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Abstract

Gli Smorzatori a Massa Accordata sono stati ampiamente utilizzati nel controllo delle
vibrazioni delle strutture civili. Questi apparecchi sono comunemente utilizzati per
mitigare l’effetto del vento e carichi ritmici quando la struttura rimane in regime
elastico.

Tuttavia, una volta che la struttura inizia a comportarsi in modo non lineare,
l’efficacia degli TMD lineari inizia a diminuire. Questo tipo di comportamento è
comune durante l’eccitazione sismica della struttura. Una delle principali conseguenze
del danno alla struttura è la perdita di rigidità che genera un cambiamento nella
frequenza strutturale.

I TMD isteretici diventano un’alternativa alla riduzione di questo effetto di ac-
cordatura, che porta alla perdita di efficienza. Questo tipo di elemento presenta un
comportamento softening che gli permette di seguire il deterioramento della struttura
a causa dei danni generati dai carichi sismici. Questo tipo di comportamento consente
agli smorzatori di ridurre i danni alla struttura.

Questo lavoro presenta una strategia di progettazione semplificata per tale tipo di
elemento che, finora, è stata elaborata da ottimizzazione numerica. Uno dei principali
vantaggi del metodo presentato è che consente un approccio completamente strutturale
al problema. La semplicità del metodo gli consente di far parte delle procedure di
progettazione che i progettisti possono utilizzare nelle loro attività quotidiane, a
differenza del metodo di ottimizzazione numerica.

A seguito dei risultati sperimentali di una struttura a pareti accoppiate in ce-
mento armato, è stato utilizzato un modello numerico di tale struttura, compreso lo
smorzatore, per valutare l’efficacia del TMD. Per modellare la forza isteretica che lo
smorzatore fornisce alla struttura, è stato adottato un modello di isteresi di Bouc-Wen.

Le simulazioni numeriche con accelerogrammi scalati mostrano che uno smorzatore
con un rapporto di massa del 5% può ridurre lo spostamento quadratico medio (RMS)
della struttura del 30%. Quando si considerano i terremoti 1, 5 volte il terremoto
di progetto, l’ammortizzatore potrebbe prevenire il collasso riducendo i valori picco
degli spostamenti nella struttura del 15%. Lo smorzatore è stato progettato per
il terremoto di progetto, dunque questo comportamento conferma ulteriormente
l’approccio progettuale dello smorzatore.

La robustezza del metodo è verificata con un’analisi di sensibilità in cui diverse
ipotesi di progetto sono state modificate. Tale analisi ha dimostrato che per l’edificio
gli smorzatori non lineari sono meno sensibili alla differenza in frequenza rispetto a
un sistema lineare.

Keywords:Smorzatori a Massa Accordata, Dinamica non-lineare, Smorzatori Is-
teretico, Progettazione antisismica
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Abstract

Tuned Mass Dampers (TMD) have been widely used in the vibration control of civil
engineering structures. These structures are commonly used to mitigate the effects of
wind and rhythmic loads. This auxiliary structure is used mainly when the structure
remains in the elastic regime.

However, once the structure starts behaving nonlinearly, the effectiveness of such
linear TMDs starts to decrease. This type of behaviour is common during seismic
excitation of the structure. One of the main consequences of damage to the structure
is the loss of stiffness which generates a change in the structural frequency.

Hysteretic TMDs have appeared as an alternative to reduce this detuning effect,
leading to the loss of efficiency. This type of element presents a softening behaviour
that allows it to follow the deterioration of the structure due to the damage generated
by the seismic loads. This type of behavior allows the dampers to reduce the damage
in the structure.

This work presents a simplified design strategy for such type of element that, so
far, has been done through numerical optimization. One of the main benefits of the
presented method is that it allows for a complete structural approach to the problem.
The simplicity of the method allows it to be part of design procedures that designers
can use in their day-to-day activities, unlike the numerical optimization method.

Following the experimental results of a dual reinforced concrete structure, a
numerical model of such structure, including the damper, was used to assess the
effectiveness of the TMD. To model the hysteretic force that the damper transfer to
the structure, a Bouc-Wen model of hysteresis was adopted.

Numerical simulations with scaled accelerograms show that a damper with a 5%
mass ratio can reduce the structure’s root mean square (RMS) displacement by 30%.
When earthquakes 1.5 times the design earthquake are considered, the damper could
prevent collapse by reducing the drifts in the structure by 15%. Note that the damper
was designed for the design earthquake, so this behaviour further corroborates the
damper design approach.

The robustness of the method is addressed by a sensibility analysis in which several
hypotheses of the design and methodology were modified. Such analysis showed that
nonlinear dampers are less sensitive to mistuning than a linear system for the building.

Keywords: Tuned Mass Dampers, Nonlinear Dynamics, Seismic Protection, Hys-
teretic Damper, Design Method
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Chapter 1

Introduction

The consequences of an earthquake may be very different depending on the location
where they strike, as the technology of the buildings may lead to an increase in
economic losses rather than fatalities. Nowadays, building codes are written to reduce
the possibility of a collapse as they focus on ensuring structural damage under great
demand rather than a brittle collapse of the building. Thus, allowing the inhabitants
to safely exit the structure under this type of event.

Additional elements that enhance the structural performance of buildings can be
added. These elements belong to the category of structural control. They can be
designed as a retrofitting measure or as an integral part of the structure.

Some of these methods provide significant benefits in the response of the structure.
For instance, Tuned Mass Dampers are systems that reduce the vibrations in the
structure under loads with a repeating pattern, such as rhythmic crowds or wind flows.
Nevertheless, these dampers are less effective in controlling the seismic response of
structures.

Recently, the investigation of the design of these elements has required the use of
numerical optimization methods. However, these methods are not suitable for design
purposes. Therefore, a novel simplified design method for this type of element under
seismic will be presented.

1.1 Earthquake and Risk
Earthquakes are one of the most devastating natural disasters, not only for the
destruction of the physical environment but also for the social consequences they
generate. Earthquakes have become costlier over the years regarding both of those
aspects. As seen from Figure 1.1, fatalities and overall costs of earthquakes are usually
disassociated, and ideally, a change from fatalities to material costs should be attained.

Population growth has drastically increased the consequences of an earthquake.
For instance, according to [2], an earthquake in Teheran, Iran, could kill over a million
people. Moreover, the number of vastly populated cities with high seismic hazards is
considerably high, for example, Jakarta, New Delhi, Taipei, Mexico City, and Tokyo.
Therefore, reducing seismic risk is imperative not only in these locations but in the
whole world.

1



Chapter 1. Introduction

Figure 1.1. Worst Earthquakes in terms of overall costs and fatalities during 1962-2022.
*Values are referred to as the adjusted 2021 value

Retrieved from [1]

It is intended that buildings, when subjected to seismic loads, can ensure that
their inhabitants exit the building safely. To do so, they must withstand significant
damage during the motion. Resisting damage through deformations allows structures
to dissipate part of the energy input by the ground motion. However, most struc-
tures dissipate low energy and undergo significant vibrations, even for low-intensity
earthquakes.

1.2 Structural Control
New approaches to reducing structural damage have been developed. These aim
to limit the damaging deformations and forces in structural components by several
methods. Such techniques are denoted as structural control, and they reduce the
structure’s probability of failure.

By modifying the structure’s characteristics, such as stiffness and damping, the
auxiliary systems control the response of the main structure and reduce the inelastic
energy dissipation demand. Therefore, structural control has been essential in the past
decades as it allows us to achieve a satisfactory dynamic response. These methods
have also been used as retrofitting techniques as they help to achieve an adequate
seismic response in vulnerable buildings such as those reaching the end of their service
life.

Protective systems reduce the dynamic demand the main structure would be

2
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subjected to and reduce or even mitigate their effects. Structural control can be used
for serviceability reasons, such as for the Millennium Bridge in London. Initially,
when pedestrians walked across the bridge, they created a vibration that made it
move laterally. Due to the discomfort generated by the movement, people began
to move in a way resembling the structure. This movement generated a resonant
behaviour which led to even greater displacements. Therefore, a retrofitting measure
was necessary to avoid discomfort for the bridge users. In this particular situation, a
series of Tuned Mass Dampers (TMD), shown in Figure 1.2, were included to reduce
the action generated by the moving crowd.

Figure 1.2. Millennium Bridge, London
Retrieved from [3].

Structural control is divided into three classes, active, hybrid and passive. Active
and hybrid methods require external energy, while passive methods do not. Due to
the great masses that comprise a building, active methods are generally expensive.
Instead of stabilizing the whole mass, hybrid methods change the auxiliary structure’s
parameters to obtain the best response from the building. Passive methods apply to
the structural forces that develop due to the structural motion. Some examples of
these types of systems are available in Figure 1.3

Passive structural control methods have been widely used in civil engineering
as they do not require external energy sources. Their relatively low installation
and maintenance cost and the fact that an energy shortage will not impact them
are other benefits of this type of mechanism. However, one of the disadvantages of
these methods is the impossibility of modifying their working conditions, so their
performance depends only on the design conditions. The most used passive devices
are base isolation systems, friction dampers, viscoelastic dampers, and tuned mass
dampers.

Structural strengthening a building could be a more expensive, and not necessarily
adequate, solution for controlling a structure, [3]. Passive structural control techniques

3
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(a) Schematic design of the TMD from Taipei
101

(b) Toushin 24 Ohmori Building basement with
its base isolating system

(c) Variable damping mechanism
(d) Nishikicho building DUOX Active-Passive

TMD

Figure 1.3. Structural Control Systems
Retrieved from [4]

could be used as seismic rehabilitation and retrofit methodologies of existing structures.
They could ensure that the dynamic behaviour of the main system is bounded to a
certain damage threshold.

Seismic risk assessment is becoming more important every day as many buildings
are reaching the end of their service life. It is important to note that a substantial
part of the building stock in the world was built before seismic codes. These buildings
are more vulnerable to seismic actions, and most do not fulfil today’s requirements
for new buildings. Therefore, seismic retrofitting is of paramount importance as
reconstruction is even more expensive. As a reduction of the input seismic force is
generally inconvenient, as it is usually related to seismic isolation systems whose
installation is complex in an existing building, another alternative to reduce the
seismic risk is tuned mass dampers (TMD).

4
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1.3 TMD
A Tuned Mass Damper (TMD) consists of a mass attached to the structure that
contributes to the reduction of its dynamic response [4]. This reduction is possible as
such mass moves with a delay with respect to the structure, as shown in Figure 1.4,
so its inertial forces dissipate energy. These elements are generally located on the
highest floors of the structure as this allows them to be more sensitive to a movement
in the structure, for which they will move more and thus dissipate more energy.

(a) Building without a TMD

(b) Building with a TMD

Figure 1.4. Schematic Tuned Mass Dampers
Retrieved from [5]

TMDs reduce the response under resonance, meaning that the loading frequency is
equal to its natural frequency, hence the "tuned" term. Therefore, if the dynamic load
characteristics are known beforehand and present minimum variability, TMDs are an
excellent solution. However, TMDs do not necessarily present such a great advantage
under seismic loading. For instance, there are several reasons why a TMD could have
adverse effects on the structure, [6]. However, if these elements are designed in such a
way that they can resemble the behaviour of the structure during seismic excitation,
they can keep their effectiveness.

As stated previously, this type of element can be designed as a retrofitting measure
or as an integral part of the structure, as in Taipei 101, shown in Figure 1.3a. One of
the main benefits of this type of structure as a retrofitting measure is its feasibility.
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Chapter 1. Introduction

The TMD can be located at the top of the structure, for instance, on the roof. Thus,
allowing to maintain the use and spaces of the building unaltered.

As most of the building stock in the earthquake-prone regions is low-moderate
height, they have a higher seismic demand regarding the accelerations they must
withstand. However, many do not exhibit high ductility resources that allow them to
dissipate large amounts of energy through their deformations. In this scenario, using
a TMD would be an excellent solution that allows them to reduce the displacements
considerably.

1.4 Simplified Design Approach
The design of the hysteretic TMD, exhibiting a behaviour resembling the structure,
allows for a considerable reduction of vibrations. This reduction is because the damper
remains tuned to the structure through time. For instance, in [6], using an optimized
hysteretic TMD reduced the Root Mean Square (RMS) of the displacements in the
structure by more than 50%.

As stated previously, as of now, the way of designing a TMD for seismic applications
has been through genetic algorithms (GA). However, a novel approach, now introduced
as a simplified design method, would allow a completely structural approach to the
problem. Therefore, a ground motion input would no longer be necessary to determine
the design of the auxiliary structure.

However, in many third-world countries which are commonly hit by earthquakes,
many buildings are still built without regard for the codes; Haiti, for instance, does not
have a building code. This lack of good design and construction practices contributes to
the high fatalities due to earthquakes in underdeveloped countries. Ergo, having both
a retrofitting alternative for existing buildings and a component for new structures
could significantly reduce the fatalities and losses derived from earthquakes.

This work presents a simplified design method for TMD for seismic purposes.
Using the TMD in numerical simulations of a building considerably reduced the
displacements in the structure. In Chapter 2 the theoretical background of the topics
that will be discussed will be set. In Chapter 3, the state of the art of Tuned Mass
Dampers and their use in seismic settings is shown. In Chapter 4, the benchmark
of the analysis and the models used for the design and implementation of the TMD
are presented. Chapter 5, discusses the simplified design approach for this type of
structure. The numerical results of the structure and the effectiveness of the TMD
are discussed in Chapter 6. A sentivity analysis, by changing certain hypothesis of
the model are shown in Chapter 7.
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Chapter 2

Theoretical Background

2.1 Risk and Vulnerability
Risk denotes the social and economic expected loss that a system is subject to during
a specific time due to a hazard. It is the combination, mathematically speaking, the
convolution, as expressed in Equation 2.1, of three factors, hazard, exposure, and
vulnerability.

R = H ∗ E ∗ V (2.1)

A hazard is an event that has the potential to produce harm or other undesirable
consequences to a person or thing. They depend on the considered location, which is
why they exist with or without the presence of people. In this case, it is the expected
ground motion or a similar phenomenon. As it cannot be controlled, the most critical
aspect is to characterize it in the most exhaustive way possible to work on other risk
components and reduce them. In seismic engineering, the hazard is defined by an
acceleration response spectrum that is site dependent.

Figure 2.1. Seismicity of the Earth 1900-2018
Retrieved from [7]

Exposure is the people, property, or systems in a location exposed to a hazard. It
provides the economic or social value of the system at risk. Generally, exposure includes
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Chapter 2. Theoretical Background

what lies in the area that the hazard could affect. Reducing risk by reallocating assets
and limiting them from hazardous locations is possible, but it becomes unmanageable
on larger scales.

Vulnerability is the susceptibility to physical injury, harm, damage, or economic
loss and depends on an asset’s construction, contents, and economic value of its
functions. It is the expected level of damage of a system depending on the hazard’s
intensity measure. Several authors, for instance [8–10], performed several vulnerability
studies regarding buildings in central Italy to characterize their vulnerability.

A particular example is the San Andreas Fault in California. Most of the fault is
located in a desertic zone, meaning that the exposure is low, so the risk associated
with an earthquake in most of it is low. Nevertheless, this is only the case in some
parts of the world. To reduce risk, we must minimize vulnerability as it depends on
the building itself. Focusing on it allows engineers to minimize the risk by ensuring
that a building can resist a certain amount of damage related to the expected hazard.

2.2 Tuned Mass Dampers (TMD)
Tuned Mass Dampers are designed considering their own frequency and damping and
those of the structure, as their behaviour depends on such parameters. TMDs reduce
the response under resonance, meaning that the loading frequency is equal to its
natural frequency, hence the “tuned” term. Therefore, if the frequency of the load is
known beforehand and presents minimum variability, TMDs are an excellent solution.

TMDs are very effective for controlling wind excitations as they can reduce the
displacements in the building derived from these loads. Hence, their use has been
limited to such applications as controlling displacements and accelerations in tall,
flexible buildings. For instance, one of the most iconic buildings with a TMD is the
Taipei 101, whose TMD was initially designed to reduce the dynamic effects arising
from wind loading.

The system consisted of a mass, m, connected to the ground by a spring, represent-
ing its stiffness, k, and a viscous damper, c. The damper with mass md, was connected
to the structure through a spring, kd, and a damper, cd. The TMD was connected to
the initial mass, making it a multiple degrees of freedom (MDOF) system, as seen in
Figure 2.2.

Figure 2.2. Representation of TMD
Retrieved from [4]

8



2.3. Bouc-Wen Model

Where p is a force function of time to which the main structure is subjected,
ug is the ground excitation, u, is the displacement of the main mass, and ud is the
displacement of the TMD. The equations of motion of the system are those presented
in Equation 2.2

mü+ cu̇+ ku− cdu̇− kdu = p−müg

mdüd + cdu̇d + kdud +mdü = mdüg
(2.2)

Where the overdot denotes differentiation with respect to time. By considering
the dynamic properties of each mass, ω, the natural frequency, ξ the damping factor,
and µ the mass ratio of the TMD defined as:

ω =

√
k

m

ξ =
c

2mω

µ =
md

m

(2.3)

The equation of motion of the system stated in Equation 2.2 can be represented by
diving the equations by their corresponding mass and using their dynamic properties:

(1 + µ)ü+ 2ξsωsu̇+ ω2
su =

p

m
− µüg

üd + 2ξdωdu̇d + ω2
dud =− ü

(2.4)

Therefore, a new simplified approach concerning this structure is based on reducing
such a detuning effect. It uses a hysteretic element to keep a frequency that resembles
the one on the structure during damage; in other words, using a TMD with a hysteretic
spring which follows the decay of the structural frequency to stay tuned.

The design procedure, explained thoroughly in Chapter 5, would have a TMD
whose behaviour can be represented using a Bouc-Wen hysteretic model. This type of
element would have a secant stiffness that would allow it to remain tuned to a specific
frequency and avoid damage in the building by conserving its effectiveness. Therefore,
the design would embrace a global approach as it includes the nonlinearity of the
building itself.

2.3 Bouc-Wen Model
The Bouc-Wen (BW) hysteretic model is a well-known physical model that can
accurately represent the behaviour of structures. For instance, it was used in [11]
to represent the behaviour of a complete structure. This model type can be seen as
made up of two parallel springs, a linear and a nonlinear one, as shown in Figure 2.3.
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Chapter 2. Theoretical Background

Figure 2.3. Bouc Wen model
Retrieved from [12]

The BW model can be characterized mathematically using Equation 2.5.

F =αkx+ z

ż = {(1− α)k − (β + γ ∗ sgn(zẋ))|z|n} ẋ
(2.5)

Where sgn is the signum function. sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0 and
sgn(x) = 0 if x = 0

This model, as expressed in [12], is governed by five parameters β, γ, n, α, and
k. k represents the elastic stiffness of the system, α is the relationship between the
initial and plastic stiffness (ki and kf in Figure 2.3), and parameters β, γ, and n,
determine the shape of the hysteretic curve. n determines the velocity or abruptness
in the stiffness change from elastic to plastic.

For parameters β and γ, not only is their value interesting but also their difference.
As seen from Figure 2.4 the model can reproduce different behaviours depending on
the relationship between these coefficients.

Figure 2.4. Different Hysteretic Cycles n = 1

Retrieved from [13]
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Chapter 3

State of the Art

The first formulation of a TMD was applied and pattented by Frahm [14] in a field
outside of civil engineering. It was later included in the field, through a linear theory,
for harmonic excitations to a single degree of freedom (SDOF) system.

The design of a TMD intends to reduce the structural response by exciting the
auxiliary mass. The auxiliary structure’s damping, stiffness, and mass must be
determined. Den Hartog initially proposed an optimal design of a TMD by considering
a maximum in the “Den Hartog” points, [4]. In this consideration, the maximum
response should be attained at such points. Since then, several studies regarding their
optimal design have been made [15,16]. For instance, Warburton, [17], determined
optimal design parameters for white noise excitation.

For seismic applications, several studies such as [18, 19] have provided formulas
to obtain the tuning frequencies, f , of the TMD as a function of the mass ratio and
damping of the structure. However, these studies are focused on linear TMDs.

However, they necessarily present such a great advantage under seismic loading.
For instance, there are several reasons why a linear TMD could have adverse effects on
the structure, [20].The frequency bandwidth of the seismic loading and the intrinsic
change of the structure’s natural period due to damage that characterize nonlinear
structures are some of those reasons. The former impedes an effective design as the
loading is not known beforehand. The latter is due to a detuning in the TMD, which
arises as the structure’s initial frequency could decrease as it enters its nonlinear
range.

In [21], the effectiveness of the TMD under different ground motion excitations to
reduce damage in the structure was reviewed. During the study, it was shown that
the effectiveness of the TMD was reduced for systems developing nonlinear behaviour.
Ruiz et al. [22], stated that the greater the nonlinearity of the structure, the less
effective the TMD would be.

Many authors have used genetic algorithms to find a suitable solution for specific
problems, as per [23–25], but a consensus has yet to be reached.

Recently, in [26] the concept of a hysteretic TMD is proposed, allowing a more
general approach to the problem. Analysis of this type of structure, [6], has led to a
considerable reduction in the dynamic response of the building.

Additionally, in [27] designed a hysteretic TMD through an analytical approach
and by GA. In such study a resonance condition was imposed, yet it differed from the
results obtained in through GA.
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Chapter 4

Experimentation and Modelling

A numerical simulation was performed to assess the effectiveness and feasibility of the
hysteretic TMD. The benchmark for such simulation came from the experimentation
campaign at the ELSA Laboratory of the JPRC in Ispra, [28] . In the campaign, a
low-rise reinforced concrete building was subjected to a Pseudo-Dynamic (PSD) test
to compare two different design approaches, [29]. After the campaign, the building
was modelled numerically within a MS thesis work, obtaining satisfactory results
compared to the real one, [30, 31].

4.1 Experimental Campaign
The experiment aimed to compare the behaviour of two different design methods, the
Force-Based Design (FBD) and the Displacement-Based Design (DBD). The FBD
is the method on which structural codes rely, the Eurocode 8 (EC8), for instance,
for which it will be referred to in such a way in further comparisons. It is based on
the strength and stiffness that a building should have to resist the loading derived
from an earthquake. Meanwhile, the DBD considers the displacement to which the
structure would be subjected to obtain those parameters.

For the experimentation, a real-scale 4-story dual reinforced concrete building,
made up of two parallel frames, each designed through a different approach, shown
in Figure 4.1, was built. Each frame was composed of two columns and two shear
walls connected with a coupling beam. The building is consider dual as the walls and
columns resist the the seismic shear forces. However, most of this load is sustained by
the walls, in this structure they resisted 70% of the lateral loads considered.

The 4-storey building was 12.5m tall, with a first floor of 3.5m and the remaining
floors with a constant height of 3m. The wall on the exterior of the structure was
shaped like an "L" with dimensions 100x50x25cm and the interior one was rectangular
with dimensions 100x25 cm. The columns of the structure had the same section as
the beams, 40x25 cm. The beams, including the coupling beam had the same cross
section, yet, they spanned through different lengths. Both frames were 4m apart and
were connected by means of transversal beams a 15cm slab. The frames were designed
considering a tributary width of 5m,for such, in the experiment the remaining mass
was added in the form of water tanks to simulate the design loads. The characteristic
material strengths were 25MPa for concrete and 500 for steel.
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The structure was designed considering a behavior factor q = 5 for a high ductility
class. To attain such value, the procedure of EC8 requires detailing of the the columns
in bending at joints and elements in shear as to prevent brittle collapse. This is done
to ensure the capacity design procedure,allowing for ductile failure in the structure.

For this structure, a difference in the steel quantities per frame is significant. The
DBD side is reported to have in average 30% less steel than the EC8 side. This is
done as a considerable reduction in the longitudinal and transversal reinforcement
was obtained by the designers.

One of the biggest differences between both design procedures is the reinforcement
within the critical zone. In this case, the EC8 required twice the height of the cross
section while the DBD design requieres 1.5. The reinforcement within this zone is
also considerably reduced. For instance, the stirrups, all of 8mm in diameter, in the
EC8 side had a separation of 6cm,while in the DBD side, a separation of 21cm in the
first two floors and 22.5cm were used in the upper ones. Yet, unlike in the EC8 side,
the BDB required diagonal reinforcement in the coupling beams of the first floor.

The complete reinforcement layout of the tested structure is presented in Appendix
A. For further information regarding the characteristics of the structure and the
experimental campaign, please refer to [29] and [28].

Figure 4.1. Experimental Structure
Member cross sections are in cm. Retrieved from [29] .

Pseudo-dynamic tests are an easy and beneficial way to approach the dynamic
behaviour of structures. It is a hybrid-numerical experimental test that combines the
simulation of the dynamic aspects of the problem with an experiment that can be
carried out at low velocities.

The inertial dynamic forces are computed by solving the equations of motion at
each time interval using numerical integration. For instance, this can be done through
Newmark’s equation. In this way, the displacements at each step can be computed
and imposed on the structure using actuators. Then the reaction forces are read from
the load cells and used to compute the displacement in the next step. By obtaining
the forces, as a result, the instantaneous stiffness can be computed at every time
instant. A flow chart of this type of test is presented in Annex A, Figure A.1.

One of the main benefits of this type of experiment is that as inertial forces are
computed numerically, there is no need to perform the test on a real-time scale.
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4.1. Experimental Campaign

This procedure considerably reduces the power required from the hydraulic hammers
compared to those in shaking tables. It also allows visual inspections as there is easy
tracking of damage progression. The test can also be interrupted to perform such
inspections.

As the term of the equation regarding the reaction forces is read directly from the
load cells, it is not necessary to know the beforehand properties or assume models
about the behaviour of the material or the components related to damage as they are
intrinsically considered. In the same way, the hysteretic damping coming from the
inelastic deformation and propagation of damage, which is one of the most effective
mechanisms of energy dissipation, is also considered.

The PSD test was conducted by considering a response spectrum in line with
that of EC8. For such a spectrum, a soil type B and a PGA of 0.4g were considered
with structural damping of 5%. The structure was subjected to three accelerograms,
corresponding to a service earthquake, a design earthquake, and 1.5 times the design
earthquake referred to as D04, D05 and D06, respectively. The accelerogram of the
test was modulated after the 1995 Kobe earthquake, as presented in Figure 4.2.

Figure 4.2. Ground motion and Response Spectrum D05
Retrieved from [28]

The test was performed in the direction parallel to the frames, the longest direction
of the structure. In the short direction, the displacements were constrained to zero,
which impedes torsional behaviour. Therefore, 4 traslational degrees of freedom, one
on each floor in the direction of the frames, are considered.

Under the design earthquake, the structure had good behaviour, with both sides
presenting similar hysteretic cycles. As stated by [28] the EC8 side had higher restoring
forces, yet both frames dissipated the same amount of energy.

A significant variation in the fundamental frequency of the structure occurred
during the test. Initially, a structural frequency of 2.7Hz, representing the uncracked
structure, decreased to around 1.2Hz, which was the estimated frequency with member
secant stiffness to yielding, [28] , shown in Figure 4.3. This remarkable difference
shows why a linear viscous elastic tuned mass damper is not able to protect the
building during the whole earthquake, but losses its tuning frequency relatively fast.

During the last accelerogram, D06, the structure was severely damaged, for which
it was decided to stop the test to repair the structure and continue the test. However,
the retrofitted structure will not be considered. It will be assumed that the test was
finished at the moment in which the structure was repaired.
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Figure 4.3. Evolution of fundamental frequency
Retrieved from [28]

At the end of the D06 test, both frames had sustained great amount of damage.
Cracking, due to either flexure or shear were present in the coupling beams and the
walls. The width of such cracks were increased during the last motion. The result
of the test was that the reduction on the steel quantity did not impaired the overall
behavior of the structure, [28]. The final crack configuration is shown in Figure 4.4

Figure 4.4. Damaged structure

4.2 Numerical Modelling
Two different types of models were carried out for the structure. The first model
was carried out using a commercial software, which would allow us to evaluate the
suitability of the method for the design of this type of structure. The second model,
a more refined one, was carried out by [30, 31] and is a numerical model which
resembles the behaviour of the structure. This second model will be used to assess
the effectiveness of the designed TMD by comparing the controlled structure (the one
containing the TMD) and the uncontrolled one.
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In both cases, the same modelling procedure of the elements was used. Meaning
that the weights, definition of the materials, cross sections, and reinforcements have
been reproduced similarly.

4.2.1 SAP2000 Model

The structure was modelled in the commercial software SAP2000, presented in Figure
4.5. In it, vertical elements were modelled in the sections centroid, while horizontal
elements were modelled at the height of the upper face of the slab. In this horizontal
elements, a part of the slab is considered as a collaborating width in the beams. This
value is determined by the minimum suggested in [32]. Additionally, rigid zones in
the nodes between horizontal and vertical elements were considered. The masses in
each frame were assumed to be concentrated as shown in Figure 4.6 where the dead
and live loads are considered.

Figure 4.5. SAP2000 model

The section designer of the software was used to model the L-shaped columns
and the reinforcement details from [28] which are necessary for determining the hinge
characteristics. In the model, plastic hinges were assumed to happen only close to the
nodes, following a lumped plasticity hypothesis. The skeleton curve stated in [34] was
adopted for the hinges. For the beams only the bending moment in principal axis is
considered for the hinge, while in the columns the coupling between axial force and
bending moment is used. The length of the plastic zones is assumed to be equal to
the height of the cross section.

In this model, a nonlinear static analysis was carried out. As the structure is not
symmetrical, the analysis results in each direction differ. The first mode controls
the structure’s dynamic behaviour, and the soft story collapse mechanism was not
possible as, in the pushover analysis, the curve resulting from such a load pattern
was greater than the modal one. This type of behavior was anticipated due to the
presence of the coupled walls. It is important to state that such walls resist most of
the shear forces in the building as expected from a dual system.
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Figure 4.6. Lumped mass distribution
Retrieved from [33].

Therefore the capacity curve of the structure, to a load pattern in agreement with
its first mode of vibration in the considered direction, is shown in Figure 4.8a. The
control point for the capacity curve is the center of gravity of the 4th floor. The
pushover curve is obtained by means of the SAP2000 model and is computed in both
directions of the structure due to its asymmetry.

This type of analysis is now considered standard to evaluate the performance of a
structure, and is very beneficial as it allows to understand the damage propagation in
the structure. From the model it was possible to see that initially the coupling beams
yielded, thus generating a reduction of stiffness in the structure. This is exactly what
happened in the real structure. Ergo, this type of analysis allow to comprehend the
behavior of the structure and design corrective measures if necessary. The final hinge
configuration of the pushover analysis in the positive direction is shown in Figure 4.7.
In the figure the color scale refer to the skeleton curve of the plastic hinges.

A comparison between the observed behaviour of the system and the pushover
curve is present in Figure 4.8b. In such figure, the broken line coming from the
experimental frame under the design earthquake is compared to the pushover curve
from the SAP2000. A good agreement between both sets of data is attained as the
pushover curve envelopes the experimental values.

Even if this method can be considered relatively easy nowadays, there are several
factors that lead can to different pushover curves. Due to this variability the expertise
of the designer to model structures is crucial to obtain a response of the structure
that would actually resemble the behaviour of the structure. This is a very important
remark as a comparison between the real structure and the model is generally not
possible.
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Figure 4.7. Hinge activation

(a) Pushover Curve (b) Pushover curve vs Experimental results

Figure 4.8. SAP2000 Model Verification

4.2.2 Refined Model

The second model is a numerical model made up of R.C.I.Z elements for the reinforced
concrete elements, originally developed in [35]. Through these elements, [30] modeled
the structure using the NONDA computer code shown in [36]. This type of element is
capable of capturing the interaction between between the shear resistance and the
inelastic flexural behaviour. As it is a fiber model element, the structural member is
discretized in fibers of the corresponding material for which the stress-strain history
is evaluated through their uniaxial constitutive laws, [33].

This fiber model was set up similarly to the SAP2000 model, yet only the direction
parallel to the frames was considered for the analysis. Hence, displacements and
rotations perpendicular to the analyzed direction were restrained.
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Figure 4.9. Concrete strength (MPa)
Values in parenthesis relate to the DBD side

Retrieved from [30]

In the model, the same collaborating width of the slab was considered in the
modelling of the beams. The slab itself was not modelled as a rigid diaphragm as it
would impose an axial constraint in the element thus affecting the flexural response of
the horizontal elements.Thus, the displacements in the traslational DOF of the inner
walls were set equal to each other in order to model the rigid diaphragm hypothesis.

According to the R.C.I.Z. formulation the element had to be discretized in 5 cross
sections throughout its length. In the model, all of the sections were equal to each
other, meaning that a total of 56 fiber sections were modelled, one per each element.
Each element had the real concrete strength, shown in Figure 4.9.

Depending on the type of element, a different amount of fibers, both of concrete
and steel were required to model it. For instance, walls required a total of 22 concrete
fibers. Both walls were modelled the same way, yet due to the L shape of a wall some
fibers had an increase in their area. For the same element, another criteria that had
to be taken into consideration is that the centroid of the fiber is not longer coincident
with the axis of the element

Elements had the same characteristics through the height, only the concrete
strength was varied. Beams had the same amount of concrete fibers, yet coupling
beams had two additional steel fibers. It is important to note that the numerical code
NONDA had to be modified in order to account for the diagonal reinforcement of
such beam, [33].

A comparison between the slabs displacements and the base shear force obtained
from the experimental analysis of the frame and the model was performed to validate
it. The model represents the global behaviour of the structure, especially the roof
displacement and the shear force where the agreement between the experimental data
and the numerical model is almost perfect. The comparison for the design test can be
seen in Figures 4.10 and 4.11.
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(a) 1st

(b) 2nd

(c) 3rd

(d) 4th

Figure 4.10. Floor Displacements

Figure 4.11. Shear Force at the Base
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Due to the resemblance of this model to the real structure a series of nonlinear
time history analyses can be carried out ensuring that it would reproduce the behavior
of the actual structure with significant accuracy. Therefore, an element intended to
represent the TMD will be included in the numerical code to determine its efficiency.

4.2.3 Bouc Wen Element

The TMD was modelled as a Bouc Wen element so that it would be possible to include
it in the more refined structural model. To do so, an additional element with the BW
hysteretic behavior was modelled in such a way to be compatible with the existing
NONDA code in which the structure was analyzed.

Therefore, a reading and writing procedure for the input and output file respectively
for the parameters of the element just as for the other types of elements was necessary.
The element had to be coded in a path independent way that permitted to save
the last equilibrated state and advance from it to the next step. In this way, both
the tangential stiffness and forces of the element at each step had to be computed
independently by solving the related differential equation of the system shown in
Equation 2.5. In this way, the integration of the BW equations is decoupled from the
integration scheme of the systems response.

The design of the element will be explained in Section 5. Examples of different
hysteretic behaviour of the BW element by varying certain characteristics are presented
in Figure 4.12. It is important to note that in the figure, a sinusoidal load with a
maximum displacement of 30cm is applied and the relationship of γ = β is imposed.
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(a) α (b) k

(c) γ (d) n

Figure 4.12. Bouc Wen Hysteretic Cycles
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Chapter 5

Design

5.1 Design Procedure
The main benefit of using for the TMD a spring following a BW element law is that as
the structure deteriorates and enters the nonlinear range, as shown in Figure 4.3, the
hysteretic TMD can continue to perform as intended, unlike a linear TMD. Therefore,
the main task is to have an element that reduces the damage in the structure by
behaving similarly to it in both the elastic and plastic range.

The new methodology for designing the hysteretic TMD avoids using genetic
algorithms (GA) and numerical optimization, which are time-consuming and unsuitable
for design. Instead, an approach using the capacity curve of the structure can lead to
results comparable to those obtained by employing GA.

The design procedure of the TMD is based on a nonlinear static "pushover"
analysis. This type of analysis results in a curve that relates the displacement of a
certain control point of the structure, typically one on the last floor of the structure
and the shear force at the base. This curve is also called the capacity curve. In the
case of the considered structure, the pushover curve is available in Figure 4.8a.

It is noteworthy that the TMD’s behaviour depends on the structure’s displacement
at its location. For such, the control point chosen for the pushover analysis should be
the one where ideally, it would be installed.

A bilinearization procedure can be done in the capacity curve. This procedure
allows seeing the pushover curve in a more simplified way, as it would only consist
of two linear branches intersecting at the yielding point. Such linear segments are
attained using an energetic equivalence between the areas enclosed by curves, the
bilinear one and the actual pushover. Structures with trilinear curves are also common;
however, in those cases, the first two branches will be considered.

The procedure presented in FEMA 440, [37], for defining the biliearization of the
pushover curve is recommended as it allows for an elastic branch more representative of
the elastic behaviour of the system. This procedure is iterative, although it converges
in a few iterations, as it depends on the ductility of the system, which at the same
time depends on the yielding point. This method also provides an estimation of the
damping of the structure. The Italian Building Code (NTC2018) provides a similar
method for bilinearizing pushover curves. Nevertheless, both methods differ due to the
assumption over the initial elastic branch. It is important to state that commercial

25



Chapter 5. Design

softwares usually includes a bilinearization of such curves.
The Bilinearized Pushover curve is presented in Figure 5.1.

Figure 5.1. Pushover Curve

The capacity curve can be modified into the capacity spectrum using Equation 5.1.

d∗ =
d

Γ
; F ∗ =

F

m∗ ∗ Γ ∗ g
(5.1)

Where m∗,Γ, F ∗ and d∗ correspond to the modal mass, mass participation factor,
and equivalent shear force and displacement, respectively. This modification allows
analyzing the structure, which is a Multi Degree of Freedom (MDOF) as an equivalent
Single Degree of Freedom (SDOF) system.

Γ =
φTMr

φTMφ
; m∗ = φMr (5.2)

With M as the mass matrix, φ the mode shape related to the loading pattern of
the pushover curve and r as the vector relating the masses to the considered direction
of analysis.

The purpose of the TMD is to reduce the structure’s displacements through an
inertial mass moving out of phase with the structure. Therefore, the designer must
select a level of displacement that can be considered suitable for the structure. In
this way, the designer could increase the damping of the structure to find that new
performance point. This modification can be done in the ADRS spectrum, as in
the bilinearization procedure, by accounting for additional damping. The additional
damping required, as shown in Equation 5.3, to attain such displacements is the one
the TMD should provide to the structure.

ξr = ξt − ξ0 (5.3)

Where ξr is the required equivalent damping, ξ0 is the initial damping of the
structure obtained through the bilinearization procedure and ξt is the structural
damping for which the desired performance point is attained.
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It is important to note that the equivalent damping provided by the damper
heavily depends on the mass ratio, µ = md

m
, shown in Figure 5.2, which refers to

Optimal linear TMD. Therefore, it can be assumed that the damper’s mass ratio is
equal, or approximately equal, to the equivalent damping required by the structure
to attain the desired performance point, ξr ≈ µ. Hence, the mass ratio is a function
of the desired performance point selected by the designer. This value usually varies
between 1% and 5% of the mass of the structure.

This consideration can be used in be used in both directions. Thus, allowing the
designer to choose a mass ratio needed to attain the displacement of the performance
point or to check the displacement assuming a mass ratio. It is then important to
note that these two steps are interchangeable in order, as they depend on the limiting
characteristics of the structure or the needs of the designer.

Figure 5.2. Equivalent Damping from an Optimal TMD
Retrieved from [4]

For the design, several parameters should be retrieved from the pushover curve;
these are the initial stiffness of the structure (k0) from the bilinear pushover, the
damping (ξ), and the secant stiffness at the desired performance point (ksec). The
secant stiffness must be determined using the real pushover of the structure, yet the
difference with the one computed by the bilinear curve is commonly negligible. In the
following, the damper characteristics will be denoted with a subscript d to distinguish
them from the structure’s characteristics.

By considering these parameters, the period of the equivalent bilinear structure
can be computed as

T ∗ = 2π

√
m∗

k0
(5.4)

The TMD should be then tuned to the frequency f stated by [19], which depends
on the mass ratio µ and the structural damping ξ. The key aspect of the design is
that this tuning frequency should be attained in two moments, at the beginning of the
motion and both when the structure reaches the performance point. It is assumed that

27



Chapter 5. Design

the structure will reach its performance point while the TMD reaches its maximum
displacement.

f =
T0

Td,0

=
ωd,0

ω0

f =
Tsec

Td,sec

=
ωd,sec

ωsec

(5.5)

Where Tsec and Td,sec are the secant period of the structure and the BW element
at their corresponding maximum displacement. Thus intending that the damper is
again tuned to the structure at that moment. With f computed according to 5.6
following the recommendations of [19].

f =(

√
1− 0.5µ

1 + µ
+
√

1− 2ξ2 − 1)

− (2.375− 1.034
√
µ− 0.426µ)ξ

√
µ

− (0.3730− 16.903
√
µ+ 20.496µ)ξ2

√
µ

(5.6)

From the tunning frequency, the initial period of the structure, T ∗ = T0 and the
mass of the damper, known through the mass ratio, the initial stiffness of the TMD
can be computed. In the same way, the secant stiffness of the damper can be obtained
by considering Equation 5.4 and 5.5, using the secant period of the structure at the
selected performance point rather than the initial one.

The following must be considered regarding the parameters that control the Bouc
Wen model. First, the parameter n will be fixed as n = 1 as it allows for smooth
behaviour with great dissipation and analytical solution of the equation, [38]. The
relationship γ = β is assumed as this allows for a softening behaviour in the structure
and mostly linear unloading, [13]. The hardening coefficient αd depends on the
material used for the damper and its arrangement.

The secant stiffness of the damper kd,sec can be computed by considering the tuning
at the performance point through Equation 5.7. Imposing that the damper achieves
such secant stiffness at its maximum displacement, ud,max the value of the parameter
γ and β can be obtained. This can be done by means of an iterative procedure or by
assuming a value of the stroke. In the following section, 5.1.1, the iterative procedure
to determine ud,max is presented. An example of the application of such procedure is
shown in Section 5.2

The secant stiffness of the damper can be computed according to Equation 5.7
retrieved from [39].

kd,sec(u) = kd,0

{
αd +

1− αd

u(β + γ)
(1− e−u(β+γ))

}
(5.7)

5.1.1 Iterative Procedure

As stated previously, the damper is displacement-dependent, meaning that its maxi-
mum displacement depends on the displacement of the structure at the point at which
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it is installed. Therefore, considering a SDOF system excited by a sinusoidal load
with the secant frequency of the structure and an amplitude equal to the desired
performance point of the structure, the displacement of the TMD at such point can
be estimated through Eq 5.8.

Figure 5.3. Base excitation of SDOF
Taken from [4]

ud,max = xpp

√
ρ4

(1− ρ2)2 + (2ξdρ)2
(5.8)

Where ρ = 1
f

and xpp is the displacement of the structure at the new performance
point.

This is an iterative procedure which requires the tuning frequency, the secant
period (or stiffness) of the structure, and the displacement of the control node. It
is iterative, as the maximum displacement of the SDOF depends on its frequency
response function, which depends on the damping of the BW, which is again a function
of its displacement. To initialize the BW model, the maximum working displacement
umax = umax(f, ug, ξd) is required to compute the secant stiffness at umax.

Through Equation 5.7, by considering that γ = β, the values of such parameters
can be computed. Therefore, all of the parameters defining the BW hysteretic model
are defined, for which the hysteretic curve of the model can be drawn.

With such curve,the damping of the element can be obtained by considering the
hysteretic energy dissipated Ah and the elastic energy Ae. The former refers to the
energy dissipated during a full hysteretic loop loading cycle, while the latter refers to
the elastic energy of a system with secant stiffness. For example, Figure 5.4 shows
both energies within a hysteretic cycle.

The equivalent damping of the element can be computed as:

Ah =

∫
Fdx

Ae =
1

2
ksecu

2
max

ξe =
Ah

4πAe

(5.9)
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Figure 5.4. Equivalent Viscous Damping
Retrieved from [40]

In case the damping of the structure is different from the one assumed at the
beginning of the step, the damping should be set to the new one and repeated until
convergence under the desired tolerance. A flow chart with the iterative procedure is
available in Figure 5.5.

Once the characteristics of the element are determined, the real equivalent damping
that it would provide to the system can be computed. As the damper dissipates
energy that otherwise would have to be dissipated by the structure, the equivalent
damping can be computed as:

ξeq =
Ahd

4πAe

(5.10)

Considering that Ae is the elastic energy of the structure. Equation 5.10 can be
modified to:

ξeq =ξhµ
∗
(
fUmax

xmax

)2

µ∗ =
md

m∗

(5.11)

In this way, it is possible to check the initial assumption of the equivalent damping
added by the TMD.

It is important to note that as stated by [41], the BW element does not possess an
elastic domain unless γ = 0. As this will not be the case, the element will always have
a residual deformation. Therefore the actual maximum displacement of the moving
damper could be greater than the considered stroke ud,max. It is then recommended,
for a real damper, to have a space greater than that for which it is designed.
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Figure 5.5. Iterative Design Procedure

5.1.2 Direct Procedure

By removing the iterative procedure shown in the previous design strategy it cannot
be ensured that the damper will be tuned at the desired secant stiffness. This is
because the displacement of the TMD is not optimized at the performance point and
so it could be lower or greater than anticipated.

For assuming a stroke of the TMD, umax, an amplification value of the floor
displacement is needed. In the iterative procedure this was done by means of the
SDOF system under ground motion. However in this alternative, as the BW element
will not be iterated, the actual hysteretic damping will be unknown, and so the
actual amplification value. Therefore, a recommended value for the assumed stroke
lies between 2 to 3.5 times the floor displacement. These values correspond to the
magnification factor of an element with 14% equivalent damping under tunings close to
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resonance. Under this study all elements that were designed in such manner provided
an equivalent viscous damping greater than such value.

As umax is set beforehand, Equation 5.7, can be used to impose fωsec = ωd,sec

considering kd,sec = kd,sec(umax) and so compute the values of γ = β. f is computed
by means of Equation 5.6.

A greater maximum displacement than the designed one is also possible and so
the same consideration regarding the feasibility of the structures should be stated.

5.2 Results
In the case presented in Chapter 4, the design was performed considering the displace-
ment in the positive direction, as shown in Figure 5.6. The results derived from the
bilinearized pushover curve are summarized in Table 5.1.

Figure 5.6. Pushover Curve Positive Direction

Table 5.1. Results Bilinearized Pushover

k0(kN/m) dy(m) ξ(%) PP SDOF (m)* PP MDOF (m)* ksec(kN/m)

20240.6 0.039 16 0.091 0.12 8208.9
*PP:Performance Point

Where ξ is computed, for instance, through the formulas presented in [37]. Other
formulas to approximate structural damping are available for instance in the Italian
NTC2018, [42], Method B for bilinearizing the pushover curve. Both methods provide
similar results for the structural damping. The modal mass of the SDOF system is
m∗ = 155ton and the mass participation factor is Γ = 1.31.

Following the recommendations of [37], three different conditions for the effective
cases for the effective damping depending on the ductility of the structure are consid-
ered. According to the NTC2018, [42], the structural damping can be computed, in %
,as:

ξeq = k
63.7 ∗ (F ∗

Y d
∗
max − F ∗

maxd
∗
y)

F ∗
maxd

∗
max

+ 5 (5.12)
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It is important to note that the equation is given within an iterative procedure,
for which it was required to update the damping in every step until convergence. The
coefficient k depends on the characteristics of the expected hysteretic cycle of the
structure and can adopt three different values. Fy, dy, Fmax and dmax corresponds
to the force and displacement, yielding and maximum, that the bilinear structure
presents.

For this case, the procedure assuming initially the mass ratio will be followed. By
using a mass ratio µ = 0.05, an equivalent damping of 21% could be assumed for the
structure, by considering ξr = µ.

ξr =ξt − ξ0

0.05 =ξt − 0.16

ξt =0.21

(5.13)

When considering such damping in the ADRS spectrum, the expected performance
point of the SDOF system would be 0.077m meaning 0.10m in the real structure. The
uncontrolled and controlled situations are represented in Figure 5.7.

Next, as the the mass ratio is already defined, the tuning frequency can be
computed according to [19], through Equation 5.6, the optimal value considering
µ = 0.05 and ξ = 16% is f = 0.83.

f =(

√
1− 0.5µ

1 + µ
+
√

1− 2ξ2 − 1)

− (2.375− 1.034
√
µ− 0.426µ)ξ

√
µ

− (0.3730− 16.903
√
µ+ 20.496µ)ξ2

√
µ

f =(

√
1− 0.5 ∗ 0.05
1 + 0.05

+
√
1− 2 ∗ 0.162 − 1)

− (2.375− 1.034
√
0.05− 0.426 ∗ 0.05) ∗ 0.16 ∗

√
0.05

− (0.3730− 16.903
√
0.05 + 20.496 ∗ 0.05) ∗ 0.162 ∗

√
0.05

f =0.83

(5.14)

Considering the initial stiffness of the structure, k0, the initial stiffness of the
damper kd,0 can be computed, and the hardening coefficient αd can be defined. For
this case the hardening coefficient will be set as αd = 0.05 as a design choice. Taking
into account the mass ratio of µ = 0.05, the mass of the TMD is md = 11.6ton. It
is important to note that even if for the mass of the damper the mass of the whole
structure is considered, for the computation of the element’s stiffness, the modal mass
is used instead of the total mass of the structure. In Chapter 7 a comparison of the
results when using the total mass of the structure in this calculation is available.

µ =
md

m

0.05 =
md

232
md =11.6ton

(5.15)
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(a) Reduction of the Demand spectrum (b) Secant stiffness to the new Performance Point

Figure 5.7. Performance Point with Added Damping

With the mass of the TMD and imposing that it is tuned as per f one gets the
initial stiffness of the damper, kd,0, as:

f 2 k0
m∗ =

kd,0
md

0.832 ∗ 20240.6

155
=
kd,0
11.6

kd,0 =1050.5kN/m

(5.16)

5.2.1 Iterative Procedure

Based on the new performance point of the structure an initial estimate of the stroke
can be computed by assuming an initial ξd,0 and considering the TMD as a SDOF
under base excitation with a ground displacement equal to the displacement of the
performance point as per Equation 5.8.

By assuming an initial value of ξ = 16%, which is the result of the optimal
parameter of the TMD according to [19], the SDOF system would be subjected to an
initial motion of 0.24m and shown in Figure 5.8.

ud,max =xpp

√
ρ4

(1− ρ2)2 + (2ξdρ)2

ud,max =0.1 ∗

√
1.24

(1− 1.22)2 + (2 ∗ 0.16 ∗ 1.2)2

ud,max =0.24m

(5.17)

Considering this displacement as umax the values of the remaining parameters of
the BW model can be computed by considering the tuning under secant frequency.

With the stroke, the values of γ and β can be computed using Equation 5.7 so a
first attempt of the BW can be drawn.
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f 2ksec
m∗ ∗md =kd,0

{
αd +

1− αd

u(β + γ)
(1− e−u(β+γ))

}
0.832 ∗ 9844

155
∗ 11.6 =1045 ∗

{
0.05 +

0.95

0.24 ∗ (β + γ)
(1− e−0.24∗(β+γ))

} (5.18)

Imposing γ = β the equation can be solved for one of the two variables resulting
in γ = β = 4.22.

Figure 5.8. First Sinusoidal Motion

The resulting BW hysteretic cycle is shown in Figure 5.9a. However, the result
of computing the damping of the BW element is ξ = 14.1%. As this value differs
from the original one, the process is repeated by considering this new damping value
to compute the stroke of the system. In this study, the process converged at the
second iteration resulting in a maximum displacement of umax = 0.237m. Figure 5.9b
presents the resulting BW cycle, and its characteristics are resumed in Table 5.2.

Table 5.2. Results BW Element

Mass (ton) kd,0(kN/m) kd,sec(kN/m) ξ(%) Displacement at PP (m)*
11.6 1050.5 509.61 14.6 0.237

*Performance Point
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By considering the BW equivalent viscous damping, and using 5.11 the actual
equivalent damping that the TMD would provide to the structure is:

ξeq =ξhµ
∗
(
fUmax

xmax

)2

ξeq =0.146 ∗ 0.075∗
(
0.83 ∗ 0.237

0.077

)2

ξeq =0.07

(5.19)

(a) Initial (b) Final

Figure 5.9. BW Hysteretic Cycle
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5.2.2 Direct Procedure

Considering beforehand a stroke of the TMD as 30cm would allow to avoid the
iterative procedure at the expense of not ensuring the tuning at the performance
point.

f 2ksec
m∗ ∗md =kd,0

{
αd +

1− αd

u(β + γ)
(1− e−u(β+γ))

}
0.832 ∗ 9844

155
∗ 11.6 =1045 ∗

{
0.05 +

0.95

0.30 ∗ (β + γ)
(1− e−0.30∗(β+γ))

} (5.20)

Imposing γ = β the equation can be solved for one of the two variables resulting in
γ = β = 3.1. Therefore, the characteristics of this system are assumed to be optimal,
yet the average displacement at the performance point remains unknown.

By having an element with a secant stiffness tuned at a greater displacement it is
expected to have a greater hysteretic cycle. The comparison between the hysteretic
cycles of the resulting elements, alongside the desired secant stiffness of the element
are presented in Figure 5.10.

Figure 5.10. Comparison of the BW Hysteretic Cycles

37





Chapter 6

Numerical Results

As stated previously, to assess the TMD’s effectiveness, the numerical model shown in
Chapter 4 and validated in [30] was used. The performance indices shown in Table 6.1
were used to understand the behaviour of the structure after introducing the TMD.
In addition to the performance indices, the results of the uncontrolled structure for
the considered indices in each of the ground motions considered are presented.

Table 6.1. Definition of Performance Indices

System Response Peak RMS

Structure
Displacement J1 =

max(x)W,TMD

max(x)W/O,TMD
J4 =

RMS(x)W,TMD

RMS(x)W/O,TMD

Shear force
at the base

J2 =
max(F )W,TMD

max(F )W/O,TMD
J5 =

RMS(F )W,TMD

RMS(F )W/O,TMD

Acceleration J3 =
max(ẍ)W,TMD

max(ẍ)W/O,TMD
J6 =

RMS(ẍ)W,TMD

RMS(ẍ)W/O,TMD

TMD Stroke J7 = max(ud)

x refers to the displacement of the center of gravity in the 4th floor.

The behavior of the remaining floors of the structures will be analyzed by means
of the inter-storey drifts, defined as relative displacements between two successive
floors divided by the floor height. The accelerations considered for the Performance
indices are the relative accelerations.

6.1 Benchmark
Initially, the behaviour of the controlled and uncontrolled structures will be compared
under the excitations of the experimental structure in [28]. Meaning that the structure
will be studied using different accelerograms, D04 (service), D05 (design), and D06
(1.5 design). A case in which two and all of them occur in sequence will also be
analyzed. This case helps to understand the behaviour of the structure when it has
been affected by a previous earthquake. The accelerograms are presented in Figure 6.1

The behavior of the uncontrolled structure for the earthquakes considered is
summarized in Table 6.2. In the table the components for each performance index are
indicated, meaning that the peak and RMS displacements, forces and accelerations of
the structure are shown.
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Table 6.2. Uncontrolled Structure Benchmark

Earthquake Response Index Component
J1(m) J2(kN) J3(m/s2) J4(m) J5(kN) J6(m/s2)

D04 0.009 347.858 2.833 0.003 109.981 0.770
D05 0.116 1118.582 10.722 0.036 380.606 2.967
D45 0.116 1112.258 10.643 0.032 343.162 2.692
D456 0.234 1629.567 15.462 0.050 392.796 3.148

(a) D04

(b) D05

(c) D456

Figure 6.1. Accelerograms
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6.1.1 D04

Test D04 refers to a frequent accelerogram, meaning it is 15% of the design earthquake.
It is important to note that the location at which the TMD is located moves less than
1cm. Even under such circumstances, the TMD can dissipate energy as it reduces
the response of the building. Both, the structure and the TMD work in a linear way
during this excitation as seen from their hysteretic curves. The performance indices
are summarized in Table 6.3, and the behavior is presented in Figure 6.2.

Table 6.3. Performance Indices D04

Earthquake Response Index
J1 J2 J3 J4 J5 J6 J7(m)

D04 0.902 1.063 1.028 0.809 0.828 0.856 0.028

6.1.2 D05

The TMD can reduce the structure’s response in terms of displacement in the studied
direction. However, its effectiveness under this type of ground motion will be studied in
Section 6.2 to avoid particularising the results to this ground motion.The performance
indices are summarized in Table 6.4, and the behavior is presented in Figure 6.3.

Table 6.4. Performance Indices D05

Earthquake Response Index
J1 J2 J3 J4 J5 J6 J7(m)

D05 0.782 0.942 1.187 0.7246 0.950 1.069 0.195

Under the design earthquake the effects of introducing the TMD in the structure
are more evident. Its displacement time history is significantly modified reducing
both peak and RMS of the response of the roof. From the hysteretic curve, the shear
force time history and the performance indices J2 and J5 a reduction in the shear
forces is not present. Yet from the reduction in the displacements, a more compact
hysteretic curve is attained. It is also noteworthy that the TMD did not achieve the
design displacement at the moment in which the structure did.

6.1.3 D45

This accelerogram consists of D05 preceded by the initial 4.3 seconds of the D04.The
performance indices are summarized in Table 6.5, and the behavior is presented in
Figure 6.4.

Table 6.5. Performance Indices D45

Earthquake Response Index
J1 J2 J3 J4 J5 J6 J7(m)

D45 0.791 0.955 1.074 0.752 0.952 0.98 0.186
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(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure 6.2. D04
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(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure 6.3. D05
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(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure 6.4. D45
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The behavior of the uncontrolled structure subjected to the consecutive accelero-
grams is different from that when it is subjected only to test D05. There are several
reason for which this may have happened. For instance, damage in the real structure
or the fact that that by the beginning of the design earthquake the structure was
already moving. Under any of those scenarios, the damper was still able to attenuate
the response of the building, again reducing its displacement but not the shear forces.
In this case the TMD did not reach the design displacement.

6.1.4 D456

Test D456 is the accelerogram that the experimental structure suffered, leading to
the results shown in [28] . As D45, it has the initial 4.5s of the service accelerogram
proceeded by the design accelerogram. Once the design accelerogram is done, test
D06, representing 1.5 times the design accelerogram, is performed. The accelerogram
is stopped at the moment in which the test was concluded. The performance indices
are summarized in Table 6.6, and the behavior is presented in Figure 6.5.

Table 6.6. Performance Indices D456

Earthquake Response Index
J1 J2 J3 J4 J5 J6 J7(m)

D456 0.743 0.886 0.862 0.783 0.961 0.969 0.330

The code implemented for this analysis is not able to reproduce steel failure
so it would not be able to demonstrate the structural collapse. Therefore, if the
accelerogram D456 were to be continued to the end, an equilibrated solution would be
found for every step, yet such states would not represent the actual behaviour of the
structure. It is interesting to note that the damper reduces the peak displacement in
the same order of magnitude for this type of earthquake than to the design one. This
is considering that for this ground motion the structure had already suffered damage
from the previous ones. It is important to note that the controlled structure, at the
point in which the test was stopped, reached maximum displacement values 1.5 times
greater than the uncontrolled structure under the design test while the uncontrolled
case had a displacement twice as big than that of the design earthquake.

It is also important to note that even when the structure deepens into its nonlinear
state the damper is still able to work accordingly. When the structure is subjected
to this ground motion, the damper is still able to reduce the response, in terms of
displacements, in a good manner. However to do so, it requires a displacement greater
than the designed one, as the structural displacement is greater than anticipated. In
this hysteretic curve the plastic deformation of the BW element is clearly displayed.
After two important strokes, the element starts vibrating in a location different from
the initial one. This aspect would need to be considered for a real damper as more
space should be provided for it to dissipate energy.

Regarding the displacements of the remaining floors, the uncontrolled structure is
above the Life Safety criteria under the design ground motion of the recommendations
in FEMA 356, [34], for the maximum drift in walls, reported as 1%. The criteria for
walled structures is considered, as there is no recommendation for dual systems, and
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(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure 6.5. D456
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(a) D04 (b) D05

(c) D45 (d) D456

the coupled walls take most of the horizontal load of the structure. However, that
is different from the uncontrolled situation, as the controlled structure can remain
below that threshold.

Interestingly, the TMD kept the drifts at the same level in both tests D05 and D45.
Nevertheless, the uncontrolled structure performed differently. In it, the drifts were
reduced. Thus, showing that the behaviour of the structure was indeed affected by
the previous earthquake. The roof displacements, however, were kept almost constant
in both cases.

It is very important to understand the behaviour of the drifts for test D456. In
the uncontrolled structure, the drifts are above the limits recommended in [34] of 2%
as collapse prevention limit of walls. Yet, the use of the TMD could avoid collapse or
delay it as at the time in which the test was stopped the structure could still resist an
increment in loads. This is in accordance to the behavior shown in 6.5 by means of
the structural hysteretic cycle.
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6.2 Natural accelerograms
A series of eight-scaled accelerograms were used to determine the effectiveness of the
TMD. They were matched with a EC8 spectrum with a PGA of 0.4g, soil calss B and
structural damping of 5%. This is the same spectrum used for matching the Kobe
ground motion used in the PSD test of the building [28] and shown in Figure 4.2.

This demonstrates that the method is not optimized for a particular accelerogram
but for the site response spectrum. The response spectrum used for scaling the
accelerograms corresponded to the design response spectrum of the building and for
which test D05 was scaled. The matched response spectrum of the accelerograms and
their mean are presented in Figure 6.7. The accelerograms to which the model was
subjected are shown in Figure 6.8.

The behavior of the uncontrolled structure is summarized in Table 6.7.

Table 6.7. Uncontrolled Structure Natural Accelerograms

Earthquake Response Index Component
J1(m) J2(kN) J3(m/s2) J4(m) J5(kN) J6(m/s2)

Chalfant 0.197 1180.286 9.289 0.053 369.412 2.655
Chi-Chi 0.097 1063.792 9.470 0.012 156.903 1.142
Erzincan 0.159 1090.676 8.898 0.036 336.526 2.347
Friulli 0.132 1225.124 9.409 0.029 274.004 1.963
Imperial
Valley

0.156 1258.762 10.824 0.031 302.861 2.332

Kobe 0.177 1252.272 9.855 0.035 280.009 2.186
Loma Prieta 0.138 1276.549 12.542 0.028 258.233 2.070
Northridge 0.138 1255.761 10.318 0.047 371.781 2.662

Average 0.149 1200.403 10.076 0.034 293.716 2.170

(a) Matched (b) Mean

Figure 6.7. Matched Response Spectrum
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(a) Chalfant

(b) Chi Chi

(c) Erzincan

(d) Friulli
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(e) Imperial Valley

(f) Kobe

(g) Loma Prieta

(h) Northridge

Figure 6.8. Accelerograms
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6.2. Natural accelerograms

6.2.1 Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure 6.9. Chalfant
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6.2.2 Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure 6.10. Chi Chi
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6.2.3 Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure 6.11. Erzincan
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6.2.4 Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure 6.12. Friulli
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6.2.5 Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure 6.13. Imperial Valley
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6.2.6 Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure 6.14. Kobe
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6.2.7 Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure 6.15. Loma Prieta
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6.2.8 Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure 6.16. Northridge
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6.2.9 Comparison

As seen from Figures 6.9- 6.16 that there is a considerable reduction in the roof
displacement and the drifts in the structure. However, it is also evident that the shear
forces of the structure remain constant. The drifts in the structure were considerably
reduced, in many cases remaining below the FEMA 356 threshold of Life Safety, which
never happened in the uncontrolled case. In Table 6.8 the peak displacements of the
controlled and uncontrolled cases are compared alongside the Performance index J1.
The definition of the performance indices is available in Table 6.1

Table 6.8. Peak Displacements

Earthquake Peak displacement
Uncontrolled (m) Controlled (m) J1

Chalfant 0.197 0.110 0.560
Chi-Chi 0.097 0.083 0.847
Erzincan 0.159 0.102 0.638
Friulli 0.132 0.089 0.676
Imperial Valley 0.156 0.111 0.712
Kobe 0.177 0.118 0.668
Loma Prieta 0.138 0.104 0.757
Northridge 0.138 0.108 0.782

Average 0.149 0.103 0.705

From Table 6.8 it can be seen that the average response of the uncontrolled
structure was greater than the one anticipated through the performance point of
the pushover curve shown in Section 5 . Nevertheless, the displacement of the real
structure was limited to the one expected and shown in the same section by using a
mass ratio of µ = 0.05. Thus, showing that the TMD worked more efficiently than
anticipated. This was expected as the additional equivalent damping to the main
structure was computed considering a linear TMD model. Ergo, analysis on the
equivalent damping depending on the mass ratio for non linear TMD are requiered in
the near future.

Under the suite of selected accelerograms, the TMD reduced the average roof
displacement by 4.6cm. Regarding the displacements, the greatest reduction was when
subjected to Chalfant ground motion, where a reduction of almost 50% was obtained.
On the other hand, the TMD was less effective under Chi Chi ground motion, where a
reduction of 15% was reached. In this last case, the peculiarity of the ground motion
could be the reason for the reduction in the effectiveness. In it he response of the
TMD resembled more the response under a blast than to an earthquake. Therefore,
the parameters are not optimal for this type of loading and so they would have to
be redesigned accordingly. Thus demonstrating that the optimal design parameters
for these two types of loading are different and that the hysteretic TMD here design
could provide low effectiveness on reducing the peak displacements under this type of
excitation.

Concerning the behavior of the other floors in the building, from Figure 6.17 show
the adimensional interstorey drifts of the structure at the different levels over the
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Table 6.9. Performance Indices Natural Accelerograms

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.560 1.010 0.962 0.543 0.865 0.922 0.255
Chi-Chi 0.847 0.971 0.854 0.625 0.809 0.856 0.223
Erzincan 0.638 0.961 0.923 0.645 0.811 0.822 0.245
Friulli 0.676 0.970 1.042 0.696 0.902 0.926 0.230
Imperial Valley 0.712 1.018 1.007 0.771 0.926 0.954 0.217
Kobe 0.668 0.961 1.197 0.748 0.990 1.030 0.247
Loma Prieta 0.757 1.030 0.987 0.693 0.851 0.895 0.206
Northridge 0.782 0.967 0.914 0.632 0.815 0.795 0.275

Average 0.705 0.986 0.986 0.669 0.871 0.900 0.237

ground motions considered. It is evident that a considerable reduction in such values
is obtained by adopting the TMD in the structure. Drifts, as displacements, were
reduced in average 30% at each floor. They followed very similar behavior than the
roof displacements, being the most effective under the Chalfant ground motion and
least effective in Chi Chi.

(a) Chalfant (b) Chi Chi
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(c) Erzincan (d) Friulli

(e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure 6.17. Drifts
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The hysteretic behavior of the building is considerably improved when the TMD
is introduced. For instance, in Figure 6.9, the reduction in the nonlinear deformations
is evident. This is repeated under all of the ground motions but one, Chi Chi. Due to
the peculiarity of this ground motion, the damper does not attenuate the response of
the structure until the big displacement at around 30sec. From that point the damper
is able to reduce the roof displacement by working in the way it is intended to. As a
matter of fact, it manages to mitigate the dynamic response of the building rather
fast.

The TMD improved the global behavior of the building in all ground accelerations
considered. In all of them, the RMS of the displacements and accelerations were
reduced. The damper is far more efficient reducing the displacements in the structure
than the relative accelerations it is being subjected to due to the motion. However,
under some ground motions, the peak acceleration in the roof was increased when
introducing the TMD.

It is important to note that the average stroke value, Performance index J7, is
equal to that estimated in Chapter 5. However, as stated previously, greater values
were be obtained due to the different displacements of the roof. Yet, under none of
the ground motions considered a stroke of 30cm was obtained.

In terms of shear forces at the base, the structure would have to withstand
approximately the same peak forces even if a TMD is added. Nevertheless, a reduction
in the RMS of the forces was also obtained. This means, that if the structure were to
yield, the introduction of the TMD would not impede such yielding. Yet the plastic
displacements that it would undergo after such yielding would be reduced.

This last point is of vital importance in the design of retrofitting measures. Many
buildings approaching the end of their service life that are not compliant with actual
codes in terms of ductility can still withstand the required forces. The problem of such
buildings lies more in their ability to resist deformations rather than their strength.
Suppose this were to be the case, where the building does not exhibit the required
global ductility. In that case, this type of retrofitting technique could become a great
alternative to reduce the displacements demands.

Another important way of measuring the effectiveness of the TMD is by considering
the energy absorbed by the building. It is expected, from the introduction of the
TMD that the accelerations in the floors reduce, thus reducing the input energy of the
building. This reduction in the input energy translates to a reduction of the energy
absorbed by the structure that its components should resist in terms of deformation.
For example, Figure 6.18 depicts the evolution of the input, kinetic and absorbed
energy in the building under the Northridge ground motion. It is evident that there
is a decrease in all of the energies by introducing the TMD.

Using Figure 6.18 and 6.16 simultaneously, it can be understood that from the
first spike in the roof displacement, which inputs a considerable displacement in the
TMD, the energies and therefore deformations are reduced when compared to the
uncontrolled case. In this particular case, a reduction in the absorbed energy of
10% was obtained. These reductions indicate that the structural members suffer less
damage from the earthquakes and thus have a lower probability of compromising the
safety of the inhabitants.
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(a) Input

(b) Kinetic

(c) Absorbed

Figure 6.18. Energies
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Chapter 7

Sensibility Analysis

As the analyzed structure contains a significant amount of degrees of freedom, a
numerical approach to the optimization problem is rather cumbersome. Following
the same procedure of Chapter 5, several hypotheses were modified to comprehend
further the behavior of this type of auxiliary structure and its interaction with the
main structure. Therefore, alongside the modified damper, the damper results shown
in Chapter 6 are displayed for reference. The modifications of such hypotheses allow
for proving the robustness of the design procedure. It is well known, for instance,
that the behavior of an undamped TMD on a SDOF system is highly dependent on
the tuning parameter. In such way, it is essential to understand the behavior of the
structure when dampers with different properties are used.

Please refer to Annex B for the figures comparing the behavior of the analyzed
structure under each earthquake.

7.1 Linear damper
A linear damper, designed following the considerations of [19] of tuning and damping
was included in the system instead of the nonlinear one used for this study. This
element was modelled in NONDA considering a linear spring, which is a particular
case of the BW model with αd = 1.

The design of these elements consisted in adopting a stiffness, that with the same
mass of the hysteretic damper, attained the same desired structural frequency. Thus,
two different linear dampers will be considered, one with each of the considered
frequencies of the hysteretic damper. The damper tuned to the initial frequency of
the structure will be referred to as case Linear Initial while the damper tuned to the
secant frequency will be Linear Secant.

As in the design of the hysteretic damper, the stiffness of the damper is determined
by means of the tuning with respect to the main structure. As the same tuning
and mass ratio will be used, the stiffness of the dampers will be those considered in
Chapter 5 for the hysteretic damper. Once the stiffness of the structure was defined,
the viscous damping, c can be computed by means of Equation 7.1

ξ =
c

2
√
km

(7.1)
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Where ξ is the damping ratio, k, c, m are the stiffness, damping and mass
of the system respectively. As stated previously, for the mass ratio of µ = 0.05,
and a structural damping ratio of 0.16 the recommended optimal damping ratio is
recommeded by [19] ξ = 0.16.

With the equivalent damping ratio, the viscous damping of the linear TMDs can
be computed, in this case, the Linear Initial case had a value of cd = 35.3kN/(m/s)
while cd = 24.63kN/(m/s) was used for the Linear Secant TMD.

Table 7.1. Performance Indices Linear Damper

Type Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Hysteretic 0.705 1.010 0.986 0.669 0.883 0.900 0.237
Linear Initial 0.895 1.033 1.044 0.928 0.973 0.976 0.292
Linear Secant 1.023 1.015 0.996 1.124 1.040 1.032 0.449

It is evident that the benefits of installing a linear damper are very limited within
a seismic context. By considering the same mass ratio, the auxiliary structure does
not ensure controlling the structure in a great manner. On the contrary, under several
ground excitations the protected structure had greater drifts than the uncontrolled
structure, meaning that it worsen the seismic behavior of the system.

It is important to recall that TMDs are generally used to control vibrations that
have a limited frequency bandwidth. However, that is not the case under seismic
loading. Due to the great frequency content and the deterioration in the structure, the
linear TMD is not capable of reducing the vibrations in the structure in a significant
way.

7.2 Direct procedure
As expressed in Chapter 5, it is possible to modify the procedure to assume the stroke
of the TMD and avoid the iterative procedure. By proceeding in such a way, several
input strokes will be assumed for instance, 15cm, 20cm, and 30cm. The first value
ensures that the TMD will be tuned to the mode of vibration by using a low value
of the tuning displacement. The last two correspond to the hypothesis expressed
previously of assuming that the TMD will move approximately two or three times the
floor displacement.

The damper’s characteristics are determined to be tuned with the secant frequency
at the stroke displacement. The average performance indices obtained by introducing
the different dampers in the structure are shown in Table 7.2 and in Figure 7.1.

As stated previously, by using the direct procedure, the design secant tuning is not
ensured. This is because the relationship between the displacement of the damper and
the structure is not known. Therefore, it is not possible to know if the damper will
reach or surpass the displacement at which it is being tuned to the main structure.

This is exactly what parameter J7 reflects in Table 7.2. Using values lower than
the optimized stroke means that the secant stiffness at the working condition is lower
than expected and so the tuning frequency is smaller. On the other hand, when using
greater displacements, the secant stiffness will be greater than anticipated and so will
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Table 7.2. Summary Performance Indices Direct Procedure

Input
Stroke(cm)

Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

23.7 0.705 1.010 0.986 0.669 0.883 0.900 0.237
15 0.733 1.010 1.001 0.695 0.883 0.921 0.246
20 0.709 0.999 1.003 0.674 0.873 0.911 0.240
30 0.675 0.974 0.990 0.662 0.874 0.898 0.234
35 0.668 0.971 0.982 0.665 0.880 0.911 0.233
45 0.672 0.969 1.000 0.684 0.888 0.899 0.233
60 0.705 0.963 1.000 0.726 0.904 0.903 0.236

Figure 7.1. Performance Indices Direct Procedure

the tuning frequency. However, when comparing the strokes, it is evident that they
gravitate towards the same value, one very similar to the one computed using the
iterative approach.

Interestingly, the iterative procedure did not have the best results under the
considered accelerograms. By considering input strokes from 30cm to 45cm the
behavior of the performance indices regarding the displacements are reduced. However,
the results against the optimized method were similar, with an average of 1.7% between
the performance indices 1 through 6. A similar behavior was obtained when using the
input stroke of 20cm, having a mean difference of 3% in such indices. Such a difference
confirms that a direct method could be as effective as the iterative procedure.

This demonstrates that the design of the TMD is not very sensitive to a non-
accurate determination of the performance point in the neighboring areas of the
study. This increases the robustness of the method as high expertise for designing the
numerical model of the structure for the retrieval of the pushover curve would not
be necessary. In this way, a model that could fairly reproduce the behavior of the
building would be enough for the design of the auxiliary structure.

It shows as well that a particular secant tuning frequency is not as important as
the initial one. In particular, it shows that it is this nonlinear behavior shown by
the TMD that prevents it from damaging the structure. Meaning that, with a TMD
tuned to the initial frequency and showing a softening behavior, in case of the BW
through γ = β, the response of the structure would not be worsened under ground
motion excitation.
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Therefore, the element could be designed using the direct method, considering a
stroke 2− 3 times, or even more, the expected displacement of the control point. The
sensibility of the results considering different performance points will be discussed in
Section 7.6.

7.3 Stiffness
As expressed previously, there are several ways to bilinearize the pushover curve. In
the method presented in Section 5, a secant stiffness crossing the pushover curve at
60% of the yielding force following the recommendations of FEMA440, [37], was
adopted. Nevertheless, it is also possible to adopt a tangent stiffness of the pushover
to bilinearize the curve and design the TMD. For instance, the Italian Building
Code, NTC2018, follows this approach for deriving the bilinear curve. Following such
recommendations, the results of the bilinearized pushover curve are presented in Table
7.3 and in Figure 7.2.

Table 7.3. Results Bilinearized Pushover

k0(kN/m) dy(m) ξ(%) PP SDOF (m)* PP MDOF (m)*
30717.79 0.015 15 0.093 0.122

*PP:Performance Point

Due to the change in the structure’s considered initial stiffness, the damper’s
initial stiffness will change. The initial tangent stiffness will also be reduced by 50%
to emulate the structure’s stiffness after cracking. In addition to these results, a
reduction and increase of 10% in the considered initial stiffness to determine the
sensibility to such parameter will be studied. Therefore in Table 7.4 they will be
referred to as the code that was followed for the bilinearization, and the corresponding
modification.

Table 7.4. Summary Performance Indices Stiffness

Code Stiffness
(kN/m)

Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

FEMA440 20240.6 0.705 1.010 0.986 0.669 0.883 0.900 0.237
NTC2018 30717.8 0.746 0.963 0.928 0.750 0.905 0.869 0.177
50%NTC2018 15358.9 0.771 1.009 1.017 0.743 0.912 0.952 0.273
90%FEMA440 18216.5 0.734 1.001 0.998 0.699 0.876 0.902 0.248
110%FEMA440 22264.7 0.671 0.976 0.969 0.660 0.872 0.891 0.222

From Table 7.4, it is evident that the most significant differences when considering
the tangent stiffness, and 50% of such value in the performance indices are in terms
of displacements. Both displacements indices, peak and RMS, suffered an increase
by changing the considered stiffness of the structure to the ones relating the tangent
stiffness. However, this behavior was not evident when values closer to the secant
stiffness were used. In these cases the structure kept similar behaviors in most of the
performance indices.
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Figure 7.2. Performance Indices Stiffness

It is interesting to note that by considering a stiffness 10% greater than the one
initially assumed a better performance of the structure was obtained. This behavior
could be due to a modeling mistake in the SAP2000 model. Other reason for this
behavior could be that due to the non linearity of the damper the optimal tuning
frequency is no longer that recommended by [19]. However, a single study over a
particular building is not enough to ensure such behavior.

This indicates that a secant stiffness of the structure, as the one considered in [34]
for the bilinearization procedure, which is more characteristic of the elastic branch of
the structure, works in a better way for defining the characteristics of the damper.
This allows for a damper that is more effective through accounting for structural
damage. Yet, even considering the different stiffness alternatives, the damper is still
capable to improve the behavior of the structure.

7.4 Mass of the structure
During the design procedure, it was stated that the modal mass of the equivalent
SDOF should be used for the computation of the initial frequency. Therefore, Table
7.5 compares the TMD’s behavior when tuned to a frequency referring to the whole
mass of the structure and the frequency of the equivalent SDOF. The considered
stiffness remains constant and thus the frequency is reduced.

Table 7.5. Performance Indices Mass of the structure

Mass (ton) Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

155 (m∗) 0.705 1.010 0.986 0.669 0.883 0.900 0.237
232 (m) 0.814 1.000 0.991 0.765 0.916 0.955 0.302

If the total mass were to be considered for the design of the TMD without regard
for the modal analysis, it is evident that the structural frequency would be lower. This
detuning generates a significant difference in terms of displacements of the controlled
structure. In this case, the displacements indices were affected more severely, 15%,
than by varying the considered initial stiffness of the element. Therefore demonstrating
that the TMD effectively reduces the response of the mode for which it was designed.
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However, for the structure under consideration, using the total mass of the building and
an initial tangent stiffness derives in a structural frequency similar to that considered
in the design.

7.5 Tuning
In [25] this type of TMD was designed and analyzed by assuming that the element
should vibrate in resonance with the structure, as it attained the best results when
compared to other tuning conditions. In such a study, a Takeda model was used to
represent the structure, the element design was carried out employing GA, and the
simplified method presented here. The numerical optimization intended to keep the
damper tuned as much as possible to the structure in a limited search, considering
γ = β. Finally, both designs were compared regarding the model’s parameters and
displacement in the structure, leading to similar designs and resulting displacements.
Other authors have also worked on the problem under similar tuning conditions such
as [27,39].

However, as additional tuning frequencies were considered to comprehend the
behavior if the inital hypothesis of adopting the tuning by [19] is correct. Therefore,
a lower tuning frequency of f = 0.75, and two greater ones of f = 0.86 and f = 0.90
were included in addition to the resonant damper. Their results are presented in Table
7.6 and in Figure 7.3.

Table 7.6. Summary Performance Indices Tuning

f = ωd

ωs

Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

0.83 0.705 1.010 0.986 0.669 0.883 0.900 0.237
0.90 0.686 0.967 0.992 0.673 0.870 0.883 0.211
1 0.803 0.953 0.922 0.832 0.920 0.874 0.169
0.75 0.753 1.000 0.993 0.714 0.891 0.935 0.257
0.86 0.683 1.012 0.993 0.660 0.867 0.894 0.231

Figure 7.3. Performance Indices Tuning

By having a frequency of the structure equal to that of the damper, the structural
response is interesting. Unlike the results expressed by [25], the resonant damper is
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outperformed in terms of displacements, both RMS and peak, by approximately 14%
and 24% respectively when compared to the tuning frequency recommended by [19].
The other values had similar responses varying approximately 5% between them.

This could indicate that the Takeda model was an oversimplification of the behavior
of the building. In the [25], however, it was shown that the global behavior of the
building, in terms of displacements and shear forces were captured by the model. This
type of behaviors that cannot be captured by SDOF systems generates more design
uncertainties.

Similar results were obtained by [27], where an analytically designed TMD
in resonance was compared to one obtained through GA. In such work, a similar
hypothesis regarding the BW model were imposed, for instance, n = 1 and γ = β.
This allows solving the design problem by assuming a tuning frequency. In such case,
a resonance condition was imposed. However, when searching for the optimal design
of the TMD such limitations were not imposed. Therefore, the optimal characteristics
for the BW model were obtained. Such characteristics varied significantly from those
obtained using the analytical method.

In [27], the optimal TMDs analyzed were able to reduce the structural displacement
by approximately 50% with lower mass ratios. It is important to note that none of
the optimal TMDs in the study presented characteristics of γ = β. This confirms that
the optimal TMD might not be obtained by the design method presented here. Yet,
the [25] showed that the optimal TMD within the search space considering by γ = β
could be obtained, with enough accuracy, by implementing the simplified method here
presented.

Therefore when considering the structure as a MDOF system, a better response
is obtained by considering the tuning obtained through Equation 5.6. However such
tuning is for an optimally tuned linear TMD, thus further investigating the optimal
tuning parameters for the nonlinear TMD is required.

When a lower tuning was imposed, f = 0.75 the results were worse than that
of the TMD initially designed. However, with greater tuning frequencies, f = 0.86
and f = 0.9, better or similar behaviours were obtained. This could means that
the optimal tuning frequency of this type of dampers is indeed higher than the one
adopted initially.

7.6 Different mass ratio
The optimization procedure explained in Section 5was used assuming a µ = 1% and
so an additional equivalent damping ξ = 1% is considered in the structure. In this
way, the new performance point leads to a 0.118m in the real structure. Considering
µ = 1% the optimal tuning according to [19] is f = 0.92.

The results of the analysis using such TMD are resumed in shown in Table 7.7.
An important remark is that for such design the stroke of the TMD was greater than
that of the µ = 0.05, as it was umax = 28cm.

From Table 7.7, we can see that even with a 1% mass can reduce both displacement
indices by around 10%. The forces and accelerations, however, were not significantly
modified.

It is interesting to note that the peak displacement under considering a TMD with
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Table 7.7. Summary Performance Indices Mass Ratio

Mass Ratio (µ) Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

0.05 0.705 1.010 0.986 0.669 0.883 0.900 0.237
0.01 0.915 0.993 1.011 0.879 0.956 0.964 0.277
0.01* 0.920 0.990 1.012 0.882 0.955 0.964 0.275

a lower mass ratio was greater than anticipated. Initially, the performance point of
the structure was considered as 11cm, yet, after the analysis, an effective displacement
at the roof of 13cm was computed. This means that the iterative procedure done
to compute the displacement of the damper is incorrect as the displacement of the
performance point was miscalculated.

The behavior of the control structure by assuming a displacement in the perfor-
mance point of 0.13m was also considered, shown in Table 7.7 as entry 0.01*, yet
the results did not vary much with those presented in the mass ratio µ = 0.01. This
demonstrates that incorrectly assessing the displacement of the performance point
may be not detrimental to the design. This is in line with the behavior presented in
Section 7.2 as the controlled structural behavior did not present significant changes
by considering different levels of input stroke. Thus confirming the robustness of the
design procedure as the numerical model in the nonlinear stage is not as critical as the
elastic branch, which is usually easier to capture through the models. It also shows
that the most important parameters are the initial tuning and mass ratio to reduce
the displacements in the building.

Therefore computing the stroke of the TMD as shown in Section 5.1.1, may be
unnecessary for the design of the but crucial for further understanding its behavior.
It is important to note that with the different mass ratios the stroke of the damper
remained similar under the design earthquake.

Regarding the behavior of the controlled structure, on average the TMD can reduce
the RMS displacements in all cases and reduce their average value in approximately
10% with respect to the uncontrolled structure. However, under the Northridge ground
motion, the peak displacement in the roof and the drifts in the three upper floors
were increased. This increase was of 3%, 5% and 7% in the drifts of the structure and
5% in the peak displacement to the uncontrolled structure. In all other cases, the
drifts and peak displacements were either reduced or unaltered, for instance as when
subjected to Chi Chi.

This result is in line with what was stated previously. The importance of the secant
tuning is secondary to the initial tuning and is the global behavior of the TMD helps
to control the response of the building. Nevertheless, it is important to emphasize
the fact that the hysteretic curves of the building were not significantly modified by
the addition of the TMD with a mass ratio of 1%. This contrasts with the behavior
shown when a mass ratio of 5% was used,except for the Chi Chi case. However, under
this ground motion, the behavior of the controlled structure was similar to the one
seen with a 5% mass ratio.
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7.7 1.5 Design Earthquake
As stated previously, the NONDA code does not consider steel fiber failures, therefore
it will be capable to obtain an equilibrated solution for every time step. Thus, it cannot
reproduce the structural collapse. For such the structural results here presented may
have been impossible for the real structure to obtain, however it allows to understand
the behavior of the structure under such earthquakes. According to the NTC2018, the
return period for such ground motion is approximately 975 years for the considered
class of the structure. Meaning that the probability of an earthquake with those
characteristics, or greater, is 5% during the service life of a structure.

Table 7.8. Performance Indices 1.5 Design Earthquake

Earthquake
Multiplier

Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

1 0.705 1.010 0.986 0.669 0.883 0.900 0.237
1.5 0.848 0.957 0.998 0.876 0.968 0.970 0.327

It is clear from Table 7.8, that the TMD is not as effective when the structure faces
such solicitations. Yet it is still capable to reduce the structural response even when
the structure deepens into its non linear range. A mean reduction of 15% in both of
the displacement indexes was attained. This reduction can be owned to the fact that
the damper was not designed to work under such ground motions. Nevertheless, even
under such conditions the damper is still capable of reducing, and not worsening, the
response of the building.

To assess the collapse condition the criteria recommended by [34] for walls is
considered. Such criteria states that the adimensional interstorey drift should not
exceed 2%. However, when the structure is subjected to the considered ground motions,
the average drift in the second and third level were 2.07% and 2.08% respectively.
The drift threshold was exceeded in six of the eight ground motions considered, with
"Chi Chi" and "Loma Prieta" being the only ones in which the those values were not
attained.

When introducing the damper into the model, the drifts in all levels were reduced
in approximately 15%. With such reduction, the structure was only facing higher drifts
than those recommended by FEMA in two scenarios, "Northridge" and "Chalfant".
The average drift in those two levels were limited to 1.74% and 1.79%. Therefore, the
damper would allow to effectively reduce the damage of the structure to a point in
which structural collapse could be prevented. Showing that the hysteretic damper is
capable of achieving some tuning in the plastic regime of the structure.
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Conclusions

Nowadays, taller buildings are being built to accommodate the urban population,
which is overgrowing. It is not sustainable for the environment to continue this process.
Therefore, retrofitting existing structures becomes necessary to fulfil housing needs.
However, the main problem with retrofitting such structures is that most do not
satisfy the safety criteria of current building codes, especially regarding their seismic
behaviour.

Design codes prevent structures’ failure by ensuring they can withstand great
damage. Yet, many structures built in the past century are approaching the end of
their service life and cannot sustain significant plastic deformations generated by such
damage. This is usually owned to the fact that they do not exhibit high ductility,
which is fundamental for current codes regarding seismic design.

Therefore, considering their natural deterioration and the change in national
regulations, a significant part of the building stock requires retrofitting to fulfil current
requirements. Recently, many approaches to reduce seismic vulnerability have been
used. For instance, [43], worked on under-designed beam-to-column joints that could
exhibit brittle behaviour under seismic action. This reduces or impedes weak column
strong beam mechanism, which is opposite to capacity design. Nevertheless, other
ways to reduce seismic vulnerability have been through seismic control devices.

Many seismic-resistant buildings are implementing this strategy to have more
slender and economic structures. Therefore, structures with structural control methods
will be more common.

Within the passive methods of structural control, those that do not require energy,
base isolation, structural bracing, and TMDs are the most common methods nowadays.
However, TMDs were considered not advantageous within a seismic context as they
are effective within a narrow frequency bandwidth.

A new type of TMD with a spring exhibiting a hysteretic behavior has been
adopted during the last decade. This type of element has proven to be beneficial as it
avoids the main problem of a linear TMD, the detuning generated by the frequency
shift due to the damage in the system. This type of element presents itself as an
ideal retrofitting technique, as it could be installed on the roof of many buildings
permitting their diffusion in vast territories.

As of now, the element’s design relies on numerical optimization methods. However,
a novel simplified method for this type of structure was shown and proven in a dual
reinforced concrete building whose behaviour was tested numerically following its
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experimental results.
The design method delivered the characteristics of a TMD that improved the

overall behaviour of the building. The design procedure, explained thoroughly in
Chapter 5, is a fully structural approach to the problem. Therefore, it requires only
the characteristics of the structure and the site response spectrum. Therefore, it
would not require modelling additional input variables, for instance, ground motions.

The element reduced the displacements in each floor of the structure by approxi-
mately 30% by using a mass ratio of 5%. With such a mass ratio, the RMS of the
structure’s displacements, accelerations, and shear forces were reduced. Under the
same ground motions, a linear TMD was only able to reduce such value by around
10%.

It was also shown that the element could work even when the structure deepens
into the nonlinear range. In this case, the damper was able to reduce the structure’s
drifts to a level that, according to FEMA in [34], is deemed to prevent structural
collapse. However, the element could have been more effective under those ground
motions.

The behaviour of the controlled structure was shown to be determined, especially
by the mass ratio considered. However, an overall improvement in the structure
was obtained with a lower mass ratio of 1%. With this mass ratio, the controlled
structure exhibited a response worse than the uncontrolled structure for one of the
eight considered ground motions. It is important to note that this damper had better
results to the implementation of the linear damper with 5%.

The resulting element cannot be considered optimal as several hypotheses on its
behaviour were assumed beforehand. Nevertheless, the method showed robustness
as the structure’s response remained within the expected range even when changing
several input values substantially. This is a critical aspect as the method depends
on the nonlinear static analysis and therefore depends on the designer. It was shown
that a change of up to 10% in the considered stiffness lead to similar results in terms
of RMS.

However, several dampers used for the sensibility analysis outperformed the one
obtained by means of the iterative approach. All of these dampers presented a longer
tuning to the initial stiffness of the structure. This was achieved either means of a
higher stiffness, higher tuning tuning. or through a secant tuning at a displacement
higher than the actual one. This induces a slowlier decay of the stiffness of the element
and therefore longer initial tuning. This could mean that nonlinear dampers require
different tuning values for which further analysis are recommended.

Further studies within this field could allow, for instance, to include pinching within
the BW element as [44]. Excite the element in both directions to start generalizing
the problem and understanding the possibility of extending the theory to MTMDs.
This could be important as the TMD vibrates for a longer time than the earthquake
generating an oscillatory variation around that of the uncontrolled structure in the
base shear. Numerical tests in order to confirm the validity of tuning conditions used
in this study are also required. Within such study, a different initial and secant tuning
could be introduced as happened in this study for the dampers showing the best
behavior.

Nevertheless, the essential part would be to continue the experimental efforts.
Experimenting with different materials and set-ups that allow obtaining different
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hysteretic cycles is the key to understanding the damper’s feasibility.
This is not intended to be a final design of the element, as there is space to continue

improving the method proposed here. On the other hand, it is intended to be the
second step to a design method that can be implemented within national regulations.
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Appendix A

Experimentation Set-up

Figure A.1. PSD procedure
Retrieved from [30].
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Appendix A. Experimentation Set-up

Figure A.2. Reinforcement layout: Horizontal elements
Retrieved from [28]
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Appendix A. Experimentation Set-up

Figure A.3. Reinforcement layout: Vertical elements
Retrieved from [28]
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Appendix B

Sensibility Analysis

B.1 Linear Damper

B.1.1 Initial Stiffness

By considering a linear damper tuned to the initial frequency instead of a hysteretic
one the following results are obtained.

Table B.1. Performance Indices Linear Initial Damper

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.836 1.087 1.312 0.800 0.948 0.959 0.311
Chi-Chi 0.825 0.968 0.876 0.583 0.758 0.797 0.224
Erzincan 0.751 1.054 0.952 0.882 0.936 0.952 0.271
Friulli 0.853 0.955 1.096 0.941 0.988 0.967 0.272
Imperial Valley 1.025 1.259 0.986 1.259 1.042 0.968 0.291
Kobe 0.695 0.965 1.209 0.837 1.062 1.099 0.354
Loma Prieta 0.920 0.984 0.965 0.945 1.014 1.069 0.302
Northridge 1.258 0.988 0.952 1.173 1.037 0.995 0.314

Average 0.895 1.033 1.044 0.928 0.973 0.976 0.292
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.1. Chalfant Linear Initial TMD
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.2. Chi Chi Linear Initial TMD
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Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.3. Erzincan Linear Initial TMD
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.4. Friulli Linear Initial TMD
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.5. Imperial Valley Linear Initial TMD
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.6. Kobe Linear Initial TMD
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Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.7. Loma Prieta Linear Initial TMD
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Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.8. Northridge Linear Initial TMD
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.9. Drifts Linear Initial TMD
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B.1.2 Secant Stiffness

By considering a linear damper tuned to the secant stiffness the following results are
obtained.

Table B.2. Performance Indices Linear Secant Damper

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.706 1.057 1.077 0.660 0.879 0.925 0.506
Chi-Chi 0.919 1.012 0.928 1.133 1.081 1.065 0.331
Erzincan 0.780 1.102 1.114 0.938 1.042 1.065 0.379
Friulli 1.023 1.040 0.981 1.256 1.142 1.121 0.495
Imperial Valley 0.978 0.940 0.977 1.293 1.108 1.077 0.455
Kobe 1.019 0.894 1.023 1.100 1.054 1.046 0.543
Loma Prieta 1.385 1.076 0.937 1.466 0.992 0.980 0.379
Northridge 1.370 0.999 0.930 1.143 1.022 0.975 0.504

Average 1.023 1.015 0.996 1.124 1.040 1.032 0.449
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.10. Chalfant Linear Secant TMD
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.11. Chi Chi Linear Secant TMD

95



Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.12. Erzincan Linear Secant TMD

96



Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.13. Friulli Linear Secant TMD
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.14. Imperial Valley Linear Secant TMD
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.15. Kobe Linear Secant TMD
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.16. Loma Prieta Linear Secant TMD
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Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.17. Northridge Linear Secant TMD
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.18. Drifts Linear Secant TMD
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B.2 Direct Procedure

B.2.1 Umax = 15cm

The results of the matched natural accelerograms using a direct desing procedure
assuming a maximum displacement of the TMD of 15cm are presented.

Table B.3. Performance Indices Umax = 15cm

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.577 0.996 1.032 0.531 0.847 0.951 0.302
Chi-Chi 0.836 0.976 0.881 0.639 0.808 0.855 0.237
Erzincan 0.705 0.987 1.014 0.676 0.850 0.891 0.264
Friulli 0.733 1.019 1.003 0.716 0.911 0.945 0.225
Imperial Valley 0.756 1.045 1.093 0.792 0.927 0.965 0.226
Kobe 0.737 0.996 1.072 0.792 0.982 1.012 0.229
Loma Prieta 0.724 1.081 1.007 0.771 0.908 0.927 0.237
Northridge 0.797 0.979 0.905 0.641 0.827 0.819 0.246

Average 0.733 1.010 1.001 0.695 0.883 0.921 0.246
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.19. Chalfant Umax = 15cm
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.20. Chi Chi Umax = 15cm
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Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.21. Erzincan Umax = 15cm
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.22. Friulli Umax = 15cm
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.23. Imperial Valley Umax = 15cm
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.24. Kobe Umax = 15cm
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.25. Loma Prieta Umax = 15cm
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Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.26. Northridge Umax = 15cm
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.27. Drifts Umax = 15cm
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B.2.2 Umax = 20cm

Using a stroke of 20cm for the direct design procedure the following results are
obtained.

Table B.4. Performance Indices Umax = 20cm

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.559 1.015 0.997 0.537 0.851 0.907 0.271
Chi-Chi 0.818 0.981 0.913 0.612 0.799 0.876 0.224
Erzincan 0.662 0.980 0.992 0.656 0.827 0.857 0.253
Friulli 0.674 0.979 1.048 0.698 0.907 0.938 0.230
Imperial Valley 0.732 1.032 1.015 0.782 0.930 0.966 0.215
Kobe 0.691 0.968 1.178 0.765 0.991 1.031 0.254
Loma Prieta 0.741 1.065 0.983 0.713 0.870 0.914 0.207
Northridge 0.795 0.971 0.899 0.628 0.814 0.798 0.267

Average 0.709 0.999 1.003 0.674 0.873 0.911 0.240
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Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.28. Chalfant Umax = 20cm
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.29. Chi Chi Umax = 20cm
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Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.30. Erzincan Umax = 20cm
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.31. Friulli Umax = 20cm
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.32. Imperial Valley Umax = 20cm
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.33. Kobe Umax = 20cm
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.34. Loma Prieta Umax = 20cm
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Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.35. Northridge Umax = 20cm
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.36. Drifts Umax = 20cm
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Appendix B. Sensibility Analysis

B.2.3 Umax = 30cm

Setting the stroke as a desing parameter and using a value of 30cm for the tuning at
the performance point, the results following results are obtained.

Table B.5. Performance Indices Umax = 30cm

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.491 1.008 1.026 0.538 0.901 0.956 0.245
Chi-Chi 0.802 0.964 0.845 0.599 0.789 0.831 0.212
Erzincan 0.589 0.963 0.904 0.623 0.808 0.821 0.237
Friulli 0.663 0.958 1.064 0.688 0.897 0.910 0.226
Imperial Valley 0.695 0.991 1.014 0.769 0.929 0.946 0.227
Kobe 0.607 0.969 1.219 0.714 0.986 1.031 0.237
Loma Prieta 0.780 0.966 0.956 0.702 0.836 0.872 0.214
Northridge 0.772 0.977 0.895 0.660 0.848 0.813 0.278

Average 0.675 0.974 0.990 0.662 0.874 0.898 0.234
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.37. Chalfant Umax = 30cm
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.38. Chi Chi Umax = 30cm
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Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.39. Erzincan Umax = 30cm
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.40. Friulli Umax = 30cm
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.41. Imperial Valley Umax = 30cm
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.42. Kobe Umax = 30cm
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.43. Loma Prieta Umax = 30cm
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Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.44. Northridge Umax = 30cm
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.45. Drifts Umax = 30cm
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B.2.4 Umax = 35cm

Setting the stroke as a desing parameter and using a value of 35cm for the tuning at
the performance point, the results following results are obtained.

Table B.6. Performance Indices Umax = 35cm

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.471 1.015 1.020 0.541 0.920 0.976 0.244
Chi-Chi 0.805 0.969 0.830 0.597 0.784 0.835 0.210
Erzincan 0.568 0.960 0.882 0.621 0.823 0.899 0.233
Friulli 0.668 0.977 1.051 0.696 0.895 0.902 0.223
Imperial Valley 0.683 0.951 1.018 0.771 0.934 0.941 0.232
Kobe 0.591 0.981 1.265 0.704 0.984 1.034 0.236
Loma Prieta 0.797 0.944 0.905 0.707 0.836 0.878 0.212
Northridge 0.763 0.970 0.883 0.682 0.867 0.826 0.273

Average 0.668 0.971 0.982 0.665 0.880 0.911 0.233
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.46. Chalfant Umax = 35cm
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.47. Chi Chi Umax = 35cm
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Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.48. Erzincan Umax = 35cm
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.49. Friulli Umax = 35cm
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.50. Imperial Valley Umax = 35cm
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.51. Kobe Umax = 35cm
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.52. Loma Prieta Umax = 35cm
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Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.53. Northridge Umax = 35cm
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.54. Drifts Umax = 35cm
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B.2.5 Umax = 45cm

Setting the stroke as a desing parameter and using a value of 45cm for the tuning at
the performance point, the results following results are obtained.

Table B.7. Performance Indices Umax = 45cm

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.515 1.002 1.088 0.574 0.947 0.960 0.245
Chi-Chi 0.801 0.971 0.865 0.600 0.782 0.838 0.205
Erzincan 0.535 0.970 0.860 0.627 0.805 0.801 0.228
Friulli 0.677 0.981 1.078 0.717 0.894 0.892 0.233
Imperial Valley 0.666 0.941 1.068 0.795 0.946 0.939 0.237
Kobe 0.590 0.994 1.281 0.709 0.991 1.039 0.253
Loma Prieta 0.817 0.917 0.884 0.723 0.839 0.875 0.207
Northridge 0.776 0.978 0.877 0.729 0.902 0.851 0.259

Average 0.672 0.969 1.000 0.684 0.888 0.899 0.233
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.55. Chalfant Umax = 45cm
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.56. Chi Chi Umax = 45cm
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Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.57. Erzincan Umax = 45cm
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.58. Friulli Umax = 45cm
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.59. Imperial Valley Umax = 45cm

148



Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.60. Kobe Umax = 45cm
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.61. Loma Prieta Umax = 45cm
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Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.62. Northridge Umax = 45cm
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.63. Drifts Umax = 45cm

152



Appendix B. Sensibility Analysis

B.2.6 Umax = 60cm

Setting the stroke as a desing parameter and using a value of 60cm for the tuning at
the performance point, the results following results are obtained.

Table B.8. Performance Indices Umax = 60cm

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.603 0.941 1.058 0.637 0.949 0.957 0.250
Chi-Chi 0.790 0.970 0.846 0.596 0.780 0.807 0.200
Erzincan 0.561 0.959 0.891 0.664 0.827 0.826 0.225
Friulli 0.692 0.985 1.094 0.736 0.895 0.882 0.244
Imperial Valley 0.664 0.963 1.023 0.860 0.973 0.947 0.2487
Kobe 0.630 0.988 1.332 0.734 0.999 1.042 0.271
Loma Prieta 0.844 0.920 0.803 0.780 0.863 0.877 0.205
Northridge 0.853 0.976 0.958 0.797 0.943 0.882 0.246

Average 0.705 0.963 1.000 0.726 0.904 0.903 0.236
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve

(d) TMD Hysteretic Curve

Figure B.64. Chalfant Umax = 60cm
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve

(d) TMD Hysteretic Curve

Figure B.65. Chi Chi Umax = 60cm
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Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve

(d) TMD Hysteretic Curve

Figure B.66. Erzincan Umax = 60cm
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve

(d) TMD Hysteretic Curve

Figure B.67. Friulli Umax = 60cm
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve

(d) TMD Hysteretic Curve

Figure B.68. Imperial Valley Umax = 60cm
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve

(d) TMD Hysteretic Curve

Figure B.69. Kobe Umax = 60cm

159



Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve

(d) TMD Hysteretic Curve

Figure B.70. Loma Prieta Umax = 60cm
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Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve

(d) TMD Hysteretic Curve

Figure B.71. Northridge Umax = 60cm
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.72. Drifts Umax = 60cm
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Appendix B. Sensibility Analysis

B.3 Stiffness

B.3.1 Tangent Stiffness

Assuming a tangent stiffness of the structure for the initial tuning derives in the
following results.

Table B.9. Performance Indices Tangent Stiffness

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.654 0.961 1.045 0.671 0.955 0.943 0.171
Chi-Chi 0.959 0.989 0.883 0.694 0.754 0.720 0.167
Erzincan 0.634 1.019 0.866 0.742 0.833 0.788 0.160
Friulli 0.776 0.968 0.999 0.755 0.887 0.855 0.163
Imperial Valley 0.726 0.881 0.904 0.958 0.991 0.908 0.194
Kobe 0.558 0.968 1.079 0.644 0.979 0.965 0.159
Loma Prieta 0.734 0.984 0.831 0.734 0.895 0.901 0.166
Northridge 0.925 0.936 0.815 0.800 0.948 0.870 0.239

Average 0.746 0.963 0.928 0.750 0.905 0.869 0.177
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.73. Chalfant Tangent Stiffness
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.74. Chi Chi Tangent Stiffness
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Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.75. Erzincan Tangent Stiffness
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.76. Friulli Tangent Stiffness
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.77. Imperial Valley Tangent Stiffness
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.78. Kobe Tangent Stiffness
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.79. Loma Prieta Tangent Stiffness
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Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.80. Northridge Tangent Stiffness
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.81. Drifts Tangent Stiffness

172



Appendix B. Sensibility Analysis

B.3.2 50% Tangent Stiffness

Assuming a 50% of tangent stiffness of the structure to account for cracking leads to
the following results.

Table B.10. Performance Indices 50% Tangent Stiffness

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.582 0.994 1.140 0.534 0.841 0.935 0.270
Chi-Chi 0.848 0.991 0.872 0.772 0.906 0.955 0.244
Erzincan 0.729 0.978 0.945 0.719 0.885 0.943 0.283
Friulli 0.777 0.977 1.098 0.778 0.967 0.991 0.274
Imperial Valley 0.889 1.047 1.001 0.875 0.955 0.984 0.256
Kobe 0.679 0.954 1.206 0.819 1.030 1.077 0.302
Loma Prieta 0.684 1.135 0.991 0.754 0.905 0.943 0.261
Northridge 0.983 0.998 0.881 0.695 0.807 0.786 0.293

Average 0.771 1.009 1.017 0.743 0.912 0.952 0.273
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.82. Chalfant 50% Tangent Stiffness
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.83. Chi Chi 50% Tangent Stiffness
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Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.84. Erzincan 50% Tangent Stiffness
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.85. Friulli 50% Tangent Stiffness
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.86. Imperial Valley 50% Tangent Stiffness
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.87. Kobe 50% Tangent Stiffness
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.88. Loma Prieta 50% Tangent Stiffness
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Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.89. Northridge 50% Tangent Stiffness
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.90. Drifts 50% Tangent Stiffness
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Appendix B. Sensibility Analysis

B.3.3 90% Stiffness

By reducing the considered stiffness of the structure by 10% the following results are
obtained.

Table B.11. Performance Indices 90% Stiffness

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.611 1.017 1.024 0.587 0.841 0.868 0.267
Chi-Chi 0.889 0.990 0.847 0.710 0.795 0.828 0.234
Erzincan 0.675 0.969 0.942 0.669 0.839 0.867 0.258
Friulli 0.658 0.968 1.050 0.700 0.925 0.947 0.232
Imperial Valley 0.776 1.060 1.044 0.817 0.949 0.970 0.234
Kobe 0.666 0.958 1.202 0.763 0.992 1.038 0.275
Loma Prieta 0.736 1.055 0.987 0.699 0.858 0.902 0.225
Northridge 0.860 0.990 0.889 0.648 0.813 0.793 0.257

Average 0.734 1.001 0.998 0.699 0.876 0.902 0.248
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.91. Chalfant 90% Stiffness
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.92. Chi Chi 90% Stiffness
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Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.93. Erzincan 90% Stiffness
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.94. Friulli 90% Stiffness
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.95. Imperial Valley 90% Stiffness
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.96. Kobe 90% Stiffness
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.97. Loma Prieta 90% Stiffness
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Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.98. Northridge 90% Stiffness
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.99. Drifts 90% Stiffness
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Appendix B. Sensibility Analysis

B.3.4 110% Stiffness

By considering a stiffness 10% greater than the initial one, the following results are
obtained.

Table B.12. Performance Indices 110% Stiffness

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.449 1.031 0.968 0.526 0.926 0.992 0.2357
Chi-Chi 0.825 0.968 0.876 0.583 0.758 0.797 0.207
Erzincan 0.547 0.972 0.840 0.616 0.795 0.818 0.218
Friulli 0.717 0.986 1.059 0.725 0.891 0.889 0.205
Imperial Valley 0.621 0.898 0.984 0.753 0.920 0.913 0.223
Kobe 0.598 1.016 1.217 0.701 0.979 1.010 0.212
Loma Prieta 0.805 0.969 0.928 0.702 0.834 0.875 0.197
Northridge 0.802 0.965 0.877 0.677 0.874 0.833 0.278

Average 0.671 0.976 0.969 0.660 0.872 0.891 0.222
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.100. Chalfant 110% Stiffness
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.101. Chi Chi 110% Stiffness
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Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.102. Erzincan 110% Stiffness
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.103. Friulli 110% Stiffness
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.104. Imperial Valley 110% Stiffness
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.105. Kobe 110% Stiffness
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.106. Loma Prieta 110% Stiffness

200



Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.107. Northridge 110% Stiffness
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.108. Drifts 110% Stiffness
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Appendix B. Sensibility Analysis

B.4 Mass of the Structure
Considering a total mass of the structure to obtain the initial frequency of the structure
leads to the results here presented.

Table B.13. Performance Indices Mass of the Structure

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.584 0.991 1.102 0.493 0.808 0.905 0.368
Chi-Chi 0.912 1.018 0.913 0.837 0.936 0.975 0.276
Erzincan 0.776 0.994 1.021 0.734 0.896 0.932 0.281
Friulli 0.859 1.052 1.028 0.814 0.958 0.991 0.287
Imperial Valley 0.837 0.968 1.003 0.839 0.941 0.976 0.242
Kobe 0.761 0.952 0.996 0.804 0.966 0.999 0.298
Loma Prieta 0.862 1.071 0.951 0.872 0.960 0.971 0.396
Northridge 0.917 0.956 0.912 0.725 0.861 0.889 0.271

Average 0.814 1.000 0.991 0.765 0.916 0.955 0.302
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.109. Chalfant Mass of the Structure
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.110. Chi Chi Mass of the Structure
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Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.111. Erzincan Mass of the Structure
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.112. Friulli Mass of the Structure
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.113. Imperial Valley Mass of the Structure
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.114. Kobe Mass of the Structure
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.115. Loma Prieta Mass of the Structure

210



Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.116. Northridge Mass of the Structure
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.117. Drifts Mass of the Structure
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Appendix B. Sensibility Analysis

B.5 Tuning

B.5.1 f = 1

Using a tuning frequency of 1, meaning that the TMD and the structure have the
same natural period derives in the following results.

Table B.14. Performance Indices f = 1

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.747 0.999 1.069 0.751 0.958 0.939 0.181
Chi-Chi 0.963 0.973 0.863 0.746 0.792 0.766 0.157
Erzincan 0.673 1.019 0.882 0.812 0.867 0.805 0.145
Friulli 0.759 0.935 1.006 0.753 0.870 0.843 0.175
Imperial Valley 0.866 0.946 0.970 1.163 1.053 0.958 0.189
Kobe 0.754 0.856 0.932 0.839 0.957 0.911 0.158
Loma Prieta 0.723 0.971 0.819 0.749 0.898 0.888 0.165
Northridge 0.938 0.927 0.836 0.843 0.966 0.881 0.181

Average 0.803 0.953 0.922 0.832 0.920 0.874 0.169
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.118. Chalfant f = 1
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.119. Chi Chi f = 1
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Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.120. Erzincan f = 1
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.121. Friulli f = 1
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.122. Imperial Valley f = 1
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.123. Kobe f = 1
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.124. Loma Prieta f = 1
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Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.125. Northridge f = 1
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.126. Drifts f = 1
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Appendix B. Sensibility Analysis

B.5.2 f = 0.90

Using a tuning frequency of 0.90 the following results are obtained

Table B.15. Performance Indices 0.90

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.443 1.037 1.061 0.517 0.927 1.006 0.208
Chi-Chi 0.886 0.983 0.874 0.628 0.752 0.785 0.206
Erzincan 0.552 0.974 0.859 0.619 0.797 0.828 0.203
Friulli 0.718 0.917 1.266 0.760 0.874 0.867 0.189
Imperial Valley 0.654 0.901 0.905 0.780 0.907 0.875 0.224
Kobe 0.587 1.015 1.163 0.688 0.977 0.991 0.200
Loma Prieta 0.803 0.963 0.909 0.707 0.836 0.875 0.184
Northridge 0.843 0.945 0.898 0.684 0.887 0.838 0.276

Average 0.686 0.967 0.992 0.673 0.870 0.883 0.211
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.127. Chalfant f = 0.90
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.128. Chi Chi f = 0.90

225



Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.129. Erzincan f = 0.90
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.130. Friulli f = 0.90

227



Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.131. Imperial Valley f = 0.90
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.132. Kobe f = 0.90
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.133. Loma Prieta f = 0.90
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Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.134. Northridge f = 0.90
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Appendix B. Sensibility Analysis

B.5.3 f = 0.75

Using a tuning frequency of 0.70 delivers the following results.

Table B.16. Performance Indices f = 0.75

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.562 0.999 1.099 0.501 0.832 0.973 0.293
Chi-Chi 0.838 0.999 0.855 0.717 0.873 0.923 0.250
Erzincan 0.730 0.999 0.946 0.719 0.848 0.893 0.275
Friulli 0.749 0.942 0.991 0.722 0.916 0.947 0.232
Imperial Valley 0.818 1.037 1.062 0.819 0.935 0.969 0.229
Kobe 0.721 0.937 1.067 0.803 0.991 1.023 0.251
Loma Prieta 0.701 1.108 1.023 0.775 0.916 0.949 0.258
Northridge 0.905 0.977 0.902 0.656 0.814 0.808 0.265

Average 0.753 1.000 0.993 0.714 0.891 0.935 0.257
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.135. Chalfant f = 0.75
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.136. Chi Chi f = 0.75
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Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.137. Erzincan f = 0.75
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.138. Friulli f = 0.75
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.139. Imperial Valley f = 0.75
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.140. Kobe f = 0.75
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.141. Loma Prieta f = 0.75
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Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.142. Northridge f = 0.75
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.143. Drifts f = 0.75
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.144. Drifts f = 0.75
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Appendix B. Sensibility Analysis

B.5.4 f = 0.86

Using a tuning frequency of 0.86 delivers the following results.

Table B.17. Performance Indices f = 0.86

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.535 1.199 1.022 0.546 0.877 0.922 0.244
Chi-Chi 0.824 0.962 0.885 0.593 0.765 0.790 0.216
Erzincan 0.595 1.045 0.939 0.626 0.817 0.868 0.236
Friulli 0.694 0.971 1.054 0.701 0.894 0.911 0.222
Imperial Valley 0.673 0.970 0.999 0.750 0.923 0.948 0.219
Kobe 0.638 0.983 1.174 0.726 0.990 1.033 0.223
Loma Prieta 0.773 1.006 0.966 0.697 0.839 0.876 0.202
Northridge 0.734 0.962 0.903 0.641 0.834 0.804 0.287

Average 0.683 1.012 0.993 0.660 0.867 0.894 0.231
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.145. Chalfant f = 0.86
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.146. Chi Chi f = 0.86
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Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.147. Erzincan f = 0.86
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.148. Friulli f = 0.86
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.149. Imperial Valley f = 0.86
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.150. Kobe f = 0.86
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.151. Loma Prieta f = 0.86
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Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.152. Northridge f = 0.86
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.153. Drifts f = 0.86
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Appendix B. Sensibility Analysis

B.6 Mass ratio

B.6.1 Ug = 11cm

Considering a mass ratio of 1% and following the procedure expressed in Chapter 5
the following results are obtained.

Table B.18. Performance Indices µ = 0.01 Ug = 11cm

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.814 0.971 1.134 0.809 0.974 1.009 0.254
Chi-Chi 0.999 1.013 0.964 0.822 0.888 0.911 0.220
Erzincan 0.850 0.972 1.013 0.854 0.937 0.937 0.289
Friulli 0.895 0.971 0.977 0.864 0.938 0.943 0.255
Imperial Valley 0.917 0.981 1.089 0.937 0.980 0.984 0.314
Kobe 0.910 1.008 0.959 0.940 0.997 0.992 0.280
Loma Prieta 0.889 1.037 1.013 0.898 0.963 0.969 0.272
Northridge 1.047 0.991 0.940 0.908 0.975 0.963 0.335

Average 0.915 0.993 1.011 0.879 0.956 0.964 0.277
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.154. Chalfant µ = 0.01 Ug = 11cm
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.155. Chi Chi µ = 0.01 Ug = 11cm
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Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.156. Erzincan µ = 0.01 Ug = 11cm
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.157. Friulli µ = 0.01 Ug = 11cm
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.158. Imperial Valley µ = 0.01 Ug = 11cm
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.159. Kobe µ = 0.01 Ug = 11cm
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.160. Loma Prieta µ = 0.01 Ug = 11cm
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Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.161. Northridge µ = 0.01 Ug = 11cm
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.162. Drifts µ = 0.01 Ug = 11cm
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Appendix B. Sensibility Analysis

B.6.2 Ug = 13cm

By updating the expected performance point of the structure to 13cm the comparison
between the controlled and uncontrolled structure is presented.

Table B.19. Performance Indices µ = 0.01 Ug = 13cm

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.814 0.971 1.134 0.809 0.974 1.009 0.244
Chi-Chi 1.006 0.971 0.906 0.833 0.866 0.895 0.225
Erzincan 0.875 0.983 1.006 0.867 0.943 0.945 0.289
Friulli 0.908 0.968 0.978 0.875 0.945 0.953 0.246
Imperial Valley 0.921 0.986 1.118 0.939 0.979 0.985 0.312
Kobe 0.915 1.018 0.980 0.942 0.996 0.992 0.274
Loma Prieta 0.889 1.037 1.013 0.898 0.963 0.969 0.257
Northridge 1.032 0.982 0.957 0.892 0.973 0.963 0.356

Average 0.920 0.990 1.012 0.882 0.955 0.964 0.275
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.163. Chalfant µ = 0.01 Ug = 13cm
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.164. Chi Chi µ = 0.01 Ug = 13cm
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Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.165. Erzincan µ = 0.01 Ug = 13cm

266



Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.166. Friulli µ = 0.01 Ug = 13cm
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.167. Imperial Valley µ = 0.01 Ug = 13cm
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.168. Kobe µ = 0.01 Ug = 13cm
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.169. Loma Prieta µ = 0.01 Ug = 13cm
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Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.170. Northridge µ = 0.01 Ug = 13cm

271



Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.171. Drifts µ = 0.01 Ug = 13cm
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Appendix B. Sensibility Analysis

B.7 1.5 Design Earthquake
The results of the numerical simulation considering a 1.5 Design Earthquake are
here presented. These results may be non representing of the actual behavior of the
building under such a severe motion as steel failure, and therefore collapse, are not
considered. The green dotted line in B.180 represents the 2% collapse prevention limit
for walls stated in [34].

Table B.20. Performance Indices 1.5 Design Earthquake

Earthquake Performance Index
J1 J2 J3 J4 J5 J6 J7(m)

Chalfant 0.942 0.856 1.069 0.920 1.003 0.954 0.351
Chi-Chi 0.809 0.886 0.905 0.762 0.932 0.952 0.339
Erzincan 0.815 0.930 0.981 0.816 0.970 0.919 0.312
Friulli 0.771 1.103 0.946 0.807 1.001 0.995 0.332
Imperial Valley 0.821 0.957 1.236 0.827 1.010 1.047 0.303
Kobe 0.807 0.944 0.967 0.936 0.836 0.989 0.293
Loma Prieta 0.921 0.989 1.001 1.023 1.005 0.983 0.364
Northridge 0.896 0.993 0.881 0.917 0.985 0.919 0.322

Average 0.848 0.957 0.998 0.876 0.968 0.970 0.327
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Appendix B. Sensibility Analysis

Chalfant

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.172. Chalfant 1.5 Design Earthquake
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Appendix B. Sensibility Analysis

Chi-Chi

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.173. Chi Chi 1.5 Design Earthquake
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Appendix B. Sensibility Analysis

Erzincan

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.174. Erzincan 1.5 Design Earthquake
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Appendix B. Sensibility Analysis

Friulli

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.175. Friulli 1.5 Design Earthquake
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Appendix B. Sensibility Analysis

Imperial Valley

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.176. Imperial Valley 1.5 Design Earthquake
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Appendix B. Sensibility Analysis

Kobe

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.177. Kobe 1.5 Design Earthquake
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Appendix B. Sensibility Analysis

Loma Prieta

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.178. Loma Prieta 1.5 Design Earthquake
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Appendix B. Sensibility Analysis

Northridge

(a) Roof Displacements

(b) Shear Forces at the base

(c) Structural Hysteretic Curve (d) TMD Hysteretic Curve

Figure B.179. Northridge 1.5 Design Earthquake
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Appendix B. Sensibility Analysis

Drifts

(a) Chalfant (b) Chi Chi (c) Erzincan

(d) Friulli (e) Imperial Valley (f) Kobe

(g) Loma Prieta (h) Northridge

Figure B.180. Drifts 1.5 Design Earthquake
The green dotted line represents the [34] collapse prevention limit for walls.
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Acronyms

TMD Tuned Mass Damper

GA Genetic Algorithms

Ec8 Eurocode 8

NTC2018 Norma Tecniche delle Costruzione 2018

RMS Root Mean Square

BW Bouc Wen
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