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Abstract

The first stage of primary production from oil fields is driven by the natural pressure
of reservoir fluids, which inevitably drops after a period of time. Then, a secondary
production phase is initiated, in which an external fluid is pumped underground to improve
oil recovery. The most common method for this secondary production is waterflooding,
which consists in injecting water from wells to displace hydrocarbons. In waterflooding,
the optimization of the water injection schedule is essential to maximize the economic
production of the field, while reducing wastes and emissions.

Waterflooding optimization can be performed by field engineers and operators, supported
by surveillance methods, and by using numerical optimization with physics-based reservoir
models. Surveillance methods allow operators to drive their decisions through the analysis
of production data and decline curves. This way is heavily dependent on the operators’
experience and, in most cases, leads to suboptimal policies, especially over long-term
operation. On the other hand, simulation-based optimization is difficult to apply in
practice because of the huge computational cost required to repeatedly run the complex
reservoir models and also the time and effort required to build and tune the models itself.
This becomes even more challenging for mature fields, which have undergone many years
of production of a high number of wells. Actually, to reduce the computational burden,
many studies suggest the use surrogate-based optimization (SBO) methods, in which
the physics-based reservoir model is replaced by a data-driven model of fast execution.
Many studies employ shallow artificial neural networks (ANNs) as simple static function
evaluators, approximating the mapping between the decision variables and optimization
criteria, but lacking of information about reservoir behavior and not providing engineering
interpretations of the obtained optimal decisions.

This thesis presents an innovative SBO framework for waterflooding management in ma-
ture oilfields, which integrates machine learning (ML) models, such as long short-term
memory (LSTMs) and physics informed neural networks (PINNs), with optimization tech-
niques, like ensemble-based and genetic algorithms. The framework builds a ML model
that approximates a complex physics-based reservoir model to accurately predict the fu-
ture state of the reservoir in terms of the wells’ water and oil production profiles, as a
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function of the water injection profiles. Then, the ML-based reservoir model is integrated
within an optimization algorithm to search for the optimal injection profiles, considering
the net present value (NPV) as objective function while satisfying different operational
and economic constraints.

The effectiveness of the proposed framework is validated through its application to two
case studies. The first considers a 2D reservoir model with homogeneous geological prop-
erties, including 4 production and 5 injection wells. PINNs are used as forward models
to integrate physical constraints during training. The second is the well-known case of
the Olympus field, which is a 3D reservoir model with complex geological properties, in-
cluding 7 injection and 11 production wells. In this case, LSTMs are used as forward
models, since time needs to be integrated explicitly into the forecast. The optimal injec-
tion schedules provided by the proposed method are validated by comparing them to those
recommended by standard reservoir practices and state-of-the-art software. The results
show a good prediction accuracy, significant reduction in the required computational time
and, even more, provide high-level operational recommendations and guidelines.

Keywords: oil production, waterflooding, reservoir simulation, optimization, machine
learning, PINN, LSTM, genetic algorithms
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Abstract in lingua italiana

La prima fase di produzione dai giacimenti di petrolio è sostenuta dalla pressione dei fluidi
di giacimento, che, dopo un periodo di tempo, inevitabilmente diminuisce. È necessaria
quindi una fase secondaria di produzione, che prevede l’iniezione di un fluido esterno,
iniettato nel sottosuolo al fine di incrementare il recupero di idrocarburi. Il metodo più
comune è il waterflooding, che consiste nell’iniettare acqua da alcuni pozzi per facilitare
l’estrazione del petrolio. L’ottimizzazione del programma di iniezione è essenziale per
massimizzare il rendimento economico del giacimento e ridurre gli sprechi, nonché limitare
le emissioni.

L’ottimizzazione del processo di waterflooding può avvenire o mediante metodi tradizion-
ali di sorveglianza del giacimento, cioè tramite azione diretta degli ingegneri e operatori,
oppure con l’ausilio di tecniche di ottimizzazione numeriche, basate sulla simulazione di
modelli fisici del giacimento. I metodi di sorveglianza, in cui gli operatori prendono de-
cisioni sulla base dei dati di produzione, dipendono fortemente dalla loro esperienza e
possono condurre a una gestione subottimale, specialmente sul lungo termine. D’altro
canto, l’ottimizzazione basata su un simulatore è complessa da realizzare nella pratica,
sia a causa dell’alto costo computazionale che deriva dalla complessità dei modelli di
giacimento, sia a causa del tempo e delle risorse necessarie per costruire e calibrare i
modelli stessi. Ciò è particolarmente rilevante per i giacimenti maturi, con molti anni
di storia produttiva e numerosi pozzi. Per limitare i tempi computazionali, diversi studi
suggeriscono l’uso di modelli surrogati per l’ottimizzazione (SBO), che sostituiscono il
modello fisicamente basato con un modello basato sui dati di produzione (data-driven),
con tempi computazionali ridotti. La maggioranza di tali studi sfrutta reti neurali artifi-
ciali (ANN) tradizionali come semplici approssimazioni della relazione tra le variabili di
controllo e i criteri di ottimizzazione, senza tuttavia fornire informazioni sul comporta-
mento del giacimento o interpretazioni ingegneristiche delle soluzioni ottimali ottenute.

Questa tesi presenta una metodologia innovativa SBO per la gestione del processo di
waterflooding per giacimenti maturi, che integra modelli di intelligenza artificiale, come
reti neurali long short-term memory (LSTM) e physics informed (PINN), con tecniche
di ottimizzazione, tra cui algoritmi genetici ed ensemble-based. La metodologia propone



di costruire un modello di machine learning (ML) che approssimi il complesso modello
di giacimento e che predica con precisione le condizioni future del giacimento stesso in
termini di produzione di acqua e olio, in funzione delle iniezioni di acqua. In seguito, il
modello ML del giacimento è integrato con un algoritmo di ottimizzazione per ottenere
i profili di iniezione ottimali, con il valore attuale netto (NPV) come funzione obiettivo,
rispettando alcuni vincoli operazionali ed economici.

L’efficacia della metodologia proposta è validata attraverso l’applicazione a due casi di
studio. Il primo caso è un giacimento sintetico 2D, con proprietà geologiche omogenee,
quattro pozzi produttori e cinque iniettori. Reti neurali PINN sono impiegate come
modello, al fine di integrare vincoli fisici durante la fase di training. Il secondo caso è il noto
Olympus, un giacimento sintetico 3D con proprietà geologiche complesse, sette iniettori e
undici produttori. In questo caso, reti neurali LSTM sono impiegate come modello, poiché
il tempo deve essere integrato esplicitamente nella predizione della rete. Le strategie di
iniezione ottimali ottenute sono poi validate confrontandole con altri scenari di produzione
tipici dei giacimenti e un software commerciale per ottimizzazione del waterflooding. I
risultati mostrano una efficace previsione da parte del modello, una significativa riduzione
dei tempi computazionali e strategie di ottimizzazione coerenti con i casi di studio.

Parole chiave: produzione, waterflooding, simulazione di giacimento, ottimizzazione,
machine learning, PINN, LSTM, algoritmi genetici
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1| Introduction

New discoveries of oil and gas reservoir are declining [1], while most of the existing fields
have already reached their mature stage of production, in which the natural pressure
of the reservoir has already dropped and become insufficient for natural depletion of the
reservoir. In such situation, an external fluid, e.g., water, is injected to add energy into the
reservoir-fluid system and maintain the reservoir pressure, acting as a driving force to keep
oil flowing [2]. This process is known as waterflooding. Then, optimizing the waterflooding
process is essential to increase oil recovery from reservoirs, decrease operational costs and
reduce environmental hazards, while continuing to satisfy the increasing global demand
for energy [3].

Traditionally, waterflooding optimization is performed through surveillance or model-
based optimization methods [3]. With surveillance methods, decisions are taken reactively
by field engineers and operators, based on the observed conditions around each well, and
on the analysis of production data and decline curves [4]. This approach is complicated
and depends heavily on the experience of field engineers and operators, with the results
that it often leads to suboptimal solutions. On the other hand, model-based optimization
methods rely on the use of a physics-based model that accurately describes the reservoir’s
behavior [5]. Although these methods are potentially accurate and have a desired lifecycle
perspective, their application is practically challenging due to the complexity and compu-
tational expense of the reservoir models. To construct an accurate 3D geological model,
extensive effort is required from a variety of professionals, including engineers, geologists
and geophysicists, typically for several months. Geological models, then, undergo the
process of history matching, in which the model’s parameters are tuned onto historical
data and measurements. History matching is also a long, complex, and time-consuming
process: the higher the complexity and size of the field, the more time-consuming and
computationally heavy history matching becomes; the same is true for simulation runs.
For these reasons, well-tuned models are not always available or apt to the purpose.

Furthermore, for large fields with dozens of wells, the dimensionality of the optimization
problem quickly rises if well patterns, bottom-hole pressures (BHPs) and injection rates
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are all taken as control variables [3].

To overcome these modelling challenges, surrogate-based optimization (SBO) methods
have been proposed, where a surrogate model, capable of predicting the reservoir’s be-
havior in a fast but still accurate way, replaces the complex physics-based model in the
optimization problem, so as to accelerate the convergence of its solution [6]. At this
point, it is worth mentioning that a well-tuned geological model is a powerful tool that
can be used to forecast the reservoir’s behavior in a variety of engineering problems, such
as waterflooding, enhanced oil recovery, well placement, geomechanics evaluations; on
the contrary, reservoir model surrogates are typically constructed ad hoc for the specific
problem of interest.

Two classes of surrogate models are considered in literature, including shortcut physics-
based models and machine learning (ML) techniques. Shortcut physics-based models are
obtained by applying specific techniques (e.g., hierarchical modeling [7–9] and model order
reduction [10–12]) to simplify the high-fidelity physics-based model, to obtain a simpler
and computationally cheaper model of the reservoir. However, the applications of these
simplifying techniques require some knowledge on the geology and physics of the reser-
voir, as well as access to the explicit equations of the high-fidelity physics-based model
[13]. Besides, their accuracy can be compromised when applied to large-scale reservoir
models. On the other hand, ML models [6, 12, 14] can be built either using simulation
data generated by the full-physics model or real data collected from the field by means of
modern well-sensor technologies, in the case where a model for the reservoir not available
[3, 15]. ML models do not require any knowledge of the geology/physics of the reservoir
and have the ability to handle complex, large-scale fields [13, 16]. Among different types
of ML models, artificial neural networks (ANNs) are widely used in reservoir design and
operation optimization problems due to their potential capabilities to approximate the
challenging behavior of such systems, in terms of high dimensionality, nonlinearity, noise,
and non-smoothness. Nevertheless, they have been extensively applied to tackle history
matching problems [16, 17], whereas their application in oil production optimization prob-
lems is still limited and, certainly, not extensive at industrial level [15].

Specifically, in waterflooding optimization problems, ANNs have been highly recom-
mended as surrogate models [18], although they were applied for problems with relatively
few input control variables. Queipo et al. (2002)[19] used ANNs as a surrogate model in a
steam-flooding optimization problem involving a 2D synthetic field with one injection well
and two production wells. An ANN model is used to approximate an objective expressed
as a weighted sum of the cumulative produced oil and cumulative injected steam, as a
function of design and operational variables that include vertical spacing of the injection
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well, injected steam enthalpy, injection pressure and subcooling. The ANN model is cou-
pled with the Efficient Global Optimization algorithm (EGO) to search for the optimal
solution. Zangl et al. (2006)[20] developed an ANN-based optimization workflow and
applied it to gas injection optimization in a field composed of 7 injection and 12 pro-
duction wells. The ANN is developed to approximate the mapping between the injected
gas pressures and temperatures, and the objective function is expressed in terms of the
total oil production. Then, a genetic algorithm (GA) is used to identify optimal values of
the decision variables. The works reviewed above have employed ANNs as simple static
function evaluators that approximate the mapping between the decision variables and a
given optimization criterion, formulated in terms of an objective function, neglecting dy-
namic information about the reservoir’s behavior and, thus, preventing to impose physical
constraints on the behavior of certain variables (e.g. water production rates).

Advanced approaches have employed ANNs as dynamic models to predict the time-
evolution of the reservoir state variables (e.g. water and oil production rates) over long
time horizons. This is especially useful when constraints are to be imposed to the opti-
mization problem. Even though the risk of error propagation on the objective function is
higher, these dynamic representations allow a much deeper and realistic insight into the
reservoir’s behavior. Golzari et al. (2015)[21] applied ANNs to the production optimiza-
tion of a 3D synthetic field including 2 injection and 4 production wells. An ANN-based
dynamic model is trained, by adaptive sampling, to approximate the oil and water pro-
duction rates as a function of BHPs. Then, considering the net present value (NPV)
as objective function, a GA is used to identify the optimal BHP schedule. Salam et
al. (2015)[22] used ANNs coupled to a GA for design and production optimization of a
realistic 3D reservoir model composed of 10 wells. ANNs are harnessed to approximate
mappings between the decision variables (well locations, production and injection rates,
and scheduling of conversion of production wells into injection wells) and two objective
functions, including the cumulative oil production and the NPV. Teixeira and Secchi
(2019)[23] employed ANNs for waterflooding optimization of a 3D mature field composed
by 14 production and 11 injection wells. Different designs of ANN-based dynamic models
have been developed to forecast the future values of the oil production rates as a function
of current and previous values of the water injection rates, oil production rates or BHPs.
Then, the developed ANN is coupled to a gradient-based algorithm to search the optimal
solution, considering the total oil production as objective function. Bruyelle et Guérillot
(2019)[24] proposed a method for multi-objective optimization of waterflooding based on
ANNs and evolutionary algorithms, and applied it to the Brugge field benchmark. The
ANN model is used to approximate two objectives, including the NPV and its risk (NPV
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variance) over multiple geological realizations. A covariance matrix adaptation evolu-
tionary algorithm (CMA-ES) is used to identify the Pareto front of the BHP schedules,
taking into account the previously mentioned objectives. Chai et al. (2020)[25] tested
different combinations of different surrogate model types (e.g. ANN and extreme gradient
boosting) with optimization algorithms (e.g. particle swarm optimization (PSO), GA and
genetic swarm optimization (GSO)) for waterflooding optimization, and applied them to
a 2D model of a huge mature field. The surrogate models take as inputs the injection and
production well BHPs and provide as output the oil and water production rates.

Most of the these works have focused on feedforward ANNs as surrogate models, which
have two main limitations:

– risk of under-fitting dynamics: hydrocarbon reservoir possess very complex dynamic
behaviors, which evolve over time, i.e. the response to the same input varies over
time;

– risk of predicting non-physically supported behaviors.

With respect to the first limitation, recurrent neural networks (RNNs) [13], such as long
short-term memory (LSTM) networks [26], are specifically designed to predict dynamic
behaviors more efficiently than traditional ANNs in such problems, thanks to their pow-
erful capabilities to capture and learn temporal and spatial patterns among multivariate
time series. Yong and Durlofsky (2021)[13] used LSTMs as a surrogate model for pro-
duction optimization of 2D and 3D synthetic reservoir cases, including 2 injection and
5 production wells. The LSTM network is used to predict future time profiles of the
oil and water production rates at each well as a function of injection rates and BHPs.
A PSO algorithm is used to obtain the optimal BHPs, considering the NPV as the ob-
jective function and using a filter-based procedure for nonlinear constraints treatment.
A similar approach was adopted by Deng and Pan (2021)[27], who applied echo state
networks (ESNs) as surrogate models for waterflooding optimization. ESNs receive the
water injection rates and the BHPs as input, and provide the water and oil production
rates as output, prior to the use of a fractional flow model. A mesh adaptive direct search
(MADS) algorithm is employed to search for the optimal injection rates considering the
non-discounted NPV as the objective function. Their method has been applied to two
test case studies that include a 2D reservoir model with one injector and 4 producers, and
a 3D reservoir model with 8 injectors and 4 producers.

With respect to the second limitation, physics informed neural networks (PINNs) repre-
sent a potential solution due to their ability to integrate physical laws and constraints into
the loss function of an ANN during the training phase [28]. Recently, few studies [29, 30]
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investigated the use of PINNs for history matching problems of reservoirs. Quite recently,
Yewgat et al. (2020)[31] and Maniglio et al. (2021)[32] used PINNs in combination with
a capacitance resistance model (CRM), which represents the physical constraints of the
network, to forecast production rates from injection rates and BHPs.

To the best of the author’s knowledge, the use of LSTMs has not yet been considered for
the injection schedule optimization of mature or brownfields, and also the use of PINNs
for waterflooding optimization.

This work presents a novel SBO framework for optimizing water injection schedules in
mature oil fields, relying on PINNs and LSTMs. The proposed framework consists of
three stages. In the first stage, the procedure used for data generation is designed, which
imposes tight, practical and realistic constraints on the reservoir model simulations to
generate input-output signals, i.e. water injection rates and corresponding water and oil
production rates, as if they were collected from the real field. In this way, the scope of
the framework is enlarged to handle both situations, whereby an accurate reservoir model
is available or only real field data are obtainable. The second stage includes the efficient
development (i.e. training, validation and testing) of a ML model (a PINN or a LSTM),
which is able to accurately predict the future oil and water production rates at each well,
as a function of the water injection rates. In the third stage, the developed ML model
is coupled to an optimization algorithm to identify the optimal water injection profiles
to be applied to the field over the future time period, conserving the NPV as objective
function and different operational and economic constraints. Three different optimization
algorithms, including ensemble-based, GA and gradient-based, are used in this thesis, to
evaluate the flexibility and robustness of the framework. The obtained optimal solutions
are, then, compared to standard reservoir practices and software in terms of objective
function, computational time and strategies. Finally, optimization results are deeply
analyzed to interpret the identified strategies through a variety of tools, ranging from
streamline maps to pressure and saturation distributions. Optimization results cannot be
blindly translated into action: instead, they must be adapted to economic and operational
constraints of the real field that, for the sake of simplicity, cannot be all implemented
in the optimization problem in the first place. Therefore, the optimized waterflooding
strategy can be viewed as the best unconstrained recommendation from the optimization
algorithm, whereas to what extent this strategy can be implemented in the real field is
ultimately left to production engineers to decide.

With respect to the approaches developed in literature, the novelty of the proposed frame-
work lies in:
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– using PINNs and LSTMs in the context of injection schedule optimization of mature
fields;

– presenting a comparison with a state-of-the-art commercial software to understand
if time and effort required for a 3D reservoir model are justified or if a data-driven
approach is more convenient;

– the deep interpretation and verifications of the obtained optimal solutions;

– the use of EnOpt (by Chen et al. (2009)[33]) in SBO of oil field production.

The effectiveness of the proposed framework is validated through its application to two
case studies. The first case considers a 2D reservoir model with homogeneous geological
properties, including 4 production and 5 injection wells. The second case is the well-
known Olympus field, which is a 3D reservoir model with complex geological properties,
including 7 injection and 11 production wells. The results show a good prediction ac-
curacy, significant reduction in the required computational time and even more, provide
high-level operational recommendation and guidelines.

The remaining part of the thesis is organized as follows: Chapter 2 presents the water-
flooding optimization problem statement, Chapter 3 shows the proposed methodology,
Chapter 4 describes its application to the two case studies, and Chapter 5 concludes the
work.



7

2| Problem Statement

This thesis addresses the model-based optimization of waterflooding of a generic oil field.
The generic field is made up of Nin injection wells, with injection rates qin,i and Np

production wells with water and oil production rates qw,j and qo,j, located at specific
positions, as in Figure 2.1.

Figure 2.1: Schematic field and well designation.

For simplicity, gas is neglected in this approach, which deals with an oil-water system.
In field management operations, injection rates can be set by operators, while production
rates are a function of pressure, saturations and geological properties of the reservoir,
which in turn vary over time based on injection and production rates, as wells as on the
initial properties of the reservoir.

The generic problem of waterflooding optimization aims at finding the control variables u
which result in the optimal value of the objective function J , while satisfying predefined
constraints c:


min
u∈U

J(x,u)

c(x,u) ⩽ 0

g(x,u) = 0

(2.1)
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where:

– x is the vector of dynamic state variables of the model (pressure, saturation, etc.);

– u is the vector of well control variables, of dimension n;

– U = {u ∈ Rn;ulb ⩽ u ⩽ uub} defines the allowable values for u;

– c is the set of linear and nonlinear constraints on all control variables;

– g is the reservoir model (set of reservoir simulation equations) to be solved to eval-
uate J and c.

The problem also requires the definition of a timespan, including both the previous period
over which the field was operated and the future period over which the field is required
to be optimized. In this way, the optimization timespan is divided into Nt discrete time
steps, ∆t, such that tk = k∆t for i = 1, ..., Nt, as in Figure 2.2:

Figure 2.2: Waterflooding optimization timeline.

Since injection rates are chosen as control variables, the dimension of the optimization
problem (i.e. number of control variables) is given by the product of the number of
injection wells by the number of times steps to optimize, n = NinNt. Hence, the control
variable vector can be represented as a concatenated vector in time

u = [q∆t
in,1, ..., q

∆t
in,Nin

, ..., qNt∆t
in,1 , ..., qNt∆t

in,Nin
]T (2.2)

where qin,i is the water injection rate of injection well i.

The most common objective function for waterflooding optimization problems is the Net
Present Value (NPV) [34]. It gives an economic evaluation of the field’s performance in
terms of costs and revenues over time, while accounting for the time value of resources
(hydrocarbons produced today are worth more than if produced in the future). Since the
NPV is to be maximized, J(u) = −NPV (u). Mathematically, the NPV can be defined
as:
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NPV (u) =
Nt∑
k=1

[
Np∑
j=1

(roq
k∆t
o,j − rwq

k∆t
w,j )−

Nin∑
i=1

rinq
k∆t
in,i

]
∆t

(1 + d)
k∆t
365

(2.3)

where:

– qo,j is the oil production rate of production well j;

– qw,j is the water production rate of production well j;

– ro is the price of produced oil per unit volume;

– rw is the cost of produced water per unit volume;

– rin is the cost of injected water per unit volume;

– d is the yearly discount factor (such that if time steps are expressed in days the
ratio k∆t

365
is dimensionless).

The objective function is in general a function of u and x, while the outputs of interest
qo,j and qw,j are omitted since the relationship between them and u the lies within the
forward model, either the reservoir simulator or any other surrogate, based on x. In
addition, in this problem, J can be considered solely a function of u since only the vector
of controls variables is subject to optimization.

Hence, with this definition of the NPV, oil produced is considered a revenue, while water,
whether injected or produced, is considered a cost. In this way, pumping costs for injected
water, and separation or disposal costs for produced water are accounted for. Thus, the
optimization process will steer towards injection configurations that allow to extract the
most resources (oil) for the minimum cost (injected and produced water). Nonetheless, the
objective function can be selected ad hoc for the specific field, depending on its features
and optimization requirements. For example, a field might incur extra costs only in case
the produced water exceeds the injected water, or if oil production falls behind a set
limit. Besides, the objective function can be extended to other fluids, such as gas or
steam, which can represent costs or revenues for the field.

Additionally, the problem is subject to the set of constraints c, as in (2.1), which model the
technical and operational limits of the field. Just like the objective function, constraints
to the optimization problem are defined ad hoc for the specific field, and in general can
take a wide variety of mathematical formulations. For the purposes of this thesis, the
following are implemented:

– bound constraints: representing the upper and lower limits of injection rate for each
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well at any time step:

qmin
in,i ⩽ qk∆t

in,i ⩽ qmax
in,i for i = 1, ..., Nin and k = 1, ..., Nt (2.4)

– linear constraints: representing the maximum water injection rate at a field level at
any time step:

Nin∑
i=1

qk∆t
in,i ⩽ qmax

in,F for k = 1, ..., Nt (2.5)

– injection variation over time: representing the unwanted abrupt (exceeding a limit
∆qlimin ) changes over time of injection rates, which would be impractical to put into
action:

|qk∆t
in,i − q

(k+1)∆t
in,i | ⩽ ∆qlimin for i = 1, ..., Nin and k = 1, ..., Nt − 1 (2.6)

From a physical perspective, the process of waterflooding is a complex, nonlinear problem.
To model it mathematically, the following equations are required:

– equation of state for all phases;

– multiphase flow equations;

– mass conservation equations;

– deliverability equations at wells.

The effectiveness of the waterflooding process can be measured by means of sweep effi-
ciency and the local displacement efficiency [2]. The sweep efficiency is the fraction of the
volume of the reservoir contacted by the injected water: it depends on a variety of factors,
such as injection pattern, permeability, flow rate, fluid properties. The local displacement
efficiency is the fraction of oil that has been recovered from a zone swept by the injected
water. Analytical solutions for the problem of waterflooding exist only for simplified cases,
such as the Buckley-Leverett equation [35], for a 1D, immiscible and incompressible oil-
water system. More details can be found in Appendix A. In real applications though,
waterflooding is usually solved through traditional finite difference reservoir simulation.
The reservoir is discretized as a 3D grid of blocks (or cells), with given properties (porosity,
permeabiltiy, etc.) and the above equations are applied to each grid block: the resulting
system of non-linear PDEs is then solved numerically to obtain pressure, velocity and
saturation distributions. In this way, a geological model paired to a simulator allows to
analyze the relation between control variables and state variables. Due to the complex,
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non-linear nature of the 3D reservoir model, the simulator-based optimization process can
become computationally unfeasible for large scale applications. Therefore, a data-driven
methodology, where neural networks serve as forward model instead of the simulator, is
proposed. More information on oilfield production life and flow in oil reservoirs can be
found in Appendix A, while a more generalized version of the waterflooding optimization
problem can be found in the Appendix B.

In waterflooding optimization problems, it is useful to quickly refer to the vector of control
variables for a specific injection well. In this thesis, ui refers to the vector of control
variables of injection well i at all time steps:

ui = [q∆t
in,i, ..., q

Nt∆t
in,i ]T (2.7)

Conversely, there is often the need to refer to all the wells’ injection rates at a specific
time step k. For this purpose, another index (k) can be used:

u(k) = [qk∆t
in,1 , ..., q

k∆t
in,Nin

]T (2.8)
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The proposed methodology is based on three main stages, as reported schematically in
Figure 3.1.

Figure 3.1: Schematic diagram of the proposed methodology.

In the first stage, a procedure for data generation is presented, which imposes tight, prac-
tical, and realistic constraints on the reservoir model simulations to generate input-output
signals, i.e., water injection rates and corresponding water and oil production rates, as if
they were collected from a real field. The second stage includes the efficient development
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(i.e., training, validation and testing) of a ML model, which is able to accurately predict
future production at each well as a function of the water injection rates. In the third stage
the developed ML model is coupled to an optimization algorithm to identify the optimal
water injection profiles to be applied to the field over the future time period, adopting the
NPV as objective function and different operational and economic constraints. Finally,
an in-depth interpretation of the results is conducted with the aid of streamline maps,
pressure and saturation distributions. Each step is discussed in detail in this section.

This thesis was conceived as a fast waterflooding optimization tool for cases in which only
field data, but no model, is available. However, the scope of the framework can be en-
larged to handle cases where an accurate reservoir model is, indeed, available: historical
production data can be simulated for a wide range of input values by running several
simulations. The computational time required to run such simulations needs to be evalu-
ated carefully, though: if excessive, it would defeat the purpose of a time-saving surrogate
model in the first place. Due to difficulty of obtaining real field data, this methodology
is applied to synthetic fields, which are considered as the real field: synthetic data are
generated in a specific way, as reported in the next section, such that they display re-
alistic characteristics and constraints. On the other hand, if real data is available, the
methodology is still applicable and is even more straightforward, since it only requires
data collection.

It should be noted that this methodology does not aim at fully replacing the reservoir
simulator as forward model. Instead, the idea is to adopt data-driven optimization for
cases in which ML surrogates are able to replicate the behavior of the reservoir accurately,
avoiding the need for simulation, serving as a first-guess for more complex simulator-based
optimization, or as a quick tool for real-time applications.

3.1. Data collection/generation

Due to the intrinsic dynamic nature of the problem, the forward model is requested to
reproduce the reservoir’s behavior over time. The historical data on which the model
is trained always refers to an earlier behavior of the reservoir compared to the one
the model is required to predict. In this thesis, the developed workflow is applied to
synthetic reservoirs. Therefore, the process of data acquisition, filtering and assimila-
tion is replaced by synthetic data generation. The full-physics reservoir simulator is
run along the historical timeline to generate data and the matched input-output couples
(ũ, q̃) = ([ũT

1 , ..., ũ
T
Ndata

]T , [q̃T
1 , ..., q̃

T
Ndata

]T ), which are collected and employed as historical
production data, as in Figure 3.1.
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3.1.1. Synthetic data generation

Synthetically generated data should, to a certain extent, resemble real historical data to
ensure the proposed methodology can be applied to real-life fields. To obtain realistic
synthetic data, the following aspects are considered:

– each well has a single injection or production profile over time;

– profiles do not cover the whole range of allowable values;

– profiles are not randomly generated, but time-correlated.

The first aspect represents the fact that the available data is intrinsically limited to
the historical production strategy of the field itself. The second aspect originates from
the fact that historical data may not cover the complete range of acceptable values for
controls and parameters, but only the ones that were adopted during the field’s actual
production history. The third aspect ensures that historical data changes smoothly over
time. Oil displacement through waterflooding is a slow process: its timescale is in the
order of months to years [2]. Hence, variations in production strategies cannot be applied
continuously, but with a frequency on the order of months.

In addition, production data from fields always suffers from noise and uncertainty in
measurements, often recorded with variable frequency. For the purposes of this work,
however, these issues were not addressed: historical data consists of matched input-output
couples over time with a constant frequency of measurement.

To achieve realistic synthetic data, injection profile generation is based on the formulation
provided by Chilès (2012)[36]. The idea is to generate smoother injection profiles with
respect to a random initialization, by imposing a correlation. Correlation between values
means that the closer two points are in the variable space, the closer their values are.
This can be applied to time, space, or a combination of time and space. Time-correlated
injection profiles express the need to change injection rates for the same well at consequent
points in time gradually. Space-correlated injection profiles represent the need to avoid
flooding neighbor wells disproportionately at the same point in time. For simplicity, only
time correlation is considered in this work. Mathematically, correlation is expressed in
terms of a specific function [37]. Since the quantity to correlate in time is the injection
profile of a single well i, called ui, the following parameters are specified:

– number of elements of the vector Nt (i.e. time steps for each injection well);

– number of dimensions along which to correlate ncorr (i.e. time only);

– correlation length or range a;
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– type of correlation (also known as variogram model γ, it expresses the mathematical
expression of the correlation: a cubic variogram is used in this work);

– upper and lower bounds for each injection well qmin
in,i , q

max
in,i ;

– average values ūi and standard deviation σi for each injection well.

Time-correlated profiles ucorr,i are obtained starting from a Gaussian distribution profile
with zero mean and unitary variance, ui, by centering it around its average ūi, as in:

ucorr,i = Liui + ūi for i = 1, ..., Nin (3.1)

where Li is the lower triangular matrix extracted by Cholesky decomposition from the
covariance matrix Ci, such that Ci = Li(L

T
i )

′. The covariance matrix is constructed as a
function of the above parameters Ci = Ci(Nt, ncorr, a, γ, q

min
in,i , q

max
in,i , σi) (more details can

be found in [36] and in Appendix G). The average value ūi is in general time dependent
(i.e. it is a vector), but is taken as constant in this case. Finally, excessively low and
high values are replaced by their respective minimum and maximum bounds. A pictorial
example is reported in Figure 3.2.

Figure 3.2: Example of time-uncorrelated and time-correlated profiles.

3.2. Surrogate model development

Once historical data is generated, it is used to train neural network surrogates of the
simulator. The whole set of training data is split into training, validation, and testing,
following the commonly used 70-20-10% rule in a chronological order. Historical data,
collected over the “past” region of the timeline, is used for training and validation of the
surrogate model, while the testing phase is performed on the same time period of the
“future” to optimize. The present-day moment is the boundary between the two (Figure
3.3). Although specific features of the neural networks vary between the case study
applications, all networks have injection rates as inputs, and water cuts or production
rates as outputs. The total timespan is divided into a number of time steps, assumed
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as the smallest possible period over which input variables (i.e. injection rates) are kept
constant.

Figure 3.3: Generic timeline for the problem.

The network’s approximation of the generic output from the reservoir, q, is denoted as
q̂ = FNN(θ,u) ≈ q: it is a function of inputs u and its parameters (weights and biases)
θ, which are obtained in the training phase, minimizing the mean-squared error (MSE)
on the data:

MSEdata =
1

Ndata

Ndata∑
i=1

[FNN(θ, ũi)− q̃i]
2 (3.2)

Another measure of the accuracy of the forecast is the normalized root-mean-squared
error (NRMSE), where the MSE is normalized with the range q̄ or the output values in
the dataset:

NRMSEdata =

√
MSEdata

q̄
(3.3)

3.2.1. Physics informed neural networks

PINNs integrate the information embedded in the set of partial differential equations
(PDEs) that model the physical system into the loss function during training. The loss
function contains not only the residual between observed and forecast data, but also
additional regularization terms which limit the space of admissible solutions. PINNs
honor those physical relationships in their forecast, resulting in more accurate learning
and generalization power. Any parametrized non-linear PDE can be modeled in the
general form:

f = N [q;λ] = 0 (3.4)

where q = q(t,u) is the solution of the PDE and N is a generic non-linear operator
parametrized by λ, which represents the model’s parameters. Within N are encapsu-
lated specific forms of typical PDE problems with the respective derivatives. PINNs
can be employed both in the forward problem (i.e. to solve PDEs) and in the inverse
problem (i.e. to find their parameters). Since geological properties of the reservoir are as-
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sumed to be unknown, this application is a case of inverse problem. The inverse problem
entails finding the value of the function q(t,u) and λ model parameters, given a set of
training data (ũ, t, f(ũ, t)) = ([ũT

1 , t1, ..., ũ
T
Ndata

, tNdata]
T , [f(ũT

1 , t1), ..., f(ũ
T
Ndata

, tNdata)]
T ),

such that (3.4) is honored. The additional loss function is:

MSEf =
1

Ndata

Ndata∑
i=1

[f(ti, ũi)]
2 (3.5)

such that the total loss function is defined by a linear combination of the above loss
functions:

MSEtot = MSEdata + λfMSEf (3.6)

where λf value is a Lagrange sensitivity value. Additional loss functions can be integrated
into (3.6) to ensure specific constraints on PDEs are honored. A schematic representation
of the PINN concept is reported in Figure 3.4, while more details on PINNs are found in
Appendix F.

Figure 3.4: Generic PINN concept.

CRM-based PINNs

In this work, the prior knowledge of the physical laws of the system is represented by ca-
pacitance resistance models (CRMs) (see Appendix C), in which the reservoir is schema-
tized as a circuit with time constants τj and well connectivities fij as parameters. Liquid
production rate qj is a function of injection rates qin,i, bottom-hole pressures pwf,j and the
wells’ productivity index PIj. In particular, the CRMP model [38] is applied. Maniglio
et al. (2021)[32], developed and trained CRM-based PINNs for oil reservoirs. The goal
is to apply the optimization workflow to such surrogate types. Thus, the additional loss
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components are:

– the residual on the CRMP equation:

f = τj
dqj(t)

dt
+ qj(t)−

Nin∑
i=1

fijqin,i(t) + τjPIj
dpwf,j(t)

dt
= 0 (3.7)

– the residual on the time constant constraint:

g1 =

Np∑
j=1

ReLU(−τj) (3.8)

– the residual on the connectivities constraints:

g2 =

Nin∑
i=1

Np∑
j=1

ReLU(−fij)

g3 =

Nin∑
i=1

Np∑
j=1

ReLU(fij − 1)

g4 =

Nin∑
i=1

ReLU

[
Np∑
j=1

(fij − 1)

]

(3.9)

(3.10)

(3.11)

where ReLU(·) = max(0, ·) is the Rectified Linear Unit function. The total loss function
(3.6) becomes a weighted average of the single losses:

1

Ndata

Ndata∑
i=1

{
[FNN(θ, ũi)− ỹi]

2 + λff(FNN(θ, ũi))
2+

λ1(g1,i)
2 + λ2(g2,i)

2 + λ3(g3,i)
2 + λ4(g4,i)

2
} (3.12)

Weights can be seen as Lagrange multipliers of a constrained minimization problem.
Training of the network on historical data will result in optimal θ, fij, PIj, and τj values.
In particular, Maniglio et al. (2021)[32] trained two types of networks, which are used
in this work. They both receive injection rates and times at all injectors as inputs: one
is a traditional ANN and forecasts water cut, as shown in Figure 3.5, while the other is
a PINN (ANN+CRMP) and forecasts liquid production rates at all producers, as shown
in Figure 3.6. From liquid production rate and water cut, oil and water production rates
can be easily calculated.
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Figure 3.5: Generic water cut ANN.

Figure 3.6: Generic liquid production rate PINN.

This choice comes primarily from their integration with CRMs, which are designed to
forecast liquid production rates in the first place. Moreover, in this way the water cut
forecast is not tied to a specific fractional flow model.

3.2.2. Recurrent neural networks

Recurrent neural networks (RNNs) are specifically designed to predict dynamic behavior
problems, in which data is a time sequence. In fact, the network’s prediction at a specific
time step is based not only on its input at the same time step, but also on the previous
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state(s) of the network, which are stored temporarily. A single recurrent neuron can be
thought of as a cell. The state of a cell at the generic time step k is denoted as h(k) and
is a function of both inputs at the same time step u(k) and the state at the previous time
step h(k−1).

Long short-term memory cells

Among RNNs, long short-term memory (LSTM) cells, have been proven successful at
tackling the short-term memory issue of traditional RNNs, showing better overall perfor-
mance, faster training and the ability to detect long-term patterns in data. Differently
from traditional RNN cells, the state vector is split into two parts: h(k), representing the
short-term state, and c(k), representing the long-term state. An example is provided in
Figure 3.7.

Figure 3.7: Scheme of a LSTM cell.

The input vector u(k) is fed to the cell along with the previous short-term state vector
h(k−1). In particular, they both pass through four different fully connected layers, with
specific purposes, as described in Géron (2019)[39]:

– the main output layer, as in a traditional RNN cell. Its output g(k), that would be
normally used to calculate h(k) and y(k), passes instead through another operation
that stores its most important parts in the long-term state and drops the rest (see
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below):

g(k) = tanh(W T
ugu(k) +W T

hgh(k−1) + bg) (3.13)

– the forget gate. It controls which parts of the long-term state are erased:

f(k) = σ(W T
ufu(k) +W T

hfh(k−1) + bf ) (3.14)

– the input gate. It controls which parts of g(k) are added to the long-term state:

i(k) = σ(W T
uiu(k) +W T

hih(k−1) + bi) (3.15)

– the output gate. It controls which parts of the long-term state are read and output
at the present time step, both to h(k) and to y(k):

o(k) = σ(W T
uou(k) +W T

hoh(k−1) + bo) (3.16)

where:

– Wui,Wuf ,Wuo,Wug are the weight matrices for each of the four layers for their
connection to the input vector u(k);

– Whi,Whf ,Who,Whg are the weight matrices for each of the four layers for their
connection to the previous short-term state h(k−1);

– bi, bf , bg, bo are the bias terms for each of the four layers.

Cells (neurons) are, as usual, packed into layers, which make up the overall network.
A final dense layer processes the cell states and produces the output of interest for the
network. Depending on the purposes, an LSTM neural network can predict more than
one step ahead in the future. Moreover, the past time steps used to forecast can range
from the single previous time step, to several or all time steps in the past.

The long-term state is a combination of the forget and input gate outputs through an
element-wise multiplication ⊗. The outputs of the three gate controllers layers range from
0 to 1, since they use logistic activation functions:

c(k) = f(k) ⊗ c(k−1) + i(k) ⊗ g(k)

h(k) = o(k) ⊗ tanh(c(k))

(3.17)

(3.18)
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such that the overall output of the cell is y(k) = h(k). In this case, a single time step is
requested to be forecast, using a variable number of previous time steps. Hence, the cell
output is transformed in the network’s output in the last dense layer as:

q̂(k) = σ(W T
outy(k) + bout) (3.19)

where Wout and bout are proper weights and bias. Specifically, the LSTMs applied in this
work receive injection schedules (not single rates) at wells as inputs and forecast oil or
water production rate of a well as output, as in Figure 3.8.

Figure 3.8: Generic oil or water LSTM.

3.3. Waterflooding optimization

Once trained, either a single network or a system of networks can forecast production rates
from injection rates, providing all the necessary components to compute the objective
function J(u) and bypassing the reservoir simulator. The optimization algorithm is then
coupled with the neural networks as forward models.

3.3.1. Optimization algorithms

Three optimization algorithms with different operating principles are used. An imple-
mentation of an algorithm from the gradient-based, gradient-free, and ensemble-based
algorithm families is chosen. The reason behind this choice is to give robustness to the
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methodology and compare the different performances on the proposed workflow. The cho-
sen algorithms are the trust-region (gradient-based), genetic (gradient-free) and EnOpt
[33] (ensemble-based):

Trust-region algorithm It is a gradient-based optimization algorithm based on quadratic
function approximation in a trust region around the evaluation point. The trust region
is expanded or contracted depending on the accuracy of the approximation. SciPy’s op-
timization library provides an implementation of the trust-region sequential quadratic
programming (SQP) method for equality constraints, by Lalee et al. (1998)[40] and an
implementation of the nonlinear interior point trust-region optimizer for inequality con-
straints, by Nocedal et al. (1999)[41]. The most important parameter is the type of
gradient (jacobian) calculation.

Genetic algorithm (GA) It is a population-based, gradient-free algorithm that oper-
ates through the basic operations of selection, mutation and crossover. An initial popu-
lation evolves to reach the optimal solution through the evaluation of a fitness function.
The applied implementation can be found in the bibliography [42]. The most important
parameters are population size, number of generations, mutation probability, parents por-
tion, crossover probability and crossover type.

EnOpt algorithm It is an ensemble-based algorithm which has gained popularity in
the oil production optimization field. An initial ensemble of solutions evolves through the
computation of a surrogate gradient and a subsequent line-search method. Developed by
Chen et al. (2009)[33], it is applied using an in-company developed implementation. The
most important parameter is the step value to be used in the line-search method.

A more detailed explanation of how they work is provided in Appendix D. The choice of
a stopping criterion for the optimization algorithms stems from the need to preserve the
reduced runtime benefit of the data-driven methodology and on the objective function
value (more information is provided in Chapter 4).

3.3.2. Generation and use of initial candidates

For a fair comparison of the selected optimization algorithms, a pool of initial candidates
[uT

1 , ...,u
T
N ]

T is generated, and then used as initial population for the genetic algorithm,
as initial ensemble for the EnOpt algorithm and as different initial guesses for the trust-
region algorithm. These profiles are generated in the same way as for the synthetic
historical data above, ensuring they also honor the problem’s constraints. As represented
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in Figure 3.9, for the genetic algorithm the best individual in the final population is
selected as solution; for the EnOpt algorithm the best member of the ensemble is selected
as solution; for the trust-region algorithm the best solution starting from the different
initial guesses is selected as solution.

Figure 3.9: Scheme of the use of initial candidates for the three algorithms.

3.3.3. Comparison with existing techniques

Two common production strategies and a state-of-the-art waterflooding optimization soft-
ware are adopted as a baseline for comparison with the optimization results: the do-
nothing strategy, the voidage replacement (VR) strategy and FloodOpt®. Since they
require an evaluation of production rates in the future, these scenarios still require the
tuned 3D model to be simulated (which in the case of synthetic reservoirs corresponds to
the ideal, perfectly known reality). Nevertheless, they make for an interesting comparison
benchmark.

Do-nothing In general, if a field is producing at an acceptable rate, with sufficient
economic return, the production strategy often consists in simply maintaining production
as it is (“do-nothing” or “no-action”). A do-nothing strategy is often used as a baseline
to evaluate the performance of waterflooding optimization methodologies for synthetic
reservoir cases.

Voidage Replacement In general voidage replacement is the process through which
hydrocarbons and water are replaced in the reservoir by fluid injection. The voidage
replacement ratio (VRR) is defined as [43]:

V RR =
Total injected reservoir volume
Total produced reservoir volume

(3.20)
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which, in the case of a simplified waterflooding oil-water system reduces to:

V RR =

Nin∑
i=1

qin,iBw

Np∑
j=1

(qw,jBw + qo,jBo)

(3.21)

where flow rates in standard conditions are transformed into reservoir condition through
formation volume factors of water Bw and oil Bo (see Appendix A for more details). In
voidage replacement (VR), injection rates are managed to reinject a fraction of a unit
volume of water for every unit volume of liquid produced. Although there are cases in
which specific VRR values are more effective for recovery [43], VRR is often kept around
1. If VRR is unitary, it allows to keep the average field pressure reasonably constant
(within constraints), avoiding excessive pressure depletion of the reservoir. The share
of the total injection assigned to each well is usually based on the productivity of the
production wells they support. In particular, commercial reservoir simulators assign rates
based on the concept of well potentials, which represent the production or injection rate
that a well would achieve in the absence of any rate constraints, at the current grid block
conditions. The acting constraint for a well’s potential is thus either its rate or BHP limit.
More details can be found in the specific literature [44].

FloodOpt® FloodOpt®, developed by StreamSim®[45], is a state-of-the-art commer-
cial software able to perform waterflooding optimization for an oilfield with a given water
injection availability target. Optimization is based on sweep efficiency and injected water
reallocation, requiring a low number of simulator runs, equal to the number of time step
to optimize. FloodOpt® rewards the injector-producer connections with high efficiency
and penalizes the ones with low efficiency by a reallocating the available water towards
less swept areas of the reservoir. Still, FloodOpt® requires a tuned geological model to
run. FloodOpt® is compared to the best performing algorithm on the reservoir of inter-
est. FloodOpt® does not allow to specify an explicit objective function. Thus, for a fair
comparison, the best-performing algorithm is adapted in two ways:

– objective function with oil produced only (non-discounted), so (2.3) becomes:

J(u) = −
Nt∑
k=1

Np∑
j=1

qk∆t
o,j (3.22)

with a negative sign since it is minimized;
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– target injection at a field level (equality constraint), so (2.5) becomes:

Nin∑
i=1

qk∆t
in,i = qmax

in,F for k = 1, ..., Nt (3.23)

while (2.4) is still valid. This additional case, which is referred as “target” case, is per-
formed for comparison purposes only: the increased flexibility of the proposed method-
ology of specifying the objective function and any type of constraint is, in real life, a
benefit to take advantage of. Thus, both comparisons, with the original algorithm and
with the modified "target" version, are of interest. A more detailed explanation of how
the software works and the rationale behind its heuristic optimization algorithm can be
found in Appendix E.

3.3.4. Interpretation of results

After optimization, results are interpreted critically with the aid of commercial software,
through a variety of tools: streamline maps, pressure and saturation distributions, single-
well contributions to the objective function. Of course, this stage requires the use of the
simulator, running the SBO strategy on it: in real-life scenarios, it represents the effect
of the optimized strategy on the field as it would occur in the future. For this reason,
the final interpretation is only meant for academic purposes and to validate the proposed
methodology, since for the chosen synthetic cases the perfect model of the reservoir is
available.
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4| Application

In this chapter the proposed methodology is tested on two synthetic reservoir case studies
of increasing complexity, which will be referred to as “Streak” and “Olympus” case, or
field. In both cases, the reservoir is described, along with its surrogate counterpart. The
conditions of the field at the end of the historical period are also outlined.

4.1. Streak case

4.1.1. Geological model

The Streak case is a 2D synthetic reservoir, consisting of 31×31 individual grid blocks of
size 80ft. All 961 cells are active. It was conceived as a simple testing tool for reservoir
engineering purposes [38, 46, 47]. There are 5 injection wells and 4 production wells
placed in an alternating pattern. Geological properties are uniform, except for two high
permeability streaks, I01-P01 and I03-P04. The geological model is represented in Figure
4.1, with constant porosity at 0.18 and net-to-gross (or NTG, it is the fraction of gross rock
volume occupied by producible oil, i.e. with sufficient porosity, oil saturation, permeability
to allow significant production [48]) at 1. Oil and water formation volume factors are taken
as constant with pressure, with Bo=1.1066 and Bw=1.0132.

Figure 4.1: Streak: schematic representation of the geological model.
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4.1.2. Surrogate model development

The total period considered for reservoir operation, as in Figure 2.2, is 11 years, where the
first 8 years were used as historical period, while the remaining 3 are considered as future
period for optimization. The historical and the future period are discretized considering
time steps of 30 days, but injection rates are not allowed to change with a higher frequency
than 90 days. This results in an optimization period of 10 time steps, so considering 5
injection wells, there is a total of 50 control variables.

For this case study the networks developed by Maniglio et al. (2021)[32] will be considered
as surrogate models. In particular, the two neural networks described in Chapter 3 are
schematized for this field in Figure 4.2 and 4.3. Further reference on the networks’ pa-
rameters, training process and accuracy can be found in the specific article by Maniglio et
al. (2021)[32]. They both receive injection rates and times at all injectors as inputs: one
is a traditional ANN and forecasts water cut, while the other is a PINN (ANN+CRMP)
and forecasts liquid production rates at all producers.

Figure 4.2: Streak: water cut ANN.
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Figure 4.3: Streak: liquid production rate PINN.

4.1.3. Surrogate-based optimization

For this optimization problem, specific costs and oil price are set at rin=1 $/stb, rw=1
$/stb, ro=70 $/stb, while the discount factor is d=0.10 (see (2.3)). Bound limits for
single injectors and the field are set as in Table 4.1. These values come from minimum
and maximum values during the training phase.

Inj. well qmin
in,i [stb/d] qmax

in,i [stb/d]

I1 1250 3000

I2 500 1750

I3 200 1750

I4 500 1500

I5 500 2000

Field - 7600

Table 4.1: Streak: bounds for control variables.

For all algorithms, 100 initial candidate solutions are used. For the GA, the mutation
probability is set equal to 0.05, parents portion to 0.1, crossover probability to 0.5, and
two-point crossover is used. In addition, a 1% elitist ratio is used. The algorithm stops
if the variation of the objective function does not improve for more than 10% of the
generations, or if the number of generations reaches the maximum value of 1000. For
EnOpt, the step value used in the line-search is optimized at every iteration, with a
bound reduction of 1%. The algorithm stops if the variation of the objective function
does not improve for more than 10 iterations, or if the ensemble of candidates collapses
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when all members are the same solution. For the trust-region algorithm, two-point finite
difference is used in jacobian calculation. The algorithm stops if the trust-region radius
is below 10−4 or if the number of iterations reaches the maximum value of 250. Details
on the meaning of all the parameters can be found in Appendix D.

Initial situation of the reservoir

The field scenario at the end of the historical time span can provide useful information
about the reservoir of interest even before optimization starts. Cumulative bar charts
(Figure 4.4) show how, before the optimization period starts, some wells are contributing
more to production than others. In particular, P01 and P04 are the major producers,
both in terms of oil and water. Conversely, P02 and P03 give only a small fraction of the
production. Water cuts on the other hand, at 98% for P4, 97% for P1 and P2, and a 93%
for P3, denote how the water breakthrough is already very high (e.g. P01, P04).
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Figure 4.4: Streak: cumulative bar charts at the end of the historical period.

The initial oil saturation map (Figure 4.5a) shows how most of the reservoir has already
been flooded (hence the high WCs), while there is a significant remaining volume of oil
around I01. Flux maps (Fmaps) are snapshots of the reservoir at a specific moment
in time. They display streamlines connecting injectors (sources) and producers (sinks),
collapsed in a vector: the thicker the vector the stronger the connection. As such, they
allow for a clear visualization of well connections. More details are provided in Appendix
E. Figure 4.5b (represented with producers as parents) shows how the high permeability
streaks along the I01-P01 and I03-P04 connection act as sinks for any injected water from
I1 and I3. On the other hand: I02 supports mostly P01, and, to a lesser extent, P03 and
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P04; I4 supports mostly P04, and, to a lesser extent, P02 and P01, I05 supports P04 and,
to some degree, P03. The strongest connections are therefore I01-P01, I03-P4, I05-P04
and I04-P04.

(a) Oil saturation distribution (b) Fmap

Figure 4.5: Streak: reservoir condition at the end of the historical period.

Finally, the most efficient well is I01, as reported on the injector efficiency plot in Figure
4.6 (more details about injector efficiency plots can be found in Appendix E).

Figure 4.6: Streak: injector efficiency plot at the end of the historical period.
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Optimization results

Table 4.2 shows the enhancement achieved by each optimization algorithm with respect
to the do-nothing case and the required computational time: the "Simulator" column
represents the NPV increase calculated by the full-physics simulator using as input as the
optimal injection profiles obtained from the optimization based on the surrogate models
(i.e. reality in this case). EnOpt reaches the highest increase and proves to be the fastest,
while the GA the slowest, as reported in Figure 4.6 and Table 4.2, where The trust-
region computational time is reported for a single candidate, but the different candidates
are run in parallel, as in Figure 3.9. In general, the PINN-based forward model of the
Streak reservoir achieves a significant reduction in the elapsed time for a single forward
evaluation of the objective function, of about 10 times compared to Eclipse® commercial
simulator (which for very simple cases as the Streak field, has quite low computational
times anyway).

Case ANN NPV incr. [106 $] Simul. NPV incr. [106 $] Time [min]

Trust-region 4.70 4.59 50

GA 4.59 4.56 250

EnOpt 4.77 4.65 45

VR - -1.14 -

Table 4.2: Streak: computational time and NPV enhancement with respect to the do-
nothing case, using ANNs and the simulator, achieved by the obtained optimal solutions.
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Figure 4.6: Streak: evolution of the NPV enhancement with respect to the do-nothing
case for the three algorithms.

Table 4.3 shows cumulative production of oil and water and injected water. Given the
initial underground conditions of the reservoir and its production history, the water cut
at all producers is already at very high levels (>90%) at the start of the optimization
process. As a consequence, the relative weight of water injection and production costs on
the objective function is considerable. For this reason, the VR strategy in this case gives
a much lower NPV value compared to the do-nothing case because the total injection rate
to balance the total production rate (keeping VRR unitary) results in high costs with
limited return.

Cumulatives [106 stb]

Case Water inj. Water prod. Oil prod.

Trust-region 4.02 3.98 0.102

GA 4.49 4.43 0.115

EnOpt 4.41 4.35 0.114

VR 7.57 7.49 0.108

Do-nothing 7.06 6.97 0.112

Table 4.3: Streak: cumulative injection and production for each simulated strategy.

In particular, most of the oil comes from P01, whose production increases significantly
compared to the do-nothing case, as shown in Figure 4.7. In addition, since most of the
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production is moved back on the timeline, the NPV is improved not only through the oil
production term, but also through the discount factor, which makes oil produced earlier
more valuable.

0 200 400 600 800 1000

Time [d]

0

10

20

30

40

50

60

C
u

m
u

la
ti

ve
oi

l
p

ro
d

u
ct

io
n

[1
03

st
b

]

Do-nothing

EnOpt

Figure 4.7: Streak: cumulative oil production at P01: EnOpt vs. do-nothing comparison.

On the other hand, the optimization algorithms tend to balance between high oil pro-
duction (higher profit) and low water injection and production (lower cost), given the
high water cut. In particular, while the GA and EnOpt achieve a higher cumulative oil
production than the do-nothing, with a significant decrease in the injected water, the
trust-region algorithm reaches its NPV increase by reducing injected and produced wa-
ter even more, penalizing oil production. In other words, the trust-region improves the
objective function by slightly reducing oil production, injecting and producing the least
water. In real-life scenarios, a lower-producing oil schedule could hardly be implemented:
this is, of course, a consequence of both the chosen parameters for the objective function,
and the very high water cut at the beginning of the optimization.

As for the optimal control variables, reported in Figure 4.7, injection rates clearly show
a common pattern among the different optimization algorithms. In particular, results
show high injection rates from I02, I04 and I05 in the first half of the optimization time
span, with a decrease in the second half. On the other hand, I01 and I03 are kept at low
injection rates all throughout the period by the three algorithms.



4| Application 37

0 200 400 600 800 1000

Time [d]

0

500

1000

1500

2000

2500

3000

W
at

er
in

je
ct

io
n

ra
te

[s
tb

/d
]

I01

0 200 400 600 800 1000

Time [d]

0

500

1000

1500

2000

2500

3000

W
at

er
in

je
ct

io
n

ra
te

[s
tb

/d
]

I02

0 200 400 600 800 1000

Time [d]

0

500

1000

1500

2000

2500

3000

W
at

er
in

je
ct

io
n

ra
te

[s
tb

/d
]

I03

0 200 400 600 800 1000

Time [d]

0

500

1000

1500

2000

2500

3000

W
at

er
in

je
ct

io
n

ra
te

[s
tb

/d
]

I04

0 200 400 600 800 1000

Time [d]

0

500

1000

1500

2000

2500

3000

W
at

er
in

je
ct

io
n

ra
te

[s
tb

/d
]

I05

0 200 400 600 800 1000

Time [d]

0

500

1000

1500

2000

2500

3000

W
at

er
in

je
ct

io
n

ra
te

[s
tb

/d
]

I01

0 200 400 600 800 1000

Time [d]

0

500

1000

1500

2000

2500

3000

W
at

er
in

je
ct

io
n

ra
te

[s
tb

/d
]

I02

0 200 400 600 800 1000

Time [d]

0

500

1000

1500

2000

2500

3000

W
at

er
in

je
ct

io
n

ra
te

[s
tb

/d
]

I03

0 200 400 600 800 1000

Time [d]

0

500

1000

1500

2000

2500

3000

W
at

er
in

je
ct

io
n

ra
te

[s
tb

/d
]

I04

0 200 400 600 800 1000

Time [d]

0

500

1000

1500

2000

2500

3000

W
at

er
in

je
ct

io
n

ra
te

[s
tb

/d
]

I05

Figure 4.7: Streak: optimal injection rates.

This can be justified by the fact that, as water is injected from I01 and I03, the high
permeability streaks act as sinks, draining most of this water towards the producers they
are so strongly connected with (P01 and P04). This causes very high water production at
the corresponding producers P01 and P04, thus increasing costs. This effect is more pro-
nounced for the 1000mD streak than for the 500mD streak, as expected. This highlights
the limitations of injector efficiency plots when deciding where to inject.

The higher injection rates of I02, I04, I05 are maintained by the optimized strategy
until the water cut reaches excessive values for economic production, when the price of
producing oil becomes higher than the profit. At this point, at about 400 days after the
beginning of optimization, even those injection rates are reduced. In real life, reducing
injections rate so significantly would likely mean the well needs to be shut completely.

Comparison with FloodOpt

Since EnOpt is the best performing algorithm, it is adapted and compared with Flood-
Opt’s strategy, as explained in Chapter 3. EnOpt reaches a higher cumulative oil produc-
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tion with the same cumulative water production and water injection availability target,
showing a more efficient allocation of the injected water, as shown in Table 4.4.

Cumulatives [106 stb]

Case Water inj. Water prod. Oil prod.

EnOpt (target) 7.60 7.44 0.166

FloodOpt 7.60 7.45 0.143

Table 4.4: Streak: cumulative injection and production for each simulated strategy
(FloodOpt comparison).

In particular, FloodOpt tends to reward more efficient wells (see 4.6), such as I01, and, to
a lesser extent, I02, while penalizing the less efficient ones, I03, I04, with reduced injection
rates compared to EnOpt, as reported in Figure 4.7.
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Figure 4.7: Streak: optimal injection rates (FloodOpt comparison).
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As shown in the average reservoir pressure maps for EnOpt (target), in Figure 4.8, a sig-
nificant decrease in injection rates around I01 depressurizes the surrounding area, allowing
to drain oil from regions that were previously excluded due to the high permeability chan-
nels. These are the along the I02-P01 and I03-P01 connections. Such regions are now at
a higher pressure than before.

Average reservoir pressure [bar]

Figure 4.8: Streak: reservoir average pressure maps at the end of the historical (left) and
optimization (right) period (EnOpt (target)).

This translates into a change in the oil saturation distribution (reported as a difference
with the do-nothing case to highlight the effect, in Figure 4.9), particularly in the region
around I01 and I03. Conversely, injecting more in other areas of the reservoir, namely
from I02, I04, I05, has the potential to improve production. Since there is a limit on
total field water injection, the optimized strategy moves the injection at I04 and I05,
which, being further away from most of the leftover oil, act as disposal wells: water can
be injected without causing a huge increase in water production rate, since they are far
from the high permeability streaks, pressurizing the rest of the region at the same time.
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Figure 4.9: Streak: oil saturation difference with do-nothing (EnOpt (target)).

Fmaps for the do-nothing case maintain the same structure as it was at the beginning
of the optimization timespan (Figure 4.5b), since the injection rates are not modified,
neither in relative nor in absolute terms. Due to the already high WCs at producers,
the margin for improvement when the optimization period starts is limited: still, the
optimization procedure manages to enhance the injection strategy. By looking at FMpas
from a producer perspective (Figure 4.10), it is clear how FloodOpt’s strategy tends to
reward efficient wells (see 4.19), as seen in the optimal injections’ analysis. Apart from the
unavoidable sinks along the high permeability streaks, the heuristic algorithm reinforced
the I04-P04, I02-P01 and I05-P03. On the other hand, it slightly weakened the I02-P03,
I02-P04, I05-P03 and I04-P02 connections.

(a) EnOpt (target) (b) FloodOpt

Figure 4.10: Streak: Fmaps for each simulated strategy.
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The better management, as seen above, mainly comes from concentrating I04’s water
onto the productive P04, letting I05 then support P03, such that I02 can push on P01
to displace oil previously swept areas. The EnOpt target algorithm has a similar layout,
but with a more balanced distribution of I02’s water towards its neighbors P1 and P03.
For completeness, Table 4.5 shows the NPV increased for the FloodOpt comparison, even
though the objective function is the cumulative oil production.

Case ANN NPV incr. [106 $] Simul. NPV [106 $] Time [min]

EnOpt (target) 2.28 2.46 30

FloodOpt - 0.93 10

Table 4.5: Streak: computational time and NPV enhancement with respect to the do-
nothing case, using ANNs and the simulator, achieved by the obtained optimal solutions
(FloodOpt comparison).

4.2. Olympus case

4.2.1. Geological model

The Olympus case is a benchmark synthetic reservoir model developed for the purposes
of a benchmark study on field development optimization held in 2017, organized in the
context of the ISAPP (Integrated Systems Approach to Petroleum Production) project
[49]. It is inspired by an oilfield located in the North Sea.

The field consists of 118×181×16 individual grid blocks of size 50m in the horizontal
directions and 3m in the vertical direction. Out of the whole 341,728 grid cells, only
192,750 are active. The field is bounded on one side by a boundary fault. In addition,
six minor faults (i.e. a formation break across which there observable displacement [50])
are present. The reservoir consists of two zones, separated by an impermeable shale
layer, where most of the inactive cells are located. The top reservoir zone contains high
permeability channels embedded in a low permeability matrix, while the bottom reservoir
has overall lower permeability. The model is made up of four different facies types (i.e.
overall characteristics of a rock unit that reflect its origins and differentiate it from others
[50]), as reported in Table 4.6. The model is shown in Figure 4.10 and more in detail with
well locations in Figure 4.11. Water formation volume factor is taken as constant with
pressure at Bw=1.0132, while oil formation volume factor is variable with pressure, with
Bo in the range 1.1069-1.0916.
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Facies Zone Por. ranges Perm. ranges [mD] NTG

Channel sand Top 0.2-0.35 400-1000 0.8-1

Shale Top, barrier 0.03 1 0

Coarse sand Bottom 0.2-3 150-400 0.7-0.9

Sand Bottom 0.1-0.2 75-150 0.75-0.95

Fine sand Bottom 0.05-0.1 10-50 0.9-1

Table 4.6: Olympus: geological properties.

(a) Top view (b) Bottom view

(c) Side view (d) Side view

Permeability [mD]

Figure 4.10: Olympus: schematic representation of the geological model.
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Figure 4.11: Olympus: top view highlighting well positions.

In the Olympus field there are 7 injection wells and 11 production wells.

4.2.2. Surrogate model development

The data generation step described in Chapter 3 is applied to the Olympus field, to
produce 7 injection historical schedules and 22 production historical schedules (11 for oil
and 11 for water) throughout the whole time span. An example is reported in Figure
4.12, while the rest can be found in Appendix H.
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(a) Water injection
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(b) Oil (solid) and water (dashed) production

Figure 4.12: Olympus: example of input and output (b) profiles from the generated
dataset.

The number of wells and the more complex geology require the direct integration of time
dependency into the surrogate model, differently from the simpler Streak case. The total
period considered for reservoir operation, as in Figure 2.2, is 20 years, where the first 18
years are used as historical period, while the remaining 2 are considered as future period
for optimization (see Figure 4.12). The historical and the future period are discretized
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considering time steps of 30 days, but injection rates are not allowed to change with a
higher frequency than 90 days. This results in an optimization period of 8 time steps, so
considering 7 injection wells, there is a total of 56 control variables.

Two LSTM networks are trained for each production well, one for water and one for oil,
for a total of 22 networks. They all receive injection rates at all injectors as inputs and
forecast oil and water production rates at each producer, as shown in Figure 4.13. The
datasets consist of 7 injection profiles and 22 production profiles, resulting in 170, 50 and
24 time steps for training, validation and testing, respectively.

Figure 4.13: Olympus: generic LSTM network surrogate.

The Adam optimizer is used as training algorithm: more details can be found in Géron
(2019)[39]. The hyperparameters for the networks are chosen based on a sensitivity anal-
ysis carried out using the values reported in Table 4.7 (where "past time steps" refers to
the number of previous time steps used for forecasting by the LSTM), resulting in the
NRMSEs reported in Table 4.8. It should be noted that the normalization is computed
with the same range for training, validation and testing.
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Hyperparameter Values

Hidden layers 1, 2

Neurons per layer 10, 20

Past time steps 3, 5

Learning rate 10−4, 10−3, 10−2

L1 regularization 0, 10−2, 10−1

L2 regularization 10−3, 10−2, 10−1

Table 4.7: Olympus: LSTM hyperparameters tested.

Water Oil

Prod. well Training Validation Testing Training Validation Testing

P1 0.74 1.70 5.54 1.72 1.64 5.28

P2 1.35 1.76 1.82 1.90 1.13 1.91

P3 1.05 3.77 8.26 0.65 2.64 2.00

P4 0.84 4.46 7.87 1.07 1.73 1.28

P5 0.51 2.57 9.32 1.21 0.94 2.75

P6 0.12 0.95 4.76 1.43 0.54 0.44

P7 0.28 1.40 1.13 1.34 1.34 2.50

P8 1.06 2.14 2.92 1.35 0.55 1.98

P9 0.80 5.44 3.47 1.49 2.35 1.89

P10 0.38 2.41 2.12 0.61 0.38 0.57

P11 1.45 0.52 2.96 0.37 1.17 0.91

Avg. 0.78 2.47 4.56 1.19 1.31 1.96

Table 4.8: Olympus: LSTMs NRMSE [%] on water and oil forecast.

A straightforward way to quantify the LSTM model uncertainty is bagging. In this
work, an ensemble of models is created by developing the ANNs several times considering
the same data, but changing the splitting ratios of the training and validation subsets,
maintaining the testing subsets constant. Since the LSTM is developed with time series,
the splitting should respect the time sequence in the training, validation and testing. The
original 90% of data for training and validation is now randomly split between 65-80%
for training and 25-10% for validation, for a total of 10 trials. Using an ensemble of
models in the forward evaluation of the objective function can, on one hand, improve
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robustness. On the other hand, it could significantly increase the computational time
of the optimization, which would also defeat the original purpose of the surrogate, i.e.
reducing the computational load of the full-physics simulation. Hence, for computational
time reasons, this test is applied to a single well, for oil production only. The chosen well
for this test is P11, which the most important well in terms of oil and water production
throughout the historical time period (see Figure 4.15). The results are reported in Figures
4.9 and 4.14. Since training and validation datasets are of variable length, in Figure 4.14
they are plotted with the same color, while testing has a fixed dataset, hence a different
color.

NRMSE [%]

Trial Training Validation Testing

#1 1.81 2.87 2.75
#2 1.52 2.12 4.59
#3 0.91 1.55 1.43
#4 0.98 0.39 0.95
#5 1.02 5.08 0.40
#6 1.24 0.64 0.74
#7 0.89 4.93 1.11
#8 1.27 0.76 1.09
#9 1.81 1.52 4.89
#10 1.62 0.62 4.63
Avg. 1.31 2.05 2.26

Table 4.9: Olympus: LSTMs NRMSE [%] for bagging on P11.
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Figure 4.14: Olympus: plot for P11’s oil production dataset with standard deviation
among different models resulting from bagging on training and validation.

Results show the prediction is accurate even when the dataset is randomly split in different
ways between training and validation for the tested well, P11.

4.2.3. Surrogate-based optimization

For this optimization problem, specific costs and oil price are set at rin=1 $/stb, rw=1
$/stb, ro=70 $/stb, while the discount factor is d=0.10 (see (2.3)). Bound limits for single
injectors are set at 0 and 1000 Sm3/d, while at field level the maximum value allowed is
5000 Sm3/d. These values come from minimum and maximum values during the training
phase. The injection rate variation limit for the constraint in (2.6), modeled as a penalty
function on the NPV, is set at 200 Sm3.

For all algorithms, 50 initial candidate solutions are used. For the GA, the mutation
probability is set equal to 0.05, parents portion to 0.1, crossover probability to 0.5, and
two-point crossover is used. In addition, a 1% elitist ratio is used. The algorithm stops
if the variation of the objective function does not improve for more than 10% of the
generations, or if the number of generations reaches the maximum value of 300. For
EnOpt, the step value used in the line-search is optimized at every iteration, with a
bound reduction of 1%. The algorithm stops if the variation of the objective function
does not improve for more than 10 iterations, or if the ensemble of candidates collapses
when all members are the same solution. For the trust-region algorithm, two-point finite
difference is used in jacobian calculation. The algorithm stops if the trust-region radius
is below 10−4 or if the number of iterations reaches the maximum value of 200. Details
on the meaning of all the parameters can be found in Appendix D. A sensitivity analysis
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on the parameters of the GA and EnOpt algorithm is carried out and is presented at the
end of the case study.

Initial situation of the reservoir

The field scenario at the end of the historical time span can provide useful information
about the reservoir of interest even before optimization starts. Cumulative bar charts
(Figure 4.15) show how, before the optimization period starts, some wells are contribut-
ing more to production than others. In particular, P2, P8, P9 and P11 are the major
producers, both in terms of oil and water. Conversely, P3, P4, P5 give only a small
fraction of the production.
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Figure 4.15: Olympus: cumulative bar charts before optimization

Water cuts (Figure 4.16) on the other hand show how for some wells the water break-
through is already significant (e.g. P4, P5), while for others it is still reasonably low for
a mature field (e.g. P1, P3, P6).
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Figure 4.16: Olympus: water cuts at the end of the historical period.

To visualize saturations on a 2D representation of the 3D reservoir, the vertically averaged
oil saturation at location (x, y) and time t, Sx,y

o (t), is:

Sx,y
o (t) =

Nx,y
z∑

z=1

Sx,y,z
o (t)PORV x,y,z

Nx,y
z∑

z=1

PORV x,y,z

(4.1)

.

where Nx,y
z is the number of cells in the model over the vertical direction at location

(x, y), Sx,y,z
o (t) is the oil saturation at location (x, y, z) at time t and PORV x,y,z is the

pore volume of grid cell (x, y, z). The initial vertically-averaged oil saturation map (Figure
4.17) shows areas where there is high potential for recovery, such as between I1 and P9,
or close to P2, P3, P5. On the other hand, regions such as the I4-P7 connection or the
region around I2 and I3 have already been significantly swept.
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Figure 4.17: Olympus: vertically-averaged oil saturation distribution at the end of the
historical period.

Figure 4.18 shows the Fmaps (represented with producers as parents) and main connec-
tions before optimization starts. These are, for the most important wells, I1-P9, I2-P9,
I3-P2, I7-P2, I5-P11 and I6-P8. The presence of faults, not only the heterogeneous per-
meability and porosity field, also affects the injector-producer connections.

Figure 4.18: Olympus: Fmap at the end of the historical period.

Finally, the most efficient wells are I3, I1, I7 and I6, as reported on the injector efficiency
plot in Figure 4.19 (more details about injector efficiency plots can be found in Appendix
E).
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Figure 4.19: Olympus: injector efficiency plot at the end of the historical period.

Optimization results

The more heterogeneous geology and the higher number of wells make the Olympus field
a more realistic application compared to the Streak case. This, however, also means
that the interpretation of the results is a more complicated task, where the effect of
injection schedule on the production is more complex to infer. For this reason, only the
most important wells and connections are analyzed. The interpretation task becomes
even more complex in real-life brownfields, with dozens of wells and highly heterogeneous
geological properties.

Table 4.10 shows the enhancement achieved by each optimization algorithm and the re-
quired computational time: the "Simulator" column represents the NPV calculated by
the full-physics simulator using as input as the optimal injection profiles obtained from
the optimization based on the surrogate models (i.e. reality in this case). EnOpt reaches
the highest increase and proves to be the fastest, while the GA the slowest, as reported in
Figure 4.19 and Table 4.10. The trust-region computational time is reported for a single
candidate, but the different candidates are run in parallel, as in Figure 3.9. In general,
the LSTM-based forward model of the Streak reservoir achieves a significant reduction in
the elapsed time for a single forward evaluation of the objective function, of about 100
compared to Eclipse® commercial simulator. In this case, the VR strategy yields a better
result than the do-nothing case, but lower compared to the algorithms.
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Figure 4.19: Olympus: evolution of the NPV for the three algorithms.

Case ANN NPV [106 $] Simul. NPV [106 $] Time [min]

Trust-region 334 288 110

GA 312 286 250

EnOpt 337 289 50

VR - 238 -

Do-nothing - 228 -

Table 4.10: Olympus: computational time and NPV, using ANNs and the simulator,
achieved by the obtained optimal solutions.

Table 4.11 shows cumulative production of oil and water and injected water. Given
the initial underground conditions of the reservoir and its production history, the water
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cut at all producers is at a lower level compared to the Streak case, at the start of
the optimization process. As a consequence, the relative weight of water injection and
production costs on the objective function is also lower. For this reason, all algorithms
adopted a strategy where an increase in injected water (within constraints), results in a
sufficient increase in oil production to counterbalance the costs. In addition, all algorithms
exploited the water availability target almost fully, having injected water at a relatively
low cost compared to higher water cut fields, such as the Streak case. In particular, all
algorithms achieved a higher cumulative oil production than the base case.

Cumulatives [106 Sm3]

Case Water inj. Water prod. Oil prod.

Trust-region 3.60 2.57 0.802

GA 3.56 2.53 0.798

EnOpt 3.55 2.55 0.802

VR 2.70 1.99 0.657

Do-nothing 2.59 1.91 0.630

Table 4.11: Olympus: cumulative injection and production for each simulated strategy.

As for the optimal control variables, reported in Figure 4.18, the injection rates show
a common pattern among the different optimization algorithms, which are not, though,
always in agreement. Specifically, the trust-region and the EnOpt algorithm show more
similar optimal profiles, since they are both based on a gradient or a gradient surrogate.
However, the GA, due to its inherently stochastic nature, reaches a different, more os-
cillating solution, especially for I2, and I5, which have lower rates all throughout the
optimization period, and I4, which has higher rates instead. The EnOpt algorithm tends
to approach boundary limits at the top and bottom, due to the collapse of its ensemble
population when members get too similar to each other. Overall, all optimal profiles have
higher values for I1, I3, I6 and I7, lower values for I2 and I4. All algorithms agree on
I5, I6, I7; more visible differences are found for I1, I2, I3; I4 is the most variable of the
profiles among the solutions.
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Figure 4.18: Olympus: optimal injection rates.

With respect to the do-nothing I1 injects more, being connected mostly to P9, which is
the biggest producer, I2 injects less, favoring the movement of I1’s water toward P9, I3
injects more, being connected to P2 and P11, I4 injects less, being connected to P6 (it is
more convenient to penalize this connection to inject more at I5, which is connected to
P7, a fairly productive well), I6 injects more in order to support P8 more strongly, and
I7 stays at high rates as before.

Oil volume moved plots help understand where oil moved from or into a specific cell
between two moments in time, such as before and after optimization. Hence, oil volume
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moved is a quick way to show how much and where oil has moved over time. The volume
of oil moved Vmob(t) at time t is defined as:

Vmob(t) =

Nx,y
z∑

k=1

(Sx,y,z
o (t)− Sx,y,z

or )PORV x,y,zNTGx,y,z (4.2)

and the difference in oil volume moved from before to after optimization is:

∆Vmob = Vmob(t0)− Vmob(tNt) (4.3)

where NTGx,y,z is the net-to-gross of cell (x, y, z) and Sx,y,z
or is the residual oil to water

saturation of cell (x, y, z).

For the case of EnOpt, the map is reported in Figure 4.19. Red areas show where oil
moved from the cell, blue areas show where oil moved into the cell. Although the specific
pathways cannot be fully reconstructed, from mobile oil maps additional and valuable
information can be inferred. Compared to the initial situation, a significant movement of
oil takes place in the region between I1 and I2. I2, being practically cut off from injection,
depressurizes its surrounding area, draining oil from other regions of the reservoir. A
similar process occurs around I4, which has also been cut off. A considerable volume of
oil moves in the region between I1 and P9, which is the second most important producer.
A similar process occurs between I6 and P8, as well as between I3 and P11.

Figure 4.19: Olympus: mobile oil map (EnOpt).

By mapping the difference between the EnOpt and do-nothing mobile oil maps, another
useful representation is obtained, reported in Figure 4.20. The green areas show regions
where, at the end of the optimization process, there is less oil than for the do-nothing case
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(which is hopefully produced, or moved elsewhere), red areas where there is more (which
is left underground). The sum of red and green areas is negative, confirming how EnOpt
reaches a higher cumulative oil production. In particular, the moved oil that is missing at
the end between I1 and P9 is likely partially produced towards P9 (where the red region
can be seen) and partially left off (shutting down I2, and depressurizing the region, some
oil is probably drained). The compromise between the two directions results in a higher
overall NPV and oil production than the do-nothing strategy. Finally, around P11 and
between P2 and P9 much more oil is produced in the optimized scenario.

Figure 4.20: Olympus: mobile oil difference map, with respect to the do-nothing case
(EnOpt).

A useful approach when the number of wells makes it hard to interpret results at a
first glance is to identify the most important wells in terms of their contribution to the
objective function. A fast way to visualize this is a cumulative plot (Figure 4.20), where
the relative weight of each well in increasing the objective function, compared to its do-
nothing counterpart, is reported. This allows to understand which wells are the major
contributors to the objective function improvement can bring little improvement to the
objective function.
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Figure 4.20: Olympus: cumulative well contribution to the NPV increase, compared to
do-nothing case, for the three algorithms.

As it was during the historical period, the wells that contributing the most to the NPV
increase are P9, P2, P8, P11, for all three algorithms. Fmaps before optimization (4.18)
showed the injectors that are more strongly connected to such producers. They are P11-I4
and I5, P9-I1 and I2, P8-I6 and I1, P2-I7, I3 and I2.

For the trust-region and EnOpt, these producers contribute to about 80% of the NPV
increase compared to the do-nothing case. On the Fmaps, it is clear how these wells
are more strongly connected to the injectors with the highest rates. The GA’s solution
also requires P7 to reach the same 80% threshold: these wells is, as seen on the Fmaps,
strongly connected to I4, which is exactly the injector with the most different optimal
profile compared to the trust-region and EnOpt, where it has a lower rate. Conversely,
in the GA’s solution P2 has a lower relative weight to the NPV: P2 is mostly connected
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to I7 and I3, which, have, indeed, lower rates compared to the trust-region and EnOpt.
Finally, for the GA I2’s rates are slightly higher: this reflects onto P3, rather than on P9
or P2, which are the other wells connected to I2. P3 has a marginal relative weight on
the oil production, hence the lower NPV for the GA.

It is worth noticing how P4 has a practically negligible weight: this means it is producing
approximately at the same profit of its do-nothing counterpart. The reason, as on the
Fmaps, lies in its strong connection to I7, which is already injecting at high rates to
support P2 and P1, but is actually making no additional profit on P4. In addition, I4 is
well-connected to P6, which is the well with the highest WC, up to 90%, hence its lower
economic value. To be truthful, also P4 is in similar conditions, but I7, its connected
neighbor, already injects to support P2.

Maps for the do-nothing case maintain the same structure as it was at the beginning of the
optimization timespan (Figure 4.18), since the injection rates are not modified, neither
in relative nor in absolute terms. By comparing the Fmaps before and after optimization
with the best performing algorithm EnOpt (since the layout before practically corresponds
to the final layout of the do-nothing case), as in Figure 4.21, it can also be said that I1
is more strongly connected to P9 and P8, the second and third most productive wells
respectively. On the other hand I2 is cut off in its connection with P9 to favor I1. I3 is
more strongly connected to P2, P3 and P11, penalizing its connection with I7, which is
already supported by P1. I4 is cut off in its connection with P6 to favor I5. In turn, I5
is more strongly connected to P6. I6 maintains the same connections, slightly more with
far away wells P3, P7, P11. Finally, I7 reduces its support to its surrounding wells to
support P4.

Figure 4.21: Olympus: Fmap (EnOpt).

The VR strategy, compared to the optimization results, adopts more distributed injection
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rates, keeping the VRR ratio close to the unitary value (Figure 4.18). With respect
to the do-nothing case, injection rates are maintained closer to their historical values,
with the slight exceptions of stronger I1-P8 connection (penalizing I6), stronger I5-P3
connection (penalizing I2), stronger I6-P8 connection (penalizing I1), stronger I1-P9 and
I4-P9 connections, stronger I2-P9 connection (penalizing P1), as shown in Figure 4.22.

Figure 4.22: Olympus: Fmap (VR).

Mobile oil maps (Figure 4.23) show how the VR strategy tends to maintain a smoother
layout, without extreme conditions (less strongly red or blue zones).

Figure 4.23: Olympus: mobile oil map (VR).

Comparison with FloodOpt

Since EnOpt is the best performing algorithm, it is adapted and compared with Flood-
Opt’s strategy, as explained in Chapter 3. EnOpt reaches a similar cumulative oil produc-
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tion with the same cumulative water production and water injection availability target,
showing an efficient allocation of the injected water. For completeness, Table 4.12 shows
the NPV increased for the FloodOpt comparison, even though the objective function is
the cumulative oil production.

Case ANN NPV [106 $] Simul. NPV [106 $] Time [min]

EnOpt (target) 342 288 30

FloodOpt - 287 15

Table 4.12: Olympus: computational time and NPV, using ANNs and the simulator,
achieved by the obtained optimal solutions (FloodOpt comparison).

Cumulatives [106 Sm3]

Case Water inj. Water prod. Oil prod.

EnOpt (target) 3.59 2.55 0.807

FloodOpt 3.59 2.52 0.799

Table 4.13: Olympus: cumulative injection and production for each simulated strategy
(FloodOpt comparison).

In particular, FloodOpt tends to reward more efficient wells, such as I1, I6, I7, while
penalizing the less efficient ones, I2, I4 and I5, with reduced injection rates compared to
EnOpt. It is interesting to investigate why I3, despite its high efficiency, is kept at low to
medium rates. Compared to EnOpt, the most significant differences are on I2, I3, I4, I5.
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Figure 4.23: Olympus: optimal injection rates (FloodOpt comparison).

As it can also be seen on Fmaps (Figure 4.23b compared to Figure 4.24a), this results
in a stronger I2-P9 connection (penalizing P1), stronger I3-P3 and P2 connection (pe-
nalizing P11), stronger I5-P6 and P2 connection (penalizing P11), stronger I4-P6 and P7
connection (without penalizing other wells since I4 is practically closed in EnOpt).

(a) EnOpt (target)
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(b) FloodOpt

Figure 4.23: Olympus: Fmaps for each simulated strategy (FloodOpt comparison).

On mobile oil maps (Figure 4.24b compared to Figure 4.24a), this reflects onto how by
injecting less from I1, more oil is left in the region around P9 and how by injecting less
from I3, more oil concentrates between I3 and P2 and P11. On other hand, by injecting
more from I2 (FloodOpt), the region between I2 and I1 is drained, while by injecting more
from I4, the oil around it is not left off as in EnOpt, but it is produced. The remaining
regions display similar behaviors.

(a) EnOpt (target) (b) FloodOpt

Mobile oil difference [Sm3]

Figure 4.24: Olympus: mobile oil maps for each simulated strategy (FloodOpt compari-
son).

Sensitivity analysis on optimization parameters

A sensitivity analysis is carried out on the main parameters of the GA and EnOpt algo-
rithm. This study is presented here, after the optimization results, due to computational
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time reasons, explained below, which can prevent the full implementation of the sensitivity
analysis results in the optimization workflow.

Genetic algorithm For the GA, different combinations of the parameters described in
Appendix D are tested to investigate their impact on the objective function and compu-
tational time. Tested and optimal values are reported in Table 4.14.

Parameter Values Best for NPV Best for time

Mutation prob. 0.05, 0.1, 0.2 Low High

Parents portion 0.1, 0.3, 0.5 Low Mid-high

Crossover prob. 0.1, 0.5, 0.7 Low-mid Low/high

Crossover type One-point, two-point, uniform Two-point/uniform One/two-point

Table 4.14: Olympus: GA sensitivity analysis parameters.

In addition, the effect of population number (P) and maximum number of generations
(G) is investigated, keeping the same optimal parameters found previously and applied in
the two case studies. The results are showed in Figure 4.24, with objective function plots
reported over iterations (generations) and over time.
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Figure 4.24: Olympus: GA sensitivity analysis.

The two top plots show the effect of the P, at constant G. P is suboptimal if too low (not
enough variability in the population) or too high (excessive variability in the population)
in terms of objective function. As for computational time, a higher P generally leads to an
increase in the number of objective function evaluations if individuals are not evaluated
in parallel. The two bottom plots show the effect of G. While a higher G can generally
lead to increased computational time, a compromise between P and G seems to give the
best overall result in terms of objective function, with the same computational time as a
lower-P and higher-G configuration.

The GA parameters leading to the higher objective function, though, result in excessively
high computational times for this application. For this reason, to find a compromise be-
tween optimization and computational time, and to respect the fair comparison among
algorithms described in Figure 3.9, the chosen population and maximum number of gener-
ations for the GA in the previous optimization process of the two case studies are G=300
and P=50. Anyhow, as example, optimal profiles for the best configuration, with P=100
and G=500, are reported in Figure 4.24.
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Figure 4.24: Olympus: optimal injection rates (GA).

Results improves but are still slightly lower than with EnOpt. This result can be visualized
better when compared to the base case (see Figure 4.18).

EnOpt The main parameters of the EnOpt algorithm are the length α of the linesearch
in the desired direction at each iteration and the bound percentage reduction at each
iteration. The α value can be kept constant or can be optimized at each iteration, fol-
lowing the best objective function value. A sensitivity analysis is performed on these
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two parameters, as reported in 4.24 with objective function plots reported over iterations
(generations) and over time.
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(b) 10% bound reduction
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(c) 1% bound reduction
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Figure 4.24: Olympus: EnOpt sensitivity analysis.

Results show a 1% reduction in the bounds at each iteration leads to better overall ob-
jective function values than a 10% reduction. In addition, optimizing the α value at each
iteration generally leads to higher objective function values, but usually requires slightly
more computational time. The compromise is then between the increased evaluations
required to optimize α versus the benefit in terms of objective function.

Uncertainty analysis on initial candidates

To quantify the uncertainty of the obtained optimal solution with respect to the initial
candidates, a brief study is carried out on the non-deterministic algorithms, GA and
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EnOpt. It should be mentioned that this analysis is performed without integrating the
results in the previous optimization workflow, which would require an entirely new opti-
mization procedure that should exploit the prediction uncertainty directly in its search.
These results are not validated through the full-physics reservoir simulator as for the rest
of the application.

The optimization process is repeated 10 times by changing the seed (generated with
the same procedure described in Chapter 3), acting as initial population for the GA
or ensemble for EnOpt, with the same size as before. Figure 4.25 shows the objective
function for the best of the candidates from each of the 10 trials, whose use was explained
in Figure 3.9.
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Figure 4.25: Olympus: evolution of the NPV for different initial candidates.

Figure 4.24 shows the average optimal injection profiles obtained by the algorithms, along
with two standard deviations around each profile, specific for the injection rate of the single
well at the specific time step.
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Figure 4.24: Olympus: optimal injection rates for different initial candidates, with average
injection rates +/- 2σ, within bounds (EnOpt).

The EnOpt algorithm gives a lower uncertainty on the optimized injection profiles than
the GA (not shown for simplicity). Although there is high uncertainty in optimization in
some wells (e.g. I2, I4, I5 the injectors connected to the least important producers), for
others all trials converge to similar profile (I1, I3, I6, the injectors connected to the main
producers). For reference, see Figures 4.21 and 4.20. Furthermore, in some profiles, the
uncertainty of optimization is significantly lower in certain points in time.
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This analysis suggests that certain wells (I2, I4, I7) have little impact on the objective
function, showing higher uncertainty in the optimal profiles when changing the seed. Thus,
a further analysis is performed to investigate the impact on the optimization process when
these wells are excluded from control variables and simply given a constant injection profile
throughout the optimization period. Specifically, five values for the excluded injectors are
chosen, for each injector, as follows: the average value of the average profile shown in
4.24, the average value of the average profile +/- 2σi, and the two midpoints between the
first and second value and between the first and third value, as shown in Table 4.15.

Results on the objective function and the controls of non-excluded wells (Table 4.15)
show that optimization requires a compromise between injecting less from I2 and I4 and
injecting more from I7, in agreement with previous optimization results. The best trial
from the optimization uncertainty test still reaches better values than the best trial of this
"excluded wells" test, using EnOpt. Even in this case, the GA does not reach better results
than EnOpt. However, this trial reaches a very close value to the base-case optimization
(Table 4.10), but with slightly more than half of the control variables (32 out of 56),
reducing computational time.

Trial qin,2 [Sm3/d] qin,4 [Sm3/d] qin,7 [Sm3/d] ANN NPV [106 $]
#1 0 0 488 325
#2 75 57 694 330
#3 150 113 900 332
#4 341 316 950 318
#5 530 519 1000 303

Table 4.15: Olympus: injection rates for wells excluded from control variables.
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5| Conclusions

The continuous rise in global energy demand and the simultaneous decline in new sub-
stantial discoveries of oil fields require a careful management of the existing oil fields.
In such context, waterflooding optimization consists in identifying the optimal injection
scheme for a given field, so as to maximize its economic production and reduce waste.
While traditional surveillance methods can lead to suboptimal production strategies,
simulation-based optimization is often computationally heavy for practical applications,
in terms of the time and resources required to construct and tune full-physics models and
to run simulations. On the contrary, in surrogate-based optimization (SBO), the detailed
physics-based simulation code is replaced by a fast-running data-driven model, requiring
only production data and significantly reducing computational times. On the other hand,
while full-physics models are multi-purpose, surrogate models are typically developed for
the specific problem.

The research work in the present thesis proposes a framework for the efficient integration
of ANN-based surrogate models for the solution of the problem of waterflooding opti-
mization of brownfields. Compared to other types of SBO methods, which make use of
physics-based proxy models (e.g. reduced-order models), ANNs do not require geological
information. ANNs, in the form of physics informed (PINN) or long short-term memory
(LSTM) neural networks, are trained on historical data, assuming only the actual histor-
ical production of the field is available as matched input-output pairs. These ANNs are
used to approximate the oil and water production rates, based on the water injection rates
and are, then, coupled to an optimization algorithm, using the net present value (NPV) as
objective function. Simplifying assumptions include the timeline, where all wells share the
same start date, the high quality of the datasets (neglecting noise, uncertainty or sparsity)
and the constant dynamics of wells, which are not modified by workover operations.

The methodological framework proposed is validated by its application to two synthetic
fields. The first case is a 2D synthetic field with homogeneous geological properties, 5
injectors and 4 producers, named Streak field. The surrogate models used in this first
problem are based on PINN networks. The second case is a complex, 3D synthetic field



72 5| Conclusions

with highly heterogeneous geological properties, 7 injectors and 11 producers, named
Olympus field. The surrogate models in this case are based on LSTM networks. Both ap-
plications provide positive results, which are deeply interpreted and analyzed in the thesis,
in order to add a level of extent of validation to the numerical validation of optimized
controls run on the simulator. In particular, it is found that:

– surrogate models are able to approximate the behavior of the reservoirs with good
accuracy relative to a full-physics simulation model, thanks to the physical con-
straints imposed by PINNs and the integration of dynamics through time sequences
in the LSTMs. In addition, they require only a small fraction of the computational
time of the simulation runs for a single forward evaluation of the objective function,
with a ratio of 1:10 and 1:100 for the Streak and Olympus fields, respectively. A
study on model uncertainty shows that the prediction is accurate even when the
dataset is randomly partitioned between training and validation, with the analysis
performed on a single well only for time reasons;

– compared to the "do-nothing" and "pressure maintenance" scenarios, the optimiza-
tion process leads to improved values of the NPV objective, even when the optimal
injection schedules obtained by the surrogate models are run through the full-physics
simulator. With respect to a simulation-based software for waterflooding optimiza-
tion, the workflow is able to reach the same, or higher, cumulative oil production,
with comparable computational times. The analysis on the robustness of the opti-
mal solutions highlights high uncertainty;

– the optimization process is able to provide high-level operational guidelines for the
field of interest and additional insights into the reservoir’s behavior, in terms of
injector-producer connections and the impact of wells on the NPV. Nevertheless,
the obtained optimal solutions cannot be blindly translated into action, and still
require the supervision of experts and operators to be implemented;

– the developed workflow provides high flexibility in that any objective function and
constraint on the control variables can be specified, differently from the optimization
software used as benchmark.

The demonstrated benefits of the proposed workflow confirm that it can be applied as a
fast, practical tool for the problem of waterflooding optimization in realistic brownfields,
without the support of geological information. The surrogate models can be updated
continuously with new production data from the field to ensure they are up-to-date with
the reservoir’s conditions, making them available for real-time applications.
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Future developments can include:

– integrating PINNs and LSTMs, to benefit from the peculiarities of both network
types;

– using additional input data during training and/or optimization (e.g. BHPs), in
order to increase the predictivity of the models as well as the flexibility of the
workflow;

– enhancing the parallelization of the workflow by computing the objective function for
independent candidate solutions, or the output from independent neural networks,
in parallel rather than in series. This could further reduce computational times,
expanding the workflow to the use of more complex networks or computationally
heavier optimization algorithms;

– investigating further the model uncertainty quantification, through full bagging or
Gaussian processes.
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A| Oil and gas production

A.1. Oil field production life

Oil and gas production refers to all the processes which allow fluids to flow from reservoir
rock to production wells as a result of a pressure difference between the reservoir and the
surface. Production life is generally divided into three phases: primary, secondary, and
tertiary production (or recovery) [2].

Primary production It occurs during the first years of life. The field produces in
natural depletion, exploiting the natural energy available in the reservoir (i.e. expansion
capacity of the formation fluids and the contraction of the rock) and the supporting action
of an underlying aquifer or overlying gas cap. The main driving force for production is
referred to as “drive”: in this sense, fields can produce under expansion drive, dissolved
gas drive, gas cap drive, water drive. However, once the reservoir’s pressure has dropped
sufficiently (usually within 1-10 years), production gradually decreases, leaving most of
the resources underground (recoveries are usually 5-20% of the initial oil in place) [48].
This can make production inefficient or the investment not worthwhile. In addition to
this, if pressure drops below the bubble point, the hydrocarbon mixture separates into
two phases: liquid and vapor. The latter is richer in light components, has lower density,
viscosity and economic value. Fields are referred to as “mature” when they have reached a
stage of plateau or decline in production rate. Therefore, other supplementary processes
are designed to add energy into the reservoir-fluid system and to maintain pressure in the
reservoir (ideally above the bubble point), known as secondary production [4].

Secondary production It occurs when an external fluid is injected into the reservoir
through injection wells. This helps maintain pressure and acts as a driving force to keep
oil flowing. In addition, the injected fluid can displace oil from the pore space of the
rock, leading to potentially higher recoveries (up to 30-60% of the initial oil in place) [48].
The most common injected fluids are natural gas and water. The use of one or the other
depends on a variety of factors, such as the type of reservoir and the availability of the
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fluid. Secondary production can extend the field’s production life up to 20 years [4].

Tertiary production It occurs when secondary processes have exhausted their poten-
tial. It is the last and most expensive phase of production life, aimed at enhancing the
recovery factor up to 50-70% by injecting special fluids such as CO2, surfactants, poly-
mers, steam [48]. These processes are based on a chemical or thermal mechanism that
improves oil displacement or flow.

Note: in reservoir engineering, decisions often must be taken in presence of very large un-
certainties about subsurface properties. To address the issue, a set of different subsurface
models can be used, known as ensemble of geological realizations. “Nominal” is the word
used if only one geological model is considered, or else “robust” in case multiple geological
models are employed.

A.2. Waterflooding

Water injection is also called waterflooding, and is performed through a series of injection
wells, strategically drilled in the field. Water can be pumped directly into the surrounding
aquifer (water-bearing zone below oil), in the oil-bearing area, or peripherally. It maintains
pressure and has a sweep effect on the oil-saturated rock, improving recovery [51]. Oil
wells produce a complex, multiphase mixture at the well-head. The main components are
usually oil, water, and gas [51]. The water fraction of the liquid production rate of a well
is known as water cut (WC). When injected water is first produced at production wells,
water breakthrough has occurred. From this point onwards the water cut usually starts
to rise, as the reservoir is being gradually flooded and, hopefully, oil is being swept. In
mature fields, water cut can reach values up to 90-95% while still maintaining production
economically feasible [4].

Nevertheless, simply injecting more water does not directly lead to higher recovery. In
fact, from a physical perspective, the process of waterflooding is a complex, nonlinear
problem. To model it mathematically, the following equations are required:

– phase behavior of fluids;

– multiphase flow equations;

– mass conservation equations;

– deliverability equations at wells.

Analytical solutions to the waterflooding problem exist only for simplified cases, such as
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the Buckley-Leverett equation, for a 1D, immiscible and incompressible oil-water system
(see below).

Phase behavior The phase behavior of reservoir fluids is used to describe their PVT
properties, both at surface and reservoir conditions. Phase behavior is typically described
either using a "black-oil" approach, based on interpolation of PVT properties as a function
of pressure, or a "compositional" approach, based on thermodynamically consistent model
such as an equation of state (EOS) [44]. Fluid properties have major impact of production
mechanisms. Phase behavior of hydrocarbons can be visualized on a P-T diagram, as in
Figure A.1, which is not known a priori but is based on experimental measurements from
the reservoir [48].

Figure A.1: Hydrocarbon phase diagram.

The critical point marks the transition from the bubble point to the dew point line,
which in turn describe how the hydrocarbon separates into two phases as pressure and
temperature are varied. Surface conditions have much lower pressure (and, to a lesser
extent, temperature) than reservoir conditions. As a consequence, formation volume
factors are used to describe the ratio between reservoir volumes (subscript r) and surface
volumes (subscript s). This is also the reason why flow rates are sometimes expressed in
rm3 or rb.

Oil formation volume factor is defined as the ratio between the oil reservoir volume Vor
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and surface volume Vos:

Bo =
Vor

Vos

(A.1)

Due to light components which separate from the liquid phase as pressure decreases, Bo is
greater than 1 rm3/Sm3, with values in the range 1-2 rm3/Sm3 from heavy oils to volatile
oils. It reaches its maximum at the bubble point pressure.

Water formation volume factor is defined as the ratio between the water reservoir volume
Vwr and surface volume Vws:

Bw =
Vwr

Vws

(A.2)

Due to dissolved gases at reservoir conditions, such as carbon dioxide, it is typically close
to 1 rm3/Sm3 or slightly larger.

Gas formation volume factor is defined as the ratio between free gas reservoir volume Vgr

and the surface volume of that free gas (excluding solution gas) Vfg:

Bg =
Vgr

Vfg

(A.3)

It is typically in the range 10−2-10−3rm3/Sm3 and decreases as pressure drops since gas
expands. Another important concept is the solution gas-oil ratio, which is defined as the
volume of gas Vsg, measured at standard conditions, that will dissolve in a unit surface
volume of oil in the reservoir Vos [48]:

Rs =
Vsg

Vos

(A.4)

It reaches its maximum at the bubble point pressure. Schematic plots of formation volume
factors and of Rs are reported in Figure A.1.
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(a) Oil formation volume factor (b) Water formation volume factor

(c) Gas solubility ratio (d) Gas formation volume factor

Figure A.1: Qualitative trends of formation volume factors and gas solubility ratio with
pressure.

Mass conservation equations For one-dimensional flow in porous media, the Darcy
velocity q (also called Darcy flux) is related to the average linear velocity v (or seepage
velocity) by the porosity ϕ. For a discharge flow rate Q over a cross-sectional area A:

v =
Q

Ae

=
Q

Aϕ
=

q

ϕ
(A.5)

where Ae is the effective area, to reflect the fact that fluids can only pass through the
connected pore space portion of A.

The material balance equation for incompressible multiphase flow is given by:

∇ · qt = ∇ ·
Nph∑
j=1

qj = 0 (A.6)
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and for every phase j it is given by:

ϕ
∂Sj

∂t
+∇ · qj = 0 (A.7)

where:

– Nph is the number of phases;

– qt is the total Darcy velocity;

– qj is the Darcy velocity of phase j;

– Sj is the saturation of phase j.

The right side of the equation is different from zero in case of sink or source terms (in
proximity of wells).

Multiphase flow equations The generalized form of Darcy’s law for incompressible
multiphase flow in porous media, due to Muskat and Meres (1936)[52], is:

qj = −Kkrj
µj

(∇Pj − ρjg) (A.8)

where:

– g is the gravitational acceleration constant

– K is the permeability matrix

– krj is the relative permeability of phase j

– µj is the viscosity of phase j

– ρj is the density of phase j

A key role in waterflooding is played by permeability K and relative permeability krj of
phase j. K is a function of the structure of the porous medium, and it is dimensionally
a squared length, measured in millidarcy (mD) or m2. It can span several orders of mag-
nitude in the same geological structure, and is in general a tensor. Relative permeability
krj, on the other hand, accounts for the fact that the flow of any phase is influenced by
the presence of the other phases. It is a highly nonlinear function of saturation, but it
also depends on displacement path, wettability of the rock, and flow rate [48]. It is di-
mensionless and equals 1 in case of single-phase flow. An example of permeability curves
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is reported in Figure A.2, where they are plotted against water saturation, between the
initial value Swi and residual value 1− Sor.

Figure A.2: Example of relative permeability curves against water saturation.

In practice, water does not displace oil uniformly along a single flow direction, following a
piston-like motion. Instead, water follows preferential paths in the rock matrix, depending
on its absolute permeability distribution and relative permeabilities. This phenomenon,
known as "fingering", is the reason why simply injecting more water from a well may
not lead to increased recovery: on the contrary, it may result in leaving oil behind and
producing only water. The effectiveness of the waterflooding process can be measured by
means of sweep efficiency and the local displacement efficiency [2]. The sweep efficiency
is the fraction of the volume of the reservoir contacted by the injected water: it depends
on a variety of factors, such as injection pattern, permeability, flow rate, fluid properties.
The local displacement efficiency is the fraction of oil that has been recovered from a zone
swept by the injected water.

Deliverability equation at wells The production rate in ideal, undersaturated (single-
phase, homogeneous liquid) oil wells is linearly proportional to the drawdown, i.e. the
difference between reservoir pressure p̄ and bottomhole well flowing pressure pwf . The
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deliverability equation describes this relationship through the productivity index PI:

PI =
Qo

(p̄− pwf )
(A.9)

Assuming steady state conditions, pure radial flow, and constant, homogeneous properties,
Darcy’s law can be expressed by means of the productivity index, in SI units, as:

PI =
2πKkrH

µoBo

[
ln
(

re
rwb

)
+ Sk

] (A.10)

where:

– H is the net pay zone thickness;

– re is the drainage radius at the constant pressure boundary;

– rwb is the wellbore radius;

– Sk is the skin factor, which accounts for a pressure drop ∆pskin due to near wellbore
phenomena.

A schematic representation of the drawdown (pressure difference) cone is reported in
Figure A.3, where the effect of the skin factor is highlighted.

Figure A.3: Schematic pressure cone around an ideal, undersaturated production well.

(A.10) is also known as inflow performance relationship (IPR). Conditions between well-
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bore and wellhead, represented in Figure A.4, can be expressed through pressure losses
in the tubing, as:

pwf = pwh + ph +∆ptbg = pwh + ph + f(Qo, pwf , pwh) (A.11)

where ph is the static pressure head and ∆ptbg is the pressure drop in the tubing, expressed
as a function of flow rate and pressure.

Figure A.4: Production well scheme.

(A.11) is also known as vertical flow performance (VFP) curve. The IPR curve is paired
with VFP curve to obtain the working point of the reservoir-well system, as shown in
Figure A.5.
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Figure A.5: Graphical method to find a well’s working point.

These considerations can be extended to non-saturatd flow and non-ideal conditions:
further information can be found in the specific literature [4, 51].

A.2.1. Buckley-Leverett solution

First proposed by Buckley and Leverett (1942)[35], this equation is used for a simplified,
1D water-oil system in porous media. Assuming incompressible, immiscible flow, the
Darcy velocities in (A.8) can be expressed as:

qw = −Kkrw
µw

(
∂Pw

∂x
− ρwgsinθ) (A.12)

qo = −Kkro
µo

(
∂Po

∂x
− ρogsinθ) (A.13)

where θ represents the slant angle of flow with respect to the horizontal direction. Notice
the use of the symbols qo and qw, which in this instance refer to a Darcy flux, while in
the rest of the thesis refer to flow rates. The phase conservation equations (A.7) become:

ϕ
∂Sw

∂t
+

∂qw
∂x

= 0

ϕ
∂So

∂t
+

∂qo
∂x

= 0

(A.14)

(A.15)

such that, since Sw + So = 1, the total Darcy velocity can be expressed as the sum
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qt = qw + qo:

qt = −Kkrw
µw

(
∂Pw

∂x
− ρwgsinθ)−

Kkro
µo

(
∂Pw

∂x
+

∂Pc

∂x
− ρogsinθ) (A.16)

where Pc = Po − Pw is the capillary pressure, assuming oil is the non-wetting phase and
water is the wetting phase. By defining the mobility λj of phase j and the total mobility
λt as:

λj =
krj
µj

λt =

Nph∑
j=1

λj

(A.17)

(A.18)

(A.16) becomes:

qt = −Kλt
∂Pw

∂x
+Kgsinθ(ρwλw + ρoλo)−Kλo

∂Pc

∂x
(A.19)

and (A.12), by substituting ∂Pc

∂x
from (A.19), becomes:

qw =
λw

λt

qt +K
λoλw

λt

(ρw − ρo)gsinθ +K
λoλw

λt

∂Pc

∂x
(A.20)

In this way, (A.15) can be expressed in terms of water fractional flow fw as:

ϕ
∂Sw

∂x
+ qt

∂fw
∂x

= 0 (A.21)

where fw is:

fw =
λw

λt

[
1 +K

λo

qt

(
∂Pc

∂x
+ (ρw − ρo)gsinθ

)]
(A.22)

Neglecting capillary effects, which are generally small compared to advection and buoy-
ancy effects, (A.22) becomes:

fw =
λw

λt

[
1 +K

λo

qt
(ρw − ρo)gsinθ

]
=

1 +NGkrosinθ

1 + kroµw

krwµo

(A.23)

where NG = K∆ρg
µoqt

is called gravity number. In this way, (A.21) can be rewritten as:

∂Sw

∂t
+ v

∂fw
∂x

= 0 (A.24)
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where v = qt
ϕ
. Applying the chain rule:

∂Sw

∂t
+ v

∂fw
∂Sw

∂Sw

∂x
= 0 (A.25)

If dimensionless space xD and time tD are defined as:

xD =
x

L

tD =

∫ t

0

v

L
dt =

∫ t

0

qt
ϕL

dt =

∫ t

0

Q

ϕAL
dt =

1

Vp

∫ t

0

Qdt

(A.26)

(A.27)

then water saturation partial derivatives become, in dimensionless variables:

∂Sw

∂tD
=

dSw

dvD

dvD
dt

∣∣∣∣
x

=
vD
tD

dSw

dvD

∂Sw

∂xD

=
dSw

dvD

dvD
dx

∣∣∣∣
t

=
1

tD

dSw

dvD

(A.28)

(A.29)

to obtain the final equation:
dSw

∂vD

(
vD − ∂fw

∂Sw

)
= 0 (A.30)

The trivial solution is constant saturation with vD, while the non-trivial solution is ex-
pressed by the characteristic velocity of the saturation wave:

vD =
∂fw
∂Sw

(A.31)

or, in dimensional form:

v = vD
Q

ϕA
(A.32)

As such, water saturation is a function of space and time Sw = Sw(x, t) = Sw(x − vt).
The non-convex nature of (A.23) gives rise to the peculiar Buckley-Leverett profile, which
consists of a constant state at Swi, a shock wave (i.e. a discontinuity in saturation left L
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and right R side of the shock), moving with velocity vsh (or, in dimensionless form, vshD):

vsh =
qt
ϕ

(fL
w − fR

w )

(SL
w − SR

w )
=

qt
ϕ

∆fw
∆Sw

vshD =
∆fw
∆Sw

(A.33)

(A.34)

and a rarefaction wave, as reported schematically in Figure A.6. The construction of
the Buckley-Leverett solution can be obtained analytically or graphically, with the Welge
construction, starting from the fw −Sw plot (details can be found in Dake (1983)[51] and
Buckley and Leverett (1942)[35]).

Figure A.6: Example of Buckley-Leverett solution profile.

The final recovery efficiency Rf , the ratio between the produced oil NP and the total oil
in place N , can be thought of as the product between the sweep efficiency Es and the
local displacement efficiency Ed [48]:

Rf =
NP

N
= EsEd =

N real
PD

NBL
PD

NBL
PD

(1− Swi)
(A.35)

where NPD = NPBo

VpϕNTG
is the dimensionless form of NP and superscripts denote the ideal

Buckley-Leverett conditions and real conditions.
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A.2.2. Other aspects

Water composition, well placement and injection/production schedules are critical to ef-
ficient waterflooding [4].

Water composition It must be compatible with the reservoir’s aquifer water and rock.
Water can come from aquifers, watercourses, or the sea, in case of offshore fields. Water
pretreatments include filtering, deaeration, inhibitor addition, in order to prevent any
precipitate formation, clogging, corrosion [4].

Well placement The number and location of wells can be determined through sim-
ulations using mathematical models, based on reservoir’s geometry, type of rock, costs,
and position of existing wells. The layout of injection and production wells on the field is
called well pattern. Common patterns are the direct and staggered line drive, the 4-5-6-7
spot [4].

Injection/Production schedules They specify how much and when to inject or pro-
duce from each well over time. This is done in the form of injection and bottom-hole
pressure profiles of wells. Oil displacement through waterflooding is a slow process: its
timescale is in the order of months to years [48]. Hence, also for operational reasons,
variations in production strategies cannot be applied continuously, but are modified only
every so often.

A.3. Waterflooding management

Most of the existing oil and gas fields are already at mature stage of production. Si-
multaneously, the number of substantial new discoveries is declining [1]. Maximizing the
efficiency of existing oilfields, while lowering development and operating costs, is critical
to meet the increasing global demand for energy. If waterflooding operations are instead
managed poorly, there is a high risk of leaving precious resources behind, ultimately re-
sulting in monetary losses. In practice, the risk is to reach the minimum oil production
rate for economic production or the maximum water production rate allowed by facili-
ties. Hence, a poor water injection management can lead to well flooding and subsequent
shutdown.

A strategy that might be used to address these issues is optimal control theory applied
to production. Production optimization refers to the identification of optimal strategies
for hydrocarbon production. In other words, it is the process through which reservoir
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performance is adjusted and managed in terms of oil recovery or economic return (net
present value, NPV).

Benefits Developing an improved operating plan for waterflooding optimization has
the potential to increase oil recovery from the reservoir of interest [3]. Practically, this
entails producing more oil for the same investment, or reducing costs and waste for the
same production. Specifically, the advent of smart well technology has allowed to achieve
substantially higher oil recovery by intelligently managing field operations [5].

Challenges Given that the relationship between reservoir dynamics and control pa-
rameters is, in general, non-linear, finding the optimal set of controls is a complex task.
The number of constraints and parameters for optimal field control can rise quickly if
well patterns, rates and BHPs over time are all used as control variables with dozens of
wells in the field. As a consequence, reducing the order of the optimization problem (di-
mension space) is one of the main challenges of waterflooding optimization. This entails
identifying the controls that have the most influence on the objective function to lower
the computational complexity of the problem.
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B| Waterflooding optimization

problem

In this section the general form of the waterflooding optimization problem is described.
Waterflooding optimization can be both single and multi-objective. In the former, the
objective function is almost always some form of Net Present Value (NPV); in the latter,
another objective, such as cumulative oil production or the inverse of NPV variance across
multiple geological realizations, is also optimized by means of a Pareto front, along with
the expected value of the objective function over the realizations. This thesis focuses on
single objective optimization. Anyhow, the choice of the objective function ultimately
depends on the specific reservoir and its surrounding conditions. The time evolution of
the reservoir state can be represented as a time and spatial discretization of the underlying
partial differential equations over Nt time steps [53]. As such, the reservoir simulator can
be described as in Onwunalu and Durlofsky (2010)[53]:

g(k+1)(x(k+1),x(k),u(k+1)) = 0 for k = 0, ..., Nt − 1 (B.1)

where:

– g(k) : Rd → Rt is a vector-valued nonlinear function representing the set of simulator
equations at the generic time step k;

– x(k) ∈ X(k) ⊂ Rt is the vector of dynamic state variables of the model (pressure,
saturation, component concentration etc.) at all grid blocks at the generic time step
k;

– u(k) ∈ U(k) ⊂ Rp is the vector of continuous well control variables, of dimension n

(e.g. injection rates, BHPs, etc.).

X(k) and U(k) define the allowable values for each control variable at time step k. The
reservoir simulator equations are solved starting from initial conditions at each time step.
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Simulator equations can be written as concatenated vectors in time:

g = [gT
(1), ..., g

T
(Nt)]

T g : Rs → Rs (B.2)

where s = Ntt. Applying the same formulation to state and control vectors:

x = [xT
(1), ...,x

T
(Nt)]

T x ∈ X ⊂ Rs

u = [uT
(1), ...,u

T
(Nt)]

T u ∈ U ⊂ Rn

(B.3)

(B.4)

where n = Ntp. X and U define the allowable values for each control variable at all
time steps. Reservoir simulator equations can be rewritten in a more compact manner,
omitting time, as:

g(x,u) = 0 (B.5)

B.1. Simplified optimization problem formulation

Waterflooding optimization is subject to a set of operational and economic constraints,
making it, in its most generic form, a non-linearly constrained mixed integer optimization
problem (MINLP). As such, it can be formulated as finding the optimal control variables
which minimize the objective function J , subject to the generic set of linear or non-linear
constraints c. If the same approach as with g for time dependence is also applied to c,
as in (B.5), the problem can be formulated as:


min
u∈U

J(x,u)

c(x,u) ⩽ 0

g(x,u) = 0

(B.6)

where:

– x is the vector of dynamic state variables of the model (pressure, saturation, etc.)
at all grid blocks;

– u is the vector of continuous well control variables, of dimension n (e.g. injection
rates, BHPs);

– U = {u ∈ Rn;ul ⩽ u ⩽ uu} defines the allowable values for u at all time steps;

– g is the set of reservoir simulation equations to be solved to evaluate J and c at all
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time steps;

– c is the set of linear and nonlinear constraints on all control variables at all time
steps.

The dimension of the optimization problem is n. Well controls are represented as piecewise
constant functions in time with Nt time intervals. Examples of constraints include:

– maximum BHPs at injectors;

– minimum BHPs at producers;

– bounds on injection and production rates at well or field level;

– maximum water cut at producers;

– minimum profit per barrel of oil.

Depending on whether constraints should simply guide the optimization process, or in-
stead be honored precisely in the solution (which would instead be considered unaccept-
able), they can be implemented in the optimization algorithm with a penalty function,
a filter method, or directly as a “hard” constraint. The implementation of constraints,
especially if nonlinear, is also a topic of interest in literature [54].

This work assumes that the most effective way reservoir engineers have to improve field
performance is to control injection well rates. Hence, only injection wells are controlled,
and each injection well only has its injection rate as control variable, such that the di-
mension of the problem is n = NinNt, where Nin is the number of injection wells.

Note: the above procedure can be extended to discrete and categorical control variables,
with their own domains, as for continuous control variables
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C| Capacitance resistance models

Capacitance resistance models (CRMs) have been inspired by electrical circuits. Following
the electrical analogy, reservoir fluids, pressure and reservoir transmissivity can be viewed
as current, voltage and conductance respectively. In this way, the whole reservoir is
modeled as a circuit, defined by a number of parameters. At any point in time, if initial
conditions and the circuit’s parameters are known, production rates at producers can be
computed.

CRMs make use of nonlinear regression on historical data to calculate those parameters. In
the case of reservoir systems, they are known as interwell connectivities and time constants
(or response delays). Connectivities fij quantify the connection between injector i and
producer j: in a way, they are a measure of the reservoir porosity, permeability and fluid
properties [14]. Time constants τ quantify the attenuation of the output response of the
reservoir (production rates at producers) to an input signal (injection rates at injectors)
[14]: as such, they represent a combined measure of the reservoir’s compressibility ct, pore
volume Vp and productivity index PI of the production well. Considering only a single
injector-producer connection ij, they are defined mathematically as:

τ =
ctVp

PI

fij =
qij
qin,i

(C.1)

(C.2)

for i = 1, ..., Nin and j = 1, ..., Np, where fij is the fraction of the injection rate at injector
i contributing to production rate at producer j in steady-state conditions. They are
subject to the following constraints, which ensure results are physically meaningful:

τ ⩾0

0 ⩽ fij ⩽ 1

Nin∑
j=1

fij ⩽ 1

(C.3)

(C.4)

(C.5)
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C.1. Assumptions and equations

The underlying assumptions for CRM models are described in Holanda et al. (2018)[14] :

– low compressibility of fluids and rock;

– constant total volume with instantaneous pressure equilibrium;

– constant temperature;

– constant productivity index;

– immiscible phases with negligible capillary pressure;

– stepwise variation of injection rates and linear variation in BHPs.

Regression is based on historical data fitted onto the material balance equation:

ctVp
dp̄(t)

dt
= fqin(t)− q(t) (C.6)

and the deliverability equation:

PI =
q(t)

p̄(t)− pwf (t)
(C.7)

where p̄, pwf , q and qin are average reservoir pressure, well bottomhole pressure, liquid
production rate and water injection rate, respectively. Combined, they result in the CRM
equation:

τ
dq(t)

dt
+ q(t) = fqin(t)− τPI

dpwf (t)

dt
(C.8)

For the solution of (C.8), time is discretized as a sequence of intervals of generic length,

defined as tk = t0 +
k∑

j=1

∆tk with k = 1, ..., Nt instead of the usual tk = t0 + k∆t with

equally spaced intervals. To further distinguish between phases, a fractional flow model for
a phase must be introduced. For the sake of simplicity, only water and oil are considered.
The mathematical formulation for the oil fraction (or cut) fo typically depends on the
type and stage of the field. A common oil cut model used for mature fields in literature
is some form of two-parameter semi-empirical power law, as suggested in Sayarpour et al.
(2009)[47], which correlates cumulative injection rate CWI to oil production rate qo:
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fo(t) =
1

1 +WOR(t)
=

1

1 + αCWI(t)β
(C.9)

Once the oil fractional flow fo is defined, oil and water rates, qo and qw can be computed
as:

qo(t) = fo(t)q(t)

qw(t) = q(t)− qo(t)

(C.10)

(C.11)

where WOR is known as water-oil-ratio. Again, historical data is fitted on the fractional
flow model to find α and β values. Depending on the needs, oil rate can be calculated at
a well, group of wells or fields level, by fitting data accordingly. No previous knowledge
of the reservoir’s physical properties is required. Nonetheless, the information about
connectivities and time constants can be valuable for other purposes as well, such as
identifying the presence of channelized areas or faults [31].

C.2. Analytical solutions

Depending on the control volume to which the above equation is applied, we can distin-
guish different CRM models, as formulated by Sayarpour at al. (2007)[55]:

– CRMT (as in “tank”) with the volume of the entire field F . The CRM equation is:

τF
dq(t)F
dt

+ qF (t) = qin,F (t) (C.12)

and its analytical solution is:

qF (tNt) = qF (t0)e
−

tNt
−t0

τF +
Nt∑
k=1

[
e
−

tNt
−tk

τF

(
1− e

−∆tk
τF

)
qin,F (tk)

]
(C.13)

where τF =
(

ctVp

PI

)
F

is a field F parameter. A schematic representation of the
CRMT model is reported in Figure C.1;

Figure C.1: CRMT model.
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– CRMP (as in “producer”) with the drainage volume around each producer. The
CRM equation is:

τj
dqj(t)

dt
+ qj(t) =

Nin∑
i=1

fijqin,i(t)− τjPIj
dpwf,j(t)

dt
(C.14)

and its analytical solution is:

qj(tNt) = qj(t0)e
−

tNt
−t0

τj +

Nt∑
k=1

{
e
−

tNt
−tk

τj

(
1− e

−∆tk
τj

)[Nin∑
i=1

qin,i(tk)− τjPIj
∆pwf,j(tk)

∆tk

]} (C.15)

where τj =
(

ctVp

PI

)
j

is a producer j parameter associated with its effective area. A

schematic representation of the CRMP model is reported in Figure C.2;

Figure C.2: CRMP model.

– CRMIP (as in “injector/producer”) with the drainage volume between each injector-
producer pair. The CRM equation is:

τij
dqij(t)

dt
+ qij(t) = fijqin,i(t)− τijPIij

dpwf,j(t)

dt
(C.16)

and its analytical solution is:

qj(tNt) =

Nin∑
i=1

qij(tk) = qij(t0)e
−

tNt
−t0

τij +

Nin∑
i=1

{
Nt∑
k=1

[
e
−

tNt
−tk

τij

(
1− e

−∆tk
τij

)(
fijqin,i(tk)− τijPIij

∆pwf,j(tk)

∆tk

)]} (C.17)
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where τij =
(

ctVp

PI

)
ij

is a producer-injector ij parameter associated with the control

volume between them. A schematic representation of the CRMIP model is reported
in Figure C.3.

Figure C.3: CRMIP model.

Drainage volume represents the portion of the volume of a reservoir drained by a well.
Each analytical solution is the sum of three contributions to oil production: due to primary
production or depletion (first term), due to water injection (second term), due to BHP
variation (third term).

C.3. Applications in reservoir engineering

Albertoni and Lake (2002)[38] first introduced the use of CRMs with the purpose of identi-
fying injection patterns, while the formal mathematical model using material balance and
time constants is due to Yousef et al. (2006)[46, 56]: CRMs were brought from theoretical
backgrounds to real field applications. It was not until Sayarpour at al. (2007)[55, 57] that
material balance ODEs above were first solved analytically in closed form. In Sayarpour
et al. (2009)[47], they were applied for production optimization using heuristic water real-
location techniques. Weber at al. (2009)[58] developed a method to pre-process data and
reduce parameter requirements for CRMs, decreasing the dimensionality of the problem.
Jahangiri at al.(2014)[59] applied waterflooding optimization for a field in the North Sea,
combining a CRMs with a heuristic optimization algorithm based on injector-producer
connectivity. Similarly, Temizel et al. (2017)[60] applied waterflooding optimization using
CRMs and investigating the most important parameters, such as magnitude of injection,
vertical conformance, area conformance of wells.

It is clear how through CRMs, it is possible to forecast production rates from injection
rates and BHPs. CRMs’ main disadvantage is their limited flexibility: the analytical



100 C| Capacitance resistance models

solution of the ODE can be obtained only in specific conditions (linear variations of
BHP and fixed injection rates between two consecutive time steps) and with a suitable
fractional flow model [14]. Finally, CRMs’ performance in terms of computational time
and accuracy of forecast may deteriorate as field size (thus the number of parameters)
increases.
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D| Optimization algorithms

In this section a brief description of the optimization algorithms used in this thesis is
given, along with a simple process flow diagram.

D.1. Trust-region algorithm

Trust-region methods are a class of algorithms opposed to line-search methods. Instead of
finding a direction of improvement and selecting a step length, a trust region is identified
(similar to a maximum step length) and then a point of improvement is searched for in
the region. A new trust region is centered in the improved point. Similarly to Sequential
Quadratic Programming (SQP), the objective function J is approximated by a quadratic
function m (or quadratic model) around a point: the model is "trusted" to be an adequate
representation of the objective function in the region. The Taylor series expansion of the
objective function around the solution at iteration (i), u(i) is:

J(u(i) + p) = J (i) + g(i)Tp+
1

2
pT∇2J(u(i) + tp)p (D.1)

with J (i) = J(u(i)). The model function is:

m(i)(p) = J (i) + g(i)Tp+
1

2
pTB(i)p (D.2)

where g(i) = ∇J (i), p is the step, t is some scalar in the interval (0,1), and B(i) is an
approximation of the Hessian in the second term, in the form of a symmetric matrix (or
the actual Hessian in case second-order derivative information is available). The difference
between m(i)(p) and (u(i) + p) is of course O(∥p∥2) when p is small. For each step, the
solution reduces to a minimization problem in the n-dimensional space, formulated as:

min
p∈Rn

m(i)(p) subject to ∥p∥ ⩽ ∆(i) (D.3)
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where ∆(i) is the trust-region radius and ∥·∥ is the Euclidean norm. Let us define the
ratio:

ρ(i) =
J(u(i))− J(u(i) + p(i))

m(i)(0)−m(i)(p(i))
(D.4)

where the numerator is the actual reduction and the denominator is the predicted reduc-
tion, which is always non-negative. Hence, if:

– ρ(i)<0, it means J(u(i)) < J(u(i) + p(i)), so the step must be rejected, because the
step p(i) brought an increase in the objective function (minimization problem);

– ρ ≈ 1, the model’s prediction is accurate, and the trust region is expanded in the
next iteration;

– 0 ≪ ρ(i) ≪ 1 the trust region remains unaltered;

– ρ ⩽ 0 or ρ ∼ 0 the trust region is shrunk by ∆(i) in the next iteration.

The trust-region algorithms require thus to solve a series of sub-problems as in (D.3) with
quadratic objective function m(i)(p) and constraint ∥p∥ ⩽ ∆(i). Depending on the method
through which (D.3) is solved, different algorithms have been studied, to solve both equal-
ity constrained and inequality constrained problems. SciPy’s optimization library provides
an implementation of the trust-region SQP method for equality constraints, as described
by Lalee et al. (1998)[40] and an implementation of the nonlinear interior point trust
region optimizer for inequality constraints, as described by Nocedal et al. (1999) [41]. A
process flow diagram for the trust-region algorithm is depicted in Figure D.1.
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Figure D.1: Trust-region algorithm process flow diagram.

D.2. Genetic algorithm

Holland (1992) introduced genetic algorithms (GAs) [61], inspired by biological evolution
in natural environments and the concept of survival of the fittest. In GA, each candidate
solution is a chromosome, made up of genes (control variables and their values). Chro-
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mosomes evolve through the iterative use of three basic operations: selection, crossover,
mutation. The best candidates, according to their objective function value, have greater
chance of survival and crossover.

At each iteration, some chromosomes are selected based on the selection operation. They
are then combined based on the crossover operation, resulting in an offspring for the next
iteration (or generation). Finally, some chromosomes’ genes are randomly modified, based
on the mutation operation.

The population of P individuals can be described as:

P = [uT
1 , ...,u

T
P ]

T (D.5)

Each individual (or chromosome) is a vector of genes, where each gene is a control variable
for the problem, uj = [uj,1, ..., uj,n], where n is the dimension of the control variable space
(i.e. the number of genes in the chromosome). As such, P can be seen as a concatenated
vector of vectors.

D.2.1. Selection

The selection operation is based on the fitness of the individuals (i.e. the value of the
objective function). Individuals with high fitness are more likely to be selected for re-
production. Both stochastic and deterministic methods can be applied, such as ranking
selection (probability of selection is assigned as a 0 to 1 linear function with fitness value),
tournament selection (individuals are compared in small groups or couples and the fittest
fill the mating pool). A widely used method is the roulette-wheel selection, in which the
probability Pj of an individual uj of being selected is based on its objective function
value:

Pj =
J(uj)

P∑
i=1

J(uj)

(D.6)

Obviously, in case of a minimization problem, the reverse would be used, such that the
lowest J values hold higher chances of being selected. An additional aspect that has been
shown to improve convergence for GAs is elitism, in which a specified fraction of the best
individuals from one generation, called elitist ratio, is copied directly to the next one.
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D.2.2. Crossover

The crossover operation involves only a fraction of the selected individuals (parents por-
tion) and replaces only a specified portion of the previous generation (crossover probabil-
ity), while the rest are copies of the previous one. Examples of replacement strategies are
complete replacement, random replacement or replacement of the worst or oldest individ-
uals. For a two-parent crossover new individuals (offspring), uoff,1 and uoff,1, are thus
produced by the crossover operation by an information exchange between the two parents,
upar,1 and upar,1, and contain features from both. Commonly used crossover techniques
are:

– one-point: a random location r along the genome (i.e. encoded control variables)
specifies where the first parent’s genome is cut off and where the second parent’s
starts in one offspring and vice versa for the other:

uoff,1 = [upar,1
1 , ..., upar,1

r , upar,2
r+1 , ..., upar,2

n ]T

uoff,2 = [upar,2
1 , ..., upar,2

r , upar,1
r+1 , ..., upar,1

n ]T

(D.7)

(D.8)

– two-point: two random locations r and s along the genome specify where the first
parent’s genome is cut off, where the second parent’s starts, and where the first
parent’s starts again in one offspring and vice versa for the other:

uoff,1 = [upar,1
1 , ..., upar,1

r , upar,2
r+1 , ..., upar,2

s , upar,1
s+1 , ..., upar,1

n ]T

uoff,2 = [upar,2
1 , ..., upar,2

r , upar,1
r+1 , ..., upar,1

s , upar,2
s+1 , ..., upar,2

n ]T

(D.9)

(D.10)

– uniform : single elements, rather than sections, of the genome are exchanged between
the parents to produce the offspring (i.e. each gene of one offspring is randomly
selected between the parents, while for the other offspring the opposite occurs)

D.2.3. Mutation

The mutation operation is used to avoid trapping in local optima, by adding new genetic
material in the population. Hence, it can prevent premature convergence. It occurs after
crossover and only requires one parent to generate offspring. Mutation probability defines
how often genes are mutated. If set to zero, the offspring stays the same after crossover;
if instead mutation is present, part of chromosome is changed, with a chance of being
mutated equal to the mutation probability. In particular, mutation can be implemented
as point mutation (changes occur to single genes, by replacement, deletion or insertion) or
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large-scale mutation (changes occur in multiple positions or in a single position involving
more than one gene). Mutation operators define the mathematical formulation of the
operation. Gaussian mutation is a common method: for every gene i (control variable)
that undergoes mutation:

umut
i = ui +N (0, σi) (D.11)

where N (0, σi) is a random number drawn from a normal distribution with zero mean
and standard deviation σi, specific to the control variable ui. A process flow diagram for
the genetic algorithm is depicted in Figure D.2.

Figure D.2: Genetic algorithm process flow diagram.

D.3. EnOpt algorithm

The ensemble of Ne candidate solutions (control variable vectors) and their respective
objective function values can be represented as concatenated control vectors:
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ue = [uT
1 , ...,u

T
Ne
]T

Je = [J1, ..., JNe ]
T = [J(u1), ..., J(uNe)]

T

(D.12)

(D.13)

The ensemble average control vector and objective function are defined as:

J̄ =
1

Ne

Ne∑
j=1

(Jj)

ū =
1

Ne

Ne∑
j=1

(uj)

(D.14)

(D.15)

(D.16)

where the ū is strictly a scalar, but the vector representation is more convenient for
operations involving other vectors. In other words, it can be seen as a vector with identical
scalar values ū and size Ne. The mean-shifted control vectors and objective function values
are defined as:

Û = [uT
1 − ūT , ...,uT

Ne
− ūT ]T

Ĵ = [J1 − J̄ , ..., JNe − J̄ ]T

(D.17)

(D.18)

It is convenient for ensemble optimization to compute the gradient of the mean-shifted
objective function, defined as gu = ∇uĴ , with respect to the controls instead of simply
the gradient of the objective function. In case the number of ensemble members is higher
than the number of controls (i.e. Ne > n) the approximate gradient with respect to the
controls can be obtained with a classical least square (LS) solution:

gu = (ÛT Û)−1ÛT Ĵ (D.19)

or, rearranged differently:

gu = C−1
uuCuJ (D.20)

where:

Cuu =
1

Ne − 1
(ÛT Û)

CuJ =
1

Ne − 1
(ÛT Ĵ)

(D.21)

(D.22)

are the covariance and cross covariance matrices of control variables and control variables
to objective function, respectively. However, since typically Ne < n for large-scale ap-
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plications (undetermined case), ÛT Û becomes non-singular: thus its inverse cannot be
computed directly (or the associated system of equations to compute it cannot be solved).
Suggested methods in this case are Singular Matrix Decomposition (SVD), through a
pseudo-inverse matrix, as used by Fonseca et al. (2013)[62] or, as proposed by Chen et
al. (2009)[33]:

g′
u = CuJ = Cuugu (D.23)

where the gradient is approximated by the ensemble cross-covariance matrix CuJ . In
addition, they propose to adopt the covariance matrix Cuu as preconditioner, such that:

g′′
u = CuuCuJ = CuuCuugu (D.24)

The preconditioner limits the frequency and magnitude of changes in the well controls
as described in Chen et al. (2009)[33]. Once the approximate gradient is computed, any
gradient-based optimization algorithm can be applied to update the ensemble of control
vectors ue from iteration (i) to iteration (i+1). A common method is a simple line-search
combined with the steepest descent method:

u(i+1)
e = u(i)

e + α(i)g′′(i)
u (D.25)

where α(i) is a variable related to the step size during the line-search (some authors
also use the formulation with 1

α(i) ). The step length can be assumed constant for each
iteration and be reduced by a specified coefficient every time, or it can be optimized for
an assigned range of values in the given descent direction for each iteration. The first
approach is simpler, but not objective-function dependent, while the second approach is
computationally heavier (additional forward runs are needed), but it potentially leads to
more accurate results. More complex ensemble-based optimization methods also make
use of an approximate Hessian [62]. A process flow diagram for the EnOpt algorithm is
depicted in Figure D.3.
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Figure D.3: EnOpt algorithm process flow diagram.
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E| Streamline simulation

A streamline is a line tangent to the local velocity field v at a given point in time, that
allows to connect source (injector) and sink (producer)[63], such that:

v × dξ = 0 or
dx

vx
=

dy

vy
=

dz

vz
(E.1)

where ξ is the generic streamline coordinate. Streamlines can be used in traditional finite
element reservoir simulation for visualization purposes. Alternatively, streamline models
can also be used to run simulations. However, streamline simulation is different from
traditional reservoir simulation: in the former, transport equations are solved along a
flow-based grid, defined by streamlines; in the latter, they are solved from cell to cell as
in classic finite element simulation.

The governing equation for pressure, for a multiphase flow without any capillary of diffu-
sion effects, employing the formulation used in Holstein et al. (2007)[64] with the explicit
depth below datum D, is:

∇ ·
Nph∑
j=1

Kkrj
µj

(∇P + ρjgD) = 0 (E.2)

where D is the depth below datum. The explicit material balance equation for each
incompressible phase j is then:

ϕ
∂Sj

∂t
+ qt · ∇fj +∇ ·Gj = 0 (E.3)

with:

Gj = K · gfj∇D

Nph∑
i=1

λi(ρi − ρj) (E.4)

where Gj is the velocity component of phase j resulting from gravity effects due to phase
density differences. While in standard reservoir simulation based on finite difference (E.3)
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is discretized and solved on the same underlying grid on which the pressure equation is
solved, in streamline simulation it is solved along each streamline using the time of flight
(TOF) coordinate transform. The TOF τ is the time required for a neutral tracer to
travel a distance s along each streamline:

τ =

∫ s

0

ϕ(ξ)

|qt(ξ)|
dξ (E.5)

Starting from the total velocity field, streamlines are traced from sources (injectors) to
sinks (producers): a common method is Pollock’s algorithm [65]. (E.5) results in the
definition of:

|qt|
∂

∂ξ
≡ qt · ∇ = ϕ

∂

∂τ
(E.6)

As described in Holstein and Lake (2007)[64], using (E.2) and (E.6), (E.3) becomes:

∂Sj

∂t
+

∂fj
∂τ

+
1

ϕ
∇ ·Gj = 0 (E.7)

Since the gravity term is not aligned along streamlines, (E.7) can be split into two parts:
a convective term and a gravity term (due to phase density differences). The convective
term, solved along streamlines, is:

∂Sc
j

∂t
+

∂fj
∂τ

= 0 (E.8)

while the gravity term, solved along gravity lines is:

∂Sg
j

∂t
+

1

ϕ
∇ ·Gj = 0 (E.9)

Both equations can be solved by standard finite difference techniques. However, since
fluid distributions and well conditions change over time, streamlines paths change as well.
Thus, it is necessary to periodically update the total velocity field, such that the new
streamlines can be redrawn to reflect the non-linear nature of the displacement. The
following algorithm is used to move the 3D saturation distribution forward in time. For
every time step, the algorithm is:

1. Solution of (E.2) from initial well, pressure and saturations conditions for each cell,
as in standard finite difference simulation
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2. From pressure, total velocity calculation for each cell interface, using Darcy’s law

3. Tracing of streamlines from the velocity field using Pollock’s algorithm [65], where
initial streamlines conditions are obtained by a mapping of the underlying 3D grid
onto each streamline

4. Solution of 1D mass conservation equations (E.8) along each streamline

5. Mapping of the new streamline saturations back onto the 3D grid

6. Solution of 1D mass conservation equations (E.9) along vertical gravity lines

7. Mapping of the new gravity lines saturations onto the 3D grid

Figure E.1 shows the procedure schematically.
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Figure E.1: Streamline simulation process flow diagram.

E.1. Useful definitions

Below are some important definitions for streamline simulation, all valid for i = 1, ..., Ni

and j = 1, ..., Np, as defined in Thiele and Batycky (2003)[63]. They are all instantaneous,
being ratios of rates. Injection efficiency is defined as:

IEi =
qo,ij
qin,i

=

Ns∑
s=1

qso,j

qin,i
(E.10)
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Average (or field) injector efficiency is defined as:

IE =

Np∑
j=1

qo,j

Nin∑
i=1

qin,i

(E.11)

Well allocation factors (WAFs) can be defined with an injection perspective (injector as
parent, in this case, the definition is practically the same as inter-well connectivity (C.2))
or producer perspective (producer as parent):

WAFij =
qin,ij
qin,i

=

Ns∑
s=1

qsin,ij

qin,i
(injector as parent)

WAFij =
qo,ij
qo,j

=

Ns∑
s=1

qso,ij

qo,i
(producer as parent)

(E.12)

(E.13)

where:

– Nin is the number of injectors;

– Np is the number of producers;

– Ns is the number of streamlines that make up the bundle connecting injector i

to producer j: visually, they represent the oil produced by the various streamline
bundles that start in every injector and end in the various producers. In other
words, producers whose production is supported by those injectors (also called offset
producers);

– qso,j is the oil production rate from producer j along streamline s;

– qin,i is the water injection rate from injector i;

– qsin,ij is the water injection rate flowing through the streamline s;connecting injector
i to producer j.

WAFs with an injector perspective give a measure of how water injection from an injector
distributes to support the different producers. WAFs with a producer perspective give a
measure of how oil production from a producer is supported by the different injectors.

Injected water lost to the aquifer surrounding the reservoir is included in the denominator
of (E.10), while oil produced due to a supporting aquifer is not included in the numerator
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of (E.10) [63].

E.2. Waterflooding optimization through streamlines

Waterflooding optimization through streamline simulation was first studied to expand
flood management schemes beyond standard surveillance methods and traditional work-
flows based on finite difference simulation [63]. In this way, it has emerged in the last
decades as a powerful complementary tool to those more traditional optimization meth-
ods. One powerful aspect of streamline simulation is the ability to visualize, at any instant
in time, how the reservoir is connected and how much fluid is allocated between injector-
producer pairs. In a way, it gives a “snapshot” of the reservoir [66]. As such, streamlines
allow to identify producer-injector connections and are a widely used tool also in other
areas of reservoir engineering, such as production data analysis. As highlighted above,
streamline simulation does not simply trace streamlines, but it solves 1D transport equa-
tions along each one of them. This is what allows to extract injector-producer connections,
that would not be obtainable from streamline tracing alone.

E.2.1. FloodOpt ®software

Although streamline-based simulation can be integrated into a standard, optimization-
guided procedure, as in Wen et al. (2014)[67] and Park and Datta-Gupta (2013)[68], a
valid alternative can be found in simulator-based commercial software to perform water-
flooding optimization. Simulator-based means that they still require a geological model,
but their operating principle allows them to run fewer simulator runs compared to a
standard simulator coupled with an optimization algorithm. In fact, information on how
to tweak control variables is extrapolated from simulation outputs. FloodOpt®, devel-
oped by StreamSim®[45], is a state-of-the-art software that performs streamline-based
waterflooding optimization. FloodOpt® uses the output of a reservoir simulation to draw
streamlines, which are then used for optimization, with a given injection water availability
target. The software tends to “reward” efficient (i.e. with higher than average efficiency)
injectors and “penalize” inefficient ones (i.e. with lower than average efficiency), by real-
locating injected water from the latter to the former, within the field target limit.

Optimization algorithm

FloodOpt®’s optimization algorithm [69] can be summarized as follows:

1. Simulation of the reservoir at initial time step and calculation the velocity field
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2. Tracing of streamlines from velocity fields and calculation WAFs, as explained
above

3. Calculation of average and single injector efficiencies with (E.10)

4. Calculation of weights associated with each injector, with:

wi = min

(
wmax, wmax

(
IEi − IE

IEmax − IE

)a
)

if IEi > IE

wi = max

(
wmin, wmin

(
IEi − IE

IEmin − IE

)a
)

if IEi < IE

(E.14)

(E.15)

where a, wmax, wmin are arbitrary parameters. The new unconstrained injection rate
target is:

q′in,i = qin(1 + wi) for i = 1, ..., Nin (E.16)

5. Rescaling of the unconstrained new injection rates to ensure that they add up to
the field injection target qmax

in,F using the formula:

qnewin,i =
q′in,i

Nin∑
i=1

q′in,i

qmax
in,F for i = 1, ..., Nin (E.17)

6. Update of production rates at offset wells accordingly using WAFs

The same procedure is reported schematically in Figure E.2.
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Figure E.2: FloodOpt optimization process flow diagram.

This procedure is repeated for each of the time steps of the optimization problem. Fre-
quency of optimization, i.e. the number of time steps to optimize, cannot exceed certain
limits (order of months). Not only would it significantly increase runtimes and might in-
troduce undesirable numerical artifacts in the mapping process between streamlines and
the underlying grid [63], but it would also be unrealistic.

Details on the specific weight function to use and its parameters for weights wi are not dis-
cussed in further detail. Although in general they are arbitrary, they should have a smooth
behavior near the average efficiency and promote increasing or decreasing weights with
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increasing or decreasing efficiencies [63]. More details can be found in Thiele (2005)[69].

The reason why offset production rates of all the producers must be updated as well is
that FloodOpt®’s strategy aims at preserving the streamline pattern of the previous time
step. Otherwise, streamlined geometry would change significantly at the next time step,
yielding a totally different pattern from the one used to calculate the new rates in the first
place, leading to an inconsistent workflow [66]. Thus, an increase in injection rate must
be followed by an increase in production rate at all its offset producers, such that the total
increase in production rate is approximately equal to the increase in injection rate. The
reason why streamline patterns would change significantly is that if an increase in “push”
from one end is not met by an increase in “pull” from the other end, the in-situ volumes
would not flow in the desired direction, hence there would be an excess of injected water
that is not counterbalanced at the producing end and that will need to find new flow
paths, altering streamline patterns [63]. The exact same reasoning applies to a decrease
of injected water, hence a shortage instead of an excess.

E.2.2. Other tools

FloodOpt®’s parent software, 3DSL Studio®, allows to extract useful information from
any simulation run by visualizing it on streamline maps, flux pattern maps and injector
efficiency plots. Below they are explained briefly.

Streamline maps They are 3D or 2D snapshots of the reservoir at a specific moment
in time. They display streamlines connecting injectors (sources) and producers (sinks).
Streamline maps give a quick idea of how fluids are moving within the reservoir and
how strong sink-source connections are. If paired with WAFs, they allow for an even
clearer visualization of fluid pattern. In fact, for complex reservoirs, streamline bundles
can become harder to interpret: hence, to ease reading, they are often collapsed into
straight vectors connecting source and sink, where the thicker the vector, the stronger
the connection. In this case the maps are called flux pattern maps or simply flux maps
(Fmaps).

Flux maps They can be drawn with a producer perspective (producers as parents) or
injector perspective (injectors as parents), depending on the definition of WAFs used:

– injectors as parents: for every injector, percentages shown on Fmaps represent the
percentage of injection rate supporting each offset producer, at the considered time
step (WAFs are defined as in (E.12));
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– producers as parents: for every producer, percentages shown on Fmaps represent
the percentage of production rate supported by each connected injector, at the
considered time step (WAFs are defined as in (E.13)).

Both types can be used, depending on the purpose, and are computed through the aid of
FloodOpt®, at a specific point in time.

Injector efficiency plots They are a quick way to visualize the wells that are respon-
sible for the most efficient injection in terms of unit of oil produced per unit of water
injection. Injectors are placed along iso-efficiency lines on the plot, which show how effi-
cient they are in relative terms, and on that specific line at a certain distance from the
origin, which shows how much they are injecting and how much they are contributing
to production in absolute terms. As for Fmaps, they are computed through the aid of
FloodOpt®, at a specific point in time.

Benefits

The main benefit of a software like FloodOpt® is employing an automated workflow to
identify injection patterns, areas of efficiency and inefficiency within the field, and outline
an optimized flooding plan [66]. The distinguishing feature of streamline simulation of
solving transport equations along each streamline allows to quantify how much oil is being
produced at one end (producer) as a result of injected water on the other end (injector).
Furthermore, the number of full physics and subsequent streamline simulations required is
simply the number of time steps chosen for optimization, independently of the number of
controls or wells. As a result, this approach is computationally efficient [66]. Streamline
based optimization is particularly efficient in the cases of constant field injection capacity,
with high water production and voidage replacement conditions [63].

Drawbacks

However, in FloodOpt®’s algorithm there is no formal attempt to optimize production
through the minimization of a specified objective function [63]. As stated by the develop-
ers, there can be no rigorous mathematical proof that the strategy is moving toward the
optimal solution, as the performance improvement is the result of enhanced volumetric
displacement efficiency, driven by a reallocation of injected water to less swept areas of
the reservoir. In other words, the approach in determining new target injection rates and
managing constraints is heuristic. In addition, as any simulation-based software, its algo-
rithm relies on a history-matched geological model. Only in those circumstances would
well connections and streamline bundles be reasonably accurate.
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A generic artificial neural network (ANN) layer (i) can be modeled as:

x(i+1) = σ(W
T (i)x(i) + b(i)) (F.1)

with:

x(i) = (x
(i)
1 , ..., x

(i)
R )

b(i) = (b
(i)
1 , ..., b

(i)
R )

x(i+1) = (x
(i+1)
1 , ..., x

(i+1)
S )

W (i) =


w

(i)
1,1 · · · w

(i)
1,S

... . . . ...
w

(i)
R,1 · · · w

(i)
R,S



(F.2)

(F.3)

(F.4)

(F.5)

where:

– σ is the activation function;

– W (i) is the matrix of R× S weights of the layer;

– x(i) is the vector of R neurons of the layer;

– b(i) is the vector of R biases of the layer;

– x(i+1) is the vector of S neurons of the next layer.

In this way, the output from a layer (i) is the input for the following layer (i + 1),
y(i) = x(i+1). Overall, the neural network output vector can be defined as a function
FNN of all the weights and biases θ of its Nl internal layers and the input vector x0 at
layer 0:

y = FNN(θ,x0) (F.6)
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where:

θ = {W (i), b(i)}Nl
i=0 (F.7)

A schematic representation of an ANN layer is reported in Figure F.1.

Figure F.1: Generic ANN layer.

Note: for the following formulas, the generic layer index will be dropped for ease of reading.

For a given neural network structure, optimal weights and biases are obtained during the
training phase, in which they are adjusted until the loss function L between historical
data and neural network forecast is minimized. The loss function is typically the mean
squared error (MSE) on the training dataset (x̃, ỹ) :

L = MSEdata =
1

Ndata

Ndata∑
i=1

[FNN(x̃i, θ)− ỹi]
2 (F.8)

where (x̃, ỹ) = ([x̃1, ..., x̃Ndata
]T , [ỹ1, ..., ỹNdata

]T ).

F.1. Physics informed neural networks

Physics informed neural networks (PINNs) integrate the information embedded in the
physical laws that model the system into the loss function during the training phase
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of the network. Our understanding of fluid flow is usually formulated through partial
differential equations (PDEs), constraints on their parameters, and boundary conditions
on the unknown function. As such, PINNs’ loss function contains not only the residual
between observed and forecast data, but also additional regularization terms, in the form
of properly weighted penalties, which limit the space of admissible solutions. PINNs
honor those physical relationships in their forecast, resulting in more accurate learning
and generalization power. This is especially important to avoid ANNs overfitting and
non-physically supported results. PINNs can be employed both in the forward problem
(i.e. to solve PDEs) and in the inverse problem (i.e. to find their parameters).

F.1.1. Forward and inverse problem

As described in Raissi et al. (2017), any parametrized non-linear PDE can be modeled in
the general form:

N [u;λ] = 0 x ∈ Ω ⊂ Rd, t ∈ [0, T ] (F.9)

where u = u(t, x) is the solution of the PDE and is a function of x and t in the (d + 1)-
dimensional space Ω × [0, T ]. N is a generic non-linear operator parametrized by λ,
which represents the model parameters. Within N are encapsulated specific forms of
typical PDE problems, such as conservation laws, diffusion processes, kinetic equations or
advection-diffusion-reaction systems, with the respective derivatives, expressed through
subscripts, in the Ω space and time. Since PDEs in physical systems are associated with
time and space derivatives, they are often reported explicitly.

The forward problem (also called data-driven solution of the PDE) entails finding the
value of the function u(x, t), given a set of training data and known λ model parameters,
such that:

N [u] = 0 x ∈ Ω ⊂ Rd, t ∈ [0, T ] (F.10)

where (F.9) is no longer function of λ, which is known.

The inverse problem (also called data-driven discovery of the PDE) entails finding the
value of the function u(x, t) and λ model parameters, given a set of training data, such
that:

N [u, λ] = 0 x ∈ Ω ⊂ Rd, t ∈ [0, T ] (F.11)

In traditional ANNs, u(x, t) can be approximated with a neural network as seen in (F.6),
with the loss function defined as in (F.8). Explicitly, (F.8) becomes:
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MSEdata =
1

Ndata

Ndata∑
i=1

[FNN(θ, ti, xi)− u(ti, xi)]
2 (F.12)

where ti, xi and u(ti, xi) is the training data set, as in (F.8).

To integrate into the standard ANN the physical laws in (F.9), let us define f as the left
side of (F.10) or (F.11), depending on the problem of interest:

f = 0 (F.13)

f can be combined with the network approximating u(x, t), resulting in a PINN. In
particular, the physical laws in (F.9) can be enforced by introducing a loss on its residual,
measured at sparse locations in the domain:

MSEf =
1

Ndata

Ndata∑
i=1

[f(ti, xi)]
2 (F.14)

Another loss can be added to enforce Nu boundary and initial conditions for (F.9):

MSEu =
1

Nu

Nu∑
i=1

[FNN(θ, tui , x
u
i )− u(tui , x

u
i )]

2 (F.15)

where tui , x
u
i and u(tui , x

u
i ) are known boundary and initial conditions for the PDE. The

total loss function is defined by a linear combination of the above loss functions:

Ltot = Ldata + λfLf + λuLu = MSEdata + λfMSEf + λuMSEu (F.16)

where λ values are proper weights.

F.2. Recurrent neural networks

Recurrent neural networks (RNNs) are specifically designed to predict dynamic behavior
problems, in which data is a time sequence. In fact, the network’s prediction at a specific
time step is based not only on its input at the same time step, but also on the previous
state(s) of the network, which are stored temporarily. RNNs differ from feed-forward
neural networks, in which activations flow only in one direction from input to output. The
word "cell" is often used in the context of neural networks to refer to a part of a network
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that preserves some form of state across time steps: in a way, it is a form of memory. A
single recurrent neuron can be thought of as a cell. A schematic representation of a RNN
cell is reported in Figure F.2, along with the common representation with "unraveled"
time sequences.

Figure F.2: RNN cell and time unraveling.

The state of a cell at the generic time step k is denoted as h(k) and is a function of both
inputs at the same time step x(k) and the state at the previous time step h(k−1). It is
clear how in RNNs, the state of the cell is not directly equal to its output, differently from
standard feed-forward networks, as in (F.6).

As such, each neuron has a set of weights for inputs and a set of weights for previous
states: considering all neurons, these can be packed into two matrices, Whx and Whh,
respectively. As always, a bias bh is present. Hence, the state of a single RNN cell can be
described by:

h(k−1) = σ1(W
T
hhh(k−1) +W T

hxx(k) + bh) (F.17)

and its output, using again a proper weight matrix Wyh and bias by, by:

y(k) = σ2(Wyhh(k) + by) (F.18)

where σ1 and σ2 are the two activation functions. RNNs are prone to the problem of
vanishing (or disappearing) gradient and short-term memory problem [39], where, due to
the transformation that data goes through in the RNN, some information is lost at each
time step, leaving virtually no trace of the first inputs after a while.

Long short-term memory (LSTM) cells, first proposed by Hochreiter and Schmidhuber
(1997) [26] and gradually improved over the years by several researchers, have been proven
successful at tackling the short-term memory issue of traditional RNNs, showing better
overall performance, faster training and the ability to detect long-term patterns in data.
Differently from traditional RNN cells, the state vector is split into two parts: h(k),
representing the short-term state, and c(k), representing the long-term state. In other
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words, they are able to recognize important inputs, store them, preserve them as long as
needed (until they are forgotten), and extract them when needed. LSTM networks are
used in the Olympus field case study in this thesis.
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The covariance matrix C expresses the degree of statistical dependence for a random
variable. It is expressed mathematically as:

C = E[(Z − Z̄)(Z − Z̄)T ] (G.1)

where E is the expected value operator and Z̄ is the vector of average values for the
variable. For a time-correlated random variable Z = Z(t) , assuming a time discretization
tk = k∆t for k = 0, ..., Nt, then Z = Z(tk) = [Z(t1), ..., Z(tNt)]. Hence, C is a square
Nt ×Nt matrix and its generic element ckl is:

ckl = E[(Z(tk)− Z̄(tk))(Z(tl)− Z̄(tl))] (G.2)

where for k = l, (G.2) reduces to:

ckk = σ2
k (G.3)

The variogram (or semi-variogram) γ is defined as the mean quadratic increment of the
time-correlated quantity Z = Z(tk) between two points separated by a distance h. Math-
ematically:

γ(h) =
1

2
E[(Z(tk)−Z(tk + h))2] (G.4)

where:

– σk is the standard deviation of quantity Z at time tk, also known as sill;

– a is the range of the variogram, i.e. the distance at which the variogram reaches
95% of its sill value;

– h is the distance between two points in time, known as lag; for a discretized time
system, h = (k − 1)∆t for k = 1, ..., Nt, since the value for zero lag corresponds to
σk.

Assuming second-order stationarity [36], the covariance matrix is only a function of the
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lag h (in time) between two points. As such, (G.2) reduces to:

ckl = σ2
k − γ(h) (G.5)

where h = tk − tl. For a cubic variogram with range a, G.4 is expressed as:

γ(h) =


σ2
k

[
7

(
h

a

)2

− 35

4

(
h

a

)3

+
7

2

(
h

a

)5

− 3

4

(
h

a

)7
]

for h < a

σ2
k for h > a

(G.6)

In this problem, the quantity to correlate in time is the injection profile of a single well i,
called ui (with the same meaning as in (2.2)). The following parameters are specified:

– number of elements of the vector Nt (i.e. time steps for each injection well);

– number of dimensions along which to correlate ncorr (i.e. time only);

– correlation length or range a;

– type of correlation (also known as variogram model γ, it expresses the mathematical
expression of the correlation: a cubic variogram is used in this work);

– upper and lower bounds for each injection well qmin
in,i , q

max
in,i ;

– average values ūi and standard deviation σi for each injection well.

Once these parameters are specified, the covariance matrix Ci is constructed through (G.5)
and (G.6) (more details can be found in [36]), then its lower triangular Li is extracted,
through Cholesky decomposition, such that:

Ci = Li(L
T
i )

′ (G.7)

Uncorrelated profiles ui can be generated starting from a Gaussian distribution with zero
mean and unitary variance. For every injection well, time-correlated profiles are obtained
by multiplying this matrix by the random profile ui, then centering it around the average
value ūi, which is in general time dependent but not in this case:

ucorr,i = Liui + ūi (G.8)

Finally, excessively low and high values are replaced by their respective minimum and
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maximum bounds.
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Figures H.1 and H.2 show the used input and output datasets for the LSTM surrogate
models of the Olympus field.
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Figure H.1: Olympus: input water injection rate profiles of the generated dataset.
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Figure H.2: Olympus: oil (solid) and water (dash) production rate profiles of the generated
dataset.

For details on how the dataset is generated, see Appendix G.
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