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Abstract: Fall detection is the process of identifying human falls; this is an increas-
ingly important task in various fields, in particular in healthcare and elderly care,
where falls happen frequently. Falls can lead to important injuries, which often re-
main unnoticed for long periods of time, hence the need for an automated fall de-
tection method. This project presents an algorithm that solves the problem of fall
detection using an Ultra-Wideband (UWB) radar and an advanced neural network
model, deploying it on an Internet of Things (IoT) device. The model, in fact, makes
inferences directly on device, an Arduino microcontroller with limited resources. The
model’s training is computed on several UWB-radar recordings of falls and other hu-
man activities, from which it learns to recognize typical patterns of human falls.
UWB radar brings numerous benefits compared to traditional fall detection technolo-
gies, such as accelerometers, gyroscopes, and cameras. Indeed, it is a non-intrusive
system that preserves the user’s privacy (UWB radars do not capture or record vi-
sual images, individuals’ faces, and physical appearances). An integral aspect of
this thesis is the incorporation of Tiny Machine Learning (TinyML), a field of Ma-
chine Learning (ML) that focuses on the deployment of ML algorithms on low-power,
resource-limited devices, such as microcontrollers. This ensures the compactness and
energy efficiency of the proposed fall detection system.

To conclude, this thesis blends UWB radar, deep learning techniques, and TinyML
to introduce a cutting-edge, privacy-centric solution for fall detection. This approach
promises enhanced safety and sets a precedent for future developments in this delicate
healthcare domain.

Introduction

ternet of Things (IoT) devices, offering on-site

Machine learning, in particular deep neural net-
works (DNN), has been successful in solving
multiple challenges; DNN models proved to be
more effective with large and high-quality train-
ing datasets. Tiny Machine Learning (TinyML)
merges Machine Learning with compact and In-

data processing which ensures both privacy and
minimized latency. Meanwhile, UWB radars are
surging in popularity due to their versatile appli-
cations, including precise location tracking and
motion detection with a single device. The fu-
sion of TinyML and UWB radars opens the way



to efficient, privacy-focused applications, exem-
plified by this work.

The aim of this thesis is to develop a DNN model
able to make fall detection using UWB data
and deploy it on an IoT device, making infer-
ence directly on-device. By doing so, the pro-
posed solution is a low-power and low-memory
consumption, on-device, privacy-preserving al-
gorithm. To develop this algorithm, a novel neu-
ral network architecture, Fall-Net, has been de-
signed, which is especially efficient for the UWB
collected data. Indeed, none of the well-studied
neural networks in literature were suited for this
application given their architecture (too big and
complex for deployment on IoT devices, a cru-
cial component of this proposed solution). The
results achieved are promising: 0.98 accuracy on
the original model (no quantization applied) and
0.78 accuracy on the quantized model (which
means the data types of the network are reduced
from 32 to 8-bit) deployed on a microcontroller,
and the memory footprint is only 44KB.

1.1. TinyML

TinyML is a field of machine learning focused on
reducing the computational resources required
for machine learning solutions. This allows such
solutions to be deployed on limited-resources-
embedded devices. These kinds of devices have
been considered incompatible with ML solutions
because of their limited memory and compu-
tational power; Thanks to model compression
methods, however, machine learning algorithms
can be successfully deployed on devices despite
their limitation. For example, pruning of chan-
nels and layers of Convolutional Neural Net-
works (CNNs) has proven to be successful in re-
ducing the memory and computational demand
[4].  Another approach is quantization, which
consists in using limited precision of data type,
hence reducing the memory required to store
CNNs models [1]. Importantly, these approaches
apply to model evaluation only, which is the test-
ing of an already trained model; The training of
the model itself is a much more complex topic
since it requires memory to store intermediate
activations, and it relies on precise derivative
calculations.

1.2. Fall detection

Fall detection is the process of identifying a per-
son’s fall. The time delay between a fall and the
advent of medical assistance is crucial for the
subject’s health and must be minimized. Fall de-
tection systems can be life-saving, especially in
environments such as elderly homes where call-
ing for help can be challenging.

1.3. UWB radar

Ultra-wideband (UWB) radars are a type of
radar that exploit the benefits of low-power ra-
dio waves with expansive bandwidth (from 3.1 to
10.6 GHz) offering superior precision and imag-
ing capabilities compared to traditional radar
systems. Emitting brief pulses, UWB radars
measure the time-of-flight taken for these pulses
to reflect from objects, thereby calculating their
position and hence detecting movements [3].
UWRB radars are characterized by highly precise
recordings (they can detect changes in the en-
vironment in the order of the mm), low energy
consumption (typically < 0.1 W), and fast ac-
quisition of data (each scan requires only some
fraction of seconds to be collected). However,
these systems can sometimes be sensitive to en-
vironmental obstructions. With ongoing inno-
vations in the field, UWB radars are poised to
establish new standards in real-time detection
and safety applications [2].

2. Related works

Many fall detection systems have already been
developed.  These proposed solutions were
initially categorized as wearable-device-based,
ambient-sensors-based, and vision-based [10].
Wearable-based systems, employing accelerom-
eters and gyroscopes embedded in devices such
as wristbands and smartphones, are often in-
trusive for the individual; Ambient-sensors sys-
tems such as pressure sensors have problems
with subject identification (who or what caused
the pressure); Camera-based fall detection sys-
tems, lastly, have limitations concerning lack of
privacy and high costs. Notably, Ozcan et al.
[8] used wearable devices like smartphones and
tablets, providing mobility in detection beyond
controlled environments. Meanwhile, Kulurkar
et al. designed a specialized low-power device
with a three-axis accelerometer, achieving 95%
accuracy [5]. UWB radar is a relatively new



technology and it has been the subject of few
studies, including one by M. Noori et al. |[7],
which used UWB radar data, collected through
a robot and applied a long short-term memory
(LSTM) neural network, achieving an impressive
99.6% accuracy. Another interesting study de-
veloped a fall detection system with UWB radar
data in a single environment, utilizing a model
with convolutional layers and convolutional long
short-term memory [6], achieving a sensitivity of
95% and a specificity of 92.6% at a range of 8
meters.

Although all these solutions demonstrated that
fall detection can be effectively automatized,
none of them studied and developed a solu-
tion aimed at IoT, hence privacy-centric, low
costs, and low computational requirement, and
deployed it on a microcontroller with limited re-
sources, such as the proposed algorithm.

3. Problem formulation

The primary objective of this thesis is to develop
a neural network for fall detection using UWB
radar data for IoT, and deploying it on a micro-
controller with limited resources. More formally,
this problem can be reformulated as the design
of a classifier able to map a radar recording into
its label: let s; € RV*M with M, N € N, be
the signal received by the receiving antenna of
the UWB radar, being N the number of scans
or pulses emitted by the UWB radar and M the
number of spatial "bins", which is the number
of "quantized" distances in the acquisition range
and s; € S, where S is the set of all radar acqui-
sitions. Furthermore, S[i, j] with i € {1,..., N}
and j € {1,..., M} is the energy acquired by
the receiving antenna at the ¢-th scan at the j-
th bin. The problem aims to map s; to its la-
bel y;, where t € T is the set of labels, being
T = {fall,non — fall}. In particular, the clas-
sifier has to occupy a memory M with M <= A
where A is the available memory on the micro-
controller.
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4. Device and constraints

Two devices have been employed for the devel-
opment of the proposed solution: a UWB radar
to collect the dataset and a microcontroller on

which the solution has been deployed.

4.1. NXP
radar

The UWB radar used is produced by NXP
Semiconductors [9], it works on UWB bands
from 6.24 GHz to 8.24 GHz, and supports the
detection and relative location of moving ob-
jects based on the changes in the reflected sig-
nal, measured by means of channel impulse re-
sponse (CIR) estimates. A sequence of mod-
ulated pulses is transmitted and the receiver is
continuously listening to any reflections from ob-
jects in the surroundings for the duration of the
frame. The length of the computed CIR esti-
mate is a function of the time taken for the pulse
to reflect back from the object. The magnitude
of the received signal is a measure of the strength
of the signal reflected by the object and depends
on the reflected object’s properties such as size,
material, and angle of incidence. Moving ob-
jects cause a change in the phase if the reflected
carrier due to the Doppler effect.

UWB

Semiconductors

4.2. Arduino nano 33 BLE sense

The microcontroller used, on which the proposed
solution has been uploaded, is the Arduino nano
33 BLE sense, it has an ARM Cortex M4 MCU
running at 64MHz and only 256KB of SRAM.

5. Proposed solution

The proposed solution is an algorithm that takes
the UWB radar data as input, preprocesses
them, and subsequently gives them as input to a
pre-trained neural network model which classi-
fies them as "fall" or "non-fall". More formally,
let s; € RNVXM g, c S where S is the set of all
radar acquisitions, and M, N € N, be the signal
received by the receiving antenna of the UWB
radar, being N the number of scans or pulses
emitted by the UWB radar and M the number
of spatial "bins", which is the number of "quan-
tized" distances in the acquisition range. This
signal is the input to a preprocessing function
©,, and its output, ©,(s;) is the input to the
classifier ® which is composed by a feature ex-
traction ®; block and a classification block ®.
which classifies the input to the output class y;,
with ¢ € T being T' the set of classes, further-
more T' = {fall,non — fall}. The constraints
about ® are imposed by the microcontroller for



on-device implementation, in particular, the size
of ® +0,(S) <= M, with M the memory avail-
able on the microcontroller.
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Figure 1: Proposed solution process

5.1. Preprocessing

The preprocessing of the radar data is essen-
tial to highlight the features of interest, such
as the subject’s movements. Each data sam-
ple S has initial dimensions of 256x128. One
could also view it as 128212822 given that each
pulse provides 256 values, comprising both am-
plitude and phase for every spatial bin. As part
of the preprocessing, the norm of every value
is determined, resulting in a 128x128 matrix,
denoting time-space dimensions. Decluttering,
a technique aimed to remove or reduce of un-
wanted interference is then applied.

In particular, "moving average filter" declutter-
ing technique has been used for the proposed so-
lution, although multiple other techniques have
been tested. This technique works by com-
puting the mean of a predefined range of data
points and then offsets this average from the cur-
rent data value, accentuating abrupt changes in
value. This operates on both time and space
dimensions, highlighting any substantial event
that differs from its immediate average. For-
mally, it can be represented as:

1 -1 j—1
Mi,j(R, w) = RiJ — E Z Z Rm,n

m=i—w n=j—w

where R is the radar matrix and R; ; represents
the i** time point at the j** spatial bin, w is the
window size, set as 3.

After decluttering, each recording is trimmed to
capture the most pertinent details for the study,
resulting in a more compacted 562107 matrix,
where 56 denotes the space dimension (spatial
bins) and 107 the time dimension (10.7 seconds).

5.2. Model architectures

Multiple architectures have been tested for this
research, with two of them showing particularly

good performances. Let’s call the first one Fall-
Net-2; Fall-Net-2 is a traditional style CNN with
15.297 parameters, it has an Input layer de-
signed to accept 2D UWB radar data, repre-
sented as a 562107 2D matrix. Then, the archi-
tecture has its feature extraction phase ¢ with
a ConvlD layer that utilizes 8 filters of size 3
and the >tanh’ activation function, followed by
another convolutional layer which leverages 16
filters of size 6, this time with a ’relu’ acti-
vation function, enhancing the model’s ability
to extract more intricate patterns based on pre-
ceding layer outputs. Let’s call the second ar-
chitecture Fall-Net, which is the proposed solu-
tion; Fall-Net has 45.601 trainable parameters
and its feature extraction part, ¢, presents an
"Inception Module", characterized by 4 parallel
branches of different convolutional operations.
Within this module, the 4 branches consist of a
1x1 convolution, a 3x3 convolution following a
1x1 convolution, a 5x5 convolution following a
1x1 convolution, and a 1x1 convolution follow-
ing a max-pooling operation. These branches
are then concatenated to form the module’s out-
put. The intention behind this parallel structure
is to allow the model to learn different spatial hi-
erarchies in the input data simultaneously. Af-
ter the Inception module, the network flattens
the output, passes it through a dense layer, in-
cludes a dropout for regularization, and finally
outputs through a sigmoid activation function
for binary classification, which is the classifica-
tion block ¢.. Both models have been trained
with Adam optimizer, learning rate scheduling
with ReduceLROnPlateau() starting from 0.001
with a minimum of 0.0001, early stopping and
batch_size = 32.

5.3. On-device deployment

Quantization, a process that uses limited pre-
cision data types, was conducted, reducing the
model sizes to make them fit into the microcon-
troller. A full 8 bit quantization was introduced.
The initial structure of the networks and size of
the data was reduced drastically, from 32 bits
to 8 bits, in particular, from float32 to UINTS.
Fall-Net-2 reduced its memory occupation from
68KB to 12KB, while Fall-Net from 186 KB to
44 KB. The models have been uploaded on the
Arduino nano 33 BLE sense and inference has
been run directly on the device. The time of



Executive summary Amedeo Carrioli

execution for the prediction for each sample on
device is 35 milliseconds for Fall-Net-2 and 19
milliseconds for Fall-Net.

6. Dataset

The dataset deployed, collected using the UWB
radar model by NXP Semiconductors, which we
will call NXP Semiconductors dataset, consists
of radar recordings from various room scenar-
ios, highlighting the algorithm’s adaptability to
different environments.

6.1. Data Collection Process

The dataset for this research was curated first-
hand with assistance from several participants,
with special attention on diversity in terms of
movements, activities, and environments. Each
recording lasted 12.8 seconds, producing 128 dis-
tinct radar pulses, since the working frequency
of the radar was 10Hz. The radar was capa-
ble of capturing both the amplitude and phase
of its 128 spatial bins since the signal returned
as real and imaginary parts of a complex num-
ber. The data collected has a 128x128x2 matrix
format, where 128 denotes the spatial bins and
the number of radar pulses, and 2 represents the
amplitude and the phase of each. After the first
pre-processing step, which calculates the norms
between the amplitude and phase of each com-
plex number, the matrix has a shape of 128x128
(time-space dimensions).

The diversity of the dataset was further high-
lighted by the varied room environments it was
captured in, each with its distinct architectural
features and materials. Some rooms had unique
challenges, such as the absence of a wall facing
the radar, while others had potential interfer-
ence sources, like glass and metal elements. The
dataset consisted of 1,656 recordings, divided
into eight distinct categories: non-presence,
sitting and moving around, standing and
moving, chair still, standing still,
fall, pick up something, laying on the
ground. To ensure the algorithm’s versatility,
the radar’s position and orientation were fre-
quently altered to prevent overfitting to specific
room features.  Activities were specifically
chosen to represent the most common actions of
individuals, particularly the elderly in nursing
homes.

7. Experiments and Results

Multiple experiments have been conducted to
find the best model performance while guar-
anteeing reduced network dimensions to fulfill
the memory constraints of the microcontroller.
As previously mentioned, multiple decluttering
techniques have been tested, a comparison of
these is shown in the next figure.
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Figure 2: Fall-Net comparison over decluttering
methods

Although the primary goal of this research is
fall detection, experiments have initially been
done for presence detection, a binary classifi-
cation task on the same dataset where all the
classes in which an individual is present have
been given a presence label. Fall-Net reached
0.98 accuracy on the test set on the presence de-
tection task and 0.74 accuracy using the quan-
tized model on device.

The next table shows the results achieved for
the fall detection task. The columns of the ta-
ble represent, from left to right, the model name
and decluttering technique, accuracy of the orig-
inal model, accuracy on device using the quan-
tized model, memory occupation of the model,
execution time to invoke the model, and make
inference on device. In particular, the row high-
lighted in green represents the proposed solu-
tion, which is Fall-Net employing moving aver-
age decluttering technique.



Accuracy Accuracy Memory Exec.
on device time

Fall-Net + 0.98 0.78 44KB 19ms
MA
Fall-Net-2 0.98 0.72 12KB 35ms
+ MA
Fall-Net-2 0.94 0.76 12KB 35ms
+ Raw data

Table 1: Fall detection results

Since the dataset presented 8 different ac-
tivities, we extended the algorithm to make
activity-type-detection (HAR), which is a multi-
classification problem with 8 outputs. Fall-Net
reached 0.65 accuracy. The quantization pro-
cess made the performance drop, and this can
be explained in multi-classification, softmax ac-
tivation function is used, then, the argmax()
among the probabilities is computed to find the
output class. These probabilities are often rela-
tively close to each other, and converting from
float32 to UINTS inevitably transforms similar
floating point numbers into the same in num-
bers.

8. Conclusions

Operating within controlled environments, the
developed algorithm shows the potential of
TinyML combined with UWB radars as pow-
erful tools for fall detection and beyond. The
successful implementation and outcomes of this
study underline the capabilities of this technol-
ogy, not only in health monitoring and preven-
tive care but extending its horizon across multi-
ple domains.
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