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Introduction

Pipe bends are present in a wide variety of engineering systems, ranging
from the piping systems of industrial plants and heat exchangers to biological
systems relying on transportation of gases and liquids in “pipe-like” veins,
arteries, and capillaries, such as the respiratory and cardiovascular systems
in mammals. In each of the aforementioned cases, some parts of the piping
system are curved, either to adapt to the geometry, due to the technical
constraints of the system, or to redirect the flow.

The turbulent flow inside a pipe bend is extremely complex. As reported
in the review paper by Kalpakli Vester et al. [5], curved pipes are commonly
associated with strong secondary flow (Fig.1) and increased pressure losses
that are due to an instability set up by the centrifugal forces acting on the fluid
as it passes through the bend. The complexity of the physical phenomenon has
an obvious impact to model it using Computational Fluid Dynamic models
based on the Reynolds-Averaging Navier-Stokes (RANS) approach.

Objective of this M.Sc. thesis is to assess the capability of RANS mod-
els based on the eddy-viscosity assumption to predict the essential features
of turbulent flows in pipe bends. Compared with alternative approaches,
these models are perhaps the most simplistic, but they do have the clear
advantage of formal simplicity and low computational cost. For these reas-
ons, they particularly attractive for engineering simulations. Understanding
which type of information (and with which degree of accuracy) can be ob-
tained using eddy-viscosity models is an essential step before looking at even
more complex physical phenomena that can occur inside of these geometries,
such as the transport of solids and the structural damage due to interactions
between the travelling particles and the pipe walls. The thesis is divided in
four chapters, followed by the conclusions.

The first chapter starts with the identification of the relevant geometrical
and fluid dynamic parameters governing the turbulent flow inside a pipe
bend. Afterwards, the reasons why the secondary flow occurs are explained,
and the pressure field in the bend is explained. Finally, a review of the
previous experimental investigations concerning turbulent pipe bend flows is
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Figure 1: Color plot of local streamwise velocity W , normalized by the bulk velocity Wb

and iso-lines of secondary flows inside a pipe bend (From [4])

carried out, focusing the attention on those concerning bends with either 90◦

or 180◦ angles.
The second chapter focuses on Computational Fluid Dynamics (CFD)

as an approach to investigate turbulent pipe bend flows. Starting from the
instantaneous Navier-Stokes equations for incompressible flows of Newtonian
fluids, the Reynolds Averaged Navier-Stokes equations (RANS) are obtained.
In order to be solved, the RANS must be coupled with other equations that
model the Reynolds stresses tensor: here the attention was focused on five
turbulence models based on the eddy viscosity assumption of Boussinesq
(standard k−ε, RNG k−ε, Relizable k−ε, k−ω, and SST k−ω). Then, the
methodological procedure and the best practices in CFD are reported, ana-
lyzing the key aspects of the pre-processing, processing and post-processing
phases of a CFD simulation. At the end of the chapter, the-state-of-the-art
review of relevant numerical investigations of pipe bend flows using RANS-
based models is presented.

The third chapter focuses on the simulation of the experimental tests car-
ried out by Sudo et al. [9] regarind the flow of air in a 180◦ bend. The numer-
ical simulations, carried out with the PHOENICS 2018 code, were initially
run using the standard k − ε turbulence model. After a brief introduction
on the PHOENICS code, analyses were made to ensure that the flow is fully
developed at the entrance of the bend, in compliance with the experimental

12



conditions, and to demonstrate the convergence and grid-independence of
the solution. The numerical results of pressure, velocity, turbulence intensity
and secondary flow intensity are compared with the experimental results. Fi-
nally, a sensitivity analyses was made to assess the influence of the turbulence
model (standard k − ε, RNG k − ε, Relizable k − ε, k − ω, and SST k − ω),
and select the one which procures the best agreement with the experiments,
which was found to be RNG k − ε.

In the fourth chapter, the validation was extended to two other cases,
both referring to a 90◦ bend, whose correspondent experimental results were
reported in the first chapter (Enayet et al. [3] and Sudo et al. [8]). On the
grounds of the achievements of the third chapter, the simulations are carried
out with the RNG K − ε turbulence model. The numerical predictions of
the mean velocity, mean pressure, and turbulence variables are qualitatively
compared with the measurements available.

13



Chapter 1

Fluid dynamic behaviour of
turbulent pipe bend flows and
previous experimental
investigations

1.1 Significant parameters of pipe bend flows
The geometry of a circular pipe bend is defined by the following para-

meters, depicted in Fig. 1.1. Firstly, the diameter of the pipe, denoted as D
, or, alternatively, its radius R = D/2. Secondly, the curvature radius, Rc,
defined as the distance from the center of curvature to the center-line of the
pipe is the radius of the bend. Thirdly, the angle of the curve denoted by Φ
individuates the comprehensive extent of the bend. Frequently, R and Rc are
combined into the dimensionless curvature ratio γ = R/Rc, which is within
the limits 0 ≤ γ ≤ 1, where, for a straight pipe, γ = 0, and, for a sharp
bend, γ = 1. Let’s now discuss the fluid dynamic parameters characterizing
a pipe bend flow. An incompressible, isothermal flow field is represented by a
vector velocity field and a scalar pressure field, both function of three spatial
coordinates and one time coordinate. The components of the velocity vector,
~v, along the three spatial directions are here referred to as u, v, and w, re-
spectively. In the case of turbulent flows, a widely used approach consists in
expressing u, v, w as the sum of their Reynolds averages (U , V , W ), which
are function of space only, and the fluctuations u′, v′, w′, function of time
and space. The same for the pressure p that can be measured as the sum
of the Reynolds average P and the fluctuating component p′ so p = P + p′.
This will be further explained in paragraph 2.1.2.
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Figure 1.1: Geometrical Features: curvature radius Rc, pipe radius R, pipe diemeter D.
Reference to the inner side of the bend ri and the outer side ro

An other variable used when using isotropic turbulence models is the Root
mean square velocity defined as uRMS = 1/3(u′2 + v′2 + w′2)1/2.

In the Cartesian reference system, the space points and the velocity com-
ponents are defined along three fixed perpendicular axes x, y and z (Fig.
1.2a); it is frequently unsuitable to describe the flow in a bend pipe with such
a reference system. In fact, when examining the variable of interest along-
side the pipe curvilinear abscissa the cylindrical or the toroidal coordinate
systems best individuate the points of the domain. A more suitable refer-

Figure 1.2: Reference systems employed: "a" Cartesian reference system; "b" Cylindrical-
polar reference system; "c" Toroidal reference system.

ence system for dealing with straight pipes with circular cross-section is the
cylindrical-polar one (Fig. 1.2b), where r represent the radial coordinate, θ
the azimuthal coordinate, and z is the axial coordinate. Finally, an effective
reference system for circular pipe bends is the toroidal one, which is like a
cylindrical-polar system in which the axial coordinate z is replaced by the

15



angle ϕ (Fig. 1.2c)

All pipes object of the study consist in initial and final straight segments
or tangents that forerun and follow the bend (Fig. 3.10). For this reason
it’s necessary to use an hybrid reference system that in the straight part
of the duct employs a cylindric-polar coordinates and in the bend toroidal
ones. This hybrid reference system is used for the numerical analysis on the
software PHOENICS and is denominated "Body-fitted", exactly as the name
suggests it fits to the local geometry of the physical domain. Note that, from
this point onward, u = U + u′, v = V + v′, and w = W + w′ will denote
the velocity components along the three spatial directions identified by the
coordinate system used. Therefore, depending on the reference system in
each context, the meaning of each velocity component will be clear.

Two dimensionless scalar parameters are introduced to characterize the
fluid dynamic behaviour of a pipe bend flow. The former, used to distin-
guish the flow regime (laminar, transitional, turbulent) is the bulk Reynolds
number, defined as:

Re = ρWbD/µ (1.1)

where ρ is the fluid density, Wb is the bulk velocity, and µ is the dynamic
viscosity of the fluid. The latter, relevant in the laminar flow regime only, is
the Dean number, which takes into account the effects of both the Reynolds
number and the curvature.

De =
√
γRe (1.2)

Moving on to the parameters associated with pressure, a dimensionless
variable frequently encountered in the literature is the pressure coefficient,
defined as

Cp =
p− pref
ρW 2

b /2
(1.3)

where pref is the reference pressure chosen in a specific point of the domain.
Any time the Cp is calculated an arbitrary choice of pref can be made ac-
cording to the availability of the pressure data or the convenience.

A parameter used to asses the magnitude of secondary flow presence in
a section is Is. This adimensional parameter sums the squares of the cross-
section velocities U and V so that to take into account only the magnitude
of the secondary flow and not the direction since the squares are always
positive. This sum is normalized by the half area of the section in which
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the computation is carried out and the square of the bulk velocity Wb. The
mathematical expression of Is is shown below:

Is =
8

πD2W 2
b

∫ π/2

−π/2

∫ R

0

(
U2 + V 2

)
rdrdθ (1.4)

A parameter extremely useful for the assessment of the turbulence intensity in
a whole half section of the pipe is ka. This adimensional parameter sums the
squares of the three Reynolds’ stresses ρu′2 ρv′2 ρw′2. This sum is normalized
by the half area of the section in which the computation is carried out and
the square of the bulk velocity Wb and the ρ. The mathematical expression
of ka is shown below:

ka =
8

πD2W 2
b

∫ π/2

−π/2

∫ R

0

1

2
(u′2 + v′2 + w′2)rdrdθ (1.5)

1.2 Features of turbulent flows in pipe bends

1.2.1 Secondary flow patterns

In some fluid dynamic processes, it is possible to identify a relatively
minor flow which is superimposed on the primary flow. Such "minor flow"
is called "secondary flow". Generally, it is easy to distinguish the primary
and the secondary flows, since the former is predicted using simple analytical
techniques and represent closely the macroscopic flow pattern, whereas the
latter is of lower magnitude of velocities and has different direction from the
principal flow.

The secondary flow occurring inside a pipe bend is of interest in the
present thesis. In any curved pipe, the centrifugal force acting on the fluid
elements is only partially balanced by a lateral pressure gradient. As a result,
a mass flux generates in the central part of the cross-section, which, owing to
the mass conservation principle, is balanced by a flux in the opposite direction
close to the lateral walls of the cross section. These transverse movement
is the secondary flow superposed to the primary one. Such behaviour is
observed in either laminar of turbulent flow conditions.

A lot of theoretical work concerns the case of fully-developed flow inside a
pipe bend with infinite length, which, for instance, occurs inside a helicoidal
pipe of infinite length 1.3. In this situation, the flow is the same for any cross
section, and there is no dependence upon the streamwise coordinate.
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Figure 1.3: Helix

In his pioneering study, Dean demonstrated analytically that, in the case
of fully-developed laminar flow in a pipe bend, the secondary flow pattern
consists of two counter-rotating vortexes, and the flow in the center plane is
directed to the outer wall. Things are more complex in the case of interest in
this thesis, that is, a pipe bend with finite angular extension (e.g., 90◦ or 180◦)
installed between two straight pipes. In this case, the flow is developing inside
the bend and downstream of it and, therefore, the primary and secondary
flow patterns will vary along the streamwise direction. Even the direction of
the secondary flow might change inside the bend and downstream of it. The
example reported in Paragraph 1.3.7 will go into details of the secondary flow
occurring in a Φ = 90◦ bend.

1.2.2 Pressure field inside a pipe bend

Figure 1.4, allows assessing the topology of the pressure field inside a 90°
bend installed between two straight pipes. As already mentioned, a radial
pressure gradient occurs, with a raise of pressure towards the outer side, ro,
and a decrease on the opposite side, ri. Since the radial pressure gradient does
not fully balance the centrifugal force, secondary flow occurs. As a result,
an abrupt drop of pressure occurs along the streamwise direction. Studies
demonstrate that the localized pressure loss is to be considered coupled to
the appearance of the secondary flow. Such abrupt pressure drop, in fact,
represents a concentrated loss of energy, which is consumed by the secondary
flow itself.
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Figure 1.4: Pressure distribution along pipeline containing a Φ = 90◦ bend γ = 0.27,
where lu and ld denote the pipe lengths upstream and downstream the bend, respectively
adimentionalized with the diameter d. The Reynolds number is here denoted as R, whereas
R is the curvature radius and r is the pipe radius. By Vester et al. [5]

1.2.3 Notes on the laminar-turbulent transition

The presence of a curvature in a pipe does not only influence the distri-
bution of pressure, as explained, in the previous paragraph but it can also
have in impact on the flow regime. Although the present thesis focuses on
turbulent flows only, for the sake of completeness, essential information on
laminar and transitional pipe bend flows will be provided.

Several studies were made to investigate the flow regime inside helicoidal
pipes of considerable length, thus capable to produce fully-developed bend
flow. In this condition, a constant streamwise pressure gradient occurs and,
therefore, a bend friction factor can be defined in analogy to straight pipe
flows. Many authors used bend friction factor- bulk Reynolds number dia-
grams to state whether a fully-developed bend flow is laminar or turbulent.
There is evidence that secondary flow increases flow resistance in a bend
pipe. This was argued as the reason why the onset of turbulence in curved
pipes takes place at a higher Reynolds number compared to straight pipes.
In fact, is was estimated [5] that the critical Reynolds number for a curved
tube could double when compared to the one for a straight pipe (which is
typically equal to Re∗ = 2000).

Sreenivasan and Strykowski , mentioned in the paper of Vester et al.
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[5], performed a test using a coiled pipe and were able to observe how the
turbulent flow entering from a straight into the curved pipe became laminar
and then was turning back to its turbulent state after exiting the coil, see
Fig. 1.5. The authors also noticed that the transition from laminar towards
turbulent state is smother in curved pipes in regards to the abrupt change
taking place in straight pipes.

Figure 1.5: Laminarization in coiled pipes. By Vester et al. [5]

1.3 Review of previous experimental studies on
turbulent pipe bend flows

This paragraph aims at summarizing the experimental works found in
the literature regarding turbulent flows in bends of finite length installed
between straight pipes. The experimental setups differ in terms of pipe dia-
meter, curvature radius (hence, curvature ratio, γ), bend angle, inlet bulk-
mean velocity, lengths of upstream and dowstream pipes, kind of fluid used
for experiments such as air or water sometimes with solid particles. Atten-
tion was restricted to the researchers in which velocity measurements were
provided. This was achieved by employing techniques such as Laser Doppler
velocimetry LDV, hot-wire anemometer, or simply, Pitot tubes. In some
cases, pressure measurements were also provided, as obtained using pressure
taps installed at some locations over the bend walls. The experiments are
summarized in Table 1.1. In the first column are cited the authors that per-
formed the experiments. In the second it’s indicated the Raynolds number,
the third column presents the curvature ratio γ the fourth column presents
the extent of the bend Φ, the fifth column presents the length of the in-

20



let tangent of the pipe in units of diameters, the sixth column presents the
length of the downstream tangent of the pipe in unites of diameter, the sev-
enth column describes whether the flow in the inlet tangent reaches the fully
developed state "Fully Developed" (F. D.) "Developing" (D.), and the last
column presents some of the measured quantities by the authors. The symbol
Ptot stands for the total pressure. represent the static pressure,

Author and year Re [-] γ [-] Φ[◦] I E I. C. Quantities
Adler 1934 [5] 2-12·103 0.01 0.02 90 W
Rowe 1970 [5] 2.4·105 0.042 180 69D F. D. Ptot
Enayet 1982 [3] 4.3·104 0.17 90 5D 10D D. W, w’, Ptot
Azzola 1986 [5] 5.7-11·104 0.15 180 54.7D 54.7D F.D. W, V, w’,v’
Anwer 1989 [5] 5·104 0.077 180 96D 96D F.D. W,U,V w’,u’,v’

Al Rafai 1990 [11] 3,4·104 0.07
0.14 90 24D

69D
69D
7D F.D. W,U, w’

Sudo 1998 [8] 6·104 0.25 90 100D 40D F.D. W,U,V
w’,u’,v’ Ptot

Sudo 2000 [9] 6·104 0.25 180 100D 40D F.D. W,U,V
w’,u’,v’ Ptot

Table 1.1: Summary of main experiments

The experimental studies listed in Table 1.1 will be now described with
more details.

1.3.1 Adler [5]

The very first study on turbulent flow in curved pipes was carried out
by Adler, who measured the locally-averaged streamwise velocity for bulk
Reynolds numbers in the range Re = 2 − 12 · 103. The author was already
able to infer the existence of secondary flow in the bend, since he noticed
that the streamwise velocity becomes higher close to the inner wall at an
angle ϕ = 30◦ downstream the bend inlet section, in correspondence of the
formation of the cross-sectional vortexes.

1.3.2 Rowe (from [5])

The author used Pitot tubes to measure the total pressure Ptot in a 180◦
pipe bend with curvature ratio γ = 0.042. The flow was in the turbulent
regime with Re = 2.4 · 105. The flow entering the bend was assessed to
be fully developed. This study agrees with the findings of Sudo et al. in
regard to the first appearance of the secondary motion that becomes strong
enough to be well detectable at ϕ = 30◦. According to the experimenter,
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the secondary flow weakens until reaching a constant value at ϕ = 90◦ , and
velocity distribution pattern does not significantly change from ϕ = 90◦ until
ϕ = 180◦. As a result, he claimed that the secondary flow motion has a fully
developed state starting from a ϕ = 90◦. The author also noticed that, after
61D downstream the curved pipe, the flow was not recovered by the influence
of the bend.

1.3.3 Enayet et al. [3]

Enayet et al. studied the turbulent flow in a Φ =90◦ bend with curvature
ratio γ = 0.17, this case will be of interest in the paragraph 4.2 when nu-
merical results are compared with experimental one. The test was carried
out with water with a bulk velocity Wb = 0.92m/s corresponding to a bulk
Reynolds number of Re = 4.3 · 104. Velocity measurement were carried out
with LDV for three ϕ = 30◦, 60◦, 75◦ and two sections downstream the bend,
as shown in Fig. 1.7.

Figure 1.6: Wall static pressure measured by Enayet et al. [3]

Measurements of the wall static pressure variation were carried out through-
out the bend, not surprisingly, the authors found a negative streamwise pres-
sure gradient at ro and a positive streamwise pressure gradient at ri as visible
in Fig. 1.6. They also estimated that the negative gradient in the ri position
is twice bigger than the negative one at (ϕ = 15◦). The streamwise pressure
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gradients then becomes very small (in absolute term) up to ϕ = 75◦ and,
afterwards, the modifications to the pressure field induced by the bend start
is to disappear.

Concerning the velocity, at ϕ = 30◦, the longitudinal component reaches
its pick close the inner wall ri (Fig. 1.7a). Conversely, at ϕ = 90◦ section
the highest velocity is shifted toward the outer wall (Fig. 1.7e) this shift is
operated by the secondary flow present in the bend.

Figure 1.7: (a-c) Contours of mean velocity W/Wb in the bend.
(d-e) Contours of mean velocity W/Wb downstream the bend at z=D and z=6D, where
"z" longitudinal coordinate is called "x" by Enayet et al. [3]

1.3.4 Azzola et al. [1]

Azzola et al. [1] performed experiments on a Φ = 180◦ bend with γ = 0.15
over a range of Reynolds number Re = 5.7−11·104. They used water at 20◦C
for the experiment with a bulk velocity of approximatelyWb = 1.29m/s. The
authors measured, using LDV, the longitudinal and circumferential velocity
components W w′ V v′ expressed them in a toroidal reference system. The
author provided a comprehensive evolution of the flow in the bend displaying
secondary flow in cross-section’s plane using vectors and contour plots of
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the normalized longitudinal velocity W/Wb, these results are reported for 6
different sections in Fig.1.8. The authors also investigated the phenomenon
with the aid of numerical simulations choosing as the turbulence model the
standard k − ε model. Their results were somewhat acceptable, there was
agreement between numerical and experimental data (Fig.s 2.2 and 2.3) .
This will be further discussed in paragraph 2.3.

Figure 1.8: Experimental results of normalized longitudinal velocity W/Wb on the top
and in plane vector velocities on the bottom for sections: "a" ϕ = 3◦; "b" ϕ = 45◦; "c"
ϕ = 90◦; "d" ϕ = 135◦; "e" ϕ = 177◦; "f" z/D = 1. (From Azzola et al. [1])
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1.3.5 Anwer et al. (from [5])

Anwer et al. and Anwer and So. performed experimentson a case with
Φ = 180◦ with Re = 5 · 104 and γ = 0.077 and they estimated the locally
averaged velocity components and Reynolds stresses employing a hot-wire
and wall-static pressure devices. Their purpose was to detect the influence
that the bend has on the flow upstream and downstream the bend. The
measurements where performed at several streamwise locations upstream and
downstream the bend in the locations (z/D= -18; -1; 1; 6; 10; 18; 30; and
49) where the negative and positive signs have the exact same meaning used
in paragraph 1.3.7 and individuates upstream sections. They observed that
18D upstream the bend the flow was fully developed. Whereas 1D upstream
the bend the streamwise velocity stops being axial-symmetric so the flow
quit being fully developed, this due to the influence of the bend’s presence.
Complementary, the authors found that 18D downstream the bend the flow
hasn’t recovered to the fully developed state yet.

Figure 1.9: Turbulent cell in the bend pipe

The authors also performed a numerical simulations employing the k− ε
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standard turbulence model and they found a different secondary flow pat-
tern that starts to take place about between ϕ = 67◦ and ϕ = 112◦. They
speculated the existence of a additional cell other than the usual Dean-like
vortexes. The small cell visible in Fig. 1.9 has a limited existence approx-
imately in half bend pipe, in fact, its presence decays 1D downstream the
curvature.

1.3.6 Al Rafai et al.[11]

Al-Rafai et al. investigated the turbulent flow through curved pipes
Φ = 90◦ injecting air in the pipe with a bulk velocity Wb =11.616 m/s. The
pipe has a D = 43mm, two bends, a first straight tangent of 1.04m followed
by the first curve with Rc = 0.58m, then a straight tangent of 3m afterward
a second bend of Φ = 90◦ with a Rc = 0.29m and a downstream straight
tangent of 0.3 m as in Fig. 1.10

Figure 1.10: Configuration of the experimental simulation cunducted by Al Rafai et al.[11]

The experiment was carried out with a Re = 3.4·104 and γ equal to either
0.07 and 0.14. The authors employed a LDV to perform the measurements
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of uRMS, U, V, W . They measured these quantities at cross-stream section
alongside the bend in seven position: ϕ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦ .
Some of the measurements performed in the two bends of the uRMS/Wb are
displayed in Fig. 1.11.

Figure 1.11: Contour lines of the normalised uRMS/Wb for the first bend with Rc = 0.58m
(left) and the second bend with Rc = 0.29m (right) for ϕ = 0◦, 15◦, 45◦, 90◦ by Al Rafai
et al.[11]
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1.3.7 Sudo et al. Φ = 90◦ [8]

Sudo and co-workers conducted experiments to investigate the secondary
flow phenomenon in a Φ = 90◦ bent pipe. Their experimental apparatus is
shown schematically in Fig. 1.12. The authors claimed that the formation

Figure 1.12: Schematic diagram of test pipe and coordinate system. 1) Fan; 2) settling
chamber; 3) contraction; 4) upstream tangent; 5) Φ = 90◦; 6) downstream tangent; Note
that Sudo et al. [8] uses the letter "d" to individuate the diameter of the pipe generally
denoted ad D.

of secondary flow requires the angle of the bend to be larger than ϕ = 30◦.
As already reported in Table 1.1, the curvature radius is Rc = 208 mm, the
upstream and downstream straight segments of the pipe are respectively of
10.4m (100 pipe diameters, enough to ensure fully-developed flow) and 4.16
m (40 pipe diameters). A settling chamber was used for stabilizing the air
flux, and it was followed by a contraction that brings the section to an inner
diameter D = 2R = 104 mm (note that Sudo et al. [8] refer to the diameter
with the letter "d" instead of "D"). The curvature ratio of the bend is
therefore γ = 0.25. The experiment is performed with air with bulk mean
velocity Wb = 8.7 m/s, resulting in Re = 60000, which indicates a turbulent
flow regime. The coordinate system used by the experimenters to identify the
measurement points was combined cylindrical-polar (for the straight pipes)
and toroidal (for the bend). The streamwise coordinate was identified by the
negative distance from the bend inlet section in the upstream pipe, called
z′, the angle ϕ inside the bend, and the positive distance from the bend
outlet section in the downstream pipe, called z. Preliminary measurements
were obtained at ϕ = 60◦ in the bend, as well as at z/D = −1 and z/D =
5 in the upstream and downstream tangents, to evaluate the symmetry of
the flow. These measurements have confirmed that the flow is perfectly
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symmetric. This will be exploited in the numerical simulations, as it will
be discussed in Chapter 3. Hence, the velocity measurements were collected
over half of the cross section of the pipe, according to the grid shown in Fig.
1.13. Additionally, a nonuniform grid size is used to better detect the flow
behaviour close to the wall. In fact, ∆r is small near the wall and gradually
larger elsewhere.

Figure 1.13: Half Mesh Grid. (From Sudo et al. [8])

Pressure and velocity data were provided for different sections upstream,
inside, and downstream the bend.

In Fig. 1.14, the wall static pressure at various axial locations is plotted
as a function of the coordinates z′/D upstream the bend, ϕ inside the bend,
and z/D downstream of the bend. In the vertical axis, reference was made
to the pressure coefficient Cp. defined in Eq. (1.3).
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Figure 1.14: Longitudinal distribution of wall static pressure. (From Sudo et al. [8])

Isotach lines of the longitudinal mean velocity and secondary flow pat-
terns are reported in Fig. 1.15 for several section, individuated, once again,
by the longitudinal coordinates z′/D, ϕ, and z/D. Note that, since the flow
is symmetrical, what happens in the lower section happens specularly in the
upper one too.

At z′/D = −1, the flow doesn’t perceive the presence of the bend, as
confirmed by the fact that the contours are concentric circles and the flow
remains fully developed. At the inlet plane of the bend, ϕ = 0◦, near the
inner wall the fluid is slightly accelerating due to the initially favourable
longitudinal pressure gradient in that region (Fig. 1.14). On the other hand,
the fluid close to ro is decelerated according to the initially unfavourable
pressure gradient. This is the context where the secondary flow takes place.
In fact, the pressure distribution induces a weak secondary flow from ro
towards ri in the whole cross section. At ϕ = 30◦, the secondary flow makes
its first clear appearance thanks to the action of the centrifugal force that
compresses the fluid in the ro region of the cross section. The set up of two
counter-rotating vortexes with an outward circulation might be perceived in
Fig. 1.15c, and it appears similar to the pattern already shown in Fig. 1.
At ϕ = 60◦ (Fig. 1.15d), the faster fluid initially near the inner region ri is
shifted by the secondary flow towards the outer wall ro. Similarly, the slower
fluid that was initially in the ro part is conveyed towards the inner wall side
ri by means of the secondary flow. Simultaneously, the pressure starts raising
close the inner wall in the longitudinal direction (Fig. 1.14) and, thus, the
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fluid near the inner wall starts decelerating.

Figure 1.15: Reynolds-averaged velocities over different cross section. (Top figure: Axial
velocity contours, where numerical values stand for W/Wb. Bottom figure: secondary
flow velocity vectors. The left and right sides of each figure are the inside and outside
walls in the bend, respectively). (From Sudo et al. [8])

Thereafter, the fast fluid in the primary flow (longitudinal one) moves
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further towards the outer wall ro along the symmetric horizontal plane of the
bend pushed by the intense secondary flow. From ϕ = 75◦ to ϕ = 90◦ (Fig.
1.15e), the fast fluid previously conveyed to the outer wall is an other time
carried towards the inner wall by the secondary flow moving inwards along the
wall. From z/d=2 to 5 (Figs. 1.15g,h), the low velocity region moves farther
towards the outer wall, and the secondary flow decays gradually. Further
downstream, at z/d=10 the vortexes making up the secondary flow break
down and the longitudinal velocity profile gets smoother without unevenness
(Fig. 1.15i).

1.3.8 Sudo et al. Φ = 180◦ [9]

After the study on the Φ = 90◦ bend, Sudo et al. [9] investigated a
Φ = 180◦ bend too. This case will be object of a numerical investigation in
chapter 3. The geometry, flow conditions and coordinate system are exactly
the same of the experiment in a 90◦ bend.

Figure 1.16: Coefficient of wall static pressure Cp measured for r azimuths: θ =
0◦, 45◦, 90◦, −45◦, −90◦, . From Sudo et al. [9]

The measurements employing a rotating probe with an inclined hot-wire
proved the symmetry of the flow, so all analysis were made on half pipe
section. The authors examined the pipe flow throughout measurements of
the wall static pressure (Fig. 1.16), axial velocity (Fig. 1.17) alongside the
curvilinear abscissa, as well as secondary flow, contour lines of in the half
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cross section of the pipe for ϕ = 0◦, 30◦, 60◦, 90◦, 105◦, 120◦, 150◦, 180◦,
and for z/D = 1 3.5 5 10. (Fig. 1.18)

Measurements of fluctuating velocities as well as Reynolds stresses were
carried out at various cross sections along and downstream the bend (Fig.
1.19).

Figure 1.17: Contours of longitudinal mean velocity W/Wb on the horizontal plane

The case of Φ = 180◦ is not as different as the one of Φ = 90◦ bend
flow for ϕ = 60◦ which has been discussed in the previous paragraph 1.3.7.
Downstream ϕ = 75◦ the highvelocity region of the axial velocity observed
in the central part of the cross section does not get as close to the ro wall as
much it occurs in the Φ = 90◦ case. From ϕ = 90◦, the pick axial velocity is
drifted towards the ri side of the wall by the secondary flow moving inward.
Starting from ϕ = 105◦ (Fig. 1.17) the highest axial velocity points towards
the inner-wall, and to the upper and lower walls as well (as the symmetry
suggests). In this way, the strong secondary flow causes a deformation of
the contours of W/Wb, (Fig. 1.18) and the contours show, at ϕ = 120◦, the
higher level near the upper and lower walls and the lower one in the central
part of the bend. The reduction of the longitudinal velocity in the central
region weakens the outward secondary motion in that region, at ϕ = 150◦

the stagnant region of the secondary flow is between the bend center and the
outer wall. Downstream the bend, the pressure close to the ro side of the
pipe wall decreases with the longitudinal distance z while the pressure at the
inner wall increases with z. As velocity an pressured are strictly related, the
fluid flowing near the outer wall is accelerated and the high-velocity region of
the axial velocity moves on the horizontal plane near the ro side (Fig. 1.17).
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Figure 1.18: Experimental measurements by Sudo et al. [9] for each section is indicated
the position in the pipe either with ϕ or with z/D and in the top picture is represented the
distribution of W/Wb by isotachs in the half section an in the bottom picture represent
the local cross-section velocities components. The left and right sides of each figure are
the inside and outside walls in the bend, respectively.
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Figure 1.19: Experimental measurements by Sudo et al. [9] for each section is indicated
the position in the pipe either with ϕ or with z/D for the fluctuating velocity w′/Wb. The
left and right sides of each figure are the inside and outside walls in the bend, respectively.

This causes the outward secondary-flow to increase temporarily in the outer
half of the pipe cross section (Fig. 1.18.h).
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Chapter 2

Computational Fluid Dynamics of
turbulent flow in pipe bends

2.1 The Reynolds-Averaged Navier-Stokes equa-
tions and commonly used turbulence mod-
els

2.1.1 The Navier-Stokes equations [15]

The Navier-Stokes equations govern the motion of fluids with Newtonian
behavior. They consist of a scalar mass conservation equation and a vectorial
momentum conservation equation. For the general case of compressible flow,
these equations in cartesian coordinates have the following form:

∂ρ

∂t
+∇ · (ρ~v) = 0 (2.1)

ρ

(
∂~v

∂t
+ ~v · ∇~v

)
= −∇p+∇·

(
µ
(
∇~v + (∇~v)T

)
− 2

3
µ(∇ · ~v)I

)
+ρF (2.2)

where ~v is the fluid velocity vector, p is the fluid pressure, ρ is the fluid
density, and µ is the fluid dynamic viscosity. Each of the terms present in
the momentum equation has a precise physical meaning, in fact, the terms
in the left-hand side correspond to the inertial forces, whereas those in the
right-hand side are pressure forces, viscous forces, and the external forces
applied to the fluid. The vectorial momentum equation can be rewritten in
terms of the three scalar velocity components u, v, and w.
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Solution of Eqs. 2.1 and 2.2 with proper boundary conditions (such
as inlets, outlets, and walls) and initial conditions (if the problem is not
stationary) allows calculating the fluid velocity and the pressure at every
spatial point in a given geometry domain at every instant of time. The
Navier-Stokes equations show a high level of complexity, and they admit
analytical solution for a limited number of cases in the laminar flow regime.
For the laminar flow problems where an analytical solution cannot be found,
and for all turbulent flow problems, the Navier-Stokes equations must be
resolved numerically.

The fluid dynamic parameter that helps distinguish the laminar and tur-
bulent flow regimes is the bulk Reynolds number already defined. The bulk
Reynolds number Re = ρUL/µ, where U is a characteristic macro-scale
velocity, and L a characteristic macro-scale length, represents the ratio of
inertial forces and viscous forces. This parameter is related with the amount
of turbulence present in the flux. In fact, low Reynolds numbers indicate a
laminar regime, whereas higher Reynolds numbers indicate that the flow is
in the turbulent regime.

Another significant dimensionless number is the Mach number, defined
as: M = U/c. It represents the ratio of the characteristic macro-scale velocity
of the flow, U , and the speed of sound in the fluid medium, c. The Mach
number measures the extent of flow compressibility, and, in particular, if
M < 0.3 the flow is usually considered incompressible. In such a case the
continuity equation (Eq. 2.1) has a simpler form shown here:

∇ · ~v = 0 (2.3)

When the incopressible continuity equation (Eq. 2.3) is valid the Navier-
Stokes (Eq. 2.2) loses a term resulting in the incompressible version (Eq.
2.4):

ρ

(
∂~v

∂t
+ ~v · ∇~v

)
= −∇p+∇ ·

(
µ
(
∇~v + (∇~v)T

))
+ ρF (2.4)

This is the case of the flows of interest in this thesis, and, therefore,
hereafter reference will be made only to the incompressible formulation of
the Navier-Stokes equations.

Coming back to Re, this parameter is often high in most engineering ap-
plications, entailing that the inertial forces are way greater than the viscous
forces. In nature turbulence is a typical non-stationary, small-scale phe-
nomenon. As mentioned before, for turbulent flows the Navier-Stokes equa-
tions do not have an analytical solution. When solving the Navier-Stokes
equations numerically, the size of the computational cells and the time step
of the time discretization must be fine enough to resolve the size and dur-
ation of the smallest eddies present in the flow, called Kolmogorov scales.
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For the high Reynolds number flows usually encountered in industrial ap-
plications, such approach, referred to as direct numerical simulation (DNS),
is beyond the computational capabilities of most of current computers and
supercomputers.

2.1.2 The Reynolds Averaged Navier-Stokes equations

An alternative, more effective approach consists of solving the time av-
eraged formulation of the Navier-Stokes equations, or Reynolds-Averaged
Navier-Stokes (RANS) equations. The core idea of such approach is to solve
only for the time-averaged velocity and pressure fields. As a result, no time
discretization is required, and the spatial mesh resolution is dictated by the
need to resolve only the integral scales of turbulence, thus drastically redu-
cing the computing effort.

The concept at the basis of the transformation of Navier–Stokes into the
Reynolds Averaged Navier-Stokes (RANS) equations is the Reynolds decom-
position, already mentioned in paragraph 1.1.The Reynolds decomposition
consists in expressing the generic flow variable, ψ(x, y, z, t), which depends
on space and time, into the locally time-averaged component, 〈Ψ(x, y, z)〉,
which depends on space only, and the fluctuating component, ψ′(x, y, z, t),
which depends on time and space. In summary,

ψ(x, y, z, t) = 〈Ψ(x, y, z)〉+ ψ′(x, y, z, t) (2.5)

The meaning of the Reynolds-averaging operator is to average 〈ψ(x, y, z, t)〉
over a time interval that is long enough for the mean value to be independent
of it, or, formally speaking

〈Ψ(x, y, z)〉 = lim
T→∞

1

T

∫ T

0

ψ(x, y, z, t)dt (2.6)

The rationale behind Eq. 2.6 is shown in Fig. 2.1.
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Figure 2.1: Reynolds-averaging of the generic fluid dynamic variable ψ.

The Reynolds decomposition of the pressure and the three velocity com-
ponents yields:

u = U + u′, v = V + v′, w = W + w′ p = P + p′ (2.7)

Application of the Reynolds averaging operator to the continuity eaqua-
tion and Navier-Stokes (Eq. 2.4) yields the Reynolds-Averaged Navier-Stokes
equations (RANS), which, for incompressible flow, are:

∇ · 〈~V 〉 = 0

ρ(〈~V 〉 · ∇)〈~V 〉 = ρF−∇〈p〉+ µ∆〈~V 〉 − ∇ ·ΦRe
(2.8)

where the tensor ΦRe is :

ΦRe = −

 ρ 〈u′u′〉 ρ 〈v′u′〉 ρ 〈w′u′〉
ρ 〈u′v′〉 ρ 〈v′v′〉 ρ 〈w′v′〉
ρ 〈u′w′〉 ρ 〈v′w′〉 ρ 〈w′w′〉

 (2.9)

The primary unknowns of the RANS equations are the locally-averaged
pressure, P , and the locally-averaged velocity vector, ~V = (U, V,W ). How-
ever, additional unknowns appear in Eq.2.8, namely the six independent
components of the Reynolds stresses tensor. These terms just appear as a
consequence of having applied the Reynolds-averaging operation to the con-
vection term of the Navier-Stokes equations. In order to close the system of
equations, it is necessary to add closure laws for the Reynolds stresses, called
turbulence models .

2.1.3 RANS-based turbulence models

Broadly speaking, turbulence models group into two main categories,
namely, those based on the eddy viscosity assumption of Boussinesq and the
Reynolds stresses models.
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Regarding the first type of models, Boussinesq’s work was based on the
observation that the momentum transfer in a turbulent flow is dominated
by large energetic turbulent eddies. He formulated the assumption that the
turbulent shear stress depends linearly on the mean rate of strain. The ampli-
fication parameter is called eddy viscosity. The Boussinesq’s assumption for
Reynolds averaged incompressible flow can be translated in mathematical
terms as:

τRij = −ρu′iu′j = 2µTDij −
2

3
ρkδij (2.10)

where Dij is the Reynolds-averaged strain-rate tensor:

Dij =
1

2

(
∂Vi
∂xj

+
∂Vj
∂xi

)
(2.11)

and k is the turbulent kinetic energy, that is, half the sum of the normal
stresses divided by the fluid density, namely.

K =
1

2
u′iu
′
i =

1

2
[(u′)

2
+ (v′)

2
+ (w′)

2
] (2.12)

The parameter µT (in Eq.2.10) is the eddy viscosity, which, unlike the mo-
lecular viscosity, µ, represents no physical characteristic of the fluid, but it
is a function of the local flow conditions.

The eddy-viscosity assumption of Boussinesq is very appealing from an
engineering prospective very appealing, since it just requires the assessment
of a single scalar parameter µT to model all Reynolds stresses. This explain
why eddy viscosity based models are so commonly used in Computational
Fluid Dynamics applications.

However, there are situations in which Boussinesq’s assumption is no
longer valid, such as (i) flows with sudden change of mean strain rate, (ii)
flows with significant streamline curvature (iii) flows with rotation and strat-
ification (iv) secondary flows in ducts and in turbomachinery, and (v) flows
with boundary layer separation. Such limitations arise from the isotropic be-
haviour of turbulence that the eddy viscosity assumption implies. Improve-
ments might be made through the employment of non-linear eddy-viscosity
turbulent models [2], but the most commonly practice is to use the Reyn-
olds stresses models, which introduce transport equations for each of the six
independent components of the Reynolds stresses tensor.

In the remainder of the section, the turbulence models used in this thesis
will be briefly described, making reference to the formulation implemented
in the PHOENICS code.
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2.1.3.1 k − ε standard turbulence model [6]

The k− ε standard model is based on the assumption that µT = Cµk
2/ε,

where Cµ is an empirical constants, k is the already defined turbulent kin-
etic energy of the fluid, and ε is the turbulence dissipation rate. Transport
equations for k and ε are added, as follows

∂ρk

∂t
+∇ ·

(
ρ~V k − µT

σk
∇k
)

= ρ (Pk − ε) (2.13)

∂ρε

∂t
+∇ ·

(
ρ~V ε− µT

σε
∇ε
)

= ρ
ε

k
(C1Pk − C2ε) (2.14)

where Pk = 2µTD : ∇~V represents the production of turbulent kinetic energy.
The default values of the empirical constants are as follows: Cµ = 0.09,
C1 = 1.44, C2 = 1.92, σk = 1.0, σε = 1.3 .

2.1.3.2 k − ε RNG turbulence model [13]

The RNG model takes its name from Re-Normalisation Group (RNG)
methods to renormalise the Navier-Stokes equations, so that these equations
to effects of smaller scales of motion. In the standard k − ε model the eddy
viscosity is computed only by one. In reality all scales of motion give their
contribution to the turbulent diffusion. The RNG k − ε models differ from
the k − ε model because modifies the production term in order to take into
account the different scales of motion.

∂

∂t
(ρk) +∇ ·

(
ρk~V

)
= ∇ ·

[(
µ+

µT
σk

)
∇k
]

+ Pk − ρε (2.15)

∂

∂t
(ρε) +∇ ·

(
ρε~V

)
= ∇ ·

[(
µ+

µT
σε

)
∇ε∂xj

]
+ C1ε

ε

k
Pk − C∗2ερ

ε2

k
(2.16)

where:
C∗2ε = C2ε +

Cµη
3 (1− η/η0)
1 + βη3

(2.17)

and η = Dk/ε; Cµ=0.0845; σk = 0.7194; σε = 0.7194;
Cε1 = 1.42; Cε2 = 1.68; η0 = 4.38; β = 0.012.
The RNG model offers improved accuracy in rotating flows, but it doesn’t
have any advantage on the other models concerning the ability to reproduce
vortex evolution.
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2.1.3.3 k − ε Realizable turbulence model [14]

The Realisable k− ε shows improvements in the performances in respect
to the k− ε model when applied to flows involving boundary layers in strong
adverse pressure gradients, streamwise curvature, separation and recircula-
tion zones. The model is a two-equation high-Reynolds-number turbulence
model that differs from the standard k−ε model firstly from the formulation
of the transport equation for the dissipation rate that is derived from the
transport equation for the mean-square vorticity fluctuations and secondly
because the model uses a different eddy-viscosity formulation which is based
on several realisability constraints for the turbulent Reynolds stresses.

∂

∂t
(ρk) +∇ ·

(
ρk~V

)
= ∇ ·

[(
µ+

µT
σk

)
∇k
]

+ ρ(Pk − ε) (2.18)

∂

∂t
(ρε) +∇ ·

(
ρε~V

)
= ∇ ·

[(
µ+

µT
σe

)
∇ε
]

+ ρC1Dε− ρC2
ε2

k +
√
νε

(2.19)

where:
η = Dk/ε;
C1 = max

[
0.43, η

η+5

]
;

µT = ρCµ
k2

ε
;

Cµ = 1

A0+As
kU∗
ε

;

U∗ =
√
DijDij + ΩijΩij

;

Ωij = 0.5
(
∂uj
∂xi
− ∂ui

∂xj

)
;

As =
√

6 cosφ ;
φ = 1

3
cos−1(max(−1,min(

√
6W, 1))) ;

W =
DijDjkDki

D̃3 ;
D̃ =

√
DijDij;

ν=cinematic viscosity; C2 = 1.9, σk = 1.0, σε = 1.2; Pk represents the
generation of turbulence kinetic energy due to the mean velocity gradients.

2.1.3.4 k − ω Wilcox (1988) turbulence model [14]

This is a two-equation turbulence model based on the transport equations
for the turbulent kinetic energy k and the turbulence frequency ω. k − ω
models aren’t as notables as the k − ε, but can have several advantages as a
better performance when adverse pressure gradients are present. The model
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is numerically very stable which means that it would converge quicker than
the k − ε.

∂

∂t
(ρk) +∇ ·

(
ρk~V

)
= ∇ ·

[
ρ

(
µ+

µT
σk

)
∇k
]

+ ρ(Pk − f2ε) (2.20)

∂

∂t
(ρω) +∇ ·

(
ρω~V

)
= ∇ ·

[
ρ

(
µ+

µT
σω

)
∇ω
]

+ ρC1Dε+ (2.21)

−ρC2ω

(
f1C1ω

Pk
k
− C2ωω

)
(2.22)

where:
µT = fµk/ω ;
Pk = µT

(
∂Uj
∂xi
− ∂Ui

∂xj

)
∂Uj
∂xi

;
ε = CDωk ;
fµ = (1/40 +RT/RK)/(1 +RT/RK) ;
f1 = (1/fµ)(0.1 +RT/RW )/(1 +RT/RW ) ;
f2 = (5/18 + (RT/RB)4)/(1 + (RT/RB)4 ;
RT = k/(ωµ) ;
CD = 0.09 σk = 2.0 σω = 2 C1ω = 5/9 C2ω = 3/40 RB = 8
RK = 6 RW = 2.7
RT is the turbulence Raynolds number.

2.1.3.5 k − ω SST turbulence model[14]

The k − ω SST (Shear Stress Transport) is a two-equation turbulence
model based on the transport equations for the turbulent kinetic energy k and
the turbulent shear stress. It offers improved predictions of flow separation
under adverse pressure gradients.

∂

∂t
(ρk) +∇ ·

(
ρk~V

)
= ∇ · [ρ (µ+ µTσk)∇k] + ρ(Pk − ε) (2.23)

∂

∂t
(ρω) +∇ ·

(
ρω~V

)
= ∇ · [ρ (µ+ µTσω)∇ω] + ρω

(
γ
Pk
k
− βω

)
+

+ 2(1− F1)(ρσω2/ω)∇k∇ω (2.24)

where:

43



µT = (a1k)/max[a1ω,DF2] ;
Pk = µT (∇~V + (∇~V )T ):∇~V ;
ε = CDωk F1 = tanh(A4

1) ;
A1 = min[max(

√
k/(CDωδ), 500ν/(ωδ2)), 4kσω2/(Dωδ

2)] ;
Dω = max[2(σω2/ω)∇k∇ω, 10−10];
F2 = tanh(A4

2) ;
A2 = max(

√
k/(CDωδ), 500ν/(ωδ2)) ;

where δ is the distance to the nearest wall
σk1 = 0.5 σω1 = 0.5 β1 = 0.075 ;
σk2 = 1 σω2 = 0.856 β2 = 0.0828 ;
CD = 0.09 C1ω = 5/9 C2ω = 3/40 ;

2.2 Strategies and best practices in Computa-
tional Fluid Dynamics

The term "Computational Fluid Dynamics" (CFD) refers to the applica-
tion of numerical techniques to solve the fluid flow equations. On the grounds
of what stated before, in the case of turbulent flows an engineering-effective
approach consists of solving the Reynolds Averaged formulation of the Navier-
Stokes equations (RANS), coupled with a turbulence model.

A CFD model is approximated in nature, and, therefore, the reliability
of CFD predictions is highly dependent on the numerical method employed.
CFD codes, such as Ansys Fluent, Ansys CFX, PHOENICS, STAR CCM+,
Open Foam etc, use specific algorithms and numerical techniques to solve
fluid flow problems. In all cases, the flow domain is discretized in fluid ele-
ments called cells, where the fluid dynamic parameters, such as the mean
pressure, the mean velocity, and turbulence variables are calculated. In or-
der to solve the flow equations, the boundary conditions must be specified.
Common types of boundary conditions used in CFD are inlet with imposed
flow-rate, outlet with fixed pressure and zero-normal gradient of all other
variables, solid walls, and symmetry. The computation then consists in the
application of the conservation principle of mass, momentum and energy to
each cell with consideration of the neighboring cells. In mathematics terms,
this is carried out through a system of algebraic equations with the variables
representing each cell’s characteristics.

Since several, strongly coupled algebraic equations need to be solved over
grids with a considerable number of nodes, proper solution algorithms needs
to be used. Generally, iterative methods are used, in which, starting from an
initial guess, the solution is reached, where the term "solution" means the
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value of all parameters in each cell of the domain [12].
The more relevant steps of a CFD analysis can be gathered into three

categories, namely, pre-processing, processing, and post-processing.
In the Pre Processing it’s chosen the coordinate reference system that

best suit the case in order to modellize the geometry of the specific case of
interest. Through the choice of the turbulent model are chosen the math-
ematical equations making up the physical model. Each model has its para-
meters and variables. Additionally the user has to set up a grid to discretize
the computational domain. In the end the boundary condition ought to be
chosen, and is it is not a stationary problem the initial condition too.

In the Processing phase are chosen the mathematical resolution method,
the maximum running time for the simulation, the maximum number of
iteration to be performed, the convergent criterion and the computation,
meanwhile the user can monitor the evolution of the symulation.

In the Post Processing of the solution of the numerical simulation is
analysed, the results are being manipulated, they are displayed and a report
can be composed.

The numerical techniques employed in CFD can be grouped into three
main categories, namely finite difference method, finite volume method, and
finite element method. Among them, the most widely used one is the fi-
nite volume method. As already mentioned, the method relies on a spatial
discretization of the domain in cells and it employs an iterative algorithm
to solve the discretized formulation of the NS/RANS equations. The user
has to define the geometry of the domain, the boundary conditions, and the
computational mesh. Mandatory requirements for achieving a reliable CFD
solution are convergence and grid independence.

Here the term "convergence" is related with the iterative nature of the
solution algorithm. Every step of the algorithm updates all fluid dynamic
parameters in each cell, and the new values differ by a certain quantity from
the previous ones. This quantity is called residual. Hence convergence is
reached when the residuals get very small. Residuals might be used to asses
whether a sufficient level of convergence has been reached [10]. Residuals, in
fact, measure the imbalances or, in other words, the errors in the equations
in each step of the algorithm. Residual under no circumstances can be ex-
actly zero in CFD computations. Nonetheless, the lower the residual value
is, the more numerically accurate the solution. This said, each CFD code
employs its own procedure for normalized the solution residuals and, there-
fore, usually reference is made to the normalized whole-field residuals, i.e.
scalar quantities representing how each solved variable varies "on average"
between one iteration and the subsequent one. According to [10] , normalized
residual levels of the order of 10−4 are considered to be loosely converged,
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levels of the order of 10−5 are considered to be well converged, and levels of
the order of 10−6 are considered to be tightly converged. For complex flows,
however, it is not always possible to achieve normalized residual levels as low
as 10−5 or even 10−6. The algorithm follows iterative calculations for each
cell of the discretized domain until either convergence a maximum number
of iterations are reached. In the former case, the algorithm will stop when
all normalized whole-field residuals fall below a prescribed value or when the
number of iterations is equal to the maximum allowable number of iterations.
In the latter case the degree of convergence of the solution might be assessed
by inspecting the whole-field residuals related to the last iteration.

As far as the error induced by the domain discretization is concerned,
effective grid design relies largely on an insight into the expected properties
of the flow. Many times, simulations are firstly run on coarse meshes with
the only purpose of detecting the general characteristics of the solution. In
order to reduce or avoid errors associated with a too coarse domain discretiz-
ation, a grid independence study is needed, which is a procedure of successive
refinement of an initially coarse grid until certain parameters of interest for
the problem under consideration do not change significantly. If this occurs,
the solution is called grid independent.

As a final note, it is remarked, that, thanks to the increase in computer
power, CFD has become a practical very useful tool for studying fluid dy-
namic problems. Compared with laboratory and field experiments, CFD (i)
is much cheaper, (ii) provides the user comprehensive three-dimensional flow
field, thus the interpretation of flows much easier and more detailed, and (ii)
makes it relatively simple to perform sensitivity analyses. Conversely CFD
models are intrinsically approximated. Moreover when the flow is turbulent
the solution provided by the software is strictly dependent on the choice of
the turbulence model. So far, it does not exist a turbulence model that in
whichever case always performs better than others. For this reason the CDF
simulations need to be sustained by experimental simulation that give the
possibility to validate the model. Only when the CFD model is experiment-
ally validated at least for a significant number of variables, it can be used as
a powerful inference model.

2.3 Previous CFD studies on turbulent flows in
pipe bends

Unlike experiments, CFD provide the user the comprehensive three-
dimensional flow field and the values of each relevant fluid dynamic para-
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meter in the whole domain volume. Due to its low computational cost, it
is not surprising to realize that several numerical investigations of turbulent
flows in pipe bends were made following the RANS approach. Of course, this
choice was made being aware the limits of such approach in representing the
instantaneous nature of turbulence.

The purpose of the first studies was essentially to validate the capabilities
of RANS-based CFD models to capture the essential features of turbulent
flows in pipe bends. Conversely, the focus of the most recent investigations
was to examine whether the secondary flow in a curved pipe is driven by the
turbulence and, therefore, several turbulence models were employed and their
predictions compared. As already discussed in section 2.1.2, RANS-based
turbulence models can be distinguished in two main categories, namely those
based on the eddy-viscosity assumption, and those based on the transport
of the Reynolds stresses. The second family of models might appear more
suitable to describe the anisotropic behaviour of turbulence occurring inside
a pipe bend. Conversely, the Boussinesq assumption of isotropic turbulence
and, therefore, would appear less appropriate for application to pipe bend
flows. Both numerical and experimental simulations hinted that in the cross-
stream half plane are present actually three distinguished cells taking place
for turbulent flow: a Dean cell, a second cell formed near the pipe center as
a consequence of a local imbalance of centrifugal force together with radial
pressure gradient (as pointed out in paragraph 1.3.5), as well as a third one.
The last cell is expected to be purely driven by turbulence itself. Finally,
it is noted that, although much research efforts have been devoted to this
topic in the last decades, the actual capability of RANS-based CFD models
(either based on the eddy viscosity or solving for each components of the
Reynolds stresses tensor) to investigate flows in bend pipes where secondary
flows takes place is still unclear. [5]

In the remainder of the section, an overview of relevant previous RANS-
based numerical investigations is provided 2.1.

Author and year model γ [-] Φ [◦] Quantities measured
Patankar 1975 [5] standard k − ε 0.042 180 U, V, W
Azolla 1986 [1] standard k − ε 0.15 180 W, U

Al Rafai 1990 [11] standard k − ε 0.07 0.14 90 uRMS, W, U, V
Pruvost 2004 [7] Low-Re k − ε 0.25 0.077 90/180 W, Ptot

Table 2.1: Summary of main numerical simulations
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2.3.1 Patankar et al. (from [5])

Patankar and co-workers were the first researchers to make an attempt
to use the k − ε standard turbulence model to simulate the flow passing
through a bend. In particular, they reproduced the experiments of Rowe for
a developing flow in a Φ = 180◦ elbow, as reported in Table 1.1. In the light
of the rather small γ = 0.042, the authors made the assumption of parabolic
flow, which gave appreciable results over most of the bend. However, the
parabolic solver was unable to represent accurately the cross-section pressure
gradient.

2.3.2 Azzola et al. [1]

Azzola et al. [1] numerically reproduced their own experiments, pre-
viously described in paragraph 1.3.4 The numerical procedure relied on a
semi-elliptic discretization of the equations expressed in toroidal coordin-
ates, since it specifically focused on the bend domain. In order to make the
computation process more efficient, they employed different grids for differ-
ent variables because, for example, the rate of space variation of the velocity
is different from that of the pressure. The authors used the k − ε stand-
ard model for reason of computational speed, and they defined a very fine
near-wall grid discretization to capture the entire boundary layer, including
the viscous sublayer. Taking advantage of the symmetry of the mean flow
field, the authors simulated only half of the physical domain. Firstly, 53
pipe diameters were simulated upstream the bend to guarantee that the flow
entering the elbow was fully developed. Afterwards, the authors used the
downstream profiles of the variables as an inlet profile just 2 pipe diamet-
ers before the U-bend. The domain was extended 8 pipe diameters down-
stream of the bend, where zero-streamwise gradient constraints were applied
to all variables except for pressure. The mesh used had a 28 cells for the
radial non-uniform discretization, and 24 uniformly-spaced circumferential
cells mapping the semi-circular and 160 axial planes, for a total amount of
107520 elements. The authors proved that this discretization guarantees the
solution being grid independent.

The validation of the CFD simulations performed by Azzola et al. [1] is
presented in Figs. 2.2 and 2.3 in terms of longitudinal (W/Wb) and circum-
ferential (V/Wb) velocity components (normalized by the bulk velocity) and
their respective turbulence intensities (w′/Wb), (v′/Wb) (once again, normal-
ized by the bulk velocity). Having used the k−ε standard turbulence model,
in the calculations, u′ = v′ = (2k/3)1/2 = uRMS. Although Figs. 2.2 and
2.3 refer to a bulk Reynolds number Re = 57400, the authors claimed that
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the dimensionless profiles are not at all significantly different from those ob-
tained with Re = 110000. The profile of the longitudinal velocity component
W and its related RMS value measured upstream the bend at z′/D = −2
are compliant with the fully developed flow in a straight pipe. Inside the
bend, the plots indicate that the flow is accelerated toward the inner radius
of the pipe, in agreement with the conclusions drown by authors of many
other studies concerning the same kind of flow. The W -profiles prove that
the flow near the inner wall (ri) accelerates in the first half of the bend (ϕ =
from 3◦ to 90 ◦). Additionally, the V -profiles (radial velocity) prove the pres-
ence of the development of a strong secondary flow. As already mentioned,
this secondary flow is caused by the imbalance between the centrifugal force
and the pressure gradient set up between the outer ro and inner ri wall re-
gions of the bend. It’s interesting to point out that, close to the wall, the
cross-section secondary flow becomes relatively intense. In fact, V becomes
as high as 0.30Wb at ϕ = 45◦. Surprisingly, between ϕ= 45◦ and 135◦ the V-
profiles reveal a striking of the flow being directed towards the inner part of
the bend ri. The occurrence of a second cross-stream flow (second cell) after
ϕ= 90◦ supports the concept proposed by Rowe (section 1.3.2), according
to which this is a smaller and weaker structure, mainly confined in the core
(r < R/2), whose presence was attributed to the raise of transverse pressure
gradient opposite in sign in respect to that measured for smaller ϕ.
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Figure 2.2: Measurements (points) and calculations (continuous lines) of the dimensionless
longitudinal W/Wb (left) and circumferential U/Wb (right). The mesurements are made
for the section z/D = −2 − 1 ϕ = 3◦, 45◦, 90◦, 135◦, 177◦ and z/D = 1, 2, 3, 4, 5.
From Azzola et al. [1]
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Figure 2.3: Measurements (points) and calculations (continuous lines) of the dimen-
sionless longitudinal turbulence intensity w′/Wb (left) and circumferential turbulence
intensity u′/Wb (right). The measurements are made for the section z/D = −2 − 1
ϕ = 3◦, 45◦, 90◦, 135◦, 177◦ and z/D = 1, 2, 3, 4, 5. From Azzola et al. [1]

In conclusion, the numerical simulations performed by Azzola et al. [1]
were able to reproduce with a gratifying degree of fidelity the measured
evolution of the flow. This led the authors claim that "the k − ε standard
model does better in simulating really complex flows, such as those found
within the 180◦ bend, than it does in less strongly perturbed flows".

2.3.3 Al Rafai et al.[11]

Al-Rafai et al. after investigating the turbulent flow through curved
pipes Φ = 90◦ with an experimental simulation (paragraph 1.3.6) They also
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performed numerical simulations with a k − ε turbulence model and a mesh
of Nθ = 14 Nr = 15;Nz = 32 in the bend. The comparison between the
experimental and numerical results were not enough satisfying as visible in
Fig. 2.4

Figure 2.4: Profile of the dimensionless longitudinal velocity W/Wb for ϕ = 45◦, 75◦ in
the first bend with Rc = 0.58m (left) and the second bend with Rc = 0.29m (right) by Al
Rafai et al. [11]

Moreover the authors Al Rafai et al. [11] plotted for four section the
numerical results of the simulation ϕ = 0◦, 15◦, 45◦, 90◦. The secondary
flow is represented by the vectors and adimensional W/Wb is represented by
the contour lines (Fig. 2.5).
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Figure 2.5: Contour plots of dimensionless longitudinal velocityW/Wb and secondary flow
velocity components for sections ϕ = 0◦, 15◦, 45◦, 90◦ in the first bend with Rc = 0.58m
(left) and the second bend with Rc = 0.29m (right) by Al Rafai et al. [11]
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2.3.4 Pruvost et al. [7]

Pruvost et al. [7] performed numerical simulations to reproduce experi-
ments by Anwer and So regarding the turbulent air flow in a Φ = 180◦ pipe
bend with D = 0.0762 Rc = 0.495 γ = 0.077, and Re = 50000, focusing on
the influence of adding a swirl at the entrance of the bend.

Figure 2.6: Non uniform mesh in the axial and radial directions

The authors ensured that the flow entering the bend was fully-developed.
In this work, different grid refinement where applied for different parts of the
domain to reduce the computational effort as well as to detect thorough
changes where it was needed. In particular the domain was divided in three
regions along the axial direction and in two regions along the radial direc-
tion (Fig. 2.6). The grid spacing was not uniform throughout the different
regions. In the radial direction, the grid was finer near the wall. In the bend,
the axial grid spacing was made uniformly fine, whereas, in the upstream
and downstream parts, it was non uniformly distributed, being finer close to
the bend and coarser further from the curve part of the duct. The results
obtained where being ensured to be independent from the grid since different
refinement of the grid were employed to asses the sensibility of the solution
to different sizes of the cells. The computational domain was eventually
subdivided into 50244 cells.

In their study, Pruvost et al. [7] deeply analyzed the influence of the
turbulence model on the CFD predictions. Three years before, Wang and
Shirazi [7] compared the standard k−εmodel with wall functions and the low-
Re k−ε model, when reproducing the flow in a curved pipe of Φ =180◦ bend.
Although two methods gave an acceptable degree of conformity with the
experimental data, none of them stood up for representing the experimental
information better then the other. As a result, the k−ε model was preferred
between the two due to its higher degree of simplicity. In addition to those
two option, Pruvost et al. [7] considered two other k − ε variants, and a
Reynolds stresses model. Figure 2.7 shows the results of several simulations
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on the 180 ◦ case employing different models with no swirl addition at the
inlet.

Figure 2.7: Results obtained with different numerical models Φ = 180◦ at z/D = 1, here
the author called U the the axial velocity W . From [7].

In the Fig. 2.7, uτ that represent the wall friction velocity value, here
set to uτ = 0.323 m/s. The authors noted that, in section z/D=1, the
models do not provide dramatically different solutions, especially in terms
of mean axial velocity. The situation changes if swirl is added at the inlet
as, in this case, the turbulence models give more different results (Fig. 2.8).
The authors concluded that the low-Re k − ε model better represented the
experimental data nonetheless the standard version of the k−ε model didn’t
performed bad either. Therefore, in spite of the formal incapability of eddy
viscosity based models to predict anisotropy turbulence in flows, the low-Re
k− ε model appear rather effective. However, it is noted that the sensitivity
analysis was not comprehensive, as it was restricted to a specific case and to
few fluid dynamic parameters.
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Figure 2.8: Results obtained with different numerical models for Φ = 180◦ at z/D = 1
with swirl at the inlet.
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Chapter 3

Numerical simulation of the
experiments by Sudo et al. [9]

This chapter will focus on the numerical simulations related to the ex-
perimental case of Sudo concerning a 180◦ pipe bend. The software used
was PHOENICS version 2018 by CHAM Limited. The software allows to
perform steady and unsteady CFD simulations using either RANS-based or
LES-based CFD models. In this thesis, use was made of steady-state, RANS-
based models.

3.1 Implementation of the numerical setup
The pre-processing stage of a PHOENICS simulation follows the panels

in the main menu window of the code (Fig. 3.1).

Figure 3.1: Main menu of PHOENICS

Firstly, in the "Geometry" panel, the user must define the geometry of the
case study, including the coordinate system, and its discretization through
the computational mesh. As previously mentioned when discussing the ex-
perimental results, the mean flow is symmetric in respect to the horizontal
plane that divides the domain into two specular parts. Taking advantage of
such symmetry considerations, the CFD simulations are performed over one
half of the pipe section, thus broadly halving the computational effort. A
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mixed cylindrical-polar and toroidal coordinate system was chosen to set up
the flow domain, consisting of a straight upstream pipe segment, a 180◦ pipe
bend, and, finally, another straight pipe segment. This was achieved through
the "body fitted coordinates" option. The first and the third sub-domains
(namely, the upstream and downstream pipes) use a cylindrical-polar co-
ordinate system, where each cell is individuated by the azimuthal coordinate,
the radial coordinate and the axial coordinate, referred to as X,Y , and Z in
PHOENICS. In the second sub-domain, representing the 180◦ pipe bend, a
toroidal coordinate system is used.

From an operative point of view, the user starts by defining a cylindrical-
polar coordinate to create a straight pipe segment whose length is equal to
the entire length of flow domain. In the tool window of PHOENICS (Fig.3.2)
the user inserts the size of the domain along the azimuthal, radial, and axial
directions, which are X = π, Y = D/2 = 0.052 m, and Z = 140D = 14.56 m,
respectively. At the same time, the user must set the number of subdivisions
along the three coordinates, which, in this examples, are 40 in the angular
and radial directions and 564 in the axial one. The result is as shown in Fig.
3.3.

Figure 3.2: Definition of the upstream pipe domain
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Figure 3.3: A typical discretization using cylindrical-polar coordinates

Afterward, the pipe bend sub-domain is built using the Body Fitted
Coordinates (BFC) option. Up to this point, the three-dimensional domain
is a half straight pipe discretized in cylindrical-polar coordinates. As it is
visible in Fig. 3.4, the tool "revolve" allows bending a portion of the domain
along the coordinate Z, which now becomes a curvilinear abscissa. Since the
bend is positioned from the 61th slab of cells up to the 301th one, and brings
an overall revolution of 180° with the double of curvature radius Rc = 0.208
m. Since the upstream pipe segment is 100D = 10.4 m long, the revolution
starts in the 61th plane which is situated at a distance 10.4m from the origin.
This happens because cylindrical coordinates are employed upstream and
downstream the bend, whereas toroidal coordinates are used inside the bend.
The power ratio was set to a unit value inside the bend to produce a uniform
discretization. In the case the slabs were to be densified close to the bend
entrance, the power ratio of the bend sub-domain would have been smaller
than 1. Conversely, the slabs were not uniformly distributed in the upstream
and downstream pipes, where they were densified close to the interface with
the bend subdomain. Figure 3.5 exemplifies the use of power ratio of -2.4 in
the inlet straight pipe segment and a power ratio of 2.4 in the downstream
part of the pipe starting from 5D downstream of the bend.

Then, in the "Model" panel, the user must define the fluid dynamic equa-
tions solved and, in the case of RANS-based modelling, the turbulence model
employed. The software provides several turbulence models. Initially, the
k − ε standard turbulence model is used. Other simulations were performed
using RNG k − ε, Relizable k − ε, k − ω, and SST k − ω.

In the experiment carried out by Sudo and co-workers the working fluid
was air, thus the fluid properties defined in the "Properties" panel were those
of air at 20◦C, with a density ρ = 1.189kg/m3 and µ = 1.81 · 10−5Pa·s.

At this point, the boundary conditions must be defined. These are inlet,
outlet, solid wall (plate in PHOENICS), and symmetry. The inlet covers the
entire first slab of cells; at this boundary, the three mean velocity components
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Figure 3.4: Definition of the bend geometry using Body Fitted Coordinates (BFC)

Figure 3.5: Example of use of power ratio of -2.4 upstream the bend and 2.4 starting from
5D downstream of the bend

and the turbulence variables are specified. The radial and the azimuthal velo-
city components are set to zero, whereas the streamwise velocity was w0 = 8.7
m/s, as in the experiments. Regarding the turbulent parameters k, ε, ω are
set autonomously by the software PHOENICS. The outlet is placed in the
last slab and, at this boundary, the pressure is imposed equal to the at-
mospheric pressure, and the normal gradient of all other variables is set to
zero. The wall (plate) boundary condition represents a hydraulically smooth
impermeable surface, that is placed externally over the cells that have the
radial coordinate equal to the pipe radius r = R. The remaining boundary
surface coincides with the symmetry plane, which is an impermeable surface
over which the angular velocity and the fluid wall shear stress are zero.

The panel "Initialization", shown in Fig.3.1, allows attributing constant
initial values to one or more variables such as U , V or W etc. Generally, a
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suitable initialization speeds up the velocity at which convergence is reached.
Setting the initial value of W in the whole domain equal to the inlet value
gives as a result a quicker convergence, especially when fine meshes are used.

Finally, in the panel "Numerics", the user can set the maximum number
of iterations to perform during a simulation, as well as define the global
convergence criterion based on a threshold value of the whole-scale residuals.
The global convergence criterion relates with the desired degree of accuracy of
the solution. In fact, when the threshold residual is reached for all calculated
variables, the solution is considered to be convergent.

The computational domain used for the numerical simulations is visible
in Fig. 3.6. Note the presence of the monitoring probe at the end of the
bend; the probe is the sensor that the user can move in any domain’s cell to
measure the value of the variables (pressure, velocity) in the desired cell. The
numerical setup accurately represents the experimental setup of Sudo and
co-workers, both in terms of geometry (length of upstream and downstream
pipes equal to 100D and 80D, respectively, bend angle 180◦ and γ = 0.25)
and in terms of fluid dynamic conditions (air flow with inlet velocity of w =
8.7 m/s)

Figure 3.6: Overall view of the numerical setup.

3.2 Considerations of the development of flow
upstream the bend

Sudo et al. claimed that the length of the upstream pipe in their setup,
equal to 100D, was sufficient to produce fully-developed flow at the entrance
of the bend. In order to assess whether this occurred also in the numerical
simulations, the development of the flow in the upstream sub-domain was
investigated, making reference to the following variables, uRMS, W , and
longitudinal pressure gradient in the position identified by the arrow in Fig.
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3.7. The three physical quantities are plotted for the 100 diameters of the
inlet straight segment in Fig. 3.8 where it is evident that they reach a stable
value after approximately 50D.

Figure 3.7: Position where the three variables were computed in any section of the inlet
straight segment.

Figure 3.8: Analysis of flow development in the upstream pipe for the axial velocity W
"a", uRMS "b" and pressure gradient dp/dz "c"
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The fact that the flow is fully developed ensures the independence of the
solution inside the bend and downstream of it from the shape of the distri-
bution of the fluid dynamic variables at the inlet section (z=0), here taken as
rectangular. Noticing that the flow is fully developed also allows shortening
the domain, producing two advantages. On the one hand, it makes it possible
to reduce the reduce the number of cells keeping the same mesh refinement
level, thereby reducing the computational effort. On the other, it allows in-
creasing the mesh refinement level without increasing the overall number of
cells, and, therefore, the computational burden. The second strategy was
useful in the grid independence study, as described in Section 3.3.

3.3 Numerical convergence of the solution
In general terms, "numerical convergence" indicates that the approxim-

ate solution must approach the analytical one, which is unknown. In CFD,
two inter-related aspects relate with the numerical convergence, namely, the
iterative solution algorithm and the computational mesh.

3.3.1 Iterative solution algorithm

Whenever a job is launched, the software starts computing the fluid
dynamic variables in all computational cells in an iterative process, which
proceeds until either the maximum number of iterations or a threshold per-
centage residual is reached. Figure 3.9 shows an example of the PHOENICS
windows that appears when the computation is running.

Figure 3.9: Communication window of PHOENICS when the simulation is running
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In the bottom-left corner, the total number of cells NX NY NZ of the
three directions are indicated. It is also possible to see the number of the cur-
rent iteration next to the variable name ISWEEP, which is useful to realize
how fast the computation proceeds in relation to the time of computation,
which is also visible. In the top-left corner of the windows, the location of
the monitoring probe, visible in Fig. 3.6, is indicated. The curves in the left-
hand side plot are the values, at every iteration of the solution algorithm, of
the fluid dynamic variables at probe position. The right chart represents the
evolution of the residuals of all parameters. On top of this last graph there
is the given convergence criterion value, so when all normalized residuals are
lower or equal to this value the convergence is reached and the simulation is
stopped. This two graphs are useful because they can help understanding in
real time how the simulation is going. When the simulation is converging, on
the left chart the values are becoming more stable on a given value, whereas
on the right one the residuals are lowering more and more during the integ-
ration process. In the communication window presented here, which refers
to the computational mesh called "Fine Grid" in the next sub-section, the
convergence with the global convergence criterion was not reached because
the residuals stop their diminishing trend and started oscillating close to a
certain value. This is a typical behavior in CFD simulations, especially when
either the flow or the geometry are relatively complex. In spite of this the
simulation was successfully ended, since the residuals reached a sufficiently
low value. Each row of the table provides the values, at the current itera-
tions, of different parameters related with the same fluid dynamic variable.
These parameters are indicated in the title of each column.

3.3.2 Grid sensitivity

In addition to verifying the convergence with respect to the iterations
of the solution algorithm, it must be proved that the computational mesh
chosen by the user is able to produce convergence towards a unique solution.
This is achieved through a grid-independence study, aimed at demonstrating
that the solution on a given mesh does not significantly change after further
mesh refinement.

For this analysis, 4 different grids where employed. First of all, the do-
main is divided into four parts alongside the longitudinal coordinate, referred
to as "a", "b", "c", d" in Fig. 3.10. This was made to achieve more flexibil-
ity in the definition of the mesh, by considering that different level of mesh
refinement are needed according to the spatial rate of change of the physical
variables, the higher the rate the finer the grid.
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Figure 3.10: Identification of the four mesh regions

The region denominated as "a" corresponds the upstream straight seg-
ment and has a variable power ratio , which depends on the simulation.
Region "b" includes the bend and it was always discretized with a uniform
mesh (power ratio = 1). The same holds for region "c", which extends 10D
downstream of the bend. The remaining part of the domain is included in
zone "d" that has variable power ratio, which, in absolute terms, is always
equal to that in zone "a". The topological characteristics of the meshes
employed for the grid independence analysis are summarised in Table 3.1:

Grid refinement Nθ Nr Na Nb Nc Nd Nz Ntot P Time [hours]
Coarse grid 10 10 80 60 52 80 272 27200 1 2

Medium-coarse grid 20 20 140 120 100 140 500 200000 1 7.3
Medium-fine grid 30 30 40 180 160 40 420 378000 2.3 44

Fine grid 40 40 60 240 214 50 564 902400 2.3 62

Table 3.1: Characteristics of the different meshes for the grid independence analysis and
approximate time of computation. The variable N indicates the number of subdivisions
along direction θ, r, and z in each regions "a", "b", "c", d" in Fig. 3.10. The power P
applies to region a and d, and it is negative in the former case, and positive in the latter
one.

In order to analyze the grid independence of the solution, one needs
to compare the same feature of the solution calculated on different meshes.
If the value changes from one refinement to another, then the solution is
grid dependent. When the difference of values from one grid to another is
very small, that brings to state that this feature of the solution is not much
sensitive to grid refinement and either of the two grids can be used for the
computations without significant errors induced by the grid. The variable
used to detect the sensitivity of the solution to the mesh are URMS, P , W
and V . The position chosen is the diameter lying on the symmetry plane of
the pipe, as shown in Fig. 3.11. The analysis has been made for three slabs
along the streamwise direction, namely, at the entrance of the bend (ϕ = 0◦),
at half of the bend (ϕ = 90◦), and at the exit of the bend (ϕ = 180◦). The
corresponding results are displayed in Figs. 3.12, 3.13, and 3.14, respectively.
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Figure 3.11: The position where the physical quantities are computed is highlighted in
red, intrados ri (left), extrados ro (right).

Figure 3.12: Grid independence study of "a" axial velocity W ,"b" radial velocity V , "c"
pressure P and "d" uRMS on the symmetry segment of the pipe section (Fig. 3.11) at
position ϕ = 0◦
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Figure 3.13: Grid independence study of "a" axial velocity W ,"b" radial velocity V , "c"
pressure P and "d" uRMS on the symmetry segment of the pipe section (Fig. 3.11) at
position ϕ = 90◦
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Figure 3.14: Grid independence study of "a" axial velocity W ,"b" radial velocity V , "c"
pressure P and "d" uRMS on the symmetry segment of the pipe section (Fig. 3.11) at
position ϕ = 180◦

By looking at the plots, it is possible to draw a few consideration. In
all the three slabs, the coarse grid gives values that are far too much dif-
ferent form those provided by the other grids and, thus, appears to be
totally inadequate. The other three grids show a clear tendency towards grid-
independence. In particular, the values computed employing the middle-fine
grid and fine grid are generally rather close to each other, and non-negligible
differences are observed only for the streamwise velocity W at ϕ = 90◦.
Considering that further mesh refinement was not possible owing to com-
putational limitations, and that there is an difference of about 18 hours of
calculation time between the two finest meshes, the remainder of the simu-
lations were performed using the middle-fine grid, as this was judged a good
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compromise between accuracy and computational burden.

3.4 Experimental validation
The validation of a CFD model consists in assessing the degree of agree-

ment between the numerical solution and the experimental evidence for a
certain case and limited to some measurable features of the flow. This section
is dedicated to the comparison of CFD results obtained with the standard
k − ε model and the experimental data available from the study conducted
by Sudo et al. [9]. On the grounds of the grid sensitivity study previously
described, the numerical data used for the validation are those calculated
on the medium-fine grid in Tab. 3.1. Since Sudo et al. [9] did not provide
the measured variables in tabular format, it was necessary to infer these
quantities from the graphs and figures provided by the authors.

Figure 3.15: Wall static pressure coefficient Cp: experimental data measured by Sudo
et al. [9] (left); numerical data with the superimposition of experimental data for three
azimuthal positions (right).

Firstly, the wall static pressure was analyzed, referring to the pressure
coefficient Cp (Eq. 1.3). The comparison was carried out form the entrance
section of the bend ϕ = 0 pipe up to 5D after downstream of the bend
for three azimuthal positions (that is, three values of θ) and r = R. The
position θ = 90 corresponds to the outer side (ro), whereas the position
θ = −90 individuates the inner one (ri). The curve for θ = 0 is as displayed
in the left plot in Fig. 3.15. Indeed, experimental data are available even 1D
upstream of the bend, but, since the grid in that region was not uniformly
distributed, an accurate comparison with experimental data was not possible
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owing to the difficulties in estimating Cp in a specific axial location using the
MATLAB post-processing routines available. For the same reason, it was
not possible to find Pref as the value at θ = 90◦ 17.6D upstream of the bend,
as the experimenters did. Therefore, in the numerical simulations Pref was
tuned to have a perfect match between the numerical and experimental data
5D downstream of the bend at θ = 90◦. Generally, the three experimental
curves agree quite well with with the experiments, although there is not a
perfect overlap in the right plot in Fig. 3.15. Numerical data appear shifted
downwards in respect to the numerical one, and this might also be attributed
to the arbitrary choice of Pref that operate a vertical translation on numerical
data. Obviously, pressure is higher at the outer wall, so that a radial pressure
gradient opposes to the centrifugal force. Additionally, looking at the curve
for θ = 0◦, it is evident that both numerical and experimental individuate a
decreasing trend, compliant with the fact that there is a loss of energy in the
bend.

Figure 3.16: Contour plot of W/Wb in the symmetry plane of the system: experimental
data measured by Sudo et al. [9] (left) on and numerical data calculated with PHOENICS
(right).

Afterwards, a qualitatively comparison was made in terms of the longit-
udinal velocity W/Wb on the symmetry plane of the system. This was made
starting from one pipe diameter upstream of the bend, where the flow is ap-
proximately fully developed and it does not practically perceive the influence
of the bend, up to 5D upstream of the bend, where the monitoring probe
is located, see Fig. 3.16. It is possible to observe that the flow is initially
accelerating near the ri side of the pipe from ϕ = 0◦ until about ϕ = 20◦. Af-
terwards, after that it starts heading towards the ro side of the bend, though
the highest velocity is still in the inner region of the bend. The numerical
model predicts a low velocity close to the bend center-line from ϕ = 90◦ and
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ϕ = 180◦ and faster velocities close to both external sides ri and ro. Once
again, there is a good agreement between experimental and numerical.

It is convenient to analyse the flow in the bend through the joint analysis
of Fig. 3.15 and Fig. 3.16. In fact, for θ = −90◦ (that is, the ri side)
and 0 < ϕ < 20◦, as the velocity is accelerating the pressure is dropping.
Conversely, for larger ϕ the velocity close to the ri side decreases, entailing a
pressure increase until ϕ = 90◦, where the W starts increasing again and the
pressure decreases. This phenomenon is clearly visible from the "W" shape
of the Cp for θ = −90◦ as a consequence of what previously aforementioned.
Analogous considerations can be made for the velocity and pressure for θ =
90◦ in the ro side of the bend.

Further comparison between experimental and numerical axial velocity
data can be done by referring to three equally spaced cross-sections of the
bend (ϕ = 30◦, 90◦, 150◦). Experimental data taken from Sudo et al. [9] are
depicted on the left side of Fig. 3.17, whereas the numerical data for the
corresponding sections are shown on the right side are. All half pipe sections
in these pictures have the left side corresponding to the inner side of the bend
ri and the ro located on the right side. For pictures "a" and "b" (ϕ = 30◦)
there is a clear agreement between the measurements and the prediction of
the numerical model. Both approaches well represent that, at this location,
the flow velocity is accelerated close to ri, and, as a matter of facts, the
highest velocities are on the left side of the plots. Although the qualitative
behaviour of the W/Wb map is in agreement with the experiments also for
plot "c" and "d" (ϕ = 90◦), the calculated distribution of W/Wb shows
smoother variations and lower magnitude compared with the evidence. This
might be due to the fact that the anisotropic nature of turbulence inside of the
bend cannot be well captured by a turbulence model based on the Boussinesq
assumption. Nonetheless, there is an other consideration that ought to be
made, in that the experimental measurement are collected over a grid mesh
that is finer close to the wall to better detect the changes in velocity in that
region (Fig. 1.13). Conversely, the CFD simulations employed a uniform grid
and, therefore, the abrupt changes in velocity close to the wall might be not
accurately captured by the numerical model owing to the relatively coarse
grid in that region. Analogous considerations can be made for the section at
(ϕ = 150◦) by inspecting plots "e" and "f" in Fig. 3.17.
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Figure 3.17: Contours of W/Wb over three cross-sections of the bend: experimental data
measured by Sudo et al. [9] (a,c,d) and numerical data (b,d,f). The left sides of each
section correspond to the inner wall ri , and "a" and "b" stand for section ϕ = 30◦ ; "b"
and "c" stand for section ϕ = 90◦ ; "d" and "e" stand for section ϕ = 150◦.

Attention was then turned to other fluid dynamic characteristics related
with the velocity field, namely, the time-averaged secondary flows and the
velocity fluctuations. In a first stage of the work, reference was made to the
cross-section averaged parameters Is and ka, already defined in paragraph
1.1. The calculated and measured streamwise profiles of these variables are
shown in Fig. 3.18. The first parameter is an indicator of the intensity of
the secondary flow of the whole section. The CFD model underestimates
Is, but the trend is qualitatively the same of the experimental data, exclud-
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ing the small peak observed numerically at the end of the bend which is
worthy of further investigation, and it might be due to some post-processing
issues. The parameter ka represents the average level of turbulence in a given
section. From a qualitative point of view, the numerical and experimental
results evidence a similar trend. However, the CFD model underestimates
the turbulence level and its pick is located a bit further downstream from
the inlet section compared to the experimental observation. The underes-
timation of ka produced by the standard k − ε turbulence model might be
produced by the fact that this model relies on the assumption of isotropic
turbulence when in reality turbulence in the bend is strongly anisotropic.

Figure 3.18: Graphs "a" and "b" represent the profiles of Is and ka, as experimentally
determined by Sudo et al. [9] and calculated from the CFD simulation.

The parameter Is provides information on the magnitude of the secondary
flow phenomenon, but it does not provide any information of the spatial
distribution cross-section velocities U and V . In order to have a better idea
of the direction of U and V , reference could be made to Fig. 3.19, which is
the analogous of Fig. 3.17 for the cross-plane mean velocity vectors. From a
qualitative point of view, plot "b" qualitatively well represents the direction
of the secondary flow but, due to the absence of any legend giving information
on the magnitude of the velocities in plot "a", no quantitative conclusion can
be obtained. The same consideration can be made for plots "c" and "d",
where the in-plane vortex is well developed and clearly visible. Instead in
picture "f", it is possible to see a second vortex close to the symmetry pipe
plane and slightly on the left side of the pipe center-line. The existence of
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such second vortex has been mentioned in Paragraph 1.3.5 by Anwer et al.
[5], but this is not visible in the experimental measurement of of Sudo et al.
[9] (picture "e"), probably also because the resolution of the experimental
grid is too coarse.

Figure 3.19: The same as Fig. 3.17 for the in-plane velocity vectors.

Finally, Fig. 3.20 is the analogous of Figs. 3.17 and 3.19 for the longit-
udinal fluctuating velocity. Note that the plots in the right-hand side show
the uRMS/Wb ratio. This is a consequence of the use of the k − ε turbu-
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lence model and its underlying assumption of isotropic turbulence. Although
the qualitative map of the iso-lines show similarities between experiments an
computations, there is a rather poor agreement between the measurements
and the numerical data. In particular, the CFD model fails in capturing
the existence of a high turbulence region close to the inner wall. Such poor
agreement, interpreted as a consequence of the use of the k − ε turbulence
model, has correspondence with the fact that, as already observed, also the
cross-averaged parameter ka was underestimated.

Figure 3.20: The same as Fig. 3.17 for the normalized fluctuating velocity, directly
provided by Sudo et al. [8] and estimated as uRMS/Wb in the numerical calculations.
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3.5 Optimization of the computational domain
The duration of a CFD simulations depends on many factors including

the extension of the domain, the choice of the grid, and the number of solved
variables in each element of the domain. It is evident that, if the number of
grid cells increases, the computational time for each iteration will accordingly
rise. However, a less intuitive behavior was also observed, that is, when sim-
ulating two cases which differ from each other because one has an additional
part added to the geometry, the case with a larger domain size took much
more time to converge, even if the number of cells are the same. The time
to reach convergence is also dependent upon the choice of the turbulence
model: the convergence, in fact, may take less or more time because one
model is more appropriate than the other as well as because one model has
more parameters to compute than another.

In the experiment of Sudo et al. [9], the length of the pipe upstream
of the bend was 100D. Such a size guarantees a fully developed flow 1D
before the bend entrance. From the findings in Section 3.2, it is evident that
flow is already fully developed about 50D downstream of the inlet section,
so there is no convenience in keeping an upstream length of 100D. Based
on the considerations drawn above, the numerical setup could be improved
from the point of view of the computational cost by halving the first straight
segment from its original dimension.

To have the certainty of acting right, further testing was carried out to
ensure that the shortening in the length of the upstream pipe would bring
benefits in terms of computational time without altering the behaviour of
the fluid at the entrance of the pipe. Two different runs were compared.
They have the exact same number of grid cells and the same turbulence
model (k − ε standard), but the first simulates 100D upstream of the bend
whereas the other only 50D. The values of the uRMS, P , W and V , over
the red segment showed in Fig. 3.11 in the slab at ϕ=0◦ are compared.
The characteristics of the meshes used in the two simulations are reported in
Table 3.2 and the graphs of the four variables taken into consideration are
displayed in Fig. 3.21

Lz Nteta Nr Na Nb Nc Nd Nz Ntot P. Time [hours]
100 D 30 30 40 180 160 40 420 378000 2 ≈ 25
50 D 30 30 40 180 160 40 420 378000 2.3 ≈ 10

Table 3.2: The simulation grid features
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Figure 3.21: Comparison of the values of "a"W , "b" V , "c" P and uRMSo n the symmetry
segment of the pipe section in position ϕ = 0◦

The plots in Fig. 3.21 confirm that the solutions obtained with 100D
and 50D length of the inlet straight segment are very similar to each other.
The relative small differences may be attributed to the different mesh power
ratio rather then to the different length of the upstream pipe. In fact, the
section with ϕ = 0◦ already perceives the presence of the bend and the cells
just upstream to that section have different sizes in the z direction, thus
probably giving rise to the small differences observed in the solution.

The advantage of using a smaller domain is very evident from the consid-
erable reduction in the computational time. This was very surprising, since
the number of cells is exactly the same between the two cases. A possible
interpretation was that a higher mesh power ratio allows for a more gradual
change of the mesh size across the inlet section of the bend and this, in turn,
helps to reach the convergence faster. Another possible interpretation is that
the under-relaxation factors sets automatically by PHOENICS, which have
a direct impact on the convergence speed, do depend on some features of the
computational mesh such as the physical size of the cells and their aspect
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ratio. Both interpretations are worthy of further investigation, but this was
demanded to future work. At present, it was simply decided to run all sub-
sequent simulations with 50D of straight pipe upstream the bend and power
ratios |power|>2.2 .

3.6 Sensitivity upon the turbulence model
Focus of this paragraph is the sensitivity of the numerical solution upon

the choice of the turbulence model. Reference was made to four other tur-
bulence models: RNG k − ε, Realisable k − ε, k − ω Wilcox 1988, k − ω
SST.

The computational mesh is the same as previously defined. No addi-
tional grid sensitivity analyses were made, but on the grounds of the grid
independence study performed when using the k − ε standard model, us-
ing a grid analogous to the "fine" (Tab. 3.1) one appeared a choice on the
safe-side. The only exception was made for the k − ω SST, which did not
converge with the fine grid. In that case, the medium fine grid was used.
The characteristics of the grids employed for each model are summarized in
Table 3.3.

Turbulence model Nθ Nr Na Nb Nc Nd Nz Ntot P.
RNG k − ε 40 40 60 240 214 50 564 902400 2.3

Realisable k − ε 40 40 60 240 214 50 564 902400 2.3
k − ω Wilcox (1988) 40 40 60 240 214 50 564 902400 2.4

k − ω SST 30 30 70 180 160 49 459 413100 2.4

Table 3.3: Characteristics of the grids used in the simulation with different turbulence
models

The first parameter subject of investigation was the dimensionless pres-
sure coefficient Cp, calculated as explained in paragraph 3.4. As shown in
Fig. 3.22, the results with the four models differ from each other only very
slightly. The green line in Fig. 3.22, corresponding to the RNG k− ε, is the
closest to the experimental data for both θ = 90◦ and θ = −90◦.

In Fig. 3.23, the countours of the streamwise velocity, normalized by the
bulk-mean velocity, are shown on the symmetry plane of the pipe, in order
to detect macroscopic differences among the predictions of the 4 turbulence
models in respect to the experimental data of Fig. 3.16. In plots "a","b" and
"d", the dimensionless maximum velocity reaches 1.24, which is quite close
to the experimental 1.25. In particular, in picture "a" (RNG k − ε), down-
stream of the bend the W distribution is very similar to the experimental
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Figure 3.22: Comparison of 5 turbulence models with the experimental data of Sudo et
al. [9] analysing the static wall pressure expressed in terms of pressure coefficients Cp.

one, whereas, in picture "b" (Realizable k − ε), the velocity is underestim-
ated in that region. In picture "d" (k − ω Wilcox 1988), the high velocity
region undergoes expansion downstream of the bend, in contradiction with
experimental data. Keeping as a benchmark Fig. 3.16 among the four and
picture "a" (RNG k − ε) best represent the experimental data.

The attention was then turned to the secondary flows, and, initially, ref-
erence was made to the cross-section average parameter Is. The experimental
data in Fig. 3.24 indicate a stronger intensity of secondary flow compared to
all numerical predictions. All turbulence models not only underestimate the
intensity of the secondary flow, but also the location where the pick occurs.
They all predict a smaller pick at ϕ = 75◦, whereas the experimental data
show a higher pick at ϕ = 90◦. Starting from ϕ = 0◦, all models predict a
slight decrease in the intensity of secondary flow until about ϕ = 20◦; Is starts
increasing again afterwards. Although no validation can be made regarding
this behavior, since no experimental data are available between ϕ = 0◦ and
ϕ = 30◦, some interpretation can be argued by looking at pictures "a" and
"b" of Fig. 1.18, which represent the experimentally-determined in-plane ve-
locity vectors. At ϕ = 0◦, all vectors are pointing towards the ro side of the
bend, whereas, at ϕ = 30◦ the vectors are pointing towards the ri side. The
inversion of direction ought to be gradual between ϕ = 0◦ and ϕ = 30◦, hence,
at ϕ = 20◦ the secondary flow is very weak. As to the second smaller pick of
Is close to ϕ = 180◦ finds a numerical interpretation and contradicts the ex-
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Figure 3.23: W/Wb dimensionless velocity on the pipe symmetry plane for the following
turbulence models: "a" RNG k − ε ; "b" Realisable k − ε ; "c" k − ω SST ; "d" k − ω
Wilcox 1988; The probe is positioned 5D downstream of the bend.

perimental data that show a constant drop of the Is. The numerical solution
of the secondary flow measured by Is from section ϕ = 130◦ diminishes until
ϕ = 160◦, where the in-plane velocities are small, and then increases again
as the cross section velocities increase their modulus until ϕ = 180◦, see Fig.
3.25. The cusp shape of the pick and the position corresponding to change
from toroidal and cylindrical coordinates suggest that the problem may be
either of the numerical solution (numerical instability), a physical solution
would have a smoother shape. Once again, the RNG k− ε is the turbulence
model that produces the closest agreement with the experimental data.

The last parameter subject of investigation is ka, which quantifies the
cross-section averaged turbulence intensity. None of the models is able to re-
produce accurately the trend of ka detected experimentally by of Sudo et al.
[9]. Nonetheless, there is agreement with experiments in terms of the order of
magnitude of ka and the qualitative behavior of the curve, in which an initial
increase is followed by a decrease, with just one maximum. All turbulence
models predict a higher intensity of turbulence compared with the experi-
mental data starting from the ϕ = 0◦ (Fig. 3.26). All models overestimate
the decay of turbulence intensity downstream of the bend. The model that
performs better than the others, and gives a solution with similarities with
the experimental data is the RNG k − ε. Note that all turbulence models
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Figure 3.24: Comparison of 5 turbulence models with experimental data from Sudo et al.
[9]: analysis of the intensity of the secondary flow by referring to the Is parameter.

Figure 3.25: Cross section velocities from the simulation with standard k − ε turbulence
model and middle fine grid for section: "a" ϕ = 130 ; "b" ϕ = 140 ; "c" ϕ = 150 ; "d"
ϕ = 160 ; "e" ϕ = 170 ; "f" ϕ = 180 ;

used in this study rely on the Boussinesq assumption, which is not suitable
to model the anisotropic behaviour of turbulence which occurs inside of a
bend and downstream of it. Therefore, it is not surprising to see that no
perfect agreement between experiments and computations was obtained.

In the next chapter, the validation will be extended to other experiments.
Based on the findings of the sensitivity analysis presented here, use will be
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Figure 3.26: Comparison of 5 turbulence models with experimental data of Sudo et al. [9]:
a analysis of the intensity of turbulence by referring to the ka parameter.

made of the RNG k− ε turbulence model, to further assess whether, in spite
of its simple assumptions, this model allows capturing the main features of
turbulence flows in pipe bends.
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Chapter 4

Extension of the validation to
other experimental conditions

In this chapter, the validation was extended to two other experimental
tests available in literature and both referred to pipe bends with Φ = 90◦.
The first set of experimental data was acquired by Sudo et al. [8]. The
second is reported in a paper written by Enayet et al. [3]. The numerical
simulations were carried out taking into account all the expertise acquired in
Chapter 3.

4.1 Numerical simulation of the experiment by
Sudo et al. [8]

Sudo et al. [8] performed an experiment on a bend with Φ = 90◦ hav-
ing the same R, γ, and upstream and downstream pipe lengths of the case
already considered in Chapter 3. As a result, there was no need to make any
additional simulation to find the minimum upstream length that guaranties
the condition of fully developed flow. The upstream straight pipe length was
set to 50D because it guarantees a fully developed flow. All other parameters
used in the numerical simulation were kept the same as reported in the paper
of Sudo et al. [8]. For the definition of the grid, the pipe was subdivided in
4 parts along the streamwise direction (50D of straight pipe, 90◦ bend, 5D
of straight pipe, and additional 35D of straight pipe). These partitions are
indicated by the letters "a","b","c","d", respectively.The topological char-
acteristics of the meshes employed are summarised in Table 4.1. The power
ratio is applied only in regions "a" and "b", and limited to the longitud-
inal direction. The turbulence model chosen to carry out the simulation was
the RNG k − ε, as this was found to provide the best agreement with the
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experimental data for the case treated in Chapter 3.

Nθ Nr Na Nb Nc Nd Nz Ntot |P.|
40 40 90 120 214 72 496 793600 2.2

Table 4.1: The same as Tab. 3.1 for the experiment of Sudo et al. [8]

The wall static pressure numerical predictions along the regions "b" and
"c" (covering the 90◦ bend and 5D of straight pipe downstream of it) are
displayed in the right part of Fig. 4.1 and the experimental data are present
on the left. Reference was made to the dimensionless pressure coefficient
Cp, and, in this case, Pref was determined in such a way to have perfect
superposition between experimental and numerical solutions in the point
individuated by the coordinates: r = R, θ = 0◦, and ϕ = 90◦.

Good agreement between the predicted and measured solutions was found
inside the bend, whereas, just downstream of it, the numerical solution un-
derestimates the pressure losses occurring because of the secondary flow vor-
texes. As it will be further discussed later in this section (plot "a" in Fig.
4.3), in region "c" the intensity of secondary flow predicted by the model is
weaker than the experimental one.

Figure 4.1: Wall static pressure coefficient Cp: experimental data measured by Sudo et al.
[8] superimposed with numerical data for three azimuthal positions.

The normalized axial velocity W/Wb contour lines in the half section of
the pipe are also considered for the comparison between the experimental
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data (left) and numerical one (right) in Fig. 4.2. There is a very good agree-
ment between the isotaches displayed in plot "a" and "b" (ϕ = 30◦). Such
agreement slightly worsen in the two downstream section (ϕ = 60◦, 90◦) "c"
,"d", "e" and "f", even if the numerical solution well matches the experiment
from a qualitative point of view. In particular, in the numerical solution,
the changes in axial velocity magnitude are less abrupt and more gradual,
as it can be inferred from the fact that the contour lines are smoother in the
sections on the right (Fig. 4.2).

Figure 4.2: Contours of W/Wb over three cross-section of the bend: experimental data
measured by Sudo et al [8] (a,c,d) and numerical data (b,d,f). the left sides of each section
correspond to the inner wall ri, and "a" and "b" for section ϕ = 30◦ ; "b" and "c" stand
for section ϕ = 60◦; "d" and "e" stand for section ϕ = 90◦.

The integral, non-dimensional parameters that measure the intensity of
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secondary (Is) and the intensity of the turbulence (ka) show qualitatively sim-
ilar behaviors for the numerical and the experimental data, although evident
deviations are observed from a quantitative point of view. The spatial evolu-
tion of Is predicted by the the RNG k− ε turbulence model underestimates
the experimental data. In the first part (0◦ < ϕ < 60◦), the behavior of Is
is very similar to the one calculated for the Φ = 180◦ bend (Fig. 3.18), with
an initial decrease of Is followed by its subsequent increase. As in the case
Φ = 180◦, just close to the bend exit Is shows a small cusp. The cusp was
detected in the numerical data only. Although the resolution of the experi-
mental point is not fine enough to prove its existence, the cusp seems to be a
spurious consequence of the numerical setup and the post-processing of the
CFD solution. The cusp is detected exactly where the grid changes its topolo-
gical features (from toroidal to cylindrical polar). Also for the parameter ka,
the numerical solution appears to anticipate trend observed experimentally,
showing the same pattern discussed in Chapter 3 for the Φ = 180◦ bend.
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Figure 4.3: The graphs at the top "a" and "b" represent the profiles of ka and Ia, as
experimentally determined by Sudo et al. [8] and calculated from the CFD simulation.
the bottom plot "c" is the original figure from the paper by Sudo et al. [8]

The plane view of the secondary flows taking place in the bend is rep-
resented by the aid of the cross-plane mean velocity vectors in Fig. 4.4. The
first two pictures "b" and "d" form the numerical simulation show a nice
agreement with the experimental measurements in pictures "a" and "b".
Conversely, picture "e" shows a clockwise vortex, whereas picture "f" shows
a counter-clockwise vortex with the same topology and magnitude. This de-
viation was completely unexpected, and, after careful thinking, it could not
be excluded that it arose from an editorial mistake. In fact: (i) the paper
by Sudo et al. [8] contains nine cross-plane velocity maps, and picture "e"
is the only one in which the vortex is clockwise; (ii) if a local change in the
direction of rotation of the vortex were actually present, its existence would
have some effect on the curves of ka and Ia; (iii) in the 180◦ bend case, the
vortex is counter-clockwise in the section at 90◦. In conclusion, apart from
this unclear aspect regarding picture "e", the agreement between numerical
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and experimental data is very good.

Figure 4.4: The same as Fig. 4.2 for the in-plane velocity vectors.

Finally, the comparison in terms of fluctuating velocity shows the same
behaviour already observed in Chapter 3 for the 180◦ bend. In summary,
isotropic, eddy viscosity models do not perform very well on the ri side of
the bend, yielding a strong underestimation of the turbulence level. Note
that, in the experiments, the fluctuating axial velocity is reported, whereas,
in the CFD simulations, only the uRMS value could be calculated.
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Figure 4.5: The same as Fig. 4.2 for the normalized fluctuating velocity, directly provided
by Sudo et al. [8] and estimated as uRMS/Wb in the numerical calculations.
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4.2 Numerical simulation of the experiment by
Enayet et al. [3]

This paragraph is dedicated to the simulations of the experiments by
Enayet et al. [3] summarised in paragraph 1.3.3. Once again, the turbulence
model used for these simulations is the RNG k − ε. Unlike Sudo et al. [8]
and [9], these authors used water and not air as working fluid. The bend is a
Φ = 90◦ one, as in the study of Sudo et al. [8], but all the other geometrical
parameters are different. In particular, the upstream pipe is only 5D long,
and it does not allow the flow to reach a fully developed state.

Due to these differences, a quick mesh sensitivity was carried out by
considering two meshes. The flow domain was divided into four parts: "a"
is the upstream straight segment pf length 5D, "b" is the 90◦ bend, "c"
includes the first 2D of straight pipe downstream of the bend, and "d" the
remaining 8D. Only for the grid sensitivity analysis, parts "c" and "d" were
merged together. The characteristic of the different grids are summarised
in Tab. 4.2. The power ratio employed in the upstream tangent ("a") was
P = −1.5 and in the last part was P = 1.3. The power ratio were chosen
in order avoid abrupt changes in cell size at the interfaces between zone
"a" and "b", and between zone "c" and "d", respectively. The sensitivity
analysis was carried out by considering the profiles of the variables uRMS,
pressure, radial velocity and axial velocity along the symmetry diameter in
the section at ϕ = 45◦. As seen in Fig. 4.6, the "Middle-fine Grid" and
"Fine Grid" show small differences, and, therefore, it was concluded that
the "Middle-fine Grid" would be fine enough to produce accurate results.
Nonetheless, since the computational effort isn’t too demanding for these
types of simulations, all subsequent analyses were carried out using the finer
"Final Grid", summarised in Tab. 3.1.

Simulation Nθ Nr Na Nb Nc Nd Nz Ntot P.
Medium-fine grid 30 30 50 90 100 240 216000 -1.5 ; 1.3

Fine grid 40 40 60 120 120 300 480000 -1.5 ; 1.3
Final grid 40 40 60 120 86 96 362 579200 -1.5 ; 1.3

Table 4.2: The three grids employed to reproduce the experiment of Enayet et al. [3]. The
meaning of the variables reported in the columns is the same as in Tab. 3.1.
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Figure 4.6: Grid sensitivity on the symmetry diameter at ϕ = 45◦ (Fig.3.11) for the
following variables: "a" uRMS ; "b" Pressure ; "c" Radial velocity ; "d" Axial velocity.

Once again, the first non-dimensional parameter used to compare the
numerical and experimental data is Cp that is related to the wall static pres-
sure. The trend of Cp along the pipe is considered for three azimuthal angles,
individuated by a new reference system visible in the sketch on the bottom
left corner of the left graph of Fig. 4.7. In this case, the reference pressure
Pref is chosen in order to have perfect superposition between numerical data
and experimental data in the point individuated by the coordinates θ = 0◦

(reference system in Fig.4.7), r = R and ϕ = 15◦. The density of water
was set to be equal to ρw = 1000Kg/m3 and Wb = 0.92m/s. The agreement
between the experimental measurement on the left and numerical prediction
is fairly good for the sections inside of the bend. As it happened in the
case discussed in paragraph 4.1, the RNG k − ε models underestimates the
pressure loss downstream of the bend.
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Figure 4.7: Wall static pressure coefficient Cp: experimental data measured by Enayet
et al. [3] (left); numerical data with the superposition of experimental data for three
azimulthal position (right). The reference system used to identify the azimuthal positions
is summarized in bottom left corner of the left plot.

The dimensionless axial velocity is then used to make comparisons between
the measurements reported in the paper of Enayet et al. [3] and the simula-
tion results with the RNG k − ε turbulence model. All pairs of pictures in
the same row of Fig. 4.8 show qualitative agreement with each other. The
isotaches indicate a peak of W near the inner side of the bend for ϕ = 30◦

(picture "a" and "b"). Afterwards, because of the secondary flow, the highest
axial velocity is drifted towards r = 0 (picture "c" and "d") until at ϕ = 75◦

(picture "e" and "f") show that the pick velocity reached almost the center
of the half pipe section. It is interesting to note that this is exactly the same
phenomenon described by Sudo et al. [9] [8] in both the Φ = 180◦ and the
90◦ cases. The RNG k − ε turbulence model underestimates the velocity
actually measured by Enayet et al. [3] and the models shows the same flaws
previously observed for air flows in pipe bends with different radius and γ.
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Figure 4.8: Contours of W/Wb over three cross-section of the bend: experimental data
measured by Enayet et al [3] (a,c,d) and numerical data (b,d,f). The left sides of each
section correspond to the inner wall ri, and "a" and "b" for section ϕ = 30◦ ; "b" and "c"
stand for section ϕ = 60◦; "d" and "e" stand for section ϕ = 75◦. The left side of each
section represent the ri side of the bend pipe.

In the end, the maps of the normalised fluctuating velocities computed
with the PHOENICS are compared those measured by Enayet et al. [3].
Although the plots show some similarities (for instance, in the order ot
magnitude of the predictions), in generally, there is a very poor agreement
between numerical data and experimental measurements. The disagreement
might not to be all attributed to the turbulence model that indeed, as already
mentioned, fails in representing the anisotropic turbulent structures inside
the bend. In fact, it might be also noticed that Enayet et al. [3] chose to
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have an inlet tangent ( part "a" of the pipe) of only 5D, and this doesn’t
allow the flow to be fully developed. The fully developed flow is a state of
motion that, for a given flow rate, does not depend on the configuration of
the flow at the entrance of the upstream pipe. In these experiments, the
length of part "a" is so short that the flow inside the bend is dependent on
the inlet condition. In the numerical simulations, the inlet condition in a
rectangular velocity distribution with a turbulence intensity of 5%. In the
experiments, the fluid dynamic conditions at the entrance of the 5D pipe
depend on the configuration of the experimental setup upstream of it, which
is unknown. Therefore, it might be reasonably argued that the rectangular
shape of the flow variables imposed at the inlet in the numerical simulation
might be different from the actual distributions in the experiment carried out
by the Enayet et al. [3], contributing to explaining why the agreement is so
poor in terms of the turbulence parameters.
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Figure 4.9: The same as Fig. 4.8 for the normalized fluctuating velocity, provided by
Enayet et al. [3] (left) and the predicted uRMS/Wb in the numerical simulation (right),
> both multiplied by 100.
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Conclusions

In order to assess the capability of RANS models based on the eddy
viscosity assumption to reproduce the main features of turbulent flows in
pipe bends, in this thesis previous numerical and experimental studies have
been jointly analyzed and complemented by original simulations with the
PHOENICS code.

Five different turbulence models were employed (standard k − ε, RNG
k − ε, Relizable k − ε, k − ω, and SST k − ω). All turbulence models, es-
pecially the RNG k − ε, reproduced with satisfying degree of accuracy the
experimental data in terms of static pressure, longitudinal velocity compon-
ent, and cross section velocity components.

The study did not only allow providing recommendations for building a
suitable CFD model, but it also allowed understading how the characteristics
of the turbulent flow inside of a pipe bend. The flow perceives the influence
of the bend about one pipe diameter upstream of it, as it was inferred by the
fact that, at this location, the longitudinal velocity distribution was no longer
axi-symmetrical. At ϕ = 0◦, the axial velocity starts accelerating towards
the inner side of the curve, ri, due to a very favorable pressure gradient. On
the outer side, ro, the flow is decelerated due to a positive pressure gradient.
The imbalance between centrifugal force and lateral pressure gradient force
generates an in plane cross-sectional flow which, in the mid plane, is directed
from the ri side to the ro one. In this context two symmetrical counter rotat-
ing vortexes are well visible starting from ϕ = 30◦ in both the numerical and
the experimental data. As a result, the axial momentum is dragged towards
the outside of the bend by the secondary flows. For the cases with Φ = 90◦,
the flow in the exit section of the bend has its pick axial velocity (numerical
solution) shifted towards the ro for the water flow studied by Enalyet et al.
[3] as well as for the air flow studied by Sudo et al. [8]. From the experi-
mental and numerical results of the Φ = 180◦ case, it can be inferred that
the fluid dynamic behaviour of the Φ = 90◦ bend qualitatively coincides with
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that of the first half of the Φ = 180◦ case. Afterwards, for ϕ = 150◦ − 180◦,
the maximum axial velocity is shifted towards the pipe wall, resulting in a
"U" shaped axial velocity profile in the half pipe cross section. This shape
is justified by the presence of the secondary flow vortexes that operate to-
gether with the centrifugal force.In conclusion if there was a perfect balance
between the pressure force and the centrifugal force there would be no sec-
ondary flows. The imbalance is created due to a small pressure force, for
this reason, there is a secondary flow towards the outside. Furthermore, the
outward flow in the median plane is balanced by an inward flow along the
wall, so that mass continuity holds.

All eddy-viscosity based turbulence models employed in the thesis are
able to reproduce quite well the pressure distribution, quantified through
the dimensionless pressure coefficient Cp. The RNG k − ε showed the best
performance in terms axial velocity W , cross-sectional averaged turbulence
intensity ka, and cross-sectional averaged intensity of secondary flows Is, in
addition to the already mentioned wall static pressure coefficient, Cp. At the
same time, all these models showed inaccuracies in the modelling of the axial
Reynolds stress. This is not surprising, since the behaviour of the turbulence
inside of bend is strongly anisotropic. The standard k − ε, RNG k − ε, Rel-
izable k − ε, k − ω, SST k − ω turbulence model are all based on the eddy
viscosity assumption, which requires isotropic turbulence. The advantage of
employing the aforementioned turbulence models lies in the relative easiness
to a reach convergence with low computational burden. However, the choice
was made always being aware, that, on the other hand, these models might be
not able to producing accurate representation of the turbulence phenomenon
in the bend. It is expected that a turbulence Reynolds stress model, that
solves a partial differential equation for each component of the Reynolds
stress tensor (6 equations), would be able to better model the turbulent flow
in bend pipes, but it might open issues from the numerical point of view. All
considered, the performance of eddy viscosity based models, especially the
RNG k−ε, could be regarded as satisfactory for many engineering purposes.

This work also highlighted the importance of the use a proper grid in nu-
merical simulation. An accurate choice of the grid can also avoid numerical
instability for abrupt changes of mesh size. This was experienced when plot-
ting the Is at the end of the bend for both numerical solutions of the cases
Φ = 90◦ 180◦ of Sudo et al. [8] and [9]. On the grounds of the results obtained
here by conducting numerical simulations with uniform meshes in the radial
and azimutal coordinates, it is possible to argue that improvements might
be made by refine the mesh close to the walls to better detect the abrupt
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changes of velocity and pressure near the wall, in compliance with the type
of near-wall modelling approach adopted. In this work is also stressed the
importance of ensuring the fully developed flow upstream of the bend (both
in the simulations and in the experiments), in order to make the numerical
and laboratory results comparable with each other.

Further developments may be carried out with numerical simulations
with other, more complex turbulence models. In particular, the already
mentioned Reynolds Stresses Models (RSM), that are expected to be able to
provide more accurate representation of the anisotropic turbulent flow inside
of pipe bends.
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