
School of Industrial and Information Engineering

Master’s Degree in Space Engineering

Design, prototyping and testing of a reaction
wheel assembly for an air-bearing spacecraft

attitude simulator

Supervisor: Prof. Francesco Topputo
Co-supervisor: Gianfranco Di Domenico

Candidate:
Corsi Giulio

944379

Department of Aerospace Science and Technology
Academic Year 2020-2021



Abstract

In the last two decades, the number of small satellites launched per year has grown at nearly
exponential rates. However, despite the increasing number of launches, a problem yet to be
addressed in order to establish themselves as an even more disruptive technology is their high
failure rate. This can be explained by both the impossibility of testing complex systems in
their operational environment, the space, and the cheapness and affordability of the employed
technologies, especially for small satellites developed by universities or smaller agencies. A
methodology to allow additional testing capabilities at relatively low costs is represented by
Hardware-In-the-Loop (HIL) simulations, a technique for performing system-level testing of
embedded systems in a comprehensive, cost-effective, and repeatable manner, increasing the
chances of success of the mission. In this framework, the EXTREMA project, which aims at
achieving autonomous guidance and navigation on CubeSats, will exploit the possibilities of
HIL simulations through the development of a testing facility, the EXTREMA Simulation Hub
(ESH), in which integrated simulations of guidance, navigation, and control (GNC) systems for
deep-space CubeSats will be performed. A key component of the ESH is an attitude simulation
platform that will mimic the attitude dynamics of a CubeSat during an interplanetary transfer.
The main focus of this thesis is to develop a system, based on reaction wheels, to control the
attitude behavior of the simulator, allowing it to reproduce the spacecraft orientation during the
transfer. To do so, the reaction wheels will be sized as to fulfill the mission requirements and min-
imizing their power demand. Moreover, a mathematical and numerical model of the platform will
be developed in Simulink to assess the performances of the control system, designed to control the
orientation along three orthogonal axes. Furthermore, the hardware components will be selected
in the attempt to reduce the costs and size of the system, and will then be integrated to obtain
the first prototype of a single reaction wheel assembly. A series of tests will be carried out with
the chosen components in order to assess their performances and validate the mathematical model.
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Chapter 1

Introduction

In the last two decades, the space sector has seen a sharp growth: in fact, after the decline in
the 1990s and early 2000s, the number of satellites launched has started to grow again at rapid
rates 1 and, according to forecasts, will continue also in the next years. This incredible growth
is certainly linked to the development of small satellites: indeed, in these decades the number
of small satellites launched per year has grown at nearly exponential rates 2. In particular, the
great majority of them are composed of CubeSats, small satellites characterized by a compact,
standardized form factor based on units of 10 cm x 10 cm x 10 cm (1U), which have made
access to space available to a much wider audience. This innovation has benefited above all
the commercial and educational sectors, which together account for over 80% of small satellite
launches in 2018 3. Anyway, after two decades of launches, a problem they have yet to address to
establish themselves even more as a disruptive technology is their high failure rate [1]. This issue
can be related to the impossibility of testing complex systems in their operational environment,
as happens for satellites in space. While important space missions involving large satellites can
exploit costly testing facilities, which represents only a fraction of the total mission costs, that is
not the case for CubeSats and other small satellites, usually developed by universities (or private
industries) for their cheapness and affordability.
In this framework, a methodology that can enhance the testing possibilities with relatively
low costs is represented by Hardware-In-the-Loop (HIL) simulations, which is a technique for
performing system-level testing of embedded systems in a comprehensive, cost-effective, and
repeatable manner, according to [2]. This type of simulation improves the effectiveness of classical
numerical simulations (linked to mathematical models of the system under study) by involving
real hardware to simulate the more complex aspects of the mathematical model, which would
require too much computational effort, or even be impossible to emulate on a computer. HIL
simulations require the development of a real-time software simulation that models some parts of
the system under test, together with the hardware simulating the remaining parts of the system
and all the significant interactions with the operational environment. The software simulation
produces some outputs that will be fed to the embedded system, which in turn will use these
data to generate some outputs to send again to the software, in a simulation loop involving also
some hardware, hence the name.

1Number of satellites launched from 1957 to 2019, https://www.statista.com/statistics/896699/

number-of-satellites-launched-by-year/
2Nanosatellites launches, https://www.nanosats.eu/
3Small satellite launches worldwide in 2018 and 2030, by application sector, https://www.statista.com/

statistics/1086625/global-small-sat-market-applications/
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1.1 Motivations

As explained above, HIL simulations are essential for testing small satellites before they
are launched into space, increasing the chances of success of the mission. This is one of the
main aspects on which is based the EXTREMA project (Engineering Extremely Rare Events
in Astrodynamics for Deep-Space Missions in Autonomy), which is currently being carried out
by the Deep-space Astrodynamics Research & Technology (DART) Group 4 at Politecnico di
Milano. EXTREMA is an ERC-funded project which aims to enable interplanetary CubeSats
to perform guidance, navigation, and control (GNC) procedures autonomously, revolutionizing
the way deep-space missions are carried out 5. The goal is to enable self-driving CubeSats,
capable of traveling in deep space without requiring any control from ground. The project is built
up on three pillars: the first, autonomous navigation, envisions the development of an optical
navigation technique that extracts the line of sight of the celestial bodies to infer the state of the
deep-space spacecraft; the second, autonomous guidance and control, deals with the development
of a lightweight, robust closed-loop guidance algorithm; the third, ballistic capture, addresses
the definition of the corridors for ballistic capture, an extremely rare phenomenon that allows
for planetary capture without any energetic effort. The outcomes from the three pillars will be
integrated into a fully-functional testing and validation facility, the EXTREMA Simulation Hub
(ESH), developing a framework that will enable the testing of autonomous guidance laws and
algorithms in a lab environment, where the space conditions that the interplanetary CubeSat
will face will be reproduced accurately. As traditional space missions last months if not years, a
ground-breaking accelerating approach will be employed to guarantee faster simulation times. A
complete overview of the project and in particular of this accelerating approach is given in [3].
Regarding the other operative conditions, some effects, like that of the main propulsion system,
will be monitored through a HIL simulation approach, while the evolution of the spacecraft
attitude will be reproduced through an air-bearing spherical joint, which is the means for
reproducing the torque-free conditions of a satellite in space. At the beginning of this work,
the air-bearing was already present in the laboratory, but it lacked any actuation system for
controlling its attitude behavior: this was the main focus in developing this thesis.
While many attitude actuators are available, reaction wheels are a common choice for spacecraft
simulator attitude control: they offer precision torque generation with relatively low weight and
high sensitivity when compared to thrusters. For accuracy and moderately fast maneuverability,
reaction wheels are the preferred attitude control system because they allow continuous and
smooth control while inducing the lowest possible disturbance torques [4].

1.2 Thesis objectives

Taking into account what has been said so far, the main research question was conceived as
follows:

– Research question. How to develop an attitude actuation system based on reaction
wheels capable of controlling the attitude dynamics of the simulator platform?

To answer this question, the following operative objectives are formulated:

– Objective I. Perform the sizing and design of the reaction wheels that will be employed
by the attitude control system. This will include the architecture of the actuators along
with a mathematical model to simulate the performances of the system.

4DART Group website, https://dart.polimi.it/
5European Research Council, Engineering Extremely Rare Events in Astrodynamics for Deep-Space Missions in

Autonomy, https://cordis.europa.eu/project/id/864697
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– Objective II. Implement the attitude control system, including both hardware and
software necessary to operate the system. At the end of this phase, all components must
be connected to the simulator and fully functional.

– Objective III. Testing of the system through experiments, in order to validate the model
and check the correctness of the overall design and implementation of the attitude control
system.

1.3 Outline

Chapter 2 describes the background of this work. First, the fundamental concepts of attitude
dynamics are introduced: angular momentum, Euler’s equations, and how to account for the
presence of reaction wheels. Then, the spacecraft attitude simulators technology is presented,
with a particular focus on air bearings. After that, the components already available in the
laboratory are shown.
Chapter 3 illustrates the mathematical model of the system. The sizing process for the reaction
wheels is discussed. Once the dimensions of the wheels are chosen, it is possible to develop a
complete scheme in Simulink, which includes the reaction wheels and air-bearing simulator in
the system module, the sensors module for the measurement, the reference trajectory generation
module, and the control module. In the end, some results from the simulation are shown.
Chapter 4 is related to the hardware implementation of a first prototype of the system: both
structural and electronic components are described, along with the reasons that led to their
selection.
Chapter 5 gives details of the testing and validation phases. The software implementation to run
the first experiments is explained, and the components are tested. Finally, the first prototype is
tested to validate the results from the mathematical model.
Chapter 6 draws conclusions from the work and discusses some possible future developments.

3



Chapter 2

Background

2.1 Spacecraft attitude dynamics fundamentals

Spacecraft attitude dynamics represents the study of spacecraft orientation in orbit and its
evolution over time. One of the fundamental field for the study of spacecraft dynamics is the
rotational motion of a rigid body or system of rigid bodies. This will be the starting point of
this section, where it will be presented the fundamental aspects of describing the orientation,
angular momentum, energy and differential equations of motion of a rigid body. After discussing
the rigid body kinematics, the inertia properties of a body about arbitrary reference points are
developed. The angular momentum and kinetic energy of a rigid body are critical to discussing
Euler’s equations of motion. Then, the presence of the reaction wheels and the modification that
they impose to the equations of motion are discussed.

2.1.1 Rotating coordinate frames

The starting point will be the angular rotation and orientation coordinates used to describe
the motion of a rigid body. A coordinate frame can be fixed to a rigid body: in this case, the
study of the rigid body attitude evolution coincides with the behaviour of the coordinate frame
orientation.

Figure 2.1: Coordinate frames representation.[14]

Let N : {ON , n̂1, n̂2, n̂3} be a fixed inertial (non accelerating) coordinate frame, defined
through its origin ON and the unit vectors n̂1, n̂2, and n̂3 that form an orthonormal frame,
which satisfies n̂1× n̂2 = n̂3. In the same way, we can define the body frame B : {OB, b̂1, b̂2, b̂3}
with origin OB and unit vectors b̂1, b̂2, and b̂3. The body frame B is attached to a rigid body,
so that describing the orientation of the rigid body is equivalent to study the relative attitude
between the body fixed frame and the inertially fixed frame, where the attitude of the rigid-body

4



AB/N is defined as the relative orientation between the body fixed frame B and the inertial frame
N . Moreover, for the study of attitude dynamics, the translation of the rigid body is not of
interest, since the orbital and attitude dynamics are generally decoupled, so that it is possible to
consider just the relative orientation as:

B = AB/NN (2.1)

where AB/N is an orthonormal matrix also known as Direct Cosine Matrix (DCM).
Besides, it is possible to write the angular velocity of the two frames in their basis as ωN =
ω1n̂1 + ω2n̂2 + ω3n̂3 and ωB = ω

′
1b̂1 + ω

′
2b̂2 + ω

′
3b̂3. Additionally, the angular velocity of the

frame N can be expressed in the body frame thanks to the attitude matrix as ωB
N = AB/NωN .

At this point, the relative angular motion between the two frames can be described through the
angular velocity vector

ωB/N = ωB − ωB
N = ωB −AB/NωN (2.2)

This vector is the instantaneous angular rotation vector of body B relative to N , and is
typically expressed in body frame vector components. If only these two frames are considered,
the ωB/N vector is often written simply as ω.
The last notion to be defined in relation to rotating frames is the transport theorem, which
concerns the differentiation of a vector expressed in the body frame. When describing the time
evolution of a vector, it is mandatory to specify an observer frame: the transport theorem is used
to map a time derivative with respect to a frame B into the equivalent derivative with respect to
another frame N as

Ndr

dt
=

Bdr

dt
+ ωB/N × r (2.3)

where r is a general vector, for example a position vector.

2.1.2 Parameters for attitude representation

In the previous section, the DCM has been introduced: thanks to this matrix, we are able to
switch from one reference frame to another one. Being able to define the orientation of a frame
with respect to another one is an important task in attitude dynamics, that can be carried out in
several ways. To describe the three-dimensional orientation of rigid bodies a minimum of three
coordinates, or attitude parameters, are required. Anyway, sometimes redundant parameters are
used either to improve the physical insight into the transformation or to avoid some singularity
issues. In this section, the attitude parameters mainly used in the following chapters are presented.

Direction Cosine Matrix

The rotation matrix AB/N is a fundamental way to express the orientation of B with respect
to N . According to [14], the parameters of the matrix are determined as

AB/N =

b̂1 · n̂1 b̂1 · n̂2 b̂1 · n̂3

b̂2 · n̂1 b̂2 · n̂2 b̂2 · n̂3

b̂3 · n̂1 b̂3 · n̂2 b̂3 · n̂3

 (2.4)

5



As it can be seen, every component is expressed with a dot product, which returns the
cosine of the angle between the two unit directions inside the dot product, from which the name
Direction Cosine Matrix. The DCM is an orthonormal matrix, with a determinant equal to 1
and the inverse given by the transpose operator

AB/NA
T
B/N = I3×3 ; det(AB/N ) = 1 (2.5)

where I3×3 is the 3 by 3 identity matrix. These properties express in a convenient matrix form
the fact that the nine parameters of the DCM have six constraints: three expressing orthogonality
between the axes and three expressing the invariability of magnitude of the unit vectors. In fact,
the rotation will not affect the magnitude of the vectors. The principal use of the DCM is to
realize three-dimensional coordinate transformations

rB = AB/N rN (2.6)

Knowing the relative angular velocity between two frames ωB/N , it is possible to define how
the DCM changes with time through the differential kinematic equation [15]

ȦB/N = −[ω̃B/N ]AB/N (2.7)

where the tilde matrix notation represents a skew symmetric matrix defined as

[ω̃B/N ] =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.8)

One last important remark about the DCM concerns the addition property [14], which allows
us to obtain directly the final matrix of rotation even if multiple rotations are carried out. For
example, we already saw that AB/N express the rotation between the frame N and B. If we
define another frame C, the rotation between B and C will be expressed by the DCM AC/B. At
this point, with the addition property, it is possible to obtain the attitude of C relative to N
simply multiplying these DCMs with each other:

AC/N = AC/BAB/N (2.9)

Euler’s angles

Euler’s angles are a different type of attitude parameters that describe the rotation between
two frames through three sequential one-axis rotations, indicated as ψ, θ, and ϕ. The Euler’s
angles have a clear physical interpretation and are a minimal representation because they use only
3 parameters. Anyway, being a minimal orientation description, it contains attitudes where the
description or the associated differential kinematic equations become singular. Twelve different
combinations of rotation exist, according to the different sequences used for the three single-axis
rotations. Half of them have all different indexes, like the 3-2-1 sequence, while the other
half, instead, contains one repetition in the indexes, like the 3-1-3 sequence for example. The
singularities vary in accordance with the sequence: when all indexes are different, the singularity
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condition is θ = (2n+ 1)π2 , while in the other case the singularity occurs when θ = nπ. From the
Euler’s angles, it is possible to write the DCM thanks to its addition property

AB/N = A313(ϕ, θ, ψ) = A3(ψ)A1(θ)A3(ϕ) (2.10)

where

A3(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 ; A1(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 ; A1(θ) =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


(2.11)

Multiplying them, it results:

A313 =

 cosψ cosϕ− sinψ sinϕ cos θ cosψ sinϕ+ sinψ cosϕ cos θ sinψ sin θ
− sinψ cosϕ− cosψ sinϕ cos θ − sinψ sinϕ+ cosψ cosϕ cos θ cosψ sin θ

sinϕ sin θ − cosϕ sin θ cos θ

 (2.12)

On the other hand, the inverse transformations from the DCM to the Euler’s angles are:
ϕ = − tan−1

(A31

A32

)
θ = cos−1 (A33)

ψ = tan−1
(A13

A23

)
(2.13)

(2.14)

(2.15)

As it can be seen, the transformations from Euler’s angles to DCM and viceversa depend
strictly on the sequence chosen. Equations from 2.12 to 2.15 are valid only for the sequence 3-1-3.
The differential kinematic equations relate the 3-1-3 Euler’s angles rates to the body angular
velocity vector ω through [15]


ϕ̇

θ̇

ψ̇

 =

 sinψ
sin θ

cosψ
sin θ 0

cosψ − sinψ 0

− sinψ cos θ
sin θ − cosψ cos θ

sin θ 1


ω1

ω2

ω3


B

(2.16)

It is important to notice that for the other sequences of rotations, different sets of kinematic
equations are obtained.

Euler axis/angle

This representation is founded upon Euler’s rotation theorem, which states that any rotation
can be indicated thanks to an axis, which remains fixed during the rotation, and an angle that
expresses the magnitude of the rotation. So, instead of using three different rotation (as in the
Euler’s angles case), it is possible to rotate from the frame N to the frame B using only a single
rotation around a specific axis. The axis (Euler axis), indicated by ê, and the angle (Euler angle),
indicated by Φ, are respectively the eigenvector and the eigenvalue of the transformation [16].
Euler axis/angle parameters are useful since they are only four parameters, plus a constraint
condition given by the normalization of ê. Moreover, this representation is also useful to introduce
another attitude parameter called quaternion.
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Quaternions

In general, a quaternion is a vector, indicated by q, with four components q1, q2, q3, and q4.
Usually, a quaternion is divided into a vector part q with three components, plus a scalar part,
which can be the first or last component. In this work, the fourth component is chosen as the
scalar part, so that the quaternion can be written as:

q =

q1q2
q3

 , q4 (2.17)

Quaternions are used to parameterize rotations: in fact, a quaternion can be related to an
Euler axis/angle as:



q1 = ê1 sin
Φ

2

q2 = ê2 sin
Φ

2

q3 = ê3 sin
Φ

2

q4 = cos
Φ

2

(2.18)

(2.19)

(2.20)

(2.21)

In this case, the quaternion is a unit quaternion, so that q21 + q
2
2 + q

2
3 + q

2
4 = 1. It is important

to note that, since there are four parameters in total, there is a duality in representing an
orientation, with q and −q. In this case, the scalar part q4 is fundamental: if q4 is greater
than zero, the quaternion is describing a short rotation, smaller than 180 degrees, while if q4 is
negative, the rotation is greater than 180 degrees. From the quaternion’s notation, it is possible
to evaluate the DCM according to:

AB/N =

q21 − q22 − q23 + q24 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) −q21 + q22 − q23 + q24 2(q2q3 + q1q4)
2(q1q3 + q2q4) 2(q2q3 − q1q4) −q21 − q22 + q23 + q24

 (2.22)

The inverse transformation have no singular condition and is represented as:



q1 =
1

4q4
(A23 −A32)

q2 =
1

4q4
(A31 −A13)

q3 =
1

4q4
(A12 −A21)

q4 = ±1

2
(1 +A11 +A22 +A33)

1
2

(2.23)

(2.24)

(2.25)

(2.26)

The quaternion rates relate to the body angular velocity vector ω through:


q̇1
q̇2
q̇3
q̇4

 =


0 ωz −ωy ωx

−ωz 0 ωx ωy
ωy −ωx 0 ωz
−ωx −ωy −ωz 0



q1
q2
q3
q4

 (2.27)
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Quaternions have no physical meaning and, as we already saw, they are also non-unique.
However, they are a minimal global representation, which means they are singularity free.
Furthermore, [16] states that it is more efficient to specify rotations with quaternions rather than
attitude matrix, because they only have four components instead of nine, and have only one
constraint (the unitary norm), on the contrary of the constraints imposed on the attitude matrix
by orthogonality.

2.1.3 Inertia matrix

This section will deal with the definition and properties of the inertia matrix. Recalling
the two coordinate frames N and B described before, we can remember that the frame B is
attached to a rigid body. Moreover, we can now assume that this rigid body has its center of
mass coincident with the origin OB, as shown in Fig. 2.2. The position of the center of mass in
the inertial frame is defined by Rc, while r = [r1, r2, r3]

T defines the position of an infinitesimal
point mass dm in the body frame. In addition, ω represent the relative angular velocity between
the two frames.

Figure 2.2: Body attached to reference frame B [14]

From these quantities, it is possible to define the inertia matrix Ic of the body about its
center of mass as

I =

∫
B
−[r][r]dm , where [r] =

 0 −r3 r2
r3 0 −r1
−r2 r1 0

 (2.28)

Developing the calculations, leads to the following form of the inertia matrix

I =

∫
B

r22 + r23 −r1r2 −r1r3
−r1r2 r21 + r23 −r2r3
−r1r3 −r2r3 r21 + r22

dm (2.29)

In Eq. (2.29), the terms in diagonal are called moments of inertia and they are always
positive, since they are defined as a sum of square quantities. Identifying these three quantities
with the symbols I11, I22, and I33, it is easy to check that they are subjected to the constraints
I11 + I22 ≥ I33 and I11 − I22 ≤ I33. On the other hand, the terms out of the diagonal are called
products of inertia and they can be positive, negative or null: these terms are a measure of the
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imbalance in the mass distribution [17]. In general, the inertia matrix reflects how the mass of a
rigid body is distributed, which is extremely important when analyzing the body response to
applied torques since it is not the mass alone but how that mass is distributed that characterizes
the body’s rotary motion. For example, if the b̂1b̂2 plane is a plane of symmetry, then the
products of inertia with the index 3 will be null. In fact, considering I13, which is given by the
integral of −r1r3, the symmetry plane implies that for any value of r1 there exist two identical
infinitesimal masses located at +r3 and −r3, so that these two elements cancel out themselves.
The same can be said in relation to the planes b̂2b̂3 and b̂1b̂3. It follows that if the body has
two planes of symmetry relative to its body frame, then all three products of inertia vanish, and
I becomes a diagonal matrix such that,

Idiag =

I1 0 0
0 I2 0
0 0 I3

 (2.30)

In this case, I1, I2, and I3 are called the principal moments of inertia, and the body frame
axes are the body’s principal axes of inertia. For a general three-dimensional body, it is always
possible to find three mutually orthogonal axis for which the products of inertia are zero, and
the inertia matrix takes a diagonal form. If I is the non-diagonal inertia matrix in a general
body frame, it can be diagonalized such that

CICT = Idiag (2.31)

where the rows of C are given by the eigenvectors of I.

2.1.4 Angular momentum

Referring again to Fig. 2.2, the infinitesimal mass element dm has a linear momentum that
can be written as Ṙ dm. Additionally, it is possible to define the moment of the linear momentum
of dm about a generic point P as rp × Ṙ dm, that is the cross product between the distance
between P and dm, and the linear momentum of the mass element. The moment of momentum,
or angular momentum, of the entire body is the integral of this cross product over all of its mass
elements. That is, the total angular momentum of the body relative to point P is [18]

HP =

∫
B
rp × Ṙ dm (2.32)

From Fig. 2.2, we can rewrite the vectors inside Eq. (2.32) as rp = rG + r and Ṙ = Ṙc + ṙ,
so that the total angular momentum becomes:

HP =

∫
B
(rG + r)× (Ṙc + ṙ) dm (2.33)

that can be extended to

HP =

∫
B
rG × Ṙc dm+

∫
B
rG × ṙ dm+

∫
B
r× Ṙc dm+

∫
B
r× ṙ dm (2.34)

Since rG and Ṙc represent quantities that do not vary along the body, they can be taken
outside the integral in the following way
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HP = rG × Ṙc

∫
B
dm+ rG ×

∫
B
ṙ dm+

∫
B
r dm× Ṙc +

∫
B
r× ṙ dm (2.35)

At this point, it is possible to take advantage of the definition of center of mass, which states
that

∫
B r dm = 0, and so also

∫
B ṙ dm = 0. Doing so, the second and third term in Eq. (2.35)

result to be null, leading to

HP = rG ×M Ṙc︸ ︷︷ ︸
Hcm

+

∫
B
r× ṙ dm︸ ︷︷ ︸
Hb

(2.36)

where M is the total mass of the body. This equation is composed of two terms: the first
one, Hcm, represents the angular momentum of the body’s center of mass about the point P ,
while the second one, Hb, is the angular momentum of the body about its own center of mass.
This distinction can be useful if we want to rewrite the total angular momentum about another
point different from P , like for example the origin O: the only thing that should be changed in
Eq. (2.36) is the distance rG, which should be replaced with R. Furthermore, taking into account
that the body is rotating with an angular velocity ω, we can recall the transport theorem from
Eq. (2.3) to evaluate the derivative ṙ. Doing so, the angular momentum of the body becomes

Hb =

∫
B
r× (ω × r) dm (2.37)

Finally, this formulation can be simplified recalling the definition of inertia matrix given in
Eq. (2.29). In fact, developing the calculations related to the cross products, it is possible to
write the angular momentum of the body as

Hb = Iω (2.38)

where I is the 3 × 3 inertia matrix and ω is the 3 × 1 angular velocity vector. If we want
to study only the attitude orientation of a satellite, it is sufficient to account for the rotational
motion of the rigid body and focus on Hb, without considering the spacecraft translation, and so
the angular momentum of the center of mass Hcm. If a principal coordinate frame B is chosen,
then the angular momentum of the body can be written as

Hb =


I1 ω1

I2 ω2

I3 ω3

 (2.39)

2.1.5 Kinetic energy of a rigid body

The total kinetic energy of a rigid body is the integral over the whole body of the kinetic
energy 1

2Ṙ · Ṙ dm of the infinitesimal mass dm, it is a scalar value and is indicated with T .

T =
1

2

∫
B
Ṙ · Ṙ dm (2.40)
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This equation can be simplified in a similar way to what was done previously for the angular
momentum. First, we substitute Ṙ = Ṙc+ ṙ inside Eq. (2.40), and developing the scalar products
we find

T =
1

2

(
MṘc · Ṙc + 2Ṙc ·

∫
B
ṙ dm+

∫
B
ṙ · ṙ dm

)
(2.41)

As already done before, we can cancel the second term in this equation using the definition
of center of mass. In addition, we can also use the transport theorem to substitute ṙ in the last
term

T =
1

2

(
MṘc · Ṙc +

∫
B
ṙ · (ω × r) dm

)
(2.42)

At this point, it is possible to rewrite Eq. (2.42) exploiting the property of the scalar
triple product which states that the order of the operands can be shifted according to the rule
A · (B × C) = B · (C ×A). Applying this leads to

T =
1

2
MṘc · Ṙc︸ ︷︷ ︸
Ttrans

+
1

2

∫
B
ω · (r× ṙ) dm︸ ︷︷ ︸

Trot

(2.43)

As it can be seen, the kinetic energy is composed by two terms Ttrans and Trot, that are
related respectively to the translational kinetic energy and rotational kinetic energy. Again, as
already done for the angular momentum, it is possible to ignore the translational term because
we are interested only in the study of the attitude. Analyzing the rotational kinetic energy, we
can see that the angular velocity ω can be taken outside the integral, since it does not change
along the body. At this point the integral can be evaluated recalling Eq. (2.36) and Eq. (2.38)

Trot =
1

2
ω · Iω =

1

2
ωT Iω (2.44)

If a principal coordinate system is chosen for B, the energy is written using the principal
inertias as

Trot =
I1
2
ω2
1 +

I2
2
ω2
2 +

I3
2
ω2
3 (2.45)

2.1.6 Euler’s rotational equations

In this section, the equations for the rotational motion will be described. The quantities
presented are still referred to Fig. 2.2. Each infinitesimal mass element dm feels a net external
force dFnet and a net internal force dfnet, so that Newton’s second law can be written as

dmR̈ = dFnet + dfnet (2.46)

where R̈ is the absolute acceleration of the mass element in the inertial frame N . Using
again point P , the moment about P of the forces on mass element dm is
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dMP = rp × dFnet + rp × dfnet (2.47)

Collecting the term rp, we can write the right-hand side of the equation as rp× (dFnet+dfnet).
Then, substituting Eq. (2.46) and integrating over all the mass elements of the body yields

MPnet =

∫
B
rp × R̈ dm (2.48)

Using the derivation rule, the integrand in Eq. (2.48) can be written as

rp × R̈ =
d

dt
(rp × Ṙ)− ṙp × Ṙ (2.49)

which substituted in Eq. (2.48) leads to

MPnet =
d

dt

∫
B
(rp × Ṙ) dm−

∫
B
ṙp × Ṙ dm (2.50)

The first integral on the right-hand side of Eq. (2.50) is the total angular momentum (about
point P ) HP , as already shown in Eq. (2.32). Moreover, looking at Fig. 2.2, we notice that
ṙp can be expressed as ṙp = Ṙ − Ṙp. Using this formulation, the second term in Eq. (2.50)
becomes +

∫
B Ṙp × Ṙ dm, where Ṙp can be taken outside the integral and it is possible to use

the definition of center of mass,
∫
B Ṙ dm =MṘc, to write

MPnet = ḢP + Ṙp ×MṘc (2.51)

This equation represent the net moment of the forces about an arbitrary point P . Making
some assumptions, the equation can be simplified: in fact, in some special cases the second term
results to be null. This happens if the point P is at rest in the inertial frame, if the center of
mass of the body is at rest (for example, the body is rotating around its center of mass), if P
and the center of mass have parallel velocities (Ṙp ∥ Ṙc), or also if the point P is coincident
with the center of mass. In all these cases, Eq. (2.51) reduces to

MPnet = ḢP (2.52)

This equation is known as Euler’s equation for rotational motion. Usually, the moment of
the forces and the angular momentum are taken about the center of mass. In this case, Euler’s
equation was developed taking into account only a single body, but it can be extended also for a
system containing N rigid bodies, where the angular momentum expression H must be the total
angular momentum, which can be composed by the momentum of the spacecraft plus the other
components, such an attached fly-wheel. Also, the time derivative of the angular momentum
must be taken as seen by an inertial coordinate frame. Applying the transport theorem leads to

MPnet =
Nd

dt
(HP ) =

Bd

dt
(HP ) + ω ×HP =

Bd

dt
(Iω) + ω × Iω (2.53)
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where I is the fully populated inertia matrix, in a generic reference frame. Since the body is
rigid, the derivative of I is zero and the equation becomes

Iω̇ + ω × Iω = MPnet (2.54)

Expanding the expression of the angular momentum we obtain a system of first order
differential equations, nonlinear, and strongly coupled:


I11ω̇1 + I12ω̇2 + I13ω̇3 − I12ω1ω3 + (I33 − I22)ω2ω3 − I23ω

2
3 + I13ω1ω2 + I23ω

2
2 =M1

I21ω̇1 + I22ω̇2 + I23ω̇3 − I23ω1ω2 + (I11 − I33)ω1ω3 − I13ω
2
1 + I12ω3ω2 + I13ω

2
3 =M2

I31ω̇1 + I32ω̇2 + I33ω̇3 + (I22 − I11)ω1ω2 − I13ω2ω3 − I12ω
2
2 + I23ω3ω1 + I12ω

2
1 =M3

(2.55)

(2.56)

(2.57)

Choosing a principal body fixed coordinate system, the inertia matrix I is diagonal and
Eq. (2.54) can be expanded as


I1ω̇1 + (I3 − I2)ω2ω3 =M1

I2ω̇2 + (I1 − I3)ω1ω3 =M2

I3ω̇3 + (I2 − I1)ω1ω2 =M3

(2.58)

(2.59)

(2.60)

where Mi are the body frame B vector components of the moment of the forces vector MPnet ,
which is also known as the vector of the total external torque T.

2.1.7 Reaction wheels

In the previous section, the general equations for the rotational motion of a rigid body in
space were presented. These equations form the basis for the modeling of the motion of satellites:
anyway, they do not take into account the presence of external disturbance torques, which can
alter the motion of the satellite causing it to deviate from its orbit. For this reason, the Attitude
Determination and Control System (ADCS) is a fundamental subsystem of every satellite, which
is used to stabilize and orient the vehicle in the presence of external disturbance torques. As it
can be guessed by the name, the ADCS is encharged of determining the attitude of the vehicle
with respect to a fixed inertial reference frame through a set of sensors. The number and types
of sensors can vary depending on the mission requirements. If the measured orientation is
different from the desired one, the ADCS has to control it through another type of component,
the actuators: their task is to provide a controlled force or torque to the satellite, in order to
counteract external disturbances. Some kinds of actuators are capable of producing a net torque,
changing the total angular momentum of the satellite, like thrusters and magnetorquers. However,
these actuators are not always available, since the thrusters require an expendable fuel source
that may be exhausted after some time, while magnetorquers require an external magnetic field,
such as that of the Earth. Another family of actuators is called momentum exchange devices
because they can only exchange momentum with the satellite, without producing a net torque.
This type of actuators is based on spinning rotors that have fixed inertia, but can change their
angular momentum by varying their angular velocity. These rotors are called reaction wheels
(RW) when the nominal angular velocity is zero and inertia wheel (IW) when the nominal angular
velocity is different from zero. Also control moment gyroscopes (CMG) belong to this family of
actuators: in this case, the rotation velocity is constant and their angular momentum is modified
thanks to the principle of gyroscopes [19]. The total angular momentum of a satellite equipped
with momentum exchange devices can be written as
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htot = hsat +Aha = Iω +Aha (2.61)

where the subscript a stands for actuators. In absence of external torques the total angular
momentum htot is constant, as expressed in Eq. (2.52), and can only be exchanged between the
satellite and the actuators. Moreover, the angular momentum of the satellite can be written as
Iω in accordance with Eq. (2.38), while the angular momentum of the actuators ha is written
around each actuator’s own spin axis. For this reason, since the actuator’s axes are different
from the axes of the reference frame under analysis, ha is multiplied by A, which is a rotational
matrix with three rows and as many columns as the number of actuators, and it is used to rotate
the angular momentum from the actuator’s axes to the axes of the reference frame. Assuming a
total external torque T, Eq. (2.61) can be derived to write the dynamics

Iω̇ + ω × Iω + İω + Ȧha +Aḣa + ω ×Aha = T (2.62)

which can be simplified in the case of reaction wheels, since the terms İω and Ȧha exist only
for CMGs. Considering only reaction wheels, the dynamics becomes

Iω̇ + ω × Iω +Aḣa + ω ×Aha = T (2.63)

Here, the terms related to the angular momentum of the wheels can be grouped to write the
control torque Tc as Tc = −Aḣa − ω × Aha. In this way, the dynamics can be written in a
compact way as

Iω̇ + ω × Iω = Tc +T (2.64)

and the angular momentum of the reaction wheels is

ḣa = Iaω̇a (2.65)

In general, three wheels, for example one for each axis, are enough to control the satellite.
Anyway, satellites often mount four wheels for redundancy, otherwise the failure of a single wheel
could cause the fail of the entire mission. There are two main configurations usually adopted in
satellite’s ADCS, depicted in Fig. 2.3: one is with three wheels aligned with the principal axes
and the fourth with equal components along the three axes, while the other is a full pyramid
configuration with no wheel aligned with any of the principal axes.

In the pyramidal configuration, the orientation of the wheels can be decided in accordance
with the disturbance torques expected: for example, if the greater torque is expected in the z-axis,
it is possible to select a small value for the angle β in Fig. 2.3b so that the angular momentum
of the reaction wheels has a greater component in the z direction. For instance, assuming an

angle of 45 degrees for the pyramidal configuration, four wheels can provide 4 ·
√
2
2 times more

angular momentum than a single wheel. In general, considering the actuators oriented with equal
components along the principal axes, the A matrix is
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(a) Reference frame (b) Pyramidal

Figure 2.3: Different configurations of the reaction wheels. [15]

A =

−
1√
3

1√
3

1√
3

− 1√
3

− 1√
3

− 1√
3

1√
3

1√
3

1√
3

1√
3

1√
3

1√
3

 (2.66)

Looking at Eq. (2.61), there is no limit in the momentum that can be exchanged between
satellite and reaction wheels. However, this is not the case: in fact, the angular velocity of a
wheel is usually controlled by an electric motor, which can provide a torque that is quite constant
in a certain speed range (in relation to the individual operational curve of the motor). Once the
velocity falls out of this range, the motor is no longer able to provide the torque, which means
there is a limit in the speed and so in the angular momentum that can be stored by the wheel.
Once this limit is reached, it is necessary to reduce the speed of the wheel to make it operative
again: this operation is called desaturation of the wheel. The problem is that reducing the
angular momentum of the wheel, will increase the one of the satellite, according to Eq. (2.61). To
avoid this, an external net torque must be applied, so that the desaturation requires additional
actuators like thrusters or magnetorquers. The saturation limit is an important characteristic of
a wheel that must be accounted for during the design phase, in particular when the disturbance
torques defined in the mission requirements have a secular component that tends to continuously
increase the level of saturation of the wheel. On the other hand, in a slew maneuver, the satellite
starts and ends the maneuver with zero angular velocity, and so with zero angular momentum. In
this case, the angular momentum of the wheel will increase until it reaches a maximum and then
return to zero (like the satellite) at the end of the maneuver. Therefore, it will only be necessary
to check that the maximum value of the stored momentum does not exceed the saturation limit,
but there is no limit to the number of maneuvers that can be carried out. In addition, if the
maneuver is too demanding in terms of angular momentum stored by the wheel, it is always
possible to subdivide the main maneuver into two (or more) smaller maneuvers.

2.2 Spacecraft attitude simulators

The greatest difficulty in simulating satellites, or in general systems conceived to work in
a space environment, is related to the main difference between such an environment and usual
testing facilities situated on the ground: gravity. In fact, the free-fall situation underwent by
a satellite in orbit causes it to experience what is commonly called weightlessness or, more
appropriately, microgravity. Since the beginning of the Space era, different ways to simulate
this condition have been developed and used to test components and train astronauts. NASA
used a swimming pool to train some of its astronauts, taking advantage of the neutral buoyancy
condition [5]. Another way exploited by NASA uses an aircraft flying in an arc at a specific
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angular rate, which makes objects in the aircraft float for a small amount of time [6]. Other ways
are magnetic suspension [7], which uses magnetic forces to make the component levitate, and the
drop from a tower [8]. A good description of the pros and cons of each method is presented by
Boynton in [9], where is also stated that none of those are suitable for testing satellites. On the
other hand, a method of simulating weightlessness that can be used for satellite testing, consists
in floating the satellite on an air bearing. Such a bearing offers a nearly torque-free environment,
and for this reason, it is the preferred technology for ground-based research in spacecraft attitude
dynamics and control.

2.2.1 Air bearings

Here, a brief introduction to air bearings will be presented. First of all, different types of air
bearings exist, and depending on the type, some combination of torque-free rotational motion and
force-free translational motion can be achieved. Anyway, almost all air bearings are composed
of a fixed part, the stator, which has some orifices through which flows pressurized air, and a
moving part, the rotor, which is supported by the very thin film of air established between rotor
and stator. So, the air film acts as the lubricant and imparts nearly no shear between the two
sections: in this way, the response of the moving part is characterized solely by its mass and
moment of inertia. The satellite, or every other component that needs to be tested, is placed over
the rotor to exploit this feature, as long as the center of gravity of the moving part is coincident
with the center of rotation of the bearing. However, an air bearing allowing full range of motion
in six degrees of freedom (DOFs) does not exist. Concerning DOFs, air bearings can be divided
into two main types:

• flat air bearings: the rotor and stator are flat surfaces, so they can allow free motion
in a horizontal plane (two DOFs) plus a rotation along the vertical axis (one DOF) for a
total of three DOFs;

• spherical air bearings: in this case rotor and stator are portions of concentric spheres,
allowing the complete rotation around the vertical axis plus limited rotation along the
other two horizontal axes, for a total of three DOFs, simulating all the rotational modes.

These single bearings can be assembled together to simulate motion in five DOFs, while the
sixth one, which is vertical translation, is more difficult to add. For example, the system can be
attached to a counterweighted beam or can be suspended from a long spring. Obviously, both
these methods introduce some drawbacks that make the simulation of all six DOFs quite tricky.
The most common type of bearing used in spacecraft attitude dynamics is the spherical one
because, ideally, they provide unconstrained rotational motion. As already stated, that is not
completely true since rotation around horizontal axes is usually constrained to angles smaller
than 90 degrees. That is the case of tabletop and umbrella-style platforms, depicted in Fig. 2.4a
and 2.4b. The tabletop consists of a flat plate mounted directly on the rotor, so that it is the
easiest one, but also the most constrained in motion. The umbrella-style adds a beam between
the flat plate and the hemispherical part of the rotor: in this way, the stator can be extended,
allowing a wider range of motion in roll and pitch. The last possible style is the dumbbell
configuration, shown in Fig. 2.4c, which is composed of two beams. This configuration greatly
reduces structural interference within the rotation space of the payload and thereby provides
unconstrained motion in both the roll and yaw axes [10].
There are three main factors that characterize a spherical air bearing: the weight capacity, the
height of the rotational center, and the maximum tilt angle. These parameters define the quality
of an air bearing and must be taken into account when choosing an air bearing.
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(a) Tabletop (b) Umbrella

(c) Dumbbell

Figure 2.4: Possible configurations of air bearings n.

Weight capacity

This parameter refers to the maximum load that the bearing can withstand. As already
described, the rotor of the bearing is suspended on a thin film of air coming from orifices in the
stator. The film of air works like a spring: by placing a weight on top of the bearing, the film
will become thinner. If the weight capacity is exceeded, the air pressure will no longer be able to
support the rotor, which will come into contact with the stator. The value of the weight capacity
depends on the dimensions of the bearing, in particular the surface area, and on the maximum
air pressure. In theory, every load could be counterbalanced by very high pressure, but, in reality,
this causes the bearing to be unstable.

Height of rotational center

In order for a spherical air bearing to simulate weightlessness, there must be no restoring
forces applied to the system, so that the moving elements remain in any position when brought
to rest. This means that its center of rotation must be coincident with the center of gravity
of the moving part of the bearing, which includes the rotor plus everything on top of it. So,
putting a large satellite over the bearing will cause the center of gravity to move towards up:
the greater the equipment to be tested on the bearing, the higher is the center of gravity, the
higher should be the rotational center. For this reason, a high rotational center is preferable.
This can be achieved with a large radius of the spherical bearing, However, increasing the radius
will reduce the depth of the cup, limiting the resistance to side forces. In fact, the side load
capability of a bearing is related to the cross sectional area of the bearing in a vertical plane. So
there is always a trade off between height of the rotational center and side load capability.
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Maximum tilt angle

As already seen, all the spherical air bearings have at least one rotation which is limited.
The maximum tilt angle represents the maximum angle that can be achieved by constrained
rotation. Exceeding this limit makes the airflow unstable and prevents the rotor from returning
to its original position. This parameter is influenced by the dimensions of the stator ‘cage’ that
encapsulate the rotor, and so it depends again on the radius. A small radius makes it possible
to have a stator that is quite a complete sphere, allowing a larger maximum tilt angle, but
decreasing the height of the rotational center. From this consideration, is easy to understand
that the tilt angle is related to the side load capability, sharing also the same relation with the
height of the center of rotation.

2.2.2 Balancing methods for air bearings

As already said, an air bearing is capable of replicating the conditions of a satellite in orbit,
in particular the cancellation of the gravity effects and the virtual absence of frictional resisting
torques, obtained thanks to the air film of the air bearing. However, these effects cannot be
perfectly canceled. Since the simulator is composed of real physical components, a lot of different
sources of disturbance exist, so that those effects can only be minimized as much as possible.
So, the goal of the simulator should not be that of completely eliminating every external torque,
but should be that of minimizing them to such a low level that they can be neglected in the
description of the system. The level to be achieved depends on the application: for example, [11]
states that a nanosatellite in Low Earth Orbit can be subjected to an external torque of about
10−6 Nm. Taking this value as reference, a great effort should be put in the minimization of the
distance between the center of rotation and the center of gravity, as also in the minimization of
the other disturbances.
A survey on all possible disturbance torques acting on an air bearing based simulator has been
carried on by [12]. In the document, the disturbances are collected into four different groups:

• Torques from the platform. These torques depend directly upon the construction of the
air bearing platform. This group contains the unbalance caused by gravity effects. They
can be minimized by building a very stiff platform and moving the center of gravity in
coincidence of the rotational center.

• Torques from the bearing. These disturbances arise from the bearing itself, in particular
from the airflow channels, if they are not perfectly symmetric or clean. They can be
minimized in the manufacturing of the bearing itself.

• Torques from the environment. This group contains torques external to the platform
itself, so that they are more difficult to be controlled. The most important ones come from
the interaction between the external air and the platform, which can act as a source of
damping.

• Torques from the test system. The torques of the last group depend on the particular
components utilized for the simulation and their configuration. One example could be mass
unbalance torques arising from the discharge of batteries.

A complete list of the disturbing torques described by [12] is given in Table 2.1.

As it can be seen, the first five disturbance torques from the first group are related to the
offset between the rotational center of the air bearing and the center of gravity of the overall
rotating part of the platform, that will be represented by roff. Minimizing this distance is essential
for the success of the simulation, since in this way many disturbing components are eliminated.
Assuming that the system is subjected only to the gravity torque due to the offset roff, the
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Table 2.1: Disturbing torques on an air bearing platform.

Torques from the
platform bearing environment test system

Static unbalance
Aerodynamic

Air damping Electrical wires to base
turbine effect

Dynamic unbalance
Exhaust air

Air currents
Mass shifting in bearings

impingement and loose fits

Anisoelasticity Magnetic fields Battery discharge

Material instability Vibration Reaction jet supply discharge

Stress-Temperature Radiation
Replacement of components

Humidity-Evaporation pressure

Gravity gradient

Equipment motion

Solenoids - Relays

rotational dynamics of the simulator with respect to the center of rotation is given by Euler’s
equation [13]:

Jω̇ + ω × Jω = roff ×ms/cgb + τc (2.67)

where J is the simulator inertia matrix, ω is the simulator angular velocity, ms/c is the
simulator mass and gb is the gravitational acceleration in the simulator coordinate system.
Moreover, τc can be present or not, and it indicates the control torque. If a constant torque
input cannot be provided, then the only way to eliminate the disturbance due to the gravity is
to minimize roff, which means that the center of gravity becomes coincident with the rotational
center.
The first way to reduce the offset is to manually balance. First of all, all the components on
the platform should be arranged as symmetrically as possible, or in such a way as to balance
the offset in the horizontal plane. After that, the center of gravity can also be balanced in the
vertical direction. This method is the simplest one, but can be time consuming and the accuracy
reached is often not sufficient. Anyway, it can always be used as a first step to reduce the offset.
The second way is the automatic balancing. This method involves the actuation of shifting
masses, mounted along the three orthogonal axes of the simulator reference system. Moving the
masses along these axes will change the position of the center of gravity of the platform, while
the rotational center remain fixed, thus reducing the offset roff. To do so, a control law should
be designed in order to actuate the masses with the right gain, according also to the offset. So,
automatic balancing involves also the estimation of the offset roff and of the system inertia. If
actuators are available, the offset can be estimated by measuring the response of the system
to known input torques. Instead, when actuators are not available, several solution have been
proposed. A good and updated literature review of the solutions adopted both for the estimation
and the balancing is given in [11].
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2.3 Available components

In this section, the components already available in the laboratory will be presented. The
laboratory is located inside the buildings of Politecnico di Milano and the hardware described
later on is part of the EXTREMA Simulation Hub that is developing as a testing and validation
facility in the context of the EXTREMA ERC project, already introduced in chapter 1.

2.3.1 Air bearing

The main component used to simulate weightlessness is a tabletop style spherical air bearing
from Specialty Components. The model is the SRA250-R30 1 and is depicted in Fig. 2.5. A good
description of the bearing, containing also a description of the auxiliary systems necessary to
operate the air bearing, is given in a previous thesis work by Luca Mariani [20].

Figure 2.5: SRA250-R30 spherical air bearing

The main characteristics are summarized in Table 2.2: being a tabletop style air bearing,
the rotation of the joint is unlimited only in one direction, which is the one orthogonal to the
ground. In the other two directions, the rotation is possible only in the range [-30, 30] degrees.
The load capacity is high enough not to be a restricting parameter for the design of any kind of
actuator, since it is in the order of hundreds of kg.

Moreover, an indication about the aerodynamic drag coefficient can be obtained from the
drag torque at 30 rpm: however, this parameter could depend largely on the degree of wearing of
the internal surfaces of the bearing and does not take into account the aerodynamic moment due
to the interaction of the above platform with the air. Similarly, the value of the CR-CG offset
is related only to the bearing, and could change drastically according to the other components
mounted on the bearing itself. In this regard, other projects related to the simulator were also
underway during the development of this thesis, including the implementation of moving masses
for platform balancing and the study of algorithms for automatic balancing by the motion of
the masses themselves. Fig. 2.6 shows the CAD of the platform and all the other components

1Specialty Components, Spherical Air Bearings SRA250-R30, https://www.specialtycomponents.com/

Products/sra250-r30/
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Table 2.2: SRA250-R30 characteristics

Rotor mass 1.81 kg

Load capacity 230 kg

Maximum tilt angle 30 deg

CR-CG offset 17.56 mm

Drag torque at 30 rpm 25 µ Nm

mounted on it: the image shows a final configuration, developed in parallel with this work. As it
can be seen, the bearing is equipped with two plates, one at the top and the other more below,
in order to lower the center of gravity. The plates represent the main structure to which are
attached the other components, like the moving masses, the batteries, and the other electrical
components, which are not accounted for in the CAD model. Of course, the presence of a large
number of components affects the total inertia of the platform, increasing it.

Figure 2.6: CAD model of the overall platform [21]

2.3.2 IMU sensor

Another component already equipped on the platform was an inertial measurement unit
(IMU) sensor by Bosch: the BNO055 Intelligent 9-Axis Absolute Sensor 2. The unit integrates a
triaxial 14-bit accelerometer, a triaxial 16-bit gyroscope, and a triaxial geomagnetic sensor, all in
a very limited space, as depicted in Fig. 2.7. In addition, Table 2.3 summarizes the principal
characteristics of the sensor.

The gyroscope and the accelerometer have integrated digital low-pass filters, with a bandwidth
that can be selected by the user. The resolution of the gyroscope and the accelerometer depends
on the selected range, while the magnetometer has a single range and resolution. Furthermore,
several power modes are available, like power-saving, standby, or high accuracy modes. The
outputs fused sensor data consist of quaternion, Euler angles, rotation vector, linear acceleration,

2Bosch, BNO055 Intelligent 9-Axis Absolute Sensor, Datasheet, https://cdn-shop.adafruit.com/

datasheets/BST_BNO055_DS000_12.pdf
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Table 2.3: Bosch BNO055 characteristics

Gyroscope Accelerometer Magnetometer

Range ± 125 to ± 2000 deg
s ± 2 to ± 16 g ± 2500 µ T (z-axis)

Resolution 16-bit 14-bit 0.3 µT

Low-pass filter bandwidths 523 Hz - 12 Hz 1 kHz - 8 Hz -

gravity, and heading. The outputs can be obtained at different data rates, with a maximum
frequency of 100 Hz. As a last remark, for optimum system integration, the BNO055 is equipped
with digital bidirectional I2C and UART interfaces.

Figure 2.7: Bosch BNO055 IMU sensor
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Chapter 3

Testbed model and numerical
simulation

This chapter will focus on the development of a mathematical model for the overall system
composed by the air-bearing simulator plus the reaction wheels linked to it, which shall then be
used to simulate the behavior of the system itself. Numerical modeling and simulation represent
usually the first step in the design process because it can give useful insights on the phenomenon
under study, that lead to a better understanding of all the parameters involved, reducing the
development time and costs. Moreover, once that all the components will be implemented in the
laboratory, the predicted response provided by the simulation can be used to validate the actual
response of the air-bearing testbed during testing scenarios.

The chapter will be divided as follows: in the first section, starting from a simplified version of
the coupled dynamics of the simulator and of the reaction wheels, the principal characteristics of
the latters will be derived, which will lead to the sizing of a single wheel.
In the second section, a refined model of the overall system, developed in the Matlab Simulink
environment, will be presented and used both to check the correctness of the reaction wheels
sizing and to guide the choice of proper values for the design parameters.

3.1 Reaction wheels sizing

In this section, the process that led to the sizing of the reaction wheels will be presented. The
goal is to define the main properties of the reaction wheel, that will be mandatory to build the
Simulink model, like its rotational inertia. The basic idea developed in this section is described in
[22] and relies on a set of assumptions on the dynamics of the wheel. In addition, the referenced
document refers to a single reaction wheel whose axis of rotation coincides with the axis of
rotation of the vehicle.
In the beginning, all the parameters affecting the design will be described, along with the major
assumptions. Then, the integration of the equations of motion will give a way of analyzing the
torque and angular momentum needed by the simulator to complete the maneuver under study.
From these, the features of the reaction wheel will be derived thanks to the conservation of
angular momentum.
The slew maneuver taken into account, which is a typical maneuver for the mission envisioned in
the EXTREMA project, refers to a rotation of the spacecraft to take orthogonal measurements
in space. In the worst case, when the Sun is between the initial and final position, the rotation
could be 270 degrees to prevent the sensor from being burned by the Sun. Also, the temporal
limit selected for the maneuver is 20 seconds.

24



3.1.1 Torque and maximum angular momentum

As already stated, this simplified analysis will make use of different assumptions: the first
and most important one is related to the velocity profile of the wheel. The main objective is that
of realizing a slew maneuver, which means that the reaction wheel starts rotating from a null
velocity, as the simulator, and continue until the simulator has reached the final desired angle θtot
in the total time ttot, with a final velocity equal to zero for both the wheel and the simulator. For
this reason, the velocity profile of the wheel will be characterized by an acceleration phase at the
beginning and a deceleration phase just before the end of the maneuver. The main assumption
consists of assuming that the acceleration time is equal to the deceleration time and is indicated
by the parameter n, which indicates the fraction of the total time spent in the acceleration
(or deceleration) phase. So, n ttot represents the acceleration (or deceleration) time and the
remaining time, (1 − 2n) ttot, is spent at constant velocity. From these considerations, it is
obvious that the parameter n can vary between the values of 0 and 0.5, where n = 0 corresponds
to a maneuver with an instantaneous acceleration phase, then a constant velocity for ttot, and
again an instantaneous deceleration phase, while n = 0.5 corresponds to a maneuver with an
acceleration phase for half of the total time and a deceleration phase for the other half, without
the constant velocity phase.
In addition to the assumption about the acceleration and deceleration times, another assumption
is related to the torque acting on the wheel, which is constant. This means that the angular
acceleration θ̈ (and deceleration) will be constant and that the angular velocity θ̇ will vary linearly
with time, while the displacement θ will be a quadratic function of time.
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Figure 3.1: Velocity and acceleration for three different values of n.

Fig. 3.1 displays on the left the velocity profile and on the right the acceleration profile,
according to the aforementioned assumptions, for three different values of n, respectively 0.2,
0.35, and 0.5. Looking at the acceleration profile, we notice that when n increases, the constant
value of the acceleration decreases, but the time required for the acceleration increases. The
consequences are that when n is greater, the larger time for the acceleration allows the velocity
to reach a larger maximum value than the case with smaller n, where the velocity will arrive
at a lower maximum in less time, anyway with a greater slope. For this reason, the product of
the average velocity and total time is the same for all the cases, i.e., the areas under the three
velocity-time curves are equal. This is another way of stating that the impulses are equal. [22]

With these assumptions, it is possible to write the equations of motion for both the simulator
and the reaction wheel during the three different phases: acceleration phase, constant velocity
phase and deceleration phase.
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Acceleration phase

For this phase, the equations expressing the dynamics are:

Simulator: Wheel:

Isθ̈s = T0 Iwθ̈w = −T0

with null initial conditions

{
θ̇s(t = 0) = 0

θs(t = 0) = 0

(3.1)

(3.2)

where T0 is the constant torque, I represents the inertia and the subscripts s and w define
respectively variables related to the ‘simulator’ or to the ‘wheel’.

Integrating the equations with the initial conditions leads to the maximum rotational velocity
reached during the acceleration phase:

θ̇s,a =
T0
Is
n ttot (3.3)

and to the total displacement during the acceleration phase:

∆θs = θs(t = ta) =
1

2

T0
Is

(n ttot)
2 (3.4)

Constant velocity phase

In this case, the equations expressing the dynamics are:

Simulator: Wheel:

Isθ̈s = 0 Iwθ̈w = 0

where the subscript c stands for ‘constant velocity’.
Again, it is possible to integrate the equations, but this time the initial conditions are:

{
θ̇s(t = ta) = θ̇s,a

∆θ
′
s(t = ta) = 0

(3.5)

(3.6)

In fact, the velocity is the final velocity of the previous phase, while the initial condition
expressed in Eq. (3.6) is referred to the relative displacement during this phase, and not the total
displacement, such that ∆θ

′
s(t) = θs(t)−∆θs.

Then, remembering the assumptions at the beginning of this section, which can be expressed
in a mathematical form as

{
ta = td = n ttot

tc = (1− 2n)ttot

(3.7)

(3.8)
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and integrating the equations of motion, the total relative displacement during this phase is
evaluated as:

∆θ
′
s,max = ∆θ

′
s(t = ta + tc) + θ̇s,a (1− 2n) ttot (3.9)

Deceleration phase

Finally, in the deceleration phase the equations become:

Simulator: Wheel:

Isθ̈s = −T0 Iwθ̈w = T0

Integrating with the initial conditions

{
θ̇s(t = ta + tc) = θ̇s,a

∆θ
′′
s (t = ta + tc) = 0

(3.10)

(3.11)

and substituting Eq. (3.3) leads to:

∆θ
′′
s,max = ∆θs (3.12)

Hence, the relative displacement in the acceleration and deceleration phase is the same.

At this point, it is possible to calculate the overall displacement throughout all the maneuver as
θs,tot = ∆θs +∆θ

′
s,max +∆θ

′′
s,max. Substituting Eq. (3.12), Eq. (3.9), and Eq. (3.4) leads to:

T0 =
θs,tot Is

t2tot (n− n2)
(3.13)

that is the constant torque that must be provided to the wheel in order to achieve a rotation of
the angle θs,tot in the time ttot with the parameter n, for a simulator with total inertia around the
rotational axis Is. These parameters represent the input data, that are defined by the maneuver
under study.

Furthermore, it is possible to calculate the maximum angular momentum of the simulator
during the slew maneuver as:

hmax = Is θ̇s,a,max = T0 n ttot (3.14)

While T0 is a constant value, the angular momentum of the vehicle h changes with the angular
velocity and Eq. (3.14) gives only the maximum value, in correspondence of the maximum
velocity.

Considering Eq. (3.13) and Eq. (3.14), it is useful to study the behavior of T0 and hmax in
relation to n. Indeed, the other inputs data are known once selected a certain maneuver (θs,tot,
ttot) and the simulator inertia Is, while n is a parameter that can be adjusted from time to time.
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Figure 3.2: Torque T and maximum angular momentum hmax against n.

Fig. 3.2 shows the behaviour of the torque and the maximum value of the angular momentum
against n. As it can be seen, the torque decreases with n: this is reasonable, since in the limit
case of n = 0 the acceleration phase is instantaneous and so the torque should be infinite, while
with a large value of n the acceleration time is greater and allows to have a smaller torque.
On the other hand, the maximum angular momentum increases with n because of the angular
velocity. In fact, the angular momentum is related to the inertia and to the maximum value
of the velocity: the inertia is constant, while the maximum velocity reached by the simulator
increases with n, as shown in Fig. 3.1, and so does hmax.

3.1.2 Considerations on inertia and power consumption of the wheel

Up to now, the main focus was put on the simulator. Exploiting the conservation of angular
momentum, as stated in Eq. (2.61), the focus will switch on the reaction wheel.

Is θ̇s + Iw θ̇w = 0 (3.15)

In this case, the matrix A in Eq. (2.61) becomes a scalar with value 1, because we are
considering a one dimensional problem (wheel and simulator acting on the same axis). According
to this equation, the maximum angular momentum hmax calculated for the simulator must be
provided by the reaction wheel, so

hmax = Iw θ̇w,max (3.16)

At the same time, the mechanical power needed to rotate the wheel can be estimated as [22]:

P = T0 θ̇w,max (3.17)

Since T0 and hmax are already known, three unknowns remain from the two equations 3.16
and 3.17. In order to have an estimate of the power consumption and inertia of the wheel, the
easiest way is that of selecting a fixed value for the maximum angular velocity of the wheel.
With this value, it is possible to study the behavior of the inertia and of the power consumption
in relation to n, as shown in Fig. 3.3.
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Figure 3.3: Max power Pmax and wheel inertia Iw against n.

Comparing Fig. 3.3 and Fig. 3.2 it can be immediately noticed a considerable similarity. This
also emerges from the equations because, once the wheel velocity θ̇w,max is fixed, the inertia
becomes proportional to the maximum angular momentum and the power becomes proportional
to the torque. So, this analysis comes out to be useful for the inertia, since from the maximum
angular momentum and the maximum rotational velocity one can obtain the minimum value for
the inertia of the wheel to select in order to not overcome the maximum rotational velocity of
the wheel itself. However, that is not the case for the power consumption. In fact, Eq. (3.16) can
be substituted inside Eq. (3.17) to express the power as a function of both the torque and the
angular momentum:

P = T0
hmax
Iw

(3.18)

Substituting Eq. 3.13 and 3.14, it is possible to show the relation between P and n

P =
(θs,tot Is)

2

Iw t3tot n (1− n)2
(3.19)

When studying the power in relation to n it is not possible to fix a value for the wheel velocity
(as done previously), because this would mean that both hmax and Iw would change with n to
maintain the same value for the velocity, while in reality the inertia of the wheel will be fixed
and so the evolution of the power with n will be determined by the two contrasting behaviors of
T0 and hmax. For this reason, a fixed value of the wheel inertia Iw was selected (the one with
n = 0.5) and the results are shown in Fig. 3.4.

In this case, the power is not continuously decreasing with n, but there is a global minimum.
In fact, for high values of n, T0 will be small but hmax will become too large and vice-versa for
small values of n. The aftermath is that there is a minimum value for the power consumption of
the wheel, which can be calculated from Eq. (3.19). Analytically, the minimum is found for a
value of n = 1

3 , as can be also seen in Fig. 3.4.
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Figure 3.4: Power consumption of the wheel against n, for a fixed value of the wheel inertia.

3.1.3 Sizing process for the reaction wheel

At this point, after the analysis of the principal characteristics affecting the system, it is
clearer the role and the importance of every one of them, in particular of the torque and angular
momentum that must be provided by the wheel. Therefore, the primary focus of the sizing
process is that of choosing the inertia for the wheel and the power consumption, which is related
to the motion of the wheel and so to how the wheel achieves its main goal of rotation, that is
expressed by the parameter n.
Concerning the inertia, it has already been discussed the relation between this parameter and
the maximum angular momentum that the wheel can provide. So, the choice shall take into
account that once the inertia will be fixed, also the maximum rotation angle achievable by the
wheel with a single maneuver will be fixed. On the other hand, the power consumption depends
on n, which can be chosen to minimize the power for every maneuver, since n is not related to
the physical configuration of the system but to the on-board software that will govern the motion
of the wheel.

Figure 3.5: Block diagram of the decision process for the sizing of the wheel.

The inertia is chosen from Eq. (3.16), where the maximum allowable velocity for the wheel is
set to 3000 rpm and hmax depends on n. Since it was found a minimum power consumption for
n = 0.33, one could think to select this value to calculate hmax, but doing so there will be a lack
of flexibility for the system because then it would not be possible to perform any other maneuver
with values of n greater than 0.33, since the wheel would reach its saturation limit. In fact, with
a greater value, the maximum angular momentum will increase and the wheel would be forced
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to rotate at a velocity larger than 3000 rpm. For this reason, the value of the inertia is chosen
calculating hmax with n = 0.5. In this way, with every other value of n, the maximum angular
momentum of the wheel will be smaller and so attainable. Moreover, this choice is referred to a
single wheel rotating along the axis of the maneuver, while in the final system there will be 3
or 4 wheels, so that the total angular momentum to be provided to the simulator will be split
between all the wheels, with a coefficient related to the orientation.
Once that the inertia is selected, the typical maneuver will be performed with a velocity profile
characterized by n = 0.33 to reduce the power consumption. Anyway, the parameter n remains
flexible so that can be modified at any time, even after the laboratory implementation. The over-
all decision process is summed up in Fig. 3.5, where the red blocks represent the final chosen values.

(a) Cylinder wheel (b) Hollow cylinder wheel

Figure 3.6: Different geometries for the reaction wheel.

Now that the inertia of the wheel is selected, it is possible to sketch a first prototype of the
wheel. Usually, reaction wheels are simply made as solid discs like in Fig. 3.6a. Considering
aluminum as material, the rotational inertia needed is attained with a radius of 40 mm, a height
of 16.2 mm, and a total weight of 220 g. However, a more refined geometry can lead to a weight
reduction, as in Fig. 3.6b. Here, the material is concentrated away from the center of rotation,
so that the same rotational inertia is obtained with less material. Indeed, the new geometry has
the same radius of 40 mm, but a height of 20 mm in the external cylinder and of only 8 mm in
the central part, leading to a total weight of 180 g, which is 18 % less than the previous case.

3.2 Simulink model

Now, it is possible to define a more accurate model of the overall system composed by the
simulator and the reaction wheels. These two coupled components will be referred to as the
‘System’. In addition, other components such as sensors and a control algorithm should be added.
As a starting point, the complete model should resemble the structure of a classical feedback
control system, as shown in Fig. 3.7.

Figure 3.7: Classical feedback control system.

To do so, the Matlab Simulink environment was used because of its straightforward way of
implementing many equations grouped in different structures called ‘blocks’, which are easy to
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recognize and manipulate. The block structure allows also to easily turn on and off certain parts,
like sensor measurements. In order to guarantee maximum fidelity with the real simulator, both
continuous blocks and discrete time blocks have been used: in fact, while the simulator and the
wheels would respond in a continuous way (to simulate the real system), the sensors and the
control system would act only at some defined time steps, because even in real life the sensors
run at a finite frequency. Using a continuous model of the system dynamics and a discrete model
of the sensors and control algorithm allows the simulation to provide the best estimate of the
output state. Obviously, the discretization is necessary to create data arrays within the Matlab
environment, even in the case of the continuous model of the system, but it should occur at a
much higher frequency than the discrete control algorithm to accurately represent the continuous
information.
In Fig. 3.8 is represented the final complete model of the overall system in Simulink. Since this
is the most outer layer of the model, it lacks of all the little details, but it is easy to recognize
the classical structure of a feedback control system.

3.2.1 System module

As it can be seen in Fig. 3.8, all the blocks of the model are grouped into different ‘modules’.
The first one to be described will be the ‘System module’, which represents the physical system
and is composed by the reaction wheels block, the simulator dynamics block and the simulator
kinematics block. The module takes as input only the voltages that power up the wheels motors
and gives as outputs the state of the wheels (which is composed by the velocities and the currents),
the angular velocities and Euler angles of the simulator. This module is the only one simulated
in a continuous way.

Reaction wheels block

This block represents the model of the reaction wheels and the motors attached to each wheel.
There are several types of motors that can be used for this type of application. In our case,
it was chosen to use a BrushLess Direct Current (BLDC) motor because of the advantages it
offers over brushed DC motors and induction motors, which includes better speed versus torque
characteristics, higher efficiency, higher dynamic response, and higher torque delivered to motor
size [23]. Furthermore, the absence of brushes means that less maintenance is required and that
the reversal of polarity is performed electronically by semiconductor switches, which are operated
accordingly with rotor position, obtained with measurement devices such as Hall effect sensors.
A complete mathematical model of a three-phase BLDC motor is presented in [24], based on
the physical model of Fig. 3.9. This model is taken as reference and rewritten in a state-space
representation in order to develop an ‘RW block’ in Simulink, which simulates a single motor
plus reaction wheel. Then, the ‘Reaction wheels block’ is simply composed of three identical
‘RW blocks’.
Applying Kirchhoff’s voltage law to the electrical circuit of the motor it is possible to write, for
the three phases

Va = R ia + L
dia
dt

+ ea (3.20)

Vb = R ib + L
dib
dt

+ eb (3.21)

Vc = R ic + L
dic
dt

+ ec (3.22)
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Figure 3.8: Scheme of the complete Simulink model.
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Figure 3.9: Physical model of a BLDC motor[24].

where VA, VB, VC are the source voltages, ia, ib, ic are the currents and ea, eb, ec are the
back-electromotive forces. Moreover, R i represents the voltage drop caused by the resistance R
and L di

dt represents the voltage drop caused by the inductance L. R and L are assumed to be
equal in the three phases.
An important characteristic of BLDC motor is the number of poles p, usually expressed as pole
pairs number p

2 , because each pole pair is composed by a magnetic north and magnetic south
pole. The number of poles p is strictly related to the electronic commutation through the relation
between the electrical rotor angle θe and the mechanical rotor angle θm, which can be written as

θe =
p

2
θm (3.23)

The mechanical rotor angle represents the actual rotation of the motor shaft and its related
to the angular velocity (of the shaft and of the wheel), while the electrical rotor angle is used to
calculate the back-EMF reference function f(θe), which has trapezoidal shape and maximum
magnitude of ±1 and can be represented by

f(θe) =


1, if 0 ≤ θe < 2π/3

1− 6
π (θe −

2π
3 ), if 2π/3 ≤ θe < π

−1, if π ≤ θe < 5π/3

−1 + 6
π (θe +

5π
3 ), if 5π/3 ≤ θe < 2π

(3.24)

Knowing the back-EMF reference function, it is possible to write the back-EMF forces, which
are out of phase of 120 degrees each, as

ea = Ke f(θe)ωw (3.25)

eb = Ke f(θe − 2π/3)ωw (3.26)

ec = Ke f(θe + 2π/3)ωw (3.27)

As it can be seen, the back-EMF forces are proportional to the mechanical angular velocity
ωw of the shaft (and of the reaction wheel) through a constant called Ke, typical of the motor
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under analysis, and of the back-EMF reference function. In a similar way, the torque of each
phase is proportional to the current i through a constant typical of the motor called Kt, and the
total electromagnetic torque output can be represented as the summation of each phase’s torque

Ta = Kt f(θe) ia (3.28)

Tb = Kt f(θe − 2π/3) ib (3.29)

Tc = Kt f(θe + 2π/3) ic (3.30)

Then, the mechanical characteristics of the wheel are expressed starting from Newton’s
second law for rotational bodies, taking into account the torque T generated by the motor, and
a dissipation torque Tb proportional to the damping ratio b and the wheel velocity ωw, so that
the equation of motion can be written as:

J
dωw
dt

= T − Tb = Ta + Tb + Tc − b ωw (3.31)

where J is the rotational inertia of the wheel plus the motor along the axis of rotation of
the wheel itself. So, the four equations 3.20, 3.21, 3.22, and 3.31 are four differential equations
coupled through the currents i and the velocity ωw, given the input voltages. In this case, the
voltage will be given by the motor controller. In fact, substituting the expression of the back-EMF
forces and the torques derived earlier, the four equations can be rearranged as:



dωw
dt

=
Kt

J
(ia fa + ib fb + ic fc)−

b

J
ωw

dia
dt

=
Va
L

− R

L
ia −

Ke

L
fa ωw

dib
dt

=
Vb
L

− R

L
ib −

Ke

L
fb ωw

dic
dt

=
Vc
L

− R

L
ic −

Ke

L
fc ωw

(3.32)

(3.33)

(3.34)

(3.35)

where fa = f(θe), fb = f(θe − 2π/3), and fc = f(θe + 2π/3). At this point, defining the state
xrw and the input V as

xrw =


ωw
ia
ib
ic

 V =


Va
Vb
Vc

 (3.36)

it is possible to write the system in state space form as:

{
ẋrw = Arwxrw +BrwV

yrw = Crwxrw

(3.37)

(3.38)

Eq. (3.39) gives the state matrix Arw as a function of the components of the electrical and
mechanical dynamic equations:
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Arw =


− b
J

Kt
J fa

Kt
J fb

Kt
J fc

−Ke
L fa −R

L 0 0

−Ke
L fb 0 −R

L 0

−Ke
L fc 0 0 −R

L

 (3.39)

Eq. (3.40) gives the input matrix Brw as a function of the components of the electrical
dynamic equation.

Brw =


0 0 0
1
L 0 0
0 1

L 0
0 0 1

L

 (3.40)

Since the mechanical dynamic equation is not a function of the voltage input, the input
matrix does not apply the voltage input to the mechanical portion of the state.
Finally, the desired outputs of the state space model are the angular velocity and the currents,
but also the angular acceleration of the wheel, obtained from the output matrix

Crw =


ωw
ia
ib
ic
ω̇w

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

− b
J

Kt
J fa

Kt
J fb

Kt
J fc

 (3.41)

The last step is related to the determination of the input voltages Va, Vb, and Vc: indeed,
the reaction wheels block will take as input the value of the voltage V coming from the control
module. Anyway, a function will be needed to assign that scalar value of voltage to the three
phases, according to the rotor position. That is, the voltages Va, Vb, and Vc are related one to
the other: at every instant, one phase will be assigned to the value V , one phase to the value
−V and the last phase will have 0 voltage. To do this, three Matlab Functions are used inside
the Simulink block, each of which implements a truth table according to Table 3.1.

Table 3.1: Six step switching sequence for commutation [24]

Rotor position [deg] Ha Hb Hc Switches closed

0 - 60 1 0 0 Q1 Q4

60 - 120 1 1 0 Q1 Q6

120 - 180 0 1 0 Q3 Q6

180 - 240 0 1 1 Q3 Q2

240 - 300 0 0 1 Q5 Q2

300 - 360 1 0 1 Q5 Q4

The first Matlab Function check the rotor position, θe, and assigns the signal of the Hall
sensors, that switch every 60 degrees. The second function decides which switch to close, according
to the signal coming from the Hall sensors. The last function take as input the switches and
assigns the voltage values V , −V , or 0 to Va, Vb, and Vc, according to the closed switches at the
time. The relation between the switches and the phases of the circuit can be seen in Fig. 3.9: if
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one of the top switches is closed, then the relative phase will have a positive voltage V . On the
other hand, if one of the bottom switches is closed, then the relative phase will have a negative
voltage −V , while the last phase will remain at zero voltage.
Fig. 3.10 provides an overview of the ‘RW block’. As it can be seen, the state space is implemented
in the Matlab Function called ‘Motor state space’, which needs as input the back electromotive
forces vector F. After the integration of the dynamics, the output is divide into the velocity
ωw, the currents i (composed of ia, ib, and ic), and the acceleration ω̇w. The mechanical angle
is retrieved integrating ωw and then transformed to the electrical angle θe, which is used in
the ‘Back-EMF’ function to get F , which in turn is fed back to the state-space equations. At
the same time, θe is used for the commutation by the three truth tables connected in series,
from which also the Hall sensors signal is extracted. As a last remark, two other quantities are
extracted from the block: the electrical power Pel and the mechanical power Pmec. The electrical
power is obtained multiplying the voltage by the current, for each phase, while the mechanical
power is obtained according to Eq. (3.17). Moreover, ‘RMS’ (root mean square) blocks are used
to filter the output of currents and voltages.

Figure 3.10: Simulink diagram of one RW block.

Simulator dynamics block

The dynamics of the simulator obeys to the Euler’s equation already presented in Sec. 2.1.6,
where the only source of torque are the reaction wheels, which do not provide external torques,
and is assumed to be no external disturbance torques on the system. Therefore, the vectorial
equation describing the dynamics of the simulator is Eq. (2.62), which in this case can be written
as:

Isω̇s + ωs × Isωs +AIwω̇w + ωs ×AIwωw = 0 (3.42)

where Is is the inertia matrix of the simulator, Iw is the inertia matrix of the wheel (which is
a diagonal matrix with J as value), and A is the matrix that allows to pass from the reference
system of the wheels to the body frame, as already explained in Sec. 2.1.7. In this block, the
input is arriving from the reaction wheels block and is represented by the wheels velocities
ωw and accelerations ω̇w, while the output is the vector of angular velocities of the simulator
ωs = [ωs,x ωs,y ωs,z]

T . The velocity vector ωs can be retrieved from the integration of ω̇s,
which in turn can be retrieved rearranging Eq. (3.42) as
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ω̇s = I−1
s (−ωs × Isωs −AIwω̇w − ωs ×AIwωw) (3.43)

To do so, the inertia matrix Is was assumed to be constant: actually, even considering all the
components on the simulator as rigid bodies, the inertia could change over time, because of the
presence of loose cables and of the moving masses used to balance the system. For this reason, it
was assumed that the balancing procedure had already been carried out and therefore that the
position of the moving masses is fixed during the maneuver.
Fig. 3.11 shows the Simulink block diagram for the integration of Eq. (3.42): the inputs arrive
from the previous block and the integrated output is fed back into the equation.

Figure 3.11: Simulink diagram of the simulator dynamics block.

Simulator kinematics block

This block represents the kinematics equations and is used to obtain the Euler angles and
the direction cosine matrix from the angular velocities of the simulator. The parameters chosen
to describe how attitude changes are the quaternions: the main advantages of this representation
are that a quaternion is a vector of only four parameters (the direction cosine matrix needs nine
parameters) and that they have no singular condition. In some cases it is convenient to divide
the quaternion into a vector part and a scalar part: in this case, the fourth entry is chosen as
the scalar part, so that:

q =


q1
q2
q3

 , q4

Having stated that, the kinematics equation for the quaternions can be expressed as

q̇ =
1

2
Ωq (3.44)

where Ω is a skew symmetric matrix composed by the angular velocities of the simulator, as
follows
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Ω =


0 ωz −ωy ωx

−ωz 0 ωx ωy
ωy −ωx 0 ωz
−ωx −ωy −ωz 0

 (3.45)

Figure 3.12: Simulink diagram of the simulator kinematics block.

As shown in Fig. 3.12, the angular velocities taken from the input are assembled in the matrix
Ω thanks to a Matlab function and then integrated. At every step, after the integration, the
quaternion needs to be normalized. As a final step, the quaternion in converted into the Euler
angles and the direction cosine matrix, thanks again to two Matlab functions which implements
respectively the following equations:


ϕ
θ
ψ

 =


tan−1

(
2(q1q4+q2q3)
1−2(q21+q

2
2)

)
tan−1

(
2(q4q2 − q3q1)

)
tan−1

(
2(q4q3+q1q2)
1−2(q22+q

2
3)

)
 [25] (3.46)

DCM =

q21 − q22 − q23 + q24 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) −q21 + q22 − q23 + q24 2(q2q3 + q1q4)
2(q1q3 + q2q4) 2(q2q3 − q1q4) −q21 − q22 + q23 + q24

 [26] (3.47)

3.2.2 Sensors module

The aim of this module is to simulate the signals coming from the sensors that will be mounted
on the platform. Since the control strategy implemented is of feedback type, it requires knowledge
of the characteristics of the system at every time step. The sensors module takes as input the
signals coming from the system module, which simulates the real continuous characteristics of the
system (like orientation and angular velocity) and gives as output the measured characteristics,
which are discretized according to the sampling time of the sensors and subjected to noise.
Simulating the stochastic properties of the signals coming from the sensors is an important step
that improves the model and increases its fidelity to the real system.
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Gyroscopes block

The first block to be described is the gyroscopes block, which takes as input the angular
velocities of the simulator and outputs the measured velocities ωmeas. The block is composed of
three subsystems, one for each axis. Each subsystem models one gyro and its noise according to
the following equation:

ωmeas = ωreal + ng + bg (3.48)

where the measured velocity ωmeas is obtained from the real velocity of the system ωreal plus
ng, which is known as angular random walk (ARW), plus bg, known as rate random walk (RRW).
The ARW is modeled as white Gaussian noise with zero mean and standard deviation σn, while
the RRW is slightly different because it is its derivative, ḃg, to be modeled as white Gaussian
noise with zero mean and standard deviation σb. So, the ARW acts as a Gaussian noise directly
on the real velocity, while the white noise of the RRW needs to be integrated before being added
to the real velocity. Because of the integration, the RRW does not oscillate around a mean value,
but rather increases over time. Luckily, sensors can be calibrated in order to reduce as much as
possible this contribution. Fig. 3.13 shows the Simulink block of a single gyroscope, where the
addition of the ARW and RRW are visible at the beginning, on the left. All the numerical values
are taken from the datasheet of the BNO055, already presented in Sec. 2.3.2.

Figure 3.13: Simulink diagram of one gyroscope subsystem.

After the addition of the noises, the signal is multiplied by a scale factor which transforms
the signal from an angular velocity to a number of counts: this value is typical of the sensor used
and is related to its sensitivity. After that, a saturation block is used to model the range of the
sensor: indeed, if the velocity is too high, the sensor will fall out of its range and gives back a
constant value. As the last step, a low-pass filter is applied to the signal, in order to filter out
the higher frequencies oscillations. Low-pass filters are always present in this type of sensor: in
this case, the only information in the datasheet about the filter is that the bandwidth can be
selected between 523 and 12 Hz. Without further information, it was decided to implement a
Butterworth filter because this type of filter has a flat pass-band, but a poor roll-off rate [27].
Since the filters that are in the sensors have usually good performances, it was decided to use
a third-order filter, instead of a simple first-order one. The transfer function for a third-order
Butterworth filter is:

H(s) =
ω3
c

s3 + 2ωcs2 + 2ω2
cs+ ω3

c

(3.49)

where ωc is the cutoff frequency of the filter, which was chosen empirically to be 40 Hz.
Anyway, as already said, the bandwidth of the filter in the sensor can be controlled by the user.
With this data, it is possible to plot the bode diagram of the filter, as shown in Fig. 3.14.
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Figure 3.14: Third-order Butterworth filter bode diagram (ωc = 40 Hz).

Then, in order to verify the validity of the filter obtained, it was decided to check information
about other similar sensors. In particular, in the datasheet of the ITG-3205 by InvenSense
1, there is plotted the bode diagram of Fig. 3.15. Here, the numbers correspond to different
bandwidths: the curve marked with the number three refers to a bandwidth of 42 Hz. As it can
be seen, the third-order Butterworth filter implemented approximates well the behavior of a
typical gyroscope low-pass filter.

After the filter, the count is approximated to an integer and converted back to a spin rate
value through the scale factor.
The last step of the gyroscope block consists of a zero-order hold, which discretizes the signal
according to the sampling rate of the sensor. According to the datasheet of the BNO055, the
sampling rate was selected as 100 Hz.

Accelerometers block

This block describes how the accelerometers are modeled. Accelerometers, as the gyroscopes,
are Micro Electro-Mechanical Systems (MEMS) used to measure the gravity vector. The main
idea of the block should be to take as input the gravity vector in the simulator reference frame gs
(obtained premultiplying g = [00− 9.81] by the DCM from the kinematics block) and add some
noise to get a measured value of the gravity vector gmeas. From this, the error in the orientation
of the simulator can be obtained comparing the measured gravity vector gmeas with a reference
gravity vector gref properly generated. Anyway, this implementation has a major problem: the
unobservability around the z-axis. In fact, since the maneuver under study involves a rotation
around the z-axis, the gravity vector will remain fixed during the entire maneuver, making it
useless for measuring the error in orientation. To overcome this problem, sensors implement
other types of measurement systems, like magnetometers, to be used in statistical methods for
attitude determination. However, the sensor mounted on the simulator, the BNO055, is capable

1InvenSense ITG-3205 datasheet, http://dl.btc.pl/kamami_wa/itg3205.pdf
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Figure 3.15: ITG-3205 filter bode diagram.

of giving as output already the Euler angles (or quaternions) and the datasheet gives information
about the noise expected. Taking everything into account, it was decided to only simulate the
effect of the noise on the outputted Euler angles, since the presence of noise could influence
the control algorithm. For this reason, for the accelerometers block there were used the same
subsystems of the gyroscopes block, as in Fig. 3.13. The only difference is represented by the
absence of the ARW, since a more precise calibration process for the accelerometers makes it
possible to neglect this contribution, while the low-pass filter remains the same. In this case, the
data are taken from the accelerometers data of the BNO055.
In this way, the effect of the noise on the Euler angles is accounted for, while at the same time
reducing the complexity and the computational effort of the simulation.

Hall sensors decoder block

This block takes as input the signal from the Hall sensors coming from the reaction wheels
block and uses it to calculate the velocity of the wheels. As for the reaction wheels block, this
block is composed of three identical subsystems, one for each wheel. The signal from the Hall
sensors of a single wheel has three components (Ha, Hb, and Hc) that change between 0 and 1 as
a function of the rotor position, according to Table 3.1: as it can be seen, each change corresponds
to a rotation of 60 degrees. The main idea for decoding the signal is that of evaluating the time
between one change and the following and then calculating the velocity as 60 degrees divided by
the time elapsed.
Fig. 3.16 displays the model of one sensors decoder. The input signal is used to trigger two
subsystems: the first one is triggered by the first change in the signal (both rising and falling
type), while the second subsystem is triggered with a delay. In this way, there is always one step
of difference between them, so that their subtraction gives the time elapsed between one change
and the following. Then, the time is put at the denominator and multiplied by a gain of π

3
2
p ,

which represents 60 degrees of the electrical angle θe. Right before this, there is a switch that
activates only in the first step, to avoid putting 0 in the denominator. At this point, the velocity
is calculated.

Anyway, the signal outputted in this way results to be too much noisy, in particular at high
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Figure 3.16: Simulink diagram of one Hall sensors decoder subsystem.

rotational speeds. For this reason, the same low-pass filter applied in the gyroscope block was
added at the end of this block, in addition to a saturation block, to limit the maximum value of
the output. Furthermore, a zero-order hold is placed just before the output of the block, with
the same sampling time of the gyroscopes and accelerometers.

3.2.3 Reference trajectory generation module

This module provides the reference state to be tracked by the control algorithm: in this way,
the user can define the motion of the simulator and the control of the system will move the
wheels in order to achieve the specified motion. The inputs of the module can be selected by the
user: in our case, the inputs from the maneuver described in Sec. 3.1 have been assumed, which
are the total angle of the maneuver, the total time, and the parameter n (as will be explained in
the following section). From these inputs, the module will provide the reference Euler’s angles,
the reference velocities of the simulator ωs,ref , and the reference velocities of the wheels ωw,ref
that will go into the control module.

Reference trajectory block

This block simply concatenates the inputs along x, y, and z to provide the reference trajectory.
The trajectory to be tracked can be provided in terms of angles, velocities or accelerations. For
the slew maneuver under study, the block generates both the velocity and acceleration profiles.
In Sec. 3.1, the motion of the wheel and of the simulator was already studied considering three
different phases: constant acceleration, constant velocity, and constant deceleration. These
profiles, shown in Fig. 3.1, represent the reference trajectory to be generated. To do so, ramp
inputs were used in the Simulink block: to define them, it is required the knowledge of the slope
of the ramp and of the times t0, t1, t2, and t3 that defines each phase. These parameters (times
and slope) were calculated starting from the inputs recalled at the beginning of the previous
section: θs,tot, ttot, and n. In fact, recalling that tacc = n ttot and tdec = tacc, the times are
obtained as

• t0 = 0

• t1 = t0 + tacc

• t2 = t1 + (1− 2n) ttot

• t3 = t2 + tacc

The slope of the velocity, instead, is obtained from Eq. (3.13), taking into account that the
slope is T0

Is
(as can be checked from Eq. (3.3)) and is:
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ωslope =
θs,tot

t2tot (n− n2)
(3.50)

These inputs data are calculated in a Matlab file called input_preload.m, which is automat-
ically launched when opening Simulink.

Reference kinematics block

This block is the same already described in Sec. 3.2.1, which is the ‘Simulator kinematics
block’. Their function is the same: obtaining Euler’s angles from the velocity of the simulator.
To distinguish between the two cases, the output of this block are called the ‘reference Euler’s
angles’ ϕref , θref , and ψref . In this way, all the reference values of the simulator (angles, in
addition to velocities and accelerations) are calculated. Below, the reference angles and velocities
are shown for a maneuver of θs,tot = 270 deg in ttot = 20s with the parameter n equal to 0.35.
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Figure 3.17: Reference trajectories for a maneuver of 270 deg in 20 seconds with n = 0.35.

Fig. 3.17b displays the reference velocities of the simulator, as calculated in the previous
‘Reference trajectory block’. As it can be seen, the behavior is increasing until t1 (which is 7s for
this maneuver), then constant, and then decreasing, as expected. After 20s, the command is
stopped. Moreover, the velocity along z (which is the axis of rotation) reaches a value of 0.3625
rad/s. This represents the profile of the velocities that the simulator should reproduce in order
to complete the specified maneuver.
The kinematics block gives the reference Euler’s angles seen in Fig. 3.17a. Unlike the reference
velocities, the reference angles are smooth. This is because integrating the ramps in Fig. 3.17b
produce the parabolas connecting the linear portions of Fig. 3.17a. Once again, the maneuver is
completed in 20s, with a rotation of 270 deg along the yaw axis.
So, this module is very flexible and can be changed from time to time to check the performance
of the system with different maneuvers. The only limits are the physical limits of the air bearing
in roll and pitch.

Reference wheels velocity block

This is the last block of the reference trejecotry generation module and its function is that of
calculating the velocity at which each wheel needs to rotate in order for the simulator to achieve
its reference trajectory. The reference velocity vector ωw,ref can be calculated from Eq. (3.42):
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indeed, it is possible to reverse the equation, taking as inputs the velocities and accelerations of
the simulator. In this way, the equation becomes:

ω̇w,ref = I−1
w A∗(−Isω̇s,ref − ωs,ref × Isωs,ref − ωs,ref ×AIwωw,ref ) (3.51)

where A∗ is the Moore–Penrose inverse (or pseudo-inverse) of matrix A, that, in the case
of 3 reaction wheels, is simply the inverse. The reference wheels velocity block is the Simulink
implementation of Eq. (3.51) and it is shown in Fig. 3.18.

Figure 3.18: Simulink diagram of the reference wheels velocity block.
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Figure 3.19: Reference velocities of the wheels.

Fig. 3.19, instead, shows the velocities of the wheels in rpm. Comparing it with Fig. 3.17b, it
is clear that the behavior is very similar but opposite, as it should be expected because of the
conservation of angular momentum of the system. Anyway, in this case, all the three wheels are
moving with the same speed: in fact, given the pyramidal configuration, it is mandatory that all
the three wheels rotate so that the components of torque along x and y eliminate each other,
while the components along z are summed up. This is one of the greatest advantages of this
configuration, because it allows the torque to be distributed among the wheels, so that each
wheel is responsible only for a fraction of the total torque.
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Finally, an important consideration should be done. This block gives the reference velocity needed
by the wheels to achieve the desired rotation of the simulator. Putting this ωw,ref into Eq. (3.42),
the desired velocity (and so orientation) of the simulator will be obtained. However, this is not
enough to assure that the real system will behave properly. The reason is that Eq. (3.42) is only
a simplified model of the overall real system, written with many assumptions, without taking
into account disturbances or noise. That is why a control algorithm will be needed, to ensure the
right orientation of the simulator even in presence of unmodeled dynamics and other errors.

3.2.4 Control module

The control module is probably the most important one in the whole Simulink model. Its
goal is to assure that the simulator will move in accordance with the motion specified by the
user, achieving the required orientation with good accuracy in a reasonable time. The only input
that can be fed by the control system is the velocity of the reaction wheels: the final orientation
of the overall system should be attained changing these velocities in an accurate way, established
by the control algorithm. In Sec. 3.2.3, the reference wheels velocity block was presented, from
which the desired velocity of the wheels ωw,ref is calculated. However, this block is not inserted
in the control module because that velocity is only a reference that should be tracked by the
control algorithm. For this reason, a first feedback loop should be defined about the reaction
wheels equations. This first loop is needed to be sure that the velocity of the wheels ωw will track
the reference velocity ωw,ref . Doing so, the correct wheels’ velocity will enter in the simulator’s
equations, ensuring that the simulator reaches the required orientation. Unfortunately, this is
true only in the Simulink model, where the evolution of the simulator is governed purely by
Eq. (3.42). In the real system, instead, the evolution of the simulator will depend also by other
factors neglected in the equations, as already mentioned in Sec. 3.2.3. These factors are mainly
represented by disturbance torques acting on the system, like the misalignment of the center of
mass with the center of rotation, the friction inside the air bearing, and the atmospheric friction
outside, but also by unmodeled dynamics. Furthermore, the coefficients used for the system, like
the inertias, the constants of the motor and so on, are all estimates of quantities that can be
slightly different in the real physical world.
For all these reasons, also a second loop was conceived, that will check the actual orientation of
the system and compare it with the reference orientation, calculating a control effort that will
then be added to the reference wheels’velocity ωw,ref . In this way, ωw,ref will account also for
the effects neglected in the equations.

Figure 3.20: Scheme of the control algorithm.

Fig. 3.20 shows a scheme of the control algorithm, highlighting the two closed loops. From the
figure, it can also be seen how the control effort from the second loop is added to the reference
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velocity of the wheels ωw,ref before entering in the first loop.

LQR technique

In the following subsections it will be described how the two controllers (inner and outer)
were designed. Both control loops are of the type multiple input - multiple output: so, to design
the controllers, the linear quadratic regulator (LQR) technique was adopted. The LQR is a
state-space design technique which relys on a full-state feedback law: taking into account the
fundamental state-space system

{
ẋ(t) = Ax(t) + u(t)

z(t) = Czx(t) +Dzu(t)

(3.52)

(3.53)

the dynamics of the system is function of the state x(t) and of the input u(t), while z(t)
represent the performance vector. Using a full-state feedback law means that the input u(t) can
be expressed as a function of the state x(t), that is:

u(t) = −Gx(t) (3.54)

where G is the gain matrix that, once computed, provides the optimal solution to the control
problem. It is important to notice that the full-state feedback requires the knowledge of all the
variables of the state, or at least of an estimate of them. Knowing the gain matrix and the state,
the closed-loop dynamics can be expressed as

ẋ(t) = Ax(t) +B u(t) = Ax(t)−BGx(t) (3.55)

The main idea behind the LQR technique is that the optimal solution is related to the
minimization of a quadratic cost function, which can be written as a function of the system input
and performance as

J =
1

2

∫ ∞

0
(z(t)TWzzz(t) + u(t)TWuuu(t))dt (3.56)

Anyway, it is usually preferred to rewrite the cost function in relation to the system input
and state. Manipulating Eq. (3.56), it is possible to write the cost function as

J =
1

2

∫ ∞

0
(x(t)TQx(t) + 2x(t)TSu(t) + u(t)TRu(t))dt (3.57)

where

• Q = CTz WzzCz

• S = CTz WzzDz

• R =Wuu +DT
zWzzDz
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As it can be seen, the matrix S is related to the disturbance matrix Dz. Since in our case the
matrix Dz is not taken into account in any state-space system, it is possible to neglect the matrix
S in the definition of the cost function. In this way, only the matrices Q and R remain, which are
related respectively to the deviation of the state from the origin and to the control effort. The
corresponding solution will then be strongly affected by the weighting matrices, which therefore
play a fundamental role in the design process. In fact, since J is to be minimized, increasing Q
with respect to R will mean that x(t) will have more importance in the minimization process
than u(t), and vice versa. Moreover, this is true also for each components of the two matrices: if
one of the states is more important to control than the others, a large value can be placed in the
corresponding position within the matrix Q. This will place a larger penalty on that particular
state and drive the cost function to minimize that state more than the others. The same holds
for the input weighting matrix R.
Once that the weighting matrices are specified by the designer, it is possible to solve the algebraic
Riccati equation (Eq. (3.58)) to find the symmetric positive matrix P .

P (A−BR−1ST ) + (AT − SR−1BT )P − PBR−1BTP +Q− SR−1ST = 0 (3.58)

Substituting P into Eq. (3.59) gives the optimal gain matrix for the system. The matrix G is
constant, so it does not change over time and can be calculated only one time. Multiplying it
with the time-dependent state x(t) gives the optimal control input at every time, according to
Eq. (3.54).

G = R−1(BTP − ST ) (3.59)

Eq. (3.59) and Eq. (3.58) are solved automatically by Matlab thanks to the built-in function
lqr, which takes as input the matrices of the system A and B, plus the weighting matrices Q
and R. The calculations are done at the beginning of the simulation by a Matlab file, launched
automatically by Simulink, called data_preload.m, which contains all the initial data for the
simulation.
The LQR technique, with some modifications, was used to design both the controllers of the
model. The exact design will be presented in the following sections. Anyway, the control module,
as the reference one, is quite flexible and can be modified at any time, even during the testing
process, according to the different scenarios under study. The simplest modification would be to
change the weighting matrices Q and R, which would consequently change the gain matrix G.

Motor controller LQR block

This block implements the LQR that will control the velocity of the wheels. As previously
described, the LQR is able to provide a certain control input u(t) related to the state x(t), so that
it works when the state is different from zero and acts to bring it back to the origin. However, in
this case, the main focus is to follow a certain reference profile, rather than bring the state to zero.
For this reason, the LQR needs some modifications to be able to track the reference assigned.
Two common methods for adding steady-state tracking capabilities to full-state feedback laws
are the feedforward input and the integral action [27]. For this particular case, robustness is of
great relevance since the Simulink model has some parameters which are only estimated (like
the inertia of the simulator). So, the integral action is more suited because it is a method more
robust with respect to any change in the parameters of the system.
The method consists in adding the integral of the system error to the dynamic equations.
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Considering the output of the state-space system y(t) and the reference signal r(t), the tracking
error is

e(t) = r(t)− y(t) (3.60)

The control law u(t) is related not only to the state x(t), but also to the integral of the error
expressed as xI(t), as follows

u(t) = −Gx(t)−GI

∫
e(t)dt = −[G GI ]

{
x(t)
xI(t)

}
(3.61)

So, x(t) and xI(t) will form a new augmented state xaug(t). The dynamics of x(t) remains
the same of the basic system, while the dynamics of the new state xI(t) is

ẋI(t) = e(t) = r(t)− y(t) = r(t)− Cx(t) (3.62)

The new augmented system will be

ẋaug(t) = Aaugxaug(t) +Bu,augu(t)−Br,augr(t) (3.63)

where the augmented matrices are

Aaug =

[
A 0
−C 0

]
Bu,aug =

[
B
0

]
Br,aug =

[
0
I

]
(3.64)

At this point, it is possible to define the weighting matrices Q and R and design a classic
LQR using the augmented state instead of the basic one. Doing so, the state will track the
reference r(t) in place of tracking the origin.
Having said that, it is clear why the motor controller block has two inputs, which are the state
of the reaction wheels system xrw, which contains the velocities and the currents of the three
wheels, and the error to be tracked erw, which contains the difference between the reference
velocities and the actual velocities of the wheels. Inside the block, after the integration of the
error, a Matlab function is used to rearrange the components of xrw and erw, in order to create
the augmented state xrw,aug of each wheel. For instance, the augmented state of the third wheel
is expressed as

xrw3,aug =


ω3

ia3
ib3
ic3
erw3

 (3.65)

where the 3 indicates the third wheel. Multiplying the augmented state by the gain matrix
Gaug, with a minus sign according to Eq. (3.54), it is obtained the nominal voltage to be applied
to the wheel, independently for each wheel. After that, the three voltages are concatenated into
a single vector Vin, which is the output of the block.
Now, the reference to be tracked by the motor controller is represented by the profile of the
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reference velocity of each wheel ωw,ref3. This means that the reference rrw3 and so the error erw3
will be scalar values. For this reason, it is mandatory to write a new output matrix Crw,e for the
reaction wheel state-space system that gives as outputs only the velocity of the wheel. This new
matrix Crw,e is defined simply as the first row of matrix Crw in Eq. (3.41).
On the other hand, the input is V = [Va Vb Vc]: anyway, the voltages Va, Vb, and Vc can have
a value of either V , -V , or 0, according to the switches that are closed, as defined in Sec. 3.2.1.
For this reason, it is possible to define a single input V by multiplying the Brw matrix for the
vector [1 -1 0], which represents the values of the switches at the initial time. After this, the
augmented reaction wheels system can be written as

Arw,aug =

[
Arw 0

−Crw,e 0

]
=


− b
J

Kt
J fa

Kt
J fb

Kt
J fc 0

−Ke
L fa −R

L 0 0 0

−Ke
L fb 0 −R

L 0 0

−Ke
L fc 0 0 −R

L 0
1 0 0 0 0

 (3.66)

Brw,aug =

[
Brw
0

]
=


0
1
L
− 1
L
0
0

 (3.67)

At the same time, the weighting matrices for the LQR are defined as

Qrw =


1 0 0 0 0
0 30 0 0 0
0 0 30 0 0
0 0 0 30 0
0 0 0 0 100

 Rrw =
[
50
]

(3.68)

These matrices are chosen with a trial-and-error procedure because they guarantee a good
result in terms of dynamics response, but they can be modified easily through the Matlab file
data_preload.m, which could be very helpful during the testing phase. Anyway, it is important
to note how the values are assigned: while the entries related to the currents and voltages are
respectively 30 and 50, the entry related to the error is assigned a bigger penalty of 100, in order
to minimize more the error. Moreover, the entry related to the velocity is 1 since the velocity of
the wheel does not have to be minimized: on the contrary, it will reach high values, to provide
the desired angular momentum. Finally, the gain matrix Gaug is obtained through the Matlab
function lqr, specifying as inputs the matrices Arw,aug, Brw,aug, Qrw, and Rrw.

With this controller, it is possible to close the loop formed by the reference and system
module, and so simulate the response of the system. Fig. 3.21 shows the comparison between the
reference wheels velocity ωw,ref coming from the reference trajectory generation module and the
reaction wheels velocity ωw coming from the system module, which simulate the real velocity
of the reaction wheels. It must be noticed that this simulation does not take into account any
disturbances or any noise coming from the sensors, since it is assumed the perfect knowledge of
the full state: the only purpose is to check the validity of the gain matrix obtained from the LQR
and to see if the wheels are able to track the velocity profile assigned. As it can be seen from the
figure, the tracking is good, as there is no overshoot and the delay is only about half a second.
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Figure 3.21: Comparison between the reference wheels velocity and the simulated reaction
wheels velocity.

Sim controller LQR block

This block implements the controller for the second (outer) loop of the control module: as the
first one, also this controller was designed with the LQR technique. However, Euler’s equation
for the simulator is nonlinear, on the contrary of the equations for the reaction wheels, so that
writing the state-space system will be not as simple as before. The method used to write the
state-space system is the linearization of Euler’s equations, as presented in [28]. The starting
point is Eq. (3.42), which can be rewritten in scalar form (along x) as:

ω̇sx =
1

Isxx

(
− (Iszz − Isyy)ωsyωsz − J(A11ω̇w1 +A12ω̇w2 +A13ω̇w3)+

+ ωszJ(A21ωw1 +A22ωw2 +A23ωw3)− ωsyJ(A31ωw1 +A32ωw2 +A33ωw3)

)
(3.69)

Along the other directions, the equations are very similar, so they will be omitted for the
sake of clarity. The equations, now, need to be linearized. To do so, the partial derivatives
with respect to each variable are evaluated and calculated at the equilibrium point. Then, each
derivative must be multiplied by its respective variable, so that at the end every variable appears
with, at most, a linear dependence. This procedure is summarized in Eq. (3.70), with nine partial
derivatives.

ω̇sx,lin =
∂ω̇sx
∂ωsx

∣∣∣∣
eq

ωsx +
∂ω̇sx
∂ωsy

∣∣∣∣
eq

ωsy +
∂ω̇sx
∂ωsz

∣∣∣∣
eq

ωsz +
∂ω̇sx
∂ωw1

∣∣∣∣
eq

ωw1+

+
∂ω̇sx
∂ωw2

∣∣∣∣
eq

ωw2 +
∂ω̇sx
∂ωw3

∣∣∣∣
eq

ωw3 +
∂ω̇sx
∂ω̇w1

∣∣∣∣
eq

ω̇w1 +
∂ω̇sx
∂ω̇w2

∣∣∣∣
eq

ω̇w2 +
∂ω̇sx
∂ω̇w3

∣∣∣∣
eq

ω̇w3 (3.70)

Using these partial derivatives, the linearized equation of motion can be found about any
equilibrium point. Considering a generic equilibrium point x̄, the nine partial derivatives are
written as:

X1 =
∂ω̇sx
∂ωsx

∣∣∣∣
x̄

= 0 (3.71)
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X2 =
∂ω̇sx
∂ωsy

∣∣∣∣
x̄

=
1

Isxx
(−(Isz − Isy)ω̄sz − J(A31ω̄w1 +A32ω̄w2 +A33ω̄w3)) (3.72)

X3 =
∂ω̇sx
∂ωsz

∣∣∣∣
x̄

=
1

Isxx
(−(Isz − Isy)ω̄sy + J(A21ω̄w1 +A22ω̄w2 +A23ω̄w3)) (3.73)

X4 =
∂ω̇sx
∂ωw1

∣∣∣∣
x̄

=
J

Isxx
(A21ω̄sz −A31ω̄sy) (3.74)

X5 =
∂ω̇sx
∂ωw2

∣∣∣∣
x̄

=
J

Isxx
(A22ω̄sz −A32ω̄sy) (3.75)

X6 =
∂ω̇sx
∂ωw3

∣∣∣∣
x̄

=
J

Isxx
(A23ω̄sz −A33ω̄sy) (3.76)

X7 =
∂ω̇sx
∂ω̇w1

∣∣∣∣
x̄

= −JA11

Isxx
(3.77)

X8 =
∂ω̇sx
∂ω̇w2

∣∣∣∣
x̄

= −JA12

Isxx
(3.78)

X9 =
∂ω̇sx
∂ω̇w3

∣∣∣∣
x̄

= −JA13

Isxx
(3.79)

To clarify the discussion, the partial derivatives of ω̇sx are called X1, X2, . . . X9. In the
same way, the derivatives of ω̇sy and ω̇sz are represented respectively by Y 1, Y 2, . . . Y 9 and
Z1, Z2, . . . Z9.
With all the equations linearized, it is possible to define the state-space representation of the
simulator. The state xsim and the input usim can be defined in many different ways: the one
chosen for this model is the following

xsim =



ϕ
θ
ψ
ωsx
ωsy
ωsz


usim =



ωw1
ωw2
ωw3
ω̇w1
ω̇w2
ω̇w3


(3.80)

where the first three entries represent the Euler’s angles: in fact, linearizing the equations
around an equilibrium point, it is possible to write the angular velocities as the derivatives of
Euler’s angles, without the need of the kinematics equations. Once that the state and the input
are defined, it is possible to write the complete system as:

ẋsim =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 X1 X2 X3
0 0 0 Y 1 Y 2 Y 3
0 0 0 Z1 Z2 Z3


︸ ︷︷ ︸

Asim

xsim +



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
X4 X5 X6 X7 X8 X9
Y 4 Y 5 Y 6 Y 7 Y 8 Y 9
Z4 Z5 Z6 Z7 Z8 Z9


︸ ︷︷ ︸

Bsim

usim (3.81)
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ysim =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

Csim

xsim (3.82)

As it can be seen, the first three columns of the state matrix Asim are null because are related
to the first three entries of xsim, which are the Euler’s angles that do not appear in Eq. (3.70).
The input matrix Bsim is not populated in the upper half because the input has no influence
about the angular velocities, but only about the angular accelerations ω̇s. At last, the output
matrix Csim is simply the identity matrix because the final output is exactly the state.
Usually, when an equation is linearized, the equilibrium point is chosen as a particular point
like zero (null state). In this case, the simulator will rotate from 0 to 270 degrees, and also the
velocity will change and reach values far from zero: given this large range of values, linearizing
around a single equilibrium point would stretch too much the assumptions of the linearizing
process, since this approximation is most effective near the equilibrium point. For this reason, it
was decided to take as equilibrium point x̄ the actual state xsim. Since the state change at every
iteration, this method would need to evaluate the gain matrix G at every iteration. In order to
reduce the computational effort, it was selected a sample time of 0.1s for the sim controller LQR
block, so that the equilibrium point is updated every 0.1 seconds. In this way, a state-space
model based on the linearized Euler’s equations was developed and can now be used to design
the LQR controller.
As already done for the motor controller LQR block, the gain matrix Gsim is obtained through
the Matlab function lqr, specifying as inputs the matrices Asim, Bsim, Qsim, and Rsim, where
the weighting matrices are defined as:

Qsim =



15 0 0 0 0 0
0 15 0 0 0 0
0 0 15 0 0 0
0 0 0 5 0 0
0 0 0 0 5 0
0 0 0 0 0 5

 Rsim =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 (3.83)

As it can be seen, the higher weights are given to the Q matrix, while the R matrix, related to
the control effort, has lower values. Now, it must be noticed that the state xsim fed to the LQR
is not composed of the Euler angles and simulator velocities coming from the system module, but
rather it is composed of the difference between the reference quantities and the real quantities
from the system module, as it can be checked in Fig. 3.8. In this way, the gain is multiplied by
the state error rather than the state itself. This produces input commands relating to the state
error regardless of the reference state. These inputs due to error are eventually added to the
reference wheels velocity from the reference trajectory generation module to produce the total
reference wheel velocity that will be used by the motor controller LQR.

3.2.5 Simulation results

At this point, all the modules composing the Simulink model of the system were presented
and it is possible to perform a simulation to check the performances of the reaction wheels in
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controlling the simulator platform. Moreover, the Simulink model will be useful also in the
following chapters, because it can be exploited to select the right components and to compare the
results from the actual implementation. As already mentioned, the data for the simulation are
uploaded thanks to two Matlab files which are pre-uploaded when Simulink starts, and they are
input_preload.m and data_preload.m. The first one contains the data related to the maneuver
under study: for this simulation, the maneuver consists of a rotation around the z-axis of 270
degrees in a total time of 40 seconds, with the parameter n equal to 0.35. The total time was
doubled with respect to the initial time of 20 seconds because the simulator inertia estimate
was nearly doubled. The inertia value, as also the other data for the simulation, are contained
in data_preload.m: in particular, the simulator inertia was estimated from the CAD model
(shown in the next chapter) as:

Is =

0.1838 0.0114 0.0029
0.0114 0.2234 0.0072
0.0029 0.0072 0.1747

 kg m2 (3.84)

Concerning the inertia of the reaction wheel, it was set as J = 1.74 x 10−4 +1.35 x 10−5kg m2:
the first term is the inertia of the flywheel as estimated from the CAD model, while the second
term represents the inertia of the motor that will be attached to the wheel. This value, as all the
other characteristics of the motor, are taken from the datasheet of the motor selected for the
prototype implementation, which will be described later on.

Table 3.2: Motor data

Characteristic Symbol Value

Back-EMF constant Ke 0.0335 V
rad/s

Torque constant Kt 0.0335 Nm
A

Inductance L 4 x 10−4H

Resistance R 0.88Ω

Friction coefficient b 1.05 x 10−6 Nm
rad/s

Motor poles p 16

Table 3.2 summarizes the motor data. The only data not available in the datasheet is the
friction coefficient b, which was selected checking the value of similar motors. The last data to
set is the A matrix related to the position of the reaction wheels: for this simulation, the wheels
are assumed to be in a pyramidal configuration, so that the matrix can be written as

A =


− 1√

2
1√
2

0

− 1√
6

− 1√
6

√
2
3

1√
3

1√
3

1√
3

 (3.85)

Concerning the solver, it was selected a fixed-step solver, in particular ode4, with a step
size of 1 x 10−4 seconds, which was quicker with respect to a variable-step solver: the better
performance of the fixed-step solver are due to the fact that some modules of the model (sensors
and control modules) are simulated in a discrete way, with a fixed time step of 0.01 seconds.
With these parameters, the simulation outputted the following results. Fig. 3.22 shows the Euler
angles of the simulator: the behavior tracks well the reference trajectory (Fig. 3.17a) and the
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final value reached is 272.8 degrees. So, the simulator reaches its target with a steady-state error
which is about 1% of the nominal final value. The control performances are good in terms of
overshoot, which is absent, and settling time, while the steady-state error is the only performance
which could be improved.
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Figure 3.22: Euler angles of the simulator.

Then, Fig. 3.23 displays the speed of the three wheels. As it can be seen, their profiles are
similar, which is in accordance to the reference velocities to be tracked. At the beginning, there is
a certain amount of oscillation, after which the behavior is more stable. The speed profile follows
the one of Fig. 3.19, and the speed during the constant phase is around 1150 rpm, which is not
comparable to the one of Fig. 3.19 since the total time and the simulator inertia are different. In
this case, a small overshoot can be observed before reaching the constant phase value, around
0.2%. Moreover, the speed profile has a delay of about half second with respect to the reference
wheel velocity.
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Figure 3.23: Reaction wheels velocities.
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The last result, shown in Fig. 3.24, represents the power consumption of a single wheel, which
will be similar to the other two wheels. The electrical power required by the motor is related to
the current flowing in the windings, which in turn depends on the speed of the motor. In fact,
the behavior is the same of the reaction wheels velocities: in this case, the maximum value is
about 2.62 W. As it will be explained later, the power consumption represents an important
parameter for the selection of the motor and should not exceed 20 W. Considering all the three
reaction wheels, the total power required by the actuators system will be about 7.86 W, which is
well below the limit imposed.
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Figure 3.24: Power consumption of a single wheel.
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Chapter 4

Prototype components and
implementation

This chapter deals with the hardware implementation of the model described before: the
goal is to have a working system that is able to verify and validate the results obtained in the
previous chapter. For this reason, the chapter will describe the phases related to the choice of
the components and their integration on the simulator.
The model described earlier refers to a complete attitude control system, composed of three
reaction wheels, capable of controlling the simulator in the three-axis. Anyway, since the goal
is to build an hardware that is able to validate the numerical results, it was decided to first
develop a prototype of a single wheel assembly. In this way, it is possible to check the validity
of the model with minimal effort in terms of costs and time. Then, if the prototype results to
be effective, it will be easy to use the same hardware also for the other two wheels. Since the
maneuver under study is related to a rotation around the z-axis, it was decided to develop for
the first prototype a reaction wheel along the same axis.
The chapter will deal with the components choice, their procurement, and their actual imple-
mentation on the simulator. The first thing will be the choice of the motor for the reaction
wheel assembly. After that, the structural components designed to connect the motor, the wheel,
and the simulator will be described, before of the electronic components. Eventually, the final
implementation of all the components on the simulator will be described.

4.1 Brushless DC motor

As stated before, the first component to be chosen was the brushless DC motor. This
represents the main component of the wheel assembly, since it must be able to rotate the wheel
at the required velocity and with the desired accuracy. Moreover, it is mandatory to know the
dimensions of the motor to design all the structural components. At the same time, also the
electronic components will depend on the choice of the motor. For all these reasons, the motor
must be selected first.
In order to choose a suitable motor for this work, its main characteristics should be defined:
first of all, given the results presented in chapter 3, the motor should be able to reach at least
2500 rpm. This value was then increased to 3000 rpm, since sometimes the values shown in the
datasheets contain errors up to 10 % of the nominal value. In any case, the higher the velocity
that can be reached, the better. Another characteristic taken into account was the size of the
motor: since the final actuator will be composed of three wheels to be mounted on the simulator,
it would be good to have a compact design for the wheel assembly. For this reason, the choice of
the motor took into account flat BLDC motors. Another consideration is related to the power
input of the motor, which will be mounted on the simulator and rotate with it: this makes it
impossible to have cables powering up the motor, since they would interfere with the rotation
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of the platform. So, the power needs to be generated on the simulator itself, and this poses
limitations in terms of power consumption. Considering the presence of additional systems on
the platform, an upper limit of 15 to 20 W was selected. Moreover, it would be preferable for the
motor to be able to reach the target velocity without overheating and reliably. As a last remark,
it is important to note that BLDC motors are available in two different configurations: with and
without Hall sensors. A motor without Hall sensors needs external devices, such as encoders, to
read its velocity. These devices are usually more precise, but also more bulky and complicated
with respect to the Hall sensors already mounted on the motor. For this project, it was decided
to select a BLDC motor with built-in Hall sensors because their precision is enough and they
offer an advantage in terms of compactness of the overall assembly.
Taking into account all of the above, the first motor to be selected was the EC 45 flat (part
number 339276) by maxon motor 1, a reliable company specialized in electrical motors. This
motor is a flat BLDC motor with an external diameter of 50 mm, rated power of 12 W, and it
has built-in Hall sensors. The specifications of the motor are summarized in Table 4.1: as it can
be seen, the power required is less than the maximum allowable and the nominal speed is more
than enough. Moreover, the currents are smaller than 1 A and the motor is extremely compact,
with a depth of less than 30 mm and a total weight of 57 g. This motor represents one of the
tiniest motors available online that fulfills all the needs specified above. Unfortunately, there was
no motor left in stock and the company said that a new motor would have to be assembled and
then shipped, for a total overhead time of several months. For this reason, the EC 45 flat motor
was discarded.

Table 4.1: Comparison between motors specifications.

EC 45 flat maxon DF45M024053-A2 Nanotec

Rated power [W] 12 50

Nominal voltage [V] 24 24

Speed no load/nominal [rpm] 7310/4390 6700/5260

Current no load/nominal [A] 0.0476/0.766 <0.4/2.36

Nominal torque [Ncm] 2.7 8.4

Weight [g] 57 120

The final choice fell on a motor by Nanotec, the DF45M024053-A2 2, which was immediately
available. As the former, also this motor has built-in Hall sensors and it is shown in Fig. 4.1,while
its specifications are shown in Table 4.1: it has the same nominal voltage of the motor by maxon,
but it is more powerful, having higher nominal values for torque, current, and speed, as also the
weight. Concerning the dimensions, it is thicker but it has an external diameter of 43 mm. The
only out-of-scope parameter is the power, since the motor on the platform cannot be fed by 50
W. Anyway, this motor was selected with the idea of using it underpowered: this means that it
will not be able to reach its maximum specifications, but only lower values. To understand if
the motor can be used in this way, it is necessary to check that the motor can reach the speed
required by the maneuver while being powered only with a maximum of 20 W. To do so, the
Simulink model was used, entering the motor specifications from 3.

1maxon motor website, https://www.maxongroup.com/maxon/view/product/339276
2Nanotec website, https://en.nanotec.com/products/1789-df45m024053-a2-brushless-dc-motor-with-connecting-wires
3EC 45 flat datasheet, https://en.nanotec.com/fileadmin/files/Datenblaetter/BLDC/DF45/

DF45M024053-A2.pdf

58

https://www.maxongroup.com/maxon/view/product/339276
https://en.nanotec.com/products/1789-df45m024053-a2-brushless-dc-motor-with-connecting-wires
https://en.nanotec.com/fileadmin/files/Datenblaetter/BLDC/DF45/DF45M024053-A2.pdf
https://en.nanotec.com/fileadmin/files/Datenblaetter/BLDC/DF45/DF45M024053-A2.pdf


Figure 4.1: DF45M024053-A2 motor by Nanotec.

At first, only a single reaction wheel block was simulated, like the one of Fig. 3.10. The
voltage was set to its nominal value of 24 V, and no additional inertia sources were added apart
from the one of the motor itself. The friction coefficient b was taken as 1.05 × 10−6. All the
other values were taken from the datasheet of the motor. Fig. 4.2 shows the results obtained
from the simulation. On the left, the speed of the motor reaches a steady-state value of about
6150 rpm, which is in accordance with the value of the zero-load rated speed on the datasheet,
6700 rpm ±10%. Instead, on the right, the power consumption has an initial spike, after which
it stabilizes around 16 W. This value is lower than the imposed limit of 20 W: moreover, it is
related to the motor running at full speed, while in our case the speed will be less than half, and
so also the power will be lower. Anyway, it is still possible to run the motor at full speed with
less than 20 W.

(a) Velocity (b) Power

Figure 4.2: Velocity and power consumption with no load.

These results show that the reaction wheels block does a good job in simulating the dynamics
of the motor, and can be used in order to check the power consumption during the slew maneuver.
To this aim, another simulation was run, in this case involving the overall Simulink model
presented in Fig. 3.8. Anyway, as already stated at the beginning of the chapter, the prototype
that will be implemented includes only a single wheel, mounted along the z-axis. So, the Simulink
model will need some modifications to take into account the presence of a single wheel instead of
three. Actually, analyzing a single wheel along the z-axis corresponds to analyzing a set of three
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reaction wheels in a cartesian configuration (one wheel for each cartesian axis). In fact, with this
configuration, a maneuver that involves a rotation around a single axis will only activate a single
wheel. This means that it is possible to emulate the effect of the single wheel prototype with
the same Simulink model described before: the only difference is related to the A matrix inside
Eq. (3.42). Using the identity matrix of dimension three, each wheel is related to a cartesian
axis, and a rotation along z will activate only the third wheel. After changing the A matrix, a
simulation was performed and the results are shown in Fig. 4.3.
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Figure 4.3: Velocity and power consumption during the slew maneuver.

As it can be seen, the wheels related to the x and y axes remain still, while the wheel along
the z-axis reaches a velocity of about 2000 rpm. This value is greater than the velocity reached
in Fig. 3.23, but this was expected since a single wheel gives a smaller contribution in terms of
angular momentum with respect to three wheels in pyramidal configuration. More importantly,
on the right, it is possible to see that the power consumption behavior is strictly related to
the velocity, and reaches values well below the maximum limit of 20 W. Even considering some
degree of error in the model, it is probable that the power in Fig. 4.3b is overestimated, as
explained before. So, taking everything into account, it was decided to definitely select the
DF45M024053-A2 motor by Nanotec because, even though the rated power is listed at 50 W, it
was checked that for our maneuver the power will not surpass the imposed limit of 20 W.

4.2 Structural components

This section describes all the structural components that will form the reaction wheel assembly:
this term refers to the assembly composed of the reaction wheel (Fig. 3.6b), the motor (Fig. 4.1),
a flange that connects the wheel to the shaft of the motor, and a structure to fix all these
components on the platform. While the first two have been already presented, the latter two are
described in the following, starting from the structure between the motor and the platform.
The starting point is the motor: from Fig. 4.1, is easy to recognize the stator of the motor, which
is the part in front, thinner and shinier, to which are attached the cables, and the rotor, made
up of the shaft, but also of the rear part. The structure will connect the platform to the stator,
where are visible three threaded holes, designed just for this purpose. Then, the wheel will be
fixed to the shaft, in order to rotate at the same velocity. This configuration could be the source
of potential vibrations, in particular if the shaft is placed along a direction perpendicular to
the gravity direction: in this case, in fact, the shaft could be represented as a clamped beam
with a load on the free end. This could generate an important bending moment, and so an
eccentricity along the nominal direction of rotation, which, especially at high speeds, could lead
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to not negligible vibrations. To mitigate this problem, a bearing could be placed just before the
wheel, in order to decrease the displacement of the shaft at the free end. Anyway, since in this
first prototype the shaft will be along the gravity direction, it was decided not to add additional
bearings. In this case, indeed, the weight of the wheel will act as a compression force for the
shaft, exploiting the axial rigidity of the latter, which, for a circular cross-section, is higher than
the bending rigidity. Nevertheless, this is something to take into account when designing the full
set of three wheels.
Having said so, the structure will be the only link between the wheel assembly and the platform,
and so it needs to guarantee a high enough rigidity, especially at high speeds, when a small
eccentricity could lead to high vibrations. Moreover, it is important for the structure, and for
the overall assembly, to be as low as possible. In fact, the assembly will be placed on top of the
platform, causing its overall center of gravity to move up. As already explained in chapter 2,
it is important for the stability of the platform that its center of gravity is below the center of
rotation of the air bearing. So, the lower the center of gravity, the better. Considering these
requirements, different configurations of the structure were designed and tested through finite
element (FE) simulations, performed using Ansys Workbench 4. After some iterations, it was
developed the final structure, shown in Fig. 4.4a. As it can be seen, on the sides there are holes
that will be used to fix the structure to the platform through bolts, while in the center there is
a flat elliptic portion raised with respect to the sides to house the motor, with three holes in
correspondence of the three threaded holes of the stator of the motor. The sides and the central
portion are linked by two arms.

(a) CAD model of the structure (b) Static analysis - total deformation

Figure 4.4: Structure connecting the motor to the platform.

The first simulation carried out with Ansys was a static analysis of the structure. The
geometry was imported from Solidworks, where the selected material was aluminum, and the
mesh was generated automatically. The Adaptive Sizing was used to generate a finer mesh where
the curvature of the geometry is smaller. A fixed support was selected for the holes on the sides,
where the structure is supposed to be fixed by the bolts, and a force orthogonal to the central
portion was applied on the three central holes, to emulate the forces shared between the motor
and the structure. The value of the force was of 50 N, corresponding roughly to the weight of 5
kg of mass, way higher than the mass of the motor and the wheel. The results in terms of total
deformation are shown in Fig. 4.4b: the deformations occur almost all in the central portion,
with the greatest values in correspondence of the holes. The maximum deformation is lower than
0.02 mm, which is an acceptable value. So, the weight of the assembly should not be a problem
for the structure.
Anyway, during the maneuver, the wheel and the motor will be rotating at speeds up to 3000
rpm, which corresponds to a frequency of 50 Hz. To check that this frequency will not resonate
with the natural frequencies of the structure, a modal analysis was carried out. The geometry

4Ansys Workbench website, https://www.ansys.com/it-it/products/ansys-workbench
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and the mesh were the same of the static analysis, as also the fixed support, while the force is
not required for the modal analysis. The solver was configured to find the first twelve modes.
Fig. 4.5 shows the first vibration mode, corresponding to a first natural frequency of 2013.6 Hz.
Table 4.2, instead, lists the first six natural frequencies of the structure. As it can be seen, the
first frequency is way higher than the frequency of the motor.

Figure 4.5: Modal analysis - First natural frequency

Table 4.2: Natural frequencies

Mode Frequency [Hz]

1 2013.6

2 2224.1

3 2886.3

4 3788

5 3926.8

6 8193.4

Up to now, it was assumed that the shaft of the motor and the wheel were connected together.
There are different ways to accomplish a shaft-hub connection: the classical method involves a
keyway on the shaft, where it must be inserted a key in order to transmit the stress between the
two pieces, or a splined shaft connection. Anyway, these solutions are usually applied with bigger
shafts, where the presence of the keyway will not cause problems to the structural integrity of
the shaft. In our case, the diameter of the shaft is only 4 mm, and the producer does not offer
the possibility of modifications on the shaft. So, after hearing some advice from the engineers of
maxon motor italia s.r.l., it was decided to realize the connection with press-fit, which consists of
linking a hub with a nominal diameter smaller than the nominal diameter of the shaft through
interference. Anyway, in order to simplify the assembly and avoid damage to the wheel, it was
designed a flange to be connected to the shaft with press-fit, and then to the wheel thanks to four
bolts. Some views of the CAD model of the flange are reported in Fig. 4.6. Particular attention
should be paid regarding the central hub of the flange, whose cylindricity should be checked to
avoid misalignment with the shaft of the motor, and regarding the flatness and perpendicularity
of the surface in contact with the wheel.

(a) 3D view (b) Bottom view

Figure 4.6: Views of the flange.

All these components linked together will form the reaction wheel assembly, which is shown
in Fig. 4.7. All the components, with the exception of the motor, will be produced inside the
laboratories of Politecnico di Milano. The wheel and the flange will be made of aluminum
6061 and produced with CNC machining, giving their axial symmetry. On the other hand, the
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structure is more complicated to be produced in the same way, so it was decided to use 3D
printing.

Figure 4.7: Exploded view of the wheel assembly.

4.3 Electronics

This section deals with the description of the electronic components that will be needed to
operate the reaction wheel assembly, in particular to control the motor and to elaborate the data
from the sensors in order to produce the proper control input for the motor.
The first component to be presented is the microcontroller, which represents the brain of the
system: in fact, it will be in charge of connecting all the other devices, reading the measurements
from the sensors, processing the data and sending the inputs to the driver of the motor. The
microcontroller used for the first prototype implementation is an ESP32-DevKitC 5, shown in
Fig. 4.8: it is a development board produced by Espressif, based on the ESP32-WROOM-32E
module. The choice fell on this board because it was already available in the laboratory and meets
all the requirements for this project, in particular the ability of generating Pulse-width modulation
(PWM) signals and the possibility of communicating wirelessly with Simulink (installed on an
external computer). As stated in the datasheet, at the core of the module there is the ESP32-
D0WD-V3 chip, which has two CPU cores that can be individually controlled, and the CPU clock
frequency is adjustable from 80 MHz to 240 MHz. One of its main feature is the connectivity,
with the PCB antenna enabling Bluetooth and 2.4 GHz Wi-Fi functions, in addition to a rich set
of peripherals, ranging from capacitive touch sensors, Hall sensors, SD card interface, Ethernet,
high-speed SPI, UART, I2S and I2C. The board has a total of 34 General Purpose Input/Output
(GPIO) pins, 28 of which can generate PWM signals.
The microcontroller is able to execute the operations that are uploaded on it from the computer:
this can be performed through the ARDUINO IDE, connecting the board with a micro-USB
cable or even over the air (OTA), which means without cables. Anyway, the first configuration
must be done with the cable. Once that the code is uploaded, the board only needs its power
supply to be operative, and can exchange data with the sensors and with the computer while

5Espressif website, https://www.espressif.com/en/products/devkits/esp32-devkitc
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being mounted on the simulator, thanks to TCP/IP protocols. This is fundamental in order
for the board to work without cable connections, that would interfere with the rotation of the
simulator.

Table 4.3: ESP32 specifications

Connectivity Memory Power supply

2.4 GHz Wifi
4 MB Flash 3.0 ∼ 3.6 VBluetooth

Micro-USB
Figure 4.8: Microcontroller
ESP32

The second most important component, after the microcontroller, is the driver of the motor.
This component is in charge of setting the right voltage difference between the poles of the motor,
enabling the currents to flow in the three phases of the rotor’s winding, controlling the motion of
the motor. The most common type of motor drivers is based on H-bridge circuits, that are able
to switch the polarity of the voltage applied, allowing the motor to run forwards and backwards.
So, it is possible to build your own driver starting from small electrical components like H-bridges
and MOSFETs or, in alternative, several boards are available on the market. In our case, since
the complete development of the electrical circuit for the driver is out of scope for this work,
it was decided to select a ready to use board, and the choice fell on the Brushless 12 Click 6

from Mikroe, which is shown in Fig. 4.9. Different driver boards are available on Mikroe website,
mainly subdivided into two categories: sensorless drivers and Hall sensors drivers. The first
category contains drivers that do not use signals from the Hall sensors of the motor, and rely
only on internal algorithms to govern the current flowing in the windings. On the other hand,
the second category of drivers checks the signal from the Hall sensors to understand when and
how the currents need to be adjusted. The Brushless 12 Click belongs to the second category,
which assures a better precision in the control of the motor. Another characteristic to verify
when selecting a motor driver is the voltage supply: some boards have the same power supply
both for the board itself and for driving the motor. This solution is adopted only with small
motors, running at maximum at a voltage difference of 5 V. The Brushless 12 Click was selected
also because the voltage difference for the motor can be supplied by an external source in the
range from 8 to 48 V, since the DF45M024053-A2 motor has a nominal voltage of 24 V.

Table 4.4: Brushless 12 click specifications

Hall sensors decoding Yes

Logic voltage 5 V

Max output current 2.8 A

External voltage supply 8 ∼ 48 V Figure 4.9: Motor driver
Brushless 12 click

The Brushless 12 Click board is based on the L6235 motor driver, which includes a 3-phase
DMOS bridge, an OFF-TIME PWM current controller, and the decoding logic for single-ended
Hall sensors that generate the required sequence for the power stage, in addition to other features

6Mikroe website, https://www.mikroe.com/brushless-12-click

64

https://www.mikroe.com/brushless-12-click


for safe operation and flexibility, like the Over Current Detection (OCD) that allows protection
against short circuits. By default, the motor will modify its torque to maintain the speed at a
constant value: this is known as Speed mode. At the same time, the VREF switch allows to
select the Torque mode, where the speed will be modified to maintain the torque value. The
board can communicate with the microcontroller thanks to several GPIO pins on the bottom
side, while on the top side there are five GPIO pins for the signals coming from the Hall sensors
of the motor. Moreover, additional connectors are present, two for the external voltage supply
and three to be connected to the three phases of the motor. Table 4.4 summarizes the main
specifications of the motor driver. As it can be seen, the maximum output current that can be
provided is higher than the nominal current of the DF45M024053-A2 motor.
After the description of the microcontroller and of the motor driver, it is possible to talk about
the power supply of the system. The choice of the hardware for the power supply will take into
account the limit stated before of 20 W as maximum input power for the reaction wheel assembly.
In particular, the motor will be the most demanding component in terms of power, but also the
boards (microcontroller and driver) will need some power. Moreover, the boards operate with a
lower voltage difference (5 V) with respect to the motor, which needs 24 V. So, the easiest way
would be that of using two different voltage sources, one for the motor and one for the boards.
Anyway, it was decided to use the same power supply for all the components because of two
main reasons:

• using a single power supply will require only one battery pack, which means fewer compo-
nents, fewer cables, less weight, less space, and in general a more compact reaction wheel
assembly;

• the power required by the boards is way lower than that required by the motor. This
would lead to an oversized power supply for the boards, capable of working for many hours.
Nonetheless, the power supply of the motor will discharge faster, causing the system to
stop.

In the laboratory, there are different power banks already available. In particular, for the
first prototype it was used a power bank from Shenzhen Kangda Industrial, shown in Fig. 4.10a.
It has a maximum current of 2.4 A from the USB channel and a capacity of 10000 mAh. The
output voltage is 5 V, which is perfect for the boards, but not for the motor. For this reason, it
was decided to use the step-up converter shown in Fig. 4.10b. This component takes as input a
voltage difference between 2 and 24 V and gives as output a voltage difference between 5 and 28
V. Adjusting the potentiometer it is possible to obtain 24 V in output from the 5 V in input
given by the power bank. Moreover, the internal circuit of the battery isolates the two power
lines, preventing motor oscillations from interfering with the electronics.

(a) Power bank (b) Step-up converter

Figure 4.10: Power supply components.
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The chip on the converter has a high conversion efficiency, up to 93%, and it has a maximum
output current of 2 A. This value is lower than the nominal current of 2.36 A required by the
motor. Anyway, that value is referred to a power consumption of 50 W: since we will drive the
motor with less than half of that power, the current in the motor will never reach 2 A, otherwise
we will exceed the power limit imposed.
The last components to be described are the sensors. The angular velocities and the Euler angles
of the platform will be measured by the IMU sensor already presented in Sec. 2.3.2. The angular
velocity of the wheel, instead, will be obtained from the Hall sensors equipped on the motor,
whose signals will be decoded by the microcontroller. The last sensor used in the reaction wheel
assembly is the current sensor shown in Fig. 4.11, which is a ready to use board based on the chip
INA219. The module can sense a maximum voltage of 32 V and a maximum current of 2 A, with
a resolution adjustable in relation to the maximum current expected and a maximum precision
of about 1%. The sensor communicates with the microcontroller through the I2C interface and
requires an operating voltage between 3 and 5.5 V.

Figure 4.11: Current sensor.

4.4 Hardware implementation

At this point, all the components constituting the reaction wheel assembly have been
introduced, and they have been divided between the structural components and the electronics.
Regarding the structural components, it has already been described how they will be integrated
with the motor, as it can be seen in Fig. 4.7. In this section, it will be described the connection
of all the electronic components to each other and to the motor, and the final implementation of
the reaction wheel assembly on the platform of the simulator.
The first step was that of designing the circuit composed of the electronic components: to do so,
it was used the program KiCad 7, a free software suite for electronic design automation (EDA).
KiCad integrates different tools, offering the possibility of realizing schematic capture, printed
circuit board (PCB) layout, manufacturing file viewing, SPICE simulation, and engineering
calculation. In this way, it is possible to develop the complete design of an electronic circuit,
starting from the first circuit diagram and ending with all the files needed for the manufacturing
of the specific PCB. In our case, KiCad was used at the beginning of the electronic design process
to develop the first schematic capture of the circuit, in order to understand which were the pins
to be connected. In our case, all the electronic components are ready to use boards that needed
no additional welding. For this reason, it was decided to test the schematic capture developed in
KiCad directly in the laboratory with the real components, a breadboard, and some wires. In

7KiCad website, https://www.kicad.org/
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this way, it was possible to iterate the process, developing the schematic capture in KiCad and
testing it with the actual components mounted on the breadboard. After a couple of iterations,
it was reached the final version of the schematic capture, shown in Fig. 4.12.

Figure 4.12: Schematic capture of the electronic circuit.

As it can be seen, all the components in the schematic are connected to the flags represent-
ing the ground (GND) and the 5 V (VCC) logic voltage, apart from the components called
‘my connector’ at the top. This component was added only to simulate the cables coming from
the motor, which are three cables for the currents (U, V, and W) and five cables for the Hall
effect sensors (three for the signals and two for the power supply). The GND and VCC flags will
be connected to the two ends of the power banks, which is not present in the schematic. Anyway,
the motor needs 24 V to operate: so, the step-up at the bottom is connected to the power bank
to increase the voltage difference, which is then connected to the ‘Vin+’ and ‘Vin-’ pins of the
driver. In this way, the driver uses this voltage difference to set the right currents that will drive
the motor through the cables U, V and W. Moreover, the current sensor was inserted between
the driver and the step-up, to get estimates of the voltage difference, current, and electrical
power used by the motor and the driver. At the same time, the current sensor send the data to
the microcontroller thanks to the typical I2C pins ‘SCL’ and ‘SDA’, which transmit respectively
the serial clock and the serial data. On the other hand, the signals from the Hall sensors is sent
both to the driver, which will use them in its internal algorithm, and to the microcontroller,
from which it is possible to have an estimate of the wheel velocity. The last connections are the
ones between the pin of the driver and the microcontroller, which are set in accordance to the
datasheet of the Brushless 12 Click. As a last remark, it is important to pay attention on the
‘F/R’ pin of the driver, which should be connected to a pin of the microcontroller capable of
sending PWM signals.
The connections just presented were tested using the breadboard, and a working prototype of
the electric circuit implementing the schematic capture of Fig. 4.12 is shown in Fig. 4.13. Before
connecting everything together, some tests were made to check each component: first, the motor
was connected to the driver and microcontroller, with the power supply coming from a voltage
generator available in the laboratory, and tested with a constant velocity. Then, the current
sensor was tested in a simple circuit with a resistor and a LED, to verify the measurements given
by the sensor. Lastly, the step-up converter was connected to the power bank, adjusting the
potentiometer until it was reached an output voltage of 24 V, measured by a multimeter.
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Figure 4.13: Prototype of the electric circuit.

At this point, all the components and their connections were checked and it was verified
that everything was working as designed. Anyway, this prototype based on a breadboard has
some disadvantages. The first is related to the breadboard, which has relatively large parasitic
capacitance, high inductance in some connections, and relatively high contact resistance. This
makes the breadboards a good alternative for fast prototyping and verification, but not ideal
for a reliable implementation. Moreover, the boards and the wires are not soldered, so that the
connections are not very stable, and could unplug if mounted on the simulator. In addition, there
are a lot of cables, long and twisted, that could create problems when rotating on the platform.
For all these reasons, it was decided to design a specific PCB in KiCad, from the scheme of
Fig. 4.12.

(a) Scheme of the PCB (b) Real PCB

Figure 4.14: Comparison between the PCB scheme in KiCad and the real component.
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The PCB scheme is depicted in Fig. 4.14a: here, it is possible to see the footprints of the
components, including the connector on the right, that will be connected to the motor cables,
and the power supply pins on the left, that are to the other GND and VCC pins through power
planes. As it can be noted, the traces related to the current flowing in the motor wires are wider
than the standard. The width was calculated online to allow a current of 2 A. Then, the PCB
was ordered online, and the real board is shown in Fig. 4.14b.
In the end, it is possible to mount all the structural components of the reaction wheel assembly
on the platform, as well as the PCB and the power bank. The only cables used for connections
will be from the power bank to the PCB, and from the PCB to the motor. A CAD model of the
final implementation is represented in Fig. 4.15, which was used to check the space occupied by
the components and to place in the correct position the mounting holes on the PCB.

Figure 4.15: CAD representation of the final implementation.

Finally, the actual implementation realized in the laboratory is shown in Fig. 4.16: the
electronic board, the battery, and the reaction wheel assembly are mounted on the simulator
platform. The only difference with respect to the CAD model is related to the position of the
wheel, which is not centered on the platform, but a bit shifted. This was necessary because the
four screws that connect the air-bearing to the upper plate, not included in the CAD model,
were interfering with the motor. Anyway, this problem was overcome by simply shifting the
reaction wheel assembly: in fact, since the wheel and the platform exchange a moment between
them, it is important only that the wheel axis is parallel to the z-axis of the platform. In other
words, Euler’s equations do not require that the axes are coincident, but only parallel.
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Figure 4.16: Final implementation on the platform.
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Chapter 5

Tests and validation

Up to now, this work described in chapter 3 the development through Simulink of a numerical
model, which was used to simulate the motion of the simulator platform as actuated by a set of
three reaction wheels both in pyramidal and cartesian arrangement. Then, in chapter 4, it was
presented the implementation of a first prototype of the system using a single wheel along the
z-axis. In this chapter, the hardware implemented will be tested in different configurations, in
order to verify the performances of the components and to validate the results of the numerical
model, comparing the results obtained with the single wheel prototype with the results from the
numerical model in cartesian arrangement.
In the beginning, some tests were carried out using only the motor (no load condition), to check
its performances in terms of PWM signal, velocity control, and power consumption. After that,
the flywheel was connected to the motor, as to test the performances of the whole reaction wheel
assembly. Finally, the assembly was mounted on the platform over the air bearing, to test the
ability of the reaction wheel to control the motion of the platform and to validate the results
from the numerical analysis.

5.1 Motor tests

The first tests are related to the BLDC motor in a no load condition. The hardware
configuration used was that depicted in Fig. 4.12 and 4.13. These tests were carried out as
part of the iterative process already described in Sec. 4.4: on the one hand the connections of
the components were tested from a hardware point of view, and on the other hand the control
software was developed. The latter is mainly composed of a code written via Arduino IDE and
loaded on the ESP32 microcontroller, apart for the final validation, in which a connection with
Matlab via TCP/IP protocol is also used.
The first task was to understand how to operate the motor via the ESP32 and the driver. As
for the rotation velocity, it is estimated starting from the hall sensors, whose signal is processed
in a subsequent phase. For this reason, the evaluation of the motor drive is initially performed
visually. To actuate the motor, the microcontroller will send the signals to the motor driver,
that will ensure that the motor will reach the velocity specified by the microcontroller. Three
pins are available to exchange information between the ESP32 and the driver: the enable (EN)
pin, which enables the chip, the brake (BRK) pin, which implements the brake function, and the
forward/reverse (F/R) pin, which selects the direction of the rotation. All these three pins can
be used for speed control of the motor: anyway, the easiest and most effective choice is to use
only the F/R pin connected to a PWM signal coming from the microcontroller, as stated in [29].
In this configuration, the PWM controls both speed and direction: a PWM duty cycle of greater
than 50% will cause the motor to run forward and a duty cycle of less than 50% will cause the
motor to run in the reverse direction.
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To generate the PWM signal, it was used the LED Control (LEDC) peripheral API already
available for the ESP32. Thanks to it, it is possible to define all the main characteristics of the
PWM signal outputted by the microcontroller, like the frequency and the duty cycle resolution.
Concerning the frequency, several values were tried: with higher frequencies, the rotation of the
motor resulted to be smoother. Moreover, for values between 5k and 18k Hz, a high-pitched beep
could be heard coming from the motor. Taking into account this information, the frequency was
set to a value of 50k Hz, which ensures smooth and quiet operations. On the other hand, the
resolution was selected as 10 bit, meaning that the duty cycle can be set to a value between 0
and 1023, where 512 represents a value for which the motor is still. Obviously, a higher resolution
would give more values for the duty cycle, leading to more precise control of the speed. Anyway,
the resolution is strictly related to the frequency of the PWM signal: higher resolutions would
mean lower frequencies and viceversa. In our case, higher resolutions with a frequency of 50k
Hz caused errors in the microcontroller, so that 10 bit is the highest resolution that can be set
with a frequency of 50k Hz. Apart from this, the LEDC peripheral allows also to select other
characteristics for the PWM signal, such as the channel and timer that will be used to set and
update the duty cycle at each iteration. For a complete description of the peripheral, see 1.

5.1.1 Velocity estimation

After understanding how to operate the motor, the next step is to obtain an estimate of
its rotation speed through the signal provided by the Hall sensors. In fact, a good estimate of
the speed of the wheel is essential to control the wheel itself and consequently the movement
of the platform, which is the final goal. To do so, the signals from the Hall sensors is sent to
the microcontroller, where it is decoded and manipulated to get the speed of the wheel. Since
the raw speed obtained from the sensors resulted to be noisy, some tests were performed with
different filters, in order to get the better estimate.
The first step involved the decoding logic for the signals from the Hall sensors, which is similar
to what already described in Sec. 3.2.2. The code written in the Arduino IDE checks at each
iteration the sequence coming from the Hall sensors and saves the elapsed time between two
different sequences. Since there are 3 different sequences and eight pole pairs, each change of
sequence corresponds to an increment in the angle of one twenty-fourth of a complete rotation.
Knowing the angle and the time elapsed, it is possible to calculate the absolute value of the
angular speed. Then, since a single sequence of the Hall sensors signal changes eight times in a
full rotation (due to the pole pairs), it was added a counter to update the velocity once every
eight sequence changes: in this way, the sequence is updated only one time for each revolution.
This has the advantage of reducing the sampling frequency, and so the noise, at high speeds, while
could lead to a poor estimate at low speeds. Anyway, it was decided to adopt this solution, given
the fact that the motor will rotate for the most at high speeds. The speed estimation obtained
in this way is shown in blue in Fig. 5.1a. The four subfigures in Fig. 5.1 show a comparison
between filtered data in red and unfiltered data in blue, for different filters. The speed profile
was attained setting manually the PWM in such a way to resemble the profile of the reaction
wheel velocity during the maneuver.
In Fig. 5.1a, the raw speed was filtered using a third-order low-pass filter, similar to the one used
in the sensor module of the Simulink model. To develop the discrete filter, the signal processing
toolbox in Python was exploited, using the transfer function from Eq. (3.49), a pole frequency of
40 Hz and a sampling frequency of 100 Hz, the toolbox gives as output the coefficients ai and bi,
that will be used to get the filtered speed as:

vf,k = a0vf,k−1 + a1vf,k−2 + a2vf,k−3 + b0vk + b1vk−1 + b2vk−2 + b3vk−3 (5.1)

1Espressif documents, https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/
peripherals/ledc.html
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where vf is the filtered speed, v the unfiltered one, and k indicates the time step. As it
can be seen, the filtered data result to be less noisy, but there are still some spikes that are
not ideal considering that this speed will be used in a feedback loop. The second filter applied
was a moving average filter, which averages the data of the last eight values. The results are
similar to the low-pass filter, and are represented in Fig. 5.1b. The figures at the bottom, instead,
are obtained using the same filters, low-pass on the left and moving average on the right, but
modifying the starting data coming from the decoding of the Hall sensors signals. In fact, while
previously the speed was updated at each sequence change using all the signals from the three
sensors, now an estimate of the speed is calculated for each Hall sensor, obtaining three estimates
v1, v2, and v3. Then, the final speed is the average of the three values. This average was used
to pre-filter the data. Comparing the bottom figures, it is clear that the best result is achieved
employing the sensors average in addition to the moving average: in this case, the filtered speed
is less noisy and lacks completely the spikes present in the other cases. Furthermore, the moving
average filter can be easily modified, increasing the steps that are averaged.
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Figure 5.1: Different ways of filtering Hall sensors data.

Concerning the speed profile, it must be noted that in every case the motor starts when it
reaches a speed of about 100 rpm. This problem is related to the required initial torque: when
the duty cycle has a value near half of the resolution, of about 512 ± 10, the motor remains still,
so that is not possible to control it for speeds lower than 100 rpm.
At this point, having a reliable estimate of the motor speed, it is possible to evaluate some of the
performances. The first thing was to check the relation between the duty cycle and the speed
reached by the motor. To do so, some tests were performed setting the value of the duty cycle at
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intervals of 50 (so 400, 450, 512, 574, 624, and so on). The speed profile was similar to the one
of Fig. 5.1: from this, only the data between 4 and 6 seconds were taken, in order to be in the
constant velocity phase, and the average speed was calculated, to have a single value of speed for
each value of duty cycle. The data obtained in this way are represented by the circles in Fig. 5.2,
while the lines simply connect linearly the data. As it can be seen, the relation is quite perfectly
linear.
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Figure 5.2: Relation between PWM duty cycle and motor speed.

The maximum speed reached, with the maximum duty cycle, is about 4500 rpm: anyway, it
must be noticed that these tests were carried out with the step-up converter which was not well
calibrated, and was outputting a voltage of only 16 V. For this reason, the step-up was then
calibrated to 24 V, and the maximum duty cycle was tested again. In this case, the maximum
speed reached was about 6100 rpm.

5.1.2 Motor LQR implementation

The next step consists of implementing the first LQR loop to be able to control the motor. In
the previous section, the speed profile was set manually by imposing in advance the duty cycle of
the motor. Now, instead, we want to implement the LQR control defined in Sec. 3.2.4 to allow the
motor to track an external profile. To achieve this goal, it was developed in the microcontroller’s
code not only the LQR, but also the reference trajectory generation, in particular for the wheel
speed. In this way, at each iteration it is possible to compare the reference speed to the speed
estimate, to obtain the error erw. Moreover, the gain matrix was taken from the Simulink model
and written in the microcontroller’s code as:

G =
{
0.1271 0.269 −0.269 0.01 −1.4142

}
(5.2)

At this point, the control input u is obtained as u = −Gxrw, where the state vector xrw is
composed of the wheel velocity, the motor currents and the velocity error, as defined in Eq. (3.65).
In the Arduino implementation, the state vector is populated with the estimate of the speed
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and the error defined previously, while the currents are assumed to be zero, since the currents
estimate is still not available. Anyway, this should not be a problem, since the currents are much
smaller than the velocity and have a smaller weight than the error, so that they do not have a
strong influence on the final control input u. To be sure, a simulation in Simulink was carried
out, putting the currents in the LQR to zero, and it was checked that the results in terms of
wheel velocity and Euler angles of the simulator were not affected. At this point, the control
input u was used to define the duty cycle as:

dutyCycle = 512 + u
512

24
(5.3)

In fact, in the Simulink model, the control input u defines the voltage between 0 and 24:
Eq. (5.3) is used to map the control input from the voltage to the duty cycle. The results from
the reference tracking can be seen in Fig. 5.3. From the figure it is clear that the tracking is good,
with less noise in the transient phases than the constant phase. It is important to note that the
moving average filter was modified using 2500 steps for the average: this reduced greatly the
noise magnitude. Also, the reference speed (in blue), does not have the ‘start-up problem’, while
the motor speed (in red) does. Nonetheless, when the motor starts, the LQR is able to quickly
regain the difference in speed, with a little oscillation at the beginning. The main difference
between the two profiles is a certain amount of delay in the motor speed. This delay was even
larger in the firsts trials, but it was reduced by increasing the gain multiplied by the error. The
results in Fig. 5.3, in fact, were obtained increasing the fifth component of the gain matrix G
by 5. In this way, the oscillations in the constant phase have a magnitude of at most ±30 rpm,
which, with respect to the nominal speed of 2000 rpm, represent an error smaller than 1.5%.
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Figure 5.3: Reference speed tracking.

5.1.3 Power estimation

Among the electrical components, the last one remaining to be testes is the current sensor,
which is connected to the circuit according to Fig. 4.12. Checking the connections, it is possible
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to see that the current from the power bank is splitted: some current flows between the VCC and
GND poles to power up all the electrical components, while the remaining current is adjusted
by the driver and sent to the motor. The position of the current sensor implies that it will be
able to measure only the current going into the motor. This is fine because the motor is the
most critical component in terms of required power, while the microcontroller and driver can use
limited amounts of current, and so power, which are therefore considered negligible.
As explained before, the sensor uses the I2C interface to communicate with the microcontroller:
anyway, there is no need of developing a specific code, since the Adafruit library already offers
some functions to evaluate the load voltage, current, and power, in addition to bus voltage and
shunt voltage, which are related to the characteristics of the sensor. Moreover, three different
range for the measurement can be selected: 32V/2A, 32V/1A, and 16V/0.4A. For our case, the
second range was selected, since the voltage range should include the nominal voltage of 24 V,
but the current range can be reduced to 1 A, which guarantees higher precision on the measured
current.
To test the sensor, the same reference velocity of Fig. 5.3 was used, and the results are shown
in Fig. 5.4. In this case, the total time is 45 seconds because 5 idle seconds were added at the
beginning, so that the motor starts rotating a t = 5 s. The most accurate measure is related to
the voltage, which is not reported in the figure since it was very stable at around 24.18 V, with
little oscillations of ±0.01 V. On the other hand, the measure of the current and power resulted
to be noisy, so the profiles in Fig. 5.4 are filtered thanks to a moving average of 100 steps. As it
can be seen, their behavior is exactly the same, since the power is estimated from the current. In
the beginning, both start from zero because the power bank was turned off. After 2 seconds, the
power was turned on and both power and current arrives at idle values of respectively 2.775 V
and 0.114 A. These values, between 2 and 5 seconds, are due to the idle current that flows in
the motor even when it is still. Then, the behavior is similar to the one of the speed, with an
increase, a constant phase, and a decrease. In the constant phase, the power required by the
motor to rotate at 2000 rpm with no load oscillates around a value of 3.9 W, which derives from
a current of 0.16 A.
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Figure 5.4: Power and current estimation from the tests with no load applied on the motor.
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5.2 Reaction wheel assembly tests

At this point, all the components have been tested. Starting from the motor, the signals
from the Hall sensors have been decoded and manipulated to get an estimate of the speed, which
was then used to implement the first feedback control loop based on the LQR. Furthermore,
the relation between the PWM duty cycle and the motor speed was investigated and then an
estimate of the power consumption and current of the motor was obtained. All these tasks were
carried out with the motor in a no load condition, so free to rotate. This section will present the
results of the tests performed with the same configuration and software described up to now, but
with the addition of the flywheel attached to the motor shaft.
The evolution of the motor speed is displayed in Fig. 5.5. As it can be seen, the reference speed
is the same described earlier, apart from the first 5 seconds where the motor is still, as explained
in Sec. 5.1.3, while the yellow line is the speed of the motor, which tries to keep up with the
reference speed thanks to the LQR control. This graph is similar to the one of Fig. 5.3, with
the same initial oscillation, but at the same time it is noisier: in fact, in the constant phase,
the oscillations have a magnitude of about ±50 rpm, which is 2.5% of the nominal value. This
increase in the noise could be linked to the connection between the flywheel, the flange, and
the motor shaft. In particular, the flange was clamped to the motor by overheating the former
and inserting it into the latter (shrink fit). Then, the perpendicularity of the plane in which the
flywheel lies with respect to the motor axis (z-axis) was checked with the help of a level. Some
eccentricity could be introduced in the system by this connection: anyway, the increase in noise
is restrained and should not affect the final performances of the prototype.

0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

Reference speed

Motor speed

Figure 5.5: Speed estimation with the flywheel attached to the motor.

On the other hand, Fig. 5.6 shows the power consumption and the current flowing in the
motor during the test. In this case, both quantities are higher than in the no load case, with a
mean value for the power of 4 W in the constant phase and peaks reaching a value of 4.8 W.
As for the speed, also the current, and so the power, results to be noisier because of the speed
estimation which is used to generate the control input. In particular, the oscillations are evident
during the acceleration and deceleration phases, while are more contained in the constant phase.
Anyway, given that the power consumption is not used in any control loop, but only to check
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that the wheel does not require too much power, the behavior is acceptable: even in the highest
peak, the power consumption is below 5 W, so well below the 20 W limit.

0 5 10 15 20 25 30 35 40 45

1.5

2

2.5

3

3.5

4

4.5

5

0.05

0.1

0.15

0.2

0.25

0.3

Power

Current

Figure 5.6: Power and current estimation with the flywheel attached to the motor.

Moreover, the results from these tests are in accordance with what we expected for the motor
performance. Comparing the Figs. 5.5 and 5.6 with Fig. 4.3, it is possible to verify that the
predictions from the mathematical model of the motor are accurate in terms of absolute values.
About the power, the behavior measured from the real motor is noisier and lower during the
constant phase: anyway, it was demonstrated that it is possible to run the motor at power levels
way lower than that listed on the datasheet, with good accuracy in the speed profile.

5.3 Platform tests

After the tests of the reaction wheel assembly are completed, it is possible to mount all the
components on the platform to test if the wheel is able to actuate the simulator. This final
configuration has been already presented in chapter 4 and is the one depicted in Fig. 4.16, which
represents the actual implementation of the complete Simulink model shown in Fig. 3.8. In
the previous chapters, it has already been discussed how the control module works and why it
is composed of two LQRs: the inner one is related to the control of the wheel velocity, while
the outer one is linked to the control of the simulator’s position and velocity. Even if the two
feedback loops use both the LQR method, there is a difference to take into account for their
implementation. In particular, in the first loop the gain matrix is calculated at the beginning of
the maneuver, and then the control input is derived at every step as u(t) = −Gaug x(t), where
x(t) is the speed of the wheel. In this case, the control logic has been implemented in the
microcontroller, as described in Sec. 5.1.2. Anyway, the same thing cannot be done for the outer
loop: in this case, the linearization of Euler’s equations requires that the gain matrix is updated
regularly, in relation to the new position and velocity reached by the simulator. In Simulink,
the updating time was selected as 0.1 seconds, so that at this time interval the control module
calculates again the gain matrix from the weighting matrices and from the state vector measured
at that time, using the built-in Matlab function lqr. However, an analogous of this function does
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not exist in the Arduino IDE, so the second loop cannot be implemented on the microcontroller
like the first one. To overcome this problem, it was decided to establish a connection between the
microcontroller and the computer with which the simulations were carried out, which replaces
the on-board computer of the spacecraft. The basic idea is the following: the microcontroller
will obtain the measurements from the sensors and compare them with the reference values of
the reference trajectory generation module, as already done for the speed of the wheel. Then,
at intervals of 0.1 seconds, it will send the data related to the position of the simulator, the
speed of the simulator, and the speed of the wheel to the computer, which will use them to
calculate the new values of the gain matrix to be sent back to the microcontroller. In this way, it
is possible to develop the control logic for the two loops in a similar way, deriving the input as
u(t) = −G(t)x(t) inside the ESP32: the only difference is that the gain matrix of the outer loop
is updated through Matlab at regular intervals.
To establish a connection between the microcontroller and the computer, it was exploited the
TCP/IP protocol, which enables the communication between the two components via the WiFi
network of the laboratory. In particular, the ESP32 will represent the server and Matlab the
client: in this way, it is possible for both to read and write data on the server. Anyway, the data
are sent by the microcontroller one byte at a time, which means one character at a time in ASCII
notation. For this reason, it is necessary to convert them after the transmission: in Matlab,
the data are read one by one and collected into strings, which are then converted into doubles.
The same happens in the ESP32 after the reading. This allows the data exchange between the
microcontroller and the computer, enabling also the outer feedback loop to be implemented.
So, referring to the complete Simulink scheme of Fig. 3.8, both the control module and the
reference trajectory generation module are finally implemented in the ESP32, apart from the
‘Sim controller LQR block’, which is developed thanks to the TCP/IP protocol. Fig. 5.7 shows a
scheme of the implementation for both control loops.

Figure 5.7: Scheme of the control loops implementation.

At this point, everything is ready for the realization of the final tests, in which the reaction
wheel is tried and the rotation angle of the platform is measured. For this purpose, it is possible
to measure the rotation angle through the IMU sensor mounted on the simulator: this would not
represent the ideal solution, as the sensor is the same used for the estimation of the position in
the control loop, while it would be desirable to use an external sensor for position verification
only. In any case, considering that the rotation angle is a multiple of the right angle, it is also
possible to check for any gross errors by eye. The idea was that of performing two different tests:
the first test will be carried out with only the first LQR on the velocity of the wheel, so without
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any control on the position of the simulator, in order to verify how much the disturbance torques,
not accounted for in Eq. (3.51), influence the response of the platform. The second test, instead,
will be performed with both control loops activated, to verify the usefulness of the second LQR
in contrasting the disturbance torques.
Unfortunately, it was not possible to run these final tests before the deadline set because the
platform was still not completely balanced. The balancing of the platform, which was already
introduced in Sec. 2.2.2, is fundamental to assure the stability of the motion of the air-bearing:
without this step, it is impossible to control the platform with only the reaction wheel. Moreover,
the wheel cannot be used to overcome the torque generated by the gravity vector acting on the
offset between the center of rotation of the bearing and the center of gravity of the platform.
In fact, as shown in Eq. (2.67), the torque generated by the gravity would require a constant
control torque, which in turn would lead to a constant acceleration of the reaction wheel, thus
rapidly reaching the saturation limit of the latter.
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Chapter 6

Conclusion

In this final chapter, the work carried out during this thesis project will be summarized,
in order to assess if the objectives presented in the first chapter were fulfilled, and future
developments related to this work will be investigated.
First of all, the background of the project was presented: this included the fundamentals of
spacecraft attitude dynamics, with a particular focus on some aspects that will be central in the
development of the mathematical model, like the parameters used for attitude representation,
the concept of angular momentum, and Euler’s rotational equations, that are derived both in
the cases of a rigid body and in the presence of momentum exchange devices, in particular
reaction wheels. Then, spacecraft attitude simulators are discussed, describing the principal
characteristics of air-bearing and introducing the problem of the balancing, whose solution is
fundamental for the correct functioning of the system. The description of the background is
completed with an introduction to the simulator platform already available in the laboratory.
After that, the mathematical model is developed starting from the sizing of the reaction wheel,
based on the parameter n defining the maneuver profile, which is chosen to reduce the power
consumption. The properties of the wheels are then inserted in the Simulink model, composed
of four main modules, as can be seen in Fig. 3.8. In particular, the system module contains
the equations described in the background, in addition to the physical and mathematical model
for the brushless DC motor, presented for the first time in chapter chapter 3. In the same way,
concerning the control module, the control logic was introduced, from the LQR fundamentals
to the choice of the weighting matrices. Eventually, the numerical simulation was performed,
demonstrating the validity of the proposed architecture and control logic. Moreover, some results
from the model were used later on for the hardware selection of the first prototype of the reaction
wheel assembly, in particular for the choice of the DC motor. In addition, all the other mechanical
and electronic components were designed or selected, and assembled together to obtain the final
system shown in Fig. 4.16. After the hardware selection, also the software part was developed,
in order to implement the control logic inside the microcontroller. As the software was being
developed, some tests were carried out with the motor to check that everything was working as
planned. Finally, every part of the Simulink model was set up on the microcontroller to perform
the final tests including the complete platform, but unfortunately, it was not possible to perform
the final tests on a working platform.

6.1 Thesis objectives

At this point, it is possible to recall the thesis objectives defined in the Introduction and
discuss them.

– Objective I. Perform the sizing and design of the reaction wheels that will be employed
by the attitude control system. This will include the architecture of the actuators along
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with a mathematical model to simulate the performances of the system.
This objective was reached and its evolution is documented in chapter 3. The reaction wheel
was sized in order to minimize the power consumption and for the control system of the
simulator it was decided to adopt a set of three reaction wheels in pyramidal configuration.
The mathematical model was developed through Matlab and Simulink, and the latter was
used to simulate the response of the system.

– Objective II. Implement the attitude control system, including both hardware and
software necessary to operate the system. At the end of this phase, all components must
be connected to the simulator and fully functional.
Regarding this objective, the implementation focused not on the complete control system,
but on the first prototype of it, composed of a single reaction wheel. Anyway, both the
hardware and the software parts were completed, and the final operating prototype mounted
on the simulator is shown in Fig. 4.16.

– Objective III. Testing of the system through experiments, in order to validate the model
and check the correctness of the overall design and implementation of the attitude control
system.
This objective was partially fulfilled. All the components forming the system were tested
individually, as also the reaction wheel assembly. In particular, the results shown in Sec. 5.2
are in accordance with the simulation results presented in Sec. 4.1. Moreover, the motor
was able to follow the reference trajectory as expected, validating the inner control loop.
Unfortunately, it was not possible to validate also the outer control loop.

Regarding the research question, the answer is provided by putting together all the objectives
listed above, which provide the method followed in this thesis to develop an attitude actuation
system based on reaction wheels capable of controlling the attitude dynamics of the simulator
platform.

6.2 Future works

As explained in the previous section, the objectives were not completely fulfilled: future
works are required to be able to control thoroughly the attitude of the platform. The first thing
to focus on, once that the simulator will be precisely balanced, is the validation of the outer
control loop. As stated at the end of chapter 5, two different tests were envisioned: one using
only the inner LQR, to check the influence of disturbance torques, and another one with both
the LQRs activated, to validate also the outer control loop. Moreover, to verify the precision of
the maneuver, the IMU sensor equipped to the platform can be used at the beginning, but in
the future it will be better to have an external dedicated sensor. Running these tests, it will be
possible to check the precision of the rotation of the simulator: should it not be accurate enough,
some modifications could be required in the LQR, in particular about the weighting matrices,
which can be modified in the case that the simulator does not move as expected.
Once the first prototype will be completely validated, the next step would involve the development
of the overall control system composed of three or four wheels. This step can be seen as a
development of the first prototype: in fact, it would be possible to develop the other wheels
exactly as the first one, with the only difference of the structure connecting the wheels to
the platform, which should be conceived to place the wheels in pyramidal configuration. The
actuation of three wheels would require three different motors, one for each wheel, as well as three
drivers. Concerning the other electronic components, instead, it could be evaluated the possibility
of sharing some of them among the wheels, in order to achieve a more compact configuration.
To conclude, the next step will involve the validation of the first prototype: should the results be
good, it will already be possible to rotate the platform around the z-axis, enabling the realization
of the slew maneuver chosen as reference.
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