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1. Introduction
This study focuses on condition-based mainte-
nance, particularly in the realm of Structural
Health Monitoring (SHM), which relies on real-
time data and sensor information. The primary
emphasis is on Lamb wave-based algorithms
for diagnosing damage in thin-walled structures,
utilizing piezoelectric devices for wave gener-
ation and detection. Traditional approaches
involve tomographic algorithms and diagnostic
signals, but they face limitations such as un-
even sensing network density, subjective pa-
rameter selection, and difficulty in quantifying
damage. Machine learning methods, including
feed-forward neural networks and convolutional
neural networks, have been explored for dam-
age diagnosis [1]. However, supervised learn-
ing schemes are identified as costly [2], prompt-
ing the introduction of Physics-Informed Neu-
ral Networks (PINNs) as an unsupervised alter-
native. PINNs aim to solve partial differential
equations by approximating the solution field
with a neural network. While potentially less
efficient than classical solvers in some contexts,
PINNs are considered promising, offering a more
comprehensible model that integrates both data
and theoretical elements. The current research

trend in SHM centres on developing models ca-
pable of overcoming the aforementioned limita-
tions and eliminating the need for pre-processing
or extracting damage indices from sensor sig-
nals. The objective of this thesis is to develop
tools and methodologies using PINNs to diag-
nose damage using Lamb waves. Additionally,
it aims to evaluate the practicality of employing
PINNs for SHM applications, with the intention
of addressing challenges encountered by tradi-
tional methods.

2. Methodology
2.1. Theoretical Background
Lamb waves refer to ultrasonic-guided waves
that move through slender structures like plates
and shells described by equation (1). In contrast
to bulk waves, Lamb waves are restricted to the
structure’s thickness. This confinement enables
them to engage with defects, boundaries, and
other features within the material. This char-
acteristic enhances their effectiveness in identi-
fying concealed flaws and evaluating the struc-
tural soundness of various engineering compo-
nents, spanning from aircraft wings to pipelines
and bridges.
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ρutt = ∇ · (σ) + f (1)

Where material properties of the domain are
considered trough elastic modulus E and Pois-
son ratio ν inside the constitutive relationship
for elastic material hence relating stress tensor
σ and displacement vector u. The density is
represented by ρ, forcing vector by f and ∇· is
the divergence operator applied to stress tensor
σ. Three different models can be derived from
the general equation (1): one-dimensional, two-
dimensional and three-dimensional. The equa-
tions presented assume an homogeneous mate-
rial, making it impractical to accurately describe
domains where material properties vary. The
introduction of variable material properties be-
comes essential for representing real scenarios
such as damages and holes within the domain.
The mono-dimensional wave equation is solved,
which describes an axial wave that propa-
gates along the coordinate x through a one-
dimensional string with the two ends fully con-
strained. Parametrization used to solve full in-
version problem for the one-dimensional wave
equation is the one written in equation (2):

c(x)2 = γ(x)c20 = γ(x)
E

ρ
(2)

where c0 is the constant wave speed defined as
a function of density ρ and elastic modulus E,
instead γ(x) is the parameter that is a function
of the position x and multiplied with the mate-
rial property c0, gives the actual material prop-
erty of the domain in that position. Introducing
this parametrization general wave equation (1)
in one-dimensional form with variable material
property is obtained:

utt = c20
∂

∂x
(γ(x)

∂u

∂x
) +

f

ρ
(3)

where u is the displacement in the x direction
and f is the force applied in the same direction.
In order to solve the aformentioned inversion
problem for the wave equation and, thus, to per-
form damage identification, the paper discusses
a recently developed class of machine learning
techniques, specifically PINNs. In a PINN, neu-
ral networks approximate the solution to a phys-
ical system while adhering to the governing laws

of physics. This is achieved by incorporating
the equations describing the underlying physical
phenomena as constraints during the neural net-
work training process. PINNs are advantageous
for efficiently solving partial differential equa-
tions, modelling complex systems, and adapt-
ing to various data types. The neural network
structure typically follows a Feed-Forward Neu-
ral Network (FFNN) format, where inputs are
the coordinates of the partial differential equa-
tion to be solved, and outputs represent the so-
lution for each coordinate. The optimization
algorithm adjusts the network weights during
training based on both the available data and
the physics in the form of the partial differential
equation residual, ultimately optimizing the fit
of the solution to the partial differential equa-
tion being solved.

2.2. Workflow
The first step is to develop tools able to solve
the wave equation, with the aim of being im-
plemented in the PINN methods developed. In
this context is useful to present the procedure to
realize the finite difference solver for the mono-
dimensional wave equation (3). The domain se-
lected is a one-dimensional string along dimen-
sion x with the edges fully constrained and thus
u at those points is set to zero. The wave equa-
tion is then solved in the finite difference frame-
work using the following stencils for the partial
differential equation, and initial and boundary
conditions:

un+1
i = 2uni − un−1

i

+c2
dt2

2dx2
[(γi + γi+1)(u

n
i+1 − uni )]

−c2
dt2

2dx2
[(γi+ γi−1)(u

n
i − uni−1)] +

dt2

ρ
fn
i

(4)

BC : un0 = 0, unNx
= 0 (5)

IC : u0i = 0 (6)

where i is the index for the space position node
and can assume values between i = 0 and i =
Nx, while n is the index for time, varying across
n = 0 to n = Nt. Consider that Nt + 1 is the
number of time nodes and Nx+1 is the number
of spatial nodes of the grid, as a consequence
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dx and dt are defined as the step in respectively
space and time, computed as follows:

dx =
Lx

Nx
, dt =

Lt

Nt
(7)

where Lx is the length of the domain in x direc-
tion, while Lt is the end time of the simulation.
The stencil of the initial condition on the deriva-
tive is not important because the derivative of
a null quantity is already zero. Consider that
the mono-dimensional wave equation is too sim-
ple to model Lamb wave behavior, hence dur-
ing thesis work more complex solver has been
developed and in order to be clear and concise
are not reported in this summary. Those solvers
have also been validated using simulation com-
ing from the Abaqus software package.

Methods developed make use of a neural net-
work that predicts the distribution of the mate-
rial on the domain, they differ on how the loss
function is defined. The prediction of material
distribution is the focus of a Feed-Forward Neu-
ral Network (FFNN) characterized by a straight-
forward architecture. In this network, the spa-
tial position is the input, and the output is the
material distribution, denoted as γ. This dis-
tribution is a function that, when multiplied by
the material property, yields the material prop-
erty value at that specific point. The simpli-
fied physics-informed method uses displacement
measurement um coming from sensors placed on
the domain and the material distribution predic-
tion γ from the neural network Aγ to compute
the residual of the partial differential equation.
This residual represents the loss function that is
minimized by the optimization algorithm modi-
fying neural network parameters θ. Steps made
for each epoch are represented in the Scheme 1.

Figure 1: Simplified physics-informed method

In order to overcome the limitations presented
in the previous method the Physics-informed

method coupled with a numerical solver is de-
veloped starting from the work done in this pa-
per [3]. The original method was modified so
it could deal with Lamb waves. Such a method
is selected due to the reduction in complexity
of the optimization process compared to a more
traditional PINN approach that uses a neural
network to solve both forward and inverse prob-
lems as in [4]. This method implements a finite
difference solver (Forward Solver) that computes
the wave field u using material distribution γ
predicted from the neural network, in this way
the partial differential equation is always satis-
fied and therefore the loss function is the mean
of the square difference between predicted dis-
placement in the sensors points u(xm) and the
actual displacement in those points um.

Forward
Solver

automatic differentiation

Figure 2: Physics-informed coupled with finite
difference solver method

3. Case studies
3.1. 1D
The first model developed and analyzed is the
one-dimensional model with two variants stud-
ied in order to assess the capabilities and per-
formance of the methods presented in this pa-
per. Simulating a wave in a one-dimensional do-
main is comparably simple to propagating Lamb
waves in a plate and thus it makes the one-
dimensional case a perfect environment to com-
pare the two methods. The selected domain is
a string clamped at both ends, with a length of
Lx = 10 cm, composed of aluminum and ex-
hibiting damage. A force is applied in the mid-
dle using a sine wave modulated with a Han-
ning window with a specified number of cycles,
ncycles = 3, to reproduce the lamb wave ex-
citation. There are 9 sensors, equally spaced
along the string, and no sensor is placed on the
clamped ends as shown in Illustration 3.
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x

Figure 3: Domain configuration, red dots are
the sensors

The neural network selected is an FFNN, with
x as input and γ output, it has 4 hidden lay-
ers of 5,10,10,5 neurons per layer. The results
obtained with the simplified physics-informed
method are reported in Figure 4, for reasons of
numerical stability the frequency selected in this
case is f = 25 kHz.

Figure 4: Simplified physics-informed method
results compared to actual material distribution

Then, the Physics-informed neural network cou-
pled with a finite difference solver method is
tested, this time the frequency of the forcing
term is similar to the one of typical Lamb waves
propagation i.e. f = 300 kHz.

Figure 5: Physics-informed coupled with finite
difference method results compared to actual
material distribution

Both methods are capable of detecting the dam-
age, however accuracy of the Simplified method
is lower since it is not capable of estimating cor-
rectly the change in material property and has
strong limitations in the type of forcing term for
numerical stability reasons. Physics-informed
coupled with finite difference solver method is
comparably more accurate in both position and
material property estimation. Nevertheless, the
computational effort is increased in comparison
with the other method tested.

3.2. 2D
Physics-informed coupled with finite difference
solver is tested on a two-dimensional case study
to correctly model lamb waves, which is not fea-
sible in the mono-dimensional model. The do-
main selected is a plate section with two sides
clamped and the other two free to move, the
two dimensions are the thickness and length of
the plate, the other dimension is not considered
for the reason that is under plane strain con-
dition. The plate section is made of aluminum
and has the following dimensions 5 × 0.1 cm,
the force is placed at the middle with frequency
f = 400 kHz with a configuration that ex-
cites the A0 mode. Four sensors are placed on
the top free surface equally spaced one between
the other, no sensor is placed at the clamped
sides as represented in Illustration 6. The neu-
ral network selected is the same as the one for
the mono-dimensional case and material distri-
bution is considered constant along the thick-
ness, and thus the algorithm has to perform ma-
terial prediction only along the length direction.

x

z

Figure 6: Domain configuration, red dots are
the sensors

Results obtained running the algorithm are re-
ported in Figure 7, the implemented neural net-
work is able to correctly identify the position
and quantify material properties change due to
damage presence.
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Figure 7: Physics-informed coupled with finite
difference method results compared to actual
material distribution

3.3. 3D
The mono-dimensional and two-dimensional
studies prove the capability of the Physics-
informed coupled with finite difference solver
method using actual Lamb waves, and then the
three-dimensional domain is tested to exten-
sively prove this method. In the latter case,
the domain is a plate clamped at the edges and
the upper and lower surfaces are free to move,
with dimensions 5 × 5 × 0.1 cm. This time
the wave propagating is an actual Lamb wave,
the excitation configuration produces a pure A0
mode Lamb wave that propagates from the mid-
dle of the plate with frequency f = 400 kHz.
The force selection is driven by some problem
related to the dispersion behaviour of the Lamb
waves that appeared during the formulation of
the finite difference solvers, i.e. certain modes,
in particular the A0, do not show the correct
dispersion. A detailed analysis of this topic is
carried out in the paper. The sensors configu-
ration is a 5 × 5 equally spaced grid placed on
the free upper surface with the middle sensor re-
moved due to the presence of the force, sensors
are not placed at the clamped sides as shown in
Illustration 8.

x

y

z

Figure 8: Sensors position reprensented by red
dots

In Figure 9 the material distribution is shown,
note that along the thickness of the plate mate-
rial properties remain constant.
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Figure 9: Material distribution

The network selected has the same structure as
the one used in the mono-dimensional case, the
only difference is the number of inputs that be-
comes x and y, the position in space in the re-
spective direction. The results obtained by run-
ning the algorithm are represented in Figure 10.
The method has been capable of indicating the
damage position, however not as precisely as in
the other case due to the increased complexity
of the domain.
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Figure 10: Physics-informed coupled with finite
difference solver method results

4. Conclusions
In this study, two physics-informed data-driven
methods for localizing damage in thin-walled
structures using Lamb waves are presented.
These methods aim to perform damage diag-
nosis without relying on black-box neural net-
works or feature extraction processes. The two
methods differ in how they implement known
physical laws. The first method incorporates
the physics of the problem directly into the loss
function, while the second method involves a
neural network predicting material distribution,
coupled with an in-house finite difference solver
for solving elastodynamic simulations involving
Lamb waves in 1D, 2D, and 3D. Three case stud-
ies were conducted: in the mono-dimensional
case, both methods effectively detected dam-
age position in a string domain. However, the
first method had limitations in accurately quan-
tifying material properties in the damaged re-
gion and suffered from numerical stability prob-
lems. The second method overcame these limita-
tions but had increased computational demands.
Regarding the two-dimensional case, only the
second method was tested on a plate under
plane strain, demonstrating its ability to detect
the damage location and evaluate wave speed
changes in the damaged area. Finally, in the
three-dimensional case, the second method was
tested on a plate, successfully detecting dam-
age position but with less accuracy than in the
1D and 2D cases. The computational cost of
the second method was noted to be high due to
the embedded finite difference solver. Recom-
mendations to improve efficiency included im-

plementing convolutional neural networks, us-
ing gradient clippings, loss function weighting,
and GPU implementation of finite difference
solvers. The formulation of the finite difference
method for the wave equation is intricate, and
establishing accurate stress-free boundary con-
ditions has posed a challenge in simulating Lamb
wave modes. This complexity has resulted in
an incomplete representation of dispersion phe-
nomena in specific configurations of the forc-
ing term, thereby restricting the available fre-
quency range. As a prospective expansion, eval-
uating the method’s capacity for damage detec-
tion using sensor data obtained from an actual
plate equipped with piezoelectric sensors could
enhance its assessment in a real-world context.
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