Kinematic
model with 20 local DoF (image from [4]).

Bionic hands try to imitate the structure and the function of the human hand. However,
replicating such a complex system is nearly impossible. The design must take into account
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many factors and usually, a compromise must be found. Important design factors include
the number of DoF, actuation type, applicable force, tactile and force sensing, weight,
size, power, materials, cost, dexterity, compliance, and controllability [4]. D. Rebollo et
al. [7] provided a review of multi-fingered robotic hands between 1983 and 2016, including
hardware specifications. The existing bionic hands are classified as fully actuated and
underactuated. In the former case, the degree of actuation (DoA) is equal to the DoF.
For example, the bionic hand implemented in the DLR system [8] has 19 DoF, each one
driven by a couple of antagonistic motors placed in the forearm of the robot, as depicted
in figure 1.2.a. The main advantage of this solution lies in dexterity. However, this brings
to higher design complexity, cost, larger size and weight, given the higher number of
actuators needed. On the contrary, underactuated bionic hands are characterized by a
DoA smaller than the DoF. For example, Shunk SVH [9] depicted in figure 1.2.b is endowed
with 20 DoF controlled by a set of 9 motors contained inside the hand structure. The
lack of a complete actuation is partially compensated by higher compliance that allows
self-adaptive grasping, granting good grasping performance on a huge variety of objects.
For these reasons, they represent a good trade-off between simplicity and versatility, thus,
they are gaining widespread attention in research. The main issue with underactuation is
that the resulting nonlinear motion characteristics impede easy mathematical modeling
of the device mechanics [10].

Figure 1.2: Bionic hand examples. (a) Fully actuated bionic hand employed in the DLR
system. (b) Underactuated Shunk SVH bionic hand.

The use of bionic hands, in particular underactuated ones, as end-effectors of robotic ma-
nipulators could improve the skills of teleoperated robots, making them able to interact
with unstructured environments like humans, which means manipulating practically any
kind of object or tool and eliminating the need to design and mount specialized end-
effectors for different scenarios. Such application of bionic hands has been investigated in
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several scenarios, employing, for example, the robots depicted in figure 1.3. In particular,
Robo Sally [11] and DRH-HUBO [12] robots were tested for emergency response activities,
while NASA Valkyrie [13] and Robonaut [14] humanoid robots were used for maintenance
of nuclear plants and space applications, respectively. These studies demonstrated that,
although bionic hands have the same basic function as traditional two-fingered grippers,
as the ones used in [15] and [16], however, their complex kinematics resembling the human
one provides a higher grasping versatility.

Figure 1.3: Application examples of bionic hand teleoperation. (a) Robo Sally. (b) NASA
Robonaut. (c) DRH-HUBO. (d) NASA Valkyrie

1.2. State of the art

Motion retargeting Joysticks are the typical controller devices used by human oper-
ators in teleoperation robotics. However, the local DoF a bionic hand is not so intuitive
to control with such traditional approach given the high number of parallel joints. Inno-
vative controllers have been implemented to capture the motion of the human operator’s
fingers and then map it to the bionic hand fingers motion in real-time to obtain a similar
gesture, taking advantage of the kinematic correspondence between the two structures.
Such method is referred to as “human-to-robot motion retargeting” and can make the
control much more intuitive, immersive and de-alienating. A fundamental issue of motion
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retargeting is that the kinematic differences between human and robot structures forbid
an identical reproduction of the human gesture on the robot, in particular, if the bionic
hand is underactuated. Incongruities may affect DoF, actuation strategy and workspace.
Therefore, the real goal of mapping is that the resulting correspondence between the hu-
man hand gesture and the bionic hand motion is intuitively understandable by the user
without any mental effort or long-time learning needed. In other words, the movement
of the bionic hand resulting from teleoperation must be highly semantically correlated to
the human one. The concept of semantic correlation is depicted in figure 1.4.

Figure 1.4: Example of semantic correlation between human hand and bionic hand.

Current mapping strategies propose solutions that can be classified into gesture recog-
nition mapping and hand pose estimation mapping [4]. In the former case, a gesture
recognition algorithm is trained to classify discrete human hand poses that are associ-
ated with predefined robotic hand poses. Although a limited set of commands makes the
system largely controllable and reduces the risk of damaging the robotic hand and the
grasped objects, it is also a great limitation in terms of control smoothness and grasping
versatility. On the contrary, in hand pose estimation mapping, both human and robot
poses are represented in continuous parameter spaces and a continuous function is used to
derive the desired robot parameters according to the measured human ones, thus achiev-
ing high-resolution teleoperation. The main limitation is that inaccurate pose estimation
may lead to abnormal commands, making the teleoperation results unpredictable. How-
ever, thanks to its higher versatility, continuous control is preferable to a discrete one.
The main classes of hand pose estimation mapping methods are joint-to-joint mapping
and point-to-point mapping, although not all methods fit strictly in this classification. In
the former case, the angles related to human hand joints are mapped to robotic joints
angles. As a result, the overall gesture similarity is high, but fingertip positions are not
well replicated. Consequently, this method is suitable for power grasp. In point-to-point
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mapping, human fingertips positions are mapped to robotic fingertips positions. This
method is more complex because it needs intense computations in terms of forward and
inverse kinematics, and calibration between human and robot frames, but it provides the
system with precision grasp skills.

Hand motion capture: sensorized gloves Many technological solutions have been
investigated to capture hand motion in recent years. Mainly they can be classified as
wearable tracking devices and contactless vision-based tracking devices. According to Li
et al. survey [4], the most commonly used hand tracking devices in the teleoperation
context are wearable systems equipped with mechanical sensors, that can be referred to
as mechanical gloves. The main commercially available mechanical gloves are listed by
[17] and split into three main classes: exoskeletal, fabric and striped. One example for
each category is reported in figure 1.5. Exoskeletal gloves consist of a base rigid struc-
ture located in the back of the hand, coupled with some fabric strings to make it adhere,
and some rigid links connected to the fingers, which typically transmit the motion to
rotational sensors placed in the base. This kind of glove is suitable to deliver kinesthetic
(force) feedback through proper embedded actuators. Fabric gloves are pieces of fabric
that fully cover the hand and its fingers, endowed with small mechanical sensors like
IMU, bend sensors and strain sensors. Striped gloves are composed of strips of fabric,
plastic or other materials that do not entirely cover the hand but only the places that
have to be sensed. The same kind of sensors as fabric gloves are typically used in this case.

Figure 1.5: Examples of sensorized mechanical gloves. (a) Exoskeleton: SensGlove DK.
(b) Fabric: CaptoGlove. (c) Striped: Rapael.

Liu and Zhang [18] use a Cyberglove to measure human fingertips cartesian coordinates
with respect to a local reference frame attached to the human hand. Tips positions are
then mapped to the reference frame of a virtual bionic hand considering a proper scaling



1| Introduction 7

factor. Inverse kinematics is applied to obtain the robot motor input. A teleoperation
experiment is conducted to assess the distance between the dynamic trajectories of human
and robot fingertips respectively in terms of mean distance. Colasanto et al. [19] use a
mechanical glove provided with 22 angle sensors to teleoperate a Shunk Anthropomorphic
Hand endowed with 13 independent DoF. The authors merged a traditional joint-to-joint
mapping and a fuzzy logic mapping that identify some poses of the human hand and
associates them with predefined poses of the mechanical hand. The system is tested
through grasping trials performed by different users on different types of objects. Fani
et al. [20] use a fabric glove equipped with five goniometers to control an underactuated
bionic hand endowed with 19 DoF and just one DoA. Glove data are used to extract
one motion feature that represents the level of synergy of the human hand, which is
then mapped to the input of the hand motor. The hand motion retargeting is effectively
integrated with a teleoperation system used to move a Kuka arm which employs the bionic
hand as an end-effector. The overall system is evaluated through a user study dealing
with a drilling task. Success rate and user subjective evaluation are recorded.

Mechanical gloves outperform the vision-based tracking methods in terms of stability
and robustness and do not suffer from occlusion problems. However, some practical
limitations still hinder their application. The one-size-fits-all design, the cumbersome
wearing process, and the adoption of unergonomic structures lead to poor comfort and
affect the intuitiveness and the transparency of the operation. It has been well documented
that the overall measurement performance for these devices is influenced by how well they
fit the user’s hand [21]. Fitting quality also influences user comfort. Indeed, bad fitting
impedes natural movements and makes the user feel a higher effort during the activity.
Moreover, given that each hand is different from the others, a calibration procedure is
always required and, in some cases, it might take a long time and be not precise. Another
typical problem with mechanical gloves is wear-and-waste.

Other types of hand tracking wearable systems are available but less used because of their
specific limitations. Marker gloves are composed of a set of optical markers positioned
in such a way to retrieve joints 3D position using infrared stereo cameras. Such tracking
systems can be very accurate but the hardware setup can be very cumbersome. In [22] for
example, a set of eleven cameras is needed to assure continuous monitoring. Moreover,
ambient light and bright objects may interfere and the field of view around the operator
needs to be always clear. Electromyographic sensors have been studied too, but the
captured data are poor and cannot be used alone to achieve continuous and precise control
of the fingers motion. In [23] for example, just a limited set of predefined human gestures
could be recognized by EMG data and mapped to predefined poses of a bionic hand.
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Hand motion capture: vision-based methods Vision-based tracking devices pro-
pose an interesting alternative to wearable devices [24]. In this case, the hardware is
reduced to the minimum, typically consisting of just one depth camera which obtains im-
ages of the bare human hand. No wearable devices are usually needed, thus overcoming
the problems related to size fitting, intrusiveness, discomfort and wear-and-waste typical
of mechanical gloves and allowing also more natural movements. Moreover, the recovery
of the global DoF of the human hand has been proven to be feasible, while in the wearable
tracking approach, gloves can only capture the local DoF, and recovering the global DoF
requires other expensive devices.

Figure 1.6: Examples of vision tracking devices: (a) Leap Motion Controller, (b) Kinect,
(c) Realsense.

In most cases, the depth images are processed by an advanced algorithm that must seg-
ment the hand and recognize the 3D hand joints locations with respect to a fixed reference
frame. The sensing principle is usually based on time of flight (ToF), structured light, or
stereo vision. ToF cameras sense depth by emitting a modulated light signal and mea-
suring the time delay of the echo wavefront. In structured light technology, a pattern of
infrared dots is projected onto the object to be tracked and is captured by an infrared
camera, then stereo triangulation is used to obtain the point position of the projections.
Stereo vision systems generate two images from slightly different perspectives. The dis-
parity map between the images is used to infer depth information. The depth of the
corresponding pixel location is inversely proportional to the disparity value. According
to Li survey[4], the commercially available vision tracking devices that are mostly used
in teleoperation of bionic hands are the ones depicted in figure 1.6, that are Leap Motion
Controller (Ultraleap, United States), Kinect (Microsoft, United States) and RealSense
(Intel, United States). Leap Motion (LMC) is gaining traction in research due to its
high accuracy (0.7mm on average) in comparison to other devices that are not specifically
designed for hand tracking but rather for more generic human motion capture.
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Scarcia et al. [25] utilized an LMC to measure human hand fingertips positions with
respect to a local reference frame attached to the hand and map them with proper scaling
to the fingertips positions of a UB-Hand IV bionic hand endowed with 20 local DoF
and 15 DoA. Grasping experiments were conducted to assess the performance and the
intuitiveness of the control, quantifying the success rate. Bimbo et al. [26] employed
an LMC in order to teleoperate a Pisa/IIT SoftHand. In this case, LMC was also used
to control the global DoF of the hand by teleoperating a UR5 robotic arm. A wearable
haptic armband was implemented to deliver vibrotactile feedback regarding the torque
experienced by the arm. A pick and place test was designed to assess the performance in
terms of success rate and completion time. Handa et al. [27] implemented a teleoperation
system to control a Wonik Allegro bionic hand connected to a Kuka manipulator. The
user’s hand motion was tracked by a set of four synchronized RealSense cameras. The
mapping method aimed at replicating the relative distances between the fingertips. Pick
and place tests were conducted to assess the performance, measuring success rate and
completion time.

Although vision-based methods overcome typical issues of wearable devices, there are still
some bottlenecks that prevent them to be systematically used in real applications [24].
Environmental factors may drastically affect vision-based tracking performance, such as
the presence of bright objects, cluttered background, presence of objects with shapes or
colors similar to the fingers ones, and camera occlusion. Even in an ideal environment,
self-similarities between the fingers and self-occlusion can bring great inaccuracies. More-
over, the user often has a limited workspace. Wrong estimation of human hand pose
by vision tracking algorithms may lead to a challenge in ensuring controllability during
teleoperation.

1.3. Motivation and objectives

Teleoperation of underactuated bionic hands has proven to be feasible using both wear-
able tracking devices and vision-based tracking devices. However, usability and accuracy
limitations of the two tracking methods respectively, still restrict the application of such
teleoperation systems. Moreover, the underactuation nature of bionic hands poses chal-
lenges in terms of mathematical modeling, due to the resulting non-linear motion, and
mapping, due to an increased kinematic discrepancy, which must be addressed. There-
fore, further research is needed to improve the result. On the human hand tracking side,
quantitative comparison between different hand tracking methods can be useful as a ba-
sis for selection in research. Nevertheless, comparative studies found in the literature
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mainly address the evaluation of the accuracy of the motion capture system alone, with
respect to a ground truth tracking method [28] [29] [30], without considering the result-
ing performance of the teleoperation systems based on such methods. Moreover, most of
the works related to the development of bionic hand teleoperation systems are oriented
to self-validation, which ultimately prevents a meaningful comparison between different
works[4]. The evaluation tests to be performed for self-validation and the metrics to be
measured are widely agreed upon. Generally, grasping tasks are performed by different
users in several conditions to demonstrate the usability of the system. Different kinds of
objects, in terms of size and shape, are grasped in order to test if the user interface can
exploit the versatility of the bionic hand. Success rate or completion time are usually
recorded as performance metrics. However, there are no standards to define the grasping
task, thus the comparison between the metrics obtained in different works has little sig-
nificance. Moreover, such tests address only usability and not the overall accuracy of the
teleoperation.

Given such premises, the first main aim of this work is to implement two teleoperation
systems, designed to intuitively control the same underactuated bionic hand in a con-
tinuous pose space, but based on two different hand motion tracking devices, belonging
to the two most competitive categories employed in the teleoperation field, namely the
wearable mechanical devices and the contactless vision-based devices. The usability of the
implemented systems is demonstrated and quantified through a teleoperation experiment
where different users were asked to accomplish some grasping tasks employing the devel-
oped systems. The second main objective is to compare the two implemented systems
in terms of accuracy, usability and user experience, within the same experimental setup,
in order to obtain a meaningful comparison of the two tracking devices when applied to
teleoperation. The experimental results can be a useful basis for selection. Furthermore,
the implemented evaluation method can be used as a reference to meaningfully compare
bionic hand teleoperation systems based on different hand-tracking technologies. Lastly,
the construction of the motion model of the utilized bionic hand, employed by the afore-
mentioned teleoperation control systems, can be seen as a third subsidiary contribution
of the work. Indeed, such model overcomes the accuracy limitations of previous linear
approaches to model the same bionic hand [31], by considering the nonlinear features of
the fingers mechanics.

To achieve such goals, four main activities are performed. First of all, the inverse kine-
matic model of the bionic hand is derived from a calibration procedure performed with
an external ground truth tracking system. Then, two different hand tracking systems
are implemented using an exoskeleton glove and a Leap Motion Controller, respectively.
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Consequently, the two teleoperation systems are developed by establishing a suitable and
simple mapping strategy between the capture of human data and the desired motion of
the bionic hand and combining the tracking stages with an actuation control stage that is
based on the bionic hand inverse kinematic model previously derived. Two teleoperation
experiments are performed using a ground truth tracking system to to evaluate and com-
pare the accuracy of the developed systems in static and dynamic scenarios, respectively.
Lastly, a user study on practical grasp tasks is conducted to demonstrate the usability
of the frameworks and to further compare their performance in terms of success rate and
subjective evaluation of the workload.
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2.1. Bionic hand features and modeling

This section introduces the bionic hand utilized in this work. The first part describes the
main features characterizing the bionic hand. The second part presents the method used
to build the inverse kinematic models of its fingers.

2.1.1. Bionic hand features overview

U-Hand-Pi (Hiwonder Technology Co., China) is an underactuated anthropomorphic
robotic hand composed of a rigid case and five articulated fingers, as shown in figure
2.1. The rigid case can be associated to the metacarpal part of the human hand and
serves as a container for the five small servo motors that move the fingers. In turn, it is
connected to another servomotor that, when attached to a rigid base, can be used to per-
form a movement corresponding to the human wrist rotation. However, this functionality
is never used within this work because the focus is on the local DoF mapping only (fingers
motion). Each finger is composed of three rigid links and three hinge joints including one
connected to the rigid case. The joints can be associated to the ones of the human hand
described in figure 1.1.a. To simplify notation, in all the fingers, including the thumb, the
joints are labeled as the ones belonging to longer fingers: metacarpophalangeal (MCP),
proximal interphalangeal (PIP) and distal interphalangeal (DIP). Each joint has one DoF,
leading to 15 local DoF in the entire hand. However, the underactuation paradigm im-
poses only one degree of actuation for each finger, with the servomotor directly driving
only the MCP joint. The flexion movement of the first link is then passively transmitted
to the other two links thanks to two bi-articular metallic bars. The resulting structure, as
a first approximation, can be schematized as a composition of two rigid link quadrangles
having only one degree of freedom, allowing the finger to do only two kinds of move-
ment: bending on itself or opening. These two antithetical movements will be referred
to as “flexion” and “extension” respectively. It should be noted that the underactuation
paradigm determines some kinematic differences with respect to the human finger: the
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robotic finger cannot decompose the flexion/extension movement into three independent
sub-movements (one for each joint), nor it can perform abduction/adduction around the
MCP joint.

Figure 2.1: Hiwonder U-Hand Pi with index finger details

The motors are Hiwonder LFD-01 servos (Hiwonder Technology Co., China) with a built-
in anti-blocking mechanism. Each motor is controlled by a Pulse Width Modulation signal,
which is a periodic square wave with a fixed period and a variable width of the switch-on
sub-period (pulse width). The higher the pulse width, the higher the current average
value sent to the motor, which in turn encodes the rotation of the servo motor axis. The
pulse width of the signal delivered to the LFD-01 ranges from 500 µs (PWmin) to 2500
µs (PWmax), corresponding to 180° and 0° rotations of the motor, respectively. However,
given the structure of the hand, the motors cannot fulfill their entire rotation range and
the true range is unknown. Motors input is driven by a Raspberry Pi unit (Raspberry
Pi Ltd., England) endowed with both a WI-FI module and an Ethernet module, which
can be used to access the Raspberry desktop from a remote computer through a remote
access software. Raspberry can run a desktop user interface application that can be used
to manually set the input value of each motor in real-time. Motor input values can be also
set from a remote computer by sending a specific message to Raspberry using TCP/IP
protocol, without passing from the desktop application.
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2.1.2. Inverse kinematics modeling

Problem statement The inverse kinematics of a bionic hand finger is the mathematical
relationship between the desired finger pose and the input value of the corresponding
motor, in terms of PWM signal width (PW ), that should bring to a resulting finger pose
equal to the desired one. In order to transfer the human fingers motion to the robotic
fingers, in the context of teleoperation, the inverse kinematics of each finger had to be
modeled. Prior to the models synthesis, one independent kinematic variable was identified
for each model to exhaustively represent the finger pose. Given that each finger has only
one DoF, one variable for each finger was enough. In particular, as shown by the example
in figure 2.2 for the middle finger, the angle described by a virtual link that goes from
the MCP joint to the fingertip (TIP) was selected as the independent variable, because
it is representative of the whole finger pose. Such angle was referred to as θ and called
"bending angle", given that as it increases, the finger bends on itself. The zero-reference
of the bending angle corresponds to the pose of maximum extension in order to have a
monotonic relationship with the motor input.

Figure 2.2: Definition of bionic hand finger bending angle, θ, for the middle finger with
respect to the related maximum extension pose

In a previous work [31], a direct linear function was used to define the inverse kinematics of
the finger, in terms of relationship between the PWM signal width and the aforementioned
bending angle:

PW = PWmax −
θ

θmax

· (PWmax − PWmin) (2.1)
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where θmax is the maximum bending angle reachable by the finger. However, such method
is insufficiently accurate because it overlooks some critical issues: (1) motor saturation
prevents covering the whole PW range, introducing nonlinearity; (2) non-rigid phenomena
caused by the non-idealities of the joints, such as compliance, friction and backlash, change
the sensitivity of the finger to the motor input, causing further nonlinearity; (3) the
nonlinear features depend on whether the motion is flexion or extension, thus introducing
hysteresis. In order to synthesize the models, a data-driven approach was preferred to
capture such nonlinearity. Following this approach, an accurate calibration procedure was
carried out for each finger separately, consisting of acquiring kinematic data related to
finger motion and fitting a mathematical model on the obtained data, capable of capturing
the nonlinear behavior of the finger.

Calibration setup The complete experimental setup for the acquisition of calibration
data is depicted in figure 2.3. The bionic hand was fixed on a table and an optical
measurement system was set up to acquire the bending angles of its fingers, namely an
Optotrak Certus System (Norhtern Digital Inc, United States). Such measuring system is
composed of a position sensor, a set of active markers, a markers strober, a control unit,
and a desktop application (NDI First Principle) that can be executed on Windows.

Figure 2.3: View from above of the experimental setup used for the inverse kinematics
calibration

The position sensor consists of a set of three infrared stereoscopic cameras piled in a
columnar rigid case 1.5 m long (figure 2.5.a). It can measure the 3D coordinates of
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active markers with 0.1 mm accuracy and 0.01 mm resolution. All the markers must be
within the field of view, depicted in figure 2.4, and clearly visible from each camera. The
measured coordinates are referred to a default global coordinate system, shown in figure
2.4, which is determined at the factory and has its origin at the center of the middle
camera. During the calibration experiment, the position sensor was fixed at about 2m
from the bionic hand. Relative motion between the hand and the sensor was not present.

Figure 2.4: Field of view and reference system of the NDI Optotrak Certus position sensor

Markers consist of a near-infrared light-emitting diode, 11 mm large, and are connected to
the strober through flexible cables. The strober activates markers sequentially according
to the timing and power settings specified inside the desktop application. When the
marker is activated, its position is measured by the sensor. Activation timing is determined
by the frame frequency, which sets the number of recordings for each marker in 1 s, and
by the marker frequency, which sets the recording period for each marker. Each finger was
calibrated separately, thus markers were moved each time from one finger to the other to
minimize the number of markers placed on the hand at the same time. Even though only
TIP and MCP positions are required to compute the bending angle, also DIP and PIP
positions were acquired to obtain a complete set of motion data that may be useful for
future works. At first, one optical marker was placed on the side of each joint, as shown
in figure 2.5.c for the index finger. However, due to mechanical occlusion of the hand
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structure, the position of the MCP joints was difficult to be directly measured through
markers. For such reason, MCP joint marker was removed (figure 2.5.b shows the markers
positioning on the thumb after the MCP marker removal) and MCP joint position was
measured using a pointing probe endowed with two aligned markers, labeled as A and
B. For example, figure 2.5.d. shows the pointing probe while measuring the MCP joint
position of the middle finger.

Figure 2.5: Images from the experimental setup for inverse kinematics calibration. (a)
Optical position sensor. (b) Position of markers on the thumb (MCP joint excluded).
(c) Position of markers on the index (MCP joint included) and definition of the bending
vector b0 corresponding to the maximum extension pose. (d) Probe pointing to the MCP
joint of the middle finger.

The position of the two probe markers, namely PA and PB respectively, are measured
while the probe points to the MCP joint of the finger. Then, by knowing the distance dA

from A to the probe tip, the joint position PMCP can be calculated as follows:

PMCP = PA +
PB − PA

|PB − PA|
· dA (2.2)

By knowing the MCP joint position, PMCP , and the fingertip position measured by the
corresponding marker, PTIP , the bending vector b (figure 2.5.d) from the MCP joint to
the fingertip can be computed.
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b = PTIP − PMCP (2.3)

Then, given the bending vector corresponding to the maximum extension pose of the
finger, b0, that is measured using the markers as well, as shown in figure 2.5.c for the
index, the bending angle θ can be expressed as:

θ = acos

(
b · b0
|b| |b0|

)
(2.4)

As depicted in figure 2.3, the control unit of the measuring system was an essential part of
the setup, as it drives the strober, receives the raw position data from the sensor, processes
them, and sends them to the host computer where they are handled by the software
application. The host computer was used to manually control the bionic hand finger
motor values during the calibration through a WI-FI connection using the Raspberry
desktop application.

Data acquisition For each finger, four complete calibration cycles were recorded. In
each cycle, 41 values equally distributed along the motor input range were delivered se-
quentially, first in ascending order (extension), then in descending order (flexion). For
each value, once the finger reached a stationary pose, the coordinates of the markers were
recorded. Given that the bionic hand did not move during the data acquisition, the posi-
tions of the MCP joints were measured only once at the beginning of the calibration. The
resulting bending angle samples for each finger, associated with the corresponding motor
input value, are shown in figure 2.6. Thumb is the only finger in which the PW signal
has a positive correlation with bending angle (increasing PW causes angle increasing), in
all the other cases the correlation is negative (increasing PW causes angle decreasing).
Each finger has two saturation regions that start around 1000 and 2000 respectively, in
line with the fact that the range of the servo motors cannot be fulfilled due to the hand
structure. The extension characteristic appears to be linear, at least in the central region.
For all the fingers a significant non-linearity associated with hysteresis arises in the flexion
direction. For the thumb, this phenomenon regards all the operative region, while for the
other fingers it affects only the poses characterized by little flexion.
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Figure 2.6: Calibration cycles acquired for inverse kinematics modeling
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Model synthesis Neural networks were utilized to extract an inverse kinematic model
for each finger from the acquired calibration cycles, in the form of a couple of functions
fext and fflex which model the extension and flexion behaviors respectively. In particular,
they give the motor input value (PW ) as a function of the desired bending angle θ:

{
PW = fext(θ) , during extension

PW = fflex(θ) , during flexion
(2.5)

The generic structure of a neural network able to learn an arbitrary function expression
from training data is depicted in figure 2.7 [32].

Figure 2.7: General neural network structure for functions approximation

It is composed by one hidden layer comprising n neurons, one input neuron and one output
neuron. The independent variable of the function (θ in our case) is given as input to all
the neurons of the hidden layer. Each kth (k=1,...,n) hidden neuron weights the input for
a weight ck and subtracts a threshold Tk to it, obtaining the neuron potential Pk. Then
it applies the hyperbolic tangent function to obtain the output uk.

Pk = ckθ − Tk (2.6)
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uk = tanh (Pk) =
ePk − e−Pk

ePk + e−Pk
(2.7)

The results from all the hidden neurons are weighted for a value wk and summed by the
output neuron. The result is the output of the network (PWM value in our case).

PWM =
n∑

k=1

wkuk (2.8)

The number of hidden neurons is an important hyper-parameter to be set. Indeed, by
increasing it, the fitting on the training data will be better, but if it is too large, over-
fitting may arise from the high complexity of the resulting function which loses generality.
For each curve to be found, 7 networks were trained, each one having a different number
of hidden neurons, ranging from 2 to 8. This range was chosen after some preliminary
tests. Saturation samples were excluded from the data set. The network which achieved
the best performance in terms of mean squared error on the validation set was selected.
The domain of the resulting functions was defined from zero to the average angle among
the recordings corresponding to the minimum motor input (maximum bending angle).

2.2. Wearable glove - based motion tracking

In this section, the implemented wearable glove-based tracking system is presented. Firstly,
the main features of the sensorized tracking glove and its readout signals are described.
Then, the real-time processing applied to the raw motion readout of the glove is explained
and the resulting human motion features are defined. Lastly, the detailed implementation
of a suitable Kalman filter to smooth the tracking stage output is shown.

2.2.1. Glove structure and functioning

A Hiwonder Glove (figure 2.8, Hiwonder Technology Co., China) was employed to design
the teleoperation system based on wearable tracking technology. In particular, such glove
can be classified as an exoskeleton glove. It is composed of a rigid structure that must be
placed on the user’s hand back and fastened around by two Velcro laces. A printed circuit
board is attached to the rigid structure. The most significant board components are
an ATmega328P microcontroller, a Bluetooth module, five potentiometers, a gyroscope
acceleration sensor, an ON/OFF switch, a battery unit and a USB port which can be
also used to power the board. Each potentiometer is connected to one finger through a
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kinematic chain that must be fastened around the first phalanx of the finger going from the
MCP joint to the PIP joint by a Velcro lace. This mechanism is able to convert the flexion
angle φ of the first phalanx of the finger, defined in figure 2.9, into a proportional rotation
and voltage readout V of the sensor. The range of φ allowed by the chain structure is
around 40°.

Figure 2.8: Top view of Hiwonder Glove

Figure 2.9: Definition of flexion angle: minimum (a) and maximum (b) flexion poses

The data acquisition firmware is developed in Arduino environment and it is made ac-
cessible and customizable by the producer. Basically, it implements two main routines.
The first is a calibration phase that runs whenever the glove is switched on. During this
phase, the user has to flex and extend all the fingers one time covering the whole range of
motion allowed by the kinematic chain. For each finger, the CPU records the maximum
and minimum voltages Vmax and Vmin reached by the potentiometer, which corresponds
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to the minimum and maximum finger flexion angles φmin and φmax reached by the finger
respectively and depicted in figure 2.9. The second routine is a measurement loop that
starts automatically after the calibration and continuously samples the output of the sen-
sors. The loop repetition frequency is around 250Hz. For each potentiometer, the voltage
V is read and scaled into the range 500-2500 considering the previously calibrated voltage
range:

S =
(V − Vmin)

Vmax − Vmin

· 2000 + 500 (2.9)

By considering φmin equal to zero, the resulting signal readout S has the following linear
relationship with respect to the flexion angle φ:

S = (1− φ

φmax

) · 2000 + 500 (2.10)

2.2.2. Real-time motion data processing

The complete framework of the wearable glove-based motion tracking system is shown in
figure 2.10. The glove sends its readout to a computer that runs Ubuntu 16.04 and Robot
Operating system (ROS [33]) Kinetic via USB connection. The communication between
the glove and the ROS network was made possible by adding a ROS library and a ROS
publisher inside the data acquisition firmware of the glove. Rosserial interface package is
employed to make the ROS network handle the serial communication with the external
glove device.

Figure 2.10: Components of the wearable glove - based motion tracking system

The role of the ROS network is to process the raw glove readout in order to extract the
human motion features to be mapped into the five robot fingers bending angles when
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the tracking system is applied to remotely control the bionic hand. In particular, for
each finger, the feature extraction node of the ROS network samples the signal readout
S at 40Hz and computes the so-called "flexion level", φ̂. The sampling frequency was
selected considering a quality margin from the maximum signal frequency that U-Hand
Pi bionic hand can handle which is 50 Hz. The flexion level is a dimensionless quantity,
ranging from zero to one, that concisely represents the human finger motion and is easily
and intuitively mappable to the bionic hand finger motion, as described in section 2.4.
Considering the relationship represented by equation 2.10 between the finger flexion angle
φ and the potentiometer readout S, the flexion level is calculated as follows:

φ̂ = 1− S − 500

2000
=

φ

φmax

(2.11)

As a final step of the processing stage, a real-time linear Kalman filter [34] is applied to
smooth each flexion level, thus obtaining the filtered flexion level, φ̂∗. The implementation
details are discussed in the next section.

2.2.3. Kalman filter implementation

In order to apply Kalman filtering to each flexion level, a state equation-based represen-
tation of the finger motion was conceived. In line with a previous work [31], the linearized
motion model of the variable to be filtered, namely the flexion level, was adopted:

φ̂k = φ̂k−1 + TS
˙̂φk−1 +

T 2
S

2
¨̂φk−1

˙̂φk = ˙̂φk−1 + Ts
¨̂φk−1

(2.12)

Where φ̂k and φ̂k−1 are the flexion level at time k and time k − 1, respectively, ˙̂φk and
˙̂φk−1 are the first degree time derivative of the flexion level at time k and time k − 1,
respectively, ¨̂φk−1 is the second degree time derivative of the flexion level at time k − 1,
Ts is the sampling period. By approximating ¨̂φ as a white gaussian noise (WGN) w with
zero mean and σw variance, and considering φ̂ and ˙̂φ as state variables, the following state
stochastic equation can be derived:

xk = Φxk−1 + Γwk−1 (2.13)

where:



26 2| Materials and methods

x =

[
φ̂
˙̂φ

]
=

[
x1

x2

]
, Φ =

[
1 Ts

0 1

]
, Γ =

[
T 2
s

2

Ts

]
(2.14)

Ideally, the flexion level computed by the feature extraction node, should be equal to
the flexion level state variable, x1. Nevertheless, the measurement is affected by random
fluctuations that can be modeled by an additive WGN v with zero mean and σv variance
that roughens the signal. Hence, the measurement stochastic equation can be defined as
follows:

yk = Hxk + vk (2.15)

where yk is the flexion level sample measured by the system at time k and:

H =
[
1 0

]
(2.16)

Equations 2.13 and 2.15 are used by the Kalman filter algorithm to smooth the flexion
level signal. The algorithm acts recursively on each measurement sample and can be
divided into a prediction phase and an update phase. During the prediction step, the
state vector value at time k, x̂k|k−1, along with its covariance matrix, Pk|k−1, are predicted
according their current estimation values, x̂k−1|k−1 and Pk−1|k−1 respectively, and to the
state equation parameters:

x̂k|k−1 = Φx̂k−1|k−1 (2.17)

Pk|k−1 = ΦPk−1|k−1Φ
T + σw (2.18)

Consequently, the flexion level measurement at time k is predicted according to the mea-
surement equation:

ŷk = Hx̂k|k−1 (2.19)

In the update step, the actual measured flexion level yk, sampled at time k, is compared to
the predicted one, and the difference is added to the state vector prediction, weighted for
the Kalman gain, Kk, defined in equation 2.20. Hence, state vector and state covariance
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matrix estimates are updated to x̂k|k and Pk|k, respectively:

Kk = Pk|k−1H
T
(
HPk|k−1H

T + σv

)−1 (2.20)

x̂k|k = x̂k|k−1 +Kk (yk − ŷk) (2.21)

Pk|k = (I −KkH)Pk|k−1 (2.22)

The updated estimate of the flexion level state variable, x̂k|k, stands for the filtered flexion
level, φ̂∗, and is published as the final output of the tracking system.

2.3. Vision-based motion tracking

In this section, the implemented contactless vision-based tracking system is presented.
Firstly, the main features of the utilized camera and of the related company software for
real-time image processing are described. Then, the further processing stage that was
specifically developed for this application to extract the driving human motion features
is analyzed.

2.3.1. Leap Motion structure and functioning

A Leap Motion Controller (LMC, Ultraleap, California, United States) was chosen as
representative of vision-based hand tracking devices. Figure 2.11 depicts the size and
the internal components of such device. It is composed of a rigid case 80 x 30 x 11.3
mm large and 32g weighing endowed with an anti-slip pad on the bottom surface. On
the upper surface, there are three near-infrared (IR) light-emitting diodes (LEDs) that
illuminate the human hand and two stereo IR cameras that measure the reflected light
and capture two grayscale images. The field of view of the cameras extends for 140° x
120° and from 10cm to 60cm far from the device, which must be fixed on a plane surface
facing the human hand palm. The couples of images are acquired at 120Hz and sent via
USB connection to a computer that must run the Leap Motion Service (LMS), which is
a non-customizable company software for image processing. After removing background
objects and environmental light, the LMS reconstructs a 3D representation of the hand
surface by applying the principles of stereo vision. Depth information is obtained by
measuring the disparity between the two images, caused by the distance between the two
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slightly different points of view. Disparity values are inversely proportional to the depth
of the corresponding pixel location.

Figure 2.11: Size and internal components of the Leap Motion Controller device

Figure 2.12: Leap Motion Controller readout. (a) Employed human hand model. (b)
Coordinates reference frames attached to the camera device, {LMC}, and to the hand,
{HH}, respectively.

Next, a tracking layer extracts the 3D model of the hand depicted in figure 2.12.a, which
specifies the 3D coordinates of fingers joints and tips with respect to a reference frame
attached to the LMC device, labeled as {LMC} and shown in figure 2.12.b. The algorithm
can infer with limited accuracy the positions of occluded parts of the hand. In such a hand
model, the joints and the tip belonging to the same finger are connected by rigid links
with a fixed length equal to the estimated length of the corresponding bone, as shown in
figure 2.12.a. The MCP joints of the index, middle, ring and pinkie, together with the
CMC joints of thumb and pinkie do not move with respect to each other and form a rigid
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hexagonal structure that reproduces the hand profile. Furthermore, the model defines a
point called palm center, which is rigidly connected to the hand hexagonal profile and
is used as the origin of a local reference frame attached to the hand, labelled as {HH}.
As shown in figure 2.12.b, such frame has the x-axis directed towards the MCP joint of
the middle finger, the y axis lying on the palm plane and directed towards the thumb,
the z-axis obtained with the right-hand rule. The LMS directly provides the unit vectors
of {HH} axes with respect to {LMC} frame, which can be used, together with the palm
center, as transformation parameters to pass from one frame to the other.

2.3.2. Real-time motion data processing

The complete framework of the implemented vision-based motion tracking system is shown
in figure 2.13. The LMC sends via USB connection the two images to a computer that
runs Ubuntu 16.04, the LMS and ROS Kinetic.

Figure 2.13: Hardware components and software nodes of the vision motion tracking
system

The LMS handles the serial communication and computes the raw motion data from the
received pair of images as described in section 2.3.1. The readout, consisting of fingers
joints and tips coordinates with respect to the {LMC} frame, is published into the ROS
network by a Leap Motion – ROS interface driver which is implemented by an open-source
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package available on GitHub. Besides the publishing, such package implements a basic
visualization tool to observe the human hand model evolution in real-time using RViz.
The main role of the ROS network is to process the LMS readout in order to extract the
human motion features to be mapped into the five robot fingers bending angles when the
vision-based tracking system is applied to remotely control the bionic hand.

Coordinate transformation Given that the goal of this work focuses on the remote
control of the bionic hand local DoF only, a prior step to extract the motion features is
to refer the fingers joints and tips positions to the local reference frame {HH} in order to
single out the motion due to the local DoF of the human hand. Hence, the coordinate
transformation node of the ROS network samples the LMS readout at 40Hz. The sampling
frequency was selected considering a quality margin from the maximum signal frequency
that U-Hand Pi bionic hand can handle, that is 50 Hz. Then, such node transforms joints
and tips coordinates from {LMC} to {HH}, considering the geometric elements depicted
in figure 2.14.

Figure 2.14: Vision-based tracking method: geometric elements used to transform fingers
joints and tips coordinates.

The position of the the local frame origin with respect to the LMC frame, lmcPpalm, and
the column unit vectors of the local frame axes with respect to the LMC frame, x̂HH ,
ŷHH and ẑHH are used to define the rotation matrix hh

lmcR and the translation vector hh
lmcQ

that describe {LMC} with respect to {HH}:

hh
lmcR =

[
x̂HH ŷHH ẑHH

]T
(2.23)
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hh
lmcQ = −lmc

hh RT · lmcPpalm (2.24)

The resulting transformation terms are applied to each joint position referred to {LMC},
lmcPjoint, in order to carry out the coordinate transformation, obtaining the joint position
referred to {HH}, hhPjoint :

hhPjoint =
hh
lmcR · lmcPjoint +

hh
lmcQ (2.25)

Definition of human finger bending angle The transformed coordinates of joints
and fingertips are used by the feature extraction node to compute the human hand motion
features to be mapped to the bionic hand ones in the context of remote control. The
completeness of the data provided by the LMC device can be exploited to extract motion
features capable of increasing the similarity between the human hand pose and the bionic
hand pose, in comparison to the glove-based system, which instead refers to a poorer
human hand model that only considers the first phalanxes of the fingers. Of course, the
underactuation of the bionic hand limits the pose similarity, regardless of the completeness
of motion tracking data, because of the higher DoF of the human finger compared to the
bionic one. In order to exploit the richness of tracking data, taking into account the
underactuation of the bionic hand and making a simple mapping possible, one feature
for each finger, similar to the one used in section 2.1.2 to describe the robotic finger
movement, is extracted, namely the finger bending angle. The definition of such angle in
the case of the human hand is slightly different compared to the one that suits the bionic
hand, considering the kinematic discrepancies. In particular, given that the robotic finger
MCP joint has only one DOF, which is dedicated to flexion, the robotic bending angle,
defined as the angle described by the MCP-to-TIP vector with respect to a maximum
extension pose, depends only on the MCP joint flexion motion. In humans instead, the
MCP joint has two DoF, one dedicated to flexion and one to abduction. Therefore,
defining the bending angle as described above would make it prone to be influenced also
by MCP joint abduction movements. In other words, robot MCP joint flexion would be
sensitive to human MCP abduction, thus causing a counter-intuitive control. To reduce
the sensitivity to abduction, in the human case the bending angle β is described by the
projection of the MCP-to-TIP vector on the plane where fingertip, PIP joint and MCP
joint of the corresponding finger lie when MCP joint abduction is null. Such plane is
labeled as a plane of flexion and is fixed with respect to the hand frame. β is defined as
the angle between the aforementioned projection vector and another vector belonging to
the plane of flexion, which corresponds to the minimum bending pose and the minimum
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bending angle βmin. The geometric representation of such definition is shown in figure
2.15.

Figure 2.15: Vision-based tracking method: geometric definition of the human bending
angle. The example depicted in the image regards the index finger.

Calibration of the tracking system In order to measure such bending angle, a cal-
ibration phase must be performed when the tracking system starts, to obtain for each
finger, separately, the plane of flexion, the minimum bending pose and the maximum
bending angle. The implemented calibration routine is divided into two phases, both
accomplished by the feature extraction node. In the first phase, the user has to put each
finger in the desired minimum bending pose, represented in figure 2.16.a, then enter "m"
in the computer terminal through the keyboard. A user interface node handles such ex-
ternal interaction and makes the feature extraction node read one data frame from the
coordinate transformation node and carry out the first calibration step on the measured
data. For each finger, a specific reference frame {ff} is defined. As shown in figure 2.16.a,
such reference system has the origin in the measured MCP joint position, the x-axis on
the direction of the measured MCP-to-TIP vector, the z-axis perpendicular to the plane
defined by MCP, PIP and TIP and directed towards the thumb direction. The y axis
follows the right-hand rule. The xy plane of such frame serves as the finger flexion plane,
while the direction of the x-axis unit vector is considered as the direction of the minimum
bending pose. Calling hhPtip, hhPpip and hhPmcp the position vectors of fingertip, PIP
joint and MCP joint according to the hand frame {HH}, respectively, the unit vector of
{ff} axes, x̂ff , ŷff and ẑff , can be computed as follows:
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x̂ff =
hhPtip − hhPmcp

∥hhPtip − hhPmcp∥

ẑff =

(
hhPpip − hhPmcp

)
× x̂ff

∥(hhPpip − hhPmcp)× x̂ff∥
ŷff = ẑff × x̂ff

(2.26)

The feature extraction node saves the finger frame parameters in form of rotation matrix
ff
hhR and translation vector ff

hhQ that describe the hand frame according to the finger
frame:

ff
hhR = [x̂ff ŷff ẑff ]

T (2.27)

ff
hhQ = −ff

hhR · hhPmcp (2.28)

In the second phase of the calibration, the user has to put each finger in the desired
maximum bending pose, depicted in figure 2.16.b, then enter "m" in the computer terminal
through the keyboard. The user interface node handles the interaction and make the
feature extraction node read one data frame from the coordinate transformation node
and carry out the second calibration step on the measured data. In this subroutine the
maximum bending angle of each finger is defined. The measured fingertip coordinates
are transformed from {HH} to {ff} by applying the rotation matrix and the translation
vector previously computed in calibration phase one. Figure 2.16.b reports the main
geometric elements involved in the computation.

ffPtip =
ff
hhR · hhPtip +

ff
hhQ (2.29)

Then, the maximum bending angle βmax is computed as the angle described by the vector
going from the origin of {ff} (the MCP joint) to the projection of the fingertip on the
plane of flexion. Considering the x and y components of ffPtip, namely ffPtip,x and ffPtip,y

respectively, the four-quadrant inverse tangent is applied to compute βmax:

βmax = atan

(
ffPtip,y

ffPtip,x

)
+

π

2
sign

(
ffPtip,y

) (
1− ffPtip,x

)
(2.30)
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Figure 2.16: Vision-based tracking method: geometric elements involved in the system
calibration. (a) First phase: computation of the finger frame {ff} in the minimum
bending pose. (b) Second phase: computation of the maximum bending angle in the
maximum bending pose.

Feature extraction After the calibration, the tracking system starts running automat-
ically. The feature extraction node reads the data coming from the coordinate transfor-
mation node and processes the fingertip coordinates of each finger as done in the second
calibration phase and described by equations 2.29 and 2.30. The resulting bending angle β
is cut if it is over the maximum angle or under zero. Given that the human bending angle
range is generally different from the robotic one, β is then normalized for its own range
to obtain a dimensionless variable called "bending level", β̂, that ranges from zero to one,
concisely represents the human finger motion and is easily and intuitively mappable to
the bionic hand finger motion, as described in section 2.4. Considering βmin equal to zero,
the bending angle range can be defined as the maximum bending angle βmax, shown in
figure 2.15. Thus, the bending level can be obtained as follows:

β̂ =
β

βmax

(2.31)

Additionally, a real-time linear Kalman filter is utilized to smooth the bending level value
of each finger, thus improving robustness and steadiness during the teleoperation control
of the bionic hand. The same method utilized for the glove-based tracking system was
implemented, as described in section 2.2.3. The result from the filtering, β̂∗ is published
as the final output of the tracking system.
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2.4. Teleoperation control frameworks

In this section, two distinct bionic hand teleoperation systems with the same basic frame-
work, shown in figure 2.17, are constructed to remotely control the bionic hand analyzed
in section 2.1. A motion tracking stage is used to measure the human hand pose in real-
time, which, in turn, is mapped to the desired bionic hand pose. Then, an actuation
controller stage drives the bionic hand motors to obtain a resulting bionic hand pose as
similar as possible to the desired one. It should be noted that just motion mapping is
implemented, while force control is not investigated because it is outside the scope of this
study. Both the mapping and the actuation controller stages are the same for both the
teleoperation systems, while the distinctive stage is the motion tracking one. In particular,
the two motion tracking methods previously described in sections 2.2 and 2.3, namely the
wearable glove-based and the vision-based tracking methods, are respectively employed.
In this section, first, the implementation of the actuation control stage that drives the
bionic hand motors, independently from the utilized hand tracking device, is explained;
then, the method applied to map the tracked human hand motion to the desired bionic
hand motion is presented.

Figure 2.17: Schematic framework of the two implemented teleoperation systems.

2.4.1. Actuation control stage

The structure of the actuation control stage, employed by both the developed teleopera-
tion system to drive the motion of the U-HandPi bionic hand, is depicted in figure 2.18.
The control software is implemented on a computer that runs Ubuntu 16.04 and ROS
Kinetic. The communication link between the computer and the bionic hand is estab-
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lished using an Ethernet link. A simple open-loop control solution was adopted given that
the bionic hand is not provided with internal feedback position sensors. The core of the
open-loop is the inverse kinematics node, which computes the motors control commands
corresponding to the desired robot pose. In particular, for each finger, such node applies
the corresponding inverse kinematics model synthesized in section 2.1.2 to the desired
bending angle, θ, to obtain the pulse width of the PWM signal of the motor, PW . The
bending angle is read at 40Hz, in accordance with the sampling frequency set by the
human hand motion tracking systems. The simplest way to apply the inverse kinematic
model is presented by algorithm 2.1. At each kth frame, the difference between the current
value θk of the bending angle and the previous one θk−1 is checked to recognize whether
the direction of movement is extension or flexion and the PWk value is consequently
computed employing the corresponding modeled function fext(θ) or fflex(θ) respectively.

Algorithm 2.1 Basic algorithm for inverse kinematic application
1: Initialize θk−1

2: while Inverse Kinematics node is running do
3: θk = new desired angle
4: if θk < θk−1 then
5: PWk = fext(θk)

6: else
7: PWk = fflex(θk)

8: end if
9: θk−1 = θk

10: end while

However, sudden changes from one function to the other would cause great instability, in
particular for low bending angle values, where the two functions are significantly distant
from each other and in static situations when noise on the input signal would also be
recognized as a direction change. Such instability is due to the fact that the real system
passes from one behavior to the other by a transient. To avoid a sudden change from one
function to the other, and thus instability, the average bending angle in the last 40 frames
(moving average on 1s), θ̄40, is computed.

ϑ̄40 =
1

40

k−1∑
i=k−40

ϑi (2.32)

Only if θ deviates from θ̄40 for more than 1% of the bending angle range, θmax, the direc-
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tion change, if present, is recognized. Then, according to the current value of direction
(extension or flexion), the corresponding inverse kinematic function, fext or fflex respec-
tively, is applied to θ in order to obtain the motor control signal value PW . The details
are summarized by algorithm 2.2.

Algorithm 2.2 Advanced algorithm for inverse kinematics application

1: Initialize θ̄40

2: Initialize direction

3: while Inverse Kinematics node is running do
4: θ = new desired angle
5: if θ < θ̄40 − 0.01 · θmax then
6: direction = extension

7: else
8: if θ > θ̄40 + 0.01 · θmax then
9: direction = flexion

10: end if
11: end if
12: if direction == extension then
13: PW = fext(θ)

14: else
15: PW = fflex(θ)

16: end if
17: Update θ̄40

18: end while

Once the pulse widths are computed, the communication handler node packs them in a
message characterized by a proper TCP/IP format and sends them to the bionic hand
through the Ethernet link. Each message specifies the six motor values (including the one
related to the wrist motor, which is fixed at 1500) and the time in ms in which the motors
must achieve those values. The minimum time that has proven to be manageable by the
hand is 20ms, so, in order to keep a safety margin, a time equal to 25ms (40Hz) was fixed.
Control messages are unpacked by the bionic hand processor and motors are consequently
driven. A user interface manages the opening and the closing of the communication link
according to the user’s will. Once the user gets ready to start the communication, he/she
has to enter "c" in the terminal through the keyboard. The communication handler
creates a TCP/IP client socket using the Ethernet IP address that is assigned to the
bionic hand. Whenever the user wants to stop the communication, he/she has to enter
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"d" and the communication handler shutdowns the socket.

Figure 2.18: Components of the actuation control system, shared by both the implemented
teleoperation systems.

2.4.2. Mapping method

A mapping stage computes the desired bending angles of the bionic hand fingers based
on the pose of the corresponding human hand finger. As described in sections 2.2 and
2.3 respectively, the two developed tracking systems define the human finger pose in two
different ways, according to the sensorial capabilities of the corresponding tracking device.
For each finger, each tracking system extracts one feature ranging from 0 to 1, namely
the flexion level φ̂∗ and the bending level β̂∗ respectively. Although such variables are
different from each other, they can be mapped in the same intuitive and easy way to
the robot finger bending angle. Indeed, the mapping node just multiplies the output of
the utilized tracking system, whether φ̂∗ in the case of the wearable system or β̂∗ in the
case of the vision system, for the bending angle range, θmax, measured during the inverse
kinematics calibration.

{
θ = θmax · φ̂∗ , for the wearable system

θ = θmax · β̂∗ , for the vision-based system
(2.33)

As a result, a one-to-one mapping is established between the human finger characteristic
angle (flexion angle in the case of the wearable tracking system and bending angle in the
case of the vision tracking system) and the robot’s bending angle, normalized for their
own ROM.
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2.5. Experimental evaluation

In this section, the three experiments which were carried out to evaluate and compare the
two implemented teleoperation systems are discussed. Such experiments addressed the
evaluation of the static accuracy, the dynamic accuracy and the usability of the imple-
mented systems, respectively. In particular, the results of the first and second experiments
concern the index finger. This section is organized as follows: first, the experimental setup
used for the first and second experiments is described; then, protocols and extracted met-
rics of the first and second experiment are shown sequentially; lastly, the third experiment
regarding the user study is analyzed in terms of setup, protocol and extracted metrics.

2.5.1. Ground truth measurements setup

During the first and second experiments, as described in detail in sections 2.5.2 and 2.5.3,
a human operator had to control the bionic hand using the two developed systems. In the
meanwhile, two sets of active, near-IR, optical markers were used to measure the ground
truth of the resulting bending angle θ of the bionic hand (see section 2.1 for the definition
of robot bending angle) and the ground truth of the characteristic human finger angle
used to control the bionic hand, namely the real human flexion angle, φreal (see section
2.2 for the definition of human flexion angle), for the wearable system and the real human
bending angle, βreal (see section 2.3 for the definition of human bending angle), for the
vision system.

The complete experimental setup is schematized in figure 2.19. To consider the optical
measurements as "ground truth", the optical tracking system utilized to capture the
markers 3D position had to be more accurate than both developed tracking systems. The
NDI Optotrak Certus tracking system was employed, given its sub-millimeter accuracy
and high robustness. As such device was already used during the calibration of the bionic
hand inverse kinematics, see section 2.1.2 for further details. The position sensor was
located at about 2m from the human hand of the operator and from the robotic hand to
make them appear inside the field of view. One laptop was used to manage the optical
tracking system and to record its measurements. A second laptop was connected to the
bionic hand and the hand tracking device under study (glove or LMC) and was used to
run the teleoperation software and to record ROS bag files containing the tracking stage
output. The experiment was executed by two operators: operator 1 used the teleoperation
system, while operator 2 handled markers and ROS bag recordings.
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Figure 2.19: Setup scheme of human ROM estimation and accuracy evaluation experi-
ments

Figure 2.20: Markers positioning during for the ground truth tracking. (a) Marker po-
sition on bionic hand. (b) Markers position on the human hand. (c) Human hand with
markers in the glove-based method. (d) Human hand with markers in vision tracking-
based method.

As illustrated in Figure 2.20.(a), one marker was located on the side of the bionic hand
index fingertip and three markers were placed on the side of the hand rigid case to define
a 3D local reference frame, labeled as {RH} and shown in figure 2.21. The MCP joint
position was measured using the same method described in section 2.1.2 for the bionic
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hand calibration, employing a pointing probe like the one shown in figure 2.5.d. As a prior
step to compute the bending angle, MCP joint and fingertip positions were transformed
from the Optotrak reference frame, {OPTO}, to {RH}. Calling optoPm1, optoPm2 and
optoPm3 the positions of the three markers attached to the rigid case with respect to
{OPTO}, as shown in figure 2.21, the unit vectors x̂rh, ŷrh and ẑrh of the local reference
frame axes can be defined as follows:


x̂rh =

optoPm2 − optoPm1

∥optoPm2 − optoPm1∥

ẑrh =
x̂rh × (optoPm3 − optoPm1)

∥x̂rh × (optoPm3 − optoPm1)∥
ŷrh = ẑrh × x̂rh

(2.34)

Given such definitions, the rotation matrix and the translation vector, which represent
the Optotrak reference frame with respect to {RH}, can be computed and applied to
fingertip and MCP joint positions to transform them. Such method is explained in detail
in section 2.3.2 when the vision-based tracking system passes from the LMC reference
frame to the hand frame. In particular, the computations are described by equations
2.23, 2.24 and 2.25. Once the local coordinates of the markers are obtained, the bending
angle is computed as described in section 2.1.2 by equations 2.3 and 2.4.

Figure 2.21: Ground truth tracking of bionic hand index finger: Optotrak reference frame,
bionic hand reference frame and marker posistions labelling.

Finding a stable and meaningful positioning of the markers on the human hand was
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fundamental to obtain a good estimation of human flexion and bending level. In [35] the
authors describe a simplified but still accurate method to reconstruct finger movements in
real-time, based on tracking of twenty-four optical markers by a set of six cameras. One
marker is placed on each finger joint and a rigid body containing four markers is fixed
to the wrist. Through the rigid tool, the authors define a 3D local reference frame that
moves together with the hand and then refers the coordinates of the other markers to it.
The transformed coordinates can be used to compute the angles of each joint. Getting
inspired by this work, the starting idea was to place one marker on fingertip, PIP joint
and MCP joint and to place a set of at least three rigidly connected markers on the wrist
or the hand back to define the local reference frame. However, three issues had to be
faced. The first was that during the recordings corresponding to the glove-based system,
positioning possibilities were limited by the wide space covered by the glove rigid case
and strings. This was not the case when using Leap Motion, however, the positioning
of the markers had to be the same in both experiments to make the comparison more
robust. The second issue was that only one optical sensor was used to simplify the setup,
thus all the markers had to be placed on the same side of the hand to be seen together
by the sensor. The third issue, which is typical of marker-based tracking, was that the
markers had to be placed where skin motion was not so significant to minimize as much
as possible relative motion between markers and bones.

Therefore, a novel solution was employed to overcome the problems related to this spe-
cific experimental scenario. As shown in figure 2.20.b., five markers were placed on the
fingertip side, the PIP joint side, the MCP joint side, the second metacarpal bone (SM)
in correspondence with the styloid process and the radial styloid process (RAD), respec-
tively. Figures 2.20.(c) and 2.20.(d) show how the markers were integrated when using the
glove-based and the vision-based methods, respectively. MCP, SM and RAD were used
to define a local reference frame, {HH}. While testing the glove-based system, MCP
and PIP joints were used to obtain the flexion angle; during the test of the vision-based
method, MCP joint and fingertip were used to obtain the bending angle.

As a prior step to compute the human finger angle, MCP joint, PIP joint and finger-
tip positions were transformed from the Optotrak reference frame, {OPTO}, to {HH}.
Calling optoPmcp, optoPsm and optoPrad the positions of the three reference markers shown
in figure 2.20.b, with respect to {OPTO}, the unit vectors x̂rh, ŷrh and ẑrh of the local
reference frame axes can be defined as follows:
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x̂hh =

optoPmcp − optoPrad

∥optoPmcp − optoPrad∥

ẑhh =
(optoPsm − optoPrad)× x̂hh

∥(optoPsm − optoPrad)× x̂hh∥
ŷhh = ẑhh × x̂hh

(2.35)

Given such definitions, the rotation matrix and the translation vector, which represent
the Optotrak reference frame with respect to {HH}, can be computed and applied to
fingertip, MCP joint and PIP joint positions to transform them. Again, such method is
explained in detail in section 2.3.2 by equations 2.23, 2.24 and 2.25.

Once the local coordinates of the markers are obtained, they are transformed to a second
local reference system, the finger frame {ff}, that is fixed with respect to the hand
frame. The xy plane of such frame is considered as the plane where fingertip, PIP joint
and MCP joint lie when MCP joint abduction is null. The finger frame is derived from a
calibration procedure similar to the one implemented by the vision-based tracking system,
as described in section 2.3.2. In such calibration phase, operator 1 has to put the finger
in a neutral pose, with minimum bending, while operator 2 records the markers position.
Thus, {ff} is defined as having the origin in the measured MCP joint position, the x-
axis on the direction of the measured MCP-to-PIP or MCP-to-TIP vector, according to
whether the tracking system used in the test is the wearable one or the vision-based one
respectively, the z-axis perpendicular to the plane defined by MCP, PIP and TIP and
directed towards the thumb direction. The y axis follows the right-hand rule. Rotation
matrix and translation vector of {ff} are computed through equations 2.26, 2.27 and
2.28, while the coordinate transformation of the tip or PIP joint positions, according to
the system under study, is executed as done by equation 2.29. Lastly, the flexion angle
and the bending angle are computed by applying equation 2.30 to the tip or PIP position
respectively.

2.5.2. Static accuracy assessment

The static accuracy experiment consisted in a static calibration procedure and was ex-
ecuted first on the glove-based teleoperation system and then on the vision-based one.
During such procedure, several samples of ground-truth human angles, φreal or βreal, ho-
mogeneously distributed in the huaman finger ROM, were measured through the markers
and, at the same time, the output of the tracking system, flexion level φ̂∗ and human bend-
ing level β̂∗ respectively, was recorded. Moreover, the robotic bending angle, θ, resulting
from the teleoperation control, was measured too. Four complete calibration cycles were
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obtained for each system. A preprocessing step was needed to normalize the acquired
φreal, βreal and θ samples for the respective ranges, thus obtaining φ̂real, β̂real and θ̂:

φ̂real =
φreal

φreal,max − φreal,min

(2.36)

β̂real =
βreal

βreal,max − βreal,min

(2.37)

θ̂ =
θ

θmax

(2.38)

While θmax was known from the bionic hand calibration, the angle limits of φreal and
βreal were unknown, and given the difficulty of precisely recording the poses which are
associated with the human finger limits by the tracking systems, an estimation of such
values was needed, based on the acquired samples. In particular, a set of calibration
cycles of the tracking stage were obtained by coupling the measured samples of φreal

and φ̂, for the glove-based method, and the samples of βreal and β̂, for the vision-based
method. Then, the linear function that best fits the cycles (excluding saturation samples)
was computed through least-squares linear regression. Such function is assumed to be
the ideal characteristic of the tracking system. This approximation is the most optimistic
one, given that it minimizes the distance of the samples from the ideal behavior. φreal and
βreal values that according to the ideal characteristic should correspond to the minimum
and the maximum φ̂∗ and β̂∗ were considered as the human range limits, that are φreal,max

and φreal,min, βreal,max and βreal,min, respectively. After normalization, three kinds of error
were investigated to evaluate and compare the accuracy performance of the two systems,
namely the ones listed and computed as follows and shown in figure 2.22:

• Overall teleoperation control accuracy error{
εtele,glove = φ̂real − θ̂

εtele,vision = β̂real − θ̂
(2.39)

• Human hand motion tracking accuracy error{
εtrack,glove = φ̂real − φ̂∗

εtrack,vision = β̂real − β̂∗
(2.40)
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• Bionic hand actuation control accuracy error{
εact,glove = φ̂∗ − θ̂

εact,vision = β̂∗ − θ̂
(2.41)

Note that, the desired robot pose can be expressed directly by the output of the motion
tracking stage, given that the resulting robot pose is described not by the bending angle
but by the dimensionless bending level and that the mapping is one-to-one in this case.

Figure 2.22: Illustration of the errors in the comparison experiments, including the overall
teleoperation error, human hand motion tracking error, and the bionic hand actuation
control error.

For each kind of error, a standard approach to evaluate the accuracy of an input-output
system static response was applied [36] [37]. The couple of variables determining the error
were compared by assessing their calibration cycles. A prior step was to compute the real
static characteristic of the system under study, defined by the couple of curves (one for
flexion and one for extension) that best fit the samples. In other words, it represents the
average static behavior of the system in terms of how the input is translated into the
output. The two curves were found by fitting polynomials or rational functions (ratios of
polynomials) on the samples through least squares regression. Adjusted R-squared (R2

adj)
metric was used to set polynomials degree, which is a measure of explained variance that
penalizes complex functions to reduce over-fitting. Given N samples yi with mean ȳ, k
regressors and N prediction ŷi from the fitted model, R2

adj is defined as:



46 2| Materials and methods

R2
adj = 1− N − 1

N − k − 1
·
∑N

i=1 (yi − ŷi)
2∑N

i=1 (yi − ȳ)2
(2.42)

The followed rule was to start from a linear function, try to increase step by step the order
of the polynomial and each time check if the R2

adj improved. If R2
adj did not improve or the

function showed clear over-fitting behavior (for example, huge oscillations or a curvature
such that the function does not reach the range limits), then the degree was reduced to
the previous step and the resulting function was selected. In this way, attention was paid
so as not to increase too much the function complexity and risking to get over-fitting
while grasping the significant non-linearity of the system. Once the curves were obtained,
two static accuracy metrics were extracted:

• Non-linearity: maximum distance between the real characteristic and the ideal one
(output equal to input)

• Hysteresis: maximum distance between the two curves that compose the hysteresis
cycle

Note that, as regards the analysis of the bionic hand actuation control performance, since
the actuation controller is the same for both the teleoperation systems, data from glove
and leap motion experiments were joint together to obtain a single static characteristic.

2.5.3. Dynamic accuracy assessment

The dynamic experiment was done just after the static one without restarting the sensors
or changing their calibration. In this phase, operator 1 performed six different movements
such that the flexion level, for the wearable system case, or the bending level, for the
vision system case, showed a sinusoidal behavior in time (sinusoidal movements). Each
movement differed from the others in terms of frequency or amplitude. Frequency was
qualitatively set by the operator to low (<0.4Hz) or high (> 0.4Hz), while amplitude was
set to small (40% of θ̂ range explored), medium (60% of θ̂ range explored) or large (θ̂
reaches saturation). For each movement, the variables which determine the errors defined
by equations 2.39, 2.40 and 2.41 were recorded at 40Hz, which is equal to the sampling
frequency of the teleoperation systems. The same angle normalization as the one employed
in the static experiment was used to retrieve such variables. For each couple of variables,
x and y, the cross-correlation function was applied to the signals corresponding to the
same kind of movement. Calling m the time lag between the samples of the two signals
and N the number of samples of the two signals, the cross-correlation function can be
defined as:
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Cxy(m) =
N−m−1∑

n=0

xn+myn (2.43)

The two signals were then synchronized by back-shifting in time the delayed one for the
time lag corresponding to the maximum peak of cross-correlation. Two dynamic accuracy
metrics were computed for each couple of signals:

• Mean Time Delay: time lag corresponding to the maximum peak of the cross-
correlation function. Note that such metric was analyzed only on the overall teleop-
eration system because ROS bag recordings did not start at the same time instant
as the markers recordings, so the lag detected by the cross-correlation includes also
the delay between the starting times and cannot be used to characterize nor the
tracking system delay or the motion controller delay. In such case, it can be just
used to synchronize the signals.

• Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

N

N∑
i=1

(xi − yi)
2 (2.44)

where N is the number of samples, xi and yi are the ith samples of the two signals re-
spectively. This metric was extracted after time synchronization. It is widely used in
literature to assess the accuracy of teleoperation systems like the ones implemented
in this work [30] [28] [29].

2.5.4. User study

The third experiment aimed at demonstrating the usability of the two teleoperation sys-
tems during both precision and power grasp tasks, and, at the same time, evaluating
the user experience. The experiment design was inspired by similar tests implemented in
related works. Indeed, the execution of a grasp experiment is always present in previous
related works, as it is fundamental to assess if the developed system is actually able to
do what it is designed for and how good its performance is.

In this experiment, six right-handed users, in good health condition and with no motor
deficiency, were invited to perform the grasp tasks. Figure 2.23.(a) shows the overall
experimental setup. The bionic hand was fixed to a table, and the user sat comfortably
in front of it. In order to test different kinds of grasp, four different objects, depicted in
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figure 2.23.b, were selected for the test. Depending on their shape and size, each one of
them required a different kind of grasp posture in order to be caught, according to Feix
taxonomy [38]. Furthermore, they were divided into two groups depending on whether
the grasp required precision or not:

• Parallelepiped: large diameter power grasp (figure 2.23.b.1)

• Cork stopper: tripod precision grasp (figure 2.23.b.2)

• Cylinder: medium wrap power grasp (figure 2.23.b.3)

• Cube: quadpod precision grasp (figure 2.23.b.4)

The four objects were placed on the table in front of the user as well. A laptop was used
to execute the implemented teleoperation software, acquiring the human hand motion
data, whether from the glove or the LMC, and sending the proper command signals to
the bionic hand.

Figure 2.23: User study: (a) experimental setup, (b) grasped objects.

According to the designed experimental protocol, which was carefully explained to the
user before the experiment, the user had to make the bionic hand grasp the objects from
the right to the left, starting from the parallelepiped and ending with the cube, as shown
in figure 2.23.a, in order to alternate power and precision grasps. For each object, the user
had to take the object with the left hand, make it approach the robotic hand, and use
the right hand to control the robot grasp through the hand motion tracking device. Once
the user was confident enough, he/she left the object to the bionic hand, which in turn
had to hold it for 5 seconds. The objects belonging to the precision grasp group (cork
stopper and cube) had to be grasped using only the fingertips of the bionic hand, without
touching the palm, in order to assure a precision grasp. Once five seconds passed, the user
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could take the object back to its original position using the left hand. If the object fell or
touched the palm (only for the precision grasp) during any phase of the trial, the trial was
deemed a failure, otherwise, it was considered a success. The user had to repeat the grasp
sequence six times. Half of the users experimented first with the glove-based system and
then with the vision-based system, while the other half did vice versa. Hence, 144 trials
were done for each method. Before performing the experiment, the users were allowed
to familiarize themself with the teleoperation control. During such learning phase, grasp
practice was not allowed. Following the completion of each experiment, the user was
asked to complete a NASA TLX questionnaire [39] to assess their perceived workload.
Such questionnaire is divided into two parts. In the first step, six different indexes of
workload had to be subjectively rated by the user on a scale from 0 to 100 endowed with
twenty-one grades, namely:

• Mental demand: required mental and perceptual activity.

• Physical demand: required physical activity.

• Temporal demand: felt time pressure due to the task pace.

• Effort: overall hardness of the work

• Performance: felt level of success (in this case, the scale value is reversed, id est a
low index value indicates a high performance)

• Frustration: discouragement, irritation, stress and annoyance.

The user was provided with a description of each workload index. In the second phase
of the questionnaire, the user was shown the fifteen combinations of the six indexes and,
for each pair, he/she was asked to choose the index he/she thought was more important
to determine the total workload of a generic activity. In this way, each index gets a
weighting that is proportional to the tally ti (i = 1,2,...,6) of the times in which it is
chosen. Then, the adjusted rating can be computed by multiplying the raw rating Ri for
the corresponding weight. Lastly, a total workload index, WL, can be computed as the
sum of all the adjusted ratings:

WL =
6∑

i=1

Ri ·
ti
15

(2.45)

The application of weights accounts for the subjectivity of the user assessment, reducing
its influence on the final result.
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This section presents the results of the designed experiments, including the human hand
range of motion estimation, the accuracy performance comparison, and the user demon-
stration results.

3.1. Human range of motion estimation

Four complete static calibration cycles were measured for each system. In particular: 152
static poses were obtained while using the wearable system (38 per cycle on average), 56 of
which related to extension, 52 to flexion and 44 to saturation; as regards the vision-based
system, one calibration cycle was excluded because it was affected by markers occlusion,
thus obtaining 96 static poses (32 per cycle on average), 33 of which related to extension,
34 to flexion and 27 to saturation. Figure 3.1 shows, for each tracking system, the fitting
result of linear regression and the fitted samples. Table 3.1 summarizes the metrics of
fitting goodness, that are RMSE and R2

adj, together with resulting functions parameters
which are referred to equation 3.1. The resulting ROM limits were [1.22°; 38.8°] for φreal

(figure 3.1.a) when the operator used the glove and [−5.09°; 52.7°] for βreal (figure 3.1.b)
when the operator used the vision-based tracking method. Therefore, the resulting ROM
(difference between the limits) are 37.6° and 57.8°, respectively. Such values are coherent
with the qualitative observations.

System RMSE R2
adj p1 p2

Wearable 0.0397 0.980 0.0266 -0.0325
Vision 0.121 0.797 0.0173 0.0881

Table 3.1: Fitting results and parameters of tracking system linear model

y = p1x+ p2 (3.1)
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(a) (b)

Figure 3.1: Motion tracking: linear fitting results for wearable system (a) and vision
system (b)

3.2. Accuracy performance

3.2.1. Overall teleoperation control performance

Polynomial functions were used to find the static characteristics of the two overall tele-
operation systems, that are the expressions that give θ̂ as a function of φ̂real or β̂real, for
the glove-based system and the vision-based one respectively. The fitting curves result-
ing from the adopted criteria are represented in figures 3.2a and 3.2b, together with the
fitted samples. Non-linearity and hysteresis of the static characteristics are underlined
by figures 3.2c and 3.2d, respectively. Table 3.2 summarizes the fitting results and the
resulting metrics of non-linearity and hysteresis. Table 3.3 shows the parameters values
of the fitted functions.

The wearable system behavior was modeled by a second-degree polynomial (equation
3.2) in extension and a fifth-degree polynomial (equation 3.3) in flexion. The system is
characterized by a linear region from 25% to 60% of the flexion level range, having a high
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agreement with the ideal characteristic, both in flexion and extension. The shift from the
ideal characteristic is mainly present in the extension curve at the range borders, while
the flexion curve seems quite aligned. Non-linearity and hysteresis peak both at 89% of
the range.

The vision-based system behavior was modeled by a second degree polynomial (equation
3.2) and a linear function (equation 3.1). Fitting results in this case are poorer because
the dispersion of the samples is higher. The ideal characteristic runs from end to end
of the hysteretic cycle and is completely detached from the two curves, implying that
non-linearity exists throughout the range. Such behavior gives worse error metrics than
the glove-based method. Non-linearity and hysteresis peak at 20% and 26% of the range,
respectively.

System Direction Degree RMSE R2
adj Non-linearity Hysteresis

Wearable
Flexion 5th 0.0225 0.993

11.1% 14.6%
Extension 2nd 0.0273 0.989

Vision
Flexion 1st 0.0555 0.964

20.0% 27.0%
Extension 2nd 0.0609 0.934

Table 3.2: Fitting results and error metrics of the two teleoperation systems.

System Direction p1 p2 p3 p4 p5 p6

Wearable
Flexion 3.43 -6.41 3.53 -0.362 0.883 -0.0251

Extension 0.531 0.563 0.0799 - - -

Vision
Flexion 1.20 -0.240 - - - -

Extension -0.269 1.34 0.0124 - - -

Table 3.3: Parameters of the teleoperation systems characteristics.

y = p1x2 + p2x+ p3 (3.2)

y = p1x5 + p2x4 + p3x3 + p4x2 + p5x+ p6 (3.3)
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(a) (b)

(c) (d)

Figure 3.2: Static testing of overall teleoperation control systems: fitting results of glove-
based (a) and vision-based (b) systems; non-linearity and hysteresis of glove-based (c)
and vision-based (d) systems.
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The six couples of synchronized signals from the dynamic trials of the experiment are
shown in figure 3.3.a and 3.3.b for the glove-based system and the vision-based one,
respectively. Delay and RMSE metrics are summarized in table 3.4.

In the wearable system case, human and robot signals are well overlapped except few
missed peaks and a systematic vertical shift for the small-amplitude - high-frequency
trial. From RMSE values it seems evident that the best results are obtained for small and
slow movements, while increasing speed or amplitude makes tracking harder.

As regards the dynamic trials of the vision-based system, although the signals are highly
correlated, they are less superimposed than in the wearable system case and missing peaks
are more visible. The small-amplitude - high-frequency trial is the worst case, as happened
for the glove system. In this case, the general trend appears to be that movements with
both high frequency and high amplitude are more easily transferred to the robot. RMSE
values are higher in the vision-based system in all the six conditions, indicating greater
teleoperation error than in the glove case.

There is insufficient evidence to discern a systematic difference in delay values between
the two systems. However, the delay is always less than 0.4 seconds in all trials for both
systems.

System L - l M - l S - l L - h M - h S - h

Delay (ms)
Wearable 400 225 125 175 175 150
Vision 350 325 0 250 225 150

RMSE
Wearable 4.01% 3.40% 2.80% 5.67% 4.44% 7.33%
Vision 8.72% 6.56% 8.51% 6.42% 7.19% 12.6%

Table 3.4: Mean delay and RMSE of the two teleoperation systems for each motion condi-
tion. The symbols L, M and S stand for large, medium and small amplitude, respectively;
l and h stand for low and high frequency, respectively.
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(a)

(b)

Figure 3.3: Dynamic testing of overall teleoperation control under 6 different conditions:
synchronized human and robot signals for wearable system (a) and vision system (b).
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3.2.2. Human hand motion tracking performance

Polynomial functions were explored to find the static characteristics of the motion track-
ing stages of the two teleoperation systems, which are the expressions that give φ̂∗ or β̂∗ as
a function of φ̂real or β̂real, for the wearable system and the vision-based one respectively.
The fitting curves resulting from the adopted criteria are represented in figures 3.4a and
3.4b, together with the fitted samples. Non-linearity and hysteresis of the static charac-
teristics are underlined by figures 3.4c and 3.4d, respectively. Table 3.5 summarizes the
fitting results and the resulting metrics of non-linearity and hysteresis. Table 3.6 shows
the parameters values of the fitted functions.

The best-fitting curves have the same polynomial degrees as those used in section 3.2.1 to
model the characteristics of the two overall teleoperation systems. In both the systems,
the main differences from the overall teleoperation system case are a lower dispersion of
the samples around the curves and a lower hysteresis below 20% of the human angle range.
Such distinctions result in better fitting and slightly different metrics of non-linearity and
hysteresis, which are higher in the wearable system case and lower in the vision system
case. Once again, samples dispersion, nonlinearity and hysteresis in the vision system
case are significantly worse than in the wearable case.

System Direction Degree RMSE R2
adj Non-linearity Hysteresis

Wearable
Flexion 5th 0.0184 0.995

12.5% 16.2%
Extension 2nd 0.0252 0.992

Vision
Flexion 1st 0.0548 0.963

18.0% 25.1%
Extension 2nd 0.0590 0.946

Table 3.5: Fitting results and error metrics of the two implemented hand tracking stages.

System Direction p1 p2 p3 p4 p5 p6

Wearable
Flexion 0.0120 0.0145 -0.0389 -0.0370 0.292 -0.516

Extension 0.515 0.638 0.0465 - - -

Vision
Flexion 1.17 -0.215 - - - -

Extension -0.494 1.61 -0.0590 - - -

Table 3.6: Parameters of the tracking systems characteristics.



58 3| Results

(a) (b)

(c) (d)

Figure 3.4: Static testing of the tracking systems: fitting results of glove-based (a) and
vision-based (b) systems; non-linearity and hysteresis of glove-based (c) and vision-based
(d) systems.
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The six couples of synchronized signals from the dynamic trials of the experiment are
shown in figure A.1.a and A.1.b for the glove-based system and the vision based one,
respectively. RMSE values are summarized in table 3.7. The graphical results are very
similar to the ones regarding the overall teleoperation systems, although, in most of the
conditions, the RMSE is slightly lower. Once again, the vision-based system is affected
by more evident missing peaks and greater RMSE values in all the six conditions.

System L - l M - l S - l L - h M - h S - h
Wearable 3.20% 3.05% 2.23% 3.89% 4.71% 7.50%
Vision 8.14% 6.62% 7.44% 5.70% 7.01% 12.5%

Table 3.7: RMSE of the two tracking systems for each motion condition. The symbols
L, M and S stand for large, medium and small amplitude, respectively; l and h stand for
low and high frequency, respectively.

3.2.3. Bionic hand actuation control performance

Rational functions were explored to find the static characteristic of the actuation control
stage, common to both teleoperation systems, that is the expressions which give θ̂ as a
function of the output of the tracking stage, φ̂∗ or β̂∗ depending on the system. The fitting
curves resulting from the adopted criteria are represented in figure 3.5a together with the
fitted samples. Non-linearity and hysteresis of the static characteristic are underlined by
figure 3.5b. Table 3.8 summarizes the fitting results and the resulting metrics of non-
linearity and hysteresis. Table 3.9 shows the parameters values of the fitted functions.
Equations 3.4 and 3.5 represent the function classes used to model extension and flexion
behaviors, respectively.

Above 20% of the range, both the extension and flexion curves are almost linear and
superimposed to the ideal behavior. Non-linearity and hysteresis are present only under
20% of the range. Samples dispersion is also higher in that region. RMSE, non-linearity
and hysteresis are significantly lower than the ones measured for the overall teleoperation
systems.

Direction Degree RMSE R2
adj Non-linearity Hysteresis

Flexion 3rd/4th 0.0139 0.998
4.11% 7.37%

Extension 3rd/1st 0.0132 0.999

Table 3.8: Fitting results and error metrics of the actuation control system.
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Direction p1 p2 p3 p4 q1 q2 q3 q4
Flexion 45.3 191 266 122 -5.06 134 359 229

Extension 0.152 0.783 0.0835 0 0.0178 - - -

Table 3.9: Parameters of the actuation control system

y =
p1x

3 + p2x
2 + p3x+ p4

x+ q1
(3.4)

y =
p1x

3 + p2x
2 + p3x+ p4

x4 + q1x3 + q2x2 + q3x+ q4
(3.5)

The six couples of synchronized signals from the dynamic trials of the experiment are
shown in figure A.2.a and A.2.b for the glove-based system and the vision-based one,
respectively. RMSE values are summarized in table 3.10. In all conditions, the resulting
robot signal follows precisely the desired one defined by the measured human pose. RMSE
is always under 3% of the range except for one trial.

System L - l M - l S - l L - h M - h S - h
Wearable 1.78% 1.90% 1.00% 4.36% 1.63% 2.58%
Vision 1.52% 1.27% 0.78% 2.03% 1.68% 3.00

Table 3.10: RMSE of the actuation control system for each motion condition. The symbols
L, M and S stand for large, medium and small amplitude, respectively; l and h stand for
low and high frequency, respectively.
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(a)

(b)

Figure 3.5: Static testing of the actuation control systems: fitting results (a); non-linearity
and hysteresis (b).
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3.3. User study

All the people involved in the user study succeeded in performing all four grasp tasks
using both the teleoperation systems. Figures 3.8 (a)-(d) report one demonstration ex-
ample for each grasp scenario when using the glove-based tracking method, while figures
3.8 (e)-(h) illustrate one demonstration example for each grasp scenario when utilizing
the vision-based tracking method. The success rate is high in both cases, in particular,
it is 98.6% for the glove-based method and 96.5% for the vision-based method, which
are not significantly different values in statistics terms (Fisher’s exact test). Figure 3.6
illustrates the average raw ratings for each workload index resulting from the NASA-TLX
questionnaires compiled by the six users. The profiles of the two systems are similar.
Nevertheless, the vision-based system is affected by lower mean perceived performance,
while the glove-based system brings a higher mean effort.

Figure 3.6: User study: graphical representation of the average raw scores through bar
diagram (a) and radar diagram (b). MD = mental demand, PD = physical demand, TD
= temporal demand, Pe = performance, Ef = effort, Fr = frustration.

The scores, adjusted for the subjective weights, are represented in figure 3.7. The main
differences between wearable and vision-based methods noticed for the raw ratings remain
valid. The total perceived workload, that is the sum of the adjusted ratings, is practically
the same in the two systems. For further details, table 3.11 reports the values of average
raw rating, adjusted rating and total workload. Free user feedback is in line with ques-
tionnaire results: users agreed in feeling the glove as better performing but at the same
time as less comfortable, causing a greater general effort.
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Figure 3.7: User study: graphical representation of the average adjusted scores through
pile diagram (a) and radar diagram (b). MD = mental demand, PD = physical demand,
TD = temporal demand, Pe = performance, Ef = effort, Fr = frustration.

Index
Glove Vision
µ σ µ σ

Raw ratings

Mental demand 42.5 17.0 40.8 22.3
Physical demand 46.7 22.9 47.5 20.7
Temporal demand 46.7 17.8 51.7 8.2

Performance 16.7 10.3 27.5 19.7
Effort 51.7 21.1 44.2 12.4

Frustration 35.0 21.7 25.0 22.6

Adj. ratings

Mental demand 8.4 5.6 7.9 6.1
Physical demand 7.1 4.8 7.2 5.7
Temporal demand 3.1 3.7 3.8 4.8

Performance 3.5 2.1 5.9 4.1
Effort 12 5.9 9.5 2.4

Frustration 4.7 4 3.5 4.2
Total workload 38.8/100 37.8/100

Table 3.11: Comparison result of NASA TLX questionnaire. The average (µ) and stan-
dard deviation (σ) of raw and adjusted ratings and the total workload are reported.
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Figure 3.8: User study and demonstration of the implemented teleoperation control frame-
works. Figures from (a) to (d) represent the four grasping performed through glove-based
teleoperation. Figures from (e) to (h) report the four grasping performed through vision-
based teleoperation.
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In this section, the aim of the work and the performed activities are briefly recalled, then
the results from the experiments are interpreted and discussed according to the objectives,
lastly, the conclusions of the work are drawn.

Objectives recall and performed activities This work aimed to develop and com-
pare two teleoperation frameworks designed to intuitively control the same underactuated
bionic hand but based on two different human hand tracking devices that belong to the
two most competitive categories in the field, namely the wearable mechanical gloves and
the contactless vision-based tracking devices. The workflow included four main steps.
First, the inverse kinematic model of the bionic hand was derived from a calibration pro-
cedure performed with an external ground truth tracking system. Then, an exoskeleton
sensorized glove and a Leap Motion Controller were employed to implement the wear-
able glove-based and the vision-based hand tracking systems, respectively. Consequently,
two teleoperation systems were developed by combining one of the two tracking systems,
respectively, with an actuation control stage that is based on the bionic hand inverse
kinematic model previously derived. The connection between the tracking and actua-
tion stages was achieved by establishing a simple mapping strategy between the captured
human data and the desired motion of the bionic hand. Lastly, three experiments were
executed to evaluate the performance of the implemented teleoperation systems in terms
of static and dynamic accuracy, usability and user experience.

Demonstration of usability The high success rates achieved by the glove-based tele-
operation system and the vision-based one during the usability experiment are 98.6% and
96.5% respectively, as reported in section 3.3. Such values prove that both systems can
be used to control the underactuated bionic hand to successfully perform both power and
precision grasp tasks on objects of various shapes and sizes. In both cases, the average
level of performance perceived by users and measured by the NASA-TLX questionnaire
was high, with scores of 16.7/100 and 27.5/100, respectively, confirming the good result
(note that the less the performance index is the better the perceived performance is).
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Therefore, both the systems may be used as a basis to develop a teleoperation system
endowed with a complete manipulator.

Accuracy and performance analysis The results of the static part of the accuracy
experiment regarding the overall teleoperation control, reported in section 3.2.1, show
that both the overall teleoperation systems, are affected by non-linearity caused by hys-
teresis and non-uniform sensitivity of the hysteretic curves. However, both non-linearity
and hysteresis are greater in the vision-based system. In particular, the vision-based
teleoperation system is characterized by a non-linearity that peaks the 20% of the finger
ROM, which corresponds to 24° that is quite remarkable. The hysteretic cycle is no-
table too, since it reaches 27% of the ROM, corresponding to 32°. The wearable method
showed more reasonable non-linearity and hysteresis values, which are 11% and 15% of
the ROM respectively, corresponding to 13° and 17°. Moreover, in this case, non-linearity
is confined at the ROM borders, while, in the vision-based system, it affects the whole
ROM. Given such results, we can state that the accuracy of the vision-based teleoperation
method is worse with respect to the glove-based one. The dynamic trials confirmed the
better performance of the glove-based system since the RMSE metric is between 2.8%
and 7.3% for the glove-based method and between 6.4% and 12.6% for the vision-based
one. In particular, the vision-based system performs worse for slow and small movements,
which characterize fine and delicate operations. Furthermore, the dispersion of the data
around the static characteristic is significantly higher in the vision-based system, hinting
at lower behavior predictability, lower mapping repeatability and lower precision. The
usability experiment demonstrated that the inaccuracy issues characterizing the vision-
based method do not compromise the teleoperation activity. However, it also underlined
that, with respect to the glove-based method, the average performance perceived by the
users is worse. Such result suggests that the lower accuracy of the vision-based method
may influence teleoperation performance.

Since the actuation control stage is the same for both systems, such a difference in the
accuracy performance is attributable to the different motion tracking stages. Indeed,
the results reported in section 3.2.2 for the analysis of the human hand motion track-
ing performance confirm that the vision-based tracking method has worse accuracy than
the glove-based tracking method at determining the desired robot pose according to the
human one, both in static and dynamic scenarios. Furthermore, given that in both the
developed tracking systems the processing to extract the human motion feature from the
sensor data and map it to the robot feature is reduced to the minimum, the worse perfor-
mance of the vision-based tracking method with respect to the glove-based one suggests
that the LMC device applied as a controller for the teleoperation of a bionic hand brings
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to a less accurate motion retargeting than the glove utilized in this work, at least if ad-
vanced and heavy processing techniques on the acquired data are not performed. The
source of such accuracy error may be due to the limits of the image processing procedure
performed by the LMS while reconstructing the joints position. Since LMC is one of
the most accurate vision-based tracking devices, such a conclusion may be extended also
to the vision-based tracking device category as a whole. Such conclusion regarding the
vision devices category is important, considering that the design of the glove utilized in
this work requires a far simpler design than vision tracking devices since it has a simple
structure and it does not need complex software, like the LMS, to derive the tracking data.
Such limits may be not significant when vision technology is applied for the interaction
with virtual reality; however, in the case of robot teleoperation in real scenarios, higher
accuracy is advisable to grant safety and effectiveness of the control, thus further research
is needed to develop more robust algorithms for joints position estimation.

User comfort During the usability experiment, thanks to its better accuracy, the glove-
based system performs better. However, the user study results, reported in section 3.3,
also underline a greater effort felt on average by the users when using the glove. As
suggested by the literature, the reasons may be the glove intrusiveness, which hinders
natural movements, and the mechanical frictions of the glove structure, which enhance the
effort needed to move the fingers. Such issue may seem less impacting on the overall system
performance than the accuracy issue characterizing the vision-based system. However, it
is interesting to note that the higher effort and frustration bring the average perceived
total workload practically equal to the one felt when using the vision-based system. Such
a result confirms that, although wearable mechanical tracking devices are more accurate
than vision-based ones, they can be strongly limited in their application by a mechanical
structure that is designed without giving high priority to the user comfort, thus making
vision-based systems so attractive despite their accuracy limitations. Therefore, in order
to make wearable systems more competitive, mechanical hardware must be improved
taking user comfort into account.

Time delay As reported in section 3.2.1, there is no discernible systematic difference
between the time delays which characterize the two systems. In both cases, the delay is
always under 0.5s, with a mean value across the six trials of about 0.2s, which is acceptable
and does not compromise the teleoperation activity.

Performance of the actuation control system Lastly, comparing figures 3.4 and
3.2, it is evident that, in both the cases, the overall teleoperation system behavior is very
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similar to the tracking system stage behavior. The only significant difference, for both the
systems, is a lower hysteresis in the lower part of the range. This brings an increment in
the linear behavior of the glove-based system and decreased non-linearity and hysteresis
for the vision-based system. The overall dispersion around the curves, in such region, is
slightly lower too. Also for the dynamic trials, the difference is minimal.

Such high similarity brings to the hypothesis that the motion tracking stage tends to
impact more than the actuation control stage on the accuracy of the overall system.
The results from the analysis of the actuation control system alone, reported in section
3.2.3, confirm such hypothesis. Indeed, the actuation control system is characterized by
a nice linear behavior over the 20% of the ROM with low dispersion. In such region, the
actuation control does not significantly affect the accuracy of the overall teleoperation
systems. The actuation controller has an active part in reducing the accuracy only below
the 20% of the range, where it is affected by non-linearity. This can be the cause of
a larger hysteresis in that region of the overall teleoperation systems. However, non-
linearity does not exceed 4.1% of the ROM, which corresponds to a bending angle of 5°,
which is irrelevant for finger teleoperation. Dynamic trials confirm that the desired bionic
hand pose is accurately transferred to the bionic hand. Therefore, the inverse kinematic
model obtained through finger motion calibration, applied through a proper algorithm,
proved to grant a generally accurate and reliable actuation control system, demonstrating
improvements with respect to the linear approach used in previous works.

Conclusion Mechanical wearable gloves and vision cameras are the most used hand
tracking devices in the context of bionic hand teleoperation. The lack of robust compar-
ative studies between the two classes, in terms of the impact on the overall teleoperation
control, prevents researchers to have a quantitative basis for selection, which could be
useful to address the specific limitations of the two methods, which ultimately restrict
their application.

For these reasons, this work firstly aimed at developing two teleoperation systems, based
on the two methods respectively, and designed to intuitively control the same under-
actuated bionic hand in a continuous pose space. A user experiment was executed to
demonstrate the usability of the developed systems. Results show that both systems can
be used to effectively perform grasp tasks on objects of various shapes and sizes, applying
both power and precision grasp skills.

The second main objective was to compare the two implemented systems in terms of
both accuracy and usability within the same experimental setup, to obtain a meaningful
comparison of the two tracking devices when applied to teleoperation. The accuracy
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experiment revealed a significantly lower accuracy of the vision-based teleoperation with
respect to the glove-based one. The user experiment underlined that such worse accuracy
may influence the grasping performance perceived by the user. Given the structure and
the functioning of the two teleoperation systems, the worse accuracy and performance
of the vision-based system is attributable to the limited accuracy of the vision camera
device, suggesting the lower suitability of such technology for performing fine and precise
tasks. Thus, further research is needed to develop more robust algorithms for image-based
joints positions estimation. On the other side, the user study suggested that the glove-
based method brings a worse comfort and higher effort by the user. Therefore, mechanical
hardware must be improved taking user comfort into account.

The third subsidiary objective, consisting in constructing an accurate non-linear motion
model of the bionic hand, was also achieved. Indeed, the actuation control stage of the
developed teleoperation systems, which is based on the obtained inverse kinematic model
of the fingers, proved to be highly accurate.

Future research may focus on three main aspects: (1) the design of a sensorized glove which
improves the user comfort while keeping a high accuracy performance; (2) the applica-
tion of sensor fusion techniques to improve the accuracy performance of the vision-based
method, while not increasing too much the system encumbrance; (3) the implementation
of a complete hand-arm teleoperation system.
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A| Appendix

Figure A.1: Dynamic trials of the tracking systems: synchronized human and robot signals
for wearable (a) and vision (b) systems.
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Figure A.2: Dynamic trials of the actuation control system: synchronized human and
robot signals for wearable (a) and vision (b) teleoperation systems.
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