
From business process to Corda R3:
enforcing privity and security of
smart contracts

Tesi di Laurea Magistrale in
Computer Science and Engineering -
Ingegneria Informatica

Author: Alessandro Di Renzo

Student ID: 975860
Advisor: Prof. Mattia Salnitri
Co-advisor: Prof. Giovanni Meroni
Academic Year: 2022-23

i

Abstract

Contracts among individuals and organizations regulate the rhythm of daily life. Some
limitations related to contracts have been raised in terms of high costs, time consumption,
and subjective interpretation issues. To address this concern, smart contracts have been
introduced, i.e., automated computer programs that verify and execute contract terms
based on defined conditions, being faster and more efficient compared to traditional con-
tracts.
Since smart contracts define sequential activities to be executed, they can be seen as
processes: for instance, a smart contract can regulate how a patient can book a medical
appointment and the following actions of the healthcare provider in order to open an ap-
propriate ticket. Due to the link between smart contracts and processes, smart contracts
can be modeled as business processes with BPMN 2.0 standard.
Smart contracts’ execution involves data exchanges, hence there is the necessity to include
security properties related to the data treated: for instance, in a contract governing the
conduct of a medical examination, documents containing the patient’s medical results
must be protected from the access of unauthorized entities.
Security properties linked to data confidentiality and enforceability of decisions are fun-
damental to be included in the contracts, since data and decisions have a central role
in the execution of activities in a contract. Blockchain is one of the main technologies
upon which smart contracts are executed. Based on the properties that characterize this
technology, it can be used to enforce security properties.
In this thesis, we focused on the development of a method for the enforcement of security
properties of data confidentiality and enforceability of decisions, by exploiting Corda, a
blockchain that allows us to realize contracts based on the interactions among partici-
pants and executed in a private environment. The method consists of: (i) contracts are
initially represented with SecBPMN2BC modeling language; (ii) mapping from BPMN
Collaboration to BPMN Choreography and extension of choreography diagram to include
security properties; (iii) mapping and transformation from choreography diagram into
Corda contracts; (iv) validation phase through realistic cases.

Keywords: Smart Contracts, Blockchain, Business Processes, Corda R3, Security

iii

Abstract in lingua italiana

I contratti tra individui e organizzazioni regolano il ritmo della vita quotidiana. Alcune
limitazioni legate ai contratti sono state sollevate negli ultimi anni in termini di costi
elevati, consumo di tempo e problemi di interpretazione soggettiva. Per risolvere questo
problems, sono stati introdotti gli smart contracts, ovvero programmi informatici autom-
atizzati che verificano ed eseguono i termini del contratto in base a condizioni definite,
risultando più veloci ed efficienti rispetto ai contratti tradizionali. contratti tradizionali.
Poiché gli smart contracts definiscono attività sequenziali da eseguire, essi possono es-
sere visti come processi: ad esempio, uno smart contract può regolare il modo in cui un
paziente può prenotare un appuntamento medico e le azioni successive dell’ assistente san-
itario per aprire un ticket specifico. A causa del legame tra smart contracts e processi, gli
smart contracts possono essere modellati come i process di business tramite lo standard
BPMN 2.0.
L’esecuzione degli smart contracts comporta lo scambio di dati, dunque c’è la necessità
di includere le proprietà di sicurezza relative ai dati trattati: in un contratto che regola
lo svolgimento di una visita medica, i documenti contenenti i risultati medici del paziente
devono essere protetti dall’accesso di entità non autorizzate.
Le proprietà di sicurezza legate alla riservatezza dei dati e all’esecutività delle decisioni
sono fondamentali da includere nei contratti, poiché i dati e le decisioni prese hanno un
ruolo centrale nell’esecuzione delle attività di un contratto.
La blockchain è una delle principali tecnologie sulla quale vengono eseguiti gli smart con-
tracts. Sulla base delle proprietà che caratterizzano questa tecnologia, essa può essere
utilizzata per far applicare e rispettare le proprietà di sicurezza.
In questa tesi, ci siamo concentrati sullo sviluppo di un metodo per l’applicazione di
proprietà di sicurezza legate alla riservatezza dei dati e all’esecutività delle decisioni,
sfruttando Corda R3, una blockchain che ci permette di realizzare una blockchain che
permette di realizzare contratti basati sulle interazioni tra i partecipanti ed eseguirli in un
ambiente privato. Il metodo consiste nelle seguenti fasi: (i) i contratti sono inizialmente
rappresentati con il linguaggio di modellazione SecBPMN2BC; (ii) mappatura da BPMN
Collaboration a BPMN Choreography ed estensione del choreography diagram per includ-

ere le proprietà di sicurezza; (iii) mappatura e trasformazione del choreography diagram
in un contratto in ambiente Corda; (iv) fase di validazione attraverso casi realistici.

Parole chiave: Smart Contracts, Blockchain, Processi di business, Corda R3, Sicurezza

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 State of the art 5
1.1 Processes representation and execution on blockchain 6
1.2 Secure data in blockchain environment . 8
1.3 Enforcement of decisions . 10
1.4 Assessment of secure smart contracts . 12

2 Baseline 17
2.1 Running example . 17
2.2 BPMN Collaboration . 18
2.3 SecBPMN2BC Modeling language . 21
2.4 BPMN Choreography . 25
2.5 Corda . 28

3 Method definition 33
3.1 Method description . 33
3.2 Assumptions of method . 34
3.3 Extended BPMN Choreography . 36

4 From Collaboration to Choreography 43
4.1 Collaboration to Choreography transition 43

4.1.1 Implications . 46
4.2 Application of mapping from Collaboration to Choreography 47

5 From Choreography to Corda 51
5.1 Conceptual mapping . 51
5.2 Rules of transformation . 54

6 Validation 65
6.1 Collaboration to Choreography . 65

6.1.1 Realistic examples . 66
6.1.2 Corner cases . 75
6.1.3 Results . 77

6.2 Choreography to Corda . 79
6.2.1 Algorithms application . 79
6.2.2 Comments . 85

6.3 Discussion . 85

7 Conclusions 87

Bibliography 89

List of Figures 95

List of Tables 97

List of Algorithms 99

Listings 101

1

Introduction

In recent years, several studies have highlighted limitations related to contracts edited
manually which are characterized by high costs, time-consuming and, frequently, con-
tentious points subject to personal interpretation. On the contrary, there was the need to
shift towards contracts released in a faster way with fewer intermediate stages. In order
to design and automate the contract management process, Szabo in [34] introduced smart
contracts as computer programs that verify the terms of contracts and execute them au-
tomatically based on predefined conditions. This innovation can eliminate the need for
intermediaries in the conclusion of the agreement as the code itself acts as a regulator and
allows cost saving with a faster and more efficient process.

Smart contracts define the conditions to be met in an agreement between two parties, also
specifying the activities that the parties must respectively perform to fulfill the agreement.
Due to this aspect, contracts can be seen as processes that specify the individual activ-
ities they are composed of and regulate their sequence: an example can be represented
by a smart contract that regulates the actions a patient must take to book a medical
appointment and subsequently the ticket opened by the healthcare provider. In this con-
text, ensuring a certain level of security in the formulation of smart contracts assumes a
primary role.

Security properties such as data confidentiality and enforceability of decisions have to be
considered for reaching secure contracts. For instance, a contract that includes an analysis
laboratory and a hospital structure in which results of tests relating to patients with
serious illnesses are communicated: if those data were accessible by unauthorized entities,
laws on the protection of sensitive data would be violated. Moreover, some decisions taken
by specific entities need to be approved by other participants involved in the contract: a
public administration tender is an example of a situation where competitors that compete
to provide the best offer should have the opportunity to validate the final decision of the
winning competitor.

Processes are represented with several graphical modeling languages: among them, one
of the most popular is the BPMN 2.0 standard. Since contracts can be seen as processes,

2 | Introduction

the same modeling language can be used to model contracts. However, the standard
does not incorporate security properties. Consequently, the standard has to be enriched
with security properties proposed by Köpke et al. in [18], with the modeling language
SecBPMN2BC which defines smart contracts as processes with security notations.
The issue is associated with the way to guarantee the enforcement of security properties
in smart contracts, inheriting the requirements and specifications of these properties from
the procedural definition of the contract.

One of the technologies on which smart contracts are implemented and executed is rep-
resented by the blockchain, i.e., a shared distributed ledger that records transactions in
nodes linked to each other called blocks. Thanks to the properties upon which it is built,
blockchain technology is able to ensure immutability and transparency to the information
stored on the ledger. It can be used as a security mechanism for the enforcement of secu-
rity properties: as stated by Zhang et al. in [43], blockchain is characterized by multiple
attributes linked to security and it is necessary to adopt different types of techniques,
each one with pros and cons, to provide a system that ensures a certain level of security.

In this scenario, the blockchain is able to replicate the context of business processes by
ensuring a certain level of security regarding information exchanged by design: for these
reasons, the choice has landed on the Corda blockchain [6], a distributed ledger developed
by R3 that offers the possibility of realizing a private network and manage the process
through a contract that regulates single steps of the execution based on the interactions
among parties that characterized the process.

This thesis exploits Corda for the enforcement of two security properties related to smart
contracts for modeling business processes: confidentiality of data and enforceability of
decisions. The method proposed includes sequential phases:

1. contracts are initially represented with SecBPMN2BC;

2. mapping from BPMN Collaboration to BPMN Choreography [28] and extension of
choreography diagram to represent security properties;

3. mapping and transformation from choreography diagram into Corda contracts fol-
lowing the conceptual model and the rules of translation conceived, while guaran-
teeing the enforcement of security aspects;

4. testing phase, where the effectiveness of the model proposed is evaluated through
business process realistic cases.

The document is organized as follows: Chapter 1 focuses on the presentation of other
works present that belong to the same field of research; Chapter 2 describes technical

| Introduction 3

instruments and baseline of work; Chapter 3 provides the description of the method
proposed in order to enforce security properties in contracts through Corda blockchain;
Chapter 4 details the first transformation between Collaboration and Choreography mod-
eling languages; Chapter 5 is related to the adaptation of choreography diagram into
Corda contract; Chapter 6 is related to the validation of the method in terms of correct-
ness and scalability, highlighting its strengths and weaknesses; finally, in Chapter 7, we
revise our work to outline possible improving areas.

5

1| State of the art

This chapter presents research works in literature with the goal of guaranteeing the en-
forcement of security properties related to smart contracts through blockchain technology.

Blockchain technology brought a new concept of storing information on the network,
without the necessity of intermediaries and, on the other hand, with the possibility of
guaranteeing transparency, immutability, traceability and cryptographic security to the
stored transactions. Since it acts as a distributed ledger shared among peers on the
network, every node has the same knowledge of data and each update is visible to everyone:
this is the case of public blockchains where users can join the network without any type
of authorization and can participate to the validation of transactions. Two of the most
known public blockchains are: Bitcoin introduced by Nakamoto in [26], the first blockchain
available in the network, and Ethereum proposed by Buterin in [7]. They are opposite
to private blockchains: in these networks, the access to the network is controlled and
authorized by specific users and the identity of participants is known to others, such as
Chain developed by Chain in [9]. Another category of blockchain is the permissioned one,
which adds a layer of governance with respect to the public ones since there are users who
can specify the roles of participants and the visibility of the data. Hyperledger Fabric
managed by Hyperledger in [17] and Corda developed by R3 are the most common in this
category.

The rapid spread of this technology started to enlarge fields of applications, in particular
inter-organizational processes have been object of studies and works related to the possible
automation of tasks and activities, however there was always a problem in the mutual
trust: organizations want to be ensured about processes executed automatically that may
involve sensible data or the exposition of internal methodologies, as stated by Mendling
et al. in [25].

6 1| State of the art

1.1. Processes representation and execution on blockchain

Recently, several researches focused on possible links between blockchain and business
processes to demonstrate that different type of industries with related processes can be
interested in automatize processes using smart contracts. As discussed by Yang et al. in
[40], an example of real case of business process is represented by the construction field:
in the work it is showed that adopting the public blockchain of Ethereum or the private
one of Hyperledger Fabric, it is possible to overcome difficulties in money transaction or
information exchange due to the loss of management control, helping the fragmentation
and discontinuity in the process. In the paper is discussed how the blockchain technology
can help to make efficient, traceable and transparent several parts of the project, avoiding
the emergence of disagreements between clients and contractors. Moreover, advantages
and disadvantages in the selection of two blockchains have been analyzed, highlighting
that pros and cons are present in both choices and they are strictly related to the example
taken in examination. This scenario confirmed by the study of Weber et al., in [39], where
is discussed the problem of trusting in process execution using blockchain technology, both
public and private. The solution was found using a set of components that monitor the
business processes. The paper shows two different methods to simplify the collaborative
process, correlated by main components such as interfaces or triggers that link the off-
chain activities with the process executed on the blockchain. In these two studies, they
showed different ways to exploit blockchain technology to execute processes, however,
they don’t refer to security properties with the technology itself which guarantees security
aspects.

Another example of the industry is the finance one, as stated by Wang et al. in [38],
where it is proposed loan on blockchain (LoC), a new method to face cyber attacks and
ensure safety. This management system is based on the Hyperledger Fabric blockchain
that uses smart contracts to guarantee more protection against web attacks. They tested
the solution proposed in the Chinese poverty alleviation loan and created a model with
centralized and decentralized ledgers, using locking and unlocking algorithms for smart
contracts that allow them to execute the transaction automatically. Moreover, data pri-
vacy were made safe through digital signature and the presence of the oracles. In this
case, the work was focused more on preventing web attacks to ensure the safety of loans
than providing a mapping to represent processes in the blockchain environment.

As discussed by Azaria et al. in [2], blockchain technology can be used in the healthcare
sector to overcome the inefficiency of the bureaucratic system. The paper shows the
creation of a new decentralized management record system, MedRec, to store and handle

1| State of the art 7

electronic medical records (EMRs). Based on blockchain properties, the system, composed
of three layers of smart contracts, records medical information of patients on different
nodes of the blockchain. By applying a mechanism to retrieve pieces of information
related to the same patient, the system is able to reconstruct the medical history of a
defined patient guaranteeing, in the meanwhile, a high level of safety on the information
stored. This is an interesting application of blockchain technology, even if there is no
reference to map processes due to the different purposes.

To facilitate the move from process to smart contracts, as illustrated by Berry and Milo-
sevic in [4], business contract constraints can be transformed into expressions in a chore-
ography standard. With an example of cross-organizational process the contract terms
and boundaries are converted into choreography notations that control the process to
guarantee compliance. This work addresses part of the problem that involves the use of
choreography modeling language, even if our work goes beyond the representation in the
choreography standard.

Instead, in work made by García-Bañuelos et al. in [13], it is described as a method
that creates an efficient method for executing business processes defined in the standard
Business Process Model and Notation (BPMN). In particular, they present a method for
translating BPMN processes into Solidity language (the programming language supported
by the Ethereum blockchain to generate smart contracts). To obtain the transformation
there is a halfway step represented by Petri Nets that performs all the checks to verify
the accuracy of the process before the definition of smart contracts with the blockchain
technology. The study proposed the use of blockchain in order to execute business pro-
cesses using Solidity as a programming language to code smart contracts: the difference
in comparison with our work is that we added to this process the enforcement of security
properties which represents a further step.

In order to map collaborative processes in blockchain environments, new model-driven
approaches have been presented and tested on the Ethereum blockchain, such as Lorikeet,
which takes as input choreography diagrams and generates smart contracts; or again,
Caterpillar, an approach that is able to deploy a collaborative process on-chain, as stated
by Di Ciccio et al. in [12]. This work refers to the mapping part from the choreography
diagram to the blockchain, specifying that the blockchain used in this work is public,
while in our work is permissioned, and that the security of contracts generated is not
deepened.

Always in a collaborative environment, Loukil et al. in [23] provided a different method
for translating processes into smart contracts, using CoBuP, a decentralized Collabora-

8 1| State of the art

tive Business Process execution architecture that provides results following blockchain
properties. It is composed of two separate phases as follows: initially, an interpreter of
BPMN generates a generic smart contract that creates a process instance and, in a second
moment, it is updated dynamically with process specifications. This work experiments
with a new methodology for translating business processes into contracts, starting from
generic contracts and then enriching them with details relating to the process itself: in
this type of approach, which favors adaptability and reusability, there may be the problem
of failing then to represent all the constraints starting from a generic contract. For this
reason, in our work, we preferred to recreate a situation as close as possible to the starting
one in each mapping, trying not to lose information in the transaction processes.

1.2. Secure data in blockchain environment

While tangible advantages have been reported in the use of blockchain and smart con-
tracts, the topic related to security of data and the need to enforce security properties
remain open arguments upon which various researchers focused on.

The need to deal with security properties when business processes are mapped and exe-
cuted on blockchain, private or public, is explained by the work of Carminati et al. in [8],
with the use of blockchain technology in support of secure inter-organizational business
processes, to overcome the actual methods attempt to guarantee security in the execution
of processes. With the help of blockchain technology, they were able to keep track of
every exchange between participants of a network, called transactions, that form the so-
called chain of blocks validated by network participants through Proof of Work (PoW).
This work highlights the possibility of managing the process with the execution in a
blockchain environment, but they didn’t define a proper method for evaluating specific
security properties in business processes.

As stated by Lin et al. in [20], the coming of the Industry 4.0 era requires some ad-
justments, so they proposed a new method for secure mutual authentication based on
blockchain features, called BSeln. The work shows the high level of security and privacy
obtained with the proposed system, with enforcement of access policy characterized by
low costs of operations. This work focuses on the enforcement of a security property like
access control, even if they are referring to other types of properties with respect to our
work.

From these studies, it is clear the necessity to define security properties when business
processes are defined through standards such as BPMN or UML. Several works proposed
a method to extend BPMN notations to include aspects related to security: in the work

1| State of the art 9

of Altuhhov et al. in [1], it has been highlighted the importance of security properties in
business processes environment by proposing a method to extend BPMN to better include
concepts of assets, risks and threats in order to develop security requirements to secure
important assets. This work focuses on extending BPMN in order to manage risks and
threats linked to assets in a process: this can be compared to the first part of our work
with the definition and inclusion of security properties but we added even a practical way
to enforce them through the blockchain.

Another work that follows the same direction of enriching BPMN standard with security
requirements was made by Rodriguez et al. in [33], where it is provided a metamodel
to represent graphically security aspects in business processes. They didn’t focus on
the actual execution of processes, but they tried to incorporate security requirements in
BPMN standard enlarging the range of expressivity of the standard and allowing business
analysts to add their own security requirements. In this case, what is missing is the
definition of a precise set of security properties to represent in BPMN, because allowing
personal information may mean changing the requirements multiple times.

On the other hand, the approach discussed by Zareen et al. in [41], focused on defining
all threats that an IT system can face, from insecure network services to data input in-
jections, and proposes a framework to represent business processes enriching the BPMN
notation with threats detected. The framework is then tested in the manufacturing in-
dustry, showing that it can cover a great number of security worries in processes inside
organizations. This work has focused on detecting all possible threats related to the
execution of a business process, but their work has been limited to ascertaining that a
possible threat is present and not providing a secure execution environment as proposed
in our work.

Considering works that started from a defined standard and try to include security aspects,
as illustrated by Vivas et al. in [37], it is proposed a UML-based business process-driven
framework for the development of security-critical systems that shows possible threats
related to the trade-off between security and functionality when defining security require-
ments for a system. A similar approach is suggested by the work of Lodderstedt et al. in
[22] is aimed to define a modeling language for the development of secure systems with
UML through role-based access control. It describes how to use UML to specify security
requirements in modern systems that are well-suited only for static design models. This
system language is based on an extended model for role-based access control (RBAC),
but to overcome lacks of methodology they introduced the authorization constraints, a
precondition for granting access to an operation, they defined such limit using the Ob-
ject Constraint Language (OCL). SecureUML is a combination of the main features of

10 1| State of the art

these two systems. As visible in these works, security requirements are defined also using
UML as a standard, which is different from the standard that we have used in our work,
i.e., BPMN, but it provides us with a methodology with which to enrich already existing
standards with additional requirements.

Always focused on the extension of UML2.0 to include security requirements from a
business analysts’ perspective, is the work presented by Rodíguez et al. in [32]. In this
study, they applied the extended UML2.0 to a typical healthcare business process to
show how business process modeling is the key to carry on and enhance the way business
processes are executed. The step made by using UML 2.0 is to be sought by using activity
diagrams which improve the entire business process representation. Their approach is
based on Model Driven Architecture (MDA), defining early requirements identification
that allows to carry out independent specifications of the implementation. Since UML is
not the modeling language chosen for the representation of processes in our work, these
works show that the security aspects are included in different standards with different
methodologies of extension.

Other research drew attention to privacy requirements regarding data accessed on business
processes, as discussed by Labda et al. in [19]. The concept of privacy is split into four
fundamental aspects such as data, user, action and purpose. In the method proposed there
is a distinction between users that should or shouldn’t access data during the evolution
of business processes based on actions and purpose of data. This is a work that can be
examined for the management of data in business processes, with the list of participants
that can access or not specific data and when they are going to access it.

As stated by Pullonen et al. in [30], from a model called PE-BPMN (Privacy-Enhanced
BPMN) which analyzes business processes and discover critical points for privacy of data
in the process, they provided a method to detect and solve possible cases of privacy leakage
with technologies like mobile applications where private data leakeges are performed.
System builders were assisted to make better decisions on the privacy solutions that they
proposed at the beginning stages of development, letting auditors check existing systems.
The framework proposed can be a valuable tool in order to detect our BPMN and find if
there are some vulnerable points.

1.3. Enforcement of decisions

Decisions in a process modify the successive actions for entities that suffer or take them and
their relevance in business processes mapped into blockchain context has been analyzed
and discussed in several works as [14] by Haarman et al., where it is proposed a method to

1| State of the art 11

automatically represent and verify the correctness of decisions taken in processes executed
on Ethereum blockchain to ensure that decisions taken are more secure, more transparent,
and better auditable. The method starts from the representation of decisions in a process
using the Decision Model and Notation (DMN) standard by OMG [29], then it is translated
into smart contracts with a mapping into Solidity language and Ethereum blockchain.
The main problem in this approach is related to the use of public blockchain to save data
expressed in the contract, which, in many situations, have to be accessed only by certain
participants, they can’t be worldwide.

Analyzing the work proposed by Nikaj et al. in [27], it has been proposed a method
to enforce decisions deriving from exclusive gateways in BPMN choreography diagram to
ensure that every participant affected by the decision has the same understanding of data.
This is achieved through a RESTful decision service, which implements a REST interface
that interacts with every participant in the choreography tasks affected by a decision.
The approach allows to separate process and decision logic and represents a comparison
for the enforcement of decisions property, while, on the other hand, they don’t cover the
aspect related to smart contracts.

The enforcement of decisions is discussed even in the work conducted by Haarman et
al. in [15], where the approach detailed is aimed at the enforcement of decisions in a
collaborative process executed by a smart contract on Ethereum blockchain. The approach
is composed of two phases: the operation phase, where the decision is executed locally
with an agreement of participants regarding input and data consumed to take the decision;
the conflict resolution phase, where the agreement is not reached on the output of the
decision and the conflict is solved by the smart contract itself at cost of revealing the logic
under that decision. The purpose was related to the overcoming of limitations of exposing
data of decisions in public blockchains with a condition, i.e., the conflict on the output,
upon which the confidentiality of data is violated. Referring to our work, this kind of
solution proposed is not applied, since the enforcement of properties related to decisions
and data have to be preserved in all cases.

Taking decisions often means examining sensible or private data and then, based on results
of performed analysis, selecting a path rather than another one. In collaborative processes,
entities pretend correct behaviors from counterparties especially when decisions are taken.
Many situations that involve decisions require that decision logic and relative data can’t
be shared with all entities, on the contrary they have to be protected by external accesses
and the type of blockchain, public or private, can affect the exposition of data related to
decisions: as reported in [15], it is needed to add a certain level of confidentiality on the
data upon which decisions are taken and this can be made by splitting the decision into

12 1| State of the art

more phases for the sharing of the logic model and the verification of the correctness of
decision itself.

Other researchers worked on the separation of decision from the business logic, as dis-
cussed by Zarghami et al. in [42], with the proposal of a decision service that is able to
react quickly to changes with a real-time adaptation to provide dynamic updates to the
process. They proposed a method that utilizes the decision service to support both syn-
chronous request-response and asynchronous interactions in order to design an adaptive
service provisioning architecture and decision service template for different application
domains. Limitations of this work can be found at the computational level, with a high
request of resources and, related to our work, it can be analyzed to understand how de-
cisions can impact at different business levels, but it doesn’t solve our problem linked
to security property and the enforcement of such properties. Other works concentrated
on analyzing DMN and the coexistence with BPMN, with a possible mapping between
these two standards, proposing different techniques to deal with decisions in processes:
in [3] by Batoulis et al., it is presented a semi-automating model to identify decisions
logic in process models, starting from BPMN, and derive DMN model with the successive
implementation. They didn’t consider AND gateways since they don’t directly influence
decisions. As central part of the work, they focused on extracting business logic from
BPMN and, then, mapping it with DMN with a direct representation of the logic behind
the task. They tested their model in 956 real-world cases with a positive result. This
type of work can provide an approach in terms of how to model decisions, but they are
not related to security properties and the application in the blockchain context.

1.4. Assessment of secure smart contracts

A related field of studies is constituted by assessing the correctness of the smart contracts
generated. For instance, as reported by Delmolino et al. in [11], in order to avoid common
mistakes and realize secure smart contracts, developed for the Ethereum blockchain, from
the point of view of programming, they documented several guidelines that can be helpful
to check if the contract has been programmed correctly. This kind of work can be related
to the final part of our work, where we check if there are some criticisms in the generation
of smart contracts, but we have to change the context from Ethereum to Corda to refer
to our context and try to match the properties discussed.

Instead, as stated by Tsankov et al. in [36], in order to evaluate smart contract behaviors
performed during the execution of code and in order to avoid unpredicted situations, they
proposed a security analyzer, called SECURIFY. It is a scalable and fully automated

1| State of the art 13

security analyzer designed for Ethereum smart contracts that is able to determine whether
a contract behaves safely or unsafely through two main steps: at the beginning, it is
conducted a symbolic analysis of the contract’s dependency graph to extract semantic
information of the code and then it is checked the compliance and validation pattern
to establish if a given property is valid or not. It has been evaluated with real cases
of smart contracts and SECURIFY highlighted its capacities to verify the correctness of
smart contracts and identify critical violations. This method proposed can be used as a
final assessment in order to determine if our code presents critical patterns or possible
mistakes, even if it is not referred to our blockchain Corda.

An original method based on Finite State Machine (FSM) approach has been discussed
by Mavridou and Laszka in [24] to ensure the generation of secure smart contracts start-
ing from the initial phase: they developed a graphical editor that allows contract design
using FSMs and then they generate automatically the code through a code generator. In
addition, they created a collection of plugins that developers can incorporate into their
contracts focused on security measures to prevent common vulnerabilities such as reen-
trancy and unpredictable states. This work offers support in all phases of smart contracts
generation, however, they don’t ensure the enforcement of specific security properties as
we propose in our work, thus the tool couldn’t address our specific issues in contract
design.

In order to avoid possible financial losses caused by the deployment of insecure smart
contracts, Zupan et al. in [44] introduced a comprehensive approach to design, develop,
and verify secure smart contracts incorporating a modeling tool-set based on Petri Nets.
The framework comprises four main components: a visual modeling engine, an execution
layer for simulating Petri Nets workflow and executing transitions, a verification and
validation engine to check specific properties such as deadlock and workflow soundness
properties, and a translation engine for generating smart contracts from the modeled Petri
Nets workflows. They performed an evaluation of the approach using a specific supply
chain use case to simulate and test the workflow or business requirements providing the
confidence that the smart contract is modeled as required and then it is translated into
lines of code with Solidity language to be deployed in Ethereum blockchain. This work
provides another opportunity to generate secure smart contracts using Petri Nets, but
there are some limitations in the approach that can lead to possible mistakes in the
execution phase: for instance, the code generated is not optimized and the template
generated for the smart contract represents only a starting point that has to be enriched
by external developers analyzing the business logic behind the contract.

Another work that provides a method for the assessment of smart contracts by exploiting

14 1| State of the art

properties of Coloured Petri Nets (CPN) is the one discussed by Zhentian and Jing in
[21]: in this case, the method proposed not only analyzes the static logical structure of
the contract but also simulates the dynamic interaction of the user’s malicious behavior,
which can verify whether the contract has a vulnerability; moreover, the tool provided
can monitor the status of each step of the contract execution, making it easier to discover
potential vulnerabilities in smart contracts. Since this work refers to an analysis after the
generation of the smart contract can be only taken into consideration for the simulation
phase after having generated the smart contract, not in previous phases.

Petri Nets are also used in the process of translation from BPMN to Solidity language
by Wen et al. in [16] with the purpose of reducing the compensation gas linked to
transactions by producing an optimized smart contracts template starting from BPMN
processes and by adapting it to specifications of Petri Nets before generating the smart
contract code. Initially, the method proposes to extend BPMN business process model to
Petri Nets and then simplify it by identifying fusion tasks within the BPMN model and
streamlining the corresponding fusion nodes while ensuring the integrity of the original
business process. The experimental results demonstrate the effectiveness of the method
in reducing gas consumption by an average of 15% for blockchain-based business process
smart contracts. This work can be analyzed for comparison regarding the translation
of BPMN to Petri Nets and then into smart contract code, even aiming at a different
purpose such as reducing consumption of gas with respect to our work.

To assess the correctness of smart contracts exploiting other methodologies, the work
presented by Bhargavan et al. in [5] can be explored: they presented a framework for an-
alyzing and verifying the runtime safety and functional correctness of Ethereum contracts
through F*, a functional programming language designed for program verification. The
experiments indicate that the tool is sufficiently flexible to capture and prove properties
relevant to contract programmers. Our approach, employing shallow embeddings and
type-checking within an existing verification framework, is convenient for exploring the
formal verification of contracts written in Solidity. However, the missing part in the paper
is related to security properties that have to be discussed before coding, in contrast, this
paper is focused on providing correctness only on the programming code side.

The automatic generation of smart contracts deployed in Hyperledger Fabric blockchain
is discussed by Takaaki et al. in [35], where it is presented an approach based on a
Controlled Natural Language (CNL) that provides a formal model used to generate smart
contracts: the article proposes an automated technique to generate smart contracts from
human-understandable contract documents using controlled natural language (CNL) and
document templates to create a formal model representing contract terms, conditions,

1| State of the art 15

and procedures. The formal model is then translated into executable smart contracts
for Hyperledger Fabric. The approach was evaluated through real-world case studies of
different contract types, demonstrating its feasibility and effectiveness. This work refers to
the generation of smart contracts in the Hyperledger blockchain, thus the permissionless
characteristic is the same with respect to our context, however, it doesn’t examine security
properties in the generation of smart contracts.

As stated by Choudhury et al. in [10], researches focused on an automatic smart contract
template generation framework that uses the structure of Abstract Syntax Trees (AST)
to include required constraints into the template. Their approach involved automatically
generating smart contracts from domain-specific knowledge bases, using ontologies and
semantic rules that were tailored to the specific domain constraints. The description
provided by the ontology and rules were used to manipulate the AST of the template to
align it with the specific requirements. They tested the approach in two real cases: a
clinical trial protocol and a car rental criteria, achieving in both cases the generation of
contracts and the enforcement of the defined rules. As can be seen from the document, the
approach proposed was at the beginning of development and required further research to
be enhanced, as they needed the presence of an expert figure to complete the final stage.
Again, in the generation of smart contracts the part related to security properties has not
been mentioned, so it can’t be adopted into our context.

17

2| Baseline

In this chapter they are presented all technical concepts and notions necessary to the
comprehension of work discussed in Chapters 3, 4 and 5.

Section 2.1 describes a realistic example that will be taken as a reference point to showcase
the transformation stages from the initial definition to the generation of the contract in
Corda. Section 2.2 introduces of the collaboration modeling language enriched with an
application of language applied to the contract presented in Section 2.1. In Section 2.3,
it is introduced the language for the graphical notation of security properties adopted in
the definition of the model. Section 2.4 presents an overview of the choreography model
representation with the description of single elements of the choreography diagram. To
end up, Section 2.5 presents the main concepts related to Corda and the structure of
contracts realizable with this technology.

2.1. Running example

Contracts can be represented as processes due to their characteristic of representing spe-
cific activities to be carried out in a certain order, with a certain sequence that involves
multiple participants that have to coordinate their operations in order to advance in the
process. In order to define a running example, we are going to represent a contract
that is composed of different steps in order to achieve a certain situation known to all
participants. The scenario chosen to represent this example is composed of a Company
Employee, an Health Care Fund and a Medical Office. The contract describes the request,
successful or not, of an affiliated visit by the Company Employee to the Health Care Fund
that is going to contact the Medical Office associated with that specific pathology. The
collaboration diagram of the running example is described in Section 2.2.

Initially, it defines what are the activities that the Company Employee has to perform
in order to send a well-structured request of an affiliated visit to be evaluated by Health
Care Fund. Then, it describes what happens on the Health Care Fund side before sending
a positive or negative response to the employee who submitted the request with the doc-

18 2| Baseline

uments. In this initial phase, the first interaction has been regulated and the constraints
are added to the operations carried out by both participants in order to coordinate the
flow.

Furthermore, it is specified that a dual scenario can occur based on the decision made
by Health Care Fund after analyzing the documentation: the request can be accepted,
and in that case, certain operations will be performed, or it can be rejected because it is
deemed unsuitable, leading to a different direction. Therefore, it is necessary to regulate
both possibilities and ensure that the operations defined in one branch do not occur in
case the other branch is chosen.

Especially in case of request accepted, another participant, Medical Office, intervenes
in the sequence of operations by communicating with both other participants: first, by
obtaining patient data from Health Care Fund, and then by sending available booking
dates to the Company Employee. In the described scenario, defining constraints for data
access and the sequence in which activities must be carried out is of primary importance.
In this way, the definition of contract has to take into consideration the properties that
activities must ensure and not allow situations not described in the contract.

2.2. BPMN Collaboration

BPMN Collaboration is a modeling language that aims to represent participants and
relative tasks performed in a business process. Participants are represented by pools,
generally one for each participant. A pool may contain more lanes to highlight two
different participants of the same organization. Since pools act as containers for the
activities of business processes related to that participant, it is important to specify that
a pool can show the activities performed in a detailed way or act like a "black box"
by hiding them. In our work, we refer to collaboration diagrams that show detailed
and sequenced activities and tasks executed by participants, from which we are going to
perform successive transformations in order to generate the contract in Corda.

In this sense, we are going to describe the main elements observable in a process, starting
from the concept of event, represented by a circle: based on when they affect the flow of
activities, it can be a start, intermediate or end event; on the other hand, based on the
type of the event to describe, it contains a symbol representing, for instance, a message,
a timer, a signal or a condition which triggers other activities.

Regarding the activities, represented by rectangles, they refer to operations or in general
"works" performed by a participant in the business process. They can be atomic or not

2| Baseline 19

and where they are atomic they are called tasks, which is the lowest possible level of detail
used to describe an activity.

Gateways are represented by a diamond shape within an icon inside: they are used to
indicate possible divergences or convergences of different paths in a flow. The internal
icon describes the type of gateways we can exploit to manage more scenarios. The first
type of gateway is the exclusive one, which is depicted with a greek cross and indicates
that the possible paths are mutually exclusive, thus, based on the condition, only one
path among those available will be taken. The same behavior can be seen in the event-
based gateway, indicated by a circle within a pentagon, where only one path is selected
among those available, but the choice of the path is based on a particular event. Other
types of gateways are inclusive parallel ones: the former is depicted with a circle within
the diamond and it indicates that one or multiple paths can be taken, always based on
the condition; the latter, instead, is represented by a classic cross and it means that all
possible paths will be taken simultaneously. The last type of gateway is the complex one,
depicted by an asterisk, which means that to handle that particular type of situation in
a business process, they are needed more than one "simple" gateway.

The sequence flow is represented by an arrow and it indicates the sequentiality of the
activities in the process and it provides a precise order to the process. It links two
different activities and, based on the nature of the activities from which it comes, there
are different types of sequence flow such as uncontrolled, conditional and default flow.
The message flow shows the flow of messages between two different participants, thus two
different pools.

Data objects are depicted by a sheet with a bent corner and they refer to data that are
required or produced as output by a certain activity. Furthermore, they can represent a
singular or a collection of objects, based on the scenario they are introduced.

20 2| Baseline

Figure 2.1: Affiliated medical visit

Going into detail about what happens in the contract described in Figure 2.1, the agree-
ment is defined among three different participants: Company Employee, Health Care
Fund and Medical Office. The contract represents the possibility for an employee to re-
quire a medical visit through the health care fund by taking advantage of the agreement
reserved for a certain category of workers.

Initially, the employee fills out the form with their personal information and attaches a
file containing documentation of their medical condition to verify if it falls within the
list of conditions for which a subsidized visit can be requested. Subsequently, this form

2| Baseline 21

with the attached file is analyzed by the fund, and the decision is communicated to the
employee. In case of a negative outcome, the process concludes with the communication
of the refusal. In case of a positive outcome, the fund communicates the acceptance
of the visit and takes charge, contacting the affiliated medical office to request a new
appointment and providing the employee’s documentation. Finally, the medical office
examines employee data and sends her a file with a recap of the convention and available
dates for scheduling the visit.

2.3. SecBPMN2BC Modeling language

Our work is based on the enforcement of security properties related to data confidentiality
and the enforceability of decisions. These properties are specified in the model-driven
approach proposed by Köpke et al. in [18]: it is an extension of BPMN 2.0 standard
including security notations towards secure smart contracts to be deployed in a blockchain
environment.

Smart contracts are represented using a graphical modeling language that allows to rep-
resent contracts as business processes with security requirements. It defines a workflow
to design and deploy secure business processes expressed in Figure 2.2.

Figure 2.2: Secure business processes definition workflow from [18]

Among security properties discussed in the approach, our enforcement work is based on:

22 2| Baseline

confidentiality of data, i.e. privity of data objects, and enforceability of decisions.

In order to restrict read access to data objects and messages that are stored on-chain there
would be necessary some supplementary methods such as encryption or on-chain storage
channels. However, implementing these measures may restrict the blockchain system’s
capacity to validate transactions based on data. For these reasons, modelers should have
the ability to explicitly specify read-access constraints for data objects and messages.

Privity spheres related to data objects and messages have been specified to model read
access requirements following a restrictive-based scale. A participant is in the strong-
dynamic sphere of a data object, the most restrictive sphere, if that participant will
execute a task reading the data value written by others. Instead, a participant is in the
weak-dynamic sphere of a data object, if that participant can execute a task reading
the data value written by others. More relaxed spheres are static, private and global:
a participant is in the static sphere of a data object if that participant executes any
activity in a business process accessing the data object, while it is in the private sphere
of a data object if it is a participant to the process in which the data object is present.
The global sphere refers potentially to all participants in the world, but it is designed for
public blockchains, thus it is not applicable in the context of Corda because it would mean
opening the network to external participants, which is against the principles of Corda.
Privity spheres are listed in Table 2.1.

Symbol Level of privity

Public

Static

Private

Strong dynamic

Weak dynamic

Table 2.1: Privity spheres

2| Baseline 23

The approach aims to pursue proactive online enforceability, to make non-contractual be-
havior impractical. However, verifying only the feasibility of prescribed execution traces
does not ensure faithful decision-making. Since the number of participants that are re-
quired to validate decisions depends on the single case, there is needed a security property
that includes the set of participants with the duty to validate each decision. The require-
ment for enforceability of decisions is represented by a train symbol accompanied by an
additional circle that specifies the desired level of enforcement. This annotation can be
attached to conditional exclusive gateways. The desired level of enforcement is determined
by sets of validators.

Three levels of sets have been defined: public, private, and user-defined. The public set
mandates that decisions are verified by a larger set of nodes compared to the participants
involved in the process, while the private set requires that all process participants validate
the decision taken. Lastly, the user-defined annotation enables the modeler to specify a set
of participants responsible for verifying the decision. In Table 2.2, it is shown graphically
the three levels of sets related to the enforceability of decisions.

Symbol Level of enforceability of decision

Public

Private

User defined

Table 2.2: Enforceability of decisions

Figure 2.3 shows the representation of the contract presented in Figure 2.1 enriched with
SecBPMN2BC notations referred to properties as privity and enforceability of decisions.
As visible, the data object "Pathology documentation" is defined with a privity sphere of
type private, thus the content of data object has to be owned by all participants in the
process: Company Employee, who is the first one to introduce it into the collaboration
diagram, Health Care Fund, which is going to access it during the evaluation of the
request, and Medical Office that will read the document in case of positive answer from
Health Care Fund.

Analyzing the other data object present in the collaboration diagram, "Available dates",

24 2| Baseline

it is linked to a privity sphere of type strong-dynamic. It means that, in that particular
moment, the only participant who has to own the data object is the one that is certain
to access that data, and it is represented by Company Employee who is going to access it
in the task "check available dates". The method has to be able to guarantee the sharing
of data objects among all and only participants who need them before the activities in
which they have to effectively access them.

Always in Figure 2.3, for what regards the exclusive gateway into the Health Care Fund
pool, the enforceability of decision property associated with it is set at level private: each
participant to the process has to validate the decision taken by Health Care Fund about
the compliance of request by Company Employee. The decision will be made by taking
into examination the Pathology documentation contained in the data object, which is
examined in the activity named "Check compliance". The method developed, to ensure
that the validation can be performed by all participants, has to guarantee that each
validator owns their copy of data upon which the decision is taken before the validation
phase.

2| Baseline 25

Figure 2.3: Running example with SecBPMN2BC notations

Since SecBPMN2BC has been structured for BPMN Collaboration, the initial part of our
work is aimed at translating and adapting these security concepts in BPMN Choreography
proposing a method to enforce security properties.

2.4. BPMN Choreography

BPMN Choreography is a modeling technique used to represent the interactions among
multiple participants or organizations in business processes. It focuses on the exchange
of messages, to highlight how multiple parties cooperate and coordinate their actions to
achieve a shared business goal.

A choreography diagram is the set of tasks, messages and gateways used to represent a

26 2| Baseline

process. Choreography tasks refer to the actions or activities performed by participants.
They capture the activities that are triggered by incoming messages or events from other
participants while they don’t focus on internal details of each participant’s behavior.

Tasks illustrate the sequence of activities in the process encapsulating the logical flow
of tasks based on the messages exchanged between participants. Successive tasks are
connected by sequence flows, i.e. an arrow, that determines the sequential nature between
two or more tasks. In a task there is always an initiator, i.e. the participant on the high
side of the task, and at least one receiver, i.e. the participant on the low side of the
task, with the possibility to have communications unilateral or bilateral: in case of tasks
that don’t require an answer from receivers, the message is sent only from initiator side
and the communication is defined unilateral, in other cases, there are messages from both
initiator and receivers and the communication is identified as bilateral.
An instance of both cases is reported in Figure 2.4.

Figure 2.4: Unilateral and bilateral communication

A general rule in the definition of successive tasks is that, after the first task which is
rule-free, a task initiator must be involved in the prior task as initiator or receiver.

Messages represent information exchanged between participants and describe the flow of
data, requests, or notifications from one participant to another. They are characterized
by asynchronous communication, thus the sending participant does not wait for an imme-
diate response from receivers: this feature allows participants to continue their activities

2| Baseline 27

independently while the message is being processed by receivers. The content of message
is not specified directly from the modeling language and they can represent various types
of information, data, requests or notifications that are relevant to the process.

Gateways, depending on its nature, can represent decisions based on particular data
exchanged or generating alternative or parallel paths for that process. The absence of
a centralized mechanism for data visibility and evaluation imposes limitations on how
gateways can be utilized in relation to the choreography activities that come before and
after them. For each type of gateway there are specific rules described in the official
document in [28].

In case of exclusive gateways data used to take decision must have been contained in a
message sent in the previous tasks. Each participant affected by the gateway must have
sent or received the message with data upon which the decision is taken. Moreover, one or
more participants have control of the gateway and effectively are responsible for decisions
made and they are represented by initiators of tasks immediately after the gateway. These
initiators must have received or sent the messages with data upon which the decision is
taken and even the receivers of tasks after gateways should have the same understandings
of data, which means that they must have received or sent messages with data upon which
the decision is made, otherwise, they can’t expect a message from the decision in that
point of the diagram. Parallel gateways represent a point where multiple tasks can occur
in parallel and only where both branches of gateway have completed their execution, the
task after the conjunction parallel gateway can start. In this case, there aren’t restrictions
to follow, it is necessary to apply the general rule of two successive tasks. Other types
of gateways such as inclusive gateways, event-based gateways and complex gateways are
representable in choreography diagram, however, due to the purpose of our work, the
focus will be primarily on exclusive gateways and the security properties that directly
concern them.

A demonstrative example of choreography diagram that summarizes all concepts intro-
duced can be found in Figure 2.5. It is reported as a process that represents the inter-
actions between a Customer and a Library Online System to borrow a book that has to
be contained and picked up in the physical store to be booked successfully. The process
starts with the customer who accesses the website of the library with proper credentials
and then sends the request for the loan of a particular book. In this case, the book can
be present in the library store and, for this reason, the booking is accepted and is set a
date for picking up the book. Otherwise, the loan request is rejected by the system.

We decided to show the choreography of running example defined in Section 2.2 in Chapter

28 2| Baseline

3 because the translation of a process from collaboration to choreography is a part of our
method developed to enforce security properties through automated procedures.

Figure 2.5: Choreography diagram of book loan

2.5. Corda

Corda is an enterprise-oriented permissioned blockchain developed by R3. It acts as a
decentralized, open-source ledger technology that enables secure and confidential trans-
actions among participants.

One of Corda’s important features is privacy, ensuring that sensitive information is shared
solely between relevant parties while adhering to regulatory requirements. It utilizes smart
contracts, referred to as CorDapps, to govern the behavior and interactions of shared
data within the network. Corda also focuses on significant emphasis on interoperability,
facilitating the integration with existing systems and databases. The general purpose is
to provide trust, efficiency, and transparency in business transactions while upholding
confidentiality and privacy. The platform allows the execution of contracts by providing
a framework to implement business processes and facilitates the creation, execution, and

2| Baseline 29

transaction of legally binding agreements through the collection of required approvals and
signatures.

Corda network is a private network that can be seen as a fully connected graph where
each peer, known as a node, potentially has the possibility to interact with other peers.
No information are shared in broadcast among all nodes, instead, the approach is based
on a "need-to-know" basis, thus only nodes with permissions are going to access specific
data shared.

Participants of Corda network refer to the entities or actors that join the network and
engage in transactions. These participants can be individuals, organizations, or even auto-
mated systems. Each participant on the Corda network possesses a unique cryptographic
identity, which ensures secure and authenticated interactions. Participants can create and
manage states, propose transactions, and participate in the consensus process to validate
and agree upon the shared ledger.

States represent shared facts or agreements between participants on the network and they
can represent various types of information, such as financial assets, ownership records, or
any other data that needs to be shared and recorded on the ledger. Since there is no
central ledger, not all nodes know all states and each node has its own vault of states
which stores shared states related to that node. Figure 2.6, obtained from [31], shows an
example of states shared between two nodes.

30 2| Baseline

Figure 2.6: States shared between nodes of Corda network from [31]

Transactions represent proposed changes to the shared ledger state: more in detail, they
are a data structure that encapsulates a set of input states, output states, commands,
and other relevant information related to the proposed change in the ledger. Transactions
in Corda consume existing states,i.e., input states, and produce new states, i.e., output
states. Input states represent the current state of the ledger, while output states represent
the desired state after the transaction is completed. Among the relevant information in
a transaction, attachments refer to additional files or data that can be associated with a
transaction. They are hashed using a cryptographic hash function, i.e., SHA-256, then
stored in the transaction and transferred to the counterparties.

Contracts define the rules and logic for the behavior of states on the network, by specifying
rights, obligations, and constraints associated with the states involved in a transaction,
ensuring their validity and enforceability. Contracts verify the validity of transactions
by checking the input and output states, commands, signatures, and other relevant con-
ditions, ensuring compliance with defined rules and preventing unauthorized or invalid
transactions. They act as an agreement enforcer, ensuring that all parties involved in a
transaction adhere to the predefined terms and conditions.

Timestamps define that something happened in a certain window in time. They are

2| Baseline 31

helpful in order to assign a deadline for some actions and even for the verification of the
action itself. For instance, if there is an offer related to some goods and the answer to
that proposal comes after the deadline specified, it won’t be accepted.

Commands encapsulate the intention of a transaction, collecting the input and output
states and specifying the list of required signers. Commands are associated with a specific
contract and interact with the contract’s code to enforce the rules and constraints defined
by the contract ensuring that transactions comply with the contract’s conditions. Figure
2.7 describes the function of commands.

Figure 2.7: Commands in transactions from [31]

Notaries act as a trusted authority responsible for validating the uniqueness and authen-
ticity of transactions. It verifies that a transaction doesn’t contain double-spent states
and that the inputs used in the transaction have not been consumed in any other valid
transaction. After the validation by notaries, input states are marked as historic to avoid
double-spending issue. A Notary is present by default in the network.

Flows are responsible for the evolution of contract states by proposing, verifying, and ex-
ecuting transactions. They coordinate the interaction between multiple parties involved
in a particular business process or transaction by defining a sequence of steps and actions
that participants need to perform to progress states. Flows are designed to be asyn-
chronous and non-blocking, allowing nodes to continue other activities while waiting for
responses, improving efficiency and enabling parallel execution of multiple flows.

CorDapps are distributed applications built on Corda platform that can be programmed
with different programming languages like Java, Kotlin and C#. In this work, the lan-

32 2| Baseline

guage chosen is Java: a reason for using Java in Corda development is its versatility
and widespread adoption, with a large community of developers and a rich ecosystem of
libraries and tools.

33

3| Method definition

This chapter describes the method developed for the enforcement of security properties
by generating and deploying contracts in the Corda blockchain. In Section 3.1, there
are described all steps necessary for the method realization. Section 3.2 provides a list
of assumptions adopted to formulate the model for what regards processes considered,
elements of choreography diagram and Corda object properties. Section 3.3 details how
to extend BPMN Choreography modeling language with security notation and innovations
introduced to manage such properties.

3.1. Method description

Our work focuses on the development of a method to guarantee the enforcement of security
properties such as the enforceability of decisions and data privity, more details are reported
in Section 2.3, through the creation of contracts in Corda blockchain.

The method described below, with stages detailed in Chapter 4 and 5, represents the
main part of our contribution. It proposes a new way to enforce the security properties of
smart contracts modeled from business processes. The first aspect to analyze is the rep-
resentation of the contract we decided to describe: it is depicted in BPMN Collaboration
specifying activities it is composed of and, then, it is enriched with security properties of
privity and enforceability of decisions according to SecBPMN2BC. The method, there-
fore, receives a collaboration diagram enriched with security notations and performs the
following steps until the realization of contracts:

1. The first stage is related to the transformation from collaboration to choreography
diagram: it consists of an initial phase where the first adaptation between col-
laboration and choreography takes place without considering the defined security
properties and the existing data objects, based on the interactions between the par-
ticipants. In this way, the resulting diagram is a foundation that will be enriched by
the elements not initially considered. Therefore, the next phase involves represent-
ing the security properties and data objects in the choreography diagram, aiming to

34 3| Method definition

depict the same scenario as the original collaboration diagram. The crucial aspect is
to maintain the meaning represented by the security properties and not disrupt the
order of activities that were performed. Taking a higher-level perspective, it won’t
be possible to describe all the individual activities in detail as they are presented in
the collaboration diagram. Instead, the focus is on the interactions, motivated by
the contracts that will be implemented in Corda, which are also based on the in-
terconnections between the participants. After that, as the last phase of this stage,
the diagram is modified in order to reach a new choreography diagram without the
graphical notations of security properties or data objects, but with additional tasks
that are going to incorporate and apply the meaning of security properties.

2. The second stage is represented by the transformation of choreography diagram into
contracts in the Corda blockchain. This transaction is composed of two phases: the
first one is the definition of conceptual mapping between choreography diagram and
contracts which aims to specify how each element in the diagram will be represented
by a corresponding element in the Corda contract; in the second phase, instead,
the transformation rules will be defined, which are algorithmic procedures that
automate some aspects of creating individual elements, defining their names and
attributes. It is important to emphasize that the transformation rules are based on
conceptual mapping and add a level of depth, showing the actual characterization
of the individual elements.

3. The last stage consists of the effective implementation in Java programming lan-
guage of the elements of CorDapp produced in the previous stages.

This method doesn’t aim to provide a fully automated generation and execution of Cor-
Dapps, because it is necessary the human contribution to adapt the skeleton of CorDapp
with all the requirements of a Corda contract and with information related to possible
files or messages exchanged in the contract.

3.2. Assumptions of method

Before starting with the initial phase of the method, an explanation of the assumptions
made during the development of each phase of the method is necessary.

For what regards the type of business processes considered, we have chosen to delve
into interaction-rich processes because they are better suited to the entire transformation
process that follows: the choreography diagram represents tasks based on interactions
between participants, and Corda contracts primarily focus on transactions that describe

3| Method definition 35

agreements among multiple participants, as described in Chapter 2. For these reasons,
we find it more effective to analyze processes with multiple interactions rather than those
with few interactions.

In this scenario, it has to be explored the importance of protecting data exchanged among
parties. Commonly, distinct types of data states are data sent by a party to others into a
private network (i.e., data in transit) and data stored permanently that does not travel in
the network (i.e., data at rest). In most cases, these types of states are treated separately
and with different techniques of encrypting data, to ensure a higher level of security to
both. In this work, there is no need to make this distinction and to analyze the different
states of data: the focus will be on data exchanged among participants through the
interactions depicted in the choreography diagram.

Regarding the realization of contracts in Corda, we need to specify the following premises:

- Each node of the network is characterized by an identifying name, such as the
company name, a location and the country where it operates, for instance, the
city and country of the headquarters. These three attributes, i.e. "Organization",
"Location" and "Country" are specified in the build.gradle file in CorDapp and will
be able to identify the individual nodes in the evolution of the process.

- The presence of a single state that evolves over time through various transactions:
the contract regulates the evolution of a state, which is modified in each transaction
by acting on its attributes. A choreography diagram is therefore represented by a
state and the related contract in Corda.

- Fixed attributes for the state are the ones related to the initiator and receivers of
the workflow and the id of the state which is generated once and then associated
with input and output states.

- Each transaction changes a specific attribute in the state, thus we are going to have
an attribute related to each task of the choreography diagram. If these tasks are
related to security properties, specific attributes are generated, as detailed in Section
3.3. For other tasks, an attribute that describes the actions performed in that step
will be added.

- In the translation from the choreography diagram to Corda, when the first task of
choreography is mapped into a workflow with the related transaction in Corda, this
specific transaction will not have the input state since it is the first one of the list,
but it is going to produce only the output state.

- When a workflow is generated, automatically they are added an initiator flow and

36 3| Method definition

a responder flow related to the initiator and receivers of the corresponding task.

3.3. Extended BPMN Choreography

BPMN Choreography modeling language doesn’t provide the representation of data ob-
jects and security properties such as privity and enforceability of decisions. To address
this limitation, we have considered including in the choreography diagram the security
notations already presented in collaboration derived from the SecBPMN2BC approach.

Several rules were applied to represent these properties in the choreography diagram
without distorting the intrinsic meaning of each property, aiming to depict a situation as
similar as possible to the original one. Referring to the enforceability of decisions, since it is
linked to the exclusive gateways present during the initial adaptation, we chose to maintain
the notation as found directly in the collaboration diagram. In this case, we can therefore
state that the property remained unchanged and carries the same meaning because, in
the choreography diagram, there will be the same participants as the collaboration one:
the set of validators of decisions can be confirmed. The exceptions admitted are linked
to the presence of public level enforceability of decision: in this case, the property will be
changed to a private one referring to all participants of the contract since the inclusion of
external participants is not admitted in Corda.

As for the data objects, we hypothesized representing them by maintaining the same
graphical notation replacing messages or next to the message itself, depending on the
presence or absence of another message from the same participant in the task. The choice
of the task where data objects are represented is made by trying to keep unchanged the
participant who first introduces the data object in question, as well as the order in which
other process participants will access it in subsequent tasks. The same symbol will be
used to emphasize the privity sphere associated with the data objects, with the exception
of the public level which becomes private for the same reason of enforceability of decision.
Based on interactions, we are aware that not all situations will be replicable, but our
goal is to adapt and model the diagram in a way that ensures the representation of these
security properties.

The running example is represented through a choreography diagram enriched with secu-
rity properties in Figure 3.1.

3| Method definition 37

Figure 3.1: Running example choreography diagram enriched with security properties

Looking at Figure 3.1, it can be noted how the security properties have been graphically
added to the diagram: in the task "New request of affiliated visit", in fact, there is a ref-
erence to data object "Pathology documentation", indicating its addition to the message
containing personal data of the Company Employee. Moreover, the arrows linked to data
object indicate that Company Employee is the participant responsible for introducing the
"Pathology documentation", inheriting this characteristic from the collaboration diagram
in Figure 2.3. The task where its content will be accessed is the task "New visit request",
where Medical Office will become aware of the patient’s personal data and will analyze the
documentation related to their pathology. The privity sphere associated with it remains
the same as the one in Figure 2.3.

The other data object represented in the diagram can be found in the task "Recap con-
vention with available dates for booking", where the data object "Available dates" is
represented near the message of recap convention. The incoming arrow of the data object
indicates that the content owner is Medical Office, which will be the first to introduce
the data object in the choreography diagram. The privity sphere defined for the data
object is of a strong-dynamic type, inherited from the collaboration diagram in Figure
2.3. Furthermore, it can be noticed that it is not connected with outgoing arrows to any
other task. This means that no other participant apart from Medical Office and Company
Employee should own that data, otherwise, the privity property would be violated.

The exclusive gateway in the diagram is enriched with the security property of enforce-

38 3| Method definition

ability of decision without changes with respect to the one in Figure 2.3. The diagram
is ready to go further in the next stage where choreography diagram will be modified in
order to handle the security properties just added.

In order to address the enforcement of decisions, the aspect to analyze is how to carry
out the validation of the decisions taken: as described in Section 2.4, the evaluation of
gateways is based on data exchanged with messages, thus all validators must own the data
used to make decisions to be able to validate them. Validation is performed ex-post by a
set of validators, i.e. receivers of choreography tasks, specified by levels of enforceability
of decision, as reported in Table 2.2.

By design of BPMN Choreography, receivers of the first tasks after the gateway own the
data used to make the decision: for this reason, they are going to represent a subset
(or total set) of validators. Since other validators may own or not have data used for
decision-making, it is convenient to separate these types of validators, by defining two
categories.

The first category of receivers will be composed of receivers of the first tasks after the
gateway, because we are sure that, at that point, they own the data upon which the
decision is made, otherwise, they would violate the choreography constraints.

On the other side, validators of second category are participants that are not included
in the first tasks after the gateway, but they are in the set of validators required by the
level of enforceability expressed. In this case, there could be two separate cases: validators
already own data used for decision, they are validators of second category without priority;
the other case is represented by validators that don’t have data used to make decision,
they are called validators of second category with priority.

Since all validators of first and second category must own data used for decision to proceed
with validation, the only category that needs an additional Choreography task to be aware
of that information is the second one with priority. In this case the additional task will
be added exactly before the gateway to allow the sharing of data, while the validation
will be performed for both validators of second category with and without priority in
an additional task after the gateway. The initiator of additional will be in each case
responsible for decision. With regard to validators of first category, they will perform the
validation in the tasks already defined for them.

Additional tasks for sharing decision data will contain "Decision_sharingData" while
additional tasks related to validation performed by validators of second category will hold
"DecisionPath_Assessment" in task name.

3| Method definition 39

As stated in Section 3.2, data objects are going to be processed as content of messages
in choreography diagram. In graphical representation, we have a data object that enters
in the diagram in a specific task and the initiator of that task is the one that will handle
that data object for the first time. Moreover, data object is connected by dashed lines to
other tasks where it is going to be accessed by other partecipants, based on the privity
sphere associated to that data object as described in Section 2.3.

In order to manage the presence of data objects and share the message containing data
object with all participants that are in the set specified by privity sphere, there is needed
an additional task where the message exchanged will contain data object and it will be
placed after the first one where data object enters in the diagram.

By analyzing the first task where it is managed, we are sure that the receivers of that
task are included in the set of participants that have the right to access that data object.
Furthermore, in creating the additional task we have to consider that initiator of the
additional task has to be the initiator or receiver of the previous task by design, thus the
additional task will include at least that initiator and receivers. After that, selecting the
receivers to be added to that task there can be two cases: the initiator and receivers of
the previous task are all and only participants that have to access that data object, in this
scenario, the initiator and receivers of the new task remains the same; otherwise, initiator
and receivers of the previous task are not all and only participants that have to access
that data object, in this case the initiator of the task will be the same, while receivers
set will contain receivers of the previous task and other participants specified in privity
sphere that are going to access data in the future tasks of the process. Additional tasks
for sharing data objects will contain "Privity_sharingData" in the task name.

Before proceeding, it is needed to define an order to follow during the evaluation of these
properties when they are both present in the choreography diagram. The privity property
related to data objects is evaluated first, given the possibility that two subsequent tasks
may require the use of that data object. Therefore, the presence of a data object is
immediately handled by the method, generating the additional task, if necessary. After
evaluating the first property, the presence of exclusive gateways and the related level of
enforceability of decisions is analyzed using the mechanism described earlier. An example
of application, starting from the enriched choreography diagram in Figure 3.1, is depicted
in Figure 3.2.

40 3| Method definition

Figure 3.2: Choreography diagram generated from extended choreography diagram in
Figure 3.1

Figure 3.2 shows a BPMN choreography diagram generated by the rules described in
Section 3.3: at the beginning, it is checked if there are present any data objects and, if
positive, it is analyzed the related privity sphere. As represented in the choreography dia-
gram, data object "Pathology documentation" is depicted in the first task of the diagram
and is managed by Company Employee, while data object "Available dates" enters the
last task of the branch activated after the acceptance of the request and is managed by
Medical Office.

Starting from the first data object, i.e., "Pathology documentation", we can observe that
Company Employee and Health Care Fund are participants of the task where the data
object is introduced for the first time and, thus, they belong to the set of participants
that have to own that data. Since the outgoing arrow point out the task where it is
present Medical Office as initiator, the privity sphere associated with the data object
is of type strong-dynamic: this means that even this participant has to be added to
the set of participants that have to own the data object. Applying what is described
in Section 3.3, it is added a new task in the choreography diagram after the first one,
named "Privity_sharingData", characterized in the following way: as initiator the same
initiator of the previous task, i.e., Company Employee, as receivers both Health Care
Fund and Medical Office and as message sent from the initiator to receivers "Pathology
documentation". In this way, it is ensured that all participants in the set defined by the
privity sphere are going to own the data object in order to continue the execution.

Analyzing the second data object, i.e., "Available dates", it is introduced in the last task
of the positive branch and the participants of that task are Medical Office and Company
Employee, who will definitely be part of the set of those who must own that data object. In
fact, examining the privity sphere associated with the data object, it is a strong-dynamic
one and no other participants are requested to own that data because only Company

3| Method definition 41

Employee will use that data at that point in the diagram. For this reason, it is added a
new task in the choreography diagram after the "Recap convention with data available for
booking", named "Privity_sharingData", with the same initiator and receiver concerning
the previous task.

Continuing with the process, the presence of a exclusive gateway is checked, and it is
determined on which data, exchanged in previous tasks, will be based the decision and
which participant will be responsible for making it. In this case, the decision will be
explicitly based on the data object Pathology documentation" and Health Care Fund, the
initiator of both tasks immediately after the gateway, will determine whether Company
Employee meets the requirements to benefit from the conviction. At this point, the
enforceability level of the associated gateway is taken into consideration. In this case, the
level is set to private, which means that all participants in the process must take part in
the validation phase of the decision made: specifically, Health Care Fund is going to be a
validator of first category, based on the presence on the first tasks after the gateway, and
Medical Office is going to be a validator of second category.

To validate the decision, validators must have their own copy of the data on which the
decision is based. Taking into consideration the added task used for managing the privity
property, it can be observed that at the time of the decision, both Health Care Fund and
Medical Office already possess the "Pathology documentation" data on which the decision
is based, and meanwhile, it has not been modified by other tasks. Therefore, in this case,
there is no need to add another task for data sharing before the gateway because the
validator of the second category is without priority.

In order to validate the decision, as specified in Section 3.3, two new tasks are added after
the gateway, one for each branch, where validators of second category can perform the
validation: if the branch selected by Health Care Fund is the one related to acceptance, the
task called "Acceptance_Assessment" is added, where the initiator is Health Care Fund,
the receiver is Medical Office and the message contains the acceptance of the request.
On the other hand, if the selected branch is the one related to rejection, the task called
"Rejection_Assessment" is generated, with the initiator and receiver remaining the same
and the sent message will contain the rejection of the case.

In this way, it is performed the validation by the validator of second category, while the
validator of first category is going to validate the decision in the respective second task
in each branch with the already defined tasks. The rest of tasks is left unchanged.

43

4| From Collaboration to

Choreography

This chapter details the first mapping of the method proposed in this thesis. After
having defined the collaboration diagram of our contract, we have to represent it by
using choreography modeling language. Section 4.1 presents guidelines that indicate how
to transform a collaboration diagram into a choreography one. Section 4.2 shows the
practical transformation from collaboration to choreography diagram based on the running
example.

4.1. Collaboration to Choreography transition

Guidelines adopted during the transition from Collaboration to Choreography standard
are represented in Table 4.1.

Collaboration element Choreography element
Pool/Lanes Participants (initiators and/or receivers)
Start/End events Start/End events
Message events Tasks
Message flows Initiator and receivers
Tasks No direct mapping
Exclusive gateways Exclusive gateways
Other types of gateways No direct mapping
Sequence flow Sequence flow
Data objects No direct mapping

Table 4.1: Mapping Collaboration to Choreography

From pool/lanes to participants
This association in Table 4.1 describes how to define the participants of the choreography
diagram starting from the collaboration one: the process consists of selecting pools and,

44 4| From Collaboration to Choreography

if present, lanes, to have a frame of all possible participants in the choreography diagram.
Lanes are treated as different participants because if we consider only pools it could be
difficult to represent elements like gateways or specific messages among participants and
we would increase the granularity level hiding other information. Since the choreography
diagram aims to map the interactions among participants, we are sure all the pools and
lanes will be included in the choreography diagram as initiators or receivers of tasks.

From start/end events to start/end events
Table 4.1 describes how start and end events are mapped into choreography diagram.
Based on the logical flow, the event that starts the process and the one linked to the last
interaction are present in the choreography diagram. Regarding intermediate start and
end events, they can be present or not based on the link with interactions. If an exclusive
gateway triggers two branches that lead to two end events, each one with interactions
among different participants, in that case, both events are reported.

From message events to tasks
Since in the choreography diagram the focus is on the interactions among participants,
the central mapping is based on the presence of messages in the collaboration diagram
that, in the mapping process, become choreography tasks as reported in Table 4.1.
In collaboration diagram for each message event inside a lane/pool that sends the message,
there is a message event that receives it in another lane/pool. In the transition process,
the pair of message events, i.e., sender and receiver, is mapped with a choreography task,
visible through the identification name, which has to summarize the meaning of that
exchange of messages among the participants. Since in choreography diagrams there are
strict rules in the definition of the initiators of tasks, as explained in Section 2.4, the tasks
present at the end of the process can be not only the ones who are defined by message
events: there may be other tasks that represent a communication which doesn’t modify
the sense of the diagram but they are necessary to be compliant to the generation rules
of choreography tasks.

From messages flow to initiator and receivers
In order to link message events among participants in collaboration diagram there are
needed some connection lines that connect the sender and the receiver. This message
flow, which takes into consideration the pool or lanes of sender and receivers, provides
information about the initiator and the receivers of the task in choreography diagram, as
reported in Table 4.1. Once the choreography task has been generated by the message
events, there is the necessity to assign the roles of initiator and receiver of that task based
on the flow of connection lines of message events in the collaboration diagram. In order
to address this point, the pool or lane of the sending message flow is the initiator of the

4| From Collaboration to Choreography 45

task, while the pool or lane of the receiver of the message flow is the receiver of the task.

Tasks not directly mapped
As reported in Table 4.1, not all collaboration tasks are directly mapped into collaboration
diagram. This is mainly due to the different levels of granularity to which the two models
refer: in the collaboration diagram, there is a pool or lane that contains individual activity
performed by a specific participant to reach a certain business situation, without this
being known to other participants; instead, in the choreography diagram, we represent
the actual interactions, without going into the detail of the individual activities performed
by each participant. With this premise, the tasks representing activities internal to the
individual organizations will not be represented in the choreography diagram.

Exclusive gateways conservation
As reported in Section 3.2, exclusive gateways are the type of gateways we are interested
in due to their link with decisions. Exclusive gateways are mapped in the same way mov-
ing from collaboration to choreography diagram as reported in Table 4.1. This mapping
is made in order to keep the decisions even in the choreography diagram, respecting the
sequence of events that the decision influences. The exclusive gateways in the choreogra-
phy diagram are then enriched with the presence of security property of enforceability of
decisions as detailed in Section 3.3.

Type of gateways not mapped
As reported in Table 4.1, other types of gateways are not mapped: gateways that are
not linked with decisions, such as the parallel gateway, and that involve tasks linked to
internal activities related to a specific participant without interactions with others are
not mapped. Furthermore, there is the possibility that the sense of a particular gateway
is already included in the choreography task: this is the case of an exclusive gateway
in a pool that refers to the decision which has to be taken and an event-based gateway
in another pool which path is linked with the decision just taken. In this case, in the
choreography diagram we will not have the representation of both gateways, only the
exclusive gateway with choreography tasks that describe the possible paths as initiator
the participant that is responsible for the decision and the other participants involved.

Sequence flow conservation
The sense of order and sequentiality in collaboration diagrams is given by a sequence
flow represented through arrows that link tasks. This type of mapping, as reported in
Table 4.1 is conserved as the choreography diagrams exploit the same way to indicate the
sequence in which tasks have to be performed.

Data objects not directly mapped

46 4| From Collaboration to Choreography

As detailed in Section 3.2, data objects depicted in the collaboration diagram are not
directly represented in this phase of transition from collaboration to choreography, as
visible in Table 4.1. They are not included in this transition process for a dual reason:
the choreography standard does not handle the representation of these types of objects
and there is uncertainty related to the presence of the task in which it is represented in
the collaboration diagram. They will be included in the extension of the choreography
diagram with the presence of security property of privity as discussed in Section 3.3.

4.1.1. Implications

Implications derived from mapping rules:

- There is not a unique translation of a collaboration diagram into a choreography
diagram: since the focus is on the interactions, we can argue that all messages must
have a corresponding task in the choreography diagram; for the other elements to
be included, their presence may depend on what you want to represent and where
to put the emphasis. A brief example can be done if we imagine two tasks in a
collaboration diagram performed in parallel by the same participant and, in both
tasks, there is a message sent to the same receiver: one possible choice can be to
represent a single task in choreography diagram with initiator and receiver and a
unique message sent which takes both the information of single messages; on the
other hand, it is possible to generate two choreography tasks that execute in parallel
and send messages. Both situations are feasible, for this reason, we act to preserve
the general sense of the contract.

- Not all the situations described with the collaboration model are reproducible with
the same level of granularity in the choreography diagram: in the former, there is
a description with a low level of granularity, potentially going to represent all the
single activities executed by a participant, while in the latter one, the focus is on
the interactions between participants.

- Gateways not influenced by a decision are not reported in translation: as described
in Section 3.2, since we have to enforce specific security properties such as the
enforcement of decisions, all gateways unrelated to that property are not reported in
the mapping if they are not fundamental to preserve the constraints of the contract.

- General flow of contract over the single task performed by organizations: in this way,
we are not strictly related to the representation of internal tasks, on the contrary, we
focus on the general flow and sense of the contract in order to respect the sequence
of interactions among participants and related constraints.

4| From Collaboration to Choreography 47

4.2. Application of mapping from Collaboration to

Choreography

Figure 4.1: Choreography diagram of affiliated medical visit

Figure 4.1 shows an application of the choreography diagram generated by guidelines
described in Section 4.1 starting from the collaboration diagram represented in Figure
2.1.
If we collect all the initiators and receivers from choreography tasks in the diagram,
they are the same participants depicted by pools in collaboration diagrams: Company
Employee, Health Care Fund and Medical Office. There is a start event at the beginning,
while the end events are one for each branch executable after the exclusive gateway.

Regarding tasks generation, it is visible that for each pair of message events, used for
sending and receiving messages, a choreography task is created: for instance, the message
events that exchange the message from Company Employee to Health Care Fund contain-
ing personal data of employee are represented with the choreography task "New request
of affiliated visit". Regarding the initiator and receiver of tasks, they are selected based
on the flow of the massage events: the participant that sends the message will represent
the initiator of that task, instead the receiver of the message will be the receiver of the
task.

As detailed in Section 4.1, not all the tasks are represented moving from collaboration to
choreography diagram: if we observe the single activities performed by each participant

48 4| From Collaboration to Choreography

in the collaboration diagram, we notice that tasks that describe personal behavior such
as "Fill form for request" or "Check compliance" are not present in the choreography dia-
gram. This highlights the different levels of granularity on which the standards are built.
In the choreography diagram the personal activities are "hidden" behind the message sent:
analyzing the choreography task "New request of affiliated visit", we can imagine that the
personal information sent by Company Employee are the result of small tasks computed
such as retrieving personal id card and fill a form that arises in the message sent. In this
way, we are not exploring how the single activities are executed by participants, but we
are sure that they have been done in order to send the message.

When comparing the two diagrams, a difference can be seen in the treatment of the
gateways. While in the collaboration diagram if we count the number of gateways we
obtain as total number of three, whereas in the choreography one, we have only one
gateway. Following what is described in Section 4.1 about the gateways in the mapping, we
can ascertain that the mapping is performed in the following way: the exclusive gateway in
the Health Care Fund pool influences the event-based gateway in the Company Employee
pool, for this reason, this type of situation is represented with only one exclusive gateway.
Regarding the other exclusive gateway in the collaboration diagram, which merges the two
possible branches, in the choreography diagram it is not reported since the developments
of branches are not merging in a common situation obtainable with both branches. The
decision is taken by the initiator of the last task before the gateway, i.e., Health Care
Fund, which is in accordance with what is described in the collaboration.

Regarding the sequence of choreography tasks, we can see that they are linked by arrows
defining the flow in which choreography tasks must be performed.

As anticipated in Section 4.1, data objects like "Pathology documentation" and "Available
dates" are not reported in the choreography diagram, but in the next steps this kind of
situation is faced.

The contract represented through the choreography diagram is composed of the same steps
that need to be reached by participants in order to achieve a common business situation
and the general sense has not changed from the collaboration diagram. The participant
that started the flow in the collaboration diagram was Company Employee with the
information sent to Health Fund Care; in the choreography diagram, the initiator of the
first task is Company Employee that sends personal information to Health Fund Care.
Even if we analyze the decision if the request is compliant or not, in the collaboration
diagram the decision was taken by Health Fund Care, with Company Employee and
Medical Office influenced by it; even in the choreography diagram, the decision and the

4| From Collaboration to Choreography 49

consequences involve the same participants. We can assert that the general sense has
been conserved in the mapping.

Regarding the interactions in the choreography diagram, the sequence of actions is re-
spected compared to the collaboration one: the order of initiators of tasks reflects the
effective order of actions defined in the collaboration diagram, starting with Company
Employee, passing through the decision taken by Health Care Fund and then ending with
the Medical Office that sends the available dates for booking in case of accepted request.

Once we generated the choreography diagram, the next step is the extension of the diagram
in order to include security properties. The steps to perform this kind of stage are detailed
in Section 3.3, with an example of application visible in Figure 3.1.

51

5| From Choreography to Corda

In this chapter we present the second transformation of our method, after we structured
our choreography diagram and applied all the rules to manage security properties as
discussed in Chapter 3 and 4, we need to generate our contract in Corda environment:
the objects of contract are specified following precise rules for the mapping as described
in Section 5.1, enriched by a series of algorithms that describe how to set names and
attributes of objects on Corda contract defined in Section 5.2.

5.1. Conceptual mapping

Table 5.1 shows the conceptual mapping from choreography elements to Corda objects.

52 5| From Choreography to Corda

Choreography element Corda object Description
Choreography diagram State, Contract State object is mapped from the

choreography diagram representing
the evolution of the process rep-
resented in choreography diagram.
Contract, which regulates the evolu-
tion of related state, is defined in the
same moment.

Participants Nodes of network All participants in the choreography
diagram become nodes in the private
network created in Corda.

Choreography Task Workflow, Command,
Attribute of state

Choreography tasks represent inter-
actions between two or more partic-
ipants and Corda interactions among
entities are represented by Workflows
that generate transactions. Trans-
actions consume states in input and
generate output based on rules de-
fined in the related command in con-
tract. In case of special tasks added
in the previous step of the model, it
is expected an additional attribute to
the state.

Connecting arrow Input State Connecting arrows indicate the suc-
cession of tasks in choreography dia-
gram. In Corda, the concept is trans-
lated into the presence of input State
in the transaction belonging to work-
flow generated by the next task.

Message Attribute of state /
Attachment

The nature of the message in the
choreography diagram is based on the
nature of the information sent.

Exclusive gateway Attribute of state Exclusive gateway entails a decision
in choreography diagram, which is
mapped into two attributes of the
state that describe the possible op-
tions related to the decision and the
validators of first category.

Table 5.1: Conceptual mapping

5| From Choreography to Corda 53

The first row of Table 5.1 describes the mapping between choreography diagram and
the pair state-contract in Corda: as reported in 2.5, states represent the evolution of a
fact and are shared among parties, while contracts regulate the behavior and validity of
transactions involving specific types of states. This concept is matched in choreography
diagram by analyzing the entire structure of the diagram, because it represents the evo-
lution of the process composed of tasks, messages exchanged and gateways. Having this
scenario, the mapping appears to be automatic.

The second row of Table 5.1 aims at defining participants of Corda network, by specifying
identities of nodes: from choreography diagram they are visible to all participants to the
business process, whether they are companies, public infrastructures or individuals. In
this case, the natural mapping is to associate each of these participants to a node in the
network.

The mapping described in the third row of Table 5.1 aims to represent the concept of
actions that evolve the process: choreography tasks depict interactions between two or
more participants and successive tasks create a flow that enables the process advance-
ment, while workflows allow the creation of transactions responsible for the generation of
new states. Furthermore, workflows contain transactions that are based on specific com-
mands that regulate transactions defining rules and requirements during the execution,
for instance regarding the attributes and the types of input and output states. According
to this context, the generation of workflow and the corresponding command are mapped
with choreography tasks.

The fourth row of Table 5.1 provides the concept of sequential execution of activities in the
process: in choreography diagram, analyzing two successive tasks without the presence
of other elements in between, a task cannot start until the previous task’s execution is
complete. This aspect can be translated in Corda by the presence of an input state in a
transaction that is equal to the output state produced by the transaction coming from
the previous task. The only exception is represented by the first task in the diagram, as
it does not have any incoming arrows.

The fifth row of Table 5.1 is dedicated to the representation in Corda of messages sent
and received in the choreography diagram. Based on the definition in BPMN modeling
language, a message can represent a text message, numeric data or a file, thus the standard
allows for a wide range of possibilities. According to it, the mapping in Corda foresees
a double scenario: it can be done directly through an attribute of the State or as an
attachment to the transaction generated in the workflow, following the rules specified in
Section 5.2.

54 5| From Choreography to Corda

In the last row of Table 5.1 it is shown how to map the possibility of choice between two
different paths, analyzing gateways in choreography diagram: based on the assumptions in
Section 3.2, exclusive gateways are the type of gateway that we are interested in mapping
in Corda, due to the presence of security property linked to the enforceability of decisions.
In this case, it is sufficient to incorporate in the state a specific attribute that indicates
all selectable paths after the gateway.

5.2. Rules of transformation

After we defined the mapping between concepts, it is needed a further step where we are
going to schematize through algorithms the generation of contracts in Corda, based on
the conceptual mapping described in Table 5.1 in Section 5.1.

In order to generate a deployable CorDapp, there is the necessity to integrate the output of
algorithms with some activities, usually executed by programmers that are implementing
the contract, indicated in the algorithm with (Exp) at the beginning of the line. For
this reason, the main Algorithm 5.1 will recall the single algorithms and present further
steps linked with additional activities to execute. The Algorithm 5.1 is structured in
the following way: in line 2 the algorithm related to state and contract name definition is
called to start defining the main objects of Corda; line 3 is the first complementary activity
which is not regulated by an algorithm due to the fact that attributes of the state may be
related to the context represented, for instance, the use of a unique identifier or the receiver
attribute which may require a list or a single participant; lines 4-5 trigger algorithms for
the generation of nodes in the network and for the definition of workflows and additional
attributes of the state; line 6 refers to the initial phase in the workflow where the notary in
the network is added for validation, in this case, there may be the presence of an additional
notary or oracle required by a participant; lines 7-9 go into detail for what regards the
input state, only if the workflow is not the first one, and in particular they refers to
the search on the vault of the initiator to retrieve id of unconsumed transactions; line 10
deepen in the building of transaction, which requires to add all the components as possible
attachments, commands, input and output state and collect signatures from participants
which can require additional checks to the transaction; lines 11-12 activate the algorithms
for commands ad related rules definition; line 13 refers to the complementary rules to add
to a specific command, for instance the rules related to specific attributes of the output
state; line 14 triggers the algorithm for the representation of messages in Corda; lines 15-
17 refers to the fact that if there is a message handled with attachment, there is needed
a specific method for the upload and the sharing of the content in the network; line 18 is

5| From Choreography to Corda 55

linked to the algorithm that manages the presence of exclusive gateways.

Algorithm 5.1 Choreography to Corda
1: procedure Choreography to Corda

2: State and contract name definition: Algorithm 5.2
3: (Exp) Define basic attributes of state
4: Add nodes in Corda network: Algorithm 5.3
5: Workflows and state attributes: Algorithm 5.4
6: (Exp) Retrieve Notary information
7: if not First Workflow then
8: (Exp) Retrieve input state from vault
9: end if

10: (Exp) Complete transaction requirements
11: Commands name definition: Algorithm 5.5
12: Commands rules definition: Algorithm 5.6
13: (Exp) Specify complementary rules
14: Messages representation: Algorithm 5.7
15: if Attachment in transaction then
16: (Exp) Add specific methods for the upload of files
17: end if
18: Exclusive gateways representation: Algorithm 5.8
19: end procedure

The Algorithm 5.2 sets the name of Corda state and contract: after taking in input a
choreography diagram in line 1, lines 3-4 describe the initialization of state and contract
and in lines 5-7 the names of these two elements are generated directly from diagram
name and then they are returned as the result of the algorithm.

The choreography diagram of our running example after the previous stage is depicted
in Figure 3.2 and it represents the input of the Algorithm 5.2. Since the name of the
choreography diagram is "Affiliated Visit", we will have AffiliatedVisitState and Affiliat-
edVisitContract as outputs.

56 5| From Choreography to Corda

Algorithm 5.2 State and contract name definition
1: input: Ch_diagram;
2: procedure State_and_contract_NameDefinition

3: State = NULL

4: Contract = NULL

5: replace NULL with Ch_diagramName+′ State′ in State_Name

6: replace NULL with Ch_diagramName+′ Contract′ in Contract_Name

7: return State, Contract

8: end procedure

Adding nodes to the Corda network by creating a list of all participants is performed
through the Algorithm 5.3: as input in line 1, there will be all tasks in the choreography
diagram and in line 3 the list of nodes is initialized as empty; in lines 4-11 the "for each"
instruction aims to analyze each task of the tasks list and in lines 5-6 it is checked if the
initiator of task is already present in the nodes list and, if negative, it is added to the
list; it is made the applied the same condition to the receivers of task in lines 8-9. At line
12, the nodes list will represent the output and it will contain the nodes of the network
alongside the Notary node contained by default as expressed in 2.5.

Applying the algorithm to Figure 3.2, all tasks are taken as input and, starting from the
first one, initiators and receivers are added to the nodes list: at the end of the algorithm
the nodes of Corda network will be Company Employee, Health Care Fund and Medical
Office.

Algorithm 5.3 Adding nodes to the network
1: input: Ch_tasks_list;
2: procedure Adding_nodes_in_Corda_network

3: nodes_list← {0}
4: for each Ch_task ∈ Ch_tasks_list do
5: if not Ch_taskInitiator ⊆ nodes_list then
6: nodes_list← Ch_taskInitiator

7: end if
8: if not Ch_taskReceivers ⊆ nodes_list then
9: nodes_list← Ch_taskReceivers

10: end if
11: end for
12: return nodes_list

13: end procedure

5| From Choreography to Corda 57

The Algorithm 5.4 aims to create workflows, with related workflowInitiator as WfInit and
workflowResponder as WfResp, and setting specific attributes in the state. In line 1, it
takes all choreography tasks ordered and the state as input. Lines 3-4 are dedicated to
initializing attributes for managing multiple gateways and data objects in the choreog-
raphy diagram. Lines 5-7 represent the sentences used for the evaluation of tasks added
in 3.3. Line 8 initializes workflows to empty. "For each" instruction between lines 9-38
holds all conditions evaluated to the generation of workflows by analyzing each task of the
tasks list: lines 10-12 aim to set names of workflows; lines 13-15 set initiator and receivers
of output state and adds it to the transaction output state; lines 16-20 evaluate if the
task is the first one of the process and, if negative, it is set the transaction input state
equals to the previous transaction output state related to the flow of the previous task,
while if positive, the transaction input state is set to empty; line 21 adds the workflows
set before to the workflows to generate; lines 22-28 evaluate if there are some tasks added
for managing privity or enforceability of decision properties and, based on the name of
the task, it is added a different attribute in the state; lines 29-37 check if the task has
the message from both initiator and receivers and, in positive case, it is set the second
workflow related to the task, i.e. workflowReply with related workflowReplyInitiator and
WorkflowResponder, by reversing initiator and receiver of the task and it is linked to the
first flow created by the transaction input state; line 39 returns workflows and state.

With reference to the running example in Figure 3.2, the algorithm analyzes all chore-
ography tasks present in the choreography diagram and then try to generate workflows
and attribute for the state: starting from the first task, i.e., "New Request of affiliated
visit", a new workflow is immediately created with the name "NewRequestOfAffiliated-
VisitFlow" and, at the same time, the pair of workflows related to initiator and receiver,
respectively "NewRequestOfAffiliatedVisitFlowInitiator" and "NewRequestOfAffiliated-
VisitFlowResponder". Afterwards, parameters in the output state generated by the trans-
action in the workflow initiator are set: in this case, the initiator will be equal to Company
Employee, while the receiver will be equal to Helth Care Fund. In this case, since the task
is the first one of the choreography diagram, there is no necessity to add an input state.

Other conditions, in case of the first task, will be negative because it is not related to
data sharing and it doesn’t contain two messages. If we focus on the second task, we can
deeply go inside the conditions related to the sharing of data among participants: the
task named "Privity_Sharing Data" triggers the first condition that adds the attribute
"sharingDataPrivityOne", set to false initially, to the state. In this example, the other
conditions are not true because there is not a task dedicated to the sharing of data on
which decision is taken, because the "Pathology documentation" is shared in the second

58 5| From Choreography to Corda

task and we are sure that all participants influenced by that decision know the data upon
which it is taken. The other condition related to the presence of two messages in the task,
one sent by the initiator and one by the receiver, in this example is not explored due to
the configuration of the choreography diagram. These two conditions are necessary to
take into consideration all the examples that refer to this type of case.

5| From Choreography to Corda 59

Algorithm 5.4 Workflows and state attributes
1: input: Ch_tasks_list, State;
2: procedure Workflows_and_state_attributes

3: ProgrNumberPrivity = 0

4: ProgrNumberDecisions = 0

5: Privity_task =′ Privity_sharingData′

6: Decision_task =′ Decision_sharingData′

7: Decision_taskV alidation =′ Assessment′

8: Workflows← {0}
9: for each Ch_task ∈ Ch_tasks_list do

10: Wf_name = Ch_taskName+′ Flow′

11: WfInit_name = Wf_Name+′ Initiator′

12: WfResp_name = Wf_Name+′ Responder′

13: WfInit_outputState_initiator = Ch_task_initiator

14: WfInit_outputState_receivers = Ch_task_receivers

15: WfInit_transactionOutputState← WfInit_outputState

16: if not Ch_task isFirstTaskOfProcess then
17: WfInit_transactionInputState ←

Previous_WfInit_transactionOutputState

18: else
19: WfInit_transactionInputState← {0}
20: end if
21: Workflows← Wf,WfInit,WfResp

22: if Privity_task isSubstringOf Ch_taskName then
23: State addAttribute State_sharingDataPrivity_ProgrNumberPrivity+

1 = false

24: else if Decision_task isSubstringOf Ch_taskName then
25: State addAttribute State_sharingDataDecision_ProgrNumberDecisions+

1 = false

26: else if Decision_taskV alidation isSubstringOf Ch_taskName

then
27: State addAttribute State_validatorsSecondCategory =

false

28: end if
29: if Ch_task hasTwoMessages then
30: WfReply_name = Ch_taskName+′ FlowReply′

31: WfReplyInit_name = WfReply_name+′ Initiator′

32: WfReplyResp_name = WfReply_name+′ Responder′

33: WfReplyInit_transactionOutputState_initiator =

Ch_task_receivers

34: WfReplyInit_transactionOutputState_receivers =

Ch_task_initiator

35: WfReplyInit_transactionInputState =

WfInit_transactionOutputState

36: Workflows← WfReply,WfReplyInit,WfReplyResp

37: end if
38: end for
39: return Workflows, State

40: end procedure

60 5| From Choreography to Corda

The Algorithm described in 5.5 defines the commands’ name of the contract: in line 1 the
workflows list is taken as input; in line 3 the commands set is initialized to empty, during
the algorithm it will be filled; the "For Each" instruction in lines 4-7 takes each workflow
from workflows list and assigns the name to the related command by cutting the word
"Flow" from the name of the workflow itself and it adds the command to the commands
set; line 8 represents the output of the algorithm, with the commands set created.

Applying the algorithm to our example in Figure 3.2, workflows coming from choreography
tasks have been selected, once per time, and a command is then generated with the same
name of related workflow without the word "Flow". They are not taken directly from the
choreography tasks because in the case of tasks with sending and receiving messages, two
workflows are generated and the name would be repeated for both of them. For instance,
the workflow related to the first task, i.e., "NewRequestOfAffiliatedVisitFlow", generates
a command with the name "NewRequestOfAffiliatedVisit".

Algorithm 5.5 Commands definition
1: input: Workflows_list;
2: procedure Commands_NameDefinition

3: Commands← {0}
4: for each Workflow ∈ Workflows_list do
5: Command_Name = Workflow_Name minus ′Flow′

6: Commands← Command

7: end for
8: return Commands

9: end procedure

In the Algorithm 5.6, we are going to describe how commands can specify some rules that
transactions defined in the Algorithm 5.4 have to respect when they are executed: in line
1 the commands and transactions list are taken as input; the "For Each" instruction in
lines 3-16 loops for each command in commands list and defines the rules of commands
through several steps; in lines 4-6 sets for rules of that specific command are initialized
to empty and it is selected the transaction from the workflows transactions list related to
that command; lines 7-9 check if the transaction has an input state, i.e., it is the first one
or not, and if the condition is verified then the rules related to the presence and the type
of the input state are added; lines 10-12 explore the case of no input state present in the
transaction, in this case, the rule added indicates that there won’t be an input state for
that transaction; lines 13-14 add the rules to the presence and the type of output state
and we are sure that this rule will be present in each command since we defined in Section

5| From Choreography to Corda 61

3.2 that each transaction produces an output state; line 15 adds the rules generated to the
command rules set of the command taken into consideration; line 17 refers to the output
of the algorithm, i.e., the commands updated with the defined rules.

Adapting the algorithm to our example in Figure 3.2, we can notice that the first trans-
action is related to the workflow coming from the choreography task "New Request of
affiliated visit": since this transaction is the first one, it doesn’t have an input state, for
this reason, the rule to add in this case is the one related to the no presence of an input
state. For all the other transactions, as stated in Section 3.2, the rule to add is related
to the presence of an input state. Regarding the output state, all transactions have to
include that type of rule given that each transaction will generate an output state.

Algorithm 5.6 Commands rules definition
1: input: Commands_list,Workflows_transactions_list;
2: procedure Commands_rulesDefinition

3: for each Command ∈ Commands_list do
4: Command_rules← {0}
5: Rules← {0}
6: Transaction = Workflow_transaction ∈ Workflows_transactions_list

related to Command

7: if Transaction hasInputState then
8: Rules← Transaction hasInputState
9: Rules← Transaction_inputStateType

10: else
11: Rules← Transaction hasNoInputState
12: end if
13: Rules← Transaction hasOutputState
14: Rules← Transaction_outputStateType

15: Command_rules← Rules

16: end for
17: return Commands

18: end procedure

The Algorithm 5.7 aims to describe how messages, based on their nature, are translated in
Corda: in line 1 it takes as input the state, all choreography tasks and workflows related
to tasks; the "For each" instruction between lines 3-18 contains different checks that are
performed in order to decide how to map massages in Corda, analyzing each choreography
task in the list; lines 4-5 describes the first actions when we analyze a message in a task,

62 5| From Choreography to Corda

thus the descriptive message of the transaction is set and the attribute related to the
task is set to true in the output state of the transaction; lines 6-8 consider the option of
having a non textual message to send and, in positive case, an attachment is added to
the transaction and the content of the message is transferred as a file; lines 9-15 deepen
the hypothesis that a task may have two messages, one sent by the initiator and one sent
by receivers; if we are in that case, we are going to set the same attributes of lines 4-5
but in the workflowReplyInitiator; lines 12-14 check if the content of message sent by the
receivers of task have to be transferred as a file with an attachment to the transaction in
the workflowReplyInitiator; lines 17 represents the output of the algorithm described, the
workflows with transactions updated.

Referring to our example in Figure 3.2, all tasks and workflows are taken into consideration
and, by analyzing the "Privity_sharingData" tasks, their messages are mapped with an
attachment to the transactions generated by respective flows, while messages of other
tasks are depicted with an attribute inside the flow that changes value based on the
message it is sending and they are going to set the attribute related to their change in
the flow to true.

Algorithm 5.7 Messages representation in Corda
1: input: Ch_tasks_list,Workflows;
2: procedure Messages_representation

3: for each Ch_task ∈ Ch_tasks_list do
4: WfInit_descriptiveMessage = Task_Message

5: WfInit_transactionOutputState_contentOfMessage = true

6: if not Ch_task_messageFromSender isTextual then
7: WfInit_transactionAttachment = Task_Message

8: end if
9: if Ch_task hasTwoMessages then

10: WfReplyInit_descriptiveMessage = Task_Message

11: WfReplyInit_transactionOutputState_contentOfMessage = true

12: if not Ch_task_messageFromReceivers isTextual then
13: WfReplyInit_transactionAttachment = Task_Message

14: end if
15: end if
16: end for
17: return Workflows

18: end procedure

5| From Choreography to Corda 63

The Algorithm 5.8 defines the translation of exclusive gateways present in choreography
diagram into Corda: in line 1 the state and all exclusive gateways from the diagram are
taken as input; lines 3-8 specify for each exclusive gateway what are the actions to be
performed; lines 4-6 examine all the possible branches for a specific gateway and sets the
attribute related to each of possible branch to false, indicating that no decision has been
taken because no branches are selected; line 7 adds an attribute related to the validators
of first category set to false, because we are sure that at least validators of first category
will be present; line 9 returns the state with all changes made in the previous lines.

In our example in Figure 3.2, it is taken the only exclusive gateway present and the
AffiliatedVisitState generated before; then it is taken into examination the gateway and
the possible branches, i.e., acceptance or refusal, and attributes accepted and refused are
added to the state and set to false. After that, the attribute related to validators of first
category, with a false value, is added to the state.

Algorithm 5.8 Exclusive gateways in Corda
1: input: Ch_exclusive_gatewaylist, State;
2: procedure Exclusive gateways representation

3: for each Ch_exclusive_gateway ∈ Ch_exclusive_gateway_list do
4: for each Ch_exclusive_gateway_branch ∈ Ch_exclusive_gateway do
5: State_decisionBranch = false

6: end for
7: State addAttribute State_validatorsF irstCategory = false

8: end for
9: return State

10: end procedure

All the algorithms described until now have to be contained in another algorithm that
defines the order in which they are activated to automate some parts of the realization of
CorDapp.

65

6| Validation

This chapter shows the validation of the method proposed in this thesis. In order to
carry out the validation of the method, we have implemented a software that automates
part of the process. The main purpose of this phase is to check the correctness of the
method through the analysis with real cases of different complexity. The validation phase
is composed of three sections: the first one, Section 6.1, aims to validate the mapping
and transformation from collaboration to choreography diagram extended with security
properties; the second one, Section 6.2, analyzes the mapping and transformation from
choreography to Corda in order to generate the skeleton of CorDapp through the ap-
plication of algorithms described in Chapter 5; the last one, Section 6.3, contains the
discussion on the results of two sections. Combining the results obtained in two sections
we are going to validate the whole method.

6.1. Collaboration to Choreography

This section validates the mapping and transformation from collaboration to choreography
diagram extended with security notations according to the rules expressed in Chapters 3
and 4.

The software aims to apply the theoretical mapping by generating an XML document1

that represents the choreography diagram with security properties enforced through suc-
cessive steps:

1. It takes as input an XML document, that represents the collaboration diagram
modeled with SecBPMN2BC, containing the messages exchanged and participants’
identities. Since the method doesn’t focus on internal activities, they are not re-
ported in the initial XML document as they wouldn’t have been analyzed. This
first step generates automatically the choreography tasks, represented by an XML
document, that are contained in the choreography diagram.

1XML document: "eXtensible Markup Language" document, a text file containing structured data.
XML allows you to define tags and structure rules adaptable to specific domain needs. It is composed of
hierarchical elements enclosed in tags, with the option to include attributes for additional information.

66 6| Validation

2. The XML generated is then enriched with elements linked to security properties
such as exclusive gateways and data objects, which are inserted with specific tags.
This activity is performed manually since the representation of security properties in
the choreography diagram doesn’t follow a 1:1 mapping. Instead, they are adapted
to a new context following the guidelines described in Chapter 4. It may happen
that internal tasks of the activities related to data objects or gateways are not
reported in the choreography diagram: in this case, in order to include the security
elements, there is the necessity to find a way to include them in the diagram. For
these reasons, we preferred performing this activity manually. We obtain an XML
document that represents tasks and security elements of the choreography diagram
enriched with security properties.

3. The third step takes as input the XML document of the previous phase and then car-
ries out the enforcement of the security properties generating the additional choreog-
raphy tasks as described in Section 3.3. These new tasks, with to the previous ones,
represent the final choreography diagram that is described by an XML document.
To represent the sequence of tasks, start and end events, specific tags of the XML
document related to incoming and outgoing links are used: if the tag <incoming>
is not present, the task is the first one and it means that the predecessor is the start
event; if only the <incoming> tag is present, it means that after it, there is an end
event; otherwise, in case of both tags present, the task is connected to a predecessor
and a successor. This step marks the end of the first phase of the validation.

What we expect is that the output of the process, i.e., the choreography diagram, respects
the correctness of the process in the following aspects: participants included in the dia-
gram; interactions represented, the order in which they occur and the correct participants
involved; general sense of the contract respected; inclusion of objects with reference to
security properties such as exclusive gateways and data objects.
Realistic examples have been chosen taking into consideration the context represented and
the high complexity. For this reason, collaboration diagrams present additional symbols
that go even beyond our context. Despite this, we will focus on the security properties of
privity and enforceability of decisions.

6.1.1. Realistic examples

Birth certificate issue
The first example describes the registration of a birth certificate: there are two pools in
the collaboration diagram, i.e., citizen and the citizen registry birth certificate, which are

6| Validation 67

the participants. The flow starts with the citizen who scans the ID document and fills
out the related application form to register the birth certificate. Since this module has
been completed and sent to the citizen registry birth certificate, the information from
the application form are collected and then the birth is registered. At the end, the birth
certificate is sent to the citizen who can print it.

In this example, there are no gateways, because there are no decisions to take due to the
linear process which is composed by a defined sequence of activities. For what regards the
presence of data objects linked with the security property of privity, we can report three
data objects: the ID of citizen in electronic form related to a static level of privity; the
birth application form, again related to a static level of privity, and the birth certificate,
linked to a private level of privity.

Applying the first step of mapping, the software produced the XML document visible in
Listing 6.1, which depicts the choreography tasks of the choreography diagram in Figure
6.1.

<?xml version="1.0" encoding="UTF-8" ?>

<choreographydiagram name="BirthCertificateIssue">

<choreographytasks>

<choreographytask name="Request of new birth certificate">

<message>Request</message>

<initiator>1</initiator>

<receivers>2</receivers>

</choreographytask>

<choreographytask name="Birth certificate registered">

<message>Notification</message>

<initiator>2</initiator>

<receivers>1</receivers>

</choreographytask>

</choreographytasks>

<participants>

<participant id="1">Citizen</participant>

<participant id="2">Citizen birth certificate issue</participant>

</participants>

</choreographydiagram>

Listing 6.1: XML document - Birth Certificate Issue

68 6| Validation

Figure 6.1: Choreography diagram of birth certificate issue

In the second step, the choreography diagram in Figure 6.1 is enriched manually with
security notations and the result is reported in Figure 6.2. The XML document of the
diagram is showed in Listing 6.2

6| Validation 69

<?xml version="1.0" encoding="UTF-8" ?>

<choreographydiagram name="BirthCertificateIssue">

<choreographytasks>

<choreographytask name="Request of new birth certificate">

<message> Request </message>

<dataobject privity_level="static" owner="1" others="2">Id

document</dataobject>

<dataobject privity_level="static" owner="1" others="2">Application

form</dataobject>

<initiator> 1 </initiator>

<receivers> 2 </receivers>

</choreographytask>

<choreographytask name="Birth certificate registered">

<message> Notification </message>

<dataobject privity_level="private" owner="2" others="1" >Birth

certificate</dataobject>

<initiator> 2 </initiator>

<receivers> 1 </receivers>

</choreographytask>

</choreographytasks>

<participants>

<participant id="1"> Citizen </participant>

<participant id="2"> Citizen birth certificate issue </participant>

</participants>

</choreographydiagram>

Listing 6.2: XML document enriched with security properties - Birth Certificate Issue

70 6| Validation

Figure 6.2: Choreography diagram extended with security notations of birth certificate
issue

Subsequently, the security properties are enforced and the additional tasks generated
automatically are reported in Listing 6.3.

<?xml version="1.0" encoding="UTF-8" ?>

<choreographydiagram name="BirthCertificateIssue">

<choreographytasks>

<choreographytask name="Privity_SharingData">

<message>Id document</message>

<initiator>1</initiator>

<receivers>2</receivers>

</choreographytask>

<choreographytask name="Privity_SharingData">

<message>Application form</message>

<initiator>1</initiator>

<receivers>2</receivers>

</choreographytask>

<choreographytask name="Privity_SharingData">

<message>Birth certificate</message>

<initiator>2</initiator>

<receivers>1</receivers>

</choreographytask>

</choreographytasks>

6| Validation 71

<participants>

<participant id="1">Citizen</participant>

<participant id="2">Citizen birth certificate issue</participant>

</participants>

</choreographydiagram>

Listing 6.3: XML document of additional tasks - Birth Certificate Issue

The final choreography diagram is then obtained by combining the generated additional
tasks with the others already present, providing them a sequential order as described in
Section 2.5: the additional tasks are included and the security properties are enforced as
reported in the choreography diagram in Figure 6.3, with the related Listing 6.4.

Figure 6.3: Choreography diagram from the extended choreography diagram of birth
certificate issue

<?xml version="1.0" encoding="UTF-8" ?>

<choreographydiagram name = "BirthCertificateIssue">

<choreographytasks>

<choreographytask name="Request of new birth certificate" seq="task_1">

<message>Request</message>

<initiator> 1 </initiator>

<receivers> 2 </receivers>

<outgoing> task_2 </outgoing>

</choreographytask>

<choreographytask name="Privity_SharingData" seq="task_2">

<message>Id document</message>

<initiator>1</initiator>

72 6| Validation

<receivers>2</receivers>

<incoming> task_1 </incoming>

<outgoing> task_3 </outgoing>

</choreographytask>

<choreographytask name="Privity_SharingData" seq="task_3">

<message>Application form</message>

<initiator>1</initiator>

<receivers>2</receivers>

<incoming> task_2 </incoming>

<outgoing> task_4 </outgoing>

</choreographytask>

<choreographytask name="Birth certificate registered" seq="task_4">

<message>Notification</message>

<initiator> 2 </initiator>

<receivers> 1 </receivers>

<incoming> task_3 </incoming>

<outgoing> task_5</outgoing>

</choreographytask>

<choreographytask name="Privity_SharingData" seq="task_5">

<message>Birth certificate</message>

<initiator>2</initiator>

<receivers>1</receivers>

<incoming> task_4 </incoming>

</choreographytask>

</choreographytasks>

<participants>

<participant id="1"> Citizen </participant>

<participant id="2"> Citizen birth certificate issue </participant>

</participants>

</choreographydiagram>

Listing 6.4: XML document of final choreography diagram - Birth Certificate Issue

Hospital televisit external
The second example describes an hospital televisit requested by a pediatric patient, au-
thorized by the family of patient, organized by the hospital staff and then executed by
an external specialised group of professionals. It is composed of four pools, one for each
participant: pediatric patient, hospital staff, family and specialised group.

The flow starts from the pediatric patient who requests an appointment on a set date to

6| Validation 73

the hospital staff who, based on the patient’s situation, must ask the patient’s family for
the treatment of medical information related to her. After the authorization to proceed,
it is requested the teleconsultation of the specialised group that executes the televisit to
the patient and generates the medical report after the discussion with hospital staff. In
the end, the final report is then sent to the patient.

Regarding the exclusive gateways marked with the security property of enforceability of
decisions, the first gateway is related to the consent for processing medical information,
which is linked to the security property with a level set to private. The second one is
related to the availability of the external specialized group, which is linked to the security
property with a level set to public.

Analyzing data objects marked with the security property of privity, we can notice that
there are four data objects to consider: the first one regards the purpose for content that
is linked to the public level of privity; the second one is the signed content related to
the private level of privity; then, the patient record and the specialistic report which are
related respectively to the static level and to the private level of privity.

The output obtained by the software is the choreography diagram reported in Figure 6.4:
due to the dimensions of the diagram, for a better understanding all diagrams of this
example are reported at Hospital Televisit External2.

2https://github.com/alessandrodirenzo/Thesis_DiRenzo_Corda_project/tree/main/Diagrams
%20images/HospitalTelevisitExternal

https://github.com/alessandrodirenzo/Thesis_DiRenzo_Corda_project/tree/main/Diagrams%20images/HospitalTelevisitExternal

74 6| Validation

Figure 6.4: Hospital televisit external choreography diagram

Hospital teleconsultation The third example describes an hospital teleconsultation
having as participants family, doctor and pediatric patient. There are two starting events
as visible in pool of family and pediatric patient: the sequence after the events are regu-
lated by the sequence of interactions with the doctor, which enters the diagram after the
request of the family about the availability for a teleconsultation. If there are free slots,
the doctor sends the communication about the date chosen and waits for the consent
notification from the pediatric patient, which has already produced it and now sent it to
the doctor. The consent is then checked and, based on the response, the teleconsultation
can happen with questions from the doctor’s side and answers about the symptoms from
the pediatric patient’s side. As the last activity, the doctor checks the pediatric patient’s

6| Validation 75

record and updates the final report read by the pediatric patient.

Regarding exclusive gateways marked with the security property of enforceability of deci-
sions, in this example, we find only an exclusive gateway related to the decision taken by
the doctor about the consent sent by the pediatric patient, enforced with a user defined
level.

Data objects linked to the security property of privity are three: the consent form signed
by the pediatric patient, the patient health record consulted by the doctor and the final
report stipulated by the doctor and accessible to the pediatric patient, all linked to a
private level of privity.

The output of the software is the choreography diagram shown in Figure 6.5: due to the
dimensions of the diagram, for a better understanding all diagrams of this example are
reported at Hospital teleconsultation3.

Figure 6.5: Hospital teleconsultation choreography diagram

6.1.2. Corner cases

Tests executed have highlighted specific situations where the method produced an output
not in accordance with the contract described in the initial form and it needed adaptations

3https://github.com/alessandrodirenzo/Thesis_DiRenzo_Corda_project/tree/main/Diagrams
%20images/HospitalTeleconsultation

https://github.com/alessandrodirenzo/Thesis_DiRenzo_Corda_project/tree/main/Diagrams%20images/HospitalTeleconsultation

76 6| Validation

to be compliant. The corner cases encountered are described below.

Corner case 1
The first situation to be discussed is when we are going to add security properties to the
choreography diagram and there is a lower number of choreography tasks with respect
to the data objects marked with security property of privity. In this case, the solution
adopted is the following: based on the sequence in which data objects are represented
in the collaboration diagram and the interactions in which they have to be accessed,
data objects still not associated are added to a choreography task that already presents
another data object. Multiple data objects associated with a task are characterized by
the following rules: the order of access to data objects is from left to right, thus a data
object in the left corner is shared among participants before the one in the right corner.
This solution is accepted based on what is described in Section 4.1, where it is claimed the
importance of respecting the sequence of interactions and the availability of the necessary
data to address it. Furthermore, in Section 3.3, it is reported that data objects linked
to the security property of privity have to be present in the choreography diagram to
be managed with special tasks. This corner case highlights the fact that this step is not
automatic and several adaptations might be necessary.

Corner case 2
In the third case analyzed, a corner case is represented by the start event in the pool of the
pediatric patient. That event is not related to a message coming from another participant,
but the pediatric patient is the one who sends the message with the signed consent. The
software produced as output the tasks contained into the choreography diagram depicted
in Figure 6.6.

Figure 6.6: Hospital teleconsultation choreography diagram not acceptable

As reported in Figure 6.6, the choreography diagram is not valid due to the presence
of a task where an initiator is not present in the tasks before, i.e., the pediatric patient

6| Validation 77

in the task "Consent notification". In this case, the solution is to add an interaction
represented by a task where the initiator of the wrong task is present as receiver and the
initiator of the previous task is again the initiator of this additional task. In this case, the
additional task presents the doctor as initiator and as receiver the pediatric patient in a
task called "Allow next task". The message sent by the doctor to the pediatric patient is
symbolic, since the only purpose of this task is to allow the next interaction. This type of
solution modifies the flow adding a task not present in the initial collaboration diagram.
Despite that, one of the guidelines to follow for the transformation from collaboration to
choreography is to preserve the general sense of the contract: in this case, the only way
to allow the interaction, without acting directly on it, is to include the initiator in the
previous task. Other interactions are not modified. In this case, a manual activity has
been necessary to modify the output of the software to make the choreography diagram
acceptable. The new XML document is then taken as input for the next step.

Corner case 3
Realistic cases of "Hospital televisit external" and "Hospital teleconsultation" present
a data object related to the security property of privity, which is not introduced by a
specific participant, thus we cannot claim who is responsible for the introduction of the
document. Moreover, there are participants who access that data object. In this situation,
the participant who accesses first the data object is the one who shares it with others as
indicated by the level of privity. In the example "Hospital televisit external", data object
"Patient record", accessed first by the hospital staff and then by the specialized group, is
shared in a special task by the hospital staff after the "Ask for consultation" task because
it has to be accessed by the specialised group in the next tasks. In the example "Hospital
teleconsultation", data object "Patient final record" is accessed by the doctor and, in this
case, it is shared after the last task by the doctor based on the level of privity related
to data objects. Since we are not assuming that some data can be stored in a common
database accessible by the participants, this solution allows to include all data objects
associated with the security property of privity in the choreography diagram as specified
in Section 3.2.

6.1.3. Results

Birth certificate issue
In the first example, analyzing what the software produced as output, starting from the
Listing 6.1 and the associated Figure 6.1, the two interactions in the collaboration diagram
have been represented correctly with the presence of both participants. In this example,
the difference in what we are focusing on in the collaboration rather than the choreography

78 6| Validation

diagrams is shown: all the activities performed by citizen registry birth certificate from
the "Process birth application form" to the "Cross check information on birth certificate"
are not reported in the choreography diagram. They are considered as started after the
reception of the message in the "Request of new birth certificate" task and executed
when the "Birth certificate registered" task is initiated. We can ensure that the sequence
of interactions between participants is respected. Regarding data objects, as discussed
in Section 6.1.2, the situation represents a corner case handled in Figure 6.2. All data
objects linked to the privity security property present in the collaboration diagram are
represented in the choreography diagram. The additional tasks generated automatically
for the enforcement of security properties are shown in Listing 6.3 and then included in
the choreography diagram as represented in Figure 6.3. Data objects are shared in the
dedicated tasks based on the level of privity associated with single data. We can mark as
positive the first phase of mapping from collaboration to choreography diagram for this
example.

Hospital televisit external
The second example shows how the software produced an output that is characterized by
an elevated number of choreography tasks due to the higher number of interactions with
respect to other examples. This example represents a case where the intermediate end
events in each pool are not reported in the choreography diagram, as depicted in Section
4.1: the exclusive gateway "Available" in the pool of specialised group is characterized
by an intermediate end event if the group is not available, but this is encapsulated in the
choreography diagram in the negative path after the available slots sent by the specialised
group. All the interactions in the collaboration diagram are included with the right
participants. Regarding data objects, all of them have a task dedicated to the sharing of
data based on the level of privity associated with each data object. Data object "Patient
record" has been managed as a corner case detailed in Section 6.1.2. The enforceability of
decisions related to the exclusive gateways in the choreography diagram has been managed
by the software: for both exclusive gateways, the software generated an additional task
for the validators of the second category. In order to validate the decision taken in the
exclusive gateway related to the availability of specialised group, an additional task for
the sharing of data related to the decision has been generated by the software in order to
allow the validation. We can therefore confirm that the results obtained in this phase of
the method are in agreement with what we expected.

Hospital teleconsultation
Regarding the third example, the software produced an output not acceptable based on
the choreography diagram rules: as described in Section 6.1.2, this situation represents a

6| Validation 79

corner case. Adopted the new choreography diagram after the modification, the software
produced valid outputs in the next steps. We can observe that the sequence of the
interactions is respected, even with the additional task with the doctor and the patient.
Regarding data objects, the "Patient health record" highlights a corner case detailed in
Section 6.1.2. All data objects have the task for the sharing and the order of access is
respected. Analyzing exclusive gateways, the only one associated with the enforceability
of decisions is related to consent and it is present in the choreography diagram. The
level of enforceability is user-defined, thus the definition of the set of participants that
validate the decision is left to the modeler of the diagram: in this case, it has been chosen
to validate the decision with both patient and family to show the most complex case of
validation. In case of a negative answer, there are only validators of second category since
there are no interactions in that branch. On the other hand, in case of acceptance of
consent, there are both validators of the first and second categories in successive tasks.
The general sense of the contract has not been modified, all the participants are included
and, with the adaptation related to corner cases, the results of this phase are accepted.

6.2. Choreography to Corda

This section aims to validate the mapping and transformation from the choreography
diagram produced as output of the first mapping described in Section 6.1. Algorithms
detailed in Section 5.2 have been implemented in order to transform the choreography
diagram into a Corda smart contract. In this second phase of validation, the software
takes as input the XML of the choreography diagram generated in the previous phase and
generates the Java classes that represent the skeleton of the CorDapp. The generated
classes include a state with attributes that evolves over time, a contract that regulates
its evolution and workflows that create transactions to consume and generate new states.
What we expect from this part of validation is that the skeleton of CorDapp is generated
including the following elements: nodes representing participants; state and contract;
workflows and transactions with basic rules of commands defined.

6.2.1. Algorithms application

Birth certificate issue
Applying the algorithms to the choreography diagram of the first example, we obtained
the state "BirthCertificateIssue" and the contract "BirthCertificateIssueContract". For
each choreography task, there is a pair of workflows initiator and responder. Related
to the transaction in workflows there is a command in contract that regulates the pres-

80 6| Validation

ence of input state and the value of the attribute message which can be empty or not:
empty if it is a workflow that shares files, otherwise not empty. Since there are no
exclusive gateways, the attributes related to possible branches and to validators of the
first and second categories are not present. Data objects are shared in the transactions
coming from "PrivitySharingDataOneFlow", "PrivitySharingDataTwoFlow" and "Privi-
tySharingDataThreeFlow" workflows. In this case, the additional attributes for the state
regard only the two workflows not related to the sharing of data. Java class of the state
"BirthCertificateIssue and "BirthCertificateIssueContract" is described in Listing 6.5.

public class BirthCertificateIssue implements ContractState{

UniqueIdentifier idState;

String message;

Party initiator;

List<Party> receivers;

boolean datashared1;

boolean datashared2;

boolean datashared3;

public BirthCertificateIssue(UniqueIdentifier idState, String

message, Party initiator, List<Party> receivers, boolean

datashared1, boolean datashared2, boolean datashared3){

this.idState = idState;

this.message = message;

this.initiator = initiator;

this.receivers = receivers;

this.datashared1 = datashared1;

this.datashared2 = datashared2;

this.datashared3 = datashared3;

}

public UniqueIdentifier getidState() {

return idState;

}

public String getmessage() {

return message;

}

6| Validation 81

public Party getinitiator() {

return initiator;

}

public List<Party> getreceivers() {

return receivers;

}

public boolean isdatashared1() {

return datashared1;

}

public boolean isdatashared2() {

return datashared2;

}

public boolean isdatashared3() {

return datashared3;

}

}

Listing 6.5: State class - Birth Certificate Issue

After the generation of classes and participants, nodes are deployed: Figure 6.7 shows
nodes of citizen, registry birth certificate and default notary deployed in Corda environ-
ment.

82 6| Validation

Figure 6.7: Nodes deployed: citizen, citizen registry birth certificate and notary

6| Validation 83

The transaction related to the first workflow "Request of new birth certificate" initiated
by citizen and received by citizen registry birth certificate, is reported in Figure 6.8.

Figure 6.8: Transaction generated by "Request of new birth certificate" workflow

In order to validate that the transaction signed by participants has been correctly stored
inside personal vaults, we need to query the related vaults, as shown in Figure 6.9. As
visible, the transaction is contained in both participants in row "ref:txHash", who now
share the same state. For completeness, the screens are reported at corDapp screens4.

4https://github.com/alessandrodirenzo/Thesis_DiRenzo_Corda_project/tree/main/Diagrams%20images/
CorDapp%20screens

https://github.com/alessandrodirenzo/Thesis_DiRenzo_Corda_project/tree/main/Diagrams%20images/CorDapp%20screens

84 6| Validation

(a) Citizen’s vault (b) Citizen registry birth certificate’s vault

Figure 6.9: Vaults of participants

Hospital televisit external
The state and the contract coming from the application of the algorithms are respec-
tively: "HospitalTelevisitExternal" and "HospitalTelevisitExternalContract". Since there
are two exclusive gateways, each of them adds the attributes related to the validators of
first and second category for the correspondent decision. In this case there is even the
workflow for the sharing of data regarding the second gateway, with "DecisionSharing-
Data" name. Data objects are shared in dedicated workflows with names "PrivityShar-
ingData". In this case, it is visible that commands and workflows are increased in number
and, at the same time, the additional attributes required for other workflows that are not
involved in validation or sharing data are higher. All participants are represented with a
node, in addition to the default node for the Notary.

Hospital teleconsultation
In the third example, the algorithms produced as output the state "HospitalTeleconsul-
tation" and the related contract "HospitalTeleconsultationContract". For each chore-
ography task, there are workflows of initiator and responder, with related transactions
regulated by the commands sections in the contract. Commands present basic rules re-

6| Validation 85

lated to the presence of the input state and whether the attribute of message is empty or
not. Regarding the decision related to the consent, there are attributes related to valida-
tors of first and second categories in the class of the state. Data objects are shared among
participants in the workflows related to tasks with "PrivitySharingData" name through
the method for the uploading of files. All participants are represented with a node, in
addition to the default node for the Notary.

6.2.2. Comments

Analyzing the results of the algorithms applied to the realistic examples, there are some
behaviors to discuss in detail. Contexts like "Hospital external televisit" highlith how the
number of attributes associated with the state produced by the transactions may increase
due to the number of tasks in the choreography diagram. Regarding the participants
to the network, in the "Hospital external televisit" example there is the family who is
a participant whose presence in the transactions is not guaranteed, but it depends on
the evolution of the contract. The participant is, however, added to the private network
from the algorithm at the beginning, not in the evolution of the contract by triggering
a particular event. This situation can represent a corner case if some information are
shared among all participants in a moment where that participant shouldn’t be in the
network. A similar case can be found even in the case of "Hospital teleconsultation" with
specialised group, which can be not available but involved in the sharing of data. The
output states added to the transaction in each workflow are composed of attributes set
to the default value of false: in order to obtain a real evolution of the state, they must be
set correctly. In order to specify a flow and the correct dependencies among transactions,
in each commands section there are needed rules for specifying the values of attributes in
each output state.

6.3. Discussion

Combining the results from both Section 6.1 and Section 6.2, the validation phase is
completed. Examining the XML documents, the diagrams and the skeleton of CorDapps
generated, the contracts follow the requirements of the contexts represented, with security
properties enforced as detailed in the previous chapters. In order to replicate the experi-
ments, the steps performed in both phases with related results are reported a repository
Github5.

Despite the positive general result, there are some considerations about the method pro-
5https://github.com/alessandrodirenzo/Thesis_DiRenzo_Corda_project

86 6| Validation

posed:

- The mapping from collaboration to choreography diagram is the most critical phase:
since there is almost a direct correspondence in the transformation from choreogra-
phy diagram to Corda that doesn’t allow to adapt to particular situations applying
the algorithms, errors in the generation of the choreography diagram are propagated
into the final CorDapp. For instance, in the case of "Hospital teleconsultation", the
diagram generated at the beginning was not valid due to the presence of multiple
start events that introduced a new participant as initiator without being involved in
the previous tasks. In this case, without the correct changes, the algorithms would
have generated a contract that doesn’t respect the initial situation.

- The number of messages, the presence of exclusive gateways and data objects in-
fluence the number of tasks in the choreography diagram. As visible in the three
examples, the number of tasks can vary significantly and it influences the number
of attributes of the state after the transformation in a CorDapp. In a contract with
a lot of interactions, exclusive gateways and data objects, this could represent a
limitation for the scalability of the method that may lead to different choices in
order to represent the different steps of the state.

- The software is related to the specific input where the necessary information are
reported: if we don’t specify exactly the participants who require the data in case
of sharing of data objects or who are the validators of second category, the soft-
ware is not able to retrieve the information analyzing the base version of the XML
documents.

- In order to deploy a complete CorDapp, that is able to execute transactions following
the rules specified in the commands section, there are needed specific imports and
methods in addition to the skeleton generated by the software. Additional rules in
the commands section need to specify the values of attributes related to the output
state generated by transactions in order to evolve correctly.

87

7| Conclusions

This thesis discusses a method for the enforcement of security properties of smart contracts
for modeling processes such as confidentiality of data, i.e., privity, and enforceability of
decisions.

The method is composed of three parts: the contract described with SecBPMN2BC mod-
eling language that is mapped into a BPMN Choreography with security notations; the
extension of BPMN Choreography in order to include the security properties; the mapping
and transformation of choreography diagram into a contract in Corda environment. In
particular, the first mapping determines how to transform a collaboration into a choreog-
raphy diagram based on the interactions among participants and the security properties
depicted in the starting diagram. The extension of choreography diagram includes the
security properties not reported by design and indicates how to manage them with addi-
tional choreography tasks. The mapping and transformation from choreography diagram
to Corda shows how to realize the skeleton of a CorDapp, with the definition of the main
objects such as state, contract and workflows.

We implemented a software that automatizes part of the process: from collaboration to
choreography diagram with a semi-automatic procedure and then from choreography to
the skeleton of a CorDapp. We tested the method through three realistic cases, show-
ing that the method proposed can be used in order to enforce the security properties
mentioned above, with particular attention to the first transformation from collaboration
to choreography diagram: possible errors are propagated in the next phases and com-
promises the effectiveness of the contract. Regarding the second phase, the attention is
related to the values of attributes in the output states generated by transactions that may
not respect the desired evolution of the state. At the same time, they represent only a
small sample in order to declare the method working in all contexts and on all types of
processes.

Certainly, the method needs to be tested further with a greater pool of samples and
with external reviewers, considering supplementing the tests with surveys. Furthermore,
some of the activities of mapping and transformation of diagrams, in order to provide an

88 7| Conclusions

accepted input to the method, have been performed manually with the presence of experts.
For future works, the implementation of the method may include fully automated software
that, given a contract described with SecBPMN2BC, produces a complete CorDapp as
output ready to be applied in real business contexts. Furthermore, some research works
can be carried out analyzing how to overcome the current limitations of the software
related, for instance, to the input types including a wide range of acceptable documents.

89

Bibliography

[1] O. Altuhhov, R. Matulevičius, and N. Ahmed. An extension of business process model
and notation for security risk management. International Journal of Information
System Modeling and Design (IJISMD), 4(4):93–113, 2013.

[2] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman. Medrec: Using blockchain for med-
ical data access and permission management. In 2016 2nd international conference
on open and big data (OBD), pages 25–30. IEEE, 2016.

[3] K. Batoulis, A. Meyer, E. Bazhenova, G. Decker, and M. Weske. Extracting de-
cision logic from process models. In Advanced Information Systems Engineering:
27th International Conference, CAiSE 2015, Stockholm, Sweden, June 8-12, 2015,
Proceedings 27, pages 349–366. Springer, 2015.

[4] A. Berry and Z. Milosevic. Extending choreography with business contract con-
straints. International Journal of Cooperative Information Systems, 14(02n03):131–
179, 2005.

[5] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier,
N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy, et al. Formal
verification of smart contracts: Short paper. In Proceedings of the 2016 ACM work-
shop on programming languages and analysis for security, pages 91–96, 2016.

[6] R. G. Brown, J. Carlyle, I. Grigg, and M. Hearn. Corda: an introduction. R3 CEV,
August, 1(15):14, 2016.

[7] V. Buterin et al. A next-generation smart contract and decentralized application
platform.

[8] B. Carminati, E. Ferrari, and C. Rondanini. Blockchain as a platform for secure
inter-organizational business processes. In 2018 IEEE 4th International Conference
on Collaboration and Internet Computing (CIC), pages 122–129. IEEE, 2018.

[9] Chain. Chain.com, 2014. URL https://www.chain.com. Accessed on May 19, 2023.

[10] O. Choudhury, N. Rudolph, I. Sylla, N. Fairoza, and A. Das. Auto-generation of

https://www.chain.com

90 | Bibliography

smart contracts from domain-specific ontologies and semantic rules. In 2018 IEEE In-
ternational Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), pages 963–970. IEEE, 2018.

[11] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi. Step by step towards
creating a safe smart contract: Lessons and insights from a cryptocurrency lab.
In Financial Cryptography and Data Security: FC 2016 International Workshops,
BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26, 2016,
Revised Selected Papers 20, pages 79–94. Springer, 2016.

[12] C. Di Ciccio, A. Cecconi, M. Dumas, L. García-Bañuelos, O. López-Pintado, Q. Lu,
J. Mendling, A. Ponomarev, A. Binh Tran, and I. Weber. Blockchain support for
collaborative business processes. Informatik Spektrum, 42:182–190, 2019.

[13] L. García-Bañuelos, A. Ponomarev, M. Dumas, and I. Weber. Optimized execution
of business processes on blockchain. In Business Process Management: 15th Interna-
tional Conference, BPM 2017, Barcelona, Spain, September 10–15, 2017, Proceedings
15, pages 130–146. Springer, 2017.

[14] S. Haarmann, K. Batoulis, A. Nikaj, and M. Weske. Dmn decision execution on the
ethereum blockchain. In Advanced Information Systems Engineering: 30th Interna-
tional Conference, CAiSE 2018, Tallinn, Estonia, June 11-15, 2018, Proceedings 30,
pages 327–341. Springer, 2018.

[15] S. Haarmann, K. Batoulis, A. Nikaj, and M. Weske. Executing collaborative decisions
confidentially on blockchains. In Business Process Management: Blockchain and
Central and Eastern Europe Forum: BPM 2019 Blockchain and CEE Forum, Vienna,
Austria, September 1–6, 2019, Proceedings 17, pages 119–135. Springer, 2019.

[16] W. Hu, Z. Fan, and Y. Gao. Research on smart contract optimization method on
blockchain. IT Professional, 21(5):33–38, 2019.

[17] HYPERLEDGER. An introduction to Hyperledger, 2018. URL http:

//www.hyperledger.org/wp-content/uploads/2018/07/HL_Whitepaper_

IntroductiontoHyperledger.pdf. Accessed on April 2, 2023.

[18] J. Köpke, G. Meroni, and M. Salnitri. Designing secure business processes for
blockchains with secbpmn2bc. Future Generation Computer Systems, 141:382–398,
2023.

[19] W. Labda, N. Mehandjiev, and P. Sampaio. Modeling of privacy-aware business

http://www.hyperledger.org/wp-content/uploads/2018/07/HL_Whitepaper_IntroductiontoHyperledger.pdf
http://www.hyperledger.org/wp-content/uploads/2018/07/HL_Whitepaper_IntroductiontoHyperledger.pdf
http://www.hyperledger.org/wp-content/uploads/2018/07/HL_Whitepaper_IntroductiontoHyperledger.pdf

| Bibliography 91

processes in bpmn to protect personal data. In Proceedings of the 29th Annual ACM
Symposium on Applied Computing, pages 1399–1405, 2014.

[20] C. Lin, D. He, X. Huang, K.-K. R. Choo, and A. V. Vasilakos. Bsein: A blockchain-
based secure mutual authentication with fine-grained access control system for in-
dustry 4.0. Journal of network and computer applications, 116:42–52, 2018.

[21] Z. Liu and J. Liu. Formal verification of blockchain smart contract based on colored
petri net models. In 2019 IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC), volume 2, pages 555–560. ieee, 2019.

[22] T. Lodderstedt, D. Basin, and J. Doser. Secureuml: A uml-based modeling language
for model-driven security. In UML 2002—The Unified Modeling Language: Model
Engineering, Concepts, and Tools 5th International Conference Dresden, Germany,
September 30–October 4, 2002 Proceedings, pages 426–441. Springer, 2002.

[23] F. Loukil, K. Boukadi, M. Abed, and C. Ghedira-Guegan. Decentralized collaborative
business process execution using blockchain. World Wide Web, 24(5):1645–1663,
2021.

[24] A. Mavridou and A. Laszka. Designing secure ethereum smart contracts: A finite
state machine based approach. In Financial Cryptography and Data Security: 22nd
International Conference, FC 2018, Nieuwpoort, Curaçao, February 26–March 2,
2018, Revised Selected Papers 22, pages 523–540. Springer, 2018.

[25] J. Mendling, I. Weber, W. V. D. Aalst, J. V. Brocke, C. Cabanillas, F. Daniel,
S. Debois, C. D. Ciccio, M. Dumas, S. Dustdar, et al. Blockchains for business pro-
cess management-challenges and opportunities. ACM Transactions on Management
Information Systems (TMIS), 9(1):1–16, 2018.

[26] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized business
review, page 21260, 2008.

[27] A. Nikaj, K. Batoulis, and M. Weske. Rest-enabled decision making in business
process choreographies. In Service-Oriented Computing: 14th International Confer-
ence, ICSOC 2016, Banff, AB, Canada, October 10-13, 2016, Proceedings 14, pages
547–554. Springer, 2016.

[28] OMG. Business Process Model and Notation (BPMN) v.2.0, 2011. URL https:

//www.omg.org/spec/BPMN/2.0/PDF. Accessed on March 22, 2023.

[29] OMG. Decision Model and Notation Version 1.4, 2023. URL https://www.omg.

org/spec/DMN/1.4/PDF. Accessed on April 21, 2023.

https://www.omg.org/spec/BPMN/2.0/PDF
https://www.omg.org/spec/BPMN/2.0/PDF
https://www.omg.org/spec/DMN/1.4/PDF
https://www.omg.org/spec/DMN/1.4/PDF

92 | Bibliography

[30] P. Pullonen, R. Matulevičius, and D. Bogdanov. Pe-bpmn: privacy-enhanced business
process model and notation. In Business Process Management: 15th International
Conference, BPM 2017, Barcelona, Spain, September 10–15, 2017, Proceedings 15,
pages 40–56. Springer, 2017.

[31] R3. Corda fundamental concepts, 2016. URL https://training.corda.net/

corda-fundamentals/concepts. Accessed on May 17, 2023.

[32] A. Rodríguez, E. Fernández-Medina, and M. Piattini. Towards a uml 2.0 extension for
the modeling of security requirements in business processes. In Trust and Privacy in
Digital Business: Third International Conference, TrustBus 2006, Kraków, Poland,
September 4-8, 2006. Proceedings 3, pages 51–61. Springer, 2006.

[33] A. Rodríguez, E. Fernández-Medina, and M. Piattini. A bpmn extension for the
modeling of security requirements in business processes. IEICE transactions on in-
formation and systems, 90(4):745–752, 2007.

[34] N. Szabo. Formalizing and securing relationships on public networks. First monday,
1997.

[35] T. Tateishi, S. Yoshihama, N. Sato, and S. Saito. Automatic smart contract genera-
tion using controlled natural language and template. IBM Journal of Research and
Development, 63(2/3):6–1, 2019.

[36] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and M. Vechev.
Securify: Practical security analysis of smart contracts. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pages 67–82,
2018.

[37] J. L. Vivas, J. A. Montenegro, and J. López. Towards a business process-driven
framework for security engineering with the uml. In Information Security: 6th Inter-
national Conference, ISC 2003, Bristol, UK, October 1-3, 2003. Proceedings 6, pages
381–395. Springer, 2003.

[38] H. Wang, C. Guo, and S. Cheng. Loc—a new financial loan management system
based on smart contracts. Future Generation Computer Systems, 100:648–655, 2019.

[39] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and J. Mendling. Un-
trusted business process monitoring and execution using blockchain. In Business
Process Management: 14th International Conference, BPM 2016, Rio de Janeiro,
Brazil, September 18-22, 2016. Proceedings 14, pages 329–347. Springer, 2016.

[40] R. Yang, R. Wakefield, S. Lyu, S. Jayasuriya, F. Han, X. Yi, X. Yang, G. Amaras-

https://training.corda.net/corda-fundamentals/concepts
https://training.corda.net/corda-fundamentals/concepts

7| BIBLIOGRAPHY 93

inghe, and S. Chen. Public and private blockchain in construction business process
and information integration. Automation in construction, 118:103276, 2020.

[41] S. Zareen, A. Akram, and S. Ahmad Khan. Security requirements engineering frame-
work with bpmn 2.0. 2 extension model for development of information systems.
Applied Sciences, 10(14):4981, 2020.

[42] A. Zarghami, B. Sapkota, M. Z. Eslami, and M. van Sinderen. Decision as a ser-
vice: Separating decision-making from application process logic. In 2012 IEEE 16th
International Enterprise Distributed Object Computing Conference, pages 103–112.
IEEE, 2012.

[43] R. Zhang, R. Xue, and L. Liu. Security and privacy on blockchain. ACM Computing
Surveys (CSUR), 52(3):1–34, 2019.

[44] N. Zupan, P. Kasinathan, J. Cuellar, and M. Sauer. Secure smart contract generation
based on petri nets. In Blockchain Technology for Industry 4.0: Secure, Decentralized,
Distributed and Trusted Industry Environment, pages 73–98. Springer, 2020.

95

List of Figures

2.1 Affiliated medical visit . 20
2.2 Secure business processes definition workflow from [18] 21
2.3 Running example with SecBPMN2BC notations 25
2.4 Unilateral and bilateral communication . 26
2.5 Choreography diagram of book loan . 28
2.6 States shared between nodes of Corda network from [31] 30
2.7 Commands in transactions from [31] . 31

3.1 Running example choreography diagram enriched with security properties . 37
3.2 Choreography diagram generated from extended choreography diagram in

Figure 3.1 . 40

4.1 Choreography diagram of affiliated medical visit 47

6.1 Choreography diagram of birth certificate issue 68
6.2 Choreography diagram extended with security notations of birth certificate

issue . 70
6.3 Choreography diagram from the extended choreography diagram of birth

certificate issue . 71
6.4 Hospital televisit external choreography diagram 74
6.5 Hospital teleconsultation choreography diagram 75
6.6 Hospital teleconsultation choreography diagram not acceptable 76
6.7 Nodes deployed: citizen, citizen registry birth certificate and notary 82
6.8 Transaction generated by "Request of new birth certificate" workflow . . . 83
6.9 Vaults of participants . 84

97

List of Tables

2.1 Privity spheres . 22
2.2 Enforceability of decisions . 23

4.1 Mapping Collaboration to Choreography 43

5.1 Conceptual mapping . 52

99

List of Algorithms
5.1 Choreography to Corda . 55
5.2 State and contract name definition . 56
5.3 Adding nodes to the network . 56
5.4 Workflows and state attributes . 59
5.5 Commands definition . 60
5.6 Commands rules definition . 61
5.7 Messages representation in Corda . 62
5.8 Exclusive gateways in Corda . 63

101

Listings

6.1 XML document - Birth Certificate Issue 67
6.2 XML document enriched with security properties - Birth Certificate Issue . 69
6.3 XML document of additional tasks - Birth Certificate Issue 70
6.4 XML document of final choreography diagram - Birth Certificate Issue . . 71
6.5 State class - Birth Certificate Issue . 80

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	State of the art
	Processes representation and execution on blockchain
	Secure data in blockchain environment
	Enforcement of decisions
	Assessment of secure smart contracts

	Baseline
	Running example
	BPMN Collaboration
	SecBPMN2BC Modeling language
	BPMN Choreography
	Corda

	Method definition
	Method description
	Assumptions of method
	Extended BPMN Choreography

	From Collaboration to Choreography
	Collaboration to Choreography transition
	Implications

	Application of mapping from Collaboration to Choreography

	From Choreography to Corda
	Conceptual mapping
	Rules of transformation

	Validation
	Collaboration to Choreography
	Realistic examples
	Corner cases
	Results

	Choreography to Corda
	Algorithms application
	Comments

	Discussion

	Conclusions
	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	Listings

