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1. Introduction
The number of satellites is growing continu-
ously year after year. This, coupled with the
problem of space debris, leads to possible haz-
ardous impacts with resident orbiting objects.
For this reason, collision avoidance manoeuvres
(CAMs) are planned to mitigate the risk. The
increasing number of close approaches and ob-
jects makes analysis more complex and operator
time-demanding, thus came the need of compu-
tationally efficient models for preliminary anal-
ysis. The aim of this work is to develop a semi-
analytical mathematical model for the 3D low
thrust collision avoidance problem. Some rele-
vant research papers investigate such a problem.
In Gonzalo et al. [2] the analytical expression
for the variations of the Keplerian elements as
a function of the eccentric anomaly is obtained
by means of incomplete elliptic integrals of first
and second kind. In Gonzalo et al. [4] those so-
lutions are decomposed into a sum of two contri-
butions: a mean value and an oscillatory term.
Such a decoupling yields both to an easier way
to handle such solutions and a faster evaluation
of the time law. This is somehow a precursor
of what we will do in this work. The main as-
sumption in these two works is the approxima-

tion at zero order of the temporal derivative of
the eccentric anomaly. In Gonzalo et al. [3]
this limitation is overcome with a first order ap-
proximation. In Gao [1] the problem is anal-
ysed in terms of three types of control laws: the
perigee centered tangential steering, the apogee
centered inertial steering and the piecewise con-
stant yaw steering. It is mostly the only one
who tries to build up a complete model rely-
ing its argumentation on a sort of superposition
principle suitably adapted for non linear equa-
tions. In our work instead, starting from Gauss
Planetary Equations in absence of any environ-
mental perturbation, we first passed from the
time-derivative formulation to a true anomaly-
derivative one. Then, assuming a small variation
of the Keplerian parameters after the applica-
tion of the thrust action, we performed a Tay-
lor expansion in the neighbourhood of the ref-
erence condition. From this point on, we devel-
oped two different methods. The first, denoted
as full model, consists of a direct integration of
the system obtained after the expansion. On
the contrary, the second, denoted as small thrust
model, has in addition a MacLaurin expansion of
the previous equations with the aim of making
explicit the dependence from the small thrust
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parameters. In both cases the integrations are
performed by means of the Fourier Series tool,
allowing not only to carry out the integrations
in an easier manner, but also to take apart the
constant and oscillatory contributions of the so-
lutions. In the case of the small thrust model
the expressions of the Fourier Series coefficients
are provided in closed form in terms of complete
elliptic integrals and series expansions involving
Gauss Hypergeometric function. Finally, differ-
ent simulations with various test cases are pro-
vided to assess the accuracy and the effective-
ness of the method.

2. Preliminary definitions
Let f(θ) be a 2π-periodic function, then its
Fourier Series expansion F[f ](θ) is:

F[f ](θ) =
α0[f ]

2
+ P2π

(
αn[f ]
βn[f ]

∣∣∣∣ θ) (1)

where P2π is the Periodic P function of period
2π defined as:

P2π

(
αn[f ]
βn[f ]

∣∣∣∣ θ) =

=
+∞∑
n=1

{αn[f ] cos(nθ) + βn[f ] sin(nθ)}

and α0[f ], αn[f ] and βn[f ] are the coefficients of
the Fourier Series expansion defined as:

α0[f ] =
1

π

∫ π

−π
f(θ)dθ

αn[f ] =
1

π

∫ π

−π
f(θ) cos(nθ)dθ

βn[f ] =
1

π

∫ π

−π
f(θ) sin(nθ)dθ

The main advantage of expanding f in the form
of Equation (1) is that the operations of deriva-
tion and integration becomes straightforward.
In particular:

Definition 2.1. The θ-integral of F[f ](θ) is:∫
F[f ](θ)dθ =

α0[f ]

2
θ + P2π

(
−βn[f ]/n
αn[f ]/n

∣∣∣∣ θ)
In a similar fashion other integrals such as the
one of θf(θ) or exp(−kθ)f(θ) can be obtained.
We are not reporting those here for brevity.

3. Gauss Planetary Equations
overview

In general, the Gauss Planetary Equations is a
time domain set of ODEs of the kind:

da/dt = α(a, e, θ; at)

de/dt = β(a, e, θ; at, an)

di/dt = γ(a, e, ω, θ; ah)

dΩ/dt = δ(a, e, i, ω, θ; ah)

dω/dt = ε(a, e, i, ω, θ; at, an, ah)

dθ/dt = ζ(a, e, θ; at, an)

(2)

In the system (2), the shape problem {a, e, θ}
is decoupled from the orientation problem
{i,Ω, ω} because, since {at, an, ah} are constant,
the functions α, β and ζ form a self consisting
subsystem of ODEs. Assuming as independent
variable the true anomaly θ and indicating with
()′ all the θ-derivatives, the system (2) is led to:

a′ = α/ζ = R(a, e, θ; at, an)

e′ = β/ζ = S(a, e, θ; at, an)

t′ = 1/ζ = τ(a, e, θ; at, an)

i′ = γ/ζ = I(a, e, ω, θ; at, an, ah)

Ω′ = δ/ζ = O(a, e, i, ω, θ; at, an, ah)

ω′ = ε/ζ = O(a, e, i, ω, θ; at, an, ah)

(3)

The constant small thrust parameters are
present inside these functions in terms of com-
plicated algebraic forms. They are not referred
into the functional dependencies in the further
computations to have a simpler notation.

4. The full model
The solution procedure consists of expanding in
Taylor series all the previous functions near to
the reference condition x0 = {a0, e0, i0, ω0}. All
functions are expanded up to first order with
the exception of S. We also assume that i is af-
fected in its variation from a and e much more
than from ω. This assumptions are done co-
herently with the results of different numerical
simulations. The system (3) reduces to:

a′ = R0 +Raā+Reē

e′ = S0

t′ = τ0 + τaā+ τeē

i′ = I0 + Iaā+ Ieē

Ω′ = O0 + Oaā+ Oeē+ Oiī+ Oωω̄

ω′ = O0 +Oaā+Oeē+Oiī+Oωω̄

(4a)
(4b)
(4c)
(4d)

(4e)

(4f)
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Where, if f(x, θ) is a generic function, then:

f0 = f(x0, θ), fxj =
∂f

∂xj

∣∣∣∣
(x0,θ)

and, if x is the generic Keplerian element, then:

x̄ = x− x0

4.1. Zero order solution for the or-
bital shape problem

Assuming that both variations of a and e are
driven by the zero order terms, Equation (4a)
and Equation (4b) become:

a′ = R0(θ) and e′ = S0(θ)

and integrating we get :

a(θ)− a0 =
α0[R0]

2
θ + Ξa(θ) (5)

e(θ)− e0 =
α0[S0]

2
θ + Ξe(θ) (6)

with:

Ξa(θ) = −α0[R0]

2
θ0 +

[
P2π

(
−βn[R0]/n
αn[R0]/n

∣∣∣∣ ξ)]θ
θ0

Ξe(θ) = −α0[S0]

2
θ0 +

[
P2π

(
−βn[S0]/n
αn[S0]/n

∣∣∣∣ ξ)]θ
θ0

Plugging Equation (5) and Equation (6) into
Equation (4c) and integrating the correspond-
ing time law assumes the form:

t− t0 = Aθ2 +B(θ)θ + C(θ)− kt (7)

where kt is a constant.

4.2. First order approximation for
the semi-major axis

The general statement is expressed by Equa-
tion (4a) and Equation (4b). Taking the θ-
integral of Equation (4b) as in Equation (6) and
plugging that solution into Equation (4a) we ob-
tain:

a′ = R0(θ) +Ra(θ)(a− a0)

where:

R0(θ) = R01(θ) + R02(θ)θ

with:

R01 = R0 +ReΞe, R02 =
α0[S0]

2
Re

Then with the change of variable:

ā = exp[Ra(θ)]v(θ), Ra(θ) =

∫
Ra(θ)dθ

the ODE reduces to:

v′ = exp[−Ra(θ)]R0(θ), v(θ0) = 0

Hence the overall solution is given by:

ā = exp[Ra(θ)]

∫ θ

θ0

exp[−Ra(ξ)]R0(ξ)dξ (8)

The relevant integral to be performed in Equa-
tion (8) is:

It(θ) =

∫
exp[−Ra(θ)]R0(θ)dθ (9)

where Ra is defined as:

Ra(θ) = kθ + P2π

(
−βn[Ra]/n
αn[Ra]/n

∣∣∣∣ θ)
with k = α0[Ra]/2. Then its exponential can be
conveniently decomposed as:

exp[±Ra(θ)] = exp [±kθ] Ξ±Ra(θ)

where Ξ+Ra and Ξ−Ra are defined as:

Ξ±Ra(θ) = exp

[
±P2π

(
−βn[Ra]/n
αn[Ra]/n

∣∣∣∣ θ)]
Then the integral in Equation (9) reduces to:

It(θ) =

∫ {
R̂01(θ) + R̂02(θ)θ

}
exp[−kθ]dθ

with:

R̂01(θ) = Ξ−Ra(θ)[R0(θ) +Re(θ)Ξe(θ)]

R̂02(θ) = Ξ−Ra(θ)α0[S0]Re(θ)/2

whose solution assumes the form:

It(θ) = [B0(θ) + B1(θ)θ] exp[−kθ] (10)

So finally, plugging Equation (10) into Equa-
tion (8) we get:

ā = B̃0(θ) + B̃1(θ)θ + B̃2(θ) exp[kθ] (11)
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with:

B̃0 = Ξ+RaB0, B̃1 = Ξ+RaB1

B̃2 = −Ξ+RaIt(θ0)

Plugging Equation (11) and Equation (6) into
Equation (4c) and integrating, the time law as-
sumes the form:

t− t0 = Âθ2 + B̂(θ)θ + Ĉ(θ) + D̂(θ) exp[kθ]+

−
{
Âθ2

0 + B̂(θ0)θ0 + Ĉ(θ0) + D̂(θ0) exp[kθ0]
}

4.3. Orientation problem
Once the shape problem has been solved, we can
proceed to evaluate the remaining three Keple-
rian elements. Starting from Equation (4d), the
ODE for the inclination can be rewritten as:

i′ = Ai′(θ) +
1

2
Bi′(θ)θ (12)

with:

Ai′(θ) = I0(θ) + Ia(θ)Ξa(θ) + Ie(θ)Ξe(θ)

Bi′(θ) = α0[R0]Ia(θ) + α0[S0]Ie(θ)

Integrating Equation (12) in the same way of
Equation (7) we get:

i(θ)− i0 = Aiθ
2 +Bi(θ)θ + Ci(θ)− ki (13)

where ki is a constant. Plugging Equation (13)
into Equation (4f) we obtain the form:

ω′ = Aω′(θ)θ2 +Bω′(θ)θ + Cω′(θ) +Oω(θ)ω̄

with:

Aω′(θ) = AiOi(θ)

Bω′(θ) =
1

2
α0 [R0]Oa(θ) +Bi(θ)Oi(θ)+

+
1

2
α0 [S0]Oe(θ)

Cω′(θ) = Ξa(θ)Oa(θ) + [Ci(θ)− ki]Oi(θ)+
+ Ξe(θ)Oe(θ) +O0(θ)

Similarly to Equation (11) we get a solution in
the form:

ω(θ)− ω0 = Aω(θ)θ2 +Bω(θ)θ+

+ Cω(θ) +Dω(θ) exp[kθ]
(14)

Finally plugging Equation (14) into Equa-
tion (4e) we get:

Ω′ = AΩ′(θ)θ2 +BΩ′(θ)θ+

+ CΩ′(θ) +DΩ′(θ) exp[kθ]

with:

AΩ′(θ) = AiOi(θ) +Aω(θ)Oω(θ)

BΩ′(θ) =
1

2
α0 [R0]Oa(θ) +Bi(θ)Oi(θ)+

+Bω(θ)Oω(θ) +
1

2
α0 [S0]Oe(θ)

CΩ′(θ) = Ξa(θ)Oa(θ) + Oi(θ) (Ci(θ)− ki) +

+ Cω(θ)Oω(θ) + Ξe(θ)Oe(θ) + O0(θ)

DΩ′(θ) = Dω(θ)Oω(θ)

and integrating the solution assumes the form:

Ω(θ)− Ω0 = AΩθ
3 +BΩ(θ)θ2 + CΩ(θ)θ+

+DΩ(θ) + EΩ(θ) exp[kθ]− kΩ

5. The small thrust model
For at → 0, an → 0 and ah → 0, performing a
McLaurin expansion truncated at first order we
pass from the form in system (4) to:

a′ = {R̄at,0 + R̄at,aā+ R̄at,eē}ãt
e′ = S̄at,0ãt + S̄an,0ãn

i′ = {Īah,0 + Īah,aā+ Īah,eē}ãh
t′ = {τ̄at,0 + τ̄at,aā+ τ̄at,eē}ãt+
+ {τ̄an,0 + τ̄an,aā+ τ̄an,eē}ãn+

+ τ00 + τ0,aā+ τ0,eē

ω′ = {Ōat,0 + Ōat,aā+ Ōat,eē}ãt+
+ {Ōan,0 + Ōan,aā+ Ōan,eē}ãn+

+ {Ōah,0 + Ōah,aā+ Ōah,eē+
+ Ōah,iī+ Ōah,ωω̄}ãh
Ω′ = {Ōah,0 + Ōah,aā+ Ōah,eē+

+ Ōah,iī+ Ōah,ωω̄}ãh

(15a)
(15b)

(15c)

(15d)

(15e)

(15f)

where we defined the adimentional thrust pa-
rameters:

ãt =
a2

0

µ
at, ãn =

a2
0

µ
an, ãh =

a2
0

µ
ah

and if y(θ) is the generic function then:

ȳ =
µ

a2
0

y(θ)

5.1. small thrust model main results
We will now go through the main results ob-
tained. Let be:

R(e, θ) =
√

1 + e2 + 2e cos(θ)

S(e, θ) = (e cos(θ) + 1)2
(16)
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The ODE for the semi-major axis is given by
Equation (15a) and has a solution in the form:

ā = k0[1− {1 + ãtQa} exp(kaθ + k1)] (17)

where k0, ka and k1 are constants and:

Qa(θ) = 6λP2π

(
0

αn[g]/n

∣∣∣∣ θ)
with λ = 1−e2

0 and g(θ) = R(e0, θ)/S(e0, θ). In
a similar fashion, for the eccentricity we get:

ē = ãt[keθ +Q1e] + ãnQ2e (18)

where ke is a constant and:

Q1e(θ) = −keθ0 + 2λ2

[
P2π

(
0

αn[ ¯̄Sat,0]/n

∣∣∣∣ ξ)]θ
θ0

Q2e(θ) = −λ3

[
P2π

(
−βn[ ¯̄San,0]/n

0

∣∣∣∣ ξ)]θ
θ0

with:

¯̄Sat,0(θ) =
e0 + cos(θ)

S(e0, θ)R(e0, θ)

¯̄San,0(θ) =
sin(θ)

S3/2(e0, θ)R(e0, θ)

Rewriting Equation (15d) in matrix form nota-
tion, substituting into that the expressions of ā
and ē given by Equation (17) and Equation (18)
respectively and neglecting all terms higher than
first order we get:

t′ = w

 T1(θ) + T2(θ) exp[kaθ + k1]
T3(θ) + T4(θ)θ + T5(θ) exp[kaθ + k1]

T6(θ) + T7(θ) exp[kaθ + k1]


where w = [1, ãt, ãn] and T1 to T7 are obtained
by combination of the previous solutions.
For the inclination, starting from Equation (15c)
and recalling Equation (17) and Equation (18)
we get:

i′ =
1

3
Īah,0(θ) {1 + 2 exp[kaθ + k1]} ãh+

+

{
2

3
Īah,0(θ)Qa(θ) exp[kaθ + k1]+

+ keĪah,e(θ)θ + Īah,e(θ)Q1e(θ)

}
ãtãh+

+ Īah,e(θ)Q2e(θ)ãnãh

Thus at the first order:

i′ =
1

3
Īah,0(θ) {1 + 2 exp[kaθ + k1]} ãh

For the argument of perigee, leading the problem
to the quadratures we obtain:

ω̄ =
1

3
exp[kωθ] · ŵ

∫ θ

θ0

h(ξ)

 Ōat,0(ξ)
Ōan,0(ξ)
Ōah,0(ξ)

dξ

where h(θ) = exp[−kωθ]+2 exp[kaωθ+k1], ŵ =
[ãt, ãn, ãh] and kaω = ka − kω is a constant.
Finally, for the RAAN we make the assumption
of neglecting the small variations of i and ω.
This is done for two reasons mainly: first they
are both second order terms; furthermore both
variations are really small over one thrust arc.
Then a similar expression like that of the incli-
nation is achieved:

Ω′ =
1

3
Ōah,0(θ) {1 + 2 exp[kaθ + k1]} ãh+

+

{
2

3
Ōah,0(θ)Qa(θ) exp[kaθ + k1]+

+ keŌah,e(θ)θ + Ōah,e(θ)Q1e(θ)

}
ãtãh+

+ Ōah,e(θ)Q2e(θ)ãnãh

And at the first order:

Ω′ =
1

3
Ōah,0(θ) {1 + 2 exp[kaθ + k1]} ãh

5.2. Fourier series coefficients
A relevant result is the close form solution for
the Fourier Series coefficients for all the func-
tions involved in the small thrust model. Here
for shortness we report only the expressions for
the function g(θ), the others being analogous. It
can be proved that :

g(θ) =
1

2
(πv)1/2

+∞∑
m=0

qm(e0) cosm(θ)

where v = 1 + e2
0 and qm is given by:

qm(e0) =
(2e0/v)m

Γ (3/2−m)m!
2F1

(
2 −m
3/2−m

∣∣∣∣ v2
)

where Γ is the complete Gamma Function and
2F1 is the Gauss Hypergeometric function. It
follows that the relevant integral to be per-
formed is:

1

π

∫ π

−π
cosm(θ) cos(nθ)dθ = pm(n)
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with:

pm(n) = − π(−2)m(n+m− 1)m!

wm(n)(−n+m)!(n+m)!

and:

wm(n) = Γ ((−n−m+ 3)/2) Γ ((n−m+ 1)/2)

So, the coefficients final expression is:

α0[g] =
2

π

[
1

1 + e0
E(κ) +

1

1− e0
K(κ)

]
αn[g] =

1

2
(πv)1/2

+∞∑
m=0

qm(e0)pm(n)

βn[g] = 0

(19)

Where K(κ) and E(κ) are the complete ellip-
tic integrals of first and second kind respectively
with elliptic modulus κ = −4e0/(e0 − 1)2.

6. Conclusions
The number of spacecraft and orbiting objects
is so growing that came the need of computa-
tionally efficient models for collision avoidance.
In this work we developed a semi-analytical
mathematical model for the 3D low thrust col-
lision avoidance problem. The Gauss Plane-
tary Equations are reduced to a simpler form
by means of a Taylor expansion in the neigh-
bourhood of the reference condition. Two differ-
ent methods are developed: the first, denoted as
full model, where the main functions are compli-
cated non linear relations of the thrust acceler-
ations and the second, denoted as small thrust
model, which, on the contrary, has an explicit de-
pendency from the small thrust parameters. All
the integrations are performed by means of the
Fourier Series tool and for the small thrust model
the expressions of the Fourier Series coefficients
are provided in closed form also involving the
Gauss Hypergeometric function. Different sim-
ulations with various test cases to assess the ef-
fectiveness of the method are provided. Looking
to the numerical outputs, both models are ca-
pable of reproducing accurately the solution of
the Gauss Planetary Equations solved by means
of Adams-Bashforth-Moulton method. In par-
ticular, for not too high eccentricity reference
values, the solution provided by the full model
has by far a greater accuracy for the semi-major

axis and the true anomaly, specially if the first
period is assumed as time span. On the con-
trary, the small thrust model even if less ac-
curate, is nevertheless capable of granting an
acceptable precision and a remarkable reduc-
tion of computational time. And this becomes
even more evident considering higher eccentric-
ities. In this case we would have a lower per-
formance as it concerns accuracy: nevertheless
knowing the closed form expressions of Fourier
coefficients, the small thrust model succeeds to
be more efficient in accuracy and elapsed time
with respect to the full model. Then, the trade
off chose the small thrust model as the winner.
For both methods the greater computational ex-
pense occurs in time law inversion when solving
a non linear root finding problem. One of the
best computational qualities of these methods is
that they allow to evaluate the orbital param-
eters (and then the state vector) at the wished
instant of time without passing through the pre-
vious ones, what is convenient in PoC comput-
ing and in CAMs design. Two sample tests have
been provided. In the first, only the tangential
thrust is active; in the second there is also the
normal component too. In both cases, beyond
a good PoC evaluation, the small thrust model
has been seen to provide a satisfactory approxi-
mation of orbital parameters.

Future developments

This thesis opens to a variety of future devel-
opments. First, a possible technique to pro-
vide the time law inversion could be investi-
gated. This would lead to a remarkable gain
in computational time because the non linear
root finding problem would be substituted by a
convergent series providing θ = θ(t). Moreover,
some techniques for series manipulation could be
used to deal with the problem of machine pre-
cision in the computation of the Fourier Series
coefficients when their expression is in the form
of Equation (19). Both full model and small
thrust model could be adopted for approximat-
ing a generic low thrust problem, not necessary
a CAM one. For both models, some simulations
show that there are regions where the error is
slightly higher with relative low thrust action
and higher length of the thrust arc. All these
proposed refinements are the preamble for the
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biggest challenge as future development: opti-
mize the method such that it could be imple-
mented on-board. Finally, one of the most im-
portant assumptions we made is that no envi-
ronmental perturbations are acting on the space-
craft. This is not true in reality. Typically, the
satellite motion is perturbed by the solar radia-
tion pressure, the drag due to Earth atmosphere
and the effect of earth oblateness (i.e. the J2

effect). These should be added to include non
Keplerian orbits in the model.
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