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Abstract

The research on vision-based pose estimation algorithms using monocular images for Ren-
dezvous and Proximity Operations has been widely discussed in recent years. Deep Learn-
ing (DL) techniques perform well in such research, but they require labelled spacecraft
datasets. The existing datasets contain a single spacecraft, and the algorithms are inac-
cessible to reproduce the dataset with any desired spacecraft. This research is proposed to
overcome these shortcomings by introducing an algorithm to generate a multi-spacecraft
dataset named POSSE Dataset. Since the state-of-the-art (SOTA) models are trained to
detect the very same or similar featured spacecraft, this research also aims to substan-
tiate these DL models’ feasibility using a convolution neural network (CNN) in detect-
ing the spacecraft with disparate features eventually assisting in pose estimation. The
dataset generation algorithm written in Python makes use of Relative Orbital Elements
for the camera path planning and is developed to integrate with open-source software
using physical-based rendering techniques. Moreover, the proposed CNN for detection
termed as Spacecraft Detection Network (SDN) employs modified SOTA object detection
architectures to predict multiple spacecraft. As a result, the POSSE Dataset includes
8237 novel synthetic images of Aqua and Cluster that consist of sharp and smooth fea-
tures along with their annotations for a bounding box, keypoints and pose data. In
addition, the dataset includes challenging conditions such as long-range, low visibility,
strong shadows, and partial views of the spacecraft with stars and Earth in the back-
ground. Furthermore, the POSSE Dataset is partitioned into another four datasets by
removing the stars in the background to validate its robustness in comparison, with the
proposed SDN in different scenarios. Overall, the SDN is proven to be efficient in de-
tecting a single spacecraft with a dark background at a mean Average Precision (mAP)
of 78.03% and 5 Frames Per Second (FPS). However, this performance is reduced when
tested on the POSSE Dataset to 36.57% of mAP and 4 FPS.

Keywords: synthetic image generation; relative orbital elements; deep learning; space-
craft detection; relative pose estimation





Abstract in lingua italiana

La ricerca sugli algoritmi di stima della posa basati sulla visione utilizzando immagini
monoculari per le Operazioni di Rendezvous e Prossimità è stata ampiamente discussa
negli ultimi anni. Le tecniche di Deep Learning (DL) danno buoni risultati, ma richiedono
dataset etichettati dei satelliti. I dataset esistenti contengono un solo satellite, e gli al-
goritmi sono inaccessibili per riprodurre i dataset con qualsiasi satellite desiderato. Lo
scopo di questa ricerca è superare questi svantaggi introducendo un algoritmo per generare
un dataset multi-satellite chiamato POSSE Dataset. Poiché i modelli allo stato dell’arte
(SOTA) sono addestrati per rilevare lo stesso satellite o simili, questa ricerca mira anche
a corroborare la loro fattibilità di DL utilizzando una rete neurale convoluzionale (CNN)
nella rilevazione dei satelliti con caratteristiche disparate, aiutando infine nella stima
della posa. L’algoritmo di generazione del dataset scritto in Python fa uso degli Elementi
Orbitali Relativi per la pianificazione del percorso della telecamera ed è sviluppato per
integrarsi con software open-source utilizzando tecniche di rendering basate sulla fisica.
Inoltre, la CNN proposta per la rilevazione, denominata Spacecraft Detection Network
(SDN), impiega architetture di rilevamento oggetti modificate dallo SOTA per prevedere
più satelliti. Di conseguenza, il POSSE Dataset include 8237 nuove immagini sintetiche
di Aqua e Cluster che consistono in caratteristiche nitide e lisce insieme alle loro anno-
tazioni per bounding box, keypoints e dati di posa. Inoltre, il dataset include condizioni
difficili come lunghe distanze, bassa visibilità, forti ombre e viste parziali dei satelliti,
con stelle e la Terra sullo sfondo. Inoltre, il POSSE Dataset è suddiviso in altri quattro
dataset rimuovendo le stelle sullo sfondo per convalidare la sua robustezza in confronto
con la proposta SDN in scenari diversi. Complessivamente, la SDN è dimostrata efficiente
nel rilevare un singolo satellite su sfondo scuro con una mean Average Precision (mAP)
del 78, 03% e 5 Frame Per Second (FPS). Tuttavia, questa prestazione è ridotta quando
testata sul POSSE Dataset al 36, 57% di mAP e 4 FPS.

Parole chiave: generazione di immagini sintetiche; elementi orbitali relativi; deep learn-
ing; rilevamento di satelliti; stima della posa relativa





v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

List of Figures vii

List of Tables ix

Nomenclature xi

1 Introduction 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Mathematical background 11
2.1 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Geocentric-Equatorial Coordinate System . . . . . . . . . . . . . . 11
2.1.2 North East Down Coordinate System (NED) . . . . . . . . . . . . . 12
2.1.3 Local Vertical and Local Horizontal (LVLH)

Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Relative Orbital Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Keplerian motion propagation . . . . . . . . . . . . . . . . . . . . . 15
2.3 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Deep learning: Convolution neural networks . . . . . . . . . . . . . . . . . 18

2.4.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



2.4.5 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Image classification and localization . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Proposal generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Feature Pyramid Network . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.3 Performance Indicators . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Perspective transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.1 Perspective Projection . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Dataset generation 41
3.1 Spacecraft selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 3D models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Spacecraft orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 Spacecraft attitude . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.3 Sun orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.4 Camera trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Monocular camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 Sensor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.1 Scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.2 Image rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.3 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 POSSE Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.1 Re-partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Spacecraft detection 63

5 Results 67
5.1 Spacecraft renders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Multi spacecraft detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Experiment on POSSE_v1 and POSSE_v2 . . . . . . . . . . . . . . . 71
5.2.2 Experiment on POSSE_v3 and POSSE_v4 . . . . . . . . . . . . . . . 73
5.2.3 Experiment on POSSE . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Conclusions and future developments 77

Bibliography 79

Acknowledgements 85



vii

List of Figures

1.1 Direct and Indirect deep learning Song et al. [1] . . . . . . . . . . . . . . . 4
1.2 Spacecraft Pose Network (SPN) [2] . . . . . . . . . . . . . . . . . . . . . . 6
1.3 CNN pipeline of Proença and Gao [3] . . . . . . . . . . . . . . . . . . . . . 7
1.4 CNN pipeline of Park et al. [4] . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 ECI Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Spacecraft Body Reference Frame . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Local-Vertical-Local-Horizontal Frame . . . . . . . . . . . . . . . . . . . . 13
2.4 Relative E/I vectors [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 A Computational graph representing ANNs . . . . . . . . . . . . . . . . . 17
2.6 AlexNet architecture [6] illustrating delineated operations on two GPUs . . 22
2.7 ResNet Architecture [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 Residual and identity block architecture in deeper variants of ResNet . . . 24
2.9 Architecture of ResNet-18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.10 Image classification and localization categories . . . . . . . . . . . . . . . . 29
2.11 Two-stage detectors unified framework . . . . . . . . . . . . . . . . . . . . 29
2.12 Building block of Feature Pyramid Networks (FPN) . . . . . . . . . . . . . 36

3.1 Spacecraft 3D models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Propagator model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Spacecraft pointing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Planetary ephemeris [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Camera trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 POSSE Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7 Scene collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.8 Cluster solar panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.9 Third-person Point-of-View of the Camera and Cluster. . . . . . . . . . . . 55
3.10 Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.11 Starry background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.12 Backward Ray Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



viii | List of Figures

3.13 Image rendering pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.14 Labelled keypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 End-to-End Architecture: Spacecraft Detection Network . . . . . . . . . . 63

5.1 POSSE renders of Aqua . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 POSSE renders of Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Cluster and Aqua without stars . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Performance indicator on POSSE_v1 . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Performance indicator on POSSE_v2 . . . . . . . . . . . . . . . . . . . . . . 73
5.6 Performance indicator on POSSE_v3 . . . . . . . . . . . . . . . . . . . . . . 74
5.7 Performance indicator on POSSE_v4 . . . . . . . . . . . . . . . . . . . . . . 75
5.8 Performance indicator on POSSE . . . . . . . . . . . . . . . . . . . . . . . . 76



ix

List of Tables

3.1 Shape categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Dimensional data of 3D models . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Cluster - Two Line Elements set . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Aqua - Two Line Elements set . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Sensor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Categories of labelled keypoints . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Categorization of datasets for the experiments . . . . . . . . . . . . . . . . 70
5.2 Ablation experiment for RPN, Transfer learning adaptability . . . . . . . . 70
5.3 Comparison of detection results on POSSE_v1 test set with SDN and baseline 71
5.4 Detection results on POSSE_v2 test set with SDN . . . . . . . . . . . . . . 72
5.5 Detection results on POSSE_v3 test set with SDN . . . . . . . . . . . . . . 73
5.6 Detection results on POSSE_v4 test set with SDN . . . . . . . . . . . . . . 74
5.7 Detection results on POSSE test set with SDN . . . . . . . . . . . . . . . . 76



x | List of Tables



xi

Nomenclature

Non-dimensional Quantities
A State matrix [−]

B Control input matrix [−]

I Identity matrix [−]

T Transformation matrix [−]

b Bias term [−]

δα Relative Orbital Elements [−]

δ Four quadrant inverse tangent [−]

δe⃗ Relative eccentricity vector [−]

γ Vernal equinox [−]

R Direction Cosine Matrix [−]

e Eccentricity [−]

Physical Quantities
Ih×w×c Image array [px]

Kh×w×c Kernel matrix [px]

X⃗ Relative state vector [−]

δ⃗i Relative inclination vector [rad]

δλ Relative mean argument of longitude [rad]

Ω Right Ascension of the Ascending Node (RAAN) [rad]



xii | Nomenclature

ω Argument of perigee [rad]

θ True argument of latitude of plane-change maneuvering point [rad]

φ Relative pericenter [rad]

r⃗ Spacecraft’s distance vector [m]

a Semimajor axis [m]

i Inclination [rad]

M Mean anomaly of the orbit [rad]

n Mean Motion [rad/s]

S Stride length [px]

u = ω +M Mean argument of latitude [rad]

Acronyms
ADRIOS Active Debris Removal/ In-Orbit Servicing

AI Artificial Intelligence

ANN Artificial Neural Network

BGD Batch Gradient Descent

CNN Convolution Neural Network

CoM Center of Mass

DCM Directional Cosine Matrix

DL Deep Learning

DNN Deep Neural Networks

ECI Earth Centered Inertial

GEO Geostationary Equatorial Orbit

IoU Intersection over Union

KPEC Kelvins - Pose Estimation Challenge

KRN Keypoint Regression Network

LEO Low Earth Orbit



| List of Tables xiii

LiDAR Light Detection and Ranging

LVLH Local Vertical and Local Horizontal

MEV Mission Extension Vehicle

MLP Multi-Layer Perceptron

ML Machine Learning

NED North East Down

NMS Non-Maximum Suppression

ODN Object Detection Network

POSSE unPerturbed Orbital Simulator for SpacEcraft

ReLU Rectified Linear Unit

ROE Relative Orbital Elements

RoI Region of Interest

RPN Region Proposal Network

RPO Rendezvous and Proximity Operations

RTN Radial Tangential Normal

SBRF Spacecraft Body Reference Frame

SDN Spacecraft Detection Network

SGD Stochastic Gradient Descent

SLAM Simultaneous Localization and Mapping

SOTA State of the Art

SSN Space Surveillance Network

VBN Vision Based Navigation





1

1| Introduction

The space bodies such as asteroids, space debris and satellites are classified as “Coopera-
tive” or “Uncooperative” based on whether they have a priori information or not (mark-
ers/communication). This research focuses on the “Uncooperative” artificial satellites in
particular. The presence of 3000 out of 4500 inactive satellites [9] and more than 27000
pieces of space junk pose a grave threat if fragmented, as estimated by the Department
of Defense’s global Space Surveillance Network (SSN). The Kessler syndrome is most
prevalent in Low Earth Orbit (LEO) and Geostationary Equatorial Orbit (GEO).

The most effective way to combat this chain reaction and stabilise the debris population is
to remove large debris from Space. The EU-funded REMOVEDEBRIS project [10] deployed in
June 2018 successfully demonstrated the in-orbit technologies for active debris removal. In
2019, ESA’s Ministerial Council named Space19+ initiated the Active Debris Removal/ In-
Orbit Servicing (ADRIOS) project [9] with two main goals: the removal of human-made
objects in Space as well as developing the competence necessary for in-orbit servicing,
which can extend the lifetime of infrastructure in Space.

One of the most critical aspects of such a mission is the ability to estimate the relative
pose, which refers to the position and orientation of the targets in six-dimensional space.
Considering a real-time Rendezvous and Proximity Operations (RPO) scenario, ground
support in navigation is expensive and compromises operational safety. On-board Vision-
Based Navigation (VBN) could address these issues whilst introducing the possibility for
accurate target classification, detection, and inspection.

To mention a few missions related to the topic - The VBN experiment [11], regarding
the REMOVEDEBRIS project, built a leap step to undertake relative pose measurements
with the use of active and passive imaging systems, such as Light Detection and Ranging
(LiDAR) and passive cameras. The Mission Extension Vehicle (MEV) series, launched
successively in 2020 and 2021 by Northrop Grumman Space Systems and Space Logistics
LLC, successfully demonstrated the RPO and Docking capabilities using a combination
of the visible, long-wave infrared spectrum, and active LiDAR [12].
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Following these footsteps, future missions such as NASA’s Restore-L, alias OSAM 1 [13],
and ESA’s ClearSpace-1 [14] aim to fulfil the goals of the ADRIOS project. Furthermore,
companies such as Astroscale, ClearSpace SA and Infinite Orbits have also emerged to co-
operate in ESA’s Clean Space initiative. The missions’ requirements also sparked interest
in seeding companies that create modular satellites and on-orbit assemblable spacecraft
components with cutting-edge robotics.

1.1. Problem statement

As previously stated, this study focuses on uncooperative targets, with known features
and an insufficient docking system: it would be significant in pose estimation to use
the passive cameras with visual feedback. Few traditional choices employ both multiple
imagers in the electromagnetic spectrum and LiDAR for depth mapping delivers precise
measurements, at high mass and energy costs. In the Section 3.3, the detailed discussion
on the choice of a passive monocular camera is presented.

Grayscale space imagery for pose estimation has gained popularity over recent years due to
its ease of use and lower computational cost as if the images were instantaneous compared
to world mapping techniques such as Simultaneous Localization and Mapping (SLAM).
According to [12], the target is pixelated at relative ranges exceeding 30km and is sensitive
to eclipses for target identification. Concerning the reflective materials used in aerospace,
there are illumination challenges under strong/weak intensities and shadow overlays, for
less than 5km ranges. The disadvantages include low signal-to-noise ratio, background
noise, and zero visibility in eclipse. These factors induce complexity in image processing
and feature extraction, which are detailed in Section 1.2.

From the survey [1], most of the complexities in image processing mentioned above get
resolved with the help of Deep Learning (DL) techniques, specifically Convolution Neural
Networks (CNN). The CNN training requires adequate labelled images, known as datasets.
These trained models are believed to be robust in spacecraft detection. The lack of
publicly available tools for dataset generation and labelling of desired spacecraft limits
this approach. Resolving this issue is also an implicit goal of the research. As a result,
an unPerturbed Orbital Simulator for SpacEcraft (POSSE) is developed for rendering
images.

In summary, the research problem statement is to develop a dataset generation al-
gorithm for generating a multi-spacecraft dataset that consists of sharp and smooth
features. In addition, these synthetic images are labelled with bounding boxes, keypoints
and pose data such that the CNN can perform spacecraft detection. By partitioning
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the main dataset the proposed network is set to validate the detection network’s abil-
ity and robustness of the CNN in different scenarios, and this network eventually assists
further in the development of a multi-spacecraft pose estimation algorithm.

Motivation

An interesting opportunity in this research is to solve the problem statement with the
support of State-of-the-Art approaches using minimal and simplistic hardware resources,
that will result in lower mission cost and complexity. In optical navigation, working with
images alone can make it very difficult to develop the RPO mission-oriented strategy in
estimating the pose, given the unfavourable conditions and utmost limitations in Space.
The research is motivated by advancements in artificial intelligence (defined in Section 2.3)
over computer vision1 in developing adequate autonomous navigation competence in ter-
restrial applications. With advanced computational techniques, this research hopes to
deliver a robust and accurate algorithm for detecting spacecraft with different geometrical
shapes, such that the pose estimation can be performed seamlessly on multiple spacecraft,
eventually contributing to the advancement of spacecraft’s autonomous capability in the
optical navigation domain.

1.2. State of the art

The idea is to present the State of the Art (SOTA) specific to pose estimation in aerospace
with monocular imaging using deep-learning techniques alone in this section, but it is
important to discuss in brief the pose estimation through computer vision techniques for
better understanding. The typical estimation procedure involves identifying, locating,
and tracking a number of keypoints on an object. For objects, the keypoints could be
corners or other significant features. The process of detecting, extracting and evaluating
the correspondence score of these features is termed “image processing”, and transforming
the potential keypoints from the 2D image plane to the object’s 3D space results in
“pose estimation”. It is to be noted that the image processing algorithms are a subset of
computer vision.

The progression of research in “image processing” started in the past five decades from the
development of detectors for simple features such as lines and curves by Duda and Hart
[15]. Another paper presented the use of Hough transformation2 in detecting the lines

1The field of high-level understanding of computers from digital images or videos.
2The purpose of the Hough transform is to perform groupings of edge points into object candidates

by performing an explicit voting procedure over a set of parameterized image objects.
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and curves from the digitized image, and the very same authors have mentioned in their
journal about the Sobel-Feldman Operator [16] which aid in edge detection by estimat-
ing the gradient intensity function of the image. Canny [17] had also made a significant
contribution with his computational approach on edge detection. Upon this success in
feature detection and feature extraction: The concept of perceptual organisation3, intro-
duced by Lowe [18] to perform 3D-object recognition, is further extended with the novel
voting-based methods for simple feature matching implemented by Horaud [19].

In the late 1980s, Dhome et al. [20] introduced a seminal approach to three-dimensional
attitude determination from images. They proposed an eighth-degree equation for cor-
respondence analysis, wherein features are extracted based on the triplet interpretation
principle. This principle involves considering any image lines as the perspective projection
of a triplet of linear ridges. Subsequently, the method was evaluated to determine the
corresponding attitude based on these projections. A similar approach with a feature-
based technique followed by a model-based verification is published [21] in which, the
feature-based process relies on the extraction of an attitude-dependent signature, and
then this signature is matched by means of cross-correlation against a stored library of
signatures with known attitude. To date, the feature-based techniques on satellite pose
estimation are well-advanced with the above-mentioned works [15–21] as baselines; and
much more reliable detectors, extraction and matching methods were developed, but a
focused discussion on this topic is beyond the scope of this research.

Deep-learning techniques fulfil the image processing tasks and aid in satellites’ pose esti-
mation. The techniques are categorised into two: direct and indirect deep-learning

Figure 1.1: Direct and Indirect deep learning Song et al. [1]

3Detecting groupings and structures in the image that are likely to be invariant over wide ranges of
viewpoints
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methods (see Figure 1.1) by Song et al. [1], in their survey, where the former refers to the
direct end-to-end Deep Neural Networks (DNN) pipeline (i.e., from the image input to the
pose estimate); and the latter uses DNN for image processing functions alone. Further,
the pose estimation is achieved by combining this output with other methods, such as
classical Machine Learning (ML), geometry-based optimisation, and Kalman filtering.

From here on, the SOTA is detailed on DNN alone for better clarity. It is better to begin
with the ESA’s Kelvins - Pose Estimation Challenge (KPEC)4, that shares an exact
problem statement of the study; but with Stanford’s dataset5 provided. The challenge
had made good progress on the complexities mentioned in Section 1.1. The outcomes
from this challenge had a significant impact on this research, thus mindful attention is
given to the few studies that are reported below.

Direct deep learning methods

In 2018, Sharma, Beierle, and D’Amico [24] first published the CNN-based approach with
an assumption of a known 3D model of the satellite to provide an initial guess of the pose
in real-time. Secondly, it contributes an introduction to the image synthesis pipeline that
tailors to generate high-fidelity images of any spacecraft 3D model. The proposed end-
end CNN adopts AlexNet [6] network architecture consisting of five convolution layers
and three fully connected layers (detailed in Section 2.4.4), of which the convolution
layers are trained with the ImageNet dataset [25] by adopting transfer learning approach.
The last three fully connected layers are trained with synthetically generated images
of the Tango satellite of the PRISMA mission such that, the minimal neurons in the
last few layers adapt the network for space imagery, and there is no need to train a
network completely from scratch for spaceborne applications. The resulting dataset from
the image synthesis pipeline is augmented to ten different datasets and tested with the
proposed CNN. This had better performance than traditional techniques, but applicability
to coarse initialisation alone is the only limitation.

As an outcome of KPEC, one-year later, Sharma and D’Amico introduced Spacecraft Pose
Network (SPN) [2] along with the SPEED Dataset [22, 23], and validated their network on
SPEED. A consecutive publication [26] in the following year extended the SPN training
to Apogee Motor, Imitation-25, and PRISMA-25 datasets. To discuss the SPN network
briefly, the relative position and relative attitude are computed in two stages

1. The first stage is set to classify and regress the 2D bounding box and relative
attitude by employing three separate branches that are preceded by 5 convolution

4KPEC Official website: https://kelvins.esa.int/satellite-pose-estimation-challenge/
5SPEED Dataset: Kisantal et al. [22], Park et al. [23]

https://kelvins.esa.int/satellite-pose-estimation-challenge/
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layers as shown in Figure 1.2. The feature maps generated by the convolution layers
are processed in Branch 1 using Region Proposal Network (i.e., an object detection
algorithm, see Section 2.5.1) for probability-based classification and regression of the
2D bounding box. Whereas, the other two branches are fully connected layers, which
use the feature maps along with the bounding box selected from the ROIPooling
operation as the inputs. Branch 2 identifies the closest probability of the predefined
attitude classes for the image input. The corresponding attitude classes are further
evaluated in Branch 3 with the popular machine learning loss functions (i.e., softmax
and L2 regularization) based on the angular differences from the true class, to find
the relative weights that result in estimating the relative attitude.

Figure 1.2: Spacecraft Pose Network (SPN) [2]

2. and the second stage obtains the first stage outputs as its inputs, with added geo-
metrical constraints posed from the Perspective-n-Point problem (see Section 2.6).
Upon solving this minimization problem, the relative position is achieved. For this,
the diagonal characteristic length of the 3D wireframe model and the 2D bounding
box are used to coarse estimate the relative position. Later on, this estimate is used
as an initial guess along with the azimuth and elevation angles, that are derived from
the bounding box coordinates and sensor properties. The minimization problem to
estimate the relative position is solved using the Gauss-Newton algorithm.

It is noted that decoupling the relative attitude and position estimation along with the
transfer learning will infer the target’s pose even with smaller datasets. When tested with
the SPEED’s test dataset, which contains real images of Tango, the SPN network resulted
in degree-level relative attitude and cm-level relative position errors.
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Proença and Gao [3] also contested the challenge with the aim of proposing a simplistic
approach. Their framework consists of a modified ResNet architecture (detailed in Sec-
tion 2.4.4) with pre-trained COCO weights. In order to keep spatial feature resolution,
the fully connected and the global average pooling layers at the network’s end are omitted;
and replaced with a bottleneck layer of one extra double-strided 3×3 convolution.

Figure 1.3: CNN pipeline of Proença and Gao [3]

Figure 1.3 depicts the framework. The key contribution also includes a simulator built
with Unreal Engine 4, which generates its own synthetic image dataset of Soyuz. The
idea of soft classification for probabilistic orientation regression, and a simple regression
branch with two fully connected layers for position estimation are presented. where, the
latter minimizes the relative translation error (test − tgt), corresponding to the total loss
function (Ltotal).

Ltotal = β1

m∑
i

||t(i)est − t
(i)
gt ||2

||t(i)gt ||2
+ β2Lori where: (β1, β2) are fine-tuned loss weights.

As for the orientation, three different methods were experimented on: direct regression,
probabilistic soft classification and multimodal estimation. However, the interest of the
study is limited to the problem addressed, rather than the resolution. In short, at first,
the paper states the quaternions are non-injective, and direct regression with L2, L1

loss results in inaccurate angular distances for orientation representation. Secondly, A
continuous estimation approach is experimented, with the idea of encoding each label
(qgt) as a Gaussian random variable in (ψ, ϕ) space, so that the network trains to output
probability mass functions for Probabilistic Quaternion Fitting (PQF). However, due to
the ambiguous views (if present) in the training set, there exists a multimodal distribution
(i.e., many solutions for one problem). For this, the Expectation-Maximization (EM)
method is proposed.

The CNN pipeline is trained and tested on Soyuz, Dragon and Tango spacecraft, with
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4 different architectures, varying image resolution and dataset image augmentation tech-
nique; resulting in a decimeter and less than 10◦ mean errors for location and orientation.
The drawback of this network is that there are no RoI checks (i.e., no bounding box).
Therefore, multiple objects in one image result in unreliability. Although, the framework
should be credited for its simplicity and compatibility with multiple network architectures.
As a first ablation study, this has potential baseline capabilities for our work.

Indirect deep learning methods

At the end of 2019, after introducing the SPN network [2], Park, Sharma, and D’Amico
[4] refined their pose estimation process with the indirect methods, which utilizes deep-
learning for feature extraction alone (i.e., object detection and keypoint regression). Sub-
sequently, the number of trainable parameters is drastically reduced in comparison with
the end-to-end DL approach. In addition, a Neural Style Transfer technique for texture
randomization is implemented to insist CNN on learning the global shape of the object
resulting in robustness to varying illumination and inter-spacecraft distance (3 − 30m).
An overview of their proposed CNN pipeline in four key steps is shown in Figure 1.4.

Figure 1.4: CNN pipeline of Park et al. [4]

The pipeline begins with the manual assignment of 11 keypoints as in Figure 1.4 (sub-
jected to the 3D wireframe model availability). The Object Detection Network (ODN) is
tasked to detect the 2D bounding box. For this, the input image is resized to 416×416,
which is processed through the YOLOv3 detection network, with MobileNetv2 as the net-
work’s backbone. The conventional convolutions are replaced with depth-wise separable
convolutions (i.e., depth-wise, point-wise convolutions) as shown above, that are followed
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by batch normalization and ReLU activation resulting in reduced computation by a factor
of 8 or 9. The corresponding architecture uses 9 pre-defined anchor boxes for training and
3 for inference without non-max suppression, to predict the bounding box alias the RoI.

Furthermore, the cropped image is resized to a typical architecture demand of 224×224,
and fed into Keypoint Regression Network (KRN) built on a combination of MobileNet
and YOLOv2 architectures similar to ODN. The output of the 7×7×1024 tensor is further
convoluted with the 7×7 kernel to predict the visible keypoints in the image and their
corresponding coordinates. The Mean Squared Error (MSE) loss function is employed for
the KRN. Based on the body frame referenced coordinates on the wireframe model and
the regressed keypoints by using the PnP algorithm, the 2D coordinates are re-projected
to estimate the 6D pose.

From the observation, it is rational that the accurately cropped RoI for KRN preserves
the features of interest and moreover allows for spacecraft classification before the pose
estimation process, if required. On the other hand, the decoupled estimation process will
provide an opportunity to detect outliers and reduce the computational load in general,
at the expense of increased risk due to inaccurate estimates of keypoints.

To outline the SOTA, development has primarily focused on estimating the single space-
craft at extreme possible conditions. In view of a refuelling or servicing mission to restore
multiple spacecraft by the chaser, it is certain that these missions necessitate instan-
taneous multi-spacecraft estimation capabilities to precisely classify the target in the
image frame rather than the single-spacecraft-specific algorithms tested on various space-
craft with similar features. Given the challenges to be addressed, this topic has intrigued
the author’s interest in developing an algorithm by training a model with datasets con-
sisting of at least two satellites with different geometrical features, such as sharp
and smooth features.

1.3. Thesis outline

The document is divided into six chapters. So far, Chapter 1 has already been discussed,
which refers to the introduction and the state-of-the-art of the research topic.

• The supportive coordinate systems in developing POSSE for novel synthetic dataset
generation, and an in-depth description of the DL operations and its general archi-
tecture are discussed in Chapter 2. Furthermore, it includes a discussion on SOTA
networks used for localization and object detection tasks with their performance in-
dicators. Mathematical background, along with a brief discussion on the Perspective
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transformations completes this chapter.

• Chapter 3 discusses mainly the POSSE simulator and sensor models implemented.
The idea behind the target spacecraft selection, and the propagator model assump-
tions for the spacecraft, camera and the sun are also discussed here. The outlook
over the generated dataset along with its filtering, annotations and re-partition de-
cision making completes the discussion.

• The proposed CNN architecture for Spacecraft Detection is comprehensively dis-
cussed in Chapter 4. Since the network is a modified SOTA architecture, these
modifications are clearly explained.

• Chapter 5 present the rendered images from the POSSE simulator and the use
of these images for the experiments. In addition, the overall Spacecraft detection
performance and robustness with the proposed CNN in Chapter 4 is analysed in
this chapter.

• In total Chapter 6 concludes the research outcomes with final comments and dis-
cusses the potential ideas to overcome the drawbacks for improving the accuracy
and efficiency of the proposed network.
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2.1. Coordinate Systems

The unperturbed propagation of the spacecraft orbit and attitudes require the following
reference frames.

2.1.1. Geocentric-Equatorial Coordinate System

This frame is also known as the Earth-Centered Inertial frame (ECI). It is defined in
three dimensions using the Cartesian coordinate system, with Earth at the centre of an
imaginary celestial sphere, as shown in Figure 2.1.

X

Y

Z

Figure 2.1: ECI Coordinate System

The celestial equator is the greater circle on the xy plane that is aligned with the Earth’s
equator. The vernal equinox is defined as the position of the rising sun in the sky on
the first day of spring. The x-axis points to the vernal equinox (γ point), the z-axis is
perpendicular to the xy-plane pointing to the Celestial North Pole (CNP), and the y-axis
is orthogonal to the xz-plane following the right-hand thumb rule.
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2.1.2. North East Down Coordinate System (NED)

The NED coordinate system is a popular navigational coordinate system. It is in the
non-inertial frame, fixed to the spacecraft’s centre. The NED axes can be compared to
the XYZ axes respectively as in the Figure 2.2.

Figure 2.2: Spacecraft Body Reference Frame

These are defined in reference to the earth’s surface, as shown below.

• N̂ points north, parallel to the earth’s surface in the polar direction.

• Following the right-hand rule, Ê points east, parallel to the earth’s surface, and
orthogonal to N̂.

• D̂ points downward, in the opposite direction to the normal of the earth’s surface.

The NED coordinate system is very easy to define with the knowledge of the distance
vector r⃗ECI of the spacecraft in the ECI frame as described in Jonsson [27]. The equations
for defining the unit vectors N̂, Ê and D̂ are rewritten below,

D̂ = − r⃗ECI

|r⃗ECI |
(2.1)

Ê =
[
−sin(δ) cos(δ) 0

]
(2.2)

where: δ = atan2(r⃗y, r⃗x)ECI from the four-quadrant-inverse-tangent of first two compo-
nents in r⃗ECI .

N̂ = Ê × D̂ (2.3)
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The Directional Cosine Matrix (DCM) rotating the vector from ECI to the NED coordi-
nate system would be,

RECI
NED =

[
N̂ | Ê | D̂

]T
(2.4)

The spacecraft’s orientation is computed by transforming the vectors with DCM from
NED to body axes.

Spacecraft Body Reference Frame (SBRF)

The right-hand coordinate system is used to refer to the Spacecraft Body Reference Frame.
The centre of the frame is on the spacecraft’s Center of Mass (CoM). The XYZ-axis is
orthogonal, and each axis passes through the different faces of the spacecraft as shown
in Figure 2.2. The spacecraft orientation is computed relative to the fixed body axes in
the reference frame of interest.

2.1.3. Local Vertical and Local Horizontal (LVLH)
Coordinate System

In the scenario of Rendezvous and Proximity Operations (RPO), the use of an LVLH
frame is critical. To specifically discuss the inter-satellite distances and relative states of
the target and chaser spacecraft, the frame uses a target-centric right-handed coordinate
system as in the Figure 2.3.

Spacecra
ft o

rbit

Local Horizontal

Local V
ertic

al

Figure 2.3: Local-Vertical-Local-Horizontal Frame

The Local-Vertical vector, also known as the R-bar, points towards the Earth (opposite to
the spacecraft’s radial direction). The Local-Horizontal points, in the spacecraft velocity
vector direction in the orbital plane, are referred to as the V-bar. The other vector is
perpendicular to the spacecraft’s orbital plane and orthogonal to both the V-bar and
R-bar directions which is referred to as H-bar.
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2.2. Relative Orbital Elements

The Orbital Elements or Keplerian elements define the spacecraft’s orbit in the inertial
frame. Likewise, the relativity between the two spacecraft orbits, which require a set
of non-singular Keplerian elements, are defined in D’Amico [5] and are reported below
in Equation (2.5).

α =
[
a u ex ey i Ω

]T
(2.5)

where a is the semimajor axis, and u = ω+M denotes the mean argument of latitude, of
which ω is the argument of perigee, and M defines the mean anomaly of the orbit. The ex
and ey are the x and y components of the eccentricity vector which implies: ex = e cos ω

and ey = e sin ω. Finally, the last two terms i and Ω represent the inclination and right
ascension or longitude of the ascending node (RAAN).

The relative states between the target-chaser spacecraft are defined with the quantities
of Equation (2.5); and are known as Relative Orbital Elements (ROE) denoted with
symbol δα. The ROEs are dimensionless and are formulated [5] in Equation (2.6).

δα =



δa

δλ

δex

δey

δix

δiy


=



(ac − at)/at

(ωc − ωt) + (Mc −Mt) + (Ωc − Ωt) cos it

ec cos ωc − et cos ωt

ec sin ωc − et sin ωt

ic − it

(Ωc − Ωt) sin it


(2.6)

where δa represents the relative semimajor axis in which the difference is normalized with
the target quantity (at) to be dimensionless. The relative mean argument of longitude is
termed as δλ. Later on, two-phase angles (φ, θ) are defined as

1. the angle φ denotes the relative pericenter (i.e., ∠(
−−→
Ωrel,

−−→
δerel)).

2. the true argument of latitude of the target-chaser plane-change manoeuvring point
(Ωrel) from the target’s ascending node (see Figure 2.4), is denoted as θ.

such that the relative eccentricity (δe⃗) and relative inclination (δ⃗i) vectors are expressed
in polar coordinates as in Equation (2.7). It is important to note that the formulation
for δe⃗, δ⃗i vector in Equation (2.6) are valid under the assumption of relative difference in
inclination and RAAN quantities are small (i.e., ∥ic − it∥ and ∥Ωc − Ωt∥ ≪ 1).
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Figure 2.4: Relative E/I vectors [5].

δe⃗ =

(
δex
δey

)
= δe ·

(
cos φ
sin φ

)

δ⃗i =

(
δix
δiy

)
= δi ·

(
cos θ
sin θ

) (2.7)

2.2.1. Keplerian motion propagation

The linear-system dynamics for the evolution of Relative Orbital Elements is written
in Equation (2.8), in which the control acceleration term Bũ(t) is also included for the sake
of completeness. In reality, the study implements unperturbed propagation of Keplerian
motion i.e., the control accelerations are zero in the system. The trajectory design of the
camera follows such a system that will be discussed in Section 3.2.4.

δα̇(t) = Aδα(t) +����:0
Bũ(t)

Initial condition: δα(t0) = δα0

(2.8)

where A represents the state matrix that determines the change of ROEs with respect to
Keplerian motion and Orbital perturbations; and B is the control input matrix referring
to Radial-Tangential-Normal (RTN) frame as defined in Equation (2.9) [28].

A =



0 0 0 0 0 0

−3

2
n 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


+�����:0
Aperturb B =

1

na



0 2 0

−2 0 0

sin u 2cos u 0

−cos u 2sin u 0

0 0 cos u

0 0 sin u


(2.9)

RTN frame is in close reference to the LVLH frame (see Section 2.1.3), with the negative
direction of the R-bar and H-bar representing Radial and Normal components, and the
V-bar is parallel to the Tangential component in RTN frame.
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The unified ROE-HCW Framework for the Keplerian motion in the close-range domain
is detailed in Gaias and Lovera [28], which explains the time-variant Lyapunov trans-
formation for the change of variables by introducing the transformation matrix T (t) as
in Equation (2.10).

T (t) =



1 0 −cos(nt) −sin(nt) 0 0

0 1 2sin(nt) −2cos(nt) 0 0

0 0 0 0 sin(nt) −cos(nt)
0 0 nsin(nt) −ncos(nt) 0 0

−3

2
n 0 2ncos(nt) 2nsin(nt) 0 0

0 0 0 0 ncos(nt) nsin(nt)


(2.10)

where n represents the target’s orbit mean motion, and time travelled by the spacecraft
from the initial point of the integration is denoted by t. The transformation matrix is
non-singular and continuously differentiable; the rows of T(t) transform the ROEs in the
RTN components for determining the relative position (r⃗rel) and relative velocity (v⃗rel)
of the chaser. It is denoted in vector form as X⃗(t), such that

X⃗(t) = T (t) · at · δα(t) where: X⃗ =

[
r⃗rel

v⃗rel

]
6×1

. (2.11)

Finally, the term δα(t) can be defined from the definition of differential calculus as:

δαt+1 = δα̇t+1 ·∆t+ δαt−1

substituting with δα̇(t) from Equation (2.8) in the above, results in (2.12)

δα(t) = Aδα(t) ·∆t+ δα(t0) (2.12)

where ∆t is the integration time step, such that t = t0 + ∆t. Integration for the initial
condition at t = t0 results as

δα(t) = δα(t0) = δα0 : δα(t0) = (A∆t+ I ) · δα0

At t = t0 +∆t : δα(t) = (A∆t+ I ) · δα(t0)

such that, the Equation (2.11) can be linearized and rewritten as in Equation (2.13)

X⃗(t) = T (t) · at · (A∆t+ I ) · δα(t0)︸ ︷︷ ︸
δα(t)

(2.13)
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2.3. Artificial Intelligence

Artificial Intelligence (AI) is defined as the ability of machines and computing systems to
demonstrate intelligence, thinking and decision-making like humans by recursive training
of the models. Machine Learning is the technique of training machines in a programmatic
approach through algorithms. For this, the resources are either the existing available data
stored in the dataset or from the newly fed data over time in a closed loop. Later, the
model is set to understand the evolution of the trends during the learning process, called
the ‘training’ phase. The trained model with the intelligence developed is set to predict
the output for any model’s unknown input; this process is known as ‘inference’.

The supervised, semi-supervised, unsupervised and reinforcement learning techniques are
the various machine learning techniques that are classified based on the input data avail-
ability and the algorithm’s functioning. One such simple network well-known as Multi-
Layer Perceptron (MLP), consisting of input/output layers and nodes shown as in Fig-
ure 2.5, that is artificially built-on to replicate the neural functioning of the human brain
is known as Artificial Neural Networks (ANNs).

Input layer Hidden layer Output layer

nodes

Figure 2.5: A Computational graph representing ANNs

ANNs introduce the conceptual development for Deep Learning, in which the complex
neural networks are packed into multiple hidden layers consisting of nodes resembling
the neurons (i.e., z1−3, h1,2 in Figure 2.5) of the human brain. The more the number of
hidden layers or neural networks, the greater the depth. In simple words, Deep Learning
is a super-set of neural networks and machine learning algorithms, being structured in
layers. The following Sections 2.4 to 2.6 will discuss a particular DL technique and a
few significant network architectures related to the study. Furthermore, the networks and
algorithms used for object detection, and perspective transformations are followed.
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2.4. Deep learning: Convolution neural networks

The CNNs are one among the various DL techniques and share a similar information
flow process like Feed Forward Neural Networks, for example, MLP is a feed-forward
network. In the later part each neuron is connected to all the neurons in the next layers
only in forward direction, whereas in the former, the connections are filtered out by the
convolution and pooling operations. This set of filtering operations benefits the CNN
model to avoid an over-fitting problem and increase the robustness to identify the spatial
relationship of the data, which is especially suited for image processing tasks in computer
vision applications.

2.4.1. Convolution

A convolution is a mathematical operation that combines two functions to produce a third
function that describes how the shape of one is modified by the other. In the context of
image processing and computer vision for a 2D grayscale image of Ih×w, convolution is a
process of applying a small matrix Kh×w called a kernel (or filter) to an image, by sliding
it over the entire image from left to right and top to bottom, and meanwhile computing
the dot product between the image’s pixel values and the kernel’s values at each position.
These results are summed along both dimensions (i.e., height and width), to build the
pixel values for the output map Oh×w, such that the output pixel values (Oij) are,

Oij =

Ih−Kh∑
i=0

Iw−Kw∑
j=0

I(i:i+Kh)×(j:j+Kw) ·Kh×w (2.14)

It is called convolution because it can be thought of as ‘sliding’ the kernel over the image,
and the output can be thought of as the ‘overlap’ of the kernel and the image. In general,
the above mathematical operation in Equation (2.14) is termed as cross-correlation in
pattern recognition and machine learning. Whilst convolution and cross-correlation share
a common operational idea, the subtle difference between the two is the way the kernel
is used. In convolution, the kernel is flipped vertically and horizontally. The reason for
flipping the kernel is to ensure that the convolution operation is commutative and the
sliding direction of the kernel is from left to right over the image.

The kernel depth dimension ‘ck’ would be the same as the depth of the convolution output
‘c0’ for an n-dimensional image with a ‘ci’ number of channels. The output is calculated
on a kernel-by-kernel basis, where each kernel creates a ‘ci’ number of shallow copies and
performs convolution on the input. This yields a 3D output with ‘ci’ channels, which is
then summed over the last dimension resulting in a 2D output of that particular kernel.
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In deep learning with CNNs, the convolution layers undertake the convolution operation
with an added scalar bias term b to each element of the output map, such that Oij is:

Oij = b+

Ih−Kh∑
i=0

Iw−Kw∑
j=0

I(i:i+Kh)×(j:j+Kw) ·Kh×w

The bias term allows the model to shift the output of each filter and supports building a
better model with complex relationships between the input and output. In practice, the
bias term is learned along with the weights (a.k.a. kernel matrix) using a back-propagation
algorithm1 during model training.

Feature map and receptive field

In CNNs, a feature map is a set of two-dimensional output maps Oh×w×c that represent
the activation of a particular set of filters Kh×w×c applied to an input image or feature
map itself. Each element Oi×j×c in the feature map represents the response of a particular
filter Kh×w×c at a particular location in the input. The number of feature maps are equal
to the number of filters applied to the convolution layer’s input. In theory, the output
map of any 2D convolution layer can be called a ‘feature map’.

Whereas the receptive field is discussed at the neuron/nodal level and it can be thought
of as the portion of the input that is ‘seen’ by the neuron. For example, the receptive field
of an element Oi×j×c in the feature map is the portion of the input (i.e., I(i:i+Kh)×(j:j+Kw))
from which the neuron originated from. If there are any intermediary inputs between
the neuron and the input, those elements are also accounted for in the neurons’ receptive
field. A larger receptive field can be useful for capturing global information and patterns
in the input, while a smaller receptive field can be useful for capturing local features.

Padding and stride

Padding and striding are key concepts in convolution layers because they affect the output
size and the receptive field of the layer, which can have a significant impact on the
performance of a neural network. The padding mode, stride length, size of the input
image and the kernel impact the output dimension of the feature map Oh×w×c, computed
as:

Oh,c =
Ih + 2Ph −Kh

Sh

+ 1; Ow,c =
Iw + 2Pw −Kw

Sw

+ 1

where: P - padded pixels and, S - stride length.
(2.15)

1An optimization technique that uses gradient descent to minimize error in the predictions.
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If padding is applied, the input image is padded with zeros around its edges to preserve
the spatial dimensions of the output. The amount of padding is controlled by the padding
mode, such as ‘valid’, ‘full’, and ‘same’. In ‘valid’ mode padding is not applied to the
input, eventually, the kernel will not be applied to the input edges. In contrast, the ‘full’
and ‘same’ modes apply padding either to increase or maintain the same size of the output
respectively. The amount of padding applied to the input in their respective modes is:

valid: (Ph, Pw) = (0, 0)

same: (Ph, Pw) = (
Kh − 1

2
,
Kw − 1

2
)

full: (Ph, Pw) = (Kh − 1,Kw − 1)

Stride is defined as a pixel measure of the kernel movement along each dimension, over
the input. For instance, the default value of S = 1 implies that the kernel moves one pixel
at a time. The parameter S is called stride length.

2.4.2. Pooling

Pooling is another simple and significant operation in CNNs. In this operation, when
the sliding window of a fixed shape called the ‘pool size’ slides over the input with a
certain stride length, the result from each stride is aggregated. The process of aggregating
information yields coarser maps and allows the neural model to access information on a
global scale. It mainly addresses common problems in image processing such as invariance
to scale and translation.

Unlike the use of kernels in convolution operations, here there is no such need. Instead,
the computations occur by channel-wise pooling either the maximum or the average value
among the elements in the sliding window I(i:i+POh)×(j:j+POw) and are termed Maximum
pooling and Average pooling respectively. By definition, it is clear that the latter confers
some degree of invariance to the output. However, the other parameters such as padding
and striding impact the pooling layers’ output dimension similar to the convolution layer
as in Equation (2.15), where the kernel parameter (Kh, Kw) alone is replaced by the
height and width of the pool size i.e., (POh, POw).

The difference between the above two layers (i.e., Convolution and Pooling) is the channel
dimension, which remains unchanged in the pooling. Secondly, the sole purpose of the
pooling layer is to reduce the input’s spatial resolution (downscaling), which implicitly
reduces the computational load and contributes to building deeper networks. Whereas
the convolution layer only adjusts the number of filters for better feature recognition.
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Fully connected

The term ‘fully connected’ indicates that every neuron in a layer is connected to every
neuron in the preceding layer, forming a dense network of connections. For this reason,
they are also known as ‘dense layers’. This connectivity allows information to flow freely
between neurons, enabling the network to learn complex patterns and make high-level
representations of the input data. Hence, the output of each neuron in this layer is
determined by a weighted sum of the inputs from the previous layers.

Fully connected layers are commonly used in CNNs, to perform tasks such as classification,
regression, or feature extraction. For instance, if it is a case to classify 1000 classes in the
dataset, there exist 1000 neurons in the dense layer, in which each neuron represents a
class score of a particular class in the dataset.

Activation

Activation is a mathematical function applied to the output map Oh×w, to introduce non-
linearity to the network. This is a non-trainable layer and only transforms the numerical
value of the output map into a meaningful representation or value. The output map
could be the result of any of the operations mentioned in the Sections 2.4.1 to 2.4.2.
Some commonly used basic non-linear activation functions are:

1. Sigmoid Function (Logistic Function): f(Oi×j) = 1

1+e−Oi×j
, it is mainly used for

predicting the probability of an object belonging to a specific class with a range to
be between 0 and 1 (i.e., single-class classification).

2. Softmax Function: f(Oi×j) = eOi∑w
j=0 e

Oj
, this performs multi-class classification by

assigning probabilistic value in the range of [0, 1] for each class in the dataset, such
that the sum of all values equal to 1.

3. Hyperbolic Tangent: f(Oi×j) = tanh (Oi×j), the result is zero bounded and ranges
in between [-1, 1]. For very large or small input values, the gradients become close
to zero and raise problems related to the vanishing gradients similar to the sigmoid.

4. Rectified Linear Unit (ReLU): f(Oi×j) = max(0,Oi×j), the function simply trans-
forms the negative values from the output to zeros and maintains the rest. Unlike
other activation functions, this does not have any upper bound. It is typically
implemented after the convolutional layer to avoid the vanishing gradient problem
(explained in Section 2.4.4) when the CNN depth is increased. In this way, the
weights between the layers are adjusted according to their respective errors and do
not propagate any further.
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There are also other activation functions derived from the basic functions listed above.
In general, the combination of fully connected and activation layers behave as decision-
making layers to produce final predictions.

2.4.3. Transfer Learning

Transfer learning is a model initialization technique in ML and DL, where the data (i.e.,
kernel weights) obtained from training a similar but different task is used as a priori. It
leverages the pre-trained models that are trained on large-scale datasets, which contain
millions of labelled images from various categories. Although these categories do not
include spacecraft directly, they do share common low-level features to recognize objects,
shapes, and textures effectively for spacecraft localization tasks.

2.4.4. Architecture

The first ever CNN architecture named LeNET5 is introduced in the late 20th century for
handwritten digit recognition, in which the architecture consists of several convolutional
layers, max-pooling layers, and fully connected layers. Literally, this simple conceptual
idea laid the foundation for several advanced architectures for image classification such
as AlexNet [6], VGG (Visual Geometry Group) [29] and ResNet (Residual Networks) [7].
Due to the importance of these architectures as the backbone of object detection and
localization networks, a brief discussion is intended. VGG and ResNet are highly deeper
networks capable to learn more complex features, on the contrary, the numerous trainable
parameters result in expensive computation. Considering the similarities between the two,
only the top-error performance architecture (i.e., ResNet) is discussed in this section.

As mentioned before in Section 1.2, the first published CNN-approach in the spacecraft
domain by Sharma et al. [24] included Alexnet [6] in their network as a backbone. A
snapshot of its architecture consisting of five convolutional layers, followed by three fully
connected layers is shown in the Figure 2.6

Figure 2.6: AlexNet architecture [6] illustrating delineated operations on two GPUs
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A three-dimensional image of input dimension 224×224×3 fed into the network. The
first two convolutional layers perform spatial reduction with 96 and 256 kernel depth,
and sliding window sizes of 11 and 5 respectively. Effective padding and a stride length
of 4 are applied to the input alone. Later, each convolutional layer is followed by the
max-pooling of size 3 and stride length 2. Further, the last three convolution layers are
connected only to the previous layer, which resides on the same GPU except for the third
layer, which is interconnected to the second. The convolutional output is fed into two
dense layers of 4096 neurons each, and finally, a dense layer of 1000 neurons along with
the softmax activation is applied for the classification of 1000 classes.

In addition, the introduction of novel techniques such as the use of non-linear Rectified
Linear Units (ReLU) activation function, dropout regularization, and data augmentation
for reducing overfitting problems are unique in the AlexNet architecture. It incorporates
normalization, and pooling layers in the network, and performs multi-GPU training to
delineate the responsibilities between the GPUs (see Figure 2.6).

Later in 2015, He, Zhang, Ren, and Sun [7] introduced the ResNet architecture to discuss
the issues in the plain deeper networks (i.e., Alexnet, VGG). Primarily, the problem is
regarding the vanishing and exploding gradients. While model training, after each itera-
tion in the epoch, the ‘n’ trainable layers’ weights need to be updated by multiplication
followed by gradient computation. Depending on the multiplying factor, whether the
factor is small or large will result in the very small (vanish) or very large (explode) gradi-
ent problem. In Figure 2.7a, the significant difference between the 20-layer and 56-layer
‘plain’ networks is shown, in which the deeper network has higher training and test error
in comparison.

(a) Performance comparison in ‘plain’ networks. (b) ResNet building block.

Figure 2.7: ResNet Architecture [7]

The problem is addressed by the deep residual learning framework, on the hypothesis that
it is easier for the solvers to optimize the residual mapping F (x) := H(x) − x instead
of the original mapping F (x) + x. The key difference between the VGG and ResNet
architecture is the layer arrangement, in which the latter contains the building block with
a ‘shortcut’ connection xidentity (see Figure 2.7b) in series and the former extends the
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depth by stacking-up the convolutional layers. To conclude the best among the plain and
residual networks, it is proven that the model architecture formed by the deep residual
nets performs the same operation as VGG at a very low FLOP rate and better accuracy,
without any performance degradation.

In summary, the ResNet architecture, in particular, is clearly the best solution for im-
proved accuracy and reduced train/test error. Furthermore, Proença and Gao [3] also
included a modified version of ResNet in their framework and successfully performed fea-
ture recognition. Moreover, it is also implemented in the backbone architecture of this
work. Therefore, it is certain to discuss ResNet’s working architecture in this section.

First, the ResNet architecture is defined with two key building blocks called residual and
identity, such that the residual modifies the tensor shape, and the identity preserves the
spatial dimensions of the input feature maps without any transformations. These two
blocks commonly contain either two or three convolution layers in series depending on the
architecture variant (shallower/deeper), followed by batch normalization2. The layers in
both blocks, other than the first layer, have similar convolution layer properties. Whereas,
the kernel parameter ‘K’ of the first convolution layer is 3 for shallow and 1 for deeper
variants. Along with this, the residual block’s first convolution layer reduces the tensor
shape to half by striding with S = 2. The block architecture of the deeper variants along
with their default properties are shown in Figure 2.8.
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Figure 2.8: Residual and identity block architecture in deeper variants of ResNet

The kernel depth of the Conv2D layers in the building blocks for shallow architectures
is constant. Whereas, the restoration of the required channel depth is only necessary
for the deeper variants (i.e., ResNet-50/101/152) and the final layer in both the building
blocks, which fulfils the requirement. The xidentity branch in building blocks represents the

2Normalization of outputs by subtracting the mean and dividing by the standard deviation.
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‘shortcut’ connection, similar to the one in Figure 2.7b. Since the residual block results
in a reduced tensor shape, there is a need for another convolution layer with S = 2 and
a filter depth similar to the last layer of the building block.

Once the building blocks are defined, it is now possible to introduce the ResNet-xx. The
‘xx’ refers to the depth of the ResNet architecture, which is determined by the total
number of convolutional layers used in the network. In total, five variations in ResNet
with a depth of 18, 34, 50, 101 and 152 are proposed by He et al. [7]. In this section,
we discuss one such variant called ResNet-18. The stage arrangement of this architecture
is shown in Figure 2.9. An input image of 224×224×3 is fed into a five-stage ResNet-18
network. After that, a zero-padding of P = 3 is applied to the input, in order to avoid
border information loss. Further, the spatial reduction is followed by the convolution
and the max-pooling layers with S = 2. The layer properties are: K = 7 × 7, f = 64,
P = valid for convolution, and PO = 3×3, P = same for max-pool. All the convolutional
layers in this architecture are followed by batch normalization and ReLU activation.

Image

ZeroPadding

Convolution Identity

Residual

MaxPoolling

stage 5
stage 4

stage 3

stage 2

stage 1

Figure 2.9: Architecture of ResNet-18

The key function of other stages (i.e., stages 2-5) is to extract a hierarchical representation.
Each subsequent stage captures higher-level and more abstract features. At every stage,
the kernel depths of the building blocks are equal. Whilst, the kernel depths of the Conv2D
operation in the building block per stage are fstage2 = {64, 64}, fstage3 = {128, 128},
fstage4 = {256, 256} and fstage5 = {512, 512}. In addition, at stage 2, there is an exception
for the residual block’s default sliding window value from 2 to 1.
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After Stage 5, the typical ResNet architecture pools the resulting high-level features into
a 1×1 feature map using a global-average pooling layer of PO = 7×7. Later, the feature
map of 1 × 1 × 2048 is fed into a dense layer of ‘n’ neurons, with softmax activation for
multi-class classification of ‘n’ classes in the dataset.

Popular Datasets

Dependency between the supervised learning models and the annotated datasets is vital
to produce good DL models. The performance metrics of the architectures discussed so far
are evaluated on the publicly available popular datasets. Projects such as ImageNet [30],
COCO [31] and Open Images [32] etc., gather images along with the annotations of
various classes for image classification, localization, segmentation and keypoint detection
tasks to support the model training. Each project is focused on a certain task and has
developed the datasets in particular categories with their own format for encoding the
labelled annotations. The knowledge of the format and nomenclature of the annotations
is very important while working with any SOTA architectures through transfer learning.

2.4.5. Model Training

In supervised learning such as CNN, the model is trained to reduce the losses between the
ground truth (a.k.a targets) and the estimated values (i.e., predictions); this is achieved by
optimizing the kernel weights (i.e., elements of kernel matrix Kh×w×c) of the convolution
layers. The former loss computation is carried through loss functions and the latter
optimization task is performed by the optimizers. We discuss some most commonly used
loss functions and optimizers in this section. The loss functions and optimizers in ML/DL
can be metaphorically compared to an observer and controller in control system dynamics.

Loss functions

At the end of the CNN architecture, the dense layers result in model predictions, which
could be an integer or float value depending on the applied activation function. Loss
functions measure the model’s prediction accuracy based on the desired prediction tasks.
Cross-entropy loss, or log loss is mainly used for classification tasks, in which the dis-
similarity between the predicted and the target probability distribution is logarithmically
measured. A batch-level cross-entropy loss for M mini-batches with P predictions each
is computed as in Equation (2.16)

CEloss(yp, yt) =
1

M

M∑
k=1

1

P

P∑
j=1

[
−

N∑
i=1

yijk,t log(yijk,p)

]
(2.16)
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where, yp and yt are the predicted and targeted probability for N classes. For N = 2, it is
called binary cross-entropy loss and is used for binary classification. The categorical and
sparse categorical cross-entropy are the variants of the CEloss introduced for N > 2, that
are classified based on target label interpretation (i.e., one-hot encoding or integer-based).

Similarly, the Huber loss, Mean Squares Error (MSE) loss and Mean Absolute Error
(MAE) are widely used for regression tasks. Huber loss is less sensitive to outliers than
others and prevents exploding gradients, therefore mainly implemented in robust regres-
sion. This loss function combines the best properties of MAE (L1) and MSE (L2) losses,
such that it is quadratic for small prediction errors and linear for larger ones. The Huber
batch loss is computed for the regression of four bounding box coordinates, as follows

Huberloss(yp, yt) =
1

M

M∑
k=1

1

P

P∑
j=1

 4∑
i=1

1
2
(∆)2 if |∆| < δ

δ ·
(
∆− 1

2
δ
)

otherwise

 (2.17)

where, ∆ = yijk,t − yijk,p is a residual or a prediction error, and δ is the quadratic to
linear transition threshold. The Huber loss with δ = 1 is called Smooth-L1 loss, which
converges to a constant zero loss. Most of the two-stage detectors implemented these two
loss functions in their study. For an explanation of other loss functions, it is suggested to
refer to the ML glossary [33].

Optimizers

For T trainable layers, the model’s best-fit parameters (i.e., kernel weights W and bias b)
are put in place by the optimizers, upon minimizing the loss function a.k.a cost function
denoted by L(yp, yt). A regularization cost is included in the cost function, in order to
avoid the model overfitting to the learned features alone. This cost is computed for each
trainable layer (i.e., T (W, b)) as the mean of the squared-Frobenius norm of T layers’
weights and bias matrices, multiplied by the weight decay parameter λ, such that

R = λ
T∑
l=1

[
∥TW

l ∥2

size(TW
l )

+
∥T b

l ∥2

size(T b
l )

]

Some of the most common optimizers are Adagrad, Adam, RMSProp, Gradient Descent
and Stochastic Gradient Descent. The Gradient Descent a.k.a Batch Gradient Descent
(BGD) is a basic optimizer that adjusts the model parameters (i.e., Tnew(W, b)) by taking

Tnew(W, b) = Told(W, b)− α
∂

∂T
[L(yp, yt) +R]
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the derivative of the loss function with respect to the trainable parameters, and later
updates the weights in the direction of the negative gradient.

where α is the learning rate that controls the number of steps required for the optimizer
to achieve the local minimum of the convex cost function. Different optimizers contain
distinct control variables. In ML/DL they are termed as Hyperparameters (e.g., α, λ).

Stochastic Gradient Descent (SGD) is a variant of BGD, whereupon evaluating model
performance, instead of updating weights after a single-batch iteration consisting of an
entire dataset, the model parameters are updated at the end of each mini-batch M , based
on a random sample chosen across M. SGD works efficiently with larger datasets and
result in faster convergence, on the contrary, yield a noisy and unstable convergence.

2.5. Image classification and localization

The task of identifying the target object on the image plane is known as object localization.
Region of Interest (RoI) is the area covered by the Bounding Box, a rectangular box with
the target at its centre and is delimited by the top-left and bottom-right pixel coordinates.
One or more objects that can be found in an image are known as instances. The study is
performed on a multi-class labelled dataset with single-instance images. Likewise, object
classification is a task to identify the object in the RoI.

Training the same architecture to detect similar objects involves repeating the massive
computing task. Therefore, most object detection algorithms adopt the transfer learning
technique, particularly in the backbone architecture. This work also implemented a similar
procedure for training the CNN’s backbone.

In this context, the outcome from some popular challenges such as ILSVRC (ImageNet
Large Scale Visual Recognition Challenge), and COCO (Common Objects in COntext)
are proven to be useful. While the research teams evaluated their algorithms in the
competitions, AlexNet won the ILSVRC’12, the deeper ResNet-152 won the ILSVRC’15
and COCO’15 challenge in object detection, localization, and segmentation. Later, these
architectures set out as a baseline for building several state-of-the-art classification and
localization methods.

These state-of-the-art approaches are broadly categorised into Region-based (a.k.a. two-
stage) and Single shot (a.k.a. one-stage) detectors. The categorization is based on the
number of stages required to predict the object bounding boxes, class probabilities, and
their respective strategy for localizing the object. The Figure 2.10 outlines the functional
difference between them. At first, the two-stage detectors generate region proposals and
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then perform predictions with refinement over the proposals. Whereas, a one-stage de-
tector processes both tasks in a single pass.

Image input

I. Region Proposal Generation

I. Grid-based / Multi-scale Predictions

II. Object Classification / Localization

Cluster(98%)

Cluster(98%)

(Region based detector)

(Single shot detector)

Figure 2.10: Image classification and localization categories

For example, R-CNN [34], Fast R-CNN [35], Faster R-CNN [36], and Mask R-CNN [37]
methods belong to the two-stage detectors, in which, a region proposal technique is im-
plemented in the first stage. Later in the second stage, the CNN-based classifier and
regressor predict the object class and refine the bounding box coordinates. Each of the
method’s network architecture is widely published, and available on public domains; hence
a detailed explanation is thought to be exhaustive and repetitive. Since all the methods
have the same functional task to be fulfilled, of course by using various approaches, it
is believed to be a good idea to focus solely on the unified framework and explain the
different approaches in the key modules of two-stage detectors in this section.

The unified framework mainly consists of three modules: the CNN backbone for feature
extraction; Secondly, the region proposal generator to locate RoIs; and lastly, the post-
processing of the cropped feature map or an image, which depends on the method to
implement. A snapshot depicting these key modules in a generic two-stage detectors
pipeline is shown in Figure 2.11.
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Figure 2.11: Two-stage detectors unified framework
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The RoIs are the cropped regions proposed by the proposal generator. First, from the
figure, the difference between the primarily introduced region-based Convolution Neural
Network (i.e. R-CNN), and the others is easily noticeable. In R-CNN, it is observed
that the RoIs crop pixels from the raw image. This process of feeding the cropped raw
image as many times as the number of RoIs (i.e. typical value is ∼ 2000) through the
backbone degrades the performance of R-CNN. Whereas, in the other methods, the pixels
are cropped from a feature map, that is emerged at the end of different stages in the
backbone in a single pass. This approach was computationally efficient and remained the
same for all the successive methods.

Each method of this detector contains different architecture in the backbone module when
published, such as AlexNet for R-CNN, VGG for Fast R-CNN and, ResNet-xx for both
Faster R-CNN and Mask R-CNN. Similarly, the proposal generator module uses different
techniques, such as the selective search technique and a simple convolution-based Region
Proposal Network (RPN). Since one of them contributes to generating proposals in our
object detection pipeline, the Section 2.5.1 will discuss these two techniques in detail.
Finally, the last module (i.e., post-processing) receives cropped feature maps of either
stacked or plain stages of multiple scales and shapes of different aspect ratios as input.

Therefore, after the RoI crop operation, these feature maps of different scales and sizes
must be resized to ensure consistent input dimensions for subsequent layers in the network.
Fixed-size RoIs simplify the processing and enable the use of fully connected layers or
convolutional layers with fixed input sizes, for classification and regression tasks. For this,
Warping, ROIPool and ROIAlign operations are used particularly in two-stage detectors.
However, there are differences in how they handle the alignment and interpolation of
features within the RoIs. In R-CNN, warping simply reshapes the region into 227×227×3
size images. Whereas, in Fast-RCNN, ROIPool divides the RoI into a fixed grid of sub-
regions and performs max pooling within each sub-region to obtain a fixed-size output
feature map. ROIPool does not consider any misalignment between the input feature map
and the RoI, resulting in the misalignment of RoI boundaries with the grid. To resolve
this issue, ROIAlign is introduced in Faster R-CNN that addresses the misalignment issue
by using bilinear interpolation to extract features from the input feature map at sub-pixel
locations. Instead of quantizing the RoI into a fixed grid, ROIAlign computes the exact
sampling locations on the input feature map for each output feature map location. This
allows for more accurate alignment and preserves spatial information better than ROIPool.
The ROI of height h and width w extracts the feature map from the level k of the multi-
level backbone pyramid, following the equation: k = k0 + log2(

√
h×w
224

); where k0 is the
initial level typically set to 4, and 224 is the canonical ImageNet fixed size.
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The post-processing module primarily contains bottlenecks and network heads, that usu-
ally consist of fully connected layers followed by the respective classifier and regressor
depending on user choice and application. It is also observed in Section 1.2, the authors
modify especially the last few layers to adapt the network for both feature detection and
pose estimation. Also in R-CNN, the classification of N classes in 2000 RoI proposals are
performed with the Support Vector Machine (SVM) classifier with 4096×N weights. The
2000×4096 features are extracted from the last two dense layers of AlexNet. The SVM
classifier tends to find an optimal hyperplane that separates different classes in a feature
space. The goal is to maximize the margin between the classes, making the classifier more
robust to unseen data. However, the Fast R-CNN and its successors contain two fully
connected layers in common, resulting in a shared RoI feature vector. These features are
further fed through the linear classifier3 with softmax activation (i.e., a dense layer of N
neurons) for classification and linear regressor4 for the bounding box coordinates (i.e., a
dense layer of 4×N neurons).

Similarly, YOLO [38], SSD (Single Shot MultiBox Detector), and RetinaNet are other
examples of one-stage detectors. These employ a predefined set of default bounding
boxes (a.k.a anchor boxes) at different scales and aspect ratios, by using algorithms such
as K-means clustering on the dataset. The anchor boxes are evenly distributed over the
image or at each grid cell of a feature map as in Figure 2.10. For a grid cell of size S×S, the
potential areas of the objects’ existence are identified in the first iteration per grid, which
generates objectness score and bounding box predictions along with their corresponding
class probabilities in a single pass. Likewise the R-CNN family of networks, the YOLO
method also has a history of eight official and unofficial versions to date. Instead of
discussing the difference between the methods in one-stage detectors, we briefly discuss
YOLO alone, since it is more efficient than the others in terms of speed and accuracy.
Throughout the versions, YOLO significantly improved the object detection accuracy from
21.6% to 51.4% on the COCO dataset. One-stage detectors also consist of the same three
modules in a series. The proposal filtering technique (i.e., Non-Maximum Suppression)
is the same in both of the detectors. However, the backbone architecture generating
feature map is different in YOLO, such as DarkNet-19/53 and CSPDarknet53 (Cross
Stage Partial Network), [39–41] which explains the architecture in detail. In addition, the
task performed in the post-processing module is included in the YOLO architecture as
additional layers, called "detection heads" or "prediction heads".

3The linear classifiers also include logistic regression, which uses a logistic function to model the
probability of an instance belonging to a particular class.

4Linear regressor contain a linear function that minimizes the sum of squared differences between the
predicted values and the actual target values.
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In summary, single-shot detectors are designed to be more efficient with faster inference
times than region-based detectors, as they eliminate the need for a separate region pro-
posal stage. However, they face challenges in accurately detecting small objects and
objects in dense scenes. The region-based detectors, on the other hand, include the pre-
defined boxes of very-low to high scales with a typical stride of 1 or 2 pixels, and perform
detection on a regional basis, such that the possibility of missing an object in the im-
age frame is minimal. Unlike YOLO, where each grid cell only predicts two boxes and
can only have one class, the two-stage detectors do not impose strong spatial constraints
on bounding box predictions. In this work, the best accuracy is of the highest priority
over faster inference times. Losing an object in the image frame costs much higher than
predicting more frames per second. Therefore, the two-stage detectors are preferred.

2.5.1. Proposal generator

Apart from a filtering technique to refine the top score boxes, both detectors do not share
the proposal generator, as stated in the previous section. As a result, in this section, we
will look at how the two-stage detectors generate proposals. The generation procedure
consists mostly of three steps: the first is to determine the anchor boxes (i.e., pre-defined
boxes), and the second is to predict the objectness scores and refine deltas for each of the
anchor boxes. The following step is to use filtering algorithms to remove the redundant
anchor boxes and generate RoIs of about 2000 for training and 1000 for testing.

The first step is introduced by Fast R-CNN to improve efficiency and speed up the process.
Before that, the original R-CNN used selective search (see below) to generate region
proposals. Anchor boxes are determined for an image of shapeH×W . The key parameters
to define the boxes of a certain pixel area are their aspect ratio and anchor stride value,
which determine the spatial arrangement of the anchor boxes. For example, if the anchor
stride value is 2, the centre of the adjacent anchor boxes will be 2 pixels apart in both
horizontal and vertical directions. The aspect ratio is defined as the ratio of the box
width to the box height. Typical aspect ratio values utilized in and after Fast R-CNN are
[0.5, 1, 2] representing tall, square and wide boxes. The square root of the anchor box’s
pixel area defines the anchor box scale; the typical values are [32, 64, 128, 256, 512] square
pixels over the image. The anchor box dimensions are computed as

height =
scale√
ratios

, width = scale×
√
ratios

that is, at each pixel position, for ‘m’ scales and ‘n’ ratios, there are ‘m ·n’ anchor boxes.
In addition, the same fashion of spatial arrangement is applicable to feature maps as well.
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Selective search

Selective search is a bottom-up approach that aims to identify potential object regions in
an image by grouping similar regions together, as an external method. It performs object
localization by using an exhaustive search approach and also performs segmentation of
colours in the given image. The exhaustive search uses sliding filters of different sizes
to extract the objects. Here, the computation effort increases with an increase in filters.
This algorithm uses the greedy algorithm to grow the region by locating similar colours
in the regions and merging them together. The measure of similarity between pairs of
neighbourhood regions is computed as

S(a, b) = Stexture(a, b)︸ ︷︷ ︸
texture similarity

+ Ssize(a, b)︸ ︷︷ ︸
spatial proximity

The hierarchy of region clusters obtained from the final region grouping is used to generate
a set of potential object region proposals. The underlying idea to introduce this in R-
CNN and Fast R-CNN is that these candidate regions reduce the search space, and aid
in improving efficiency and computational performance. The idea of candidate proposals
served as a valuable method, however considered as a separate pre-processing step and
does not fully integrate with the CNN object detection pipeline. In addition, it is an
unsupervised algorithm that generates region proposals without considering the precise
localization of objects. The Region Proposal Network (RPN) overcomes these limitations.

Region Proposal Network

Region Proposal Network (RPN) was introduced in the Faster R-CNN by Ren, He, Gir-
shick, and Sun [36] in 2015, later, also employed in Mask-RCNN. The RPN generates
proposals in an end-to-end manner eliminating selective search. The key distinction is
that the selective search operates on the raw image, whereas, RPN operates on feature
maps extracted from the backbone. For example, consider the backbone architecture as
ResNet, which results in multi-scale feature maps at the end of each stage. Let’s call
them FM = {c2, c3, c4, c5}; the RPN processes these set of feature maps. It achieves a
shared feature vector by sliding a kernel of shape 3×3, over the FM with P = same,
S = anchor stride and f = 256 or 512 followed by ReLU activation. The concept of cre-
ating shareable convolution is obtained from the Zeiler-Fergus (ZF) and VGG-16 models,
which have 5 and 13 shared layers with a depth of 256 and 512 filters respectively. The
shared feature vector is further connected to two sibling layers, one for objectness scores
and the other to refine the bounding box coordinates. The term objectness score indicates
the likelihood of an object being present within a kernel (implicitly indicates anchor box)
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and allows the network to discriminate between object and background (i.e., 2 classes).
Simultaneously, bounding box regression refines the four coordinates of the pre-defined
anchor boxes, improving localization accuracy. The assignment strategy and parameters
of these pre-defined anchor boxes in RPN to process FM s are as follows:

• In the bottom-up pathway, the earlier stages consist of fine-grained information
(i.e., low-level features), and more abstract representations (i.e., high-level features)
appear at the final stages. Hence, the smaller scale boxes are mapped to the earlier
stage FM s. For example, the anchor scale of 32 is mapped to c2. Hence, typically
the length of the scale vector equals the number of stages’ outputs in the backbone
(i.e., len(scale) = len(FM)).

• The feature stride or backbone stride is defined in Mask R-CNN as the ratio of
CNN-fed image dimension to the feature map dimension. When the kernel slides
‘S’ pixels apart on the feature map c2, it indicates that the kernel has moved feature
stride pixels over the image (i.e., for an image of dimension 224×224 and c2 map of
56×56, the c2 map’s convolution kernel implicitly overlooks the region of the image
224/56 pixels apart).

• In total, the number of anchor boxes employed by the RPN is:

#anchor boxes =
len(scale)∑

i=0

FM [i]dim[0]× FM [i]dim[1]

S
× len(ratios)

and the modified height and width of the anchor box in the feature map would be

heightFM =
scale

backbone stride ×
√
ratios

, widthFM =
scale

backbone stride
×

√
ratios

Therefore, the sibling layer properties that predict objectness scores for len(ratios) an-
chors at each kernel location are K = 1 × 1, P = valid and f = len(ratios) × 2 with
softmax activation. Similarly, the layer properties for bounding box coordinates’ linear
regression are K = 1 × 1, P = valid and f = len(ratios) × 4 with linear activation.
Overall, selective search is a fixed algorithm that is not easily adaptable or optimized for
specific datasets. On the other hand, the RPN is designed to be adaptable and trainable
on different datasets. It offers better generalization and optimization by leveraging the
training process and the shared convolutional backbone network. Whilst, the RPN assigns
objectness scores for the #anchor boxes. The final proposals are generated by filtering
the redundant anchor boxes into two levels.
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In the first level, simply, the top ‘A’ anchor boxes5 with high-objectness scores are selected
as the candidate regions or proposals. Later, at the second level of filtering, these #A

proposals are further filtered with a technique called Non-Maximum Suppression (NMS),
which is a common technique employed in both one-stage and two-stage detectors.

The NMS workflow is iterative, where, the #A proposals are iteratively filtered out, based
on the proposal box’s objectness scores and the amount of overlap threshold within its
own proposals’ set ‘A’. The amount of overlap between any two boxes is computed by
a popular metric known as Intersection over Union (IoU). In general, it is defined as the
ratio of the intersection area to the union area between the two boxes. This IoU metric
is mathematically represented as

IoU =
aintersection

a+ ã− aintersection
(2.18)

where a and ã are the first and second box’s area, computed by [(y2−y1)× (x2−x1)] and,
[(ỹ2 − ỹ1)× (x̃2 − x̃1)] respectively. Simultaneously, the intersection area (i.e., aintersection)
is calculated as [min(y2, ỹ2)−max(y1, ỹ1)]× [min(x2, x̃2)−max(x1, x̃1)].

Let’s denote the scalar IoU threshold with ‘T ’ and the final set of ∼ 2000 proposals as ‘B’.
The NMS would first consider a proposal box from ‘A’ with a high-objectness score, and
eliminate it from ‘A’ whilst adding it to ‘B’. Later, compute the IoU of this proposal box
with all the other boxes in ‘A’ and eliminate the boxes in ‘A’ with IoU > T , considering
them identical, and hence redundant. This iterative loop continues until the proposal set
‘A’ is empty. When the final set ‘B’ does not have enough proposals, zero padding is
applied to maintain the tensor shape.

The NMS technique is sensitive to the ‘T ’ value irrespective of the objectness score, like
any threshold-based technique. For instance, if there are two objects side by side, one
of them would be eliminated and the proposal with a lower threshold is still kept even
though its score is very low. Another variant of NMS called Soft-NMS resolves this issue
by reducing the proposal score proportional to the IoU value (i.e., new score = old score
× (1 - IoU)), instead of complete removal.

To outline the filtering techniques, they are not fail-proof because their combination is
highly sensitive to the RPN’s objectness score prediction. However, considering our object
classification and localization problem that focuses on multi-class labelled datasets with
single-instance images, these techniques are adequate.

5Typical value of ‘A’ in Faster R-CNN and Mask R-CNN is ∼ 6000
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2.5.2. Feature Pyramid Network

The Deep CNNs backbone such as ResNet-xx is effective at extracting high-level fea-
tures. Along with this, the methods with a pre-defined anchor-based approach solve the
translation-invariant problem. However, they do not explicitly address the issue of scale
invariance. For this reason, Feature Pyramid Networks (FPN) is introduced by Lin, Dol-
lár, Girshick, He, Hariharan, and Belongie [42], as a subsystem of the backbone module.
The primary goal of FPN is to generate a feature pyramid that captures multi-scale in-
formation from the input image. It achieves this by combining features (i.e., FMs) of
different stages from the Bottom-Up pathway (i.e., backbone CNN hierarchy).

FPN introduces a Top-Down pathway, which performs nearest neighbour upsampling of
factor 2 (i.e., 2× of the FM, for instance, consider c5) on the high-level semantics to
maintain the same spatial size as the relatively lower-level semantic feature map (i.e., c4),
and merge them together through lateral connections. The lateral connection involves a
convolution layer with K = 1× 1, f = 256 and P = valid, that adjusts the depth of both
feature maps. Furthermore, to reduce the aliasing effect of upsampling a 3×3 convolution
layer is attached, resulting in the final FPN feature maps (i.e., {p2, p3, p4, p5}). It is also
possible to extend the pyramid, to an extra coarser level (p6), with a maximum-pooling
layer of size PO = 2 to capture information on larger objects. The building block of FPN,
representing its core structure is shown in the Figure 2.12 below
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Figure 2.12: Building block of Feature Pyramid Networks (FPN)

FPN achieves a better balance between semantics and spatial precision and, enhances the
network’s ability to detect objects at various scales. The Fast and Faster R-CNN have
an increment in their object detection performance of about 3.3% on the COCO dataset
when implemented with FPN; the Mask R-CNN also implements FPN in their backbone
module. FPN is a versatile and robust framework that can be integrated with various
CNN architectures, it is widely adopted in the computer vision community.



2| Mathematical background 37

2.5.3. Performance Indicators

The model predictions on an image are classified by use of a confusion matrix, composed
of four elements, such as True Positive (TP ), False Positive (FP ), True Negative (TN)
and False Negative (FN). Consider a multi-classification object detection, where the
targeted class objects in the image are called the positive instances and the remaining
class objects are negative instances. The predicted class and the IoU metric computed
as in Equation (2.18) between the prediction and ground truth box are the conditional
variables to define these elements as follows:

• True Positives are the correctly identified positive instances, that is, when IoU ≥
set threshold ∧ classpredict ≡ classtarget.

• False Positives are the incorrect detections, where the negative instances are wrongly
identified as positive instances (i.e., IoU < threshold ∨ classpredict ̸= classtarget)

• The correctly identified negative instances with IoU ≥ threshold ∧ classpredict ≡
classnon−target called True Negative.

• A prediction that wrongly identifies a positive instance as a negative instance and
such missed detections (i.e., IoU < threshold ∨ classpredict ̸= classnon−target) are
defined as False Negatives.

The image classification and localization model’s prediction performance is indicated by
two key indicators known as precision and recall. These indicators are usually evaluated
on each image of the dataset. The indicators provide a confidence score between 0 − 1.
The measure of predicting a positive class correctly is called precision, and the model’s
ability to detect all available positive class instances is recall, these are denoted as

Precision : P =
#TP

#TP +#FP
Recall : R =

#TP

#TP +#FN
(2.19)

Dataset-level precision is represented by the P − R cure, for this, the precision set is
rearranged in a monotonically decreasing manner and the area under the P − R Curve
is defined as Average Precision (AP ). Average Recall (AR) at a certain threshold is
computed as a mean value of the recall set obtained from evaluating R at each image.

As a common practice in object detection, all the above indicators (i.e., P , R, AP , AR)
are computed separately either for each class or at varying thresholds (i.e., 0.5 - 0.95

with step 0.05), and even both. Whilst, the average recall of a dataset is computed as
the maximum AR value obtained across different thresholds. The mean of the average
precision across multiple classes or thresholds is called mean Average Precision (mAP ).
Note that for a single instance object detection problem, the mAP and AP are equal.



38 2| Mathematical background

2.6. Perspective transformation

Perspective transformation refers to “Perspective Projection” and “Perspective-n-Point”
(PnP). Perspective Projection is a process of mapping 3D points in the world coordi-
nate system to their corresponding positions on the 2D image plane of a camera. In
1981, Fischler and Bolles [43] coined the specific problem of 2D to 3D transformation as
“Perspective-n-Point” (PnP), where ‘n’ represents the keypoints in the image plane.

2.6.1. Perspective Projection

The projection of a 3D point on the 2D plane involves four coordinate systems, that are:
World Coordinate System (WCS), Camera Coordinate System (CCS), Image Coordinate
System (ICS), and Pixel Coordinates System (PCS). The WCS is a global space used
to describe the positions, orientations, and dimensions of objects or points in cartesian
coordinates (i.e., X, Y, Z).

The CCS is a reference frame for describing the viewpoint and perspective of the camera.
The origin of this system is at the camera’s position or the focal point. Typically in
computer vision applications, its Zc faces outward, in other words, inward to the camera
lens (i.e., camera principal axis). Whilst, the Yc lies in the opposite direction to the Yw
and, Xc is parallel to Xw. The 3D point (X, Y, Z)Tw in WCS is converted to CCS with the
4×4 transformation called camera extrinsic matrix, as shown in Equation (2.20); where
Rc, tc are the Euler rotation matrix and translation vector of the camera in WCS.

X

Y

Z

1


c

=

[
Rc

3×3 tc3×1

01×3 11×1

]
︸ ︷︷ ︸
Extrinsic matrix

·


X

Y

Z

1


w

(2.20)

Origin’s location is a key difference between the ICS and PCS plane, in which, the plane’s
origin lies at the centre and the top-left respectively. The Zc passes through the origin,
and the 2D plane axes [Xi, Yi] for ICS and [u, v] for PCS, which are parallel to Xc and
Yc. In addition, the ICS follows SI units and the PCS units are pixels. The distance from
the focal point to the image plane along Zc is called the focal-length (f). Transforming
a point in the perspective view (i.e., CCS), to either ICS or PCS involves another 3×4
matrix called camera intrinsic matrix. This 3D to 2D projection is a lossy transformation
(i.e., loss of depth information), and is achieved via the Pinhole model, which assumes a
simple no-lens camera but with a tiny aperture. The model projections are based on the
law of similar triangles, over the rays between the point, camera and image. Therefore,
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results in Xi

f
= Xc

Zc
and Yi

f
= Yc

Zc
; rewriting this relationship in matrix form derives the

intrinsic matrix as in Equation (2.21)


Xi

Yi

Zc

 =

f 0 0 0

0 f 0 0

0 0 1 0


︸ ︷︷ ︸

Intrinsic matrix (ICS)

·


X

Y

Z

1


c

(2.21)

Finally, the transformation between the ICS and PCS is simpler because the only differ-
ence is an origin shift. In terms of converting SI units to pixel representation, it is highly
dependent on the sensor model and the pixel-pitch parameter (defined in Section 3.3.1). In
short, pixel-pitch is the ratio of the sensor dimension to the number of pixels allocated in
that dimension. Let’s call them ρu, ρv (i.e., for a square-shaped sensor ρu ≡ ρv). Similarly,
consider the shift along Xi and Yi as u0, v0 in pixels, such that, u = Xi

ρu
+u0 =

1
ρu
f Xc

Zc
+u0

and v = Yi

ρv
+ v0 =

1
ρv
f Yc

Zc
+ v0. As a result, the improved intrinsic matrix for transforming

the 2D point from ICS to PCS is shown in Equation (2.22). The projection matrix denoted
by P3×4 fuses the three transformations in Equations (2.20) to (2.22) as TPCS ·TICS ·TCCS.

u

v

w

 =


1
ρu

0 u0

0 1
ρv

v0

0 0 1


︸ ︷︷ ︸

Intrinsic matrix (PCS)

·


Xi

Yi

Zc

 (2.22)
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3.1. Spacecraft selection

The key drivers in selecting the spacecraft include a minimum of two different shapes,
stronger shadows, and varied illumination conditions. The idea is to register the images
with these effects naturally by considering the real data of the spacecraft and the sun’s
orbital position. The options for shape categorization are in Table 3.1.

Category Shape Spacecraft Orbit Inc [◦] Alt [km] Operational

Sharp rectangle Aqua SSO 98.19 700 Y

square proba-2 SSO 98.2 720 Y

polygon acrimsat SSO 98.3 720 N

trapezoid cygnss LEO 35 520 Y

sentinel-6 LEO 66 1336 Y

Smooth circle Cluster HEO 135 16000*116000 Y
cylinder aquarius SSO 98 657 N

Table 3.1: Shape categorization

The aim is to have disparate features in the dataset, hence including one from sharp and
smooth produces robustness to most generic shapes available, that may possibly extend
to rocket boosters, cuboids and more. Keeping in mind the lighting conditions and the
amount of background composition (Earth/Dark starry) to be included in the dataset,
it is the best choice to select spacecraft from HEO and SSO. The respective inclination,
altitude and operational status of the spacecraft are also reported in Table 3.1. Whereas,
concerning the shape: perfect-cylindrical and rectangular shapes provide an opportunity
to address the problem of symmetrical ambiguities in shape through deep-learning.
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3.1.1. 3D models

The three-dimensional geometrical models of the Cluster and Aqua as shown in Figure 3.1,
are acquired from the official ESA’s Scifleet1 and NASA2 archives. The raw model of the
Cluster includes a main body, four 50m wire booms, two 5m rigid booms in XZ-plane,
and two antenna booms along Y-axis [44]. On the basis of considering the close proximity
scenario, such a scale of geometry is definitely out of Field Of View (FOV). The Cluster
is spin-stabilized with the large wire booms rotating at 15 rpm. This rotating nature can
result in feeding ambiguities to the supervised and pre-trained CNN. Hence, 50m wire
booms are neglected and the modified model is reported in Figure 3.1a. Whereas, the
Aqua model shown in Figure 3.1b does not have any modifications.

(a) Cluster. (b) Aqua.

Figure 3.1: Orthographic view of spacecraft 3D models.

The geometrical properties of the two spacecraft are tabulated in Table 3.2. The Centre
of Mass (CoM) denotes the surface parameter, not the inertial mass parameter. For the
3D Bounding Box, the dimensions are scaled to one. Here, the tabulated values include
the rigid booms and antenna parameters for the Cluster, and solar panels for the Aqua.

Body axis Cluster Aqua

Dimensions [m] X, Y, Z [ 2.9, 1.3, 2.9 ] [ 8, 16.7, 4.8 ]
Bounding Box [-] X, Y, Z [ 0.616, 0.378, 1.000 ] [ 0.529, 1.000, 0.286 ]

Centre of Mass [m] X, Y, Z [ -0.0335, 0.1078, -0.0474 ] [ 1.5508, 0.2342, -0.1669 ]

Table 3.2: Dimensional data of 3D models

1https://www.cosmos.esa.int/web/esac-cmso/scifleet
2https://nasa3d.arc.nasa.gov/models

https://www.cosmos.esa.int/web/esac-cmso/scifleet
https://nasa3d.arc.nasa.gov/models
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3.2. Propagator

The orbit propagator model as in Figure 3.2 follows the ECI frame and does not include
perturbation dynamics. The model is developed in MATLAB and Simulink environment
with filename propagator_script.m. The relative distance of the spacecraft and the
sun from the earth, including the spacecraft orientation are detailed in Sections 3.2.1
and 3.2.2. Whereas, the camera path trajectory is derived from the relative dynamics
models in a spacecraft-centre frame, as in Section 3.2.4, to extract the camera’s position.
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Figure 3.2: Propagator model

The model works with the Two-Line-Element (TLE) set of the desired spacecraft at cer-
tain epoch from CelesTrak, which are the only input parameters required for the target
spacecraft and sun propagation. Whereas, the camera path is derived by the desired
non-dimensional relative orbital elements (δROE). The output parameters of the model
are stored in the comma-separated value format in points.csv and are reported below.

1. Normalised camera position relative to spacecraft in LVLH frame.

2. Distance vector from the spacecraft to the sun.

3. Spacecraft’s relative orientation with Earth.

4. Sun visibility with respect to the sun.

5. Direct solar flux acting on the spacecraft.

6. Relative distance vector of the spacecraft with the earth.

7. Earth’s reflected radiation.

8. Earth’s rotation on its spin axis.
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3.2.1. Spacecraft orbit

The spacecraft orbit is defined from the TLE set in ECI frame with the following param-
eters: inclination, longitude of ascending node, eccentricity, argument of perigee, mean
anomaly at epoch and mean motion of the orbit. The epoch is considered to be the initial
state for the propagation and denoted with subscript (□0). The TLEs of the Cluster and
Aqua are recorded at an epoch of 21334.84382759 and 22031.08504144 respectively, and
are reported below in Tables 3.3 and 3.4.

i [◦] Ω [◦] e [−] ω [◦] M0 [◦] n [rad/s]

133.35 345.92 0.52 195.45 0.38 3.21e-05

Table 3.3: Cluster - Two Line Elements set

i [◦] Ω [◦] e [−] ω [◦] M0 [◦] n [rad/s]

98.23 334.40 8.98e-05 52.44 318.10 1.05e-03

Table 3.4: Aqua - Two Line Elements set

The orbit’s semi-major axis and time period are computed as in Equation (3.1).

a = 3

√
µE

n2
, T =

2π

n
(3.1)

Upon neglecting the orbital perturbations in the model, the orbit is simulated through
the integration of true anomaly as in Equation (3.2).

θ̇(t) =
n(1 + e · cos(θ(t)))2

(1− e2)3/2
(3.2)

where, θ(t) is the true anomaly in time starting with initial condition θ0 that is derived
from the Equation (3.3). The integration time-step is fixed to a value of tsim

N
, where the

number of instances recorded is denoted by N , and tsim represents simulation time i.e.,
computed as a multiple of the orbital time period (T ).

θ0 =M0 + (2e− 0.25e3) · sin(M0) + 1.25e2 · sin(2M0) +
13
12
e3 · sin(3M0) (3.3)

The distance of the spacecraft from the Earth is computed from rs/c =
a(1−e2)

1+e·cos(θ(t)) .
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With the knowledge of keplarian elements and true anomaly, the position and velocity
components in the Perifocal Frame (PF) are retrieved.

r⃗PF = rs/c

cos(θ)
sin(θ)
0

 v⃗PF =

√
µ

a(1− e2)

 −sin(θ)
e+ cos(θ)

0


The rotation matrices of the ECI to PF are transposed and multiplied to the above, to
compute the position and velocity components in the ECI Frame.

r⃗s/c = r⃗ECI = RT
3 [Ω] ·RT

1 [i] ·RT
3 [ω] · r⃗PF

v⃗ECI = RT
3 [Ω] ·RT

1 [i] ·RT
3 [ω] · v⃗PF

3.2.2. Spacecraft attitude

The attitude estimation model implemented in the propagator is free of control and distur-
bance torques. The underlying assumption in the model is that the spacecraft is perfectly
oriented towards the pointing direction, in other words, the respective body axis is aligned
with the pointing requirement for the spacecraft. A decision is made such that the propa-
gator requirement is to orient the spacecraft towards the pointing direction in the instance
of image rendering, and hence it is not necessary to implement the entire dynamic model.
Instead, it is needed to compute the directional cosines of the spacecraft at the instance
of rendering and align the body axis accordingly.

The pointing requirements of the two spacecraft: Cluster and Aqua, are referenced from
the official documentation [44, 46], in which Cluster attitude is ensured at a solar aspect
angle of about 90◦ (i.e., sun-pointing), and Aqua’s positive z-axis in body frame is pointed
towards the earth’s nadir direction. Propagation of Cluster at 10 orbital positions pointing
the Sun is shown in Figure 3.3. To implement these requirements NED coordinates frame
(see Section 2.1.2) is utilized, where the unit column vectors Ê and N̂ stands perpendicular
to the pointing direction and is computed as in Equation (2.2) and Equation (2.3). The
required pointing vectors for Cluster and Aqua are r̂Rs

and -r̂s/c, that are aligned with
the unit vector direction D̂. Accordingly, the directional cosines matrix in Equation (2.4)
is evaluated by transforming the reference frames from ECI to NED body frame.

Throughout the research, the ‘quaternions’ are the preferred attitude parameters which
can avoid singularities in comparison to the DCMs. Hence, the evaluated DCMs are also
parameterized into quaternions following the Reference [see 27, Section 2.6.3]. To verify
the correctness, the unity norm of the quaternions at each instance is also evaluated.
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Figure 3.3: Orbital position and pointing direction of the spacecraft.

3.2.3. Sun orbit

The position of the sun’s ephemeris in ECI is computed for the instance of the spacecraft
simulation time and modelled as in Equation (3.4).

tsun = tepoch + ts/c where: ts/c is represented in days. (3.4)

Later, the Matlab function block epoch2date transforms the tsun in TLE format to
the Gregorian date, and finally to the Julian date. The Planetary Ephemeris block
(see Figure 3.4) in Simulink implements NASA’s JPL Chebyshev coefficients of the DE405
ephemeris model for the position and velocity estimates [8].

XICRF1	(km)

	VICRF1(km/s)

TJD

Figure 3.4: Planetary ephemeris [8]

The sun is the only source of illumination in our case, so it is important to compute the
spacecraft eclipse due to the Earth in between. For this aspect, three different angles and
a distance vector are evaluated in between the three bodies: sun, spacecraft and earth
with the set of equations as in Equation (3.5).
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α = arccos
r⃗s/c · R⃗s∥∥r⃗s/c∥∥ ·

∥∥∥R⃗s

∥∥∥ ,
β = arccos

RE∥∥r⃗s/c∥∥ ,
γ = arccos

RE∥∥∥R⃗s

∥∥∥ ,
r⃗Rs

= R⃗s − r⃗s/c.

(3.5)

where r⃗s/c and R⃗s denote the position vector of the spacecraft and the sun in ECI frame;
the constant value of earth’s radius is denoted by RE. Among the three angles: α is
the angle between the spacecraft and the sun, β and γ are the angles computed with
the magnitude of earth’s tangent to the spacecraft and the sun respectively. The logical
value of the eclipse is calculated with an angles-based approach, such that α > (β + γ)

denotes the spacecraft eclipse in which the light illuminated over the spacecraft is zero.
The distance vector from the sun to the spacecraft is denoted by r⃗Rs

.

Radiation

The solar and orbit-specific radiation over the spacecraft surface is also considered to
account for proper illumination. Solar flux acting on the surface is a parameter that
cannot be accounted the same as of the earth, because of the widely varying semi-major
axis in the two different orbits: HEO and LEO. Hence, this value is computed from the
relative distance between the spacecraft and the sun (r̂Rs). The formulae are reported
below in Equation (3.6).

Solarflux =
1367

∥r⃗Rs
∥2

W

m2
where: ∥r⃗Rs

∥ is in astronomical units. (3.6)

Regarding the orbit-specific radiation: only the solar radiation reflected over the earth’s
surface (albedo) is parameterized. For this ESA’s SPace ENVironment Information Sys-
tem SPENVIS model data is utilized. Through one-dimensional interpolation of the data,
an instance-specific albedo value is also added to the total radiation and all the other
contributions over the spacecraft are ignored concerning the monocular camera being
operated in the visible spectrum alone.

Total radiation = solar + albedo +��ZZIR +�����XXXXXinternal



48 3| Dataset generation

3.2.4. Camera trajectory

In order to replicate a close relation with the real-time rendezvous scenario, the design of
the camera trajectory is derived based on the Relative Orbital Elements (ROEs) (see Sec-
tion 2.2). The research is mainly focused on pose estimation such that, developing an
accurate propagator is an implicit goal. It is important to understand that building an
arbitrary trajectory does not compromise the aim, and is designed only to construct the
geometrical path of the camera. The camera location planning followed uniformly dis-
tributed, space discretization techniques [24] to generate the SPEED dataset. Instead,
the idea in this study is to make use of the concept of unperturbed relative dynamics, and
possibly demonstrate the advantage of creating a mission-specific dataset with the known
ROEs alone, that could support pre-mission simulations and also to train/evaluate the
neural model.

In this study, the closed-loop relative dynamics for the target-chaser’s relative motion
propagation is implemented by introducing the parameter H, which represents the num-
ber of different perspectives from which the camera is registering an image at N th space-
craft instance. In analogy with the parameter N for the spacecraft propagation (see
Section 3.2.1), there exist H relative orbits around a spacecraft over the integration time
span. The selection of initial conditions for these H relative orbits in terms of ROEs
define a strategy, and a simple one that is applied in the tool is as follows

1. The relative orbits should be spacecraft centric (i.e., δλ = 0) and maintain the same
shape (i.e., ∆a = 0) and the same size (i.e., ∆e = const), that refers to the design
of bounded-centric orbits.

2. Considering the relative RAAN (∆Ω) and argument of perigee (∆ω) as the control
parameters, it is observed that the perturbation applied on one can define another
as if the relative mean argument of longitude is zero i.e., ∆ω+∆M+∆Ω cos it = 0,
where ∆M = ∆Ω.

3. From the literature [5], an increase and decrease of the inclination vector parameters
(i.e., δix, δiy) resemble harmonic oscillations of relative orbit in RN and TN plane
respectively.

Therefore, the algorithm is framed to contain two user inputs of which one is the difference
in eccentricity ∆e that controls the relative distance in magnitude, and the other is to
define δe⃗ with either the ∆Ω or ∆ω input value. The relative inclination δix and δiy are
varied at a step size of H

4
relative orbits with a magnitude of ±2δiy0

H
and ± δiy0

H
respectively.

The highlight of this approach is that there exist four camera locations for one instance on
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±R, ±T axes that could support resolving symmetrical ambiguities in pose estimation.

Algorithm 3.1 Camera relative motion propagation
1: Initial ROEs : δα0 = [0, 0, δex0

, δey0
, δix0

, δiy0
]T

2: for h = 1 : H do
3: refine the initial values for varied relative inclination.
4: if h < 0.25H then
5: δix = δix0

+
2δiy0
H × h

6: else if 0.25H ≤ h < 0.5H then
7: δix = δix0

− 2δiy0
H × h

8: else if 0.5H ≤ h < 0.75H then
9: δiy = δiy0 +

δiy0
H × h

10: else if h ≥ 0.75H then
11: δiy = δiy0

− δiy0
H × h

12: end if
13: Refined ROEs: δα(t0) = [0, 0, δex, δey, δix, δiy]

T

14: for k = 1 : N do
15: get T (t) matrix as in Equation (2.10) for kth instance.
16: evaluate X⃗(t) following the Equation (2.13) for kth instance.
17: update δα(t0) for next X⃗(t) with δα(t) of the previous step, to form closed-loop system.
18: end for
19: Therefore, the relative states Y⃗(N(h−1)+1:Nh, :) are X⃗(t).
20: end for

With respect to the above discussion on a trial and error basis, ∆e is set to a value of
0.005 with the requirement of relative distance in magnitude to be less than 25m such
that, the resulting camera path for the Aqua is reported in the Figure 3.5. To summarize
the working idea, imagine that the spacecraft rotating in time is mounted on a simulator
bed and the camera is revolving relative to the spacecraft at each spacecraft rotation step,

Figure 3.5: Camera trajectory
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in which the position is derived from the Keplerian motion propagation in Cartesian
form. Later, the pose data of the camera is registered in the RTN frame for generating
the labelled dataset.

3.3. Monocular camera

The technological challenges in pose estimation are related to the selection of the best-
suited sensor architecture for the given environments. As previously discussed in Chap-
ter 1 the significant advantage of having a visual aid in close-proximity situations for
full pose estimation, the Section 3.3 will detail the specific use of the monocular camera
among the other Electro-Optical sensors (EO), and a brief discussion about the sensor
model utilized for the POSSE simulator is reported in the Section 3.3.1.

The EO sensors collect reflected/emitted radiation in the electromagnetic spectrum, of
which the range of frequencies from 0.37µm - 0.75µm and 0.75µm - 1000µm belong to
the visible light and infrared radiation, respectively. In spacecraft relative navigation, the
above two are widely applicable and classified into passive (Monocular/Stereo cameras)
and active (LiDAR) systems.

Among the passive imagers, infrared imaging allows good Line-Of-Sight (LOS) measure-
ments but it is poorly textured for pose estimation. On the other hand, the images in the
visible band contain abundant data to process the full pose estimates [see 48, Section 2].
In analogy, the active systems that work with a back-scattering principle in the FOV are
even better in accuracy and also have their pros and cons on this topic; upon respecting
the mass and power factors as limitations in the study, the choice is discarded. Even
though stereo cameras are good at acquiring 3D information, to simplify the process of
dataset generation and the scalable approach of having RGB/Grayscale images as widely
acceptable for pose estimation applications, a monocular camera is preferred.

In the past, such cameras were used in Hubble Space Telescope Servicing Mission 4 (SM4)
for relative navigation towards an uncooperative target - telescope. Furthermore, many
authors in [2, 3, 24, 26] presented their works on cooperative and uncooperative targets
pose estimation from monocular imaging resulting in promising outcomes and further
challenges with the single-image-based approach. To understand the state-of-the-art on
the monocular model-based pose estimation better, the authors Pasqualetto Cassinis et al.
[48] and Opromolla et al. [49] presented a detailed review for further reference. Moreover,
monocular imagers are computationally less expensive in terms of processing algorithm
onboard and hardware complexity. In addition, these are good at detecting and tracking
objects up to a very close range, which is best suitable for this study.
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3.3.1. Sensor model

The characteristics of the monocular vision are to be well understood to define the sensor
model. It mainly consists of sensor properties such as focal length, field-of-view and sensor
dimensions. In addition, there exist image properties such as resolution and pixel pitch
that cross-correlate with the sensor. The definition of the parameters is as follows

• Resolution: The term ‘pixel’ in digital imaging refers to the smallest single com-
ponent either in square or dot shape. Several pixel overlay over the image plane
creates an image. The number of pixels that are aligned along the image plane axes
defines the resolution and is often measured in pixels. So, a higher resolution means
greater image clarity.

• Pixel pitch: It defines the density of pixels along the axes i.e., the distance in
millimetres from the centre of a pixel to the centre of the adjacent pixel. A smaller
pixel pitch means there is less empty space between pixels. Therefore, the higher
the pixel density better the image resolution.

• Field of view: The observable area of the sensor measured angularly in the horizontal
and vertical direction defines field-of-view in degrees.

• Sensor dimension: It is the physical measurement of the sensor lens in millimetres.

• Focal length: The distance between the sensor lens and the image plane/focal point
in millimetres, along the principal axis i.e., the orthogonal axis of the image plane.
The focal length (f) can be computed in relation to the sensor dimension and FOV
such that, f = sensor width

2 arctan(
FOVh

2
)
.

It is widely known that the creation of synthetic images employs a virtual camera for the
simulation. The SPEED dataset [22] contains both the rendered and real images with a
resolution of 1920×1200 pixels captured using the Point Grey Grasshopper 3 camera with
a Xenoplan 1.9/17 mm lens that replicates the PRISMA onboard hardware. Similarly,
the URSO dataset [3] utilises a virtual camera with the 90◦ horizontal FOV generating
RGB images of 1080× 960 in resolution. Likewise, the above two as baselines, the virtual
camera model for the POSSE is desired to have a square-pixels of mid-range resolution
and wide FOV as reported in Table 3.5.

Field of View [◦] Sensor width [mm] Resolution [px] Pixel Pitch [µm/px]

90 36 1280 × 960 28.12

Table 3.5: Sensor model
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3.4. Simulator

As previously stated in Section 1.1 regarding the significance and lack of availability of the
labelled spacecraft datasets for training the Neural Networks (i.e., supervised learning),
the unPerturbed Orbital Simulator for SpacEcraft (POSSE) is developed as an implicit
goal of the study. The POSSE is set up to render the images, synthetically using the free
and open-source 3D computer graphics software toolset known as Blender 3.03 developed
by Blender Online Community. The software is released under GNU General Public
Licence4 thus eliminating the user-access restrictions on using POSSE. The important
tasks that the POSSE relied upon include 3D Modeling, UV Editing, Raster Graphics,
Geometry Nodes, and Rendering, all of which Blender 3.0 is capable of performing like
every other graphics software but with enhanced precision and control over the parameters.
Another aspect that must be emphasized on the software is that it is coded in C, C++
and Python languages, and make use of Python 3 for scripting its API5 (i.e., bpy and
mathutils modules). Henceforth, it provides an edge to automate the dataset generation
tasks through coding with Python programming language. Therefore, this results in the
development of simulator.py file to perform the rendering operation, followed by the
execution of the file on Blender 3.0 in the background via the Command-line interface
(CLI) leveraging the Blender API.

In order to define the POSSE working environment, PyCharm© 2021 (Professional Edi-
tion) editor is used along with the interpreter that is identical to the Blender 3.0 i.e.,
Python 3.9 for the tool development. It is preferred to detail the simulator framework
by dividing it into three parts. The first part follows as in the Section 3.4.1, which focuses
on building a scene with the necessary three-dimensional models, camera and illuminating
objects. Secondly, the rendering set-up and the sequence of operations involved in the
image rendering process are demonstrated in Section 3.4.2. Finally, the last part which
is Section 3.4.3 will discuss the strategy for extracting the annotations (i.e., predefined
keypoints and 2D bounding box) for the rendered image.

The file simulator.py is designed to request two key user inputs of the rendering opera-
tion to be performed, one is the name of the spacecraft and the other regards to the type
of background needed. A simple schematic layout of the POSSE is presented in the Fig-
ure 3.6. The code flow in the file is organised in such a way that the input parameters
whilst declaring the user-defined functions, are the sole source to control the operational
set-up of the simulator.

3Downloaded from: https://download.blender.org/release/Blender3.0/
4The license terms can be referred at https://www.gnu.org/licenses/gpl-3.0.html
5Blender 3.0 Python API Documentation: https://docs.blender.org/api/3.0/

https://download.blender.org/release/Blender3.0/
https://www.gnu.org/licenses/gpl-3.0.html
https://docs.blender.org/api/3.0/
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Figure 3.6: POSSE Framework

3.4.1. Scene

Generically speaking, a ‘scene’ is described as an anticipated circumstance in which the
relevant elements are organized such that the event can take place. Whereas, in our
scenario, the organisation of such elements in the event, typically address the following

1. The position and orientation of the traceable objects relative to the camera, and
also related to the geometrical and materialistic properties of the scene objects
themselves.

2. Lighting conditions are defined by the type of light sources in the scene and their
characteristics such as colour, power and intensity of the light.

3. and the Environment in which the scene is defined, which usually indicates the
objects involved in the foreground/background, which represents the Earth in our
case.

Blender allows to arrange the main scene elements in the .blend file into multiple scenes
collections, that can either store the entire set or a subset of the scene elements. As
regards to such a feature: the meshes, cameras and light sources are organised with the
name of sc_collection as in Figure 3.7 in the main scene. All the elements in the scene
collection are stored as libraries in the .blend file, which is similar to the folders on a PC.

Figure 3.7: Scene collection

To understand better, it is preferred to break down the elements in the sc_collection one
after the other, along with their necessary characteristics and sub-elements as follows.
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Spacecraft

As previously mentioned in Section 3.1.1, the downloaded spacecraft models are imported
into the Blender graphical interface. The one-time edits are performed on the raw model;
of-which includes 3D modelling, shading and texture editing for the materials. The idea
is to create a ‘spacecraft_name’.blend file with single Blender Object6 consisting of the
spacecraft mesh geometry along with their respective materials. Concerning the geo-
metrical editing, Edit Mode contain most of the required tools for 3D modelling; Aqua
desires no modifications in the raw model resulting in Figure 3.1b, whereas for Cluster
as discussed in the Section 3.1.1 it is modified by slicing the large wire-boom edges and
carrying out the join operation to form a single mesh geometry. Later on, with regard
to the materials, all are textured from the high resolution images with an exception to
the Cluster’s solar panels. For Cluster, solar panels are set out as a potential feature in
the image processing step. The solar panels in the raw file are poorly textured as shown
in Figure 3.8a. To overcome this, another feature of Blender is used that is Shader Ed-
itor 7. In this way a node tree is built, by which the UV map of the panel geometry is
utilized to generate the procedural pattern of Voronoi Texture over the surface such that
the texture regions resemble the solar cells as in the Figure 3.8b. On the other hand,
Aqua is textured ideally with an aluminium sheet, shielded entirely over the surface of
the main body.

(a) Original solar panel. (b) Modified solar panel.

Figure 3.8: Cluster solar panel.

Finally, the modified version of the user-desired spacecraft, based on the keyword input
is loaded from the blender libraries of the ‘spacecraft_name’.blend onto the main scene
i.e., sc_collection as a single mesh Object. The spacecraft rotation mode is adjusted
from ‘XYZ Euler’ to ‘Quaternion (WXYZ)’ which indicates the scalar first quaternion.

6https://docs.blender.org/manual/en/latest/scene_layout/object/introduction.html
7https://docs.blender.org/manual/en/latest/editors/shader_editor.html

https://docs.blender.org/manual/en/latest/scene_layout/object/introduction.html
https://docs.blender.org/manual/en/latest/editors/shader_editor.html
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The origin point of the Cartesian world is aligned with the CoM of the spacecraft by
performing the translation operation between world origin and CoM.

Camera

Figure 3.9: Third-person
Point-of-View of the Camera and
Cluster.

The main scene perspective-camera is created both
as a sensor and an Object, and placed at the ori-
gin initially with Quaternion as their rotational pa-
rameter; with the start of simulation the camera
location is updated accordingly. Local axis of the
blender camera follows an unconventional way from
the typical pinhole camera model, with the nega-
tive z-axis representing the optical-axis as in Fig-
ure 3.9. The camera sensor properties are defined
as per the model described in Table 3.5; another
important property of the sensor to render the ac-
tual scale model of the Earth is the camera clipping
parameter such that, the clip_start and clip_end
are set to a value of 0.1122 and an astronomical
unit respectively. The values are defined based on
the various simulation trails and the maximum unit
involved in the scene.

Sunlight

Sun is considered as a light source alone in the scene. This assumption could be inaccurate
since the sun is not a mesh object that geometrically appears in the render. Apart from
that, the light properties such as sun color with the RGB value of (0.9922, 0.9843, 0.8275)
on the scale of 1, and the angular diameter of the Sun seen from Earth as 0.0092 radians
are noted. In addition, the location and intensity flux of the sun are real to its units, and
are constantly updated from the propagator as discussed in Section 3.2.3.

Earth

Unlike the approaches followed in the literature [3, 22] either by randomising the Earth
images or placing a high textured polygonal sphere in the scene background, in POSSE,
the Earth model is built with the lowest-minimum number of UV coordinates possible
(i.e., 7552 points) for the UV sphere, of-which the image texturing method is possible
without producing distorted views on an actual scale. The UV layout utilized is shown
in Figure 3.10a; another reason for using fewer points is to reduce the computational
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effort whilst creating the scene. The realistic views of the Earth are produced with Shader
Editor ; High-resolution images are taken from NASA [51] in which the colour (Albedo)
map is diffused with the land-bump map resulting in Earth’s surface. Later, this layer is
masked with the transparent cloud bump along with the ocean mask consisting Fresnel
refraction index of 1.3. A final layer of atmospheric ozone is included with a transparent
blue colour resulting in the Earth model as in Figure 3.10b. The Earth model is appended
to the scene and rotated at a rate of 15◦ per hour during the simulation. The Section 3.2.3
discusses the radiation flux contribution from Albedo, which implies the Earth to be
modelled as another light source in the scene pointing towards the spacecraft, that shares
similar properties with the Sun.

(a) UV Map layout. (b) Background Earth model.

Figure 3.10: Earth.

Starry-world

Figure 3.11: Starry background.

The term ‘World’ defines the environment of the
scene itself and holds rigid in space. The usual
Space environment contains celestial bodies includ-
ing stars all the time. Henceforth, the stars are de-
signed with the Shader Editor again and classified
into three sizes: faint, small and medium. Each
sized star is further classified into three common
colours based on appearance that are orange, yel-
low and white as seen in Figure 3.11. The Voronoi
Texture node is used to randomise the vertices in
3D space based on the Euclidean distances. The
node tree is programmed in a way that, perhaps the size of the stars could be scaled by
changing the functional input parameter. For the simulation, the scale is set to the value
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of 20, 15 and 10. Likewise, the strength of the stars is adjusted accordingly in the range
between 0-4 with no bloom effect.

The discussion up to this point clarifies the elements of the scene, especially about two
things: what are the elements and how they are made. However, there is no evidence in
the propagator_script.m model of Section 3.2, demonstrating the attitude of the camera
that points to the target spacecraft. The reason is to avoid the round-off uncertainty
during the reference frame transformation and importing the data into the simulator.
The unknown parameter is resolved by extracting the camera’s pose directly from the
rendering event, thanks to the Object Constraint Properties.

The track_to constraint demonstrates the possibility of tracking another object relative
to the camera or the light source, which is controlled by the influence parameter such
that the value of 1 resembles the spacecraft CoM point precisely at the centre of the
image plane, but in reality, this fails. Therefore, a random value between 0.98 to 1 is set
out as an influencing parameter such that, the spacecraft is not always at the centre. In
addition, the same constraint is once again imposed on the light sources along with the
eclipse switch to turn off the illumination at the eclipse event.

3.4.2. Image rendering

Image rendering is defined as a process to generate photo-realistic images. This process
is mainly categorized into two: real-time rendering and pre-rendering based on their
generation time. The former process employs the rasterization method, which works
on approximating the 3D effects in the scene to the 2D image plane as seen from the
viewpoint. This is highly used for interactive graphics and video games. Whereas, the
latter uses a computational technique named Ray-tracing that is capable of simulating
various optical effects such as reflection, refraction, shadows and occlusion. The sampling
of light from the illuminating sources over the target domain, and capturing the reflected
photons over the scene objects into the image plane explain the working principle. As
one can imagine the cost of such an operation would be proportional to the amount of
transporting rays in question from the source, most of the rays do not even intersect the
object in the target domain or reach the image plane.

Henceforth, the principle of backward Ray-tracing is introduced in which the rays are
optimised and transported from the imaging sensor to the target domain as shown in Fig-
ure 3.12, in which only the rays intersected with the scene object’s surface are further
evaluated over the incoming light bounces and its resulting shadows at that instance to
calculate the final colour of the image pixel. In this way, the rendering operation is better
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optimised whilst producing an image with greater photo-realism accuracy, of course at a
higher cost when compared to the real-time rendering.

Image planeImaging sensor

V
U

Light

Scene object

rays

Figure 3.12: Backward Ray Tracing

In Blender, such processes are available as a part of Render Engine8, of which Cycles that
work on backward ray tracing technique is preferred for the dataset generation due to its
high accurate rendering capabilities. The Google Colab is used for accelerated rendering
with the GPUs available on the platform. Rendering setup properties are modifiable in
the function render_engine, among them ‘samples’ is one key parameter that defines
the amount of traceable rays per pixel to be evaluated by the integrator; a decent value
of 200 samples are chosen for this operation. The function also accounts for maximum
light bounces, clamping, and caustic parameters with an option to induce a Gaussian
filter for rendering. Similarly, the output image properties are defined by the function
render_params.

Lastly, the image rendering pipeline is constructed to generate the final spacecraft dataset
with the selected background (i.e., each spacecraft will have two sets of datasets: one is
dark starry and the other with Earth appended in the background). The output file
points.csv, from the Section 3.2 provides necessary input data for setting up the scene
objects and render conditions. A flowchart representing the operational sequence of the

8Introduction: https://docs.blender.org/manual/en/latest/render/introduction.html

https://docs.blender.org/manual/en/latest/render/introduction.html
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pipeline is presented in Figure 3.13. The resulting location and quaternion of the camera
at each frame are noted in a ‘spacecraft_name + background + pose_data.csv’ file.

Start

Last simulation
point ?

No

Yes
End 

(Generate 
annotations)

Impose object
constriants

Update
Scene

Spacecraft orientation 
Camera position 

Earth pose 
Lights flux

Inputs

Spacecraft: Cluster/Aqua

Background: Dark/Earth

Propagator outputs

Background is "Earth"

No
(Hide Earth

from the scene)

Yes

Render

Camera  
pose data

pose_data.csv

Figure 3.13: Image rendering pipeline

3.4.3. Annotations

The labelled dataset must contain the synthetic images along with the encoded ground
truth data. In general, this data is commonly referred to as image coordinates consisting
of information on the segmentation maps, keypoints, boundary box, etc.; these are collec-
tively termed "Annotations". The supervised learning approach requires the annotations
to train and validate the neural model. This section is mainly focused on the generation of
these annotations (i.e., bounding box, keypoints and pose data). However, the keypoints
and pose data are not required for the Spacecraft Detection Network in Chapter 4, but
they contribute to the strategy for generating bounding box annotations. Moreover, the
annotations are generated by keeping in mind the applicability of this work to perform
keypoint extraction and pose estimation in the future.

Category Prefix

Main body (top) T
Main body (bottom) B

Antenna A
Solar panel S

Extra Empties EE

Table 3.6: Categories of labelled keypoints
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As regards the study, keypoints are identified as the labelled pre-defined points on the 3D
object as shown in Figure 3.14, that may resemble any of the edges or faces. Annotations
in the present dataset generation process include only the coordinates of these keypoints
and the boundary box derived from the respective keypoints in the image. The keypoints
are categorised as in Table 3.6 based on the generically possible spacecraft components
i.e., main body, antenna, solar panel and nozzle.

The annotations are primarily stored with the use of .json file format, into two dictionar-
ies: ‘keypoints ’ and ‘bounding_box ’, and each dictionary contain another sub-dictionary
with a keyword (i.e., category ‘prefix’ code as in Table 3.6, followed by a sequential
number) representing the keypoint. By utilizing the concept of Empties9, the prede-
fined points are modelled as the one-time edits on the final model and saved as ‘space-
craft_name’_annotate.blend. The 3D positional data of these empties are recorded with
the function object_coordinates and exported to the annotations_raw.json, which is put
along with their respective .blend files. Whereas, the image-specific annotations of the
empties are also registered to ‘spacecraft_name+background+annotations_w.json’,
irrespective of their visibility from the viewpoint during the rendering pipeline execution.

(a) Cluster. (b) Aqua.

Figure 3.14: Labelled keypoints.

Later, the keypoint visibility is considered and validated for all the rendered images with
the use of blender’s internal ray casting technique10, resulting in the 3D hit point location
and a logical value indicating the occurrence of the hit. The error (i.e., keypointactual −

9The “empty” is a single coordinate point with no additional geometry (i.e., no volume and surface).
10The projection of rays into the viewing volume from the camera, and the particles that hit the first

identified mesh validates the keypoint visibility.
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keypointray_cast) is computed and a tolerance of 0.055 m is applied for the ||error ||, just
to avoid the false negatives that occur when the face hits first although the point is right
below.

Finally, the point_to_pixel function is built to solve the Perspective projection problem
as demonstrated in Section 2.6.1, which transforms the 3D keypoint coordinates in the
scene to a 2D-pixel coordinate on the image plane. The dictionary value of the keypoints
in the annotations file indicates the (ucoord, vcoord, visibility). The bounding box is defined
by two anchor points that is one representing the top-left and the other indicating the
bottom-right of the box. Anchor points are computed based on the minimum and max-
imum pixel coordinate value of the visible keypoints along the UV-axes (i.e., left anchor
= (Vmax, Umin). From this, it is clear that the presence of visible keypoints is significant to
determine the anchor points. Keypoints over the extreme corners of the spacecraft com-
ponents are not good enough to precisely design the bounding box. Therefore, redundant
‘Extra Empties (EE)’ are densely populated (see Figure 3.14); such that they would assist
in computing the anchor points and are further discarded in the annotations. The dataset
annotations are stored in a file ‘spacecraft_name+background+annotations.json.

3.5. POSSE Dataset

All the previous sections clearly explain the process of generating the synthetic images.
To this point, four individual datasets are Cluster-Dark, Cluster-Earth, Aqua-Dark, and
Aqua-Earth based on the user choice, of which each consists of (N +1)×H images. The
generator.py will collect the individual datasets including the annotations, and generate
a single multi-spacecraft dataset named ‘POSSE Dataset’. The code will evaluate the
dataset and eliminate the redundant high-contrast images that occur due to the following
scenario through image processing.

1. Target spacecraft is in eclipse with the light source by the Earth.

2. Camera is in eclipse with the light source by the Earth/Target spacecraft.

In addition, it is possible to add the Gaussian noise and filtering to the images with
generator.py, if the variance and std deviation parameters are known. Lastly, the code
will generate two files: dataset.csv and annotations.json, in which the former contains
the filename, spacecraft name and the camera pose_data. Whereas, the latter holds the
ground truth data of the keypoints and the bounding box.
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3.5.1. Re-partitioning

The standard procedure of training a Neural Network is to perform dataset partitions,
that are usually called ’train’, ’valid’ and ’test’ datasets. To perform this operation,
the partition.py is utilized at which the image filenames and the pose_data of the
dataset are randomly shuffled and distributed into six data files with suffix images.csv

and pose.csv for each subset. The partition ratio is 80, 10 and 10 percent indicating
train, valid and test datasets respectively.
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This chapter discusses the network proposed for the detection of the spacecraft in the
multi-class datasets consisting of grayscale images. From the SOTA and the KPEC out-
comes mentioned in Chapter 1, it is clear that Convolution Neural Networks are well-
advanced in such detections. These neural models are carefully considered in the proposed
network named Spacecraft Detection Network (SDN). Similar to the dataset generation
algorithm introduced in Chapter 3, the SDN is also coded in Python using Keras, which
is a high-level API of the TensorFlow platform for model development.

The schema diagram shown in Figure 4.1 illustrates a simplified SDN architecture high-
lighting its key components. To outline the architecture, SDN’s backbone consists of
ResNet architectures discussed in Section 2.4.4 along with pre-trained weights learned
on the ImageNet dataset. This is further extended with the Feature Pyramid Networks
(see Section 2.5.2) to achieve multi-scale invariance. Later, the proposals are generated
by another simple convolution-based Region Proposal Network that is followed by the two
fully connected layers to predict the classification and the bounding box regression. The
development of the SDN model and its training are detailed in the following sections.

Feature extraction

RoI
ROI

Align

Feature Maps

Pre-defined
anchors Network heads

Classification

Bounding box

Proposal generator

Objectness

Refinement

ResNet-xx FPN

Upsampling
ConvolutionIdentity

Conv2D

Figure 4.1: End-to-End Architecture: Spacecraft Detection Network
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Spacecraft detection network

At first, it is thought to propose a simple unified network similar to Proença and Gao [3].
Later this baseline network was enhanced to perform RoI checks such that, a reduction
in search regions eventually reduces the computation power on unwanted regions along
with the advantage of detecting multiple objects in the input image. For this, the two-
stage detectors are agreeable for the reasons stated at the end of Section 2.5. Among
the two-stage detectors discussed in Section 2.5, Mask R-CNN is the latest method which
modifies the Faster R-CNN by including the Feature Pyramid Networks (FPN).

Therefore, the modified ResNet-50 backbone in [3] is extended with the FPN (see [42]
and Section 2.5.2). The fully-connected layer and the global average pooling layers are
removed from the baseline’s CNN backbone. It is also evident that this backbone setup,
which is also implemented in the Faster R-CNN, performed better with FPN in its archi-
tecture with a positive increment on AP by 7.6 points. Hence, ResNet-xx with FPN is
considered as the backbone for SDN.

Furthermore, the potential candidate regions are generated by the Region Proposal Net-
work (RPN) model discussed in Section 2.5.1. With this, implementing the SDN on our
novel dataset (i.e., POSSE) requires certain quantitative analysis to be performed, to de-
cide the RPN’s adaptability for the study. For this reason, the RPN’s detection accuracy
on the candidate regions’ proposal is validated. On this account, similar to the ablation
experiment in [42] is performed in which, the COCO-style Average Recall (AR) for the
top 100 and 1000 proposals at a set IoU threshold of 0.5 is evaluated as a performance pa-
rameter. The implementation details are shared in the following Section 5.2 in Table 5.2.
As a result, the RPN with NMS filtering performed well with an AR100

0.5 and AR1k
0.5 of

98.42% and 100%.

Overall, to describe the proposed SDN, the backbone module consists of both ResNet-18
and ResNet-50 architecture for feature extraction depending on the complexity of the
dataset. In the Figure 4.1, the bottom-up pyramid represents a blend of both ResNet
architectures where the solids and dotted blocks resemble ResNet-18 and ResNet-50 re-
spectively. The decision to change the backbone between the above two architectures
is due to the lesser amount of training samples available when compared to the other
datasets used in the baselines. In addition, this step improves the performance, and
computation efficiency with fewer trainable parameters and also prevents the overfitting
problem. Along with the backbone, the SDN is later extended to employ FPN to perform
scale-invariant object detection. Once the Region Proposal Networks (RPN) generate
proposals for the candidate regions, the feature maps are hand-picked from certain levels
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of the FPN pyramid as explained in Section 2.5, based on the area of the proposed can-
didate regions (i.e., RoI). Further, the FPN maps over these regions are cropped, aligned
and fed to the network heads module with fully connected layers to classify the spacecraft
and regress its bounding box.

The size of the SDN’s input image is also another pivotal requirement because the rendered
grayscale images of Cluster and Aqua in the POSSE dataset have vertical and horizontal
dimensions of 960×1280 pixels. The baselines require the shorter side to be ≈ 600 pixels.
Hence, the input is resized to match the requirements. Another constraint on the image
size is that it must be divided by 2 at least 6 times to avoid fractions. Therefore, the
dimension of the pipeline’s input image is set to 640×640 pixels. Along with this a unique
mean pixel value computed on the entire images in the dataset is removed from the image
as a data pre-processing step known as mean normalization.

In total, the key modifications over the typical baseline architecture are the following:
At first, the CNN’s inputs such as image dimensions are set to 640 × 640 pixels and the
higher-level stages (i.e., c5 and p6 stages) are included. Secondly, the batch normalization
layers are trained conditionally, only when the batch size > 32. Lastly, the loss functions
strategy on model convergence is modified such that, even the training can be accurate
with a lower batch size. The problem related to the model convergence is explained below.

Model training

Similar to the Faster R-CNN, our object detection model also outputs four predictions
from the network heads: two from the RPN (i.e., rpn_class, rpn_bbox ) and, two for the
spacecraft classification (class) and the bounding box (bbox ). To discuss the strategy
for building the prediction targets, at first, the targets for the branches rpn_class and
rpn_bbox strictly follow the approach mentioned in the baseline Ren et al. [36] (see
Sections 3.1.2 and 3.1.3).

In a nutshell, for rpn_class target, each anchor box is labelled as positive, negative or
neutral. The anchor box of the highest IoU overlap or IoU ≥ 0.7 with a ground-truth
box is considered positive, and the anchor box is assigned negative when the IoU < 0.3.
Optimizing all anchors will be biased towards negative samples as they are dominant.
Therefore, only Nrpn anchors are trained per image, of which the ratio of positive and
negative samples is 1:1. The excess positive or negative samples are marked as neutral
samples, and are ignored in loss computation.

The binary cross entropy loss function is used to compute rpn_class_loss, where only
the positive and negative samples are considered. Similarly, the rpn_bbox_loss utilizes
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robust loss function (i.e., smooth L1 a.k.a Huber loss with δ = 1) to perform regression
of the four coordinate vector t =

[
ty ty th tw

]
,

ty =
Y − ya
ha

tx =
X − xa
wa

th = log

(
H

ha

)
tw = log

(
W

wa

)
(4.1)

where, based on the choice of computation (i.e., target/prediction vector), the (Y, X) and
(H, W) denote the centre coordinates and height/width of the ground truth/estimated
box. Similarly, the subscript ‘a’ denotes the corresponding dimensions of the anchor box.

Secondly, for building the class and bbox targets, the ∼ 2000 rois from the proposal
generator are labelled as positive and negative rois in the paper [36, 37]. These are
classified based on the IoU overlap with the ground truth such that, IoU ≥ 0.5 are positive
and < 0.5 are negative. The bbox_loss follows the same approach as rpn_bbox_loss
computation by evaluating positive rois alone. Whereas, the target class ids of the negative
rois are assigned as zeros. Similar to the RPN training, here only Nodn rois are trained per
image. The ratio of positive to negative rois is 1:3, in case of shortcomings, the targets
are zero-padded to preserve the tensor dimension.

In [35–37] class_loss computation is a two-step strategy. First, the sparse softmax cross
entropy loss function is used between the class target labels and predicted logits, and later,
the prediction losses associated with the inactive classes of the dataset, and in the image
are erased. As a consequence, the loss function is prone towards prediction errors, which
eventually happen either in training with a smaller dataset or at the initial steps/epochs.
For instance, when all the predictions over the image are inaccurate and belong to the
inactive classes, the correctly penalized losses from the first step are ignored in the second.
In the end, the prediction losses mean, which accounts for the active predictions alone,
results in nan. As a result, the false predictions are not penalized correctly and the
weights do not optimize at the step-end.

To overcome this limitation, the strategy is slightly modified such that, the losses of both
positive and negative rois are considered, as in rpn_class_loss computation, since the
rois with IoU < 0.5 implies the background. To distinguish the zero-padded and true
negative roi targets, the class ids of the negative rois are assigned to the background
class, and the tensor is padded with ‘-2’ instead of zeros. Later, the losses associated with
inactive target classes are removed, and the background is considered active. Thus, false
predictions are accurately penalized and this strategy proved to be efficient in our study.
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This chapter discusses the performance of the tools implemented in this research (i.e., Chap-
ters 3 and 4). To present these results in an orderly manner, it is thought to break down
the chapter into two sections. At first, the Section 5.1 discusses the results from the
image rendering pipeline, and later comes the discussion on the results achieved through
the Spacecraft Detection Network in Section 5.2.

5.1. Spacecraft renders

The propagator described in the Section 3.2 is set to generate the pose data, for the objects
in the Blender scene. The arbitrary value for the number of instances N is set to 100,
at which the spacecraft’s orbit is propagated. Later, the number of camera’s perspective
views (i.e., H) recorded per instance is 25. Therefore, this results in 2525 or (N +1)×H

frames/images in one run.

The current state-of-the-art datasets [22, 23] lack the noisy stars in the background.
POSSE dataset is introduced also to include challenging conditions for the DL techniques
to estimate the pose, and having a starry background is one of them. The decision on
the presence of Earth in the background is also considered a challenge of robustness,
henceforth, the selection of an image background type (i.e., w/ Earth or w/o Earth) is
set as a simulator’s input parameter. For instance, in the first run, the spacecraft images
are rendered with Earth, and in the following run without it. So far, the POSSE include
a starry background in all 4 variants, which are, Cluster w/o Earth, Cluster w/ Earth,
Aqua w/o Earth and Aqua w/ Earth. In total, by including m no. of spacecraft and
p background variants in the dataset, there exist m × p × ((N + 1) × H) images in the
dataset. For us, m = 2 (i.e., Cluster and Aqua) and p = 2 (i.e., w/ Earth and w/o
Earth), which results in 10100 images in the POSSE dataset. Later, the images that
are pitch-dark and consist of less than three visible keypoints are filtered out from the
POSSE dataset, because they do not contribute to the model training and the final pose
estimation, therefore, resulting in 8186 images. A few sample images of Aqua and Cluster,
as a result of the image rendering pipeline execution, are shown in Figures 5.1 and 5.2.
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(a) Aqua (b) Long-range (c) Low visibility

(d) Earth background (e) Partial view at close-range (f) Strong shadow regions

Figure 5.1: Sample rendered views of Aqua in challenging conditions with applied
Gaussian noise and blurring

(a) Cluster (b) Long-range (c) Low visibility

(d) Earth background (e) Partial view at close-range (f) Strong shadow regions

Figure 5.2: Sample rendered views of Cluster in challenging conditions with applied
Gaussian noise and blurring
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In addition to the main dataset POSSE, it is intended also to render the scene without a
starry background for validating the robustness and performance of the pose estimation
in comparison. For this purpose, the POSSE dataset is further subdivided into 4 versions,
which are detailed in the following Section 5.2. The Figure 5.3 shows the render of the
Cluster and Aqua spacecraft with a dark background.

(a) Cluster (b) Aqua (c) Aqua + Earth background

Figure 5.3: Images from POSSE dataset without starry background, and applied
Gaussian noise and blurring

5.2. Multi spacecraft detection

Over the decoupled approach, it has been proven by researchers that the accurate pre-
diction of high-confidence keypoints, dictates the pose measurement accuracy, with an
exception in the case of symmetric ambiguities. Henceforth, the research focuses on de-
livering a detection network that can assist further in high-confidence keypoint extraction
and pose estimation. On this basis, the proposed SDN described in Chapter 4 is set to
demonstrate the robustness of our network over the SOTA datasets, it is thought to per-
form five experiments in which all five are set to detect and classify the given spacecraft
at varying complexities with regard to the background. The first two experiments are on
a single-instance and single-class problem performed over Cluster and Aqua separately, at
a very simplified level with a dark background. The main focus is to test the performance
of the proposed network in the multi-classification task over the results achieved in the
SOTA detection methods.

Later, the following two experiments will perform a single-instance, multi-spacecraft prob-
lem with and without the presence of Earth in the background. Although the robustness
with respect to Earth has already been published, this study brings novelty in validating
the CNNs in the spacecraft domain for solving a multi-classification problem, where the
neural network is trained and tested with the dataset consisting of both Cluster and Aqua.
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The final experiment is over the POSSE dataset, which consists of Cluster, Aqua, Earth
and Stars in the image. These experiments are performed on Google Colab. The com-
parison between the last two experiments will depict the impact of the noisy stars in the
background, and implicitly the robustness of the proposed network on the multi-spacecraft
detection, since all the above-mentioned experiments require dedicated datasets to train
and test the proposed network. These datasets are created by partitioning the main
POSSE dataset in the case-by-case scenario. The details are tabulated in Table 5.1.

Dataset Target Background #images

POSSE_v1 Cluster Dark 2525

POSSE_v2 Aqua Dark 1568

POSSE_v3 Cluster, Aqua Dark 4093

POSSE_v4 Cluster, Aqua Earth 4051

POSSE Cluster, Aqua Earth, Stars 8237

Table 5.1: Categorization of datasets for the experiments

An ablation experiment over the adaptability of transfer learning and RPN in our proposed
network is carried out before performing the object detection task over any of the above-
mentioned datasets. The reason is that the RPN manages to output the candidate regions
and the post-processing module searches for the spacecraft in these regions alone to classify
and regress the bounding box. What if the RPN proposals are inaccurate? Hence, at first,
the network consisting of the backbone and proposal generator module (i.e., ResNet-18,
FPN and RPN) is trained and tested on the POSSE_v1 dataset. In addition, the study on
the impact of NMS filtering in RPN is also carried out. The results are shown in Table 5.2.

The implementation details of the ablation experiment follow the paper [42] (see Section
5.1 of [42]), except for the batch size and learning rate. The adoption of ResNet-18 unveils
the possibility of having a larger batch size computation, hence the batch size is increased
from 16 to 48. Whereas the learning rate is slowed down and fixed at 0.001 instead of a
varied value after certain mini-batches. This is because the training size is much smaller

Dataset Filtering ImageNet AR100
0.5 AR1k

0.5 tGPU #params FLOPs

Top-K ✓ 83.4 98.8 186 14.98M 152.63B
× 94.46 97.23 177 14.98M 152.63B

POSSE_v1 Top-K, NMS ✓ 91.7 100.0 185 14.98M 152.63B
× 98.42 100.0 203 14.98M 152.63B

Table 5.2: Ablation experiment for RPN, Transfer learning adaptability
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compared to the COCO dataset. Higher learning rates overshoot the optimal point when
tested on the POSSE_v1 dataset.

In the above Table 5.2, the AR#proposals
IoU measures the ability of the model to detect objects

irrespective of the class match. This is an aggregate metric that is calculated for the entire
dataset. A value closer to 100 denotes the model accuracy to find objects and is computed
on a per-image basis over the #proposals that fulfil the set IoU threshold condition.

The model is either fine-tuned or fully trained on the first two cases in the Table 5.2 (i.e.,
w/ and w/o adapting ImageNet weights) since the only add-on for the last two cases is the
NMS filtering operation. The corresponding weights from the first two cases are adapted
during the model inference for the third and fourth cases. It is observed that the results
achieved in all four cases are coherent, as the results achieved by the fully trained method
are relatively higher than the fine-tuning approach. Whereas, upgrading the network with
an NMS filtering operation (i.e., Case 3 and 4) resulted in a relatively higher AR#proposals

IoU ,
and the computational cost for including the NMS is negligible. In addition, the NMS
increased the AR100

0.5 , which keeps the best proposals at the top and filters the redundant.

5.2.1. Experiment on POSSE_v1 and POSSE_v2

The POSSE_v1 is a single instance dataset consisting of 2020 train, 252 val and 253 test
images of Cluster. Training and testing are primarily performed on the POSSE_v1 for
Object detection. The pre-trained ImageNet weights are adapted for the backbone. For
this, the SDN explained in Chapter 4 is trained for 60 epochs with the #anchors and
#RoIs trained per image (i.e., Nrpn, NSDN) are 256 and 512. The remaining setup of the
hyperparameters follows the RPN ablation experiment from the previous section. Perfor-
mance indicators for this single-class object detection task are evaluated at 10 different
thresholds (i.e., 0.5− 0.95) as in Section 2.5.3, resulting in Table 5.3.

Method TL AR100
0.5 AR1k

0.5 mAR mAP 0.95
0.5 tGPU #params FLOPs

SDN ImageNet 99.6 99.6 99.21 78.03 224 28.9M 152.63B

Table 5.3: Comparison of detection results on POSSE_v1 test set with SDN and baseline

From the above table, the SDN has clearly shown better results with an mAP@[.5, .95]

andmAR of 78.03%, and 99.21% respectively. The precision-and-recall curves indicate the
performance of the SDN model on POSSE_v1 dataset. Following the concept introduced
in Section 2.5.3, the 10 P-R curves corresponding to different IoU thresholds are plotted on
the right in Figure 5.4. On the left, a few inference detection samples are shown, it can be
seen that the SDN identifies the clear images perfectly. Whereas, the partial/less visible
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images are a little complex to overlap with the ground truth completely. Here, the reason
for the high-precision thresholds such as AP 0.95

0.85 resulted in a relatively lower precision
than AP 0.8

0.5 , and it is anticipated due to the bounding box annotations’ inaccuracy in the
trained data.

Figure 5.4: Performance prediction of SDN on POSSE_v1

Similarly, the SDN is trained and tested on another single instance POSSE_v2 dataset with
1254 train, 157 val and 157 test images of Aqua. The pre-trained ImageNet weights are
adopted for the backbone, and trained for 60 epochs with Nrpn = 256 and Nodn = 512.
The hyperparameters follow the same as the above POSSE_v1 experiment. Performance
indicators for the detection of Aqua spacecraft are tabulated in Table 5.4.

Method TL AR100
0.5 AR1k

0.5 mAR mAP 0.95
0.5 tGPU #params FLOPs

SDN ImageNet 98.72 98.72 96.17 60.93 222 28.9M 152.63B

Table 5.4: Detection results on POSSE_v2 test set with SDN

Where the POSSE_v2 experiment yielded slightly lower performance with mAP@[.5, .95]

and mAR of 60.93%, and 96.17% respectively. From the Figure 5.5, the high-precision
losses observable on the right are again reasoned on the training annotations’ inaccuracies.
However, the recall performance remains closer to the previous experiment. The sample
images from the POSSE_v2 inference that are presented on the left in Figure 5.5, clearly
represent the troubles in bounding box predictions for partial/less visible images.

To conclude the experiments on a single-instance and single-class category, upon review-
ing the high-recall parameter (i.e., mAR), one can substantiate the effectiveness of the
proposed SDN network in detecting the spacecraft over the dark background.
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Figure 5.5: Performance prediction of ODN on POSSE_v2

In addition, to discuss the precision factor, which influences both the accurate class match
and bounding box predictions, the SDN’s performance with the ResNet18 architecture
relies on the spacecraft’s illumination conditions (whether it’s clear or partially visible)
and the inaccuracies present in the annotations of the trained dataset. Overall, the SDN
network must be acknowledged for its inference time of approx. 223 ms (i.e., ≈ 5 FPS).

5.2.2. Experiment on POSSE_v3 and POSSE_v4

The POSSE_v3 and POSSE_v4 datasets contain single-instance, multi-spacecraft images,
and the experiments mentioned in Section 5.2.1 demonstrated their effectiveness for space-
craft detection. Therefore, it is expected that employing the identical SDN with ResNet18
will yield improved results on the POSSE_v3 dataset with 3274 train, 410 val and 409 test
images of both Cluster and Aqua. The hyperparameters are similar to the above two
experiments, and the ImageNet weights are used to train the network for 60 epochs with
Nrpn = 256 and Nodn = 512 resulting in Table 5.5. It is to be noted that the parameter
mAR in the Table 5.5 corresponds to the mean recall value of Aqua (49.37%) and Cluster
(98.4%). In Figure 5.6 (on the right), the 10 P-R curves corresponding to different IoU
thresholds are plotted separately for each class, such that the plot demonstrates if the
multi-class predictions are biased to a specific class in the detection task.

Method TL AR100
0.5 AR1k

0.5 mAR mAP 0.95
0.5 tGPU #params FLOPs

SDN ImageNet 99.75 99.75 73.88 50.6 241 28.9M 152.63B

Table 5.5: Detection results on POSSE_v3 test set with SDN
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This plotting method is used to display all the results of the multi-classification problems
in this paper. The mean precision metric (i.e., mAP ) is notably reduced to 50.6%, and the
predictions are greatly influenced to predict Cluster than Aqua. A few sample predictions
are shown in Figure 5.6 (on the left), where even a clear image of visible Aqua spacecraft
remains undetected whereas, a complex partial/less visible image of Cluster is detected
perfectly by the SDN.

Figure 5.6: Performance prediction of SDN on POSSE_v3

That said, the very same SDN with ResNet18 is trained and tested on the POSSE_v4

dataset with 3241 train, 405 val and 405 test images for 60 epochs. In these images,
the detection complexity is increased by adding Earth in the background. Consequently,
the metrics are substantially diminished to result in mAP@[.5, .95] and mAR of 12.31%,
and 26.08% respectively. In this case, it is evident that the increase in image complexity
directly impacts the network’s performance. However, to ensure the previous statement
is valid, the POSSE_v4 dataset is again trained and tested for 60 epochs by enhancing the
SDN’s backbone from ResNet18 to ResNet32, which resulted in mAP@[.5, .95] and mAR
of 11.74%, and 35.66%. To overcome the poor results, the network is enhanced further
from ResNet32 to ResNet50 and the training is extended from 60 to 100 epochs. Overall,
this resulted in slightly better performance with mAP@[.5, .95] and mAR of 33.21%, and
73.96% respectively as reported in Table 5.6. In addition, there has been an adverse effect

Method TL AR100
0.5 AR1k

0.5 mAR mAP 0.95
0.5 tGPU #params FLOPs

SDN ImageNet 98.76 99.5 73.96 33.21 241 42.04M 190.57B

Table 5.6: Detection results on POSSE_v4 test set with SDN
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on inference times and computational cost by an increment of 68ms of tGPU on average
and 37.94B FLOPs. Similar to the POSSE_v3 predictions, from the Figure 5.7 (right), it
is observed that this experiment is also more likely to predict Cluster than Aqua. From
the right-top image in the Figure 5.7 (left), it is noticed that the network is capable of
addressing the challenge with Earth in the background. However, the other two images
of Aqua in the Figure 5.7 (left) indicate the detection failure and network’s drawbacks in
falsely detecting Aqua as Cluster at partial/low visibility.

Figure 5.7: Performance prediction of SDN on POSSE_v4

To summarize the single-instance and multi-class experiments, the decision on the depth
of the SDN is directly influenced by an increase in image complexity, in our case, resulting
in an enhancement from ResNet18 to ResNet50. As a result, the enhanced SDN performs
well in the detection and classification tasks, both with and without the Earth in the
background, yet with a lower precision metric.

Overall, the SDN’s performance between the single-class and multi-class classification is
significantly lowered by mean recall of 23.77% and mean precision of 27.57% on average.
However, the SDN’s ability to detect and classify the spacecraft in challenging conditions
occurred at an increased computation cost eventually reducing the inference times from 5
FPS to 4 FPS. It is anticipated that the proportion of images used for multi-class training
could be another factor affecting the biased predictions because the network is trained
with a higher amount of Cluster images than Aqua.
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5.2.3. Experiment on POSSE

The POSSE dataset includes noisy stars and Earth in the background. In total, the
dataset contains 3242 Cluster and 4995 Aqua images of which the dataset is partitioned
into 6590 train, 823 val and 824 test samples. Similar to the previous experiments the hy-
perparameters are constant, and the transfer learning approach with the ImageNet weights
is adopted for training the SDN up to 100 epochs. Considering the previous experiment
outcomes, the SDN with ResNet50 architecture is implemented as the backbone for this
multi-classification problem. The performance metrics in the Table 5.7 closely resemble
the performance of POSSE_v4 experiment with mAP@[.5, .95] and mAR of 36.57%, and
74.92% respectively.

Method TL AR100
0.5 AR1k

0.5 mAR mAP 0.95
0.5 tGPU #params FLOPs

SDN ImageNet 98.66 98.66 74.92 36.57 245 42.04M 190.57B

Table 5.7: Detection results on POSSE test set with SDN

In the Figure 5.8 (right), the P-R curves state that the predictions are relatively more
accurate for Cluster than Aqua. Nevertheless, from the Figure 5.8 (left), the SDN has
proven to detect and classify the spacecraft even in noisy conditions.

Figure 5.8: Performance prediction of SDN on POSSE

To conclude, the performance of SDN shows potential in spacecraft classification and
detection. The lower performance has resulted from the failure of precise overlap of the
bounding box. However, in most of the test images, the SDN has proven to detect the
main body perfectly. Given that a considerable number of keypoints are always on the
main body, the use of SDN in pose estimation is reliable.
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developments

This work primarily aimed to understand the applicability and robustness of deep learning
techniques for spacecraft detection over multi-spacecraft datasets with disparate features
such that, the research outcomes further contribute to the development of keypoint ex-
traction and pose estimation algorithms on a multi-spacecraft dataset.

In this context, a multi-spacecraft dataset generation algorithm is introduced to overcome
the shortage of publicly available pose estimation datasets. The key components of the
algorithm include the orbital propagator for defining the pose of the scene objects and
a physical-based rendering simulator to generate realistic synthetic images. The camera
path trajectory relative to the spacecraft was designed using the ROEs. This algorithm
requires only a 3D model and its Epoch with 3D keypoints being labelled in the global
space as an input and offers significant autonomy for the user to select both spacecraft
and background.

The Ren et al. and Proença and Gao’s architectures are modified to perform the multi-
spacecraft detection based on the image complexity and the number of available training
samples. A few modifications regarding the loss functions’ strategy and the input di-
mensions resulted in successful training with a smaller batch size and increased detection
performance. Moreover, the current version of the CNN code is updated to run with the
latest API releases of TensorFlow and Keras. In addition, the baseline code is restructured
into modules depending on their tasks. This step clearly offers an edge to further expand
the Faster R-CNN for other tasks and also to merge the SDN with additional networks
dedicated to the keypoint extraction or pose estimation.

Apart from the main contributions mentioned above, this document also discusses the
current state-of-the-art with regard to deep learning techniques in detail. Moreover, the
coordinate frames needed for orbital propagation, Keplerian motion along with the relative
dynamics are studied in Chapter 2. In addition to that, the mathematical concepts of the
CNN operations and a few typical CNN architectures that had a significant impact on
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image classification and object detection architectures are also elaborated in this chapter.
In Chapter 3, the assumptions and simplifications adopted for the 3D models, celestial
bodies and unperturbed dynamics of both the spacecraft and camera are determined.
The modifications applied to the scene objects and the working principle of the rendering
techniques implemented in the POSSE Simulator are also mentioned. While generating
the POSSE dataset and its annotations, the removal of keypoints from the occluded
regions is considered a challenge as it implies false positives. This is resolved with pixel-
level accuracy by re-projecting the 3D point onto the PCS frame and further evaluating
the pixel value. The proposal of SDN in Chapter 4 is simple and it directly modifies the
baseline to predict the spacecraft.

To quickly outline the results, the dataset generation algorithm introduced in Chapter 3
resulted in 8237 novel synthetic images of Aqua and Cluster that consist of sharp and
smooth features along with their annotations for a bounding box, keypoints and pose data,
at challenging conditions. Later, the SDN is evaluated for its applicability and robustness
over the partitioned datasets that are categorized based on image complexity. Wherein,
the SDN is proven to be efficient in detecting a single spacecraft with a dark background
at a mean Average Precision (mAP) of 78.03% and 5 FPS, and this performance is further
reduced when the complexity is induced by adding the Earth, Stars and multiple spacecraft
in the dataset. In the end, the SDN resulted in 36.57% of mAP and 4 FPS over the
complexities included in the POSSE Dataset.

Furthermore, the research outcomes can be improved on both contributions. The first is
multi-spacecraft dataset generation, where the current approach for generating annota-
tions is based on the visibility of manually annotated 3D keypoints in the image frame.
Yet this approach is accurate only when the entire spacecraft is in the FOV. Therefore,
a tangible approach independent of such manual annotations is recommended. Later,
the biased predictions on multi-spacecraft detections can be further verified by creating a
dataset with an equal number of images from each class so that the performance can be
improved. The propagator and POSSE simulator can be extended with the addition of
perturbations and control dynamics to the propagator, which can unleash the potential
to replicate the RPO scenario in the simulator. Finally, it is nice to have the Sun to
physically appear in the render. On the other end, the implementation of image aug-
mentation techniques in the pre-processing steps has the potential to improve robustness
and detection performance. To attain empirical evidence, the proposed SDN can be vali-
dated either on publicly available single-spacecraft datasets or by creating a combination
of datasets to evaluate multi-spacecraft detection performance. Ultimately, the model’s
onboard implementation can assess the real-time performance and network efficiency.
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