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Abstract

The Hera Mission, the contribution by the European Space Agency within the AIDA
collaboration, is dedicated to studying the Didymos asteroid. In the Experimental Phase
"Very Close Flyby," the spacecraft relies solely on its on-board GNC functionalities. The
effort of the work has concentrated on devising Fault Detection algorithms to evaluate
the trajectory safety independently of the GNC loop. A comprehensive analysis of the
dynamical environment precedes the design phase, evaluating how various models impact
trajectory propagation errors. Three strategies are explored, two utilizing a collision risk
definition based on the Distance at Closest Approach (DCA) distribution and the es-
tablishment of a keep-out sphere around both asteroids. The first strategy involves raw
measurements and local regression techniques to estimate DCA and its uncertainty, de-
termining the probability of entering the keep-out sphere through integration, triggering
a Collision Avoidance Maneuver based on a predefined threshold. The second strategy
employs an unscented Kalman filter in Square Root form, processing observables akin to
the navigation filter. The investigation extends to using the gravitational parameter as
a considered state and its effect on unscented transform accuracy. The third approach
adapts a pair of Square Root Unscented Kalman Filters within the Wald sequential hy-
pothesis testing framework, employing a sigma point projector based on a Lambert solved
algorithm to enforce PDF constraints. A Likelihood ratio informs the test, guiding deci-
sions based on thresholds derived from target probabilities of inferential errors. To tackle
the issue associated with the constrained filter dismissing physically inconsistent measure-
ments, a secondary failure detection routine is introduced with a counter that monitors
the filters rejections. All algorithms, implemented in MATLAB, underwent testing using
Hera Experimental trajectory scenarios, providing critical insights into their assumptions,
limitations, and performance.

Keywords: Hera mission, trajectory safety, on-board failure detection.





Abstract in lingua italiana

La Missione Hera, il contributo dell’Agenzia Spaziale Europea all’interno della collabo-
razione AIDA, è dedicata allo studio dell’asteroide Didymos. Nella Fase Sperimentale di
sorvolo molto ravvicinato, il veicolo farà affidamento esclusivamente sulle funzionalità di
GNC a bordo. Il lavoro è stato concentrato sulla creazione di algoritmi di rilevamento
di fallimenti per valutare la sicurezza della traiettoria in modo indipendente dal sistema
GNC. Un’analisi della dinamica del moto precede la fase di progettazione, valutando come
vari modelli influenzino gli errori di propagazione della traiettoria. Tre strategie sono state
esplorate, di cui due utilizzanti una definizione del rischio di collisione basata sulla dis-
tribuzione della minima distanza di sorvolo e sulla creazione di una sfera di esclusione
intorno ad entrambi gli asteroidi. La prima strategia impiega direttamente misurazioni e
tecniche di regressione per stimare la minima distanza e la sua incertezza, determinando la
probabilità di entrare nella sfera di esclusione mediante integrazione, e comandando una
manovra di evitamento qualora tale probabilità dovesse superare la soglia prestabilita.
La seconda strategia utilizza uno Square-Root Unscented Kalman filter, processando mis-
urazioni similmente al filtro di navigazione. L’indagine si estende all’utilizzo del parametro
gravitazionale con associata incertezza e al suo impatto sull’Unscented Transform. Il terzo
approccio adatta una coppia degli stessi filtri in un test di ipotesi sequenziale, impiegando
un Sigma Point projector basato sul Problema di Lambert per imporre vincoli alla PDF.
Un rapporto di Verosimiglianza guida le decisioni del test, basate su soglie derivate dalle
probabilità di errori inferenziali desiderate. Per affrontare il problema legato a misurazioni
predette dal filtro fisicamente inconsistenti e perciò rifiutate, una procedura decisionale
secondaria è stata introdotta tramite un contatore che monitora il numero di rifiuti del
filtro. Tutti gli algoritmi, implementati in MATLAB, sono stati testati utilizzando lo
scenario di missione di Hera. Le loro ipotesi, limitazioni e prestazioni sono criticamente
discusse in fase di analisi.

Parole chiave: Missione Hera, sicurezza della traiettoria, rilevamento di fallimenti a
bordo.
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1| Introduction

1.1. Near-Earth Asteroids

Near-Earth Asteroids are a class of small bodies orbiting the Sun whose perihelion distance
is estimated to be less than 1.3 AU [55]. These asteroids are considered scientifically
significant targets for deep space exploration missions for three primary reasons:

1. They typically consist of compounds that offer insights into the early stages of Solar
System evolution, characterized by intriguing dynamics of formation.

2. Some NEAs pose potential threats to Earth when their heliocentric trajectory in-
tersects with Earth’s. Specifically, asteroids with a semi-major axis larger than 1
AU and a perihelion distance less than 1.017 AU, known as "Apollo" asteroids, fall
into the category of Potentially Hazardous Asteroid (PHA). The impact of such
asteroids, especially those with dimensions in the hundreds of meters, could have
catastrophic consequences for human activities and life on our planet.

3. NEAs are rich in materials of economic interest, making them potential targets for
future commercial missions designed for resource exploitation.

A percentage of the NEA group, estimated to be around 15% ± 4%, is represented by
binary asteroid systems, that is systems of one large primary asteroid and a smaller
secondary, orbiting around their Centre of mass (CoM) [76].

1.1.1. The (65803) Dydimos binary asteroid

Exploring binary asteroid systems offers valuable insights into the intricate interaction
between two celestial bodies, encompassing their complex gravitational dynamics, the
formation and evolution processes of such systems, and their interaction with the broader
solar system environment. Their study provides a unique opportunity to understand phe-
nomena such as the YORP effect and its role in shaping these systems. Unlike single
asteroids, the observation of binary systems from Earth allows for more accurate estima-
tions of the mass and density of the bodies by measuring their orbital period and distance.
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Figure 1.1: Near Earth Asteroids classification. Reproduced from [55].

The asteroid (65803) Dydimos, accompanied by its secondary Dimorphos (fig. 1.2, from
APL DART mission gallery1), stands out as a particularly intriguing example within the
Apollo NEA category: ongoing research suggests that Didymos may be at the structural
stability limit typical for asteroids, a conjecture supported by its rapid spin period of
around 2.26 hours marking it as the fastest-spinning object ever visited. Notably, Dimor-
phos resides at the recognized threshold between structures dominated by gravity and
those dominated by strength. Furthermore, Dimorphos serves as an ideal subject for
observing dynamic changes within the system resulting from an impact. This makes it
a valuable candidate for comparative analysis with data obtained from the Hayabusa2
mission, specifically from the study of (162173) Ryugu.

1.2. AIDA: DART and Hera missions

Building upon these scientific interests, the Asteroid Impact and Deflection Assessment
(AIDA) collaboration between NASA and ESA was established in early 2010s [16]. This
collaboration consists of two interrelated yet independent missions aimed at demonstrating
the Kinetic Impactor technology as mean to alter the trajectory of potentially dangerous
asteroids. Simultaneously, it seeks to extensively examine both the impact process and
the repercussions on binary systems [24]. DART and Hera missions, respectively, are

1https://dart.jhuapl.edu/Gallery/. Last visited: 02 Nov. 2023

https://dart.jhuapl.edu/Gallery/
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Figure 1.2: The (65803) Dydimos binary asteroid as imaged by DART.

designed to embody these two objectives.
NASA DART spacecraft successfully launched on 24 November 2021 and impacted the
secondary asteroid Dimorphos (in the work also referred to as Didymoon or as D2) on
26 September 2022, determining a change in its revolution period of around 32 minutes.
While this outcome is currently solely validated through ground observations, it signif-
icantly surpasses the initial mission requirement by more than 25 times [52]. The Hera

Figure 1.3: Infographic of DART and Hera missions. Courtesy: ©ESA/scienceoffice.

mission is the ESA contribution to the AIDA collaboration. It is currently in phase D,
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with its launch scheduled in October 2024 and rendez-vous with the Dydimos system in
December 2026 (fig. 1.4). The mission scientific objective is the detailed characterization
of the binary asteroids, with particular focus on the properties and interior structure in
an extremely low gravity environment.
As consequence, demanding requirements are imposed in terms of Operations, GNC capa-
bilities and close approach trajectories. Additionally, similarly to DART, Hera is a mission
of opportunity to demonstrate autonomous GNC technologies deemed as enabling of fu-
ture missions to small bodies in general, starting from the first-ever rendez-vous and
orbiting (on hyperbolic trajectories) of a binary asteroid system [31].

Figure 1.4: Hera high-level mission timeline. Courtesy: ©ESA/scienceoffice.

1.3. Overview of Hera Close Proximity Operations

Once the rendez-vous phase concludes in approximately 8 weeks, the close-proximity
operations are structured to nominally extend over 22 weeks. These are allocated among
three nominal mission phases along with an experimental one. Throughout this duration,
there will be a progressive enhancement in on-board autonomy coupled with a reduction
in the distance from the asteroid [24, 60]:

1. Early Characterization Phase (ECP)/Payload Deployment Phase (PDP)
(6+2 weeks): Hera will operate outside the Sphere of Influence (SOI) of Didymos
ranging from 20 and 30 km. It will fly two distinct types of hyperbolic trajectory
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arcs, categorized as "short" and "long" each lasting 3 and 4 days respectively. This
Mission Analysis (MA) requirement applies across all nominal mission phases, in-
tended aligning the SC trajectories with Ground Operations scheduling. The ECP
is of paramount importance to enhance the knowledge of the thermal and dynamical
parameters of the system, facilitating the reduction in the flybys distances as well as
the planning of the subsequent phases. According to the current operational time-
line, a two-week duratin is allocated for the deployment of the two Hera cubesats,
Juventas and Milani, from the same ECP trajectories. As of August 2023, Hera is
foreseen to operate with an E2 level of autonomy (fully controlled by ground) during
this phase. The exception is the rehearsal of the GNC functionalities, a necessary
step to verify the subsystem’s correct functioning.

2. Detailed Characterization Phase (DCP) (4 weeks): The trajectories of the
DCP will span distance from 8 to 20 km increasing the coverage of the surface
through diverse flyby geometries compared to the ECP. The ADCS is engineered to
provide fully autonomous pointing to the Asteroids, whereas the Navigation, which
remains ground-based, will exploit the image acquisition of the Asteroid Framing
Camera (AFC) on the primary asteroid.

3. Close Observation Phase (COP) (6 weeks): during the Close Observation
Phase, the spacecraft will follow the same trajectory geometries as the DCP, but
further reducing the minimum distance down to 4 km. The first close flybys of the
secondary asteroid will be conducted to cover a large portion of its surface while tar-
geting the DART impact site. To allow the pointing of the paylods, the spacecraft
will partially navigate relative to Dimorphos, with the altimeter becoming opera-
tional below approximately ∼ 15 km. The ADCS will operate in a fully autonomous
mode similarly to the DCP.

4. Experimental Phase (EXP) (6 weeks): the Experimental Phase serves as the
culminating "risk-taking" segment of the mission, during which the full autonomy
of the GNC will be demonstrated. Hera will achieve closest approaches at ≈ 1.3

km from Didymos and at mere hundreds of meters from the surface of Dimorphos
(Very Close Flybys (VCFB)). As the spacecraft approaches within about 2.5 km, the
GNC will transition to utilizing Feature Tracking (FT) for relative navigation with
respect to Dimorphos. This transition is necessary due to the complete filling of the
navigation camera’s Field of view (FoV) by the asteroids. A thorough description of
the trajectory, perturbations and navigation architecture is provided in chapter 3.
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1.4. Motivation and outline of the work

The final phase poses the most tough challenge from the GNC perspective: Hera will op-
erate in a configuration characterized by almost full on-board autonomy. The ADCS will
function autonomously across all its capabilities. The Orbit Determination and Control
System is designed to be semi-autonomous for the translational guidance while maintain-
ing full autonomy for other functionalities. The term "semi-autonomous" implies that the
nominal Delta-V (DV) of the manoeuvres will be provided as time-tagged commands from
the Ground Flight Dynamics plan. However, in contrast to earlier phases, the on-board
guidance algorithms will be active during the EXP. Specifically, a manoeuvre correction
term δv will be computed based on the estimated state x̂(tman) at the manoeuvre times as
provided by the Navigation functionalities (Autonomous Translation Control Manoeuvres
(ATCM) [60]).

∆v = ∆vnom + δvautoguid

This feature is designed with the scope of letting the spacecraft perform the re-targeting
manoeuvres to achieve a minimum Distance of Closest Approach (DCA) closer than what
ground-based planning permits. In fact, the additional trajectory dispersion introduced by
Ground-in-the-loop operations and the uncertainty associated with maneuver execution
undermine the feasibility of performing such very close flybys without on-board auton-
omy.
An additional rationale to seek such developments in spacecraft autonomy lies in the
current trend of the Space industry for both near Earth and Deep Space applications.
Smaller spacecrafts such as CubeSats, including potential formation flying applications
[9], enhance the capability of performing technological demonstrations and scientific mis-
sions, simultaneously paving the way to higher risk-taking missions. On the other hand,
the continuously growing number of missions determines an excessive burden on Ground
Control Operations [53], which has been traditionally a cornerstone for large missions
since the early years of the Space Age. At the same time, it imposes additional con-
straints on the GNC and mission costs.
In this context, it is thus deemed advisable to augment the GNC functionalities with
equally autonomous Failure Detection and Isolation (FDI) on-board algorithms, capable
of detecting and suggesting actions to the OBSW should any error or failure arise dur-
ing the operations. Additionally, considering the spacecraft’s autonomy in modifying its
trajectory and the relevance of thrust errors or failures in low-gravity environments, the
FDI should include algorithms for trajectory safety. These are intended to monitor the
GNC performance and ensure timely detection of any out-of-nominal collision risk. Such
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features are deemed as critical for future mission to seek even increased autonomy and
closer observations beyond the capabilities of the current state-of-the-art [31].

Thesis outline This document is structured as follows:

• Chapter 2 provides an overview of the current state-of-the-art of interplanetary mis-
sions in terms of Flight dynamics and operations. Recent advancements of the topics
forming the key ingredients of the presented methods are reviewed and commented
as well.

• Chapter 3 poses the basis of the work by framing its context in terms of the asteroid
dynamical system, Hera GNC design and simulation models. All the relevant details
for the design choices are highlighted.

• Chapter 4 is dedicated to describe the developed approaches in detail, emphasizing
their assumptions and possible limitations.

• Chapter 5 contains the validation and a preliminary performance assessment of
the methods in the simulation scenario. A thorough analysis moving from the
considerations in chapter 4 is provided.

• Chapter 6 closes the work to summarize all the findings and offers considerations
about future development paths.
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paradigm and methods

This chapter offers an overview of the current state-of-the-art of interplanetary missions
focusing on Flight dynamics and operations. It highlights the prevailing paradigm in
terms of trajectory safety. The review briefly covers collision assessment methods com-
monly used for artificial objects in Earth orbits, particularly those applied in Space Situ-
ational Awareness applications. The objective is to assess their adaptability to the Hera
mission scenario and their feasibility for on-board execution. Additionally, uncertainty
propagation methods are presented as relevant elements in the context of filtering and
estimation.

2.1. Mission to small bodies: trajectory safety-by-

design approach

The number of interplanetary missions that visited small bodies in the past decades is
relatively limited even when including missions such as Deep Impact and DART [16]. In
fact, the objective of the latter two was not to rendez-vous and orbit the body, but to
target and impact it. Among these, Rosetta, Hayabusa 2 and OSIRIS-REx stand out
as significant contributors to the study of asteroids and comets in the Solar System as
well as for the innovative technologies they required and the derived Lessons learnt. An
intriguing aspect is that each visited small body target has showcased the diverse and
unpredictable nature of this class of objects. Factors such as mass, shape, physical prop-
erties, gravitational field, and the presence of dust or smaller orbiting objects introduce
uncertainties, necessitating mission margins and careful operational planning.

Rosetta Rosetta [32] was a cornestone ESA mission of the Horizon 2000 program, tar-
geting Comet 67P/ChuryumovGerasimenko. For the first time ever, it successfully charac-
terized the nucleus of a comet with global coverage, determining its dynamic properties,
morphology and composition. Rosetta also carried the small lander Philae for in-situ
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study of the surface. Scientific objectives included studying cometary activities such as
outgassing and investigating the interaction with the solar wind. The challenging envi-
ronment and behavior of comets posed unique considerations for the design of Rosetta’s
trajectories and GNC. The early characterization was conducted by flying three segments
of hyperbolic arcs at distances ranging from 115 to 90 km, known as "Pyramid Orbits"
[2], that ensured Rosetta to remain on the illuminated side of 67P. Once the shape model
and comet parameters were sufficiently estimated (with accuracy up to 200 meters for the
former), the spacecraft was moved to closed orbits at about 29 km and 60° inclination
away from the Sun direction. Later in the mission, terminator plane orbits at about 19
km were exploited.

Hayabusa 2 The Hayabusa 2 is the JAXA second sample return mission to "1999 JU3
Ryugu" [71], a C-type asteroid of interest for the plausible presence of organic matter and
hydrated minerals. The spacecraft reached Ryugu in June 2018, where all the planned
operations, including sample return and kinetic impactor test were performed. The return
flight began in November 2019, ending with the delivery of the sample capsule in 2020.
Currently, an extended mission phase is underway.
The operations planning for Hayabusa 2 was performed in three scenarios considering three
different values of the asteroid gravitational parameter [64], with significant uncertainty
in the spin axis prior arrival. Peculiar with respect to other missions, Hayabusa 2 did
not fly orbits around Ryugu but exploited three main hovering points (HP) between 5
and 20 km distance. Station keeping ∆v were necessary every one or two days, based on
ground planning. During touchdown operations from the hovering points, the spacecraft
followed a pre-computed nominal descent trajectory. Navigation was primarily conducted
on Ground every 10 minutes. At approximately 50 meters, the fully automatic control
phase was set to begin, still following pre-stored commands. Gate points were positioned
along the trajectory, allowing the Ground segment to verify the spacecraft status before
proceeding. Contingency planning and FDI were limited to the definition of conditions
causing the spacecraft to either switch to redundant units or trigger the abort mode.

OSIRIS-REx The OSIRIS-REx mission [42] is an asteroid sample return mission of the
NASA New Frontier program to the near-Earth asteroid (101955) Bennu. Successfully
reaching its target in November 2018, the mission aimed to globally characterize Bennu
and acquire a minimum of 60 grams of asteroid regolith. The touch-down for the sampling
operations was performed in October 2020, resulting in the collection of a significantly
higher-than-expected amount of material. The sample return capsule was successfully
delivered by the spacecraft and landed intact on 24 Sept. 2023 in Utah’s Great Salt Lake
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Desert [54].
The close proximity operations [79] planning was designed to rely on radiometric navi-
gation data during the first survey phase, gradually moving to optical landmark-based
navigation as the spacecraft started to fly closer orbits [6]. Hyperbolic flyby arcs started
at ≈ 7 km distance, then moved closer down to 3 to 5 km range. Bennu’s mass and shape
allowed closed orbits to be design at distances lower than 2 km after the first Detailed
Survey Phase. Specifically, Sun terminator frozen orbits were chosen to be flown during
the Orbital A phase. For safety reasons, weekly scheduled orbit trims were planned in
case OSIRIS-REx would have entered an unstable or incorrect orbit. However, none was
actually exercised [6]. The subsequent Detailed Surveys again employed hyperbolic arcs
reaching distances down to 650 and 250 meters during the site selection campaign.

The current paradigm Previous interplanetary mission to small bodies tackled the
safety problem relying on Ground Flight Dynamics and planning: ensuring safety through
conservative margins validated by covariance and Monte Carlo analyses of various mission
scenarios and uncertainties [79].
Hyperbolic flybys are preferred for their enhanced safety as collision with the main at-
tractor is impossible unless an unexpected event occurs. Terminator orbits are also par-
ticularly relevant for low-gravity environments thanks to their self-stabilizing property
with respect to SRP. However, they suffer from poorer Sun illumination. For instance,
Hera will not exploit this class of orbits unlike Juventas, whose main instrument is in fact
a radar [33]. Finally, the threat posed by failures during thrusting manoeuvres at the
"corners" of hyperbolic arcs may even further mitigated by the adoption of the so-called
"dog-leg" strategy.
Trajectory re-design is iteratively performed through the close proximity operations phase,
based on the most recent batch of received data after data cut-off. This imply that the
trajectory and the related uncertainties must be predicted forward for periods longer that
24 hours. In fact, as a consequence of the low-gravity environment, subtle perturbations
(e.g., SRP, thermal re-radiation of the spacecraft and reaction wheels unloadings) can
completely change the trajectory of the spacecraft even imparting very low ∆v. For in-
stance, [79] reports that a 2 cm/s change in velocity around Bennu could determine a
change in the pericentre of more that 500 m.
While the current paradigm has proven effective, an autonomous spacecraft capable of
detecting collision risks in the presence of uncertainties could significantly reduce the time
and costs associated with early characterizations. This increased tolerance to dynamical
uncertainties enhances spacecraft safety and allows for missions, particularly smaller and
lower-cost ones, to accept lower margins in Flight Dynamics planning while relying more
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on the spacecraft’s self-guarding capabilities [31].

Hera mission approach As mentioned in chapter 1 and detailed in chapter 3, the Hera
mission is pioneering in several aspects, one of which is its ability to determine trajectory
safety "online". The on-board trajectory safety FDI will be tuned and enabled by ground
when COP and EXP trajectories will be flown below 15 km. Notably, the latter phase
foresee no ground contact during the entire operation until after the pre-scheduled third
"comeback" manoeuvre.
In this regard, no other prior investigation seems to exist or at least to be publicly avail-
able in the literature. However, various methods have been developed for ground-based
applications to assess conjunctions between artificial satellites in the field of SSA.

2.2. Methods of collision assessment between Earth

orbiting objects

The simplest method to evaluate the collision risk involves the computation of the miss
distance rCA, representing the minimum relative range between two objects. In fact,
in the early years of Space Situational Awereness (SSA) field, this metric was used to
assess the probability of collision during closest approaches between satellites orbiting
the Earth [72]. Under the Gaussian distribution assumption, the PDF of the estimated
r̂CA can be characterized in terms of its mean µr̂CA

and variance σ2
r̂CA

. Therefore, the
state covariance information must be propagated along with the mean estimate. it’s
worth noting that when dealing with large propagation times without measurements, the
Gaussianity assumption may become invalid due to non-linearities in the dynamics [81].

2.2.1. Probability of Collision-based approaches

Definition and assumptions When the absolute position vectors of the two objects
robj1, robj2 with the associated covariance matrices Prrobj1 , Prrobj2 , are fully known and in-
dependent, the most general expression for the cumulative probability of collision involves
the first three dimensional integral (2.1) of the state PDFs, which is time-varying [44].

Pc =

∫ tend

tstart

∫
V

p
(
x, t; robj2 − robj1, Prrobj1 + Prrobj2

)
dV dt (2.1)

where each of the objects are characterized as spheres with hard body radius Rhb, and V

is the volume of the combined ellipsoid centred in one of the two objects.
Methods to approximate the computation of eq. (2.1) with a very high accuracy are all
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Figure 2.1: Conjunction projection on the Encounter plane. Reproduced from [72].

variants of the Monte Carlo method [44]: N samples of the state vectors are generated from
the assumed distributions and propagated until the nominal time of the encounter. The
probability is estimated in the classical sense Pc = Ncollisions/Ntotal, where the numerator
is the number of samples that led to a collision.

Most of the methods available in the literature [44] simplifies the formulation by assuming:

1. All the random variables distributed as Gaussian variables.

2. The encounter occurs at very high relative velocity (Short encounter assumption)
with a negligible velocity uncertainty

The short term encounter assumption has been proved to hold when the magnitude of
the relative velocity is in the order of several km/s, such that the encounter lasts tens of
seconds at most. This simplifies the integral [20], while also making the computation less
costly. A comparison of computational times is shown [44].

Computational methods Numerous methods have been developed to compute it ei-
ther analytically or numerically [4, 44, 65], with some of them being actively used in
operational scenarios [19, 72]. A key point to highlight is that in principle, all of them
address a general problem: estimating the probability of the combined covariance ellip-
soid (assuming uncorrelation between the two objects) intersecting a sphere with a radius
equal to the sum of the hard body radii. The first ellipsoid is centred in the primary
object, the sphere in the secondary object. The "Short encounter" assumption simplifies
the problem by projecting both in the encounter plane (hence, the reduction to a 2D
integral, fig. 2.1). In contrast, "Long encounter" methods make no assumptions in this
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regard and considers the time evolution of the state PDF over the encounter period.
One limitation of these methods is that the hard body radius of both objects must be
small, at least compared to the covariance ellipsoid. For instance, the method proposed
by [65] can even return a solution that neglects the hard body radius altogether.
On the other hand, methods for long term encounters are more general, but less common
and developed for two reasons:

1. Most of the encounters in Earth orbits are well modeled as "short".

2. The computation time is excessive to be performed on a very large number of objects
conjunctions.

The endpoint of all these methods is the use of the PoC estimate for a collision avoidance
manoeuvre decision problem. To date, this step involves a decision either made by human
operator or threshold-based.

2.2.2. Hypothesis testing-based approaches

Alternative approaches to the CAM decision problem were proposed by [12–14]. Instead
of focusing on the accurate computation of the PoC and threshold-based decisions as seen
in the majority of the Literature, a Sequential Probability Ratio Test (SPRT) is employed
to drive the decision based on hypothesis testing, i.e., evaluating which of two hypothesis
better explains the available information. The Innovation PDFs of two inequality con-
strained filters estimating the relative state vector of two artificial objects are compared.
The filters bank is guided by a third unconstrained filter which executes a preliminary
screening, computes the nominal time of closest approach of the conjunction and performs
measurements editing if needed.
A constraint enforcement is performed on the PDF of the two filters at each Observation
Update. Specifically, the constraint directly corresponds to a hypothesis in the binary
inferential test, either H0 or H1, respectively the Null and the Alternative hypothesis.
Therefore, the hypothesis define two complementary partitions of the state space sepa-
rated by the constraint manifold that distinguishes them. All the mentioned works take
advantage of the Wald SPRT.
This test was also evaluated as decision-making scheme for the CAM decision problem of
the OSIRIS-REx mission [49], in the hypothetical scenario of the discovery of a secondary
body around Bennu. In fact, OSIRIS-REx was planned to exploit Sun Terminator orbits,
where the stability of the orbit of natural objects is higher. The characteristics of the Wald
SPRT are utilized similarly, assessing the test outcomes for various false alarm and missed
detection probability targets. The analysis revealed that having low desired probability
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targets does not equate to a good decision-making strategy and that it is challenging to
find the correct balance between these two tuning parameters.

Wald Sequential Probability Ratio Test (SPRT) The Wald Sequential Probability
Ratio Test is a method proposed by [77] to drive the decision in binary inferential tests
in a sequential manner. Two mutually exclusive hypothesis, conventionally indicated as
Null H0 and alternative H1, are compared based on the Likelihood ratio of the PDFs of
the random variables associated to the observations, conditioned to the hypothesis and
to the available realizations. The sequential nature of the method lies in the fact that the
Likelihood ratio is updated sequentially each time a new realization is available. For this
reason, there are three possible outcomes:

1. H0 is rejected, and H1 accepted.

2. H1 is rejected, and H0 accepted.

3. The test suggests to wait for additional observations, because of the uncertainty in
the decision.

Conversely, non-sequential tests are performed on batch of measurements and their out-
come is always the rejection of the less supported hypothesis, relying on the currently
available realizations.
An additional difference lies in the number of observations used by the two approaches:
the WSPRT takes into account as many observations as needed to attain a decision,
meaning that this number is not determined prior the experiment, but only during its
execution; on the contrary, the non-sequential approaches require the prior specification
by the user.
Finally, the WSPRT provides guarantees of accuracy in terms of the false alarm (fa) and
missed detection (md) specified in the experiment thanks to the fact that the decision
bounds are directly related to the former parameters. In other words, the user can spec-
ify the accepted values of the probability of obtaining an incorrect decision determining
the bounds of the Likelihood ratio driving the test. This, in turn, determines when and
which decision is made For these reasons a sequential scheme to conduct binary hypothesis
testing is naturally more suitable for "on-line" applications.

Types of inference errors In binary Inferential statistics two type of errors are com-
monly defined: Type I error and Type II error, easily explained by table 2.1, depending
on which hypothesis is the "true" one and which the test indicates as refused. The prob-
ability of false alarm and missed detection are thus the probabilities associated to the
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Table 2.1: Truth table of inferential errors.

Decision Null H0 True Null H0 False
H0 not rejected Correct decision Type II error (false alarm)
H0 Rejected Type I error (missed detection) Correct decision

test rejecting the Null (i.e., "default") H0 hypothesis in case it is true and the test not
rejecting it when false, respectively. Casted in the collision assessment problem, the H0

is associated to the case where the conjunction is not safe and thus a CAM is required.
The false alarm in fact corresponds to the CAM being performed without real need; the
missed detection to the case in which the collision risk is discarded even if the conjunction
is truly unsafe.

Filters bank implementations Two types of filters implementations were proposed,
given that the time instant at which the constraint has to be enforced (i.e. the time of
the conjunction) is strictly posterior to any of the available measurements. Reference [12]
describes both in detail, building upon previous work.

• Epoch-state estimators: the inequality constrained filters perform the measure-
ment incorporation by updating the state at a fixed epoch, which is the constraint
time (closest approach). Therefore, the constraint enforcement does not need to be
propagated backward to the current state. The constraint enforcement is addressed
by augmenting the state vector through a slack variable, modifying the cost function
that the estimator minimizes to account for the constraint manifold.

• Current-state estimators: the filter progresses forward in time through the con-
ventional Time and Measurement update cycles. The constraint at the future epoch
must be therefore mapped to the current time. A sigma point projection (fig. 2.2)
combined with Lambert-like Differential correction of the current-state velocity is
employed to map the constraint.

The presented methods were based on a pair of Extended KF designed to work with
a full covariance matrix. The authors suggested that UKFs could be more suitable for
the application of the Sigma point projector, starting from the Sigma points the filter
uses. However, this would not avoid a third Cholesky decomposition if the full covariance
is used in the UKF as well. A Square-Root form [28, 75] seems the most convenient
implementation from a computational standpoint.
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Figure 2.2: Sigma Points projection representation. Reproduced from [11].

2.3. Uncertainty propagation and filtering methods

Linear Covariance and Sigma-Point transformation In applications involving es-
timation methods, accurately quantifying the uncertainty of the estimated quantity is
crucial. When dealing with conjunctions assessment, accuracy in predicting both mean
and covariance is even more critical for ensuring spacecraft safety. Among the exist-

Figure 2.3: Overview of Uncertainty propagation methods reproduced from [46].

ing methods shown in figure 2.3 [46], two of them are commonly employed in on-board
applications, both relying on the Gaussian distribution assumption.

1. Linear covariance: the propagation of the covariance through a generic map y =
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f(x) is performed through its linearization with respect to the state vector (1st

order truncation of the Taylor series of the function), only requiring the jacobian
∇f computed with respect to the inputs x. The mean is non-linearly mapped
through the function. In the case of dynamical systems governed by a set of ODEs,
the Error State Transition matrix Φ(tk, tk +1) linearly maps any state deviation δx

from the mean x̂ from time tk to time tk+1 (2.2).

Px(tk+1) = Φ(tk+1, tk)Px(tk)Φ(tk+1, tk)
T (2.2)

2. Sigma Point-based methods employ deterministic sampling of the state PDF to
generate a discretization in terms of the so-called sigma pointsenabling a full capture
of covariance information. Among the different methods, the Unscented Transform
[37, 39, 40] is a widely used approach due to its simplicity and a good balance
between accuracy and computational cost. Nevertheless, the basic principle is the
same for all the methods: each point, regardless of how they are generated (where
the methods differ) are mapped through the non-linear function. The reconstruction
of the first two moments is then performed by weighted sample mean and covariance.
The Scaled Unscented Transform algorithm is reviewed below (2.3.1).

Indeed, both approaches have non-negligible drawbacks. Linear Covariance is known to
suffer from accuracy loss when long time propagation through non-linear dynamics is
performed, typically leading to an underestimation of the covariance. Additionally, the
linearization error in the first moment can be significant [74]. In fact, these are the main
reasons of the increased robustness and accuracy of Sigma Points estimators [61]. Despite
having the same algorithmic complexity, Sigma-Point based methods are more costly due
to the need of applying the non-linear functions to every Sigma-points, whose number
rapidly grows with the state vector size. Moreover, they can fail in case of nearly singular
covariance matrices, incorrect scaling parameters [82] and single-precision arithmetic (as
the weights can be very large).

High-order methods High-order methods offer enhanced accuracy and realism of the
uncertainty propagation in case of highly non-linear dynamical systems. In fact, their
main advantage is the ability to capture high-order moments and/or Non-Gaussian dis-
tribution of the state PDF.
State Transition Tensors (SST) and Differential Algebra (DA) are the two most promising
for on-board application, whenever Linear Covariance and Sigma points methods do not
suffice (e.g., when long measurements outages occur). To date however, they still suffer
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Figure 2.4: 2D representation of Linear Covariance and Unscented transformation, com-
pared to samples propagation (MC). Reproduced from [74].

from the unsustainable computational burden.
The former technique was first proposed by [56] and applied to filtering problems in [57].
It enables uncertainty propagation by solving for the higher order Taylor series terms of
the flow function. Direct integration of the Variational equations involves a number of
equations which exponentially increases with the order, rendering on-board implementa-
tion troublesome. Automatic differentiation (e.g., [27]) may provide a sufficiently reliable
and fast on-line computation of the SST.
Differential Algebra is at its core a technique that allows the approximation of the flow
function directly as its Taylor series, computed exploiting Taylor Algebra in a comput-
erized environment. In other words, it can be interpreted as an alternative computation
method for the State Transition Tensor. In [22] a feasibility assessment with processor-
in-the-loop simulations of the DACE library [50] was conducted for the ESA Advanced
Concept team, providing evidence that the computational cost may be acceptable under
some conditions. The work however has some limitations: it did not include process noise;
the state vector was relatively small with respect to real applications, where techniques
such as Dynamical model compensation [70] are necessary. In this regard, it should be
noted that DA does not scale well: the computational cost rapidly scales up with the
state vector size and Taylor series order.
Several filtering methods have been developed in [73] which fully exploit DA for non-
linear propagation in both the Time and the Measurement Update, yet keeping the linear



20 2| Survey of current operational paradigm and methods

estimator structure of the Kalman filtering. In [66] a further extension to non-linear es-
timators is demonstrated to attain improvements in accuracy at the expense of increased
computation time. Finally, the analytical approximation of the Taylor map provided by
DA can also be exploited for the solution of targeting problems [45] and as auxiliary tool
for Sigma-point projections.

2.3.1. Unscented Transform

The Unscented Transform (UT) is the most used transformation in Literature. The
algorithm for the generation of the Sigma Points and the uncertainty propagation is
hereafter reported. The scaling parameters can be set equal to the typically adopted
values [75]. Nz is the size of the state space; α determines the spread of the Sigma points;

Table 2.2: Scaling Parameters of the Unscented Transform used in this work.

α 1× 10−4

β 2
κ 3 - Nz

β = 2 is optimal for Gaussian distributions; finally, the expression of κ guarantees that
the error in capturing the higher order moments is minimized. The number of Sigma
points is equal to Nχ = 2Nz + 1 since two sigma points per dimension of the space are
required, plus the mean state.
The perturbation coefficient to scale the columns of the Square Root covariance matrix
for the Sigma points generation is then computed (eq. (2.3)).

λ = α2(Nz + κ)−Nz ; η =
√

Nz + λ (2.3)

Finally, the Square Root covariance matrix Szz is computed by decomposing the full
covariance Pzz (e.g. using Cholesky decomposition):

Szz = Chol (Pzz) ⇒ Pzz = SzzS
T
zz (2.4)

The Sigma points are generated by perturbing the mean state vector ẑ using the scaled
columns of Szz in two "directions" per each axis of the state space (eq. (2.5)). The set "-"
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corresponds to the Sigma points parameterizing the distribution to propagate [38, 67, 75].
χ−

0 = ẑ−

χ−
i = ẑ− + η [Szz]i i = 1, ..., Nz

χ−
i = ẑ− − η [Szz]i−Nz

i = Nz + 1, ..., 2Nz

(2.5)

Given a generic non-linear function y = f(x), the uncertainty propagation through the
latter is simply performed by evaluating the function in the Sigma points:

χ+
i = f(χ−

i ) i = 0, . . . , 2Nz (2.6)

The set "+" corresponds to the Sigma points parameterizing the propagated distribution,
whose mean and covariance are recovered by the weighted sample mean and covariance
operators (2.7, 2.8).

ẑ+ =
2Nz∑
i=0

W
(m)
i χ+

i (2.7)

P+ =
2Nz∑
i=0

W
(c)
i

(
χ+

i − ẑ+
) (

χ+
i − ẑ+

)T (2.8)

2.4. Research Question

The present work aims at answering the following main research question in the context
of the Hera mission scenario:

From a Navigation standpoint, which are possible methodologies to autonomously assess
the safety of the trajectory of the spacecraft?

Several sub-questions are then derived, specifically addressing the main features the al-
gorithms should possess:

1. To what extent is it possible to provide this assessment independently from the
Navigation filter?

2. Which models may be compatible with the requirement of low computational cost
necessary for FDI routines?
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GNC: description and analysis

This chapter is dedicated to offering a more detailed context for the work, starting from
an analysis of the dynamics within the double asteroid system. A high-level description of
the navigation architecture and of the Hera GNC simulator is provided to let the reader
understand the dataset utilized in the analysis. Emphasis is placed on highlighting details
influencing the design choices made.

3.1. Baseline EXP trajectories

3.1.1. GNC and trajectory constraints

The Experimental phase has the main purpose of demonstrating several GNC technologies
that will significantly contribute to more autonomous missions in the future. Additionally,
it aims to collect high-resolution observation data of the DART impact and the Dimorphos
surface from various viewing angles. The key elements of this phase include:

• Autonomous navigation based on line-of-sight and feature tracking technologies,
including altimeter measurements for enhanced observability of the position states.

• Semi-autonomous trajectory guidance to achieve controlled passages near the target
bodies, targeting a pre-specified state vector, based on the information obtained
through the autonomous navigation.

• Autonomous attitude GNC in a loosely coupled configuration with the translational
GNC.

In fact, Hera will operate with an E3 level of autonomy (as defined in [62]) for the
entire GNC subsystem. This level of autonomy signifies that the spacecraft’s on-board
algorithms can independently adapt both attitude and orbit to fulfill specified mission
objectives.
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+YCAM

+ZCAM

+XCAM

+XSCB

+ZSCB

+YSCB

Hera Asteroid deck

Figure 3.1: Hera +Z Asteroid deck with Spacecraft Body Frame SCB and Camera CAM
frame orientations. Adapted from [24].

The design of Hera trajectories is subect to three major GNC constraints, namely:

1. The need of continuous pointing of the +Z Asteroid deck (3.1) where all the instru-
ments are mounted, toward the target body. The -X axis shall remain in shadow
throughout the trajectory for thermal control reasons.

2. The Sun Phase angle, defined as the angle between the Sun direction and the relative
position between target body and spacecraft fig. 3.2, must be sufficiently high to
ensure proper surface illumination for the image processing algorithms. Autonomous
relative navigation would not be feasible otherwise.

3. The trajectory shall be hyperbolic at any time, with a velocity at closest approach
lower bounded by the escape velocity considering both bodies as a single point mass,
including a safety factor C:

vCA = (1 + C)

√
2µD12

rCA

where C > 0

3.1.2. Reference frames and conventions definition

Several reference frames are used throughout the work. Their origins, orientations and
nomenclature are thus here defined.
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Figure 3.2: Definition of Sun Phase angle θSun.

1. Central (Pseudo) Inertial: CI. Centred in the CoM of Didymos (approximated
as the CoM of the binary system). Axes aligned with ECLIPJ2000 reference frame.

2. Target Body: TB. Centred in the target (fixed) body CoM (i.e. +Z axis in the
direction of the body spin axis and rotating with it).

Figure 3.3: Central Inertial frame centred in Didymos CoM, aligned with ECLIPJ2000,
and Target Bodies frames attached to D1 and D2 shape models at closest approach time.
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3. Spacecraft Body: SCB. Centred in the spacecraft CoM. +Z axis is taken as the
normal to the asteroid deck side; +X axis orthogonal to the side on which the High
gain antenna in mounted. Y axis completes the triad and corresponds to the solar
array drive mechanism axis (around which the array can rotate).

4. Camera frame: CAM frame. Centred in the spacecraft CoM. The camera +Z
bore-sight axis coincides with SCB +Z axis. The remaining axis (X, Y) are aligned
with the detector plane.

5. Image plane: coordinates of vectors in CAM frame defined by the pinhole model
projection through the camera calibration matrix (3.7) and normalization with re-
spect to the third component.

The JPL convention is adopted for quaternions [47], namely: q =
[
qT
vec qscalar

]T
.

The following nomenclature is established for rotations parameters: qXwrtY is the quater-
nion identifying the attitude of reference frame X wrt to frame Y , thus corresponding to
the DCM rotating a vector from frame Y to frame X, DCMXwrtY .

3.1.3. Trajectory and CAM strategy

An example of the first arc trajectory of the EXP phase with a duration of approximately
3.73 days, is depicted in fig. 3.4. The present work exclusively focused on the trajectory

Figure 3.4: Hera EXP trajectory, D1 and D2 at tCA - Arc 1 @Didymos CI.
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segment before the occurrence of the closest approach. The reason is rather straight-
forward: the detection of any trajectory safety issue must occur within the timeframe
required for the spacecraft to perform a Collision avoidance manoeuvre (CAM). Addi-
tionally, running such FD algorithms after the CA is unnecessary since the hyperbolic
arcs ensure that the spacecraft will move away from the system.
The CAM strategy adopted for Hera leverages the second constraint mentioned earlier:
the Sun direction is inherently a safe direction to move toward. This direction’s knowl-
edge is consistently available at any given time through sun sensors, making the complete
attitude reconstruction unnecessary. Consequently, the following operations are executed
whenever an avoidance manoeuvre is initiated by the OBSW following the suggestion of
the collision risk estimator (GNC-FDI, categorized as level-3, system-wide [62]):

1. The spacecraft GNC transitions to the CAM execution mode. All the autonomous
functionalities are disabled and can no longer determine the spacecraft behaviour.

2. An attitude slew manoeuvre is performed to point the +X axis toward the estimated
Sun direction according the predefined accuracy.

3. The thrusters are fired to impart a pre-defined ∆v, computed such that the space-
craft is ensured to move away from the system in the Sun direction regardless of its
position along the trajectory.

The described sequence of events requires a maximum time period of approximately 1
minute, which is sufficiently short to perform the manoeuvre even if the collision risk is
detected shortly before the event. In principle, detecting it during the feature tracking
navigation window would still be acceptable. However, this study concentrated on meth-
ods that solely utilize centroiding information due to the added complexity associated
with the exploitation of the former.

3.2. Didymos dynamics and Hera DKE models

3.2.1. Dynamical and shape parameters

The parameters considered for the analysis are summarized in table 3.1 in which (β, λ)

are the Heliocentric latitude and longitude coordinates.

It is important to note that the provided values are subject to changes as new stud-
ies emerge in the near future. Several assumptions were made on the asteroid system
modeling for this work:

• Dimorphos spin axis is assumed to be perpendicular to its orbital plane, aligned to
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the its orbital angular momentum vector.

• The spin rate of Dimorphos is assumed to be synchronous with the orbital motion,
such that it consistently points the same side toward Didymos

• Dimorphos shape could not be completely determined neither by Ground Radar
observations nor by Space observatories. For Hera GNC development a 3D model
of (25143) Itokawa (fig. 3.5) was utilized, scaling it according to the tri-axial size,
with the purpose of better characterizing the GNC performance.

Table 3.1: Parameters of Didymos system for the simulation scenario.

RD1 386.67 [m] µD1 35.7854 m3/s2

RD2 77.83 [m] µD2 0.3328 m3/s2

D1 Tspin 8136 [s] D1 THelioc.
orb 770 days

D1 Spin axis β −87 [deg] D1 Spin axis λ 270 [deg]

D1 Perihelion 1.014 [AU ] D1 Apohelion 2.275 [AU ]

D1 Orb. ecc. 0.384 [−] D1 orb. incl. 3.408 [deg]

D2 Tspin 11.9216 [hr] D2 Torb 11.9216 [hr]

D2 orbit params



1063.8

0.1530

2.8240

2.9980

−0.6133
−2.8348


[m, -, rad] t0 Epoch July 2027

Lastly, it is worth noting that the successful impact of the DART spacecraft with Di-
morphos [17, 63] already induced several modifications to the system. In particular, the
dynamics of Didymos and Dimorphos changed as consequence of the mass and shape
alterations of the secondary; dust and smaller leftovers ejected due to the impact may
still be present around the asteroids at the time of Hera arrival. Large boulders were
detected in images by Hubble and ground observatories [35]: they do not pose a threat
thanks to the millions of kilometers of distance they reached after exceeding the escape
velocity (around ≈ 0.24m/s) due to the energy transfer of the impact. However, there
is not guarantee that none remained within the Didymos sphere of influence if released
through distinct mechanisms.
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3.2.2. Environment models description

The reference trajectory ("truth") that utilized for this study is computed through prop-
agation from given initial conditions, accounting for the Hera spacecraft state, attitude
and environment. The Hera GNC simulator includes all the relevant perturbations acting
on the spacecraft CoM. The details of the parameters and the modeling equations are
omitted, but a qualitative description is offered.

1. Didymos: spherical (central force) and non-spherical gravity as Exterior spherical
Harmonics expansion model up to degree 2 [72]. The body is treated as point mass
irrespective of the distance.

2. Dimorphos: 3rd body perturbation to account for its central force along with the
non-spherical gravity. The latter is included as if the body were the main attrac-
tor by subtracting its gravitational pull on Didymos. Similarly to Didymos, the
secondary is considered as point mass regardless of its distance from the spacecraft.

3. SRP: detailed model considering a representation of the SC with multiple panels.
The properties of each are derived by averaging the values of the components they
represent. The attitude determines the dynamics in "closed-loop" and its effect is
indeed notable due to the magnitude of the perturbation. The model accounts for
eclipses of Didymos and Dimorphos.

4. Sun, Earth and Mars: treated as 3rd body perturbation due to point masses.

5. Non-modeled accelerations: random accelerations modeled as discrete Expo-
nentially correlated random variable (ECRV) [70].

6. Control acceleration: computed as ratio between the actually executed thrust
vector and the mass of the spacecraft at each time instant.

7. Internal perturbations: propellant sloshing and flexible modes are included.
Their effect is the cause of the high frequency oscillations noticeable in the results
presented in the next chapters in correspondence of the manoeuvres. The sudden
changes noticeable in fig. 3.7 are in fact related to these accelerations. It is stressed
that by definition, internal perturbations cannot affect the CoM orbital motion with
respect to Didymos.

The ephemerides required for the computations are generated at each simulation start-up
from SPICE kernels1. As final note, a scattering of the parameters involved in the models

1https://www.cosmos.esa.int/web/spice/spice-for-hera. Last visited: 02 Nov. 2023

https://www.cosmos.esa.int/web/spice/spice-for-hera
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is always performed, such that the "truth" parameters slightly differ from their nominal
values, but within the assumed uncertainty.

+X_{CAM}

Figure 3.5: Didymos and Dimorphos as scaled (25143) Itokawa. Simulated image as
acquired by NavCam, generated with PANGU v5.02.

3.2.3. Perturbations and propagation analysis

The reference trajectory generated from the aforementioned models was used for a brief
analysis of the dynamics in flying the EXP trajectory of fig. 3.4. The magnitude of the
accelerations over time are shown in fig. 3.6 compared with the magnitude of the position
vector. [25] conducted an analysis of the same environment for the Hera’s Milani Cubesat,
revealing good agreement in the orders of magnitude of the accelerations. It is essential to
note, however, that the gravitational acceleration contributions presented by the authors
are referenced to each body individually. The slight differences observed in the magnitude
of SRP acceleration stem from the variations in mass and surface area between Milani

2https://pangu.software/, Last visited: 02 Nov. 2023

https://pangu.software/
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and Hera.
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Figure 3.6: Magnitude of perturbation acceleration with the corresponding distance ||r||
from CoM during EXP arc 1 trajectory @Didymos CI.

Both Dimorphos and the SRP exert a significant influence in determining the spacecraft
trajectory. The green line corresponding to the former clearly reveals the periodicity of
the Dimorphos revolution. Figure 3.7 shows the osculating keplerian elements, providing
insights into how the orbit is modified by the perturbations. The time history of these
elements, assuming two-body motion, is also depicted. This discrepancy was also utilized
as a reference for the magnitude of the process noise entries in chapter 4 and served as
support for the considerations in chapter 5.
Both the mentioned periodicity and the secular drift induced by the SRP, pushing the
spacecraft toward the asteroids, are discernible by inspection of the plots. Finally, a
comparison of the trajectories propagated with three simplified dynamics model was con-
ducted to assess how increasing levels of assumptions contribute to errors in predicting the
state vector. The manoeuvres are applied at a single time instant as impulsive changes
to the ∆v.

1. Keplerian dynamics assuming the mass of both the primary and the secondary as
concentrated in the CoM (i.e. summing the gravitational parameters, 3.1)

[
ṙ

v̇

]
=

 v̇

−µD1 + µD2

r3
r

 (3.1)
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Figure 3.7: Osculating Keplerian elements of the EXP arc 1 trajectory @Didymos CI.

2. Including the 3rd body perturbation of the secondary.

3. Including the 3rd body perturbation of Dimorphos, the Sun and the SRP.

Eq. 3.2 specifies the third-body gravity perturbation model as derived from the general
N-body problem with shifted propagation center [62].

a3rd = µ3rd

(
r− r3rd
||r− r3rd||3

− r3rd
||r3rd||3

)
(3.2)

The simplified Cannonball model is employed for the SRP contribution (3.3) [62].

aSRP = −PSRP CSC
ASC

mSC

(
r− rSun
||r− rSun||

)
(3.3)

where PSRP is the Solar radiation pressure at the distance of the system from the Sun
(eq. (3.4) approximates its value at a given distance in AU); CSC is the average coefficient
of reflection of the spacecraft, derived from spacecraft properties 3.5; ASC is set equal to
the maximum cross section area that can be exposed to the Sun. Since the SRP pushes
the spacecraft toward the asteroids system and the evaluation of the closest approach
distance is of interest, the latter is deemed to be a conservative assumption.

PSRP (AU) =
1

AU2
PSRP (1AU) =

1367

AU2
[W/m2] (3.4)
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CSC = 1 + ρ̄reflection +
2

3
ρ̄diffusion (3.5)

The values assumed for the estimation during the EXP phase are: PSRP = 1.325 ×
10−6 W/m2 since the EXP takes place when Hera is at approximately 1.8 AU from the
Sun; ASC = 19.57m2; CSC = 1.264 using ρ̄reflection = 0.2265 and ρ̄diffusion = 0.0561.
The mass of the spacecraft changes only of a little amount during the manoeuvres, as a
consequence of the very low required ∆v. Therefore, it is considered constant equal to
mSC = 1102.022 kg. Fig. 3.8 shows the trajectories in CI frame, with the time histories
of the components of the position error in fig. 3.9. The absolute and relative values

Figure 3.8: EXP arc 1 trajectory propagated up to closest approach with the presented
dynamics models @Didymos CI.

of the error norm are reported at the end of each manoeuvre and at the "true" time of
closest approach in table 3.2, table 3.3. These are defined as in 3.6 where x is either
the position or the velocity vector in [m] and [mm/s], respectively. Not surprisingly, the
SRP determines the greatest reduction in the error due to the fact that its contribution
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Figure 3.9: Position errors of simplified models with respect to reference trajectory during
EXP arc 1 up to CA @Didymos CI.
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Figure 3.10: Velocity errors of simplified models with respect to reference trajectory during
EXP arc 1 up to CA @Didymos CI.
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accumulates along the entire trajectory. However, it’s noteworthy that due to the shape
and orientation of the trajectory, the SRP cannot induce the spacecraft to transition to a
closed orbit. Furthermore, the effect of Dimorphos’ period of revolution is evident when
comparing the Keplerian dynamics propagation with the model including its third body
perturbation, mirroring the acceleration oscillation in fig. 3.6.

εabs = ||xprop. − xref || ; εrel = 100
εabs
||xref ||

(3.6)

Table 3.2: Position absolute and relative error norms at manoeuvre point and closest
approach wrt reference. Each row corresponds to a model.

Time Instant 1stman. 2ndman. Closest approach

Abs. pos. error

77.920322.86

2.9553

 [m]

202.1232116.2046

30.6103

 [m]

246.2732193.1667

67.3093

 [m]

Rel. pos. error

0.550.16

0.02

 %

3.301.90

0.50

 %

16.3112.79

4.46

 %

Table 3.3: Velocity absolute and relative error norm at manoeuvre point and closest
approach wrt reference.

Time instant 1stman. 2ndman. Closest approach

Abs. vel. error

 1.344

1.3080595

0.2010428

 [mm/s]

 11.855

13.91

12.3475035

 [mm/s]

 13.018

14.15

6.9877062

 [mm/s]

Rel. vel. error

0.740.77

0.19

 %

4.875.71

5.08

 %

2.632.85

1.41

 %

The entire EXP trajectory is affected by Dimorphos 3rd body perturbation and SRP in
a definitely non-negligible way as anticipated by the perturbations contributions.
In the context of navigation, it is crucial to recognize that the chosen motion model has
a substantial impact on the achievable accuracy of sequential filters. Large disparities
between the "true" dynamics and the model may hinder the convergence of the filter,
preventing it from accurately tracking the trajectory. This is primarily due to two reasons:

• The forward prediction of the state (i.e. propagation of the model) is prone to
significant errors, especially during measurement outages.
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• The measurement predictions consistently result distant from the actual measure-
ments, making the filter incapable of incorporating the measurements (intuitively:
the model cannot "explain" the observations).

This implies that for applications focused on navigating the environment, assumptions like
Keplerian dynamics are too simplistic. Nevertheless, it may be noted that the position
errors in 3.2 might still be acceptable for trajectory safety FD purposes, particularly before
reaching very close distances relative to Dimorphos, as long as an adequate number of
measurements is available to avoid pure propagation. Additionally, the relative velocity
errors (3.3), which are equally relevant for determining the closest approach distance, do
not exhibit a substantial discrepancy as the position ones.

3.3. Hera Navigation architecture

3.3.1. Sensors suite

NavCam The Hera spacecraft is equipped with two Asteroid Framing Camera (AFC)
which serve as either payload or navigation camera, depending on the specific operation.
This instrument is a direct derivation from the AstroHead sensor built by Jena Optronik3

[24]. The relevant intrinsic camera parameters for the definition of the calibration matrix
KCAM (3.7) are reported in table 3.4.

Table 3.4: Asteroid Framing Camera parameters.

Parameter Value
Focal length f 105.60 mm
Detector size 1020 pix
Field of Fiew 5.5 deg
Non-dim. f̄ 10560 [-]

Centre coords. [cx, cy] [510, 510] pix

KCAM =

f̄ 0 cx

0 f̄ cy

0 0 1

 (3.7)

Both AFC are mounted on the asteroid deck and have their bore-sight aligned with the
+Z axis of the SCB. Only one camera is enabled at any time for navigation purposes, the

3https://www.jena-optronik.de/products/star-sensors/applications/astrohead.html. Last
visited: 10/31/2023

https://www.jena-optronik.de/products/star-sensors/applications/astrohead.html
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other primarily serving as redundant unit.

Altimeter Similarly to the camera, the altimeter measurements are used for both sci-
entific and navigation purposes. The Planetary Altimeter (PALT) is a time-of-flight laser
altimeter capable of measuring the range to the surface of the target body up to 14 km,
with a meter level accuracy [23]. The nominal mounting configuration positions the al-
timeter bore-sight aligned with the +Z axis of the SCB frame.

3.3.2. Observables, filtering and navigation strategy for EXP

Architecture and algorithms overview In contrast to the nominal mission phases,
the navigation during the experimental phase fully takes advantage of the on-board func-
tionalities. In fact, it relies upon ground orbit determination only for the state and co-
variance initialization necessary for the estimation filter start-up. The scheme in fig. 3.11
provides a high-level overview of the GNC components of interest for this study. The Cen-

Translational
Navigation

ADCS

LAMB CoB FT

EKF CEN EKF FT

GNC FDI

NAVCAM

Altimeter

Image
Processing

Figure 3.11: Hera on-board Navigation architecture high-level overview.

troiding IP algorithms extract the centroid coordinates in the image plane by processing
each acquired image from the AFC. These are equivalent to a line-of-sight direction (unit
vector in CAM frame). A time interval of 48 s is assumed in between images. The concepts
of the algorithms are briefly explained; for more details refer to [8, 58].

1. Maximum correlation with Lambertian Sphere (LAMB): the algorithm uses
the visible portion of the body to correlate it with a Lambertian sphere, generated
considering the same Sun phase angle of the body. The centre and the radius of the
sphere are fitting parameters to optimize with respect to a correlation index. This
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algorithm ensures good performance with Sun phase angles up to 120, provided that
a sufficiently large limb of the body is imaged.

2. Centre of Brightness (COB): it extracts the centroid from "blobs" of bright
pixels obtained after thresholding, by weighting their position in the image plane.
Contrarily to LAMB, the Sun phase angle significantly impacts the performance,
causing the CoB to shift in a direction approximately parallel to the Sun rays. This
effect must be accounted for in the observation models.

The observables are fused by an EKF with dynamical model compensation (DMC) for
parameters of both dynamical and observation models [68, 70].

Navigation during EXP The availability of observables during the navigation win-
dow mainly depends upon the distance from Didymos [58]. The camera FoV is in fact
"saturated" by Didymos around 9 km and by Dimorphos around 2 km. Eq. 3.8 provides
the approximate angular size of a target body for a given average diameter and distance.
Didymos, considering the average diameter in table 3.1 is used as example.

Dangle = sin−1

(
Dmeters

Distance

)
= sin−1

(
772 m

8000 m

)
= 5.54 deg (3.8)

Figure 3.12 shows which observables are acquired during nominal navigation in relation
to the time elapsed from initial conditions. From the considerations in 3.1.3, the time
window of interest for the present work is between the initial time and about 1 hour after
the second manoeuvre occurs, identified by the black dashed line. Notice that Dimorphos
is eclipsed by Didymos from around T = +18 hr.

3.3.3. Sensors models and considered errors

The simulation data used for the analysis of the algorithms, presented in chapter 5 were
generated from two sources:

1. The Hera GNC simulator: the Simulink model constituting the Functional Engineer-
ing Simulator of the mission. The simulation encompasses the entire GNC hardware
and software, as well as the image processing algorithms to be deployed, and the
interface with the OBSW. In fact, all simulations are executed in closed-loop with
PANGU [48], a rendering software for the generation of high-resolution and fidelity
images with the specific scope of testing vision-based GNC architectures. A scheme
illustrating the prototype version is reproduced in fig. 3.13 from [58]. It will be
referred to as Higher fidelity model (HFM) in the remaining of the work.
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Figure 3.12: Observables availability windows during Nominal EXP arc 1 trajectory.

2. Simplified measurements models, identical to the observation models presented in
chapter 4. These are employed either to generate artificial set of measurements from
the "truth" provided by the simulator or to evaluate the algorithms on different
trajectories not available from the former. This will be referred to as Lower fidelity
model (LFM).

Higher fidelity models

The detailed modeling and list of all the effects considered in the simulator are omitted
and a qualitative description is instead provided. The sources of errors which relevantly
affect the performance of the proposed methods are the following:

1. IP algorithms running on PANGU images generated based on the NavCam model
(including distorsions, thermo-elastic effects, electronics effects). It faithfully repro-
duces effects related to the Sun Phase angle, morphology, and shape of the bodies,
as well as occurrences such as partial or total reciprocal occultations, images, and
camera defects.

2. Altimeter measurements generated from accurate shape model and beam modeling,
including white noise, constant offset, time-correlated bias process to model the
surface roughness (i.e., boulders frequency and size).

3. Attitude quaternion as estimated by attitude determination in closed loop. The de-
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Figure 3.13: Hera GNC FES prototype. Reproduced from [59].

termination is performed by Gyrostellar filter (e.g., [29]) using gyros for propagation
and attitude measurements from Star trackers.

4. On-board knowledge errors of Ephemerides of all bodies on both orbit and attitude
information (if applicable).

5. The actuators suite is modeled with an equally high level of detail and indirectly
affect the simulation through the attitude estimate, measurements, and the executed
Delta V (the pulse counted Delta V is used for the manoeuvres instead of the
actually performed in the DKE, meaning that actuation errors are included in the
evaluation).

6. Configuration misalignments in SCB of all the sensors and actuators. The offset
concerning the altimeter and the camera are reported here:

l̂Alt =

−0.000110.00023

0.99974

 ; q̂CAMwrtSCB =


−0.000059
0.000001

−0.999999
9.0556× 10−11



Lower fidelity models

The LFM replaces the IP, the altimeter and the attitude determination and control loop
with simplified models. All the other effects are not considered. The "True" ephemerides
for all the bodies are always used. The choice between the HFM and LFM is specified
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on a case-by-case basis in the results section. The same observation models detailed
in chapter 4 are applied for the centroid simulation, while the altimeter measurements
assume a spherical body shape of radius equal to its average value. The attitude estimate
is optionally replaced by a simulated one. A white noise error and a correlated bias (as
First-Order Gauss-Markov process [10] are added as artificial noise, if desired.

Attitude estimate The attitude estimate is constructed "backward" from the camera
attitude. Ideal nominal pointing is assumed where the bore-sight ZCAM of the camera is
determined by the relative position to the target body. The angular momentum vector is
used for the XCAM axis since it is sufficient for XCAM and YCAM to be orthogonal to the
bore-sight.

ZCAM = − rSCwrtTB

||rSCwrtTB||
; XCAM =

rSC × vSC

||rSC × vSC ||
; YCAM = ZCAM ×XCAM

The corresponding DCM of the CAM frame attitude wrt CI is assembled and converted
to quaternion:

DCMCAMwrtCI =
[
XCAM YCAM ZCAM

]
qCAMwrtCI = DCM2Quat(DCMCAMwrtCI)

DCM2Quat is a function implementing the conversion from DCM to quaternions [47]. The
"true" configuration quaternion of the CAM wrt SCB is finally used to generate the
quaternion of the SCB wrt CI:

qSCBwrtCI = qCAMwrtCI ⊗ qCAMwrtSCB

The "estimated" attitude of the camera is instead simulated by rotating the "true" atti-
tude through a displacement quaternion δq (quat. product), and converted to the SCB
attitude using the offset configuration quaternion:

δqi ∼ N(0, σ2
ADCS) i = 1, 2, 3 ⇒ δq =


δq1

δq2

δq3√
1− ||δq1:3||2


q̂CAMwrtCI = qCAMwrtCI ⊗ δq

where σ2
ADCS = (0.0044)2 rad2 is set to resemble the Hera GNC median pointing error

during EXP.
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Altimeter The altimeter measurement from high fidelity shape model is replaced by
tri-axial ellipsoids and a Los intersection model, considering the true attitude from either
HFM or LFM. White noise n(t) and FOGM b(t) are added to simulate the presence of
noise and effects such as the irregular morphology of the surface [30]:

nAlt(t) ∼ N(0, σ2
Alt)

ḃAlt(t) = −
1

τAlt

bAlt(t) + nb(t) bAlt(t0) = 0 (3.9)

where nb ∼ N(0, σ2
b,Alt), σAlt = 35m; σb,Alt = 0.5m/s; τAlt = 450 s.

Centroid The centroiding measurement is generated from a pinhole projection model
[34], considering the true attitude from either HFM or LFM. When Dimorphos is the tar-
get body, a shift along the Sun direction is added based on the model shown in chapter 4.
White noise and FOGM are added to each component independently, using eq. (3.9) with
parameters σCen = 5 pix; σb,Cen = 0.1 pix/s; τCen = 900 s.
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4| On-board Collision assessment

methodologies

4.1. Summary of the methods

There are two primary driving requirements:

• Assess the safety of the trajectory based on the available observables (input) ac-
cording to the specific methodology, yielding a flag suggesting the execution of a
CAM as ultimate output in the event of a potential collision risk.

• Maintain a minimal computational cost, ideally significantly lower than the compu-
tational load associated with GNC functions.

To meet there requirements, three methodologies were implemented. Each methodology
varies in performance, in the information it utilizes, and in its computational cost. This
section provides the rationale behind each approach and the details regarding the imple-
mentation.

1. Method 1 (section 4.2): named Measurements-Only Collision risk estimator; it
operates without relying on a model of the spacecraft motion. Therefore, it only
requires the sensors to acquire range and line-of-sight information to the primary
attractor (Didymos) over a specified timeframe.

2. Method 2 (section 4.3): it employs a Square-Root Unscented Schmidt KF with
simplified dynamics. It re-processes the same measurements as the nominal Navi-
gation filter (EKF-based), using observation models adapted for Sigma Points and
considered parameters. The variants are analyzed: 1) filtering in Keplerian elements
with analytical propagation (kepSRUSKF), 2) filtering in Cartesian coordinates with
ODE integration (HF SRUSKF).

3. Method 3 (section 4.5): referred to as Sequential Hypothesis Test filters bank;
it involves two constrained SRUSKF within the framework of binary hypothesis
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inferential tests. The PDF of the innovation is exploited to sequentially update the
Likelihood ratio, which in turn drives the detection and decision process through
the Wald Sequential Probability Ratio Test (SPRT).

4.2. Measurements-Only CRE algorithm

The on-line execution of the algorithm can be managed according to the software require-
ments and is not tied to specific time instants. In this context, the algorithm is run each
time a new centroiding measurement is processed. Its initialization occurs only after a
buffering process (4.2.3) is complete.

4.2.1. Trajectory safety definition and manoeuvre decision

PoC computation trade-off The review presented in chapter 2 has identified three
potential approaches for computing a probability of collision metric under the Gaussian
distribution assumption. Nevertheless, it is noteworthy that all methods designed for
"long-term" encounters pose challenges for on-board computation due to their inherent
complexity.
In the Hera mission scenario, involving the presence of a secondary body like Dimor-
phos, these approaches may be applied without particular modification. Additionally,
considering the general nature of the formulation, one may also try to apply them for
the evaluation of the PoC with respect to the main attractor, by interpreting the Hera
orbital state estimate as a relative state. However, upon visually inspecting the velocity
magnitudes of trajectories around small bodies, particularly in low-gravity environments,
it becomes evident that none of the existing techniques are suitable. In fact, the relative
velocity between Dimorphos and Hera shown in fig. 4.1 unequivocally reveals that the
short-term encounter is not valid.
In the context of the Hera mission scenario, the evaluation of miss distance emerges as
the only applicable method for defining a trajectory safety metric. This concept can
be seamlessly extended to a spacecraft orbiting its primary attractor, where Distance of
Closest Approach (DCA) PDF computed through any mean can be interpreted as the
miss distance PDF. The same formulation can be readily applied to any object in orbit
around the primary.

DCA prediction method In the most general case this quantity may be estimated
by propagating the current state estimate forward in time until an event function such as
the condition of orthogonality of position and velocity vectors, eq. (4.1), is satisfied with
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Figure 4.1: Relative velocity components of Hera wrt Dimorphos - EXP trajectory @Didy-
mos CI.

a specified tolerance.

r(t) · v(t) ≤ ϵ (4.1)

Nonetheless, an analytical solution for the computation of the minimum distance given the
trajectory appears as the sole viable option to achieve a fast computation, since analytical
solutions in Astrodynamics models are limited to cases such as Keplerian dynamics (3.1).
The primary issue that prevents the estimation of r̂CA by propagation is the dependency
of the integration time from the spacecraft position. The farther the spacecraft is from
the actual Time of Closest Approach (TCA) given its current state estimate, the longer
the integration time becomes. In the case of the EXP trajectory, this time can extend up
to 23 hours, rendering this approach computationally infeasible.
For a qualitative comparison, it’s worth noting that the propagation of the mean state
through the most comprehensive dynamics described in 3 takes up to 8 seconds, using
ode113 (with a tolerance equal to single machine precision) on an i7 11800H @4.2 GHz.
The computational power of the current state-of-the-art space-grade CPUs is considerably
more limited [43].

PoC definition and computation The formulation of the probability of collision
employed in this work is now presented. Let (µr̂CA

, σ2
r̂CA

) represent the mean and the
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variance of the estimated miss distance, so that its Probability Density Function is fully
defined under the Gaussian assumption:

p(x;µr̂CA
, σ2

rCA
) ≈ N(µr̂CA

, σ2
rCA

) =
1√

2πσ ˆrCA

exp

(
−x− µr̂CA

σ2
r̂CA

)
The Hera mission trajectories require the spacecraft to fly as close as approximately 300

meters from the secondary body during the VCFB, whereas the minimum distance from
Didymos equals to 1510 [m]. In light of this, the simplest and most conservative approach
to conduct a collision assessment relies on the definition of a Keep-out sphere (KoS) of
radius RKoS the spacecraft must not cross. This design choice is further substantiated by
the constraints posed by the GNC system, the Hera baseline trajectory, and the naviga-
tion capabilities outlined in 3: flying below Dimorphos’ orbit is not part of the mission
objectives and the GNC system has not been validated to deliver sufficient performance
under such circumstances.
The RKoS value was determined eq. (4.2) aims at balancing the probability of triggering
unnecessary manoeuvres due to false alarms with the risk of overlooking a potential col-
lision. Indeed, this parameter selection inherently include considerations related to both
factors.

RKoS = rD2 + 0.05 rD2 +RD2,max = 1240m+ 62m+ 60m = 1362 [m] (4.2)

where rD2 is the radius of Dimorphos orbit and RD2,max is the largest radius of Dimorphos
shape. A 5% uncertainty is assumed on the orbital radius.
Finally, it is important to stress that this parameter must be adjustable during the Op-
erational phase, as further studies of the system, and the Early characterization phase of
the mission will likely require its re-tuning.
The evaluation of the probability of the spacecraft to enter the KoS is simply defined in
terms of the Cumulative distribution function (CDF) of the miss distance distribution as
eq. (4.3).

Pr(rCA ≤ RKoS) =

∫ RKoS

−∞

1√
2πσ ˆrCA

exp

(
−x− µr̂CA

σ2
r̂CA

)
dx (4.3)

The error function can be used to compute this probability as eq. (4.4) [1].

Pr(rCA ≤ RKoS) =
1

2

(
1 + erf

(
RKoS − µr̂CA√

2σ ˆrCA

))
(4.4)

Threshold-based decision The CAM decision problem, i.e., whether to issue a flag
prompting an avoidance maneuver to the OBSW, is addressed by establishing a probabil-
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ity threshold Prmax. In other words, the probability value of eq. (4.3) is compared against
the tunable value of the maximum acceptable probability resulting in a boolean variable.
To enhance the robustness of this evaluation against instantaneous fluctuations in the
estimation process, the strategy may involve the introduction of a counter variable. This
accumulates the number of consecutive time instants in which the second condition in
eq. (4.5) is satisfied. The flag BCAM is raised only when the counter surpasses a speci-
fied value, a parameter in turn tunable based on considerations such as the spacecraft’s
maneuvering capabilities and its proximity to the system at the time of detection.

BCAM =

0 if Pr(rCA ≤ RKoS) ≤ Prmax

1 if Pr(rCA ≤ RKoS) > Prmax

(4.5)

Additionally, for added robustness the flag may be raised also in cases the spacecraft is
no longer able to acquire observations whenever the second of eq. (4.5) is satisfied even
if the counter has not reached its threshold value. The rationale is grounded in the fact
that the measurements acquisition process of Hera is intimately linked to its capability of
pointing to the asteroids. Consequently, a loss of the measurements information hampers
the on-board navigation and may be indicative of a thruster failure.

4.2.2. Estimation of miss distance mean and variance

The method described above expects the estimated miss distance and its variance as
inputs. In the framework of the Keplerian dynamics, the pericentre distance is analytically
linked to the orbit energy and angular momentum, both of which are integrals of motion.
Two functions were derived to compute this quantity by leveraging (eq. (4.6), eq. (4.7)).
The first function maps the position and velocity vectors (r, v) to the pericentre distance
of the trajectory, while the second accomplishes the same task using in-plane trajectory
properties, namely the distance r, the radial velocity ṙ and the orbital angular velocity θ̇.

ε =
v2

2
− µ

r
= const. where v2 = ṙ2 + (rθ̇)2 (4.6)

h = ||r× v|| = r2θ̇ = const. (4.7)

Analytical derivation from trajectory properties Beginning with eq. (4.6) and
eq. (4.7), the orbital energy can be expressed in terms of velocity and position magni-
tudes at the pericentre of the orbit, noting that the radial velocity component nulls out.
Furthermore, by substituting the expression of the velocity derived from Orbit Kinemat-
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ics:

ε =
1

2

(
ṙ2 + r2θ̇2

)
− µ

r
=

h2

2r2p
− µ

rp
=

r4θ̇2

2r2p
− µ

rp

By solving for rp after some manipulation, the second order algebraic equation in rp is
found and straightforwardly solved to yield eq. (4.8).(

ṙ2 + r2θ̇2 − 2µ

r

)
r2p + 2µ rp − r4θ̇2 = 0

rCA(r, ṙ, θ̇) = rp(r, ṙ, θ̇) =

−µ+

√
µ2 +

(
r4θ̇2

)(
ṙ2 + r2θ̇2 − 2µ/r

)
(
ṙ2 + r2θ̇2 − 2µ/r

) (4.8)

Analytical derivation from State Vector The same steps can be replicated by sub-
stituting the orbital angular momentum as function of the state vector, and recalling that
the norm of the cross product can be alternatively expressed as eq. (4.9).

||r× v|| = r2v2 − (−r · v) (4.9)

Indeed, eq. (4.10) exhibit the same structure as eq. (4.8), with the key distinction being
that it can not be utilized solely based on measurements, since not all the components
of the state vector can be directly observed. Nevertheless, this characteristic makes the
latter form more suitable when a trajectory estimation filter is employed.

rp(r,v) =
−µ+

√
µ2 + (r2v2 − (−r · v)) (v2 − 2µ/r)

(v2 − 2µ/r)
(4.10)

The equivalence between the formulas is proved in figure 4.2a, computing the orbit prop-
erties using classical Orbital Mechanics [72] from the reference trajectory. Figure 4.2b
shows that the error is only due to finite arithmetic.

Miss distance variance Given that eq. (4.10) and eq. (4.8) are two non-linear functions
in the general form:

y = f(x, µ)

any method for uncertainty propagation can be applied. The Unscented Transform was
employed to minimize the linearization error, considering that the computational cost
difference compared to the Linear Covariance method is negligible.

(µr̂CA
, σ2

r̂CA
) = UT(rp(x); x, Px)
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(a) Pericentre distance as 2BP, true trajectory. (b) Error with respect to keplerian elements.

where (x, Px) are either the state vector or the trajectory properties, and Px the respective
covariance.

4.2.3. Estimation of in-plane properties

Measurement buffering The evaluation of eq. (4.8) requires estimation of the three
inputs at the specific time instant of interest. However, direct propagation of the quantities
is not viable as no motion model is employed. To address this, the altimeter and the
centroid measurements are stored in a buffer as soon as they become available along
with the timetags corresponding to the acquisition time. Other quantities, including the
attitude quaternion involved in the computations, are similarly buffered. Additionally,
the oldest measurement in the buffer is overwritten by the most recently acquired one.
The size of the buffers is determined by the number Ncen of centroid measurements chosen
for the estimation. The number Nalt of altimetry measurements is selected to be equal to
∆tIPNcen to ensure that a certain overlap of timetags between IP front-end and altimeter
preventing the need for extrapolation. Moreover, the estimation process only begins after
all the buffer arrays have been completely filled.
To improve the robustness of the algorithm, each entry in the buffer is associated with a
validity flag based on physical consistency (see . The number of valid measurements is
then compared against a tunable threshold to determine whether it is sufficient to initiate
the estimation process. In any case, invalid measurements are discarded.

Nvalid ≥ 0.95Nsize ⇒ ExecuteFlag = 1

Estimation of r and ṙ Least Squares (LS) Regression [67] of the altimeter measure-
ments, stacked as vector yalt, is employed at each estimation time test ∈ [t1, . . . , tNalt

]. The
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regression is used to calculate the smoothed value of the range r(test) and of the range-rate
ṙ(test). Specifically, the coefficients â of a time-polynomial of order dr are estimated by
solving the LS problem defined in eq. (4.11) [41].
As the focus is on the position magnitude, the mean body radius R̄D1 is added to the
altimeter measurement: yr,i = yalt,i + R̄D1. It’s worth noting that a more refined correc-
tion could consider the intersection of the altimeter beam with a shape model, fitted to
the known shape of the asteroid. Unfortunately, the lack of a position vector estimate,
necessary to locate the shape model with respect to the spacecraft before computing the
intersection, renders this not feasible.

Find â = arg min
a
||ε||2 where ε = yr −Hâ (4.11)

The observation matrix H is assembled from the row vector Hi, whose entries are com-
puted from the ith timetag of each element yr,i.

Hi =
[
1, t1, . . . , tNpoly

]
i = 1, . . . , Nalt

Therefore:

H =


H1

...
HNalt


eq. (4.12) shows the solution of the problem through inversion of the Normal Equations
[67]. In practice, the actual implementation utilizes MATLAB mldivide instead of di-
rectly inverting the Information matrix. As a final note, it is recommended to scale the
entries of the observation matrix to prevent ill-conditioning. In the implementation, a time
grid is used in hours instead of seconds for this purpose. Consequently, all subsequent
operations must consider this detail.

â = (HTH)−1HTyr (4.12)

The resulting time-polynomial (eq. (4.13)) is indeed a smoother of the range measurement
over the time window covered by the buffer.

r(t) =
dr∑
j=0

aj t
j (4.13)
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By definition, the time-derivative of the range polynomial immediately yields the time-
polynomial that approximates the range-rate over the same time window (eq. (4.14))

ṙ(t) =
dr−1∑
j=0

j âr,j t
j−1 (4.14)

The values r(test) and ṙ(test) are thus readily computed by evaluating the smoothers in
test when the estimates are required.

Variance of r and ṙ The estimation of the variance [67] is performed from the residuals
of the smoothing relying on several assumptions that, while strong, are deemed necessary
within this framework:

1. Uncorrelation between measurements in time.

2. The polynomial estimator is assumed to be unbiased.

3. Approximation of the variance of the polynomial estimator as the Root-Mean Square
(RMS) of the residuals.

4. The random process is assumed to be stationary with a constant variance σ2 over
the given time frame.

5. The time variable is assumed as perfectly known (no uncertainty).

This approximation is founded on the understanding that the RMS of the post-fit residuals
serves as empirical measure of the dispersion of the errors. Assuming the validity of the
assumptions inherent to the Least Squares (LS) problem, this dispersion is caused by
measurement noise only.
Initially, the residuals εr are computed for each entry of the observation vector y. Its
RMS is defined as eq. (4.15) and is used as approximation of the variance of the range
estimate:

RMS(εr) =

√√√√ 1

Nalt

Nalt∑
i=1

εr,i ⇒ σ2
r ≈ RMS(εr)

2. (4.15)

As for the range-rate variance σ2
ṙ , the model assumes the use of the finite forward difference

formula to estimate the derivative (4.16).

ṙk ≈
rk+1 − rk
tk+1 − tk

(4.16)

where k + 1 and k indicate two generic time instants. Following the aforementioned
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assumptions and applying the variance "operator", V ar(x) = E[x− E[x]], to the model:

σ̂2
ṙ ≈ V ar

(
rk+1 − rk
tk+1 − tk

)
≈ 2

(
RMS(εr)

tk+1 − tk

)2

(4.17)

Estimation and variance of θ̇ The same approach as described above is applied to
estimate the required input θ̇. The true anomaly of the trajectory is inherently a property
that cannot be directly observed. However, it was found that an approximation of its
variation over a given ∆t is possible by computing the displacement of several Line of
sight (Los) corresponding to the centroid measurements.
With the centroid coordinates in the image plane obtained from the IP algorithm, the
Los is retrieved and rotated to the Inertial frame CI by means of the attitude quaternion
estimate (4.18).

lCI(t) = DCM (q̂CAMwrtCI(t)) l
CAM(t)

= DCM(q̂CAMwrtCI(t))


cos(E(t)) sin(A(t))

−sin(A(t))

cos(E(t)) cos(A(t))

 (4.18)

where the spherical angles E(t) and A(t) identifying the Los in the CAM frame are ob-
tained from the centroid coordinates (u, v) (4.19). Specifically, the line-of-sight expression
assumes that the +Z axis of the CAM frame corresponds to the bore-sight of the camera.
The camera intrinsic parameters [34] are also necessary, namely: the centre of the image
plane (cx, cy) and the non-dimensional focal length f .

A(t) = atan2

(
u(t)− cx

f

)

E(t) = atan

(
−v(t)− cy

f
cos(A(t))

) (4.19)

The displacement θi at each ith time instant for the regression is then computed with
respect to first valid lCI(tw0) where tw0 is the first time instant of the time window (4.20).
Figure 4.2 sketches the process.

θ(t) = cos−1 (lCI(t) · lCI(tw0)) (4.20)

Proceeding through the same step as for the range time-polynomial, the displacement
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Figure 4.2: Representation of the line-of-sight vectors displacements with respect to the
first in a window starting at time t0.

time-polynomial is derived and subsequently differentiated to get the smoother of the
displacement rate. This serves as the approximation for the true anomaly rate θ̇ (4.21).

θ(t) =
dcen∑
j=0

âθ,j t
j ⇒ θ̇(t) =

dcen−1∑
j=0

j âθ,j t
j−1 (4.21)

Finally, the evaluation of eq. (4.21) at test provides the value of θ̇(test) enabling the com-
putation of rCA(test). The variance of the estimate is then approximated similar to the
range-rate, from the residuals of the fitting.

σ̂2
θ̇
≈ V ar

(
θk+1 − θk
tk+1 − tk

)
≈ 2

(
RMS(εθ)

tk+1 − tk

)2

(4.22)

4.3. Keplerian dynamics "kepSRUSKF"

4.3.1. Filter design details

Most filters implementation in literature employs Cartesian coordinates (r,v) for the po-
sition and velocity of the spacecraft. Consequently, any dynamics model, including the
simplest one (eq. (3.1)), necessitates numerical integration for time propagation. Indeed,
this also represents the main difference in computational cost between the state-of-the-
art EKF and Sigma Points filters, despite both having the same algorithmic complexity.
Consequently, when analytical propagation is feasible, the second family of estimators
becomes a convenient choice in the trade-off between accuracy, robustness and computa-
tional cost.
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The filter was designed to use Osculating Keplerian elements in place of Cartesian Coor-
dinates, enabling analytical propagation through the solution of Kepler’s problem (4.3.3).
However, since Hera trajectories are characterized by eccentricities larger than 1, the Hy-
perbolic anomaly is employed instead of the True anomaly.
Furthermore, to account for the non-negligible uncertainty in the properties of asteroids,
the state vector of the filter is augmented to include the gravitational parameter µD1 of the
main body as considered parameter (for which the formulation is defined as "Schmidt").
Therefore, the complete state vector is given as (4.23).

z =
[
a, e, i,Ω, ω,H, µD1

]T
(4.23)

Another reason of this design choice is the easier and faster computation of the DCA as
it is directly determined by the orbit shape states (a, e):

r̂CA = â(1− ê) with a < 0, e > 1 (4.24)

Moreover, uncertainty propagation to get σ2
r̂CA

can be directly carried out from the filter
covariance without the need for decomposition. In contrast to the first algorithm, the
Sigma Points capturing the state PDF are readily available from the filter steps.
The Square-Root form of the covariance is to be preferred in this context as it well aligns
with the goal of minimizing computations compared to the standard Unscented Kalman
Filter.

4.3.2. Filter initialization

The filter initialization takes place at the first time instant of the estimation process and
requires the specification of the state vector and its initial covariance. Both are assigned in
Cartesian coordinates assuming estimation accuracy and uncertainty compatible with the
Ground orbit determination process (4.25). Furthermore, the correlation terms are set to
zero since they are naturally built up during the execution of the filter. The propagation
model plays a crucial role to correlate position and velocity states, enabling the estimation
of non-observed states.

Px0 = diag
([

300, 300, 300, 0.01, 0.01, 0.01
]2)

[m2,m2/s2] (4.25)

The gravitational parameter treated as considered state and its uncertainty, derived from
the last available solution [36], are reported in 4.26. It’s important to note that the
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uncertainty on this parameter enters the estimation differently from the additive process
noise.

µD1 = 32.3545 [m3/s2] σµD1
= 1.4368 [m3/s2] (4.26)

Finally, augmentation with the considered parameters is performed. The correlation terms
are again set to zero:

Pz0 =

[
Px0 06,1

01,6 σ2
µD1

]
[m2,m2/s2,m6/s4]

The initial Keplerian state vector is computed through the coordinates transformation by
means of the UT. It is important to highlight that the state vector in Keplerian elements
necessarily has non-zero correlation terms when converted from Cartesian coordinates.
The Square Root of the Covariance matrix is initialized as in eq. (2.4). The initial set
of Sigma points χi,0 , i = 0, . . . 2Nz describing the state PDF is immediately generated,
together with the corresponding weights as shown in section 2.3.1.

4.3.3. Filter Time Update

The prediction of the state vector over any ∆t only requires the computation of a single
component, namely the fast variable H(t). Contrarily to numerical integration, the com-
putational effort for this task is independent of the ∆t thanks to the analytical solution.
From a generic time instant tk the forward prediction to the subsequent filter time tk+1

in discrete form is performed through three steps. Firstly, the Mean anomaly Mk is
computed from the current value of the Hyperbolic anomaly Hk.

Mk = ek sinh(Hk)−Hk (4.27)

Secondly, it is updated by means of (eq. (4.28)) propagating for the required ∆tk =

tk+1 − tk.

Mk+1 = Mk +

√
µ

−a3k
∆tk (4.28)

Finally, the updated Hyperbolic anomaly is computed through Newton-Raphson method,
iterating through equation 4.29 with index j until the stopping criterion |Hj+1−Hj| ≤ tol

is satisfied [72]. The tolerance was set to 10−8 rad for this study, to prevent an excessive
number of iterations.

Hj+1 = Hj +
Mk+1 − ek sinh(Hj) +Hj

ek cosh(Hj)− 1
(4.29)
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All the other components remain constant during the Time Update and are simply as-
signed to the array of the propagated state:

ak+1 = ak

ek+1 = ek

ik+1 = ik

Ωk+1 = Ωk

ωk+1 = ωk

(4.30)

The propagation function defined by the steps 4.28 to 4.30 is denoted as kepProp() in the
following. Every sigma point is independently propagated.

χi,k+1 = kepProp(χi,k,∆t) i = 0, . . . , 2Nz (4.31)

The mean state estimate is then computed as weighted sample mean of the Sigma Points
(eq. (4.32))

ẑ−k+1 =
2Nz∑
i=0

W
(m)
i χi,k+1 (4.32)

The associated full covariance can be computed as weighted sample covariance (eq. (4.33))
if needed.

Pk+1 =
2Nz∑
i=0

W
(c)
i (χi,k+1 − ẑ−k+1)(χi,k+1 − ẑ−k+1)

T (4.33)

In the Square-Root form, this operation is replaced by a two-step procedure involving
QR decomposition and Cholesky Rank-1 Update algorithm [69, 75]. The reason of the
second step is that the weight associated with the mean state Wm

1 is always negative
for the number of components involved in Orbit determination problems [28] and for the
common tuning parameters of the Unscented Transform (section 2.3.1). Therefore, the
Time Update is finalized by applying eq. (4.34) and eq. (4.35).

S−
zz,k+1 = QR

{[√
W c

1:2Nz
(χ1:Nz ,k+1 − ẑ−k+1)

√
Qk

]}
(4.34)

S−
zz,k+1 = cholupdate

(
S−
zz,k+1,

√
|W c

0 |(χ0,k+1)− ẑ−k+1), sign (W c
0 )
)

(4.35)

where
√
Qk is the Square Root matrix of the Process noise covariance matrix. An im-

portant detail to recognize is that when using the UT for the Time Update in place of
methods that avoid negative weights such as the Conjugate UT, the operation in eq. (4.35)
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can disrupt the positive definiteness of the matrix [3]. This is because the cholupdate

operationis is equivalent to computing the Cholesky decomposition of the matrix differ-
ence of two positive definite matrices, which is not guaranteed to be positive definite.
This investigation found out that this occurrence is the most frequent cause for the filter
to stop functioning, specifically in three situations:

1. Process noise not correctly tuned, i.e., far from the optimal value to "cover" the
non-modeled effects of the dynamics.

2. Incipient filter divergence in one or more states caused by an excessive sudden drop
following a very accurate measurement.

3. When the covariance of states bounded to assume values in a closed interval (e.g.
the anomaly for hyperbolic orbits) increases such that it covers unfeasible regions
of the state space.

The tuning process was performed in an attempt to cover the "gaps" of the Keplerian
parameters with respect to the nominal Osculating values (fig. 3.7), oscillating and drifting
respectively due to the 3rd body perturbation and the SRP. Specifically, the Q matrix
was tuned separately depending on whether the altimeter is enabled. The dimensions of
the entries are the squares of the state vector ones.

QKep
1 = diag

([
0.2, 1× 10−5, 1× 10−8, 1× 10−8, 1× 10−8, 1× 10−2

]2)

QKep
2 = diag

([
1.5, 1× 10−5, 1× 10−6, 1× 10−6, 1× 10−6, 1× 10−3

]2)

4.3.4. Filter Observation Update

The observation update of the filter consists in the incorporation of the altimeter and
centroiding measurements as they become available for processing. The general observa-
tion models described in the following utilize Cartesian coordinates. Conversion of the
Keplerian elements state is therefore performed prior evaluation, even if not explicitly
specified.

Pre-processing and consistency check Each measurement enters the filter with a
timetag indicating the acquisition time and a validity flag. A flag bHoldUpdate was added
in the conditional statement such that the filter can be forced to skip the Update step
(i.e., to work in pure propagation) whenever measurements are labelled as invalid.
If a centroid observation (u, v) is available, the filter manager checks for its physical
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consistency. Given the size in pixels of the image plane of the AFC (3), the measurements
is accepted if the centroid coordinates are within 0.95 of the image plane size Ilim (the
coordinates are with respect to the centre position cx, cy): | (u− cx) | < 0.95 Ilim

| (v − cy) | < 0.95 Ilim

and rejected otherwise, either skipping the update or incorporating the altimeter mea-
surement only.
The altimeter is instead considered valid if the measurement is positive and below the
maximum measurable distance: rAlt > 0

rAlt ≤ 16 km

As a side note, the implementation was carried out avoiding the use of variable-size arrays
at the input/output interfaces of the filter. Instead, indexing based on the validity flags is
exploited. This design allows for the easy addition of any other rejection or pre-processing
step if needed.

Measurement delay handling In real implementations of navigation filters, measure-
ments are not immediately available as acquired by the sensors. A delay, possibly lasting
several seconds (e.g., due to image processing run-time [43]), must be accounted for when
incorporating measurements. It is worth noting that this is not strictly necessary if a
delay in the Failure detection (FD) assessment is allowed. In this case, the filter runs in
a delayed manner, waiting for the measurement to become available. The latter is the
default option for the presented design, but the procedure was anyway implemented.
Unlike the EKF for which more efficient alternatives exist e.g., [18]), back-propagation is
necessary for Sigma points filters. The timetags of the measurements are first compared
to the current OBSW clock time to determine whether a delay td between acquisition and
availability time exists.

td,alt = talt − tOBSW ≤ 0 ; td,cen = tcen − tOBSW ≤ 0

The propagation function (4.31) is then applied identically by simply selecting ∆t = td

to obtain the sigma points at the observation times talt or tcen, indicated as χi,m for
conciseness.
The observation models for the altimeter and the centroid are finally evaluated at the
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time of the measurement to obtain their prediction. The models are presented in the
following in their general form for use with either Didymos or Dimorphos, at a generic
time instant k (the subscript is omitted).

Altimeter observation model The altimeter observation model predicts the altime-
ter measurement from the spacecraft to the surface of the target body. The attitude
quaternion of the spacecraft with respect to the CI frame, q̂SCBwrtCI , is assumed per-
fectly known from the attitude determination filter. Indeed, there is no alternative when
only centroiding measurements are available to the translational navigation.
The shape models used for both Didymos and Dimorphos, detailed in [58], consists in four
triaxial ellipsoids. This approach enhances the accuracy compared to a single ellipsoid,
since each of the four ellipsoid is tailored to fit only one quadrant of the target body.
For computational efficiency, the observation model is evaluated in the target body frame
instead of the CI eliminating the need for rotating the ellipsoids.
The altimeter Los is rotated to the TB frame using the knowledge of the DCM describing
the attitude of the target at the time instant of interest (4.36).

lTB
alt = DCMTBwrtCI DCM(q̂SCBwrtCI) l

SCB
alt (4.36)

The relative position of the Spacecraft with respect to the target body is computed in the
CI frame and similarly rotated to the TB.

r̂TB
SCwrtTB = DCMTBwrtCI

(
r̂CI
SC − rCI

TB

)
(4.37)

where rCI
TB is a vector of zeros if Didymos is the target, the ephemerides of Dimorphos’

position otherwise.
The relative position (4.37) and the altimeter Los are firstly used to approximately deter-
mine the quadrant of the intersection to select one of the four ellipsoids. Subsequently,
the actual intersection distance rintersec with the shape model is determined along the
altimeter Los and subtracted from the position vector norm to obtain the prediction of
the altimeter measurement (eq. (4.38)).

yalt = ||̂rSCwrtTB|| − rintersec (4.38)

In case no intersection solution is found, a flag is raised prompting the filter to skip the
altimeter measurement incorporation. A subsequent check of the physical consistency of
the prediction based on the sizes of the target bodies is added through the same flag. The
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prediction is marked as invalid if the intersection distance exceeds a threshold determined
by the diameter of the target bodies:

rintersec ≥ 800 [m] if D1

rintersec ≥ 400 [m] if D2
⇒ Reject meas.

Centroiding observation models The centroiding model provides the predicted co-
ordinates of the centre of mass for Didymos and the centre of brightness for Dimorphos,
considering that two different IP are employed (see chapter 3). Both models are based on
the pinhole projection model, the only difference being that the second needs to account
for the Sun Phase angle by including a centroid correction term.
The pinhole projection [34] is the simplest camera model possible allowing the compu-
tation of image plane coordinates for any point with known coordinates in the camera
reference frame given the Intrinsic and Extrinsic camera parameters. The former are con-
tained in the Camera calibration matrix KCAM , while the latter includes the position of
the camera frame origin and the attitude of the CAM frame in CI. The filter estimates
the first of these two states.xp

yp

zp


CAM

= KCAM DCM (q̂CAMwrtCI)
[
I3 −r̂CI

SC

] [pCI

1

]
(4.39)

where pCI is the position vector in CI of the point to project. Since the center of the two
asteroids is the target that the IP algorithms attempt to extract, pCI must be equal to
[0, 0, 0]T if Didymos is the target; and equal to the position of Dimorphos rCI

SB as available
from the on-board ephemerides. The pixel coordinates in the image plane are finally
computed by normalizing with respect to the 3rd components, as monocular cameras are
not able to provide distance information:

[
u

v

]
=


xp

zp
yp
zp

 (4.40)

Centre of Brightness correction The coordinates obtained by (4.40) must be shifted
to account for the Sun Phase angle when the CoB algorithm is being applied. More in
detail, eq. (4.41) corrects the prediction to make it closer to the output of the IP. The
magnitude of the correction is computed based on an analytical model of the centre of
brightness shift for a spherical body illuminated by the sunlight. The direction of the shift
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line corresponds to the projection of the unit direction toward the Sun onto the image
plane uSun = [xSun, ySun]

T .[
u

v

]
CoB

=

[
u

v

]
+

4

3π
(1− cos θSB) R̄SB,pix uSun (4.41)

Eq. 4.41 shows the correction term expression, in which θSB is the Sun phase angle with
respect to the secondary body (4.42); R̄SB,pix is the average size of Dimorphos in pixels,
computed as (eq. (4.43)) and R̄SB = 82 [m].

θSB = cos−1

(
r̂CI
SC − rCI

SB

||̂rCI
SC − rCI

SB||
· lCI

Sun

)
[rad] (4.42)

R̄SB,pix = sin−1

(
R̄SB

||̂rCI
SC − rCI

SB||

)
Npix

FoV
[pix] (4.43)

The Sun Phase angle value for the secondary body is also compared to π/2 as consistency
check. The update is rejected if the condition θSB ≥ π/2 is satisfied, as it is not be
possible to have CoB observation without Sun illumination.

Innovation computation and outliers detection Depending on the validity flags
computed during the pre-processing, the Altimeter and the Centroid observation models
are evaluated for each a priori Sigma point χ−

i,k i = 0, . . . , 2Nz to obtain their mapping
Υi,k in the Observation space. This set of sigma points in turn describes the map of the
state PDF necessary for the computation of the Innovation. The approximation of the
predicted mean and Square Root covariance of the innovation is retrieved through (4.44,
4.45) [28, 75].

ŷk =
2Nz∑
i=0

W
(m)
i Υi,k (4.44)

Syy,k = QR
{[√

W c
1:2Nz

(Υ1:Nz ,k − ŷk)
√

Rk

]}
Syy,k = cholupdate

(
Syy,k,

√
|W c

0 |(Υ0,k − ŷk), sign (W c
0 )
) (4.45)

where Rk is the measurements noise covariance. The design assumes a diagonal matrix
with altimeter σAlt = 40m; the centroiding covariance sub-matrix is computed through
a non-linear function of the prior estimated state, given the expected covariance at a
specified distance. The σCen, identical for both coordinates, ranges from 2 to 200 pix-
els. TWhile the details are omitted, it is noted that this approach enhances the filter
performance by accounting for the fact that the measurement noise statistics vary dur-
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ing the navigation window. The Innovation vector υk is simply the difference between
observations and its predicted mean:

υk = ỹk − ŷk

In practical application, the quality of the state estimation is often improved adopting
a measurements outlier rejection strategy (i.e., "editing" [10]). Conceptually, the filter
evaluates a distance metric based on how large the residual is compared to the Innovation
covariance and decides whether to reject the update. It is crucial to note that both the
measurement noise covariance Rk associated to the actual observables and the map of the
state estimate covariance Pzz,k play a role in this regard. The expression of the first order
linearization (EKF) makes these two contributions more evident, whereas in the SRUSKF
they are embedded in the Syy computation step:

PEKF
yy,k = HT

k P
−
zz,kHk +Rk (4.46)

where Hk =
∂h

∂z

∣∣∣∣
ẑ−k

is the jacobian of the observation function with respect to the state

vector. Indeed, the editing step must be carefully designed to avoid incorrect rejection of
new observations by the filter.
The squared Mahalanobis distance [15, 21] is employed to assess the residuals for potential
outliers. If the condition (eq. (4.47)) is met, the filter accepts the update.

M2 (υk, Syy,k) = υT
k P

−1
yy υk ≤M2

thr (4.47)

where Mthr is selected equal to 4. As for the implementation, it’s worth noting that the
inversion of the full covariance is avoided. Instead, the equivalent linear system involving
the Square root covariance (upper triangular) is solved in two steps using MATLAB
mrdivide (4.48).

M2 (υk, Syy,k) =
((
υT
k /Syy,k

)
/ST

yy,k

)
υk (4.48)

State and covariance update After determining the accepted residuals entries using
the validity flags, the state-observation cross-covariance and the optimal Kalman gain are
computed with eq. (4.49), eq. (4.50), respectively.

Pzy,k =
2Nz∑
i=0

(
χi − ẑ−k

)
(Υi,k − ŷk)

T (4.49)
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Kk =

[
Kx,k

Kp,k

]
= (Pzy/Syy,k) /S

T
yy,k (4.50)

The Kalman gain can be partitioned in two sub-matrices, one for the state vector and
one for the parameters, respectively. This partition is necessary because the second gain
must be set to zero when the additional parameters are considered and not solved for.
The mean state estimate is then updated as given in (4.51).

ẑ+k = ẑ−k +

[
Kx,k

0Np,Nν

]
υk (4.51)

where Np is the number of parameters, Nν is the size of the innovation vector. The
state covariance is updated in two stages by means of the auxiliary matrices U1 and U2

(4.52). Depending on the Innovation covariance and the Kalman gain, the first stage
(4.53) shrinks the uncertainty, while the second (eq. (4.54)) expands it by an amount
dependent on the consider parameters variance [80].

U1,k = KkSyyk
U2,k =

[
0Nx

Kp

]
Syyk

(4.52)

Cholesky Rank-1 Update is used column by column to update the Square Root covariance.

S+
zzk
← S−

zzk
⇒ S+

zzk
= cholupdate

(
S+
zzk

, U1,k,−1
)

(4.53)

S+
zzk

= cholupdate
(
S+
zzk

, U2,k,+1
)

(4.54)

This completes the execution of one Time-Observation update cycle of the filter, yielding
the posterior state and Square Root covariance estimates. The latter ones are then used
to start the next cycle from 4.3.3.

4.3.5. Manoeuvre execution

As explained in chapter 3 the baseline trajectory of the EXP phase includes two au-
tonomous manoeuvres commanded by the GNC. Therefore, it is necessary to incorporate
them in the estimation process, accounting for both mean state adjustments and added
dispersion. The on-board guidance computes the commanded ∆v, which is then mapped
to a thrust vector command.
To include this input in the estimation, the discrete ∆vk is added at each time step
k to the set of Sigma points parameterizing the state PDF. Specifically, the set is ini-
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tially computed given the mean state and Square Root covariance in Keplerian elements,
Subsequently, it is mapped to Cartesian coordinates and the ∆vk is added:

χCart
i,k = χCart

i,k +

03,1

∆vk

0

 (4.55)

The full covariance is reconstructed using (2.8). The dispersion introduced by the ma-
noeuvre expands the orbital state covariance sub-matrix by an amount Pman (4.56). Pman

is computed based on the dispersions σ2
mag and σ2

dir (4.57 to 4.59). It’s important to note
that the simple addition assumes no correlation between the state vector covariance and
Pman.

Pzz = Pzz +

[
Pman 06,1

01,6 0

]
(4.56)

The dispersion σ2
mag represents the uncertainty in ||∆v|| along the thrust vector direction

Z∆v = ∆v/||∆v||; σ2
dir represents the uncertainty in the knowledge of this direction (4.1).

The matrix Pman is assembled as diagonal in a reference frame attached to the thrust
vector direction (4.57).

Table 4.1: Dispersion values for manoeuvres.

σmag 0.005 [m/s]
σdir 2.5 [deg]

P∆v
man =

1

2
||∆v||2diag




σ2
dir(σ

2
mag + 1− σ2

dir)

σ2
dir(σ

2
mag + 1− σ2

dir)

σ2
mag(1− σ2

dir) +
3

4
σ4
dir


T
 (4.57)

Any choice of the axes +X∆v and +Y∆v is allowed, provided that they are orthogonal to
the thrust vector direction. To achieve this, a random axis lrnd is first generated, from
which the component perpendicular to the Z∆v axis is then computed (4.58).

X∆v = lrnd − (lrnd · Z∆v)Z∆v (4.58)

The third axis completes the triad, such that the rotation matrix between the space-
craft Body frame and the thrusting THR frame is completely specified: Y∆v = (Z∆v ×
X∆v)/||(Z∆v × X∆v)||. Finally, the diagonal matrix (4.57) is rotated to the SCB to
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compute Pman (4.59).

RMan2CI =
[
X∆v, Y∆v, Z∆v

]
⇒ Pman = RMan2CI P

∆v
ManR

T
Man2CI (4.59)

4.4. Higher Fidelity SRUSKF

A slightly modified filter was implemented to assess the extent of the accuracy degradation
resulting both from using Keplerian elements state compared to Cartesian coordinates and
from the simplified dynamics.
The key distinction lies in the Time Update as detailed in the following 4.4.1. While
the Observation Update remains unchanged, the transformation of the state to Cartesian
coordinates for the evaluation is no longer necessary. For brevity, this section exclusively
highlights the relevant modifications.

4.4.1. Filter design details

The augmented state vector in Cartesian coordinates becomes:

z =
[
rx, ry, rz, vx, vy, vz, µD1

]T
Two tuning sets are defined for the process noise covariance matrix. The first is used
when only centroid information is available, the second after the altimeter activation:

QHF
1 = diag

([
10, 10, 10, 5× 10−11, 5× 10−11, 5× 10−11

]2)

QHF
2 = diag

([
15, 15, 15, 1× 10−12, 1× 10−12, 1× 10−12

]2)
An additional practical consideration regarding the tuning of the process noise pertains to
the physical interpretation of the state vector. Unlike Keplerian elements, Cartesian co-
ordinates offer an intuitive understanding of how the process noise impacts the estimation
which definitely aids the procedure.

4.4.2. Time Update

The Time update now requires the solution of the numerical integration of an ODE system
at each time step. A simple Euler integration scheme is employed. The timestep ∆t is
fixed equal to the base frequency of the GNC functionality execution, namely 1 s.
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The dynamical characterization in chapter 3 shows that a more refined dynamical model
of the system shall comprise at least the 3rd gravitational attraction of Dimorphos and
the SRP due to their significant contributions to the total acceleration. The OBSW has
to provide the position ephemerides of both bodies. The Sun gravitational attraction is
included as well since all the required data for its computation are already necessary for
the SRP.

ż(t) =


v(t)

−µD1

r3
r(t) + aD2,3rd(t) + aSun,3rd(t) + aSRP (t) +

T(t)

mSC

0

 (4.60)

Eq. 4.60 presents the dynamics model in continuous time, including the acceleration due to
the thrust T(t). Specifically, this term is computed based on the thrust vector commanded
by the translational control during impulsive manoeuvres since the Hera spacecraft has no
"closed-loop" information on the actual thrust. The perturbation acceleration terms are
computed as previously described in chapter 3, without any variation in the parameters
values.
The discrete propagation function corresponding to (4.60) is finally obtained by applying
the Euler integration scheme (4.61). The propagation function is applied to each sigma
point and the state PDF then reconstructed by means of (2.7 and 2.8).

zk+1 = zk +∆t żk (4.61)

4.4.3. Closest approach assessment

In this context the estimation of the state vector is an intermediate step as the primary
objective is to determine the distance at closest approach. The presented filter formulation
offers a significant advantage due to its Square Root form: it allows the representation of
the state PDF in terms of Sigma points at any time through simple addition operations
(2.5). Uncertainty propagation for the computation of (µr̂CA

, σ2
r̂CA

) is readily performed
through functions (4.24) and (4.10) downstream of the kepSRUSKF and the HF SRUSKF,
respectively. Finally, the same strategy presented in section 4.2.1 is applied to address
the decision problem.
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4.5. Wald Sequential Probability Ratio Test (SPRT)

using constrained filters bank

The third strategy builds upon the previously described filters (4.2.3). In this approach,
two identical filters are combined in a bank, meaning they run in parallel to process the
acquired observations. Unlike the former methods the "CAM flag", which determines
the suggestion to the OBSW to maneuver, comes directly as the output of the SPRT.
In other words, the threshold-based decision is replaced eliminating the need for all the
assumptions described in section 4.2.1. The mathematical framework and the tailoring
for the collision assessment problem are explained next (section 4.5.1).

Mathematical formulation Given a set of realization of random variables Y1:k =

{y1, . . . ,yk}, which in the present case are the Innovations (i.e. difference between mea-
sured and predicted measurements) at each time instant, the unconstrained Joint Proba-
bility density function can be expressed sequentially:

p(Y1:k) = p(yk|Y1:k−1)p(Y1:k−1) (4.62)

The measurements can be processed by either the filter, regardless of their state vector.
Any practical application requires assumptions about these probability density functions
(PDFs).
In principle, the innovation vector εk of the estimator should exhibit the characteristics
of a Gaussian zero-mean white noise. This allows the approximation of eq. (4.62) by a
Gaussian distribution with a mean equal to the residual vector and a covariance given by
the Innovation covariance.

p(yk|Y1:k−1) ≃ N
(
εk|1:k−1,Wk|1:k−1

)
(4.63)

Note that both are outputs of the observation step of any Kalman sequential estimator.
The key difference lies in the way the innovation and its covariance are formed. In the
EKF linearization (4.46) is used, while the UKF employs the Unscented Transform. The
Innovation covariance is formed from the square root: Wk|1:k−1 = ST

k|1:k−1Sk|1:k−1 where
Sk|1:k−1 is upper triangular.
Therefore, the Likelihood ratio at time tk used in the evaluation of the test, is expressed
in its general and approximated form by eq. (4.64). The PDFs of the innovations of the
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two filters must be constrained to the respective hypotheses, as described next.

Λk =
p (Y1:k|H1)

p (Y1:k|H0)
≃

N
(
εk|1:k−1,H1 ,Wk|1:k−1,H1

)
N

(
εk|1:k−1,H0 ,Wk|1:k−1,H0

) (4.64)

The significance of this ratio derives from the interpretation of the innovation PDFs of
the two filters. A higher computed value is obtained if the mean innovation gets closer
to zero with an upper bound determined by the covariance. Since the integral of a PDF
over the entire space equals to 1 by definition of probability, the maximum absolute value
the PDF can assume is limited by its "spread". In filtering terms, as the evaluation point
moves farther from the mean and the innovation covariance increases, the value entering
the ratio for the ith filter decreases. Hence, the constraint (i.e., hypothesis) makes one of
the two filters matching more the actual observations, up to the extreme point in which
the complementary may no longer predict physical measurements. This aspect is further
discussed in section 4.5.5. In this work the evaluation of the PDF (Gaussian, eq. (4.65))
is performed at zero for the assumptions on the residual process at steady state, yielding
a value in the interval [0, 1] after each observation update.

N(x;µ,Σ) =
1

(2π)1/Ndet(Σ)
exp

(
(x− µ)Σ−1(x− µ)T

)
(4.65)

with N being the number of dimensions and x the point of evaluation. Following from
eq. (4.62), the Λ ratio is updated sequentially:

Λk =
N

(
0; εk|k−1,H1 ,Wk|k−1,H1

)
N

(
0; εk|k−1,H0 ,Wk|k−1,H0

)Λk−1

Decision step Based on the targeted missed detection and false alarm probabilities,
the decision bounds of the test, A and B, are computed as 4.66 and 4.67, respectively.
These expressions are suggested by A. Wald [78], but there is no established method to
compute them. Intuitively, these thresholds signify that the alternative hypothesis H1 is
accepted if it is A times more likely than the Null one; conversely one should accept the
Null hypothesis H0 if it is 1/B times more likely that the alternative.

A =
1− P̄fa

P̄md

(4.66)

B =
P̄fa

1− P̄md

(4.67)
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where P̄md and P̄fa are the targeted missed detection and false alarm probabilities.
It can be proved that the procedure terminates with probability equal to 1 (i.e., a decision
is made), if either of the following conditions is satisfied:Λk ≥ A ⇒ H0 rejected

Λk ≤ B ⇒ H1 rejected
(4.68)

Otherwise, if the likelihood ratio does not exceed any of the two boundaries:

B < Λk < A ⇒ Uncertain: seek new observations

A note about the guarantees of the method in terms of rate error is now in order. As
noted by [12], the relations (4.66, 4.67) cannot guarantee that the error rates are exactly
within the accepted probabilities of error. In fact, eq. (4.68) leads to decision that satisfies
the "true" (but unknown) bounds:

A ≤ 1− Pfa

Pmd

B ≥ Pfa

1− Pmd

In other words, the test does not guarantee that the ideal inequalities Pfa ≤ P̄fa and
Pmd ≤ P̄md hold, but only the weaker conditions:

Pfa ≤
P̄fa

1− P̄md

Pmd ≤
P̄md

1− P̄fa

The consequence is that at most one of the true error rates, namely the ones associated
to the false alarm and to the missed detection, can exceed the target value. However,
assuming that both the targets are much lower than one, the discrepancy should be
bounded.

4.5.1. Tailoring for the trajectory safety problem

In the current context of evaluating whether a trajectory leads to an unsafe state, defined
as the spacecraft entering a specified keep-out sphere with a radius of RKoS around the
attractor, the problem is formulated as described below.
The two hypothesis are straightforwardly defined in terms of the distance at closest ap-
proach, analytically computed under the Two body problem assumption (as in 4.2.1).
Therefore, at tCA or equivalently when the anomalies zero out, H(tCA) = θ(tCA) = 0 rad,
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the hypothesis can be formulated in relation to the keep-out sphere radius RKoS:

H0 : rCA = ||r(tCA)|| ≤ RKoS

H1 : rCA = ||r(tCA)|| > RKoS

(4.69)

As typical in inferential test, the Null hypothesis is associated to the most risky condition,
that if accepted leads to increased but "sustainable" cost. In the collision assessment
problem, it is therefore associated to the spacecraft being on an unsafe trajectory, entering
the KoS, and is interpreted as the "pessimistic" hypothesis.
On the other hand, the alternative represents the complementary condition where the
spacecraft traverses the point of closest approach without entering the unsafe state space
region. Analogously, this can be seen as the "optimistic" hypothesis.
From a state space point of view, the conditions (4.69) generate a partition (also in
Probability terms) visually resembling a sphere. This partition is equivalent to imposing
an inequality constraint on the PDF of the random variable of interest. In this case, the
latter is clearly the position vector of the spacecraft at the time of closest approach, thus
classifying the problem in the framework of constrained state estimation.

4.5.2. Inequality constraint evaluation and enforcement

The Current-State filter formulation was chosen due to its adaptability to the presented
workflow, especially in evaluating and enforcing constraints. In this approach, the filters
in the bank process measurements as they arrive at each "current" timestep tk, and the
constraint is enforced after each update.
From the various methods available to ensure state constraints [5], the Sigma-Point pro-
jection is selected as it seamlessly integrates with the implementation of the Square-Root
Unscented Kalman Filter. The algorithm is summarized in the following steps:

1. Generate Sigma points χi,k|Hj
of the state PDF as current time tk.

2. Evaluate the constraint function c(χi,k|Hj
) for the ith sigma point. If the constraint

given by Hj is already satisfied at tconstr, the sigma point is added to the projection
set Pk|Hj

without any modification.

3. If the constraint given by the hypothesis is not satisfied a projection function
p(χi,k|Hj

) is applied firstly to obtain the constrained sigma point on the constraint
and secondly to compute its map backward to the current time.

4. The state PDF at time tk is then reconstructed from the projection set Pk|Hj
and

is guaranteed to satisfy the constraint.
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Cartesian coordinates constraint function A strategy for calculating the position
vector direction and the time to the closest approach is required, utilizing the state knowl-
edge at any given time. As already pointed out, time propagation is computationally
infeasible and reliance on the Keplerian dynamics assumption is necessary, irrespective of
the filter’s dynamical model.
The adopted method, chosen for its simplicity and robustness, involves the geometrical
derivation of the required direction. Specifically, formulas from Two-body problem and
orbit kinematics (4.70, 4.71, 4.72) are used to compute the orbital angular momentum
direction (normal to the plane) and the True anomaly.

h = r× v (4.70)

e =
1

µ

((
v2 − µ

r

)
r− r(r · v)v

)
(4.71)

where recall that r · v is the radial velocity vr.

θ =


cos−1

(e
e
· r
r

)
if vr ≥ 0

−cos−1
(e
e
· r
r

)
if vr < 0

(4.72)

Finally, Rodriguez’s formula (4.73) is utilized for applying a 3D rotation of a vector around
a unit direction [51]. The current position vector r(tk) is rotated through the true anomaly
around the normal to the orbital plane ĥ. The result is normalized using the normalize

operator and multiplied by the analytically computed pericentre radius rp = h2/µ(1+ e).

r̂(tCA) = normalize
(
r(tk)cos θ(tk) + ĥ× r(tk)sin θ(tk) + ĥ(r(tk) · ĥ) (1− cos θ(tk))

)
(4.73)

r(tCA) = rp r̂(tCA)

The constraints (4.69) are evaluated based on rp value for both the H0 and the H1 filters.
It is to be noted that only one of them undergoes constraining at any time due to the
complementary nature of the hypotheses.

Keplerian elements constraint function The constraint evaluation becomes slightly
easier when a keplerian state vector is used as direct evaluation is possible (4.24). The
time to CA is obtained from the Hyperbolic anomaly through the time law.
The computation of the position vector at CA necessitates the conversion to cartesian
coordinates after zeroing out the anomaly, since the chosen projection function strictly
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requires it.

Projection function and application The problem of mapping the constrained state
(sigma point) backward in time up to the current time instant tk is identifiable as a
two point boundary value problem (TPBVP), and specifically a targeting problem. In
fact, the position vector at tCA is completely defined, as well as the position vector at
current time tk and the time required for the spacecraft to move from one to the other,
∆tCA = tCA − tk. The velocity vectors are the only degrees of freedom that need to be
determined.
For a motion governed by a generic dynamical system, Differential correction technique
must be employed to iteratively solve the TPBVP. However, when sigma points are of
concern, solving the same problem independently for each becomes computationally chal-
lenging. A potential solution, left for future work, might involve the use of Taylor maps
(i.e., Differential Algebra) to solve the Differential Correction problem only once, with
the remaining points obtained through the simple evaluation of the polynomial map.
The keplerian dynamics assumption enables the use of a Lambert’s problem solver [7].
Therefore, for each sigma point χi,k = [ri,k,vi,k]

T under Hj that does not satisfy the cor-
responding constraint, the targeted position vector r̄i,CA is initially determined by scaling
up or down the magnitude of the position vector obtained from the constraint function.
Specifically, it must be such that the sigma point state lies on the constraint manifold
(i.e., the Keep-out sphere):

r̄i,CA = RKoS
ri,CA

||ri,CA||
Lastly, Lambert’s solver yields the constrained sigma point χ̄i,k at the current tk:

[v̄i,k, v̄i,CA] = Lambert(ri,k, r̄i,CA, ∆tCA) ⇒ χ̄i,k =

[
ri,k

v̄i,k

]

If Keplerian elements are being used, an additional conversion step from Cartesian coordi-
nates must be carried out. In the case where considered parameters p are included in the
state vector, no operation is performed on them. The only difference is that the uncon-
strained sigma points will have additional dimensions capturing the uncertainty in those
states. These must be preserved and reattached when applying the constraint. Therefore,
the constrained sigma point would be defined as χ̄i,k = [ri,k, v̄i,k,pi]

T .
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4.5.3. Filter design considerations

During the investigation, it was noted that two commonly used features in navigation
filters, namely process noise and editing, are detrimental for the test evaluation. The
same is true for any kind of adaptive filtering technique, for the following reasons:

1. Process noise serves the purpose of artificially enlarging the covariance during the
Time Update step. This is essential for proper estimation in navigation scenarios
where the dynamics of the filter is greatly affected by model errors. However, in
the present case, process noise accelerates the divergence of the constrained filter
when measurement predictions become inconsistent. Furthermore, it may increase
the chance of the test reaching an incorrect decision, by artificially making one of
the two filter more "capable of explaining" the observations.

2. Measurements editing shall not be employed unless a third unconstrained filter
is used. The test execution relies on the fact that even the filter with a trajectory
farther from the actual one still incorporates measurements. The key point is that
the comparison of the Innovation PDFs drives the decision. Using measurements
editing would essentially mark all measurements as outliers in the constrained filter.
This is why Carpenter et al. [12] emphasize the need for a third unconstrained filter
for this purpose.

3. Adaptive filters perform on-line adjustment of measurement and process noise
covariance, based on the residuals of the Observation update step. While this
capability could potentially improve estimation error and filter consistency, it is
incompatible with the present framework due to reasons similar to process noise.
Additionally, the assumptions underlying many adaptive methods are inherently
undermined by constraint enforcement.

Therefore, the filters employed to construct the bank were implemented in the simplest
formulation possible. They estimate the orbital state vector only, with constant measure-
ment noise covariance, and without the addition of process noise.

4.5.4. Filters measurements prediction consistency issue

The formulation presented in the current study and adapted from previous literature [12–
14, 49], exhibits a significant limitation regarding the filters capability to predict mea-
surements through the designed observation models. In the application to conjunction
assessment between two objects, the filters process measurements acquired from "external
sources" and estimate their relative state. The constraint is enforced on it but has little
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Figure 4.3: Two-dimensional representation of the spacecraft loosing the target body due
to constraint enforcement in the Nominal EXP (safe).

influence on the measurements prediction. Contrarily, the on-board application have the
peculiarity that the capability of the estimators to predict the measurements fundamen-
tally depends upon the filter state estimate (i.e. trajectory) and the attitude knowledge.
The attitude knowledge is assumed to be provided by an independent attitude estimator
and must be common to both failure detection filters and the navigation system. The im-
mediate consequence is that if the estimated trajectory differs too much from the real one,
either of the two filter stops predicting physically consistent measurements even though
sensors and IP provide a valid input.
Figure 4.3 depicts in 2D what may occur in the Hera scenario, which determines two
issues:

1. The altimeter prediction results in either "no intersection" or a completely non-
physical range. This is the most likely between the two, given the small size of
the asteroids: even a slight change of position could cause the line-of-sight not to
intersect the target body.

2. The centroid prediction results out of the image plane, i.e., the spacecraft should
not be able to see the target.

In both cases, the filters have to reject the update and the sequential update of the
Likelihood ratio may stop before having reached a decision or ends up being "stuck" with
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the last made decision. Finally, perhaps not surprisingly, it was noted that in practice this
event occurs only for the constrained filter of the bank, i.e., the filter whose hypothesis is
the farther from the actual "truth". This was deemed to be a relevant information for the
failure detection system, and was in fact exploited for the countermeasures to mitigate
the mentioned issue, described in the next section.

4.5.5. Test execution and reset capability

Several alternatives for the implementation of the methodology were considered and
traded-off from an operational point of view:

1. Decoupled execution: The filters bank initialization takes place at the Navigation
filter start-up from ground knowledge. It works completely independently from the
GNC. Reset of both the Ratio test and the filters state is applied at maneuvering
time, using a nominal trajectory uplinked by Ground.

2. Partially coupled execution: similar to the decoupled case, the filters bank ini-
tialization occurs at Navigation start-up. Reset and re-initialization at maneuvering
point rely on the last available navigation solution.

3. Coupled execution: the only difference compared to the partially coupled is in the
frequency and in the condition of the resets, which are not limited to maneuvering
points. At each reset, the constrained bank retrieves the navigation solution and
resumes testing.

To appreciate the necessity of the reset at the maneuvering points, it is essential to
consider that the commanded ∆v for a maneuver is always based on a nominal or es-
timated trajectory (for Flight-dynamics planning or on-board corrections, respectively).
Consequently, applying a constrained trajectory significantly deviating from the nominal
trajectory leads to rapid divergence of the filter. This divergence can rapidly result in a
covariance that becomes non-positive definite, as was observed in this study.
Among the three alternatives, only the last two were deemed sufficiently interesting for
two reasons:

• The correction provided by the guidance is based on the estimated state; the latter
could potentially be sufficiently different from the nominal trajectory computed off-
line to make both the filters in the bank not accepting measurements after the
re-initialization.

• The presented framework of hypothesis testing seems more suitable as a mechanism
to continuously check the current navigation solution only considering batches of
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measurements, rather than all the measurements prior to reset.

Therefore, chapter 5 was focused on the coupled configuration in that the partially-coupled
can be intended as a particular case of the former.

Reset condition The test reset is commanded based on a decision counter threshold.
Specifically, each time the Likelihood ratio is compared against the boundaries, a counter
is either increased by one or re-initialized to zero if the outcome of the comparison in 4.68
changes at one step. The threshold is intended as tunable parameter linked to the designed
measurement update frequency. The decision is effectively considered as "reached" only
after the threshold is exceeded.

Secondary decision mode A secondary, simpler detection method is activated when
either of the constrained filters ceases to execute a measurement update. This situation
becomes more frequent as the spacecraft approaches the asteroids, with the trajectory
playing an increasingly crucial role in determining whether the bodies are within the
altimeter beam and camera view.
Upon the skipping of a Likelihood ratio, a second counter is initiated and consecutively
incremented at each timestep if the event consistently originates from the same filter. A
tunable threshold on the elapsed time is defined and a decision is inferred based on which
of the two filters, hence hypothesis, is failing.

4.5.6. Constraint enforcement verification

The verification of the constraint enforcement algorithm involved checking the constraint
value of the reconstructed state after the enforcement, specifically for the Cartesian state
filter in the coupled configuration. Twenty simulations were conducted in both the nomi-
nal and unsafe scenarios, using HFM measurements and random initialization conditions
for the filters bank.
In the first scenario, represented in fig. 4.4, H1 state do not require the constraint applica-
tion as a consequence of the trajectory being safe; conversely, the H0 state is constrained
to remain below the RKoS radius at all times. On the other hand in the second scenario,
in fig. 4.5, the trajectory becomes unsafe after the 1st manoeuvre. Therefore, it is ex-
pected that H1 state starts to be constrained after this event, as soon as the violation
of the hypothesis is detected. As desired, the constraints enforced by the hypothesis are
reflected by the constrained mean state at any time, proving that the strategy is effective.
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Figure 4.4: Constraint evaluation after enforcement during Nominal EXP.

Figure 4.5: Constraint evaluation after enforcement during Unsafe EXP.
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5| Results, analysis and discussion

This chapter presents the results of the analysis of the algorithms to evaluate their accu-
racy and reliability. Two scenarios were used depending on the analysis:

1. Nominal EXP trajectory. The reference trajectory does not pose any risk. The
expected output is therefore, that no alarm is triggered.

2. Unsafe EXP trajectory. Since it was not possible to obtain such a trajectory by
chance in MC simulations, the semi-autonomous guidance was intentionally forced
to target an unsafe position during the 1st manoeuvre.

Unsafe EXP trajectory details The unsafe trajectory is depicted in figure 5.1. The
second manoeuvre is reported as well, but it is not of interest for the analysis. The arc
after the first manoeuvre evidently results in a risky closest approach, while also being
very steep toward the asteroids. The measurements available during the trajectory are

Figure 5.1: Unsafe EXP trajectory, D1 and D2 at tCA @Didymos CI.
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reported in fig. 5.2. It is important to notice that the centre of brightness measurements
on Dimorphos are not recovered after the outage, in contrast to the nominal trajectory
(3.12). Due to the trajectory, the availability of the altimeter is expected to play a relevant
role in allowing a sufficiently accurate range estimation as will be shown in section 5.2.
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a
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2

Figure 5.2: Observables availability windows during unsafe EXP trajectory.

5.1. Performance of Measurements-Only CRE

Tuning parameters The algorithm has several tuning parameters which significantly
influence the results. The default values maintained throughout the analysis are now
explained.

• Nd,r, Nd,θ: the degrees of the polynomial fitting were chosen based on simulations,
evaluating the "shapes" of the signals and the "stability" of the fitting. Default
values: Nd,r = 1, Nd,θ = 3.

• Nθ: the number of samples for the displacement was set considering a trade-off
between the noise reduction capability and bias introduced by the smoother, in
addition to the time corresponding to the window: 1 hour of acquired measurements.
Default value Nθ = 75.

• Nr: the number of samples for the range measurements is in principle independent.
For simplicity, it was selected from Nθ to have a frequency of 1 Hz. Default value
Nr = 3600. Note that this is the most relevant parameter in determining the
computational time.
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5.1.1. Performance using ideal measurements

A preliminary evaluation was performed in the nominal scenario to assess the validity
and correct implementation of the algorithm. The LFM was used to simulate the mea-
surements without any error source other than the assumptions required by the method
(including the spherical shape of the target body). Simultaneously, this also provided
information about its limitations in terms of applicability.

KoS Radius

Figure 5.3: MOCRE closest approach distance evaluation with ideal measurements -
Nominal EXP (Default tuning).

Figure 5.3 shows the results of a single run, presenting both the reference closest approach
distance "DCAHF" calculated through propagation (3rd dynamical model presented in
chapter 3) and closest approach distance derived from the reference trajectory through the
2BP assumption "DCAKEP". The variance bound is visibly zero, as no noise is considered
in this idealized scenario.

Table 5.1: Statistics of MOCRE DCA estimation error wrt DCAKEP - Nominal EXP.

Metric Mean Median Std. Dev. Max
Absolute [m] 14.6 16.2 6.80 27.5
Relative % 0.45 0.50 0.21 0.86

Absolute and relative errors, as defined in eq. (3.6), were computed for two cases: 1)
the algorithm prediction with respect to the DCAKEP and 2) the DCAKEP with respect
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Table 5.2: Statistics of DCAKEP estimation error wrt DCAHF - Nominal EXP.

Metric Mean Median Std. Dev. Max
Absolute [m] 48.7 53.1 24.9 91.7
Relative % 1.52 1.66 0.78 2.85

to DCAHF. Table 5.1 and 5.2 report the statistics of the two errors, respectively. The
objective was to evaluate the contribution of the Keplerian dynamics assumption in deter-
mining the prediction error. Although the maximum value of the error due to the latter
contribution may not be negligible during a closest approach of few hundreds of meters, it
is deemed small enough to be managed by adding a margin to the keep-out sphere radius.
Under ideal conditions, the method exhibits minimal error, primarily associated with the
assumptions made and, secondarily, with the finite-size window of the estimation. Indeed,
it would converge to the red curve in 5.3 if all the measurements samples were fitted to
obtain the regression polynomial. As final note, figure 5.3 already indicates that the out-
put probability of collision is consistently zero throughout the entire estimation: the 3σ

boundary is significantly distant from the keep-out sphere radius.

5.1.2. Performance using measurements adding white noise

A second analysis was performed to assess the effect of artificially noisy measurements
serving as a bridge between the ideal case performance and the results obtained from the
HFM simulation. White noise only was added to the altimeter measurement (σAlt = 25

m) and the centroid measurement (σCen = 10 pix).

Nominal case Figure 5.4 illustrates the estimation performance in the Nominal case,
demonstrating the smoother’s capability to predict the DCA on average. However, it
also confirms that the method quickly becomes unreliable as the noise level increases.
Moreover, the variance approximation from the fitting residuals appears to be a major
limitation as it determines a large uncertainty bound the estimator cannot reduce. Con-
sequently, the PoC computation is highly influenced by the size of the latter, potentially
leading to numerous false alarms.

Nevertheless, fig. 5.5 shows that the algorithm still performs adequately because this issue
arises in scenarios where the actual minimum distance is very close to the KoS radius.

Unsafe case Similarly to the previous case, the estimator is able to detect the safety
issue as the computed probability is in practice equal to 1. The noise reduction capability
remains unchanged with the estimation error oscillating within an interval of approxi-
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KoS Radius

Figure 5.4: MOCRE closest approach distance evaluation with noisy measurements -
Nominal EXP (Default tuning).

Figure 5.5: PoC and CAM flag from MOCRE output with noisy measurements - Nominal
EXP (Default tuning).

mately 500 meters.

Furthermore fig. 5.6 also indicates that the estimated PDF of the signal does not ac-
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KoS Radius

Figure 5.6: MOCRE closest approach distance evaluation with noisy measurements -
Unsafe EXP (Default tuning).

count for the physical constraint of the minimum distance being greater than 0, as the
uncertainty bound covers negative values.

5.1.3. Performance using HFM observables

Nominal case The HFM measurements were finally used to test the method in a
mission-relevant case. Figure 5.7 reports the nominal case results, which reveals a no-
ticeable degradation of performance compared to fig. 5.4. The effects of the additional
error sources (i.e., misalignments, correlated noise) significantly invalidate the LS assump-
tions, leading to an inconsistency in the estimates. Unlike the previous cases, the error
bounds no longer encompass the reference value due to the substantial estimation error.

Similarly, figure 5.9 highlights the impact on the probability computation, where the
threshold-based decision mechanism fails, resulting in multiple false alarms. The primary
contributor to the estimation error was identified as the centroiding measurements. No-
tably, a correlation was observed between the motion of the centroid (i.e., line-of-sight) in
the image plane and the significant oscillations in the nominal estimate. This correlation
could be attributed to a combination of pointing errors, variations in the target body’s
attitude, and the execution of the image processing algorithm. A visual inspection of the
time evolution of the samples of the line-of-sight displacement θ compared with the same
quantity computed from the position vector in figure 5.8 confirms the hypothesis. The
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Figure 5.7: MOCRE closest approach distance evaluation with HFM measurements -
Nominal EXP (Default tuning).

variations in the samples used for estimation and the estimation error exhibit the same
periodicity. Additionally, this is consistent with the observation that a larger window
helps in mitigating this issue, as discussed later in section 5.1.3.

Figure 5.8: Samples of displacement θ computed from position vector and line-of-sight -
Nominal EXP.
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Figure 5.9: PoC and CAM flag from MOCRE output with HFM measurements - Nominal
EXP (Default tuning).

Unsafe case The unsafe case results are reported in the appendix, figures A.1 and
A.2, as they only confirm the previous analysis without adding particularly relevant in-
formation. Table 5.3 presents a comparison of the total estimation error obtained in the

Table 5.3: Statistics of DCA total estimation error in Nominal and Unsafe cases.

Case Mean Median Std. Dev. Max
Nom. absolute [m] 906.6 957.3 464.4 2701
Unsafe absolute [m] 600.5 533.0 432.5 1327
Nom. relative [%] 28.9 29.8 14.5 84.0
Unsafe relative [%] 104 92.4 75.3 231

Nominal and Unsafe cases, indicating a complete failure of the method to deliver a reli-
able and accurate estimate. Notably, the relative error reveals that as Hera gets closer
the absolute error does not decrease proportionally, leading to an excessive growth in
the relative values. It is important to note that the lower absolute error statistics in the
Unsafe case can be attributed to the bounded nature of the estimated quantity, rather
than an actual improvement in the estimation accuracy.

Nominal case: Increased Window The previous paragraphs illustrated that the
method does not yield a sufficiently smoothed solution for reliable assessments with the de-
fault tuning. A final analysis was performed by increasing the window length to Nθ = 150
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(i.e., effectively doubling the time window to cover 2hr). Figure 5.10 shows a reduction
in the nominal value of the estimation error, eliminating all the false alarms.
However, as expected, the uncertainty bound does not shrink since it is entirely dependent
on measurement precision (i.e., measurement noise covariance), which is directly propa-
gated to the estimate with limited filtering capability. Table 5.4 presents the statistics

Figure 5.10: MOCRE closest approach distance evaluation with HFM measurements -
Nominal EXP (Extended window).

Table 5.4: Total relative % error statistics of MOCRE default vs extended window -
Nominal EXP.

Nθ Mean Median Std. Dev. Max
75 28.3 29.8 14.5 84.0
150 8.97 8.70 5.16 19.1

of the relative error in percentage between the default window size and the extended
size, clearly indicating a significant improvement in the estimation capability. However,
extending the sliding window also comes with several drawbacks:

1. The buffer size, thus the amount of memory dedicated to temporarily store the
measurements, must be increased accordingly.

2. The computation time scales up. As qualitative relative figure of merit, the default
tuning requires 6.6ms per cycle while the extended window size results in an increase
to 11.68 ms per cycle.
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3. The estimate may become biased. In fact, this effect is visually noticeable when
comparing figure 5.10 against figure 5.7.

Figure 5.11: PoC and CAM flag from MOCRE output with HFM measurements - Nominal
EXP (Increased window).

Discussion Several important considerations can be drawn:

1. The algorithm consistently produces results in line with the Keplerian dynamics
assumption for evaluating the DCA. The limited-bandwidth smoother (sliding win-
dow) and the approximations of the line-of-sight and of the shape model alone do
not hinder the capability to perform a correct assessment.

2. The Keplerian dynamics assumption is the primary contributor to the prediction
error when the measurement noise is very low. This sets a lower bound on the
achievable accuracy, which depends upon the magnitude of the accelerations along
the trajectory linking the current state to the closest approach point. The accuracy
improves when the Two-Body Problem (TBP) better describes the motion. Ad-
ditionally, the drift in the error caused by the SRP inevitably increases with the
propagation time.

3. The algorithm can be effective provided that the smoother is able to reduce the mea-
surement noise and that the KoS radius is not within the error boundary determined
by the Keplerian dynamics assumption.
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4. The noise reduction capability and the variance estimation play relevant roles: the
presented implementation does not manage to provide a fine accuracy and could
easily trigger false alarms in case the simple threshold-based decision is applied. On
the other hand, it correctly identifies collision cases based on measurements alone.

5. The increase in the number of samples is the main tuning parameter as its increase
leads to a strong improvement in the noise reduction capability.

6. All the sensors must acquire measurements for the method to work; that is the
translational navigation filter must ensure a sufficient pointing accuracy. This im-
plies that the conditions under which the algorithm operates are the same as those
ensuring the performance of the navigation filter.

7. The pointing must target the main attractor. While the method could be extended
through geometrical considerations involving the position of the secondary, this
would only add to the sources of error.

5.2. Parallel filter approach performance

Analysis setup The performance, consistency and DCA prediction accuracy of the de-
layed filters were evaluated for both scenarios through multiple MC analysis with different
state initialization. Specifically, three variants of the motion model were compared:

1. The Keplerian elements state filter (KEP).

2. The Cartesian coordinates filter with Two-body motion model (Cartesian KEP).

3. The Cartesian coordinates filter with the more accurate motion model including
gravitational perturbations of D1, D2 and the Sun and the SRP effects (Cartesian
HF).

The initial state vectors were randomly generated from a Gaussian distributions with
covariance matrix simulating the output of the ground orbit determination process:

Px(t0) = diag





39

101

119

1.00× 10−3

1.25× 10−3

1.40× 10−3



2
[m2, m2/s2]

The sample size was set to 100 cases, deemed sufficient to characterize the ensemble be-
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haviour. Random number generator seeds were fixed such that the influence of random
errors in the comparison is minimal. It is important to note that the processed mea-
surement time series were not changed from run to run, as they are decoupled from the
estimation process.

5.2.1. Nominal case - HFM

Filter Consistency evaluation

The consistency of a filter is defined as its ability to maintan a correct representation of
the state error covariance, ensuring that the estimation error stays within the 3σ bounds
at all times. An initial visual assessment of the filter consistency involves plotting the
estimation error of the ith component of the estimated state against the 3σ value derived
from the square root of the ith entry of the covariance matrix diagonal. For evaluating
vision-based navigation systems, the Camera frame is preferred over the Inertial frame,
as it provides a clearer insight into the estimation process.
Figures 5.12, 5.13 and 5.14 illustrate the position estimation errors per axis over time in
the camera frame for the nominal EXP. Here, Z corresponds to the boresight, nominally
pointing toward the target body. In all the presented figures, vertical dashed lines indicate

Figure 5.12: KEP: Position Estimation errors (blue solid) and 3σ covariance bounds (red
dashed) - Nominal EXP @CAM frame.

the major events during the navigation window, namely:
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• The manoeuvres, in black;

• The first altimeter measurement, in magenta;

• The switch of the pointing to Dimorphos and change of IP, in blue;

• The start and the end of eclipse of Dimorphos due to Didymos, in dark blue (if any).

In the nominal scenario, the eclipse determines a centroid measurement outage between
T = 17.48 hr and T = 19.16 hr.

Figure 5.13: Cartesian KEP: Position Estimation errors (blue solid) and 3σ covariance
bounds (red dashed) - Nominal EXP @CAM frame.

In all cases, the error along the Z boresight reveals the lower observability of the dis-
tance when only the centroid is available, followed by a rapid decrease in error when the
altimeter measurement is incorporated into the estimation process. In fact, the flown
trajectory lacks significant changes in parallax, a necessary condition for observing range
with monocular cameras. Simultaneously, the state error covariance evolution emphasizes
the difference in measurement noise covariance between the two observables, with the
altimeter providing a more precise measurement.

The visual inspection of the estimation error already indicates the presence of an estima-
tion bias in all cases, and that the filters are unable to converge to the "true" trajectory.
Despite being undesirable for navigation purposes, this feature is expected "by design",
as only State Noise compensation is applied to strike a balance between accuracy and
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Figure 5.14: Cartesian HF: Position Estimation errors (blue solid) and 3σ covariance
bounds (red dashed) - Nominal EXP @CAM frame.

computational cost. In other words, the design attempts to "cover" error sources through
covariance inflation rather than estimating their states.
The objective was partially achieved in all cases, as the position estimation error remains
bounded for most of the trajectory, with some caveats:

1. The Keplerian state filter begins to fail as the spacecraft approaches the system,
due to the covariance reaching excessively low values.

2. Changing the process noise tuning is crucial in maintaining a sufficiently large co-
variance bound after the altimeter activation in the Cartesian state filters.

3. In the Cartesian filters, the boresight range starts to lose consistency slightly before
the altimeter activation, due to the covariance shrink and the estimation error not
being corrected. This effect is absent in the Keplerian state filter due to the process
noise and the different way measurements enter the state estimation (see discussion
below). It’s worth noting that computing the position error in the latter case involves
a non-linear transformation in addition to the rotation from CI to CAM frames.

4. The large process noise affects the smoothness of the estimated trajectory, causing
worse (but expected) filtering capability. This effect is particularly noticeable after
altimeter activation.

Finally, it is interesting to note that there is little difference in the evolution of the
estimation error and of the covariance between the Cart. KEP and HF filters, despite the



5| Results, analysis and discussion 93

former accumulating position error more quickly during the measurement outage. Two
reasons contribute to this result:

1. The measurements frequency is high enough to correct the larger error accumulation
during the Time Update.

2. The SNC masks the modeling errors of the first motion model, essentially hindering
the more accurate motion model from yielding better estimation results.

Limitations of filtering in Keplerian elements

The present analysis also revealed one of the major differences between keplerian elements
and cartesian coordinates. Intuitively, the "information" the filter can extract from the
observables is significantly different in the two cases, regardless of the fact that the dynam-
ics underlying the motion is the same. Notably, none of the Keplerian elements is directly
observable and at the same time, little correlation between the states builds up. This
characteristic is easily understandable by considering that the State Transition Matrix of
the system has zero off-diagonal entries, except for those corresponding to the anomaly.
From this standpoint, figures 5.12 and 5.13 provide a first evidence that:

1. The choice of the state space parametization significantly influences whether and
how the estimator corrects the initialization error.

2. The keplerian state filter loses the tracking of the trajectory during the last part
of the navigation. Significantly this occurs in the X-Y axis of the camera, despite
them being directly observed.

Furthermore, the non-linear transformations required in the conversions between Keple-
rian and Cartesian coordinates pose challenges for the feasibility of the Keplerian filter.
These include accumulation of errors and increased computational burden. The mea-
surement update of the keplerian filter in fact nullifies the advantage of the analytical
propagation when a small propagation time is used (1 second in this implementation). It
is to be stressed that the differences in performance are also related to different tuning,
with process noise in the Keplerian state filter proving particularly difficult to set.

In conclusion, the state trajectories of the keplerian elements, which determine the position
of the spacecraft in the orbital plane, are depicted in fig. 5.15 with a colormap highlighting
the minimal corrections provided by the observations. This is evident by observing their
time evolution from the initialization value.
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Figure 5.15: KEP: Semi-major axis, Eccentricity and True anomaly trajectories compared
to "truth" Osculating Kepl. Elements - Nominal EXP @Didymos CI.

DCA prediction performance

DCA prediction The DCA prediction module initiates its operation only after the
initial convergence of the covariance, minimizing the risk of triggering the CAM flag due
to excessively large uncertainty. Depending on the magnitude of dispersion introduced
by a manoeuvre, the prediction module might be temporarily disabled soon after for a
specified amount of time.
The prediction of the distance at closest approach from each "current" state is displayed
for the three filter as designed in 4 in figures 5.16, 5.17 and 5.18, respectively. The
first figure notably confirms again the previous considerations: the Keplerian state filter
struggles to correct the initial error and continues to predict a DCA, primarily influenced
by the initial state and the ∆v of the manoeuvres.

Contrarily, the DCA predictions from both Cartesian state filters gradually converge
towards the true value in all the initialization error samples. However, a significant issue
is immediately evident, as explained next.

Despite the convergence, figures 5.17 and 5.18 highlight a significant issue with the design.
The inclusion of the gravitational parameter as a considered state leads to excessively large
covariance bounds of the velocity states. This in turn, causes the Unscented Transform
to capture non-linear effects and fail, as evidenced by 1) the magnitude of the DCA pre-
diction for the Cartesian state filters and 2) the negative values of the prediction, which
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Figure 5.16: KEP: prediction of distance at closest approach with 3σ bound (dashed lines)
compared against Hera EKF prediction and projection from "truth" - Nominal EXP.

have no physical meaning.
The reason was identified in the velocity covariance bounds, whose value reaches the or-
der of km/s shortly after the filter start-up. The velocity error for the Cartesian HF
filter is presented here (fig. 5.19) to illustrate the effect (see Appendix A.2 for the other
cases). From a theoretical perspective, this is deemed consistent with the fact that the
uncertainty in the gravitational parameter directly affects the velocity components, while
state correlation determines the transfer of information to the position components. The
computation of the PoC and corresponding CAM flag is not reported, as it is already
evident that the PoC always exceeds the threshold.

Simulation results of the DCA prediction error and covariance bounds with the exclusion
of the gravitational parameter and re-tuning of the process noise covariance, are presented
in 5.20 and 5.21 for the Cartesian state filters. Except for the specified changes, no other
modifications were applied compared to the previous cases. The adjustments have min-
imal impact on the position estimation errors, as demonstrated, while the plots for the
velocity components are available in appendix A.2. This further supports the earlier ob-
servations: the estimation error in position exhibits little variation, whereas the covariance
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Figure 5.17: Cartesian KEP: prediction of distance at closest approach with 3σ bound
(dashed lines) compared against Hera EKF prediction and projection from "truth" -
Nominal EXP.

bounds undergo significant alterations. Additionally, the results reveal that the filter does
not manage to reduce uncertainty in the velocity components. The corresponding compu-
tation of the PoC for the two cases is illustrated in 5.22, emphasizing that, correctly, no
false alarm is triggered for the first two arcs. However, the persistently large covariance
relative to the new DCA after the second manoeuvre causes the algorithm to surpass the
decision threshold. Evidently, a conflict exists between the permissible process noise for
consistent estimation and the necessity of avoiding false alarms.

In this regard, the HF filter counter-intuitively performs worse. Although the nominal
trajectory is more accurate, the covariance does not shrink rapidly enough, leading to the
probability threshold being exceeded for a longer duration. The implication is that the
filters would be unable to prevent false alarms in the initial hours of navigation due to the
persistent large covariance. This, however, is necessary to maintain the filter’s consistency
in estimating the range along the camera bore-sight.

Table 5.5 reports the absolute and relative median and standard deviation of the DCA
prediction errors, computed through ensemble and time averaging for the three arcs char-
acterized by a different DCA, separated by the manoeuvres:
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Figure 5.18: Cartesian HF: prediction of distance at closest approach with 3σ bound
(dashed lines) compared against Hera EKF prediction and projection from "truth" -
Nominal EXP.

Figure 5.19: Cartesian HF: Velocity estimation errors and 3σ covariance bounds with µ

parameter uncertainty - Nominal EXP @CAM frame.
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Figure 5.20: Cartesian KEP removing µ parameter uncertainty: prediction of distance at
closest approach with 3σ bound (dashed lines) compared against Hera EKF prediction
and projection from "truth" - Nominal EXP.

Table 5.5: Ensemble Statistics of DCA prediction error without µ parameter uncertainty,
before the 1st man. (A), before and after 2nd man. (B and C) - Nominal EXP.

Case Med. Abs. [m] Sigma Abs. [m] Med. Rel. [%] Sigma Rel. [%]
1A 147.5 156.5 3.624 3.874
2A 231.4 128.0 5.658 3.233
3A 135.5 115.4 3.324 2.914
1B 239.7 122.5 7.521 3.845
2B 154.8 54.8 4.820 1.749
3B 76.18 52.84 2.383 1.687
1C 165.2 67.16 10.91 4.429
2C 50.70 17.18 3.347 1.134
3C 32.55 16.30 2.149 1.076

• A: before first manoeuvre, T0 = 0 to T1 = 9.71 hr.

• B: after first manoeuvre and before the second, T1 = 9.71 to T2 = hr.

• C: after the second manoeuvre, T2 = 20.40 to T3 = 21.40 hr.
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Figure 5.21: Cartesian HF removing µ parameter uncertainty: prediction of distance at
closest approach with 3σ bound (dashed lines) compared against Hera EKF prediction
and projection from "truth" - Nominal EXP.

The errors are computed with respect to the "true" DCA, obtained by projecting each
true state under the 2BP assumption. The relative errors are computed normalizing by
the same quantity.
The failure of the Keplerian state filter to converge to the trajectory becomes apparent
through the persistent relative spread of estimated trajectories. Unlike the Keplerian
filter, the Cartesian filter shows a diminishing spread over time. The initial apparent
superiority of the Keplerian filter is merely a consequence of the reduced observability of
range. Conversely, the Cartesian filters exhibit a progressive enhancement in accuracy over
time. In particular, the HF model excels in predicting the DCA owing to its more precise
motion model. Despite a position error comparable to that of the simplified motion model,
the ensemble statistics demonstrate that the latter does not attain equivalent prediction
accuracy. Notably, the disparity between the two diminishes as the spacecraft approaches
the asteroids, suggesting that the simplification may still be acceptable.

Normalized Error Square (NES) test

A further insight into the behaviour of the cartesian state filter is provided by the Nor-
malized (Estimation) Error Square at a generic time tk, given the reference state x̄k, the
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(a) Cartesian filter with 2BP dynamics.

(b) Cartesian filter with refined dynamics.

Figure 5.22: PoC (black) and CAM flag (red) from DCA prediction of Cartesian filters
without µ parameter uncertainty - Nominal EXP.

posterior estimated state x̂+
k and its covariance P−1

k :

εk = (x̂+
k − x̄k)P

−1
k (x̂+

k − x̄k)
T

The definition and the test proposed in [80] were applied. Figure 5.23 shows the averaged
NES statistics over the 100 samples and the hypothesis test bounds from a Chi-Squared
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distribution with a 95% confidence level.
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Figure 5.23: NES test of Cartesian HF filter - Nominal EXP @CAM frame.

As explained by [80], the NES manages to reveal both the presence of a bias in the
estimated state and the possible insurgence of divergence due to filter over-confidence (i.e.,
precisely the case of the estimation error not being covered by the uncertainty bounds).
Therefore, the evolution of the average NES confirms that systematic errors are strongly
undermining the accuracy of the filter.

5.2.2. Unsafe case - HFM

The unsafe case unveiled another non-negligible issue in the use of the Keplerian state
space, namely the fact that the filter is not able to cope with large uncertainties in
combination with a low value of the eccentricity. During the 1st manoeuvre of the test
case, the trajectory’s eccentricity drops below 1.5 while simultaneously the dispersion
increases. Moreover, the method used for propagation through the Time law is not well
suited at the boundary between elliptical and hyperbolic orbits [72], further hindering the
robustness of the implementation. The present investigation found out that, irrespective
of the process noise, a strong manoeuvre inevitably causes the filter estimate to become
complex due to divergence.
For these reasons, the subsequent analysis focused on the Cartesian state filter only.
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Figure 5.24: Cartesian HF: Estimation errors and 3σ covariance bounds with 3σ bound-
Unsafe EXP @CAM frame.

Figures 5.24 and 5.26 show the results of the Cartesian HF filter consistency and the
predicted DCA. Similarly to the nominal scenario, the simplified dynamics yields results
consistent with the previous considerations.

At the same time, the information derived from centroiding facilitates accurate estimation
along the X and Y CAM axes, but the limitations in observability along the boresight
direction remain unaltered. The activation of the altimeter helps again to reduce the
estimation error of this component. Nevertheless, the estimate bias is more pronounced
compared to the nominal scenario and largely surpasses the uncertainty bounds. This
error amplifies as the spacecraft approaches the asteroids. Figure 5.25 presenting the
averaged NES statistics, further illustrates and supports these observations. The tran-
sition to pointing towards Dimorphos, influenced by the non-nominal Sun illumination
conditions, initiates a gradual yet noticeable divergence in the filter. This divergence is
more prominent in the bore-sight component. Nevertheless, it is important to emphasize
that, in principle, such a situation should not occur, as the system would be designed to
command a CAM well before the spacecraft reaches such a critical point.
Overall, the filter succeeds in maintaining the tracking of the trajectory after the 1st ma-
noeuvre. Unlike the Nominal case however, the state noise compensation falls short of
ensuring consistency of the position states if the nominal tuning is maintained. Regard-
ing the DCA prediction, the filter exhibits effective performance in tracking the trajec-
tory changes resulting from the manoeuvre and in identifying the associated safety issue.
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Figure 5.25: NES test of Cartesian HF filter - Unsafe EXP @CAM frame.

Figure 5.26: Cartesian HF: prediction of distance at closest approach (dashed lines) com-
pared against Hera EKF prediction and projection from "truth" - Unsafe EXP.
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However, it is essential to acknowledge that the scenario where the ∆V applied to the
spacecraft is precisely known represents a relatively straightforward condition. Excluding
the occurrence of filter divergence, the likelihood of missed detection in instances of such
close approaches is low.

Table 5.6: Ensemble Statistics of DCA prediction error without µ parameter uncertainty
before (A) and after (B) the critical manoeuvre - Unsafe EXP.

Case Med. Abs. [m] Sigma Abs. [m] Med. Rel. [%] Sigma Rel. [%]
1A - - - -
2A 19.90 130.4 0.143 0.939
3A 21.92 181.3 0.158 1.305
1B - - - -
2B 79.43 33.69 14.115 6.135
3B 26.38 29.60 4.750 5.363

The PoC and CAM flag plots in the unsafe EXP are reported in appendix (A.6, A.7).
These only confirm that both the simplified and the HF models correctly trigger the flag
when required. However, since the covariance evolution essentially mirrors the nominal
case, in this instance this is primarily attributable to the significantly larger DCA during
the initial segment of the trajectory.

5.3. Filters bank Hypothesis testing

The results discussed in section 5.2 showed that the keplerian state space leads the fil-
ter to fail in conditions deemed relevant for this study. Therefore, only the filter using
cartesian state vector were examined in evaluating the filters bank concept. Specifically,
the simplified 2BP motion model was employed since achieving enhanced accuracy is not
a strict requirement: the SPRT focuses on the comparison of performance of one filter
relative to its complementary counterpart.

Tuning parameters The tuning parameters of the method, namely the targeted prob-
ability of false alarm and missed detection, were set equal to values aimed at minimizing
the likelihood of a missed detection in the unsafe scenario:

P̄fa = 1× 10−4 P̄md = 1× 10−10

The boundary values follow from (4.66, 4.67): A = 9.999× 10+9, B = 1× 10−4. For the
reasons explained in chapter 4, neither process noise nor consider parameters were used.
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The threshold of the decision counter for the coupled configuration was set equal to 6
measurement updates when only centroid information is available, and to the correspond-
ing 288 after the altimeter activation (i.e., to have the equivalent elapsed time). In other
words, a test restart would be triggered if a decision is reached and no change occurs
before the threshold is exceeded. Moreover, the test is only activated 2 hours after the
start of the navigation to guarantee the navigation filter convergence. This parameter was
decided heuristically and must vary on a case-by-case basis. The last tuning parameter is
the time threshold for the decision mode switch, deemed necessary when one of the two
filters stops accepting measurements as explained in section 4.5.5. The latter was fixed
to 1 hr.
For each sample run, a random scattering of the initial errors was performed as in sec-
tion 4.2.3. Notice that this causes the time instant and possibly the total number of resets
to differ despite the measurements and tuning being the same. The number of "reached
decisions" as well as the number of errors (either false alarm or missed detection according
to the scenario) were counted.

5.3.1. Nominal EXP trajectory test

The analysis was primarily focused on the coupled configuration. In fact, the partially-
coupled one is truly only a particular case of the first, in which the reset is executed once
in correspondence of a manoeuvre. In particular, the test is halted during whole duration
of the manoeuvres and re-initialized from the navigation filter mean state and covariance
immediately after.

The likelihood ratio driving the decision is plotted over time in figure 5.27 in logarithmic
scale. The decision bounds A and B correspond to the horizontal dashed lines, whereas,
identically to section 5.2, the major events are reported as vertical lines. Firstly, it is no-
table that the effect of the scattering is primarily visible during bearing-only navigation,
likely due to the larger spread in the position error. Subsequently, the differences after
the altimeter activation become almost negligible and all the sample run attain similar
decisions. This was deemed possibly related to the shrinkage in the position error spread,
as also exhibited in section 5.2. It is evident that an incorrect decision systematically oc-
curs between T = 3hr and T = 4hr. A second false alarm is triggered around T = 12hr,
whereas, in all the other cases, the test correctly evaluates the trajectory as safe. Table
5.7 reports the corresponding statistics, supporting the above considerations. Since all the
measurements are incorporated by the filters without any editing, the possibility of the
incorrect decisions being caused by measurements outliers was deemed likely but cannot
be verified within the scope of the present study.
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Figure 5.27: Evolution over time of the Innovations Likelihood ratio - Nominal EXP
(Coupled).

The selection of tuning parameters were found to have a significant influence on the test
performance, with the targeted probabilities almost entirely determining the number of
incorrect decisions. Similarly, the thresholds for the decision to be tagged as "taken" are
the driving factor of the number of decisions and resets occurring during each execution.

Figures 5.28 and 5.29 illustrate the number of accepted measurements by the two filters.
The centroiding coordinates are counted separately, meaning that a single measurement
indicates the altimeter availability. It is important to recall that the H0 filter is the one
being constrained as it hypothesizes an unsafe trajectory. After the switch of the pointing
toward Dimorphos, the number of accepted measurements drops to zero for the majority
of the remaining hours of navigation. In this case, the test adjusts the decision mode to
utilize the information about which filter is no longer performing updates due to phys-
ically inconsistent measurements (section 4.5.5), which is not reflected in the likelihood
ratio. No false alarm occurs in this mode, suggesting that the chosen tuning might be
appropriate. The dots denoting acceptance of measurements after the event are a result
of the reset occurrences.
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Figure 5.28: Number of measurements accepted by H0 filter over time - Nominal EXP
(Coupled).

Finally, figure 5.30 shows that the CAM flag evolution is consistent with the Likelihood
ratio and the statistics.

Table 5.7: Statistics of performance of filters bank - Nominal EXP (Coupled).

N° samples 1000
Total N° decisions 37000

Total N° f.a. 2000
Ratio N° f.a./dec 5.4%

Med. of N° dec./sample 37

5.3.2. Unsafe EXP trajectory test

The same analysis was conducted for the unsafe scenario. In this case, the trajectory
is safe until the first maneuver, after which Hera follows a very steep trajectory toward
Didymos. Consequently, it was necessary to evaluate the two phases separately. Figure
5.31 shows the Likelihood ratio resulting from the filters bank in logarithmic scale of the
100 samples. A visual inspection confirms that the safety of the first window is correctly
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Figure 5.29: Number of measurements accepted by H1 filter over time - Nominal EXP
(Coupled).

Figure 5.30: CAM flag - Nominal EXP (Coupled)
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Figure 5.31: Evolution over time of the Innovations Likelihood ratio - Unsafe EXP (Cou-
pled).

assessed in all cases, with no false alarm being triggered. Similarly to the single filter
approach, the farther the minimum distance is from the Keep-out sphere radius, the
easier the evaluation becomes.
As designed, no decision occurs during the maneuvering phase as the test is reset at each
∆v execution. Once the range information becomes available, the ratio for most sample
runs quickly moves toward accepting the H1 hypothesis; however, several sample runs
show a single incorrect decision being taken. Additionally, the nominal decision mode
does not last long: as figure 5.33 demonstrates, the H1 filter quickly stops accepting
measurements. This is what causes the Likelihood ratio to remain constant after T ≃
10.344hr. Nevertheless, it is significant that multiple resets occur in this short time frame
and all lead to the same correct evaluation. The FD may eventually conclude that the
trajectory is indeed unsafe based on all the available information.
The CAM flag history shown in fig. 5.34 reveals a shortcoming of the selected value
for the secondary mode of the test: the threshold of 1hr for the decision based on the
measurement outage is apparent in the fact that not all sample runs eventually achieve the
correct decision after the last test restart. This seems the most reasonable explanation,
as some of the simulations experience a reset within 1, hr from the end of the run.



110 5| Results, analysis and discussion

Figure 5.32: Number of measurements accepted by H0 filter over time - Unsafe EXP
(Coupled).

Table 5.8: Statistics of performance of filters bank - Unsafe EXP (Coupled).

N° samples 1000
Total N° decisions 42510

Total N° m.d. 8
Ratio N° m.d./dec 0.0188%

Med. of N° dec./sample 69

At the same time, the interpretation is substantiated by the statistics in table 5.8. The
results also confirm that the test is more prone to produce a conservative decision leaning
toward a false alarm rather than a missed detection as desired. In the majority of cases,
no decision error occurs. Despite the positive performance, the current analysis was not
exhaustive enough to thoroughly verify the method, but was deemed sufficient to prove
that concept can work as intended. The effect of the tuning to reduce the occurrence of
missed detection cases is indeed reflected by the results although it cannot be conclusively
stated that the targeted probabilities are attained by the test performance.
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Figure 5.33: Number of measurements accepted by H1 filter over time - Unsafe EXP
(Coupled).

Figure 5.34: CAM flag - Unsafe EXP (Coupled).
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6| Summary and final

considerations

Starting from the existing paradigm in handling uncertainties and safety in interplanetary
missions, the presented work has endeavored to address a central question: Is it feasible
to formulate failure detection strategies with the objectives of:

• Minimizing the spacecraft’s dependence on Flight Dynamics planning.

• Enhancing autonomy in anticipation of numerous upcoming smaller missions.

Chapter 2 provided a succinct overview of recent missions akin to Hera, delineating chal-
lenges, trajectory design, and target bodies. While various methods in Space Situational
Awareness (SSA) were scrutinized, none proved suitable for extension. Finally, Chapter
2 delved into the preliminaries necessary for the proposed strategies.

In Chapter 3, the mission scenario was characterized, encompassing descriptions and con-
siderations specifically tied to the Hera spacecraft, simulation models, and a perturbation
analysis. This aimed to evaluate the degree of assumptions that could yield acceptable re-
sults. Confirming prior findings, small celestial bodies were noted for presenting a highly
uncertain, intricate, and rapidly changing environment. Dissipative forces like Solar Ra-
diation Pressure (SRP) are no longer negligible compared to planetary orbits.

Chapter 4 thoroughly exposed the tested methods, justifying their formulations and high-
lighting anticipated limitations and use cases. Three algorithms, progressively complex,
were developed by adapting existing concepts from literature to fit the Hera scenario and
objectives. Concurrently, efforts were made to diminish computational time and ensure
sufficient flexibility for practical applications.
Finally, chapter 5 showcased various test cases for the preliminary assessment of the algo-
rithms concepts, evaluating the impact of the design assumptions and their performance.
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6.1. Conclusive remarks

The challenge of developing an autonomous failure detection system involving only Nav-
igation functionalities was tackled. However, there appears to be no method simpler and
more cost-effective than the navigation filter itself to conduct a trajectory safety assess-
ment.
Significant limitations in achievable accuracy were identified for the MOCRE when ap-
plied to the Hera mission scenario, despite its promising initial results. Specifically, the
ability to filter out measurement noise and correct biases was deemed insufficient for re-
liable application in challenging environments like the Hera mission scenario, precisely
where it is most needed. Additionally, the approach’s dependence on the same limited
set of measurements as the navigation filters makes it challenging to justify deployment
in the actual on-board software. Although more complex estimation methodologies exist
beyond the Least Square algorithm, their implementation may be hindered by associated
costs from various perspectives.
Similar considerations applied to the second proposed approach. Despite its original aim
of providing an independent and more robust safety assessment while reducing compu-
tational demand compared to the complete navigation filter, this goal was not achieved.
The closest approach distance was found to be too sensitive to velocity estimation errors
for the bias error sources to be left uncorrected.

The hypothesis testing framework, conceived as an independent check of the navigation
solution rather than a completely independent system, emerged as the least explored and
conventional of the three. While some promising outcomes were highlighted in the analysis
of Chapter 5, the presented concept still requires further testing to properly characterize
its performance.
In summary, the questions raised in chapter 2 literature review have been partially ad-
dressed, indicating that tools for detecting a dangerous failure in the desired trajectory
can be designed to offer some degree of accuracy. However, the requirement for the as-
sessment to be entirely independent appears overly stringent, especially considering the
limited resources, both from the on-board computer standpoint and, even more critically,
from the point of view of measurements acquisition
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6.2. Future work

A list of potential future advancements and explorations is outlined below, categorized by
algorithm. Firstly, it is emphasized the necessity of more comprehensive testing of all the
methods, which were not included within the scope of the current study. Specifically, it is
recommended to conduct Monte Carlo analyses involving the dispersion of both "true" and
"on-board" parameters. This would be essential to characterize the collective performance
of the algorithms in diverse scenarios. The current work, by contrast, assessed them solely
through individual runs or sensitivity analyses focused on initialization errors.

MOCRE

1. Application of High-order uncertainty propagation methods such as DA to remove
the assumptions required in the covariance computation.

2. Investigation to assess various batch smoothing/filtering techniques.

3. Replacement of the threshold-based decision with data-drive methodologies.

Parallel filtering approach

1. Re-working as smoother rather than as forward sequential filter.

Filters bank Hypothesis testing

1. Application of Differential Algebra as projector function in the Sigma point projector
to enforce the constraint.

2. Improvements to the robustness of the filtering process to avoid divergence and/or
covariance becoming non positive definite.

On the trajectory safety assessment In conclusion, broader considerations on how
trajectory safety could be guaranteed in an autonomous way are encompassed. In the
context of binary asteroid systems, it is deemed essential to develop methods for indepen-
dently assessing collision risks for each of the two bodies, particularly when trajectories
cross the secondary orbit. In such scenarios, the assumptions underlying the investigated
methods completely break down. Moreover, the applicability of the "keep-out sphere" ap-
proach may be excessively restrictive, especially when the orbital radius of the secondary
body is substantial.
The author perceives limited room for resolving the issue solely from a Navigation perspec-
tive, given the typically constrained set of observables, along with significant associated
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uncertainty and variability. These factors pose challenges in predicting the trajectory’s
safety. Consequently, on-board guidance and control algorithms such as Model Predictive
Control [26] yielding solutions with guaranteed safety, seems more fitting for use in future
missions. In this context, the Navigation system design could pivot towards enhancing
the accuracy of the estimation process and improving the robustness against dynamics
modeling uncertainties.
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A| Appendix A: Additional

analysis results

A.1. Additional MOCRE results in Unsafe EXP

This section of the appendix contains additional results with respect to those shown and
analyzed in section 5.1.

Figure A.1: MOCRE closest approach distance evaluation with HFM measurements -
Unsafe EXP (default tuning).
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Figure A.2: PoC and CAM flag from MOCRE output with noisy measurements - Unsafe
EXP (Default tuning).

A.2. Additional Parallel filter results

This section of the appendix contains additional results with respect to those shown and
analyzed in section 5.2.

Figure A.3: KEP: Velocity errors and 3σ covariance bounds with µ uncertainty - Nominal
EXP @CAM frame.
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Figure A.4: Cartesian KEP: Velocity errors and 3σ covariance bounds with µ uncertainty
- Nominal EXP @CAM frame.

Figure A.5: Cartesian HF: Velocity errors and 3σ covariance bounds without µ uncertainty
- Nominal EXP @CAM frame.
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Figure A.6: PoC (black) and CAM flag (red) from DCA prediction of Cartesian filter
with 2BP dynamics without µ parameter uncertainty - Unsafe EXP.

Figure A.7: PoC (black) and CAM flag (red) from DCA prediction of Cartesian filter
with refined dynamics without µ parameter uncertainty - Unsafe EXP.
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