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Estratto	

	
Intelligenza artificiale, tecnologia e medicina, oggi più che mai, agiscono in maniera interconnessa 

e lavorano a stretto contatto tra loro. Il progresso nei dispositivi di monitoraggio e l’utilizzo di 

cartelle cliniche elettroniche hanno permesso la raccolta e la successiva analisi di grandi quantità di 

dati, per fornire nuove informazioni e migliorare la cura del paziente. Questo è possibile in 

particolare nelle terapie intensive, ambienti molto critici e complessi, nei quali i pazienti sono 

costantemente monitorati. 

Lo scopo di questo studio è quello di provare a prevedere un cambiamento nel livello di lattato a 12 

ore dalla somministrazione vasopressoria. In primo luogo, si è tentato di caratterizzare le variazioni 

autonomiche rispettivamente prima e dopo la somministrazione ed utilizzarle in seguito per predire, 

a 12 ore, se il livello di lattato sarà sopra o sotto soglia. Lo studio è stato svolto considerando: (i) 

normale un livello di lattato nel sangue maggiore o uguale a 2mmol/L e (ii) considerando come 

anormale un valore superiore a 2mmol/L. Il lattato è un marker fisiologico di disfunzione metabolica 

e costituisce un adeguato indice del livello di ossigenazione dei tessuti. I vasopressori invece sono 

farmaci ampiamente utilizzati in terapia intensiva che hanno come principale compito quello di 

alzare la pressione sanguigna. L’utilizzo di vasopressori provoca sia effetti su parametri emodinamici 

sia sull’ attività del Sistema Nervoso Autonomo. 

I dati utilizzati in questo studio provengono dal MIMIC-III, database dal quale sono state estratte 

registrazioni elettrocardiografiche e di pressione arteriosa per 123 distinte degenze in terapia 

intensiva. Nello studio di predizione non sono state considerate soltanto le misure estratte dalle 

registrazioni delle forme d’onda, ma anche misure provenienti da esami di laboratorio, nonché da 

specifiche patologie e relativi trattamenti. Inoltre, grazie alla modellazione secondo processo 

puntuale, è stato possibile calcolare per ogni paziente diverse misure del baroriflesso e spettri 

tempo varianti. 

Nella prima analisi, sono stati considerati soltanto i pazienti non sottoposti a ventilazione meccanica 

invasiva e/o sedati. È infatti noto come questi trattamenti influenzino fortemente il sistema nervoso 

autonomo. I risultati ottenuti mostrano un significativo aumento della pressione sistolica e 

diastolica media, una diminuzione del battito cardiaco ed un aumento degli indici temporali di 



9 
 

variabilità cardiaca. Inoltre, un’analisi in frequenza degli spettri ottenuti dalla serie RR mostra uno 

spostamento della bilancia simpato-vagale determinato da una maggiore prevalenza di attività 

simpatica rispetto a quella parasimpatica a seguito dalla somministrazione vasopressoria. Per 

quanto riguarda il baroriflesso, il meccanismo che contribuisce alla regolazione della pressione 

tramite il battito cardiaco, esso mostra una diminuzione dell’attività dopo la somministrazione 

vasopressoria. 

Le stesse analisi sono state poi condotte includendo nello studio anche pazienti con ventilazione 

meccanica e/o sedati. I trend generali relativi a pressione, battito cardiaco e baroriflesso sono stati 

mantenuti mentre si sono perse tutte le informazioni riguardanti la bilancia simpato-vagale. 

Si è notato un comportamento anomalo per alcuni pazienti, i quali manifestano una diminuzione 

della pressione sanguigna invece che un aumento, in seguito alla somministrazione vasopressoria. 

Classificando questi soggetti come “non-responding” e il resto della popolazione come “responding” 

è stata condotta analisi evidenziando molteplici differenze tra le due popolazioni. 

Una seconda tipologia di divisione è stata in seguito effettuata stratificando la popolazione in base 

al valore di lattato. Definendo come “low level” i soggetti che, partendo da un lattato sotto soglia, 

lo mantenevano anche a dodici ore dalla somministrazione vasopressoria oppure quando subivano 

un abbassamento del valore di lattato, passando da sopra soglia a sotto soglia. 

Sono stati classificati come “high level” i pazienti con lattato sempre anormale o per i quali si è 

verificato un consistente aumento del livello di lattato. Anche in questo caso le due popolazioni 

hanno mostrato comportamenti tra loro differenti sia prima che dopo la somministrazione 

vasopressoria. Un’ultima analisi multivariata è stata effettuata stratificando la popolazione per le 

diverse patologie e trattamenti. 

È stato inoltre condotto uno studio di correlazione per verificare se effettivamente esiste un legame 

tra gli indici estratti dalle forme d’onda e il valore di lattato nel sangue. 

Una correlazione maggiore è stata trovata tra le variabili estratte prima e dopo la somministrazione 

e il lattato nelle dodici ore precedenti. La correlazione aumenta considerando solamente la 

popolazione di soggetti che non rispondoo al farmaco o che mostrano livelli di lattato fuori norma.  

In fine, tutte queste informazioni sono state utilizzate per lo studio di predizione. Si evidenza che i 

risultati migliori sono stati ottenuti utilizzando la regressione logistica per la selezione delle variabili 

e un modello di classificazione a foresta casuale (AUROC=0.84). Nonostante non sia stato possibile 

trovare studi svolti in precedenza, con un set up simile a quello utilizzato, i risultati ottenuti sono 

migliori di modelli precedenti in cui è stato utilizzato solamente il lattato o solamente informazioni 
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relative alla somministrazione vasopressoria. Ad esempio, il miglior risultato ottenuto da Liu et al 

[61] presenta un AUROC di 0.664, mentre quello di Vallabhajosyula et al di 0.73 [62]. 

  

In conclusione, questa tesi mostra che l’effetto dei vasopressori si rivela non solo nell’ aumento 

della pressione ma anche nell’aumento della bilancia simpato-vagale del sistema autonomico 

periferico. Inoltre, i parametri relativi a variazioni di attività autonomica indotti da vasopressore 

sono correlati con il livello di lattato nel sangue e possono essere in grado di fornire indicazioni sul 

futuro livello di lattato e di conseguenza sullo stato di ossigenazione dei tessuti. 
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Abstract		
 

In the intensive care unit of a hospital, healthcare professionals carefully monitor patients with 

serious injuries, post-operative trauma or unstable health conditions using bed monitoring systems 

that continuously record waveforms such as electrocardiogram (ECG) and blood pressure (ABP). The 

large amount of data collected in the intensive care units can be also used to develop algorithms 

that can support clinicians in their decision-making process, optimizing the amount of treatments, 

evaluating the state of risk of patients.  

The aim of this study is to try to predict a change in lactate level 12 hours after vasopressor 

administration. First, an attempt was made to characterize the autonomous changes before and 

after vasopressor administration and use them to predict, at 12 hours, whether the lactate level will 

be above or below threshold. Considering (i) normal a blood lactate level less or equal than 2mmol/L 

(ii) while greater than 2mmol/L. as abnormal. Lactate is a physiological marker of metabolic 

dysfunction, providing an index of tissue oxygenation. Vasopressors, on the other hand, are 

medications widely used in intensive care, with the aim to raise blood pressure. They affect both 

hemodynamic parameters and the activity of the autonomic nervous system. 

The data used in this study come from MIMIC-III, a database from which electrocardiographic and 

blood pressure records have been extracted for 123 different stays in intensive care. In the 

prediction study are used not only the measurements extracted from the waveform recordings but 

also measurements from laboratory tests, pathologies and treatments were extracted. In addition, 

thanks to the use of point process modelling, was possible to calculate different baroreflex 

measurements and varying time spectra for each patient. 

In the first analysis, only patients who were not subjected to invasive mechanical ventilation and/or 

sedation were considered. It is known that these treatments strongly influence the autonomic 

nervous system. The results obtained show a significant increase in mean systolic and diastolic 

pressure, a decrease in heart rate and an increase in cardiac variability time indices. In addition, a 

frequency analysis of the spectra obtained from the RR shows a shift in the sympato-vagal balance 

determined by a greater prevalence of sympathetic activity compared to vagal activity following 
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vasopressor administration. With regard to baroreflex, homeostatic mechanism that regulates 

pressure and heartbeat, a decrease in activity after vasopressor administration was noticed. 

The same analysis was then conducted including patients with mechanical ventilation and/or 

sedatives in the study. The general trend related to pressure, heart rate and baroreflex was 

maintained, whereas all information regarding the sympato-vagal balance was lost. Some patients 

showed a decrease in blood pressure instead of an increase following vasopressor administration. 

These subjects were classified as "non-responding" and the rest of the population as "responding", 

other analyses were conducted showing multiple differences between the two groups.  

A second type of division was then carried out by stratifying the population according to the lactate 

value. Defining as "low level" the subjects who, starting from a lactate below the threshold, kept it 

even hours after vasopressor administration or when they suffered a lowering of the lactate value, 

going from above threshold to below threshold. Patients with always abnormal lactate or for whom 

there was a significant increase in lactate level were classified as "high level". Again, the two 

populations showed different behaviors both before and after vasopressor administration. A final 

multivariate analysis was carried out by stratifying the population for the different pathologies and 

treatments. 

A correlation study was also carried out to verify if there is actually a link between the indices 

extracted from the waveforms and blood lactate level. A stronger correlation was found between 

the features extracted before and after administration and lactate in the previous 12 hours. These 

correlations increase considering only the population of non-responding subjects or considering 

only subjects with abnormal lactate.  

All this information was used for the prediction study. Best results were obtained using logistic 

regression for the selection of variables and random forest (ROC area= 0.84, PRC area = 0.57) or 

support vector machines (ROC area= 0.81 and PRC area= 0.56) classification model. Similar 

performances were also obtained with XGBoost classifier without feature selection (ROC area= 0.81 

and PRC area= 0.69). Our best results were obtained using logistic regression for the selection of 

variables, and a random forest classification model (AUROC= 0.84). Although it we could not find 

previous studies with a similar set up, the results obtained far outperform those from other models 

found in literature, in which either lactate or vasopressor administration were selectively used for 
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mortality prediction. For example, the best result obtained by Liu et al [61] reports an AUROC of 

0.664, while those reported by Vallabhajosyula et al show an AUROC of 0.73 [62]. 

 

In conclusion, this thesis shows that vasopressors may be responsible for an increase in pressure, as 

well as a parallel increase in the sympathetic-vagal balance. In addition, parameters related to 

changes in autonomic activity induced by vasopressors are correlated with the level of lactate in the 

blood and may be able to provide indications on future lactate level and consequently on the 

oxygenation status of tissues. 
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Summary		
In the intensive care unit of a hospital, healthcare professionals carefully monitor patients with 

unstable health conditions using bed monitoring systems that continuously record waveforms such 

as electrocardiogram (ECG) and blood pressure (ABP). The large amount of data collected in the 

intensive care units can be used to develop algorithms that can support clinicians in their decision-

making process, optimizing the amount of treatments and evaluating the state of risk of patients.  

The aim of this study is to try to predict a change in lactate level 12 hours after vasopressor 

administration. First, an attempt was made to characterize the autonomous changes before and 

after vasopressor administration and use them to predict, at 12 hours, whether the lactate level will 

be above or below threshold. Blood lactate level less or equal than 2mmol/L is considered to be in 

a physiological range, whereas, blood lactate greater than 2mmol/L is considered abnormal. Blood 

lactate concentration reflects the level of anaerobic cellular metabolism and is most commonly used 

as an indicator of tissue hypoperfusion. Although the use of blood lactate monitoring for risk 

assessment in the critically ill patient has remained controversial, it is possible to find of large variety 

of clinical studies demonstrating that lactate is a predictor of clinical outcomes. Vasopressors, on 

the other hand, are medications widely used in intensive care; a powerful class of drugs that induce 

vasoconstriction and thereby elevate mean arterial pressure, affecting both hemodynamic 

parameters and the activity of the autonomic nervous system. 

Some studies previously examined the relationship between the responses of the cardiac autonomic 

nervous system and blood lactate during exercises but still no one has tried to investigate this link 

in ICU patients during vasopressor administration. 

The data used in this study come from MIMIC-III, a database from which electrocardiographic and 

blood pressure records have been extracted for 123 different stays in intensive care. In the 

prediction study are used, not only the measurements extracted from the waveform recordings, but 

also measurements from laboratory tests, pathologies and treatments were extracted. In addition, 

thanks to the use of point process modelling, was possible to calculate different baroreflex 
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measurements and varying time spectra for each patient. More specifically, for each patient were 

extracted generic information, severity indexes, laboratory value, particularly lactate, medications 

and treatments administered, in particular vasopressors, sedatives and mechanical ventilation 

modes and recordings of waveforms temporally placed around the first administration of 

vasopressor. 

Due to the fuzziness of the theoretical vasopressor administration onset, features from the 

waveforms were computed in two 15-minute windows leaving a 30 left in between to be sure to 

analyze the signals only before and after administration. With regard to lactate measurements, 

due to the very low number of available data, two 12-hour windows were considered before and 

after administration. To get the lactate measure nearest to the vasopressor onset, the first 

available measure before the administration was considered for each subject. As “initial lactate” 

was considered the last available measure before the vasopressor onset while, as “final lactate” 

the first available lactate measure for each subject after vasopressor administration.  

First of all, at the beginning of the characterization analysis, using the Lilliefors test, the normality 

of the population was verified. Wilcoxon Rank Sum Test was performed intra groups while Wilcoxon 

Signed Rank Test was used to compare the pre and post segment into groups. In the cohort used in 

the first part of the characterization study were included only patients without mechanical 

ventilation and/or sedation. It is known that these treatments strongly influence the autonomic 

nervous system. The results obtained show a significant increase in mean systolic and diastolic 

pressure, a decrease in heart rate and an increase in cardiac variability time indices. In addition, a 

frequency analysis of the spectra obtained from the RR shows a shift in the sympato-vagal balance 

determined by a greater prevalence of sympathetic activity compared to vagal activity following 

vasopressor administration. With regard to baroreflex, homeostatic mechanism that regulates 

pressure and heartbeat, a decrease in activity after vasopressor administration was noticed. 

The same analysis was then conducted including patients with mechanical ventilation and/or 

sedatives in the study. The general trend related to pressure, heart rate and baroreflex was 

maintained, while, all information regarding the sympato-vagal balance were lost. Some patients 

showed a decrease in blood pressure instead of an increase following vasopressor administration. 

These subjects were classified as "non-responding" and the rest of the population as "responding", 

other analyses were conducted showing multiple differences between the two groups.  
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A second type of division was then carried out by stratifying the population according to the lactate 

value. Defining as "low level" the subjects who, starting from a lactate below the threshold, kept it 

even hours after vasopressor administration or when they suffered a lowering of the lactate value, 

going from above threshold to below threshold. Patients with always abnormal lactate or for whom 

there was a significant increase in lactate level were classified as "high level". Again, the two 

populations showed different behaviors both before and after vasopressor administration. A final 

multivariate analysis was carried out by stratifying the population for the different pathologies and 

treatments and the. Fisher’s exact test was computed looking if there is a nonrandom association 

between the subdivision in responding and non-responding subjects with relative subgroups. 

A correlation study was also carried out to verify if there is a link between the indices extracted from 

the waveforms and blood lactate level. The method used is the Spearman's correlation coefficient. 

A stronger correlation was found between the features extracted before and after administration 

and lactate in the previous 12 hours. These correlations increase considering only the population of 

non-responding subjects or considering only subjects with abnormal lactate.  

Finally, all this information was used for the prediction study. To accomplish the prediction task, 

due to the high number of features with respect to the number of patients available, feature 

selection was performed before training the models. Data were divided into training set and testing 

set through a cross validation procedure and then a feature selection process was exploited. 

Different approaches were adopted for feature selection and after it, the chosen sets of features 

were employed to train classification algorithms such as Logistic Regression, Random Forest, 

XGBoost, k-Nearest Neighbors and Support Vector Machine.  

Our best results were obtained using logistic regression for the selection of variables, and a 

random forest classification model (AUROC= 0.84). Although it we could not find previous studies 

with a similar set up, the results obtained far outperform those from other models found in 

literature, in which either lactate or vasopressor administration were selectively used for mortality 

prediction. For example, the best result obtained by Liu et al [61] reports an AUROC of 0.664, 

while those reported by Vallabhajosyula et al show an AUROC of 0.73 [62]. 

In conclusion, this thesis shows that vasopressors may be responsible not only for an increase in 

pressure but also for an increase in the sympathetic-vagal balance. In addition, parameters related 

to changes in autonomic activity induced by vasopressors are correlated with the level of lactate in 

the blood and may be able to provide indications on future lactate level and consequently on the 
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oxygenation status of tissues. The obtained results need to be improved by increasing the number 

of patients, increase the number of lactate measure and by trying to build a more general and 

flexible model that can account for time-varying dynamics following lactate kinetics. Finally, the 

results need a validation on a larger cohort possibly using a multicenter database.  
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Chapter	1		

	

Introduction		
 

Intensive care units (ICU), also called critical care units, are sections within a hospital that look 

after critically ill patients that are in a constant need of care, close monitoring and support. 

Laboratory measure and vital signs of the patient (Electrocardiogram, Arterial Blood Pressure and, 

in some cases, Respiration signal) are continuously extracted using bedside monitoring systems. 

This allow to get information instantaneously about any change of the patient’s physiological 

parameters in order to guide the administered therapy. Nevertheless, this big amount of 

information is not analyzed in a statistical framework or using complex method. Only recently 

Artificial intelligence and Machine Learning techniques [7] are used to analyze, interpret and 

extract information from the large amount of data available, in order to support decision-making 

processes and find optimal solutions for very high-complexity problems. 

Patient admitted to the ICU are characterized by a wide spectrum of diseases and conditions and 

hence subjected to a variety of interventions and therapies. Vasopressors drugs are given to 

hypotensive patients, in order to rise blood pressure and restore blood flow to vital organs, 

generating effects on the cardiovascular system and on the autonomic nervous system. [8] These 

effects can be characterized extracting parameters from the vital signs of the patients.  

The range of available laboratory parameters, for every patient, is huge. Among these laboratory 

measure, blood lactate level is particularly interesting. Lactate is a marker of tissue hypoperfusion 

and thus of oxygen debt, in fact, an increase of lactate level (hyperlactatemia) is associate with 

septic shock. According to some studies it can be considered an independent predictor of sepsis 

prognosis and an independent factor for mortality prediction.  
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Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a 

mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 

mg/dL) in the absence of hypovolemia. [9] 

All patients receiving a vasopressor are hypotensive, thus, lactate level can be used as a biomarker 

to assess how well their organs are perfused. 

 It’s well known that, after a vasopressor administration, if there is an increase in blood pressure, 

the patient is responding well to therapy. Likewise, a patient with a decrease in lactate level is 

experiencing an improvement of his medical condition. Thus, after the vasopressor administration 

is interesting to investigate the relationship between lactate level and vasopressor response.  

The goal of this study is to characterize the effect induced by the administration of vasopressor on 

the autonomic nervous system and use them to develop a prognostic tool; using the extracted 

autonomic indexes to try to predict an abnormal lactate level 12 hours after the vasopressor 

administration.  

The main questions this study is trying to answer are: Is it possible to determine a difference 

between patients who have responded positively or not to the vasopressor therapy, in relation to 

lactate level changes, by looking at the autonomic indexes extracted from the vital signals during 

their ICU stay? Can those autonomic indexes and initial lactate level, be used as prognostic 

indication of lactate level within pressure response a few hours later? 

After this brief introduction, the thesis will be organized as follows: second chapter contains a 

description of the autonomic nervous system, control mechanisms on cardiovascular system and 

heart rate variability; some basics of the vasopressors pharmacology and classification,  an 

overview on blood lactate levels and the state of art regarding the characterization of the effects 

induced by the vasopressors and other machine learning studies. The third chapter contains the 

description of the database from which the data were extracted ( both waveforms and clinical 

data), the methods used to clean the raw data and the tool used for signal annotations; also a 

detailed description of the study design, feature engineering, feature selection, machine learning 

techniques and point process modeling. The fourth chapter shows the results for both 

characterization and prediction studies, while the last chapter discusses the results illustrated in 

previous chapter, together with conclusions, limitations and future developments to focus on.  
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Chapter	2	

	

Background		

	
2.1	Autonomic	Nervous	System	
 
Nervous System is subdivided in Central Nervous System (CNS), constituted by brain and spinal cord, 

and Peripheral Nervous System (PNS), composed by nerves and ganglia placed outside the CNS. The 

PNS is to connect the CNS to the limbs and organs, making a connection between the brain and the 

spinal cord and the rest of the body. The peripheral nervous system is itself divided into somatic 

nervous system and autonomic nervous system. The autonomic nervous system exerts involuntary 

control over smooth muscles and glands, regulating and controlling certain body processes, such 

as blood pressure and the rate of breathing. This system works automatically (autonomously), 

without a person’s conscious effort, constituting the connections between CNS and organs allowing 

the system to function in two different functional states.  

Autonomic nervous system is in turn divided in sympathetic nervous system (SNS) and 

parasympathetic nervous system (PNS). Anatomically the sympathetic pathway starts mainly from 

the thoracic section of the spinal cord; conversely, the parasympathetic pathway starts from the 

Medulla Oblungata precisely from the nerve X (Vagus nerve). The PNS contain both afferent and 

efferent fibers that provide sensory input and motor output, respectively, to the central nervous 

system.   

A schematic representation of the organization of the ANS is visible in figure 2.1 1 

The sympathetic nervous system is responsible for long-term variations (order of minutes) through 

the production of chemical messengers releasing neurotransmitters (such as norepinephrine, 

epinephrine) that, once in the bloodstream, reach the target cells.  It is activated during situation of 

stress or danger and it’s associate to “fight, flight, fright” response, causing pupil dilatation, 

increasing of heart rate, increasing of blood pressure etc..  
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The parasympathetic nervous system is characterized by faster responses (order of milliseconds or 

seconds), generating electrical signals. It is associate with “rest and digest” response and the 

primarily neurotransmitter, which is acetylcholine, is released as a mediator allowing the body to 

increase salivation and activity in digestion, decreasing heart rate and of blood pressure.  

 

 
Figure2.1 1 Left (a): schematic representation of the divisions and functions of the autonomic nervous system. Right (b): simple 
representation of the sensory and motor divisions and connections between the different organs involved in the peripheral nervous 
system 

	

2.2	Link	between	Heart	Rate	Variability,	Blood	Pressure	
Variability	and	mechanisms	of	the	cardiovascular	control	
system	
 
Parasympathetic and sympathetic systems, work in a complementary way interacting with each 

other. The concept of “sympatho-vagal balance” reflects the autonomic state resulting from the 

sympathetic and parasympathetic influences that is fundamental for the modulation of the 

cardiovascular activity and in particular in the variation of the heart rate. Such physiological 

variation is called heart rate variability (HRV).  Both branches of the ANS have connections with the 

Sino-Atrial Node of the heart, determining an increase or a decrease of the heart rate. Only in the 

Sympathetic Nervous System efferent nerve fibers have connections also with the blood vessels and 
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the modulation of their activity contribute in determining the value of blood pressure (Blood 

Pressure Variability, BPV).   

Cardiac cycle is calculated as the time interval between one ventricular depolarization and the 

following one, detected in the electrocardiographic signal (ECG) as the RR interval. ECG, ABP, cardiac 

output and peripheral resistance are signals strongly related to the heart rate (HR) so characterized 

by the cardiac cycle. The studies of such control mechanism are mainly on the HRV. Using the power 

spectral density (PSD) of discrete beat-to-beat series is possible to extract parameters that are able 

to quantify the effect on the control mechanism and, hence, to obtain significant indicators of 

physiological conditions in a non-invasive way. [3] 

From the electrocardiogram (ECG) and the arterial blood pressure (ABP), we can derive three time 

series from which measures of HRV and BPV can be extracted (fig2.1 2).  

• The Tachogram is a signal obtained from the ECG by measuring the time distance between 

two successive R peaks (RR) and so it is sampled in correspondence of each beat.  

• The Systogram is a signal whose amplitude is represented by the value of systolic arterial 

pressure (SAP).  

• The Diastogram is a signal whose amplitude is represented by the value of diastolic arterial 

pressure (DAP).  

 

Figure2.1 2 Left: ECG signal and definition of the RR interval (top), ABP signal and definition of the systolic blood pressure (SBP) 
and diastolic blood pressure (DBP) (bottom); Right: Power Spectral Density of the two signals rispectively 

 

The power spectral density of the tachogram has been used to quantify how the HRV signal variance 

(power) is distributed in the various frequency bands and so the autonomic influences on Sino-Atrial 
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Node and blood pressure. The PSD is characterized by three main frequency bands: the VLF band 

(0.003-0.04 Hz), which represents the very slow variations and may contain information about 

hormonal changes; the LF band (0.04-0.15 Hz), influenced by both the sympathetic and 

parasympathetic (or vagal) activity, accounts for vasomotion regulatory mechanism; the HF band 

(0.15-0.45 Hz), which is mainly related to parasympathetic control and respiratory rate.  

By integrating the PSD (ms2/Hz) in these three bands we obtain the VLF, LF and HF indices in 

absolute values (ms2), from which other indices can be derived. The normalization of the LF and HF 

indices by the total power minus VLF yields the LF n.u. (normalized units) and HF n.u. indices, which 

respectively represent indicators of sympathetic and vagal activity.  The ration LF/HF is therefore a 

simple tool to quantify the sympatho-vagal balance effect elicited on the control of heart rate, under 

normal conditions the value of this pameter is between 2 and 3. (example in Fig 2.1 3) 

 

Figure2.1 3.PSD in normalized frequency and pie chart. Left: During the standard condition the sympathetic and the vagal activity 
are balanced. Right: PSD during tilt condition the LF component is dominant due to the sympathetic stimulation 

 

Many different mechanisms contribute to the control of circulation, different models have been 

developed over the years to try to establish a mathematical model which may contribute to the 

explanation of qualitative properties of circulation dynamics. 

 The first representation of the vascular mechanical system was probably the Windkessel model that 

described the hemodynamics of the arterial system in terms of resistance and compliance. Taking 

as input ventricular pressure and aortic inflow from the heart, models the peripheral resistance and 

aortic compliance to obtain the total impedance of the circulatory system taking inspiration from 
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an RC electric analogue and of simple resolution.  The representation of the three elements 

Windkessel model in Figure 2.1 4,5. 

 

 

Figure2.1 4 Left: Heart as a pump, Windkessel model. Right: Three-element Windkessel model in both hydraulic (bottom) and electrical 
(upper) representation. 

 

The Windkessel model does not take into account ANS influence. Both ABP and HR variabilities are 

synchronous with respiration. The auto-spectra, as simple superimposition of HF and LF bands, is 

related to the complex action of the vasomotor and respiratory centers. Coupling the two cycles, 

respiratory cycle and heart-beat oscillation causes oscillations of the heart rate with a frequency of 

approximately 0.25 Hz (4 s), referred to as respiratory sinus arrhythmia (RSA), responsible for the 

increase of the heart rate during the inspiration and a decrease during the expiration. This effect is 

due to the interaction of many mechanisms in the cardiac center in the medulla, in addition to 

mechanical control. The continuous interaction of the center with the periphery forms an 

interconnected regulation loop. To represent this complex system, the estimations of closed-loop 

gains such as the baroreflex response is required. The negative feedback loop, in which an elevated 

blood pressure reflexively causes the heart rate to decrease and blood pressure to increase 

decrease, is due to the baroreflex mechanism, an homeostatic mechanism of the body that helps to 

maintain blood pressure at a nearly constant level. Baroreflex sensitivity (BRS) assessment provides 

a valuable measure of cardiovascular autonomic regulation in normal or diseased states. [4]  
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Figure2.1 5 Baselli. Close-loop model 

 

The first step in the identification of a closed loop model was given by the work of Baselli et al. [6], 

considering the interactions between respiration, arterial pressure and heart period through the 

estimation of the relative transfer functions (Figure 2.1 5). It describes few aspects of the 

interactions among the signals themselves, by identifying the transfer functions of the model, 

providing causal relation-ships between the different variability signals.  

A more complex model was identified by Berger, Saul & Cohen [11], describing the relationship 

between respiration, heart rate and blood pressure with an autoregressive moving-average 

equation with linear constant-coefficient. They proposed a block diagram in which the respiration 

enters the closed-loop through centrally induced heart rate variations (RSA) and by mechanical 

coupling to arterial vasculature within the thorax.  Not only arterial baroreflex contributes to 

modulate the heart rate but also chemoreflex. Chemoreflexes are chemical control mechanism 

important for the modulations of the sympathetic activation. Both baroreflex and chemoreflex are 

able to perceive the amplitude of the pressure level and send the information to the brain. At the 

central level, the brain controls breathings that, in turn, affects the peripheral levels. In response to 

changes in arterial pressure blood pressure, homeostasis is maintained by modulating sympathetic 

activity in response to changes in arterial pressure. 
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 A schematic representation of the model is shown in Figure2.1.6. 

 
 

 
Figure2.1 6 Block diagram of the Saul et al. cardiovascular control model 
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2.3	Vasopressors		
ICU patients receive a large number of drugs and, among these, vasoactive agents are medications 

which have an impact on blood pressure through the action on blood vessels; acting to increase 

(vasoconstrictors) or decrease (vasodilators) blood pressure and to increase (positive inotropes) or 

decrease (negative inotropes) the contractility of the heart and so the cardiac output.  

The cardiac output (CO) is controlled by heart rate (primary determined by the CNS) and stroke 

volume (SV). The latter is directly influenced by the preload, the contractility and afterload, Fig. 

• Preload = amount of blood present in the heart chamber, the end-diastolic stretch of the 

heart muscle fiber 

• Contractility = the strength of the cardiac contraction that is related to the systemic vascular 

resistance (SRV). 

• Afterload = the pressure against which the heart must work, the forces that impede the flow 

of blood out of the heart 

 

 
Figure2.1 7 Relationship between Cardiac output, Preload, Contractility, Afterload and Heart rate 

 

The main role of vasopressor is to activate the adrenergic receptor in order to increase blood 

pressure, acting as vasoconstrictors, to increase the peripheral resistance and so the SVR. Despite 

that, since a lot of vasopressors are acting on adrenergic receptors, they might induce several effects 

as increasing or not CO, effecting the contractility or heart rate or the preload.  
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The vasopressors belong to the class of anti-hypotensive agents, together with colloid solutions, 

glucocorticoids and inotropic agents. The first one increase volemia (i.e. blood volume), 

Glucocorticoids are a class of steroid hormones that are part of the feedback mechanism in the 

immune system and inotropes increase myocardial contractility to increase the cardiac output 

sensitizing adrenoreceptors to catecholamines and glucocorticoids.  

The widest class of vasopressors are the synthetic catecholamines or sympathomimetics, whose 

name is derived from the type of action they exert, which is, indeed, mimicking the action of the 

sympathetic nervous system. Catecholamines mediate their cardiovascular actions predominantly 

through mainly two groups of adrenergic receptors called α and β. The amount of vasoconstructive 

and inotropic power is determined by the affinity of the specific drug with the target receptors. 

Adrenergic drugs will bind directly to one or more of these receptors to induce various physiologic 

effects and some indirectly act to induce certain other effects. [17] It is possible to have two 

opposite type of binding. Agonist fully activate the receptors to which is biding to, while antagonist 

binding does not activate the receptor, instead block the effect of the agonist.  

 

Major agonist binding at adrenergic receptor are: 

• α1 receptors, located on arterial vascular smooth muscle cells, are responsible for smooth 

muscle contraction increasing the blood pressure. 

•  β1 receptors, located in the heart, are responsible for positive chronotropic effects. They 

increase the heart rate and they have a positive inotropic effect (increase contractility).  

• β2 receptors are located in the lungs and are responsible for smooth muscle relaxation, that 

could cause a drop in blood pressure.  

There are other activated receptors: 

• D1, present in the renal smooth muscle, that cause smooth muscle contraction 

• V1, also located in the smooth muscle, responsible for vasoconstriction.  

A summary of the main vasopressors (also the one considered in this thesis), together with their 

clinical indications, dose ranges, degree of receptor binding and major side effects are shown in 

Fig.2.1.8 
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Figure2.1 8 Vasopressor Drug Names, Receptors, Major effects, Standard Dose Range, Titration ( adjusted dose for the maximum 
benefit without side effects) 

• Norepinephrine is a major endogenous neurotransmitter liberated by postganglionic 

adrenergic nerves. Is a potent α1-adrenergic receptor agonist with modest β agonist activity. 

For these reasons has a great effect of increasing SVR, potent vasoconstrictor, but a small 

effect on heart rate and contractility. Prolonged Norepinephrine infusion can have a direct 

toxic effect on cardiac myocytes by inducing apoptosis via protein kinase A activation and 

increased cytosolic Ca2+ influx [18]. It is a direct acting vasopressor agent, so directly activate 

the receptors.  The recommended starting dose is from 0.01 mg/kg/min to 0.03 mg/kg/min; 

maximum suggested dose is 0.1 mg/kg/min [14]. Norepinephrine is considered a first-line 

drug in the management of hypotension related to sepsis.  

• Phenylephrine is a pure α-adrenergic antagonist with no affinity for β-adrenergic or other 

receptors; it increases peripheral vascular resistance and blood pressure. The rise in blood 

pressure stimulates baroreceptors by vagal reflex, leading to bradycardia and having an 

effect on patient cardiac output. It has a strong effect on the systemic vascular resistance 

but no effect on contractility, increasing oxygen consumption. For this reason, is not used 

for acute heart failure. The recommended starting dose is 0.01 mg/kg/min to 0.03 

mg/kg/min; maximum suggested doses are 0.1 mg/kg/min to 0.3 mg/kg/min. 

 

• Vasopressin s a neurohypophysis hormone with various actions. It exerts his effect through 

v1 and v2 receptors. V1 agonist primary effect is to cause smooth vessel contraction while 
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mediate water reabsorption by enhancing renal collecting duct permeability increasing SVR, 

having no effect in contractility and heart rate. The onset is not as quick as the other 

vasopressors and it’s really used for septic shock. The recommended dose is from 0.01 

mg/kg/min to 1 mg/kg/min; fixed suggested doses is usually 0.04 mg/kg/min. 

• Epinephrine is a nonspecific α and β adrenergic agonist. β-Adrenergic effects are more 

pronounced at low doses and α1-adrenergic effects at higher doses. It mainly increases SVR 

and contractility causing peripheral vasoconstriction and increasing cardiac output. It’s 

usually used only when the other are non-functioning because of its non-selective agonist 

action. The recommended dose is .01 mg/kg/min to 0.10 mg/kg/min.  

• Dopamine is an endogenous central neurotransmitter; the effect is totally dependent on the 

dose and acts on both dopaminergic and adrenergic receptors. At low doses, <3 μg/kg/min, 

stimulate dopaminergic D1 receptor that promotes vasodilation, increasing blood flow to 

these tissues. As the dose is increased the main effect change, at intermediate doses, 3 

μg/kg/min to 5 μg/kg/min, dopamine predominantly stimulates β1 and β2 receptors causing 

positive chronotropic and inotropic effects. At higher doses, 5 mg/kg/min to 15 mg/kg/min, 

α-adrenergic stimulation occurs, causing peripheral arterial and venous constriction. 

 

Figure2.1 9 Schematic representation of effects, main receptors and localization 
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2.4	Clinical	use	of	Lactate		
 
Lactate is a crucial metabolite in the two main energy (ATP)-producing processes that power life: 

glycolysis and oxidative phosphorylation (OxPhos). Glycolysis is an oxygen-independent metabolic 

pathway that converts glucose into two molecules of pyruvate with the concomitant generation of 

2 ATP. While oxidative phosphorylation is the process in which ATP. 

Although all oxygen-consuming tissues possess the ability to consume lactate, liver and kidneys also 

possess the ability to convert this lactate back into glucose (gluconeogenesis) and export this 

glucose into the circulation. In most (patho)physiological conditions, acute energy requirements are 

key drivers of local or systemic lactate levels, irrespective of local oxygen tension. In non-stressed 

steady-state conditions glucose is converted to pyruvate, which is subsequently fully oxidized to 

Co2, generating approximately 36 ATP (adenosine tri-phosphate) per glucose molecule. In stressed 

situation, where tissue immediately requires more ATP, glycolysis generates only 2 ATP but can very 

rapidly increase by two or three orders of magnitude. Even with optimal mitochondrial oxygenation 

and function, this rate of pyruvate production will saturate the much more complex but much less 

flexible process of oxidative phosphorylation. Thus, for glycolysis to continue, pyruvate must be 

converted to lactate. In post stress situation, lactate is converted back to pyruvate and fully oxidized. 

Since lactate can be transported both at micro and at macro scales, lactate shuttles exist that allow 

the simultaneous production and consumption of lactate by different cells or tissues. [24] Three 

Metabolic states with Respect to Lactate Production and Consumption are shown in figure2.1.10  

 
Figure2.1 10Lactate at the cellular level. Usually not oxygen shortage 
per se, but acute energy requirements is a key determinant of lactate 
levels. 
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Serum lactate levels are traditionally low in normal individuals. The reference range is around 1 ± 

0.5 mmol/L, less than 2 mmol/L. In critically ill patients, lactate value varies from 2 mmol/L to 5 

mmol/L in hyperlactatemia and above 5 mmol/L in lactic acidosis [20]. Lactate is a product of 

anaerobic metabolism, in fact, high levels of lactate in tissue is direct indication of tissue hypoxia. 

Organ failure, associated with tissue hypoxia, is common feature seen in septic or septic shock 

patients. Tissue hypoxia for long time can cause irreversible damage to the tissue resulting in its 

death. Hyperlactatemia in fact is associated with long periods of tissue hypoxia and subsequent 

organ failure [21]. Thus, serum lactate levels serve as diagnostic maker in critically ill patients. 
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2.5	State	of	Art	
 
 

2.5.1	Characterization	of	Vasopressors-induced	Autonomic	
changes	and	prediction	studies	
In literature, it is possible to find of large variety of clinical studies based on testing autonomic 

functions by administrating vasopressors.  

Ahmed MW et al. evaluated and compared the effects of physiologic and pharmacologic 

sympathetic stimulation on time and frequency domain indexes of heart rate variability. Five-

minute electrocardiographic recordings were obtained in triplicate after physiologic and 

pharmacologic sympathetic stimulation: during upright tilt, after maximal exercise, during 

epinephrine and isoproterenol infusions at 50 ng/kg body weight per min, during beta-adrenergic 

blockade and during combined beta-adrenergic and parasympathetic blockade [30]. From this 

experiment it was seen that beta-adrenergic stimulation resulted in a significant decrease in time 

domain measures of heart rate variability. 

Goldberger et al. conducted a study in order to evaluate the effects of parasympathetic stimulation 

on time and frequency domain in normal (healthy) subjects. Ten normal subjects were evaluated, 

with five-minute electrocardiographic recordings were obtained at baseline and during 1) combined 

alpha-adrenergic stimulation with baroreflex-increased cardiac parasympathetic activity produced 

by phenylephrine infusion; 2) parasympathetic blockade (atropine 0.04 mg/kg); and 3) isolated 

alpha-adrenergic stimulation produced by phenylephrine infusion after parasympathetic blockade. 

Phenylephrine infusion resulted in a decrease in the time domain measures and in the high-

frequency power, increasing systolic blood pressure.[29]  

A. Belletti et al. performed a meta-analysis of randomized trials published in the last 20 year to 

investigate the effect of vasopressor drugs on mortality. In a total of 28 280 patients from 177 trials, 

reduction in mortality was associated with inotrope/ vasopressor therapy use in settings of 

vasoplegic syndromes, sepsis and cardiac surgery. Subgroup analysis did not identify any groups 

with increased mortality associated with inotrope/vasopressor therapy. It was found that 

inotrope/vasopressor therapy is not associated with differences in mortality in the overall 

population and in the majority of sub settings. [14] 
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Many severity scores related to ICU patients have been developed, some to predict the outcome, 

for example the Charlson comorbidity index, and some to describe the degree of organ dysfunction, 

the most famous are the Acute Physiology And Chronic Health Evaluation-III (APACHE-III) and 

Sequential Organ Failure Assessment (SOFA) scores.  

 Vasoactive medications are essential in septic shock but are not fully incorporated into current 

mortality prediction risk scores. Vallabhajosyula et al. developed a novel mortality prediction model 

for septic shock incorporating quantitative vasoactive medication usage. Quantitative vasopressor 

use was calculated in a cohort of 5352 septic shock patients and compared using norepinephrine 

equivalents (NEE), cumulative vasopressor index and the vasoactive inotrope score models. Having 

best discrimination prediction, log10NEE was selected for further development of a novel prediction 

model for 28-day and 1-year mortality via backward stepwise logistic regression. This model termed 

‘MAVIC’ (Mechanical ventilation, Acute Physiology and Chronic Health Evaluation-III, Vasopressors, 

Inotropes, Charlson comorbidity index) was then compared to APACHE-III and SOFA scores in an 

independent validation cohort for its accuracy in predicting 28-day and 1-year mortality. The MAVIC 

model was superior to the APACHE-III and SOFA scores in its ability to predict 28-day mortality (area 

under receiver operating characteristic curve [AUROC] 0.73 vs. 0.66 and 0.60) and 1-year mortality 

(AUROC 0.74 vs. 0.66 and 0.60), respectively. The incorporation of quantitative vasopressor usage 

into a novel ‘MAVIC’ model results in superior 28-day and 1-year mortality risk prediction in a large 

cohort of patients with septic shock. [15] 

As mentioned above the dose of vasopressor used, but also the titration and the duration of the 

administration, are crucial to be able to get the maximum benefit from the dose of the medication 

without adverse effects. The Xiaowu Bai et al investigated the incidence of delayed norepinephrine 

administration, following the onset of septic shock, and its effect on 28-day hospital mortality. A 

strong relationship between delayed initial norepinephrine administration and 28-day mortality was 

noticed. The average time to initial norepinephrine (NE) administration was 3.1 ± 2.5 hours. Every 

1-hour delay in norepinephrine initiation during the first 6 hours after septic shock onset was 

associated with a 5.3% increase in mortality. Twenty-eight-day mortality rates were significantly 

higher when norepinephrine administration was started more than or equal to 2 hours after septic 

shock onset. Their results show that early administration of norepinephrine in septic shock patients 

is associated with an increased survival rate. Mean arterial pressures at 1, 2, 4, and 6 hours after 

septic shock onset were significantly higher and serum lactate levels at 2, 4, 6, and 8 hours were 
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significantly lower in the Early-NE than the Late-NE group. The duration of hypotension and 

norepinephrine administration was significantly shorter, and the quantity of norepinephrine 

administered in a 24-hour period was significantly less for the Early-NE group compared to the Late-

NE group.[31] 

J. Goldberger, in 1999, evaluated for the effects of sympathetic and parasympathetic stimulation 

and blockade on HR and HR variability HR variability. A new parameter, termed the vagal-

sympathetic effect (VSE), was defined as the ratio of the R-R interval to the intrinsic R-R interval (R-

R0) representing an index of sympathovagal balance. VSE > 1 reflects vagal predominance and a VSE 

< 1 reflects sympathetic predominance. Thus, the aim of this study was to assess the utility of the 

VSE, R-R interval, and heart rate variability measures, as indexes of sympathovagal balance using a 

broad range of autonomic maneuvers. R-R interval consistently changed in the expected directions 

with parasympathetic and sympathetic stimulation and blockade. Sympathetic stimulation with 

upright tilt, epinephrine infusion, and isoproterenol infusion resulted in significant decreases in the 

VSE.[33] 

 

2.5.2	Blood	lactate	and	Heart	rate	variability	interaction		
 
The delay with which oxygen consumption is brought to a steady state, depends on the relative 

slowness with which oxidative reactions adapt to an increased energy demand. As long as oxygen 

consumption remains below the steady-state value, energy is supplied by an anerobic system. 

Oxygen consumption huminites monotonically increase with the intensity of the work. The lactate 

threshold is a useful measure for exercise intensity. Lactate inflection point (LIP), is the exercise 

intensity at which the blood concentration of lactate and/or lactic acid begins to increase 

exponentially. The first method to measure lactate threshold is the direct invasive measurement of 

blood lactate. Alternatively, a noninvasive measurement, with indirect definition of lactate 

threshold, can be obtained investigating the ventilatory and gas exchange response.  

In literature, it is possible to find of large variety of clinical studies that examine the relationship 

between the responses of the cardiac autonomic nervous system and blood lactate during physical 

exercise. Physical activity brings a significant PNS activation with oxygen consumption, increasing 

blood lactate concentration. Recent studies have suggested that HRV analysis may be a potential 
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tool to look for first and second physiological thresholds (i.e. lactate or ventilatory threshold LT1, 

LT2 and VT1, VT2 respectively) to estimate the intensity of the exercise. 

The aim of the study presented by Nascimento et al. was to verify the validity and reproducibility of 

the heart rate variability (HRV) method to determine first and second lactate thresholds during a 

maximal running test. Nineteen male runners (30.4±4.1 years; body mass of 74.3±8.5 kg; height of 

176±6.4 cm and body fat of 13.8±4.6 %) performed two progressive maximal tests on a treadmill, 

with initial speed at 5 km.h⁻¹ and 1 km.h⁻¹ increments every 3 minutes, until exhaustion. Measures 

of HRV and blood lactate concentrations were obtained during the tests and physiological 

thresholds were identified as lactate thresholds by using fixed concentrations (2.0 and 3.5 mmol/ 

L⁻¹) and Dmax method, as well as HRV thresholds. They found no differences between the first 

physiological thresholds identified as lactate (2.0 mmol/ L⁻¹ = 11.9 ± 2.9 km.h⁻¹ and Dmax = 12.3±1.5 

km.h⁻¹) or HRV threshold (11.6±1.6 km.h-1).[19]  

Similarly, using a cycling exercise mode, Cottin et al. [28] found that nonlinear increases in HRV data, 

assessed by high frequency (HF) and peak frequency spectrum (ƒHF) of the beat-to-beat RR intervals, 

identified VT1 and VT2. They also showed that instantaneous HF multiplied by ƒHF (HF.ƒHF) provided 

a reliable and accurate index to identify these threshold. 

Another study examined the relationship between the responses of the cardiac autonomic nervous 

system and blood lactate during incremental resistance exercises of the lower limbs in older men, 

showing that HRV indexes were associated with blood-lactate levels during RE. Ten healthy men 

participated in a progressive leg-press protocol to maximal exertion. The measurement of 

instantaneous R-R interval variability from Poincare plots (SD1 and SD2) and time domain indexes 

(RMSSD and RMSM), blood pressure, and blood lactate were obtained at rest and all leg-press loads. 

Significant alterations of HRV and blood lactate were observed from 30% of 1RM leg press (p < 0.05). 

Additionally, significant correlations were found between the lactate threshold (LT) and the RMSSD 

threshold (r = 0.78; p < 0.01), and between the LT and SD1 threshold (r = 0.81, p < 0.01), showing 

that metabolic and cardiovascular alterations are apparent during relatively low resistance exercise 

(RE) loads in apparently healthy subjects. In addition, HRV indexes were associated with blood-

lactate levels during exercises.[25] 
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2.5.3	Lactate	as	independent	predictor	for	mortality	
 

In literature, it is possible to find of large variety of clinical studies demonstrating that lactate is a 

predictor of clinical outcomes, although the use of blood lactate monitoring for risk assessment in 

the critically ill patient has remained controversial. Several studies have shown how lactate value 

can be used as a valuable predictor of sepsis or mortality. Breakthrough studies done on human 

lactate levels showed that an increase in lactate levels from 2.1 to 8 mmol/L decreased the survival 

from 90% to 10% [22] 

A retrospective cohort study was done by Ralphe Bou Chebl & al., showing that serum lactate is 

associated with increased ICU and hospital mortality, independent of comorbidities, organ 

dysfunction, or hemodynamic status. Patients were stratified into 3 groups according to normal (<2 

mmol/L), intermediate (2 to 4 mmol/L) and high (>4 mmol/L ) lactate level. The primary outcome 

was in-hospital mortality, secondary outcomes included ICU and hospital lengths of stay and 

mechanical ventilation duration. Hospital mortality was the highest in high lactate level, followed 

by the intermediate and the normal level group (47.4% vs 26.5% vs 19.6%; P < .0001). Intermediate 

and high lactate levels were independent predictors of hospital mortality as well as ICU 

mortality.[26] 

Lactate predicts risk of death in all patients, although patients with sepsis have a higher mortality 

for any given lactate level. Villar J et al used lactate level to measure the relationship between 

lactate and mortality in hospital with outcomes of interest (3-day, 30-day, and 1-year all-cause 

mortality) for septic and non-septic patients. Statistical analysis of peak lactate level (mmol/L) was 

performed during the most recent admission for patients who died and peak lactate level during an 

admission for surviving patients; showing that higher levels of lactate had the greatest mortality risk 

in the short term, while lower elevations of lactate were still associated with mortality at 30 days 

and 1 year. [27] 

Lactate level has been used as a prognostic indicator for mortality, in particular, patients with an 

initial lactate level > 4.0 mmol/L had higher mortality risks, and the probability of death was 

substantially increased with a high initial lactate level [34] 

The concept of repeating blood lactate concentrations over time, using it as a marker of altered 

tissue perfusion and as indicator of response to therapy, was first proposed in 1983[37]. Over time 

many any studies have emphasized that changes in lactate over the first hours of treatment may 

represent a valuable monitoring tool. 
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The lactate kinetics is related to dynamics of blood lactate, that is, the "behavior" of lactate during 

and/or after an exercise. If the decrease in lactate concentration in the blood as a result of intense 

physical effort is measured, lactate kinetics can be measured with a bi exponential function. The 

blood lactate is triggered by rate of production and removal. 

 
Figure2.1 11Schematic showing some of the possible evolutions of blood lactate levels over time: 

decreasing (1), remaining stable (2), or increasing (3) 

Predicting the kinetics of lactate is therefore very complex. Changes are relatively slow and is 

difficult to give an indication of the rate of decrease in lactate concentration. It turns out that 

repeating measurements every 12 hours can generally separate those who will do well from those 

who are likely to die. A decrease in lactate concentrations as better prognosis is consistent 

throughout the literature. It has been demonstrated that these concepts are applicable not only to 

septic patients but in a general homogeneous population of patients.[36] 

As was pointed out in the recent study conducted by Mamandipoor, predicting blood lactate 

concentration is a particularly challenging problem that hardly anyone has tried to solve yet.  The 

distribution of lactate measurements follows a long-tailed distribution, resulting in a highly 

imbalanced dataset, almost 80% of lactate readings are concentrated within normal and mild levels. 

In fact, a missing value indicator is informational and increases predictive power. LSTM-based 

method performed by them, can predict lactate level with a Mean Absolute Error of 0.665 across 

13,464 patients from different hospitals and ICU units. [40]  
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2.6	Lactate	and	Vasopressors	
 

Shock and infections can cause dilatation of the vessels thus vasopressors are used to constrict those 

areas, in order to increase blood pressure that can reduce blood flow to the organs. Cardiac patients 

are vulnerable to impaired cardiac output (CO) and peripheral tissue hypoperfusion. Theoretically, 

as mentioned earlier, vasopressors can improve hemodynamic parameters by increasing CO, and 

reducing left and right ventricular filling pressures. Therefore, inotropes are indicated for the 

treatment of all cardiac patients with clinical conditions characterized by peripheral hypoperfusion 

resulting from impaired cardiac contractility. Although these agents benefit cardiac patients by 

improving CO, they have been also associated with arrhythmogenesis, increased myocardial oxygen 

demands, myocardial ischemia and damage [13]. Hemodynamic instability is a common cause of 

morbidity and mortality in cardiac patients. In clinical practice, hemodynamic instability is routinely 

defined as a systolic blood pressure <90 mm Hg. However, when considering hemodynamic 

instability, clinicians should be more concerned with organ hypoperfusion rather than a fixed blood 

pressure. In most patients with hemodynamic instability, administration of intravenous fluids is 

initially used as an attempt to improve hemodynamics. Patients with hemodynamic instability, 

resulting from distributive shock, typically present decreased systemic vascular resistance (SVR), 

leading to a decrease in blood pressure. [41]  

According to the third international consensus definitions, patients with septic shock can be 

clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg 

or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of 

hypovolemia.[32] Already from this definition, can be seen that the average blood pressure value 

and the lactate value in the blood are important indicators of the patient's health status. 

Hemodynamic instability and organ hypoperfusion are strongly related to lactate level, lactate is a 

marker of tissue hypoperfusion and thus of oxygen debt, in fact, an increase of blood lactate level 

(hyperlactatemia) is associate with septic shock.  

Therefore, blood lactate level could be a helpful indicator to assess a patient’s response to therapy. 

In literature not many studies investigate the relationship between lactate and vasopressors. 

A study in 2015[38] found that. lactate level tends to increase, or at least not decrease, with time, 

among non-survivors, but lactate levels significantly decrease over time in survivors after 48 hours. 

In addition, lactate clearance of at least 10% at 6, 24, and 48 hours and the use of vasopressors are 

independent factors related to mortality, even after adjusting for critically ill status or sepsis 
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severity. Further, vasopressors should be avoided in lactic acidosis, if possible, because they may 

worsen tissue perfusion and increase lactate production. Over sixty percent of survival patients have 

used vasopressors, but significantly fewer used them compared to the non-survival patients 

assessed in this study. It is notable that the percentages of survival patients still using vasopressors 

at 24 and 48 hours were significantly lower compared to those of non-survival patients. 

 M. N. Cocchi et al. Developed a model to predict outcomes in cardiac arrest survivors, dividing 

patients into groups according to the vasopressor status (receipt of vasopressors vs. no 

vasopressors); and according to the initial blood lactate (lactate <5 mmol/L, lactate 5 to 10 mmol/L, 

lactate ≥10 mmol/L). They discovered that the combination of two clinical parameters, vasopressor 

need and lactic acid levels, is an accurate severity of illness classification system and can predict 

mortality in patients following out-of-hospital cardiac arrest. Patients who received vasopressors 

had significantly higher mortality rates compared to patients who did not receive vasopressors (80% 

vs. 52%; P=0.002). A stepwise increase in mortality is associated with increasing lactate levels. [39].  
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Chapter	3	

	

Methods	and	Materials		

	
3.1	MIMIC-III	Database		
 
The data used in this work are public, freely available and stored on the PhysioNet platform, one of 

the largest freely accessible critical care databases in the world, containing recorded physiologic 

signals and clinical ICU-data. The archive was created by the Laboratory for Computational 

Physiology (LCP), at Massachusetts Institute of Technology (MIT).  

MIMIC-III integrates deidentified, comprehensive clinical data of patients admitted to the Beth 

Israel Deaconess Medical Center in Boston, Massachusetts, and makes it widely accessible to 

researchers internationally under a data use agreement Fig.3.1 It includes demographics, vital signs, 

laboratory tests, medications, and more. The open nature of the data allows clinical studies to be 

reproduced and improved in ways that would not otherwise be possible [34]. 
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Figure 3.1 MIMICIII critical care database general overview. 

 

  

	
3.1.1	Clinical	Database		
 

MIMIC-III is a relational database which contains comprising de-identified health-related data from 

electronic health records associated with 53423 distinct hospital admissions for adult patients (aged 

16 years or above) admitted to critical care units between 2001 and 2012. In addition, it contains 

data for 7870 neonates admitted between 2001 and 2008. The database includes information such 

as demographics, vital sign measurements made at the bedside, laboratory test results, procedures, 

medications, nurse and physician notes, imaging reports, and out-of-hospital mortality. It 

encompasses a diverse and very large population of ICU patients and contains high temporal 

resolution data including lab results, electronic documentation, and bedside monitor trends and 

waveforms. Data are organized in 40 tables, a data storage structure which is similar to a 

spreadsheet: each column contains consistent information and each row contains an instantiation 

of that information. Data were collected with two different systems, having data archived a different 

format, depending on the year of the patient’s admission. The oldest is CareVue (CV) system (2001-
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2008) and the newest is MetaVision (MV) system (2008-2012), which contains a more detailed 

nomenclature, with a more precise time indication for the various fluid and drug administrations. 

	

3.1.2	Waveforms	Database		
 

Waveform Database contains thousands of recordings of multiple physiological signals and time 

series of vital signs, collected from bedside patient monitors in adult and neonatal intensive care 

units (ICUs). Waveforms almost always include one or more ECG signals and often include 

continuous arterial blood pressure (ABP) waveforms. Additional waveforms (up to 8 simultaneously) 

are available, usually fingertip photoplethysmogram (PPG) and sometimes respiration rates, SpO2. 

Recording lengths also vary; most durations are of a few days, some are very short (hours), and 

others are several weeks long [34]. 

The MIMIC-III Waveform Database Matched Subset (mimic3wdb/matched) contains all MIMIC-III 

Waveform Database records that have been matched and time-aligned with the MIMIC-III Clinical 

Database records. The record matching process is still ongoing, for now the matched subset 

contains 22,317 waveform records, matched and time aligned with 10,282 patients. This reduce the 

number of available subjects available for this study. All data associated with a particular patient 

have been placed into a single subdirectory, named according to the patient's MIMIC-III Subject_ID. 

These subdirectories are further divided into ten intermediate-level directories (p00 to p09). 

 

3.2	Study	design		
 

First of all, there is the need to understand how to turn a clinical question into a research, carefully 

defining the study sample (or patient cohort), the exposure of interest and the outcome of interest. 

As mentioned above, this study aims to characterize the autonomic changes induced by the 

administration of vasopressors extracted from waveforms and use them, together with information 

about blood lactate level, to see if it is possible to predict an increase or decrease in lactate level 

and if this value is in line with the positive outcome or not of vasopressor therapy. To get the most 

accurate information possible about the recording of administration and timing of laboratory 

measurements, data are taken only from the Metavsion database, considering only the data that 
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comes from the integration between the clinical and the matched waveform database, reaching an 

amount of correctly linked 17721 waveform and relative clinical data.  

Unfortunately, one of the biggest limitations of this study is having to consider only the subjects 

with an ECG signal and blood pressure signal around the vasopressor administration, in order to be 

able to extract the autonomic indexes.  

The fundamental requirements about waveforms are reported as follow: 

-  At least 1 electrocardiogram (ECG) signal, recorded according to I, II, or V lead;  

-  At least 1 Arterial Blood Pressure (ABP) signal;  

-  At least 1 hour of recording around the vasopressor onset, defined as the time instant of 

administration of the vasopressor;  

Less than 50% of non-usable part of the signal, comprehending missing values, gaps, saturation, 

motion trigger and various types of noises.  
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3.2.1	Signal	annotations	and	processing		
 
The annotation and synchronization of ECG and blood pressure signals is a very complex problem, 

especially if we are talking about signals coming from intensive care patients. The annotation 

problem ì is based on the detection of fiducial points, respectively the onset, offset, and peak of 

each waveform. Respectively the QRS complex for the ECG signal, systole, diastole, and onset for 

blood pressure. A correct R peak detection is critical to obtain useful clinical information such as RR 

intervals, allowing heart rate variability analysis and the extraction of some features, such as the 

baroreflex gain. The great multitude of noise, due to physiological and non-physiological artifacts 

such as muscle activity or skin movements, electrical devices or incorrect use of the equipment, 

makes this task very complex. It is possible to find much literature on the recognition of the QRS 

complex and several algorithms have a been used previously, the most famous is Pan Tomkins. The 

problem is that does not work very well with very noisy or irregular signals. The toolbox used in this 

thesis for signal annotation was developed in the SpinLab of Politecnico of Milan using Matlab. First 

of all, consists on identification of fiducial points, on both physiological signals, using customized 

algorithms, then on the synchronization on the obtained annotations and in the creation of a data 

structure that could be directly fed into monovariate and multivariate models for features 

extraction, after a filtering stage based on pan Tompkins algorithm 

The QRS complexes, so the R peaks, are identified performing a digital analysis of the ECG waveform, 

sampled with a sampling frequency of 125 Hz. For the ABP three points are defined, maximum 

pressure value, minimum pressure value and the point of maximum positive derivative of the pulse 

pressure.  

Once both signals are processed, relative annotations must be synchronized. The synchronization 

process consists in associating each detected R peak, and so each heartbeat, to the respective values 

of the ABP pulse. Sometimes some holes are left due to the lack of signal quality that might have 

introduced a wrong variability.  

The output of the algorithm is a data struct. The field “annotations” (6xN matrix), contains 

information about the detected R peak, the sample of pressure onset, pressure systole and its 

absolute value, pressure diastole and its absolute value. The field “PAT” is a 1XN array, containing 

the PAT value for each synchronized peak.  
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The graphical interface is structured in such a way to be easily understood by the users, allowing 

them to perform navigation, manual checking and eventually some corrections. Tools for data 

navigation allow for zooming in and out, suppression of part of signal, manual identification of 

fiducial points and signal flipping, in figure 3.2.1 it’s possible to see how signals are displayed. Data 

can be edited and processed through five side buttons, to load the files, synchronize the signals, 

annotate them, identifying ectopic beats and save them.   

 

 
Figure 3.2.1 ECG and ABP signals with relative annotations of fiducial point form which are derived diastogram, systogram and PAT 
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3.2.2	Cohort	selection	
 
The subjects considered in this study are all receiving vasopressors, thus should all be hypertensive 

subjects. ICU patients receive a large number of different types of vasoactive agents; therefore, the 

first choice was to consider which vasopressors take into account, in this study are consider only the 

most common vasopressors used in intensive care: Epinephrine, Phenylephrine, Vasopressin, 

Dopamine and Norepinephrine. In figure 3.2.2 we can notice that a lot of patients received 

Phenylephrine (82 patients) while nearly no one received Epinephrine (only4) or Dopamine (only 6). 

 
Figure 3.2.1 Pie chart, percentage of subjects receiving that vasopressor 

 

ICU patients often receive more than one vasopressor simultaneously or at very close intervals so, 

for each patient, was considered as administration onset, the first vasopressor administration since 

entering the ICU while the duration of therapy was calculated considering the combination of all 

consecutive vasopressor administrations. Therefore, considering the end of the therapy as the 

moment when the subject is no longer receiving any vasopressor. For those reasons, vasopressor 

doses were converted to Norepinephrine equivalent, according to the table in the figure 3.2.3. 
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Figure 3.2.3 Norepinephrine equivalents conersion table 

 

In figure 3.2.4 is possible to see the mean duration of the therapy for each vasopressor considered, 

Norepinephrine administration are usually very long (duration of days) while Epinephrine durations 

usually last just a couple of hours, the mean vasopressor therapy duration is around 10 hours. 

  
Figure 3.2.4 Histogram of vasopressors duration in hours 

Starting from ~60,000 subjects in the MIMICIII database, the choice to consider only data from 

Metavision reduced the number to 17680 patients, of which only 10282 are present in the MIMICIII 

Waveforms Matched database (only 5406 with both available ECG and ABP signal).  

Based on these data the cohort was selected including all adults with administration of one of the 5 

vasopressors mentioned previously, taking into account only the first vasopressor administration 

since the entrance in ICU. Only adult patients were considered and only the first ICU stays for each 

patient. After verifying and synchronizing the clinical information related to the first vasopressor 

administration, 60 minutes waveforms were extracted for each subject around the onset of the 

administration. The autonomic indexes were computed from the pre and post-administration 
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segments, consisting of two 15-minute windows respectively, leaving a 30-minute hole around the 

onset, as it’s shown in figure 3.2.5. 

 

 
Figure 3.2.5 GUI of the waveforms annotation toolbox 

 
The onset for the vasopressor administration indicated in the database is often inaccurate, since it 

is entered manually by the nurses. In addition, vasoactive drugs need a few minutes before enters 

in the bloodstream and so before the effects can be seen. Due to the fuzziness of the theoretical 

administration onset, a 30 minutes window was left in between. Two 15-minute windows have been 

chosen to make sure to analyze the signals before and after administration. Obtaining an indication 

of the condition the patient was in before administration and after, to be sure that the vasopressor 

drug has already entered the bloodstream, in order to analyze the effects and compare the 

difference of the two segments. The computation of the autonomic indexes was possible only after 

the synchronization and annotation of the signals, using the special tool developed at spinLabs. All 
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signals required also a manual checked to verify the quality of the signal and consequently its 

usability.  

After this severe selection process, the flowchart of cohort selection is shown in figure 3.2.6.  

 

 
Figure 3.2.6 Flowchart of cohort selection 

The remaining cohort was composed by 123 subjects, those represent the cohort for the lactate 

prediction study, instead, for the characterization study were initially removed all the patients 

whose signals were affected by the effects induced by sedation and mechanical ventilation. Only 

getting 23 subjects. This was done because it is very well-known that sedatives and mechanical 

ventilation highly influence the autonomic activity. The first part of the characterization analysis 

aims to characterize as much as possible the changes only induced by a single class of drugs, i.e. 

vasopressors. In fact, the same analysis was repeated considering the whole cohort, composed by 

123 patients, to see if the obtain results still preserve themselves. We can assume that, knowing 

that mechanical ventilation and sedatives are present both in the pre and post segments, the 

changes induced by the vasopressor are still visible. For the correlation part all 77 subjects were 

considered, since in 46 out of 123, were not found any lactate measures available in the two 12-

hour windows around the administration. With regard to the search for lactate value around 

vasopressor administration, several problems were found. One of the major concerns encountered, 

was finding homogeneous lactate measures for the entire population. On average, the number of 

lactate measures per subject varies a lot, from one measure every two days to six measures per day.  

To get the lactate measure nearest to the vasopressor onset, the first available measure before the 

administration was considered for each subject. 

Only 23 subject without sedative and mechanical ventilation

Just 123 patients after manual correction and waveform annotations

652 subjects with one hour of both ECG and blood pressure around the onset of the 
first vasopressor administration

4208 Considering just the first ICU stays for adult patients

5406 with possible   ECG, blood pressure waveforms and clinical information

17680 CareVue database

60,000 subjects in the MIMICIII  database
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As lactate output was at first considered the first available measure after the vasopressor therapy. 

Considering the end of the therapy as the point at which the subject is no longer under vasopressor 

administration. The measure at the end of the therapy for each subject is considered, as before, as 

the first lactate measure closest to that point.  

In both cases the big problem is the great variability of lactate measure available for each subject 

and the different duration of vasopressor therapy, increasing the difficulty of achieving a prediction 

problem and finding a correlation between lactate level and features extracted. For those reasons 

instead of using lactate at the end of therapy, it was decided to consider the first available lactate 

measure 12 hours after vasopressor administration and the last measure 12 hours before the 

administration for each subject, as shown in Figure 3.2.7. We further investigate the correlation 

with the waveform features considering both 12- and 3-hours windows. However, a 12 hours 

window seems to be the optimal choice to avoid a too drastic reduction in the number of patients 

due to the limited lactate measures available. 

 

 
Figure 3.2.7 Lactate measure selection 

For the machine learning part, we tried to vary the time window considered trying to make a 

prediction of lactate level changes at 12 hours. In order to not decrease further the already reduced 

number of patients and lose statistical significance, working with Boolean variables, a different 

method was chosen.  Knowing that, for some subject, there are no lactate measures for a long 

period of time, missing values were replaced with a Boolean variable. In fact, for this part of the 

study, instead of considering lactate measure, a Boolean variable was introduced: 1 if the lactate is 

abnormal (>2 mmol/L), 0 if the lactate level is in a normal range (<= 2 mmol/L). Doing so, a missing 

value is substituted with a 0, assuming that lactate level is in a physiological range. It was possible 

to do this knowing that subject that are in a not excessively severe pathological condition that not 

excessively severe serum lactate will be relatively (< = 2 mmol/L). It is important to specify that the 

sickest patients are the higher is lactate level and, on average, many more measures are available.  



63 
 

  



64 
 

 

3.2.3	Clinical	data		
 

For each patient included in the cohort, a set of clinical and demographic information such as age, 

gender and mortality, has been extracted from the database; then other information about 

therapies and interventions like diagnosis, laboratory measures and severity scores were taken into 

account. 

For each patient considered in the study, the first available laboratory measurement available 

around vasopressor administration was considered. Laboratory data are measures taken from blood 

sample, frequently collected throughout care of critically ill patients, the one considered in this 

study are listed in this table 3.2.7: 

 

Laboratory measures 

Albumin [g/dL] 

Bilirubin [mg/dL] 

Creatinine [mg/dL] 

Glucose [mg/dL] 

Hematocrit [g/dL] 

Hemoglobin (Hb) [g/dL] 

Platelets [counts per mcL of blood] 

Potassium (K) [mEq/L] 

 

Albumin is a globular protein present in blood plasma, it constitutes about half of serum protein. It 

is produced in the liver and transports hormones, fatty acids, and other compounds, buffers pH, and 

maintains oncotic pressure, among other functions. Normal range in adult is 3.5–5.0 g/dL (35–50 

g/L). 

Bilirubin is a compound excreted in bile and urine, elevated levels may indicate certain diseases and 

its physiological values is about 0.5 mg/dL. 

Creatinine is an important indicator of kidney health because it is an easily measured byproduct of 

muscle metabolism, 0.5 mg/dL to 1.0 mg/dL (about 45 μmol/L to 90 μmol/L) for women and 0.7 

mg/dL to 1.2 mg/dL (60 μmol/L to 110 μmol/L) for men. 
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Glucose is the most abundant monosaccharide and the most important source of energy in all 

organism, with physiological range of values between 70 and 130 mg/dL is one of the most 

important medications needed in a basic health system. 

Hematocrit is the result of a blood test that measures volume percentage of red blood cells in blood, 

with normal values between 40% and 50% for men and between 36% and 44% for women. 

Hemoglobin, expressed in g/dL, is the protein contained in red blood cells responsible for delivery 

of oxygen to tissues, with normal values between 14 and 18 g/dL for male and between 12 and 16 

g/dL for female.  

Platelets, with the function to react to bleeding, are another solid component of blood, a normal 

platelet count is between 150,000 and 400,000 per microliter of blood. 

Potassium, which has physiological values around 4 mEq/L, and also Sodium concentration, which 

has normal values around 140 mEq/L.  

In the ICU the most common medications and interventions in ICU are:  

• Administrations of fluids. 

• Administration of vasoactive agents 

• Administration of sedative 

• Mechanical ventilation 

In particular, many treatments are delivered through intravenous administration, with a certain 

rate of administration and an infusion prolonged in time. It’s important to take into account not 

only the type of drugs or treatments to which patients are subjected but also their modalities 

and durations.  

The types of vasopressor administered to each subject have also been reported. 

Main duration and type of sedatives, mechanical ventilation and fluids administered to the 

considered populations are represented in figure 3.2.8, 3.2.9 and 3.2.19. 
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Figure 3.2.8 below: Histogram representing the number of mechanical ventilation with the relative duration ( in hour). Above: The 
pie chart representing the proportion of the type of ventilation administered	

 
Figure 3.2.9 below: Histogram representing the number of fluid administration with the relative duration ( in hour). Above: The pie 
chart representing the proportion of the type of fluid administered 

	

 
Figure 3.2.10 Below: Histogram representing the number of fluid administration with the relative duration ( in hour). Above: The pie 
chart representing the proportion of the type of fluid administered 
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3.2.4	Comorbidities	and	severity	score		
	
Severity scales and scores are important adjuncts of treatment in the intensive care unit (ICU) in 

order to predict patient outcome, comparing quality-of-care and stratification for clinical trials and 

represents an essential part of improvement in clinical decisions and in identifying patients with 

unexpected outcomes [42] 

In most of the scoring systems, scores are calculated from data collected on the first ICU day, the 

most famous are:  

• Acute physiology and chronic health evaluation (APACHE) 

• Sequential organ failure assessment (SOFA) 

APACHEII is a severity of disease classification based upon initial values of 12 routine physiologic 

measurements, age, and previous health status to measure the severity of disease for adult patients 

in the first 24h from the admission in the ICU. This index can be used to evaluate the use of hospital 

resources and compare the efficacy of intensive care in different hospitals or over time.[43] 

SOFA score assesses the acute morbidity of critical illness and was developed following a consensus 

meeting in 1994, recently has become extensively used in a range of other applications. SOFA was 

based on six different scores, one for each of the respiratory, cardiovascular, hepatic, coagulation, 

renal and neurological systems in order to determine the rate of failure of the organ function, an 

increase in score reflect the worsening of the organ dysfunction. [44] 

Two other different scoring system, one the evolution of the other, that are becoming popular are: 

•  Deyo-Charlson Comorbidity Index (DCCI) 

• Elixhauser-van Walraven Comorbidity Index (EVCI) 

In the scoring system proposed by Elixhauser each comorbidity was considered separately, so the 

measure was composed by 30 different binary variables (comorbidities measures), making it quite 

complex to use and interpret [46]. Therefore, it had been rearranged by van Wal- raven et al. into a 

single numeric score [47]. The score was computed through a process of backward stepwise 

multivariate logistic regression, to determine independent association of each comorbidity group 

with death in hospital, then, modified into a scoring system that reflected the strength of each 

comorbidity group’s independent association with hospital death. One of the most innovative part 

of the DCCI and EVCI indexes is that both can be calculated at the time of intensive care unit (ICU) 
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admission and do not require the interpretation of laboratory and bedside clinical data. It is 

necessary underline that all scores are computed by using data from the first day of stay in ICU, and 

they are no more updated with the progress of the stay. This is for sure a limitation, but at the same 

time reflects what it is actually done in clinical practice, with the use of those measures as scores to 

quantify risk level of patient at admission in ICU, and not with the purpose of monitoring the 

evolution of patient during the stay itself. [45]  

These scoring systems have been useful to identify and divide patients into groups stratifying for 

confounders and comorbidities during the characterization study, in order to Characterize 

differences between subjects., dividing them into different groups. Having the opportunity to 

highlight whether particular pathologies or treatments may be indicative of a different response of 

the subject to the therapy. 

  



69 
 

 

3.2	Point	Process	Modeling		
	
Heart rate variability and baroreflex, are an important quantitative measure of cardiovascular 

regulation by the autonomic nervous system. From a mathematical point of view, baroreflex can be 

seen as a coefficient that quantify the influence of the blood pressure on the heart rate, 

physiologically is the homeostatic mechanism that helps to regulate blood pressure A simple 

method to estimate this gain, is an evaluation of it is assuming that the amplitude of the systoles 

has an effect on heart rate, with no feedback from the variation the heart period ∆RR to a variation 

of blood pressure ∆P. In this open loop system, the gain ca be measure doing the ratio between the 

spectral power of the heart rate variability and the spectral power of the systogram in the Low 

Frequency band (LF = 0.04 - 0.15 Hz):   

α = #!"#(%%)
!"#(')

[ms/mmHg] 

Exists also more sophisticated models that allows the computation of the baroreflex gain α, taking 

into account the feedbacks so using a closed loop. For example, baroreflex can be computed as the 

absolute value of the transfer function that describe the transfer of information from systole to 

heart period (Hts).  

α = |
A12

1 − A11
| 

 

This requires building a mathematical model that describe the dynamics between the two systems 

and the Point Process model is the perfect one. 
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 Figure 3.3.1 Same simplified model of HR and ABP control for systems identification presented above speaking about baroreflex but 
with the introduction of the point process model. 

The point process model was developed in order to estimate the R-R interval and the baroreflex 

gain, in a time-varying way. Considering the natural point-process structure of human heartbeats, 

whereas all previous models treated the R-R interval as a continuous-valued signal. The generation 

of normal heartbeats (R-wave events) is assumed to be related to previous and future heartbeat, so 

the probability of having an event is given by the history of past events. In fact, the duration of the 

increase or decrease in the R-R intervals depends on the cause of the change in parasympathetic 

and/or sympathetic input, as well as the response of the other components of the cardiovascular 

control circuit and everything is regulated at the higher level (CNS). [50]. The point process model 

allows us to analyze the RR series as punctual series of events, estimating the probability of having 

a beat (1) or not (0), the representation of a point process in time domain is shown in figure 3.3.2. 

 

 

Figure 3.3.2 Point process a binary stochastic process (0-1) that occurs in time or space. 

It’s possible to get a continuous estimation over time of the R-R interval, interpolating the data, 

keeping update the function and so the probability. In this way, the stochastic structure of heartbeat 
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intervals can be modelled as a history-dependent inverse Gaussian process. From it ,an explicit 

probability density can be derived, giving a new definitions of heart rate and heart rate variability. 

From a point process approach a precise probabilistic estimation of HR and HRV can be derived each 

moment in time: instantaneous R-R interval and heart rate standard deviations. 

Assuming that, given any R-wave the event uk and the length of the next R-R interval (times between 

threshold crossing), the process obeys an HDIG probability density	𝑓(𝑡|𝐻𝑢𝑘, q	), where t is any time 

satisfying t > uk,  Huk is the history of the R-R intervals up to uk and q	 is a vector of model 

parameters (estimated with local maximum likelihood). The model is defined as  

𝑓(𝑡|𝐻𝑢𝑘, q	) = 9
q𝑝 + 1	

2𝜋(𝑡 − 𝑢𝑘)(
=
)
*
𝑒𝑥𝑝 @−

1
2 −

q𝑝 + 1 − [𝑡 − 	𝑢𝑘 − 𝜇(𝐻𝑢𝑘, q	)]
*

𝜇(𝐻𝑢𝑘, q	)*(𝑡 − 𝑢𝑘)
B 

• 𝜇 RR(t) represents the instantaneous mean R-R parameter 

• 𝑢𝑘 = 𝐾+,𝑅 − 𝑏𝑒𝑎𝑡 

• 𝑤𝑘	 = 	𝑢𝑘 − 𝑢𝑘-)  is the kth R-R interval 

• 𝐻𝑢𝑘 is the History of the R-R intervals up to 𝑢𝑘 

• q𝑝 + 1 Is the scale parameter 

• 𝜇(𝐻𝑢𝑘, q) = 𝑚𝑒𝑎𝑛 = 	q	 +J Kq.𝑤𝑘 − 𝑗 + 1M
/

.0)
 

It represents the dependence of the R-R interval length on the recent history of parasympathetic 

and sympathetic inputs to the SA node, by modeling the mean as a linear function of the last p R-R 

intervals. If we assume that the series of elapsed times between beats (the R-R intervals) is modeled 

as independent, the equations simplifies to a renewal inverse Gaussian (RIG) model. The times 

between threshold crossings (R-R intervals), is well known to be an inverse Gaussian. The R-R 

interval probability model, together with the local maximum-likelihood method, provides an 

approach for estimating instantaneous mean R-R interval, heart rate, R-R interval standard 

deviation and heart rate standard deviation, from a time series of R-R intervals. The assessment of 

model goodness of fit is done by Kolmogorov-Smirnov (KS) tests based upon the time-rescaling 

theorem. 

 Time rescaled R-R intervals are defined by: 
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𝜏k = ∫ 𝜆12
12-)

(𝐻𝑡, qˆt) 

Where (𝐻𝑡, qˆt) is the probability Conditional Intensity Function (CIF), use to evaluate the goodness-

of-fit of the probabilistic heartbeat interval model. Given a point process specified by k discrete 

events, thanks to the rescaling theorem, is possible to define 𝜏k random variables with unit mean 

and exponentially distributed. [52] Using the further transformation zk = 1- exp (−𝜏k ), zk values are 

independent uniform random variables on the interval (0,1]. The KS test was constructed to assess 

agreement between the zk values, and the uniform probability density. The one to one 

transformation allows the comparison of the empirical quantiles of zk against the theoretical 

quantiles of a random variable distributed in the region [0,1]. The KS distance, measures the largest 

distance between the cumulative distribution function of the R-R intervals, transformed to the 

interval (0,1], and the cumulative distribution function of a uniform distribution on (0,1]. The smaller 

the KS distance, the closer is the agreement between the original heartbeat interval time series and 

the proposed model. Approximate independence of these transformed intervals suggest that the 

proposed model is highly consistent with the heartbeat interval series. Another method to evaluate 

model fitting properties is to look at the autocorrelation function of the rescaled times τk. Small 

values of the series of the autocorrelation function at all lags, would suggest that the τk values are 

uncorrelated and this would be consistent with their being independent.  

The simplest model that can be realized is the Monovariate Point Process model, where the history 

dependence of point process can be taken into account with an univariate p-order autoregressive 

model on 𝜇 RR(t) so : 

𝜇%%(t) 	= 𝑎3(𝑡) +J(𝑎4(𝑡)𝑅𝑅+-))
/

40)

 

 

The mean RR interval is assumed to be dependent on the last p RR interval values. The measure of 

μRR(t) is time-varying and is determined by the time-varying AR coefficients of the AR model ai(t). 

From the previous formula the instantaneous variance of the inverse Gaussian can be derived. The 

frequency response, fs is not the sampling frequency of the signal, but is the beat rate of R-R, 

sampled at the same frequency as the beat. 
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𝜎%%* (𝑡) = 	
𝜇(𝑡)%%(

𝜃(𝑡)  

 

𝐻%%(𝑤, 𝑡) = 	
1

| ∑ 𝑎(𝑡)4𝑧-4|506!"#$%&
*/

40)
 

 

Combining the described above formulas is possible to compute also the dynamic power spectrum: 

𝑃(𝑤, 𝑡) = 	𝜎(𝑡)%%* 𝐻(𝑤, 𝑡)%%  

 

The model can be extended using more complex probability structures, including non-linearities and 

taking into consideration other cardiovascular mechanisms that increases the complexity of the 

model. In fact, in order to describe the interactions between R-R interval (RR[t]) and systolic blood 

pressure (SBP[t]) series, its necessary to consider a bivariate system. The Bivariate point process 

model, so the autoregressive model will be transform as follow:  

𝜇%%(t) 	= 𝑎3(𝑡) +J(𝑎4(𝑡)𝑅𝑅+-))
/

40)

+J(𝑏4(𝑡)𝑆𝐴𝑃+-))
/

40)

 

SAP is the series of systolic values synchronized with the series of the R events (same things can be 

done with the diastolic pressure instead), the transfer function is : 

𝐻%%-'78(𝑓, 𝑡) = 	
∑ 𝑏𝑗(𝑡)𝑧-.|6!#$%&
9
.0)

|1 − ∑ 𝑎4(𝑡)𝑧-4|6!"#$%&
*/

40)
 

Power spectra of the SAP: 

𝑃'78(𝑓, 𝑡) = 	
𝜎'78* (𝑡)

|1 − ∑ 𝑏.(𝑡)𝑧-.|6!"#$%&
*9

.0)
 

 

Having the power spectra of R-R and SAP we can estimate the cross spectrum in the closed-loop 

system, assuming that, noise variance and the non-linear interactions in the feedforward and 
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feedback loops are sufficiently small. Given the baroreflex gain |𝐻%%-'78(𝑓, 𝑡)|, we can estimate 

the cross spectrum (between BP and RR) in the feedback loop	𝐶%%-'78(𝑓, 𝑡): 

𝐶%%-'78(𝑓, 𝑡) = 	𝐻%%-'78(𝑓, 𝑡)𝑃'78(𝑓, 𝑡) 

The coherence: 

Coh(𝑓, 𝑡) =
|	CRR − SAP(𝑓, 𝑡)|

`	PRR(𝑓, 𝑡)	PSAP(𝑓, 𝑡)
 

 

The frequency-dependent baroreflex gain, characterized by |HRR-SAP(f,t)|, represents the effect of 

BP on heartbeat, mediated by the neural autonomic reflexes. The effect of the interaction is 

graphically explained in figure 3.3.3 [50] : 

 

 

Figure 3.3.3 Simplified diagram of the close loop model of the cardiovascular system where the R-R is modulated by the BP ( so SAP) 
trough baroreflex feedback loop ( H12 is 𝐻!!"#$%(𝑓, 𝑡) ). In a more complex model is also possible to introduce the modulation of the 
R-R trough RSA. And BP with mechanical influences.   

The order of the AR model also determines the number of poles, or oscillations, in the frequency 

range. Modifying the AR coefficients is equivalent to changing the positions of the poles and 

reshaping the frequency response curve. With the time-varying AR coefficients estimated from the 

point-process filter, we may evaluate the dynamic frequency response of at different ranges (we 

are particularly interested in the LF and HF frequencies). In order to choose the right order of the 

AR model many experimental tests were performed, varying the order of the model for both the 

Monovariate and Bivariate model. Evaluating KS distance, number of points outside the 5% 

confidence intervals of KS distance and number of points outside the 5% confidence intervals of 

autocorrelation function (ACF).  Results respectively in figures. 
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Figure 3.3.4 Boxplot of different orders (9,10,11,12,13,14) for the bivariate model. Right: point outside the 5% confidence intervals of 
ACF. Middle: point outside the 5% confidence intervals of ACF. Middle: point outside the 5% confidence intervals of KS distance. 
Left: Ks distance 

 
Figure 3.3.5 Boxplot f different orders (2,3,4,5,6,7) for the bivariate model. Right: point outside the 5% confidence intervals of ACF. 
Middle: point outside the 5% confidence intervals of KS distance. Left: KS distance  

The final choice was a model order equal to 13 (6*2+1 for the Bivariate), it’s s trade-off between KS 

distance (increasing with the order of the model) and ACF (decreasing with the order of the model). 

Increasing the order over 13, the ACF is not decreasing anymore while KS start increasing. Moreover, 

a higher order of the model allows to obtain a time varying spectral content with a better resolution, 

this represents a key improvement, especially with evaluation of Power of Spectrum in Low 

Frequency band.  
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3.5	Feature	Engineering		

	

During the cohort selection process, the biggest problem regarding missing data was due to the very 

small number of subjects with waveform available in the required time window, the subjects with 

missing one were removed. Relatively to the laboratory measure, the problem of dealing with 

missing data is not dramatic thanks to the choice made to consider only the closest available value 

of the laboratory measure for each subject, next to the vasopressor administration. If some 

measures miss in some patients, the criteria imposed were the following:  

• If a feature has more than 5% of missing values, the feature was removed;  

• If a feature has less than 5% of missing values, the missing observation is substituted with 

men value obtained from the whole population 

3.5.1	Time	domain	features	
The time domain features extracted from the estimated from the time series extracted from vital 

sign: 

• AVNN: average of the NN intervals 

• SDNN: standard deviation of all NN intervals. 

• SDNNIDX: mean of the 5-min standard deviation of the NN intervals 

• SDANN: standard deviation of the averages of NN intervals in all 5 min segments of the entire 

recording.  

• SDSD: standard deviation of differences between adjacent NN intervals.  

• NN20: number of pairs of adjacent NN intervals differing by more than 20 ms in the entire 

recording (defined as the mean number of times an hour in which the change in successive 

normal sinus (NN) intervals exceeds 20 ms)   

• pNN20: NN20 count divided by the total number of all NN intervals.  

• NN50: number of pairs of adjacent NN intervals differing by more than 50 ms in the entire 

recording (defined as the mean number of times an hour in which the change in successive 

normal sinus (NN) intervals exceeds 50 ms)  

• pNN50: NN50 count divided by the total number of all NN intervals.  

• RMSSD: square root of the mean squared differences of successive NN intervals. 
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• TRI: integral of the density distribution (i.e. the number of all NN intervals) divided by the 

maximum of the density distribution.  

• TINN: baseline width of the distribution measured as a base of a triangle, approximating the 

NN interval distribution.  

Time domain features are extracted not only from the tachogram but also from the time series, 

corresponding to values of systolic arterial pressure, diastolic arterial pressure, mean arterial 

pressure, pulse pressure and pulse transit time.  

3.5.2	Spectral	domain	features	
 

The frequency domain features were extracted from the Power Spectral Density (PSD) of a time 

series in 5 minutes non-overlapping stationary windows. Estimated with the Yule-Walker method 

and after averaging in order to obtain a single value for each measure. The indices computed in this 

way were:  

• Very Low Frequency (VLF) power: spectral power in very low frequency range (from 0.0033 

Hz to 0.04 Hz).  

• Low Frequency (LF) power: spectral power in low frequency range (from 0.04 Hz to 0.15 Hz).  

• High Frequency (HF) power: spectral power in high frequency range (from 0.15 Hz to 0.45 

Hz).  

• Total power (TOTPWR): spectral power in the entire range of frequencies.  

• Normalized Low Frequency (LFn) power: LF normalized by (TOT- PWR - VLF), which is 

equivalent to (LF + HF).  

• Normalized High Frequency (HFn) power: HF normalized by (TOT- PWR - VLF), which is 

equivalent to (LF + HF).  

• Sympatho-vagal balance (LF/HF) power: ratio between LF and HF.  

• Spectral slope (αspect): slope of the linear interpolation of the spectrum in a log-log scale.  
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3.5.3	Non-linear	domain	features	
 

• SD1: standard deviation of the second principal component of the RR values distribution in 

the Poincaré plot (RRi vs RRi+1 space), representing the short-term variability.  

• SD2: standard deviation of the first principal component of the RR values distribution in the 

Poincaré plot (RRi vs RRi+1 space), representing the long-term variability.  

• SD1/SD2: ratio between SD1 and SD2 measures the unpredictability of the RR time series.  

• Correlation Dimension (CD): measure of chaoticity and non-linear dynamics of RR time 

series. 

• Hurst exponent (H): It is a is a dimensionless estimator for the self-similarity of a time series 

that measure the long-term memory of a time series.  It quantifies the relative tendency of 

a time series either to regress strongly to the mean or to cluster in a direction.[53]. The value 

describes the nature of the process: 

0< H < 0.5 antipersistence (negative correlation) 

0.5 < H < 1 persistence (positive correlation) 

H = 0.5 random walk 

• Detrended fluctuation analysis (DFA):  

DFA is a simple but very efficient mathematical method used to investigate the power law 

of long-term correlation of nonstationary time series. 

𝐹𝑛 = b
1
𝑁J[𝑦(𝑘) − 𝑦(𝑘):]*

;

<0)

#

 

𝑦(𝑘):is the regression line of a time series 𝑋+depolarized from its mean values and N is the 

number of elements in the selected time window. The process is then repeated over a range 

of different sizes and the resulting fluctuation can be approximated as  

F (n) ≈ nαDF A Where αDFA is the key scaling exponent that can be extracted as the slope 

of the regression line in a log-log scale of F(n). [54] Depending on the values that this 

measure assumes, the following characteristics about series self-correlation can be 

highlighted:  

– αDFA ≈ )
*
 : White noise behavior;  
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– αDF A ≈ 1: 1/f noise behavior; 

– αDFA ≈ (
*
  : Brownian noise behavior;  

– αDFA < )
*
 : Anti-correlated;   

– αDFA > )
*
 : Correlated.  

• Approximate and Sample Entropy (ApEn, SampEn): Are methods for entropy measures. 

ApEn quantifies the similarity probability of patterns of length m and m + 1 . With 

robustness against noise and its capability to detect complexity changes, using finite size 

datasets using similarity threshold r, is defined as a fraction of the standard deviation of the 

input data. ApEn is also scale-independent. SampEn is a similar statistic, it also measures 

the probability of subsequences, being close at two lengths m and m + 1 within tolerance 

r. However, SampEn does not include self–comparisons and exhibits greater consistency 

than ApEn.[55] 

• First Lyapunov exponent: it is a measure of chaoticity of the signal, a positive value indicates 

that the system has a highly sensitive dependence on initial conditions and is a common 

signature of chaos [55] 

3.5.4	Other	features	
 

Thanks to the point process model approach, dynamic baroreflex gain, maximum and average 

coherence were extracted in LF and HF bands. All the first four statistical moments, first, second and 

third quartile and the angular coefficient of the linear regression in time were also computed.  
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3.6	Characterization	methods	
The first part of the study focuses on characterization analysis, performed to identify differences 

before and after vasopressor administration. To perform the characterization, distinct types of 

analysis were applied:  

• First of all, using the Lilliefors test, the normality of the population was verified. Lilliefors test 

is a two-sided goodness-of-fit test based on that of Kolmogorov-Smirnov. It is used to test 

the null hypothesis that come from a normally distributed population. It does not specify the 

mean and the standard deviation of the distribution but if the null hypothesis H0 is rejected 

you can conclude that the data distribution is not normal [59] 

• The characterization was performed using the Wilcoxon Signed Rank Test a non-parametric 

statistical paired hypothesis test, used to compare two related samples, or repeated 

measurements on a single sample, to assess whether their population mean ranks differ. 

Generally, it is used as an alternative to the paired Student’s t-test, when the distribution of 

the difference between two samples' when the distribution of differences is not normal. 

• A primary analysis was performed in order to assess if the values of the extracted features 

significantly changed, after the administration of vasopressor, with respect to the values of 

the before segment. Considering a cohort composed by 23 subjects, with no mechanical 

ventilation or sedation, due to the non-normality of the population, the Wilcoxon Signed 

Rank test was applied.  

• A secondary analysis was performed extending the cohort to 123 subjects, considering also 

mechanically ventilated and sedated patients. The purpose is to verify whether the changes, 

before and after vasopressor administration, are maintained despite the action of 

treatments that heavily affect the autonomic system. Afterwards, since an abnormal systolic 

pressure behavior was noted for 35 out of 123 subjects, a further division was then made 

dividing between responding and non-responding subjects. The main role of a vasopressor 

drug id to rise blood pressure. According to this definition, the division was made looking at 

the difference between the mean systolic value before and after the administration. A 

subject was classified as responding if : AVSS post – AVSS pre >0 ( rise in blood pressure after 

vasopressor injection) while if AVSS post – AVSS pre <0 (decrease in blood pressure) 

classified as non-responding subject. A stratified analysis was then carried out using again 

Wilcoxon Signed Rank Test comparing the features of the post and pre segment inside the 
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same population while the Wilcoxon Rank Sum Test was used to compare the two 

population. 

• Dealing with lactate, another stratification was performed. Starting from123 patients, a 

subjects was considered a “low level” subject if it undergoes a decrease in lactate level 

passing from an abnormal value ( > 2 mmol/L) to a normal one(< 2 mmol/L) or if belongs to 

those who kept lactate below the threshold both before and after administration. Instead 

“High level” population is composed by the subjects who maintain an abnormal lactate or 

those who switch from normal to abnormal lactate after administration. 

• Since the considered subjects are affected by different kind of pathologies, a stratified 

analysis was performed, starting from the 123 cohort, to verify if a particular condition to 

which the patient is subjected significantly influences the response to vasopressor therapy. 

This stratification was not done to provide some kind of characterization of certain 

pathologies but, to make sure whether a specific result, obtained on the whole population, 

was due to a certain morbidity or due to the action of the vasopressor drug. The pathologies 

or administrations considered are as follows:  

1. Ventilation  

2. Sedation (Propofol) 

3. Sepsis 

4. Liver disease 

5. Hypotension 

6. Diabetes 

All the administration where considered looking around the vasopressor administration 

while the pathologies are taken from the diagnosis at the admission in the ICU. 

• To look if there is a nonrandom association between the subdivision in responding and non-

responding subjects with relative subgroups and again with high and low lactate level and 

relative subgroups. Fisher’s exact test was computed. Fisher’s exact test is another non-

parametric method for small sample size used to determine if there are non-random 

associations between the variables. H=0 for all. H = 0 indicate that fisher’s test does not 

reject the null hypothesis of no nonrandom association between the categorical variables.  
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• Initially the Wilcoxon Rank Sum Test for non-doubled pair was performed to detect the 

differences intra groups and with respect to the control ones, while afterwards the Wilcoxon 

Signed Rank was used to find the difference into groups. 

• The last stratification was then made using the same pathologies and treatments considering 

first the population of subjects classified as non-responding and then the population of 

responding. 

3.7	Correlation	study 

A correlation study was carried out to analyze whether there is a relationship between the features 

extracted from waveforms and the lactate value, in order to verify how and how much these 

variables vary together.  

The method used is the Spearman's correlation coefficient. A non-parametric method that 

measures the degree of relationship between two variables. Unlike Pearson's linear correlation 

coefficient (used for normally distributed data), Spearman's coefficient does not measure a linear 

relationship. A generalization of Spearman's coefficient is useful in situations where you want to 

verify that the observations take place in a particular order, for example when you want to verify 

that if a variable A grows, variable B grows too, i.e. that the trend of the values of two different 

variables (A and B) is somehow associated. If this relationship is significant, it may be useful to 

represent the link between A and B with an interpolating function. 

At first, was analyzed the correlation between the indices extracted from waveforms and lactate 

measurements prior to vasopressor administration. As initial lactate level was considered for each 

subject the last lactate measure in a window of 12 hours before the administration, then, the same 

thing, was performed using the first available measure in a 12 hours window after the 

administration (final lactate). The number of subjects with both measurements available are 77. 

Same procedure was applied using the features extracted from the post segment. Was also analyzed 

the correlation between changes both in lactate and features of waveforms. The same test was 

repeated again dividing the population, as we did in the characterization part, between responding 

and non-responding subjects (looking at blood pressure changes) and between subjects with normal 

or abnormal lactate.  
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3.8	Classification	 
Predictive models can be subdivided into two main categories: regression models and classification 

models. The purpose of explanatory models is to functionally identify a possible relationship 

between a dependent variable and a set of independent attributes. The last part of this study aims 

to predict if the lactate value will be normal or abnormal 12 hour after the vasopressor 

administration. Machine learning algorithms adopted to perform this task belongs to the class of 

supervised classification problem. Particularly this is a binary classification problem because exists 

only two classes in the target variable. Abnormal lactate (>2 mmol/L) is represented with 1 and 

normal lactate (<= 2 mmol/L) with a 0. Whereas this is a classification framework, some important 

concepts should be introduced before going forward with description of the algorithms. Several 

combinations have been tested, trying to classify with a different combination of features trying to 

predict lactate level 12 hours after the administration. The difficulty of the prediction is not only 

due to the time distance between the moment of features extraction were extracted and the lactate 

measure but also the difference in the time instant in which the lactate value was measured, due to 

the amplitude of the considered time window. Moreover, trace the lactate kinetics it's a very 

complex problem in itself because changes in lactate level are very quickly. 

 

3.8.1	Features	selection	algorithms		

A feature selection pre-process, also called feature reduction, in necessary to eliminate from the 

dataset a subset of variables which are not deemed relevant for the purpose of the data mining 

activities. One of the most critical aspects in a learning process is the choice of the combination of 

predictive variables more suited to accurately explain the investigated phenomenon.  

Moreover, feature reduction has several potential advantages, the models generated after the 

elimination from the dataset of uninfluential attributes are often more accurate and easier to 

understand, it reduces overfitting and also, speed up the training process.  

Feature selection methods can be classified into three main categories: filter methods, wrapper 

methods and embedded methods.  
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• Logistic	Regression	 

Logistic regression is a statistical standard statistical technique addressing binary classification 

problems. By means of a proper transformation converting binary classification problems can be 

converted into linear regression ones. We are using logistic regression as a classifier, with the 

purpose of obtaining a decision hyperplane that separates different classes. The logistic regression 

model postulates that the posterior probability P(y|x) of the response variable conditioned on the 

vector x follows a logistic function so: 

𝑃(𝑦 = 0|𝑥) = 	 )
)=6"'(

  

𝑃(𝑦 = 1|𝑥) = 	 6"'(

)=6"'(
  

The standard logistic function is a sigmoid function, the ratio between the conditional probabilities 

of the two classes depends linearly on the predictive variables. The binary classification problem is 

traced back to the identification of a linear regression model between the dependent variable z and 

the original explanatory attributes, the w coefficients are computed using iterative methods, usually 

by minimizing the sum of logarithms of predicted probabilities to maximize the likelihood: 

𝑧 =
𝑃(𝑦 = 0|𝑥)
𝑃(𝑦 = 1|𝑥) 

When we use logistic regression for feature selection each feature is feed to a logistic regression 

model and if the weight of that feature was significantly different from zero, the variable was 

included. This process was repeated for all available features.  

 

• Principal	Component	Analysis	(PCA)	 

Principal Component Analysis (PCA) is a classical technique in statistical data analysis used for 

feature extraction and data reduction, aiming at explaining observed signals as a linear combination 

of orthogonal principal components. Given a set of multivariate measurements, the purpose is to 

find a smaller set of variables with less redundancy, that would give as good representation as 

possible. The redundancy is measured by correlations between data elements. Generally speaking, 
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the purpose of this method is to obtain a projective transformation that replaces a subset of the 

original numerical attributes with a lower number of new attributes obtained as their linear 

combination, without this change causing a loss of information. Before applying the principal 

component method, it is necessary to standardize the data, so as to obtain, for all the attributes, 

the same range of values, usually represented by the interval [−1,1]. The mean of each attribute is 

made to zero, the applied transformation is:   

𝑋4.∼ =	𝑥4. −	
1
𝑚J𝑋4.

?

40)

 

Let X denote the matrix resulting from applying the transformation to the original data, and V = XʹX 

is the covariance matrix of the attribute Starting from the n attributes in the original dataset, 

represented by the matrix X, the principal component method derives n orthogonal vectors, namely 

the principal components, which constitute a new basis of the space Rn. Principal components are 

better suited than the original attributes to explain fluctuations in the data, in the sense that usually 

a subset consisting of q principal components, with q < n, with almost the same information of the 

original dataset. As a consequence, the original data are projected into a lower-dimensional space 

of dimension q having the same explanatory capability. Principal components are generated by an 

iterative algorithm. The interpretation of the principal components may be obtained from the 

coefficients of the vector wj = uj which express their relationship with the original attributes. To this 

end, notice that the principal component ph assumes the form  

ph =uh1a1 +uh2a2 +···+uhnan. 

The coefficient uhj can be therefore interpreted as the weight of the attribute aj in determining the 

component ph. The greater the absolute value of uhj is, the more the component ph is characterized 

by the attribute aj. At the same time, var(ph) = λh represents a measure of the proportion of total 

variance explained by the principal component ph. For this reason, the index  

𝐼9 =
λ1	 + λ2	 +··· +λq	
λ1	 + λ2	 +··· +λn

 

expresses the percentage of total variance explained by the first q principal components and 

provides an indication of the amount of information preserved by the first q components. In order 
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to determine the number of principal components to be appropriately used, it is possible to go on 

until the level of overall importance Iq of the considered components exceeds a threshold Imin 

deemed reasonable, in relation to the properties of the dataset. The number of principal component 

is therefore determine by Iq >Imin [VERCELLIS].  

• Forward	selection	 

Forward selection algorithm starts with a null model and then iteratively adds one feature at time 

and after the evaluation of a criterion function, for any extracted feature, includes the one that 

obtain the best results. This process is repeated until no further improvements in the chosen 

criterion happen  

• LASSO 

LASSO Least Absolute Shrinkage and Selection Operator is a solution to prevent over-fitting using a 

logistic regression model, considering a norm penalty l1 on the regression weight values. LASSO is 

an algorithm that can be used both for feature selection and classification, was originally introduced 

in the context of least squares, and it can be instructive to consider this case first, since it illustrates 

many of lasso’s properties in a straightforward setting. Consider a sample consisting of N cases, each 

of which consists of p covariates and a single outcome. Let y@be the outcome and X@ =

(x), x*, … . . xA)B be the covariate vector for the ithcase. Then the objective of lasso is to solve 

𝑚𝑖𝑛C)C ={J (𝑦4 − 𝛽3 − 𝑥4D𝛽)*}		subject	to	 ∑ |𝛽| ≤ 𝑡/
.0)

;

40)
 

where t > 0 is a tuning parameter and ||β||/ is the p-norm of the coefficients.[57] 

3.8.2	Cross	validation	
 
Cross-validation is a statistical method used to estimate the skill of machine learning models. 

Learning the parameters of a prediction function and testing it on the same data is a methodological 

mistake that lead to overfitting. Splitting the data set into a training set and validation set can be an 

easy solution to solve this overfitting problem. If desired, another split obtaining a test set can be 

done to estimate the true error of the selected hypothesis. To do cross-validation, we partition our 

data into a number of disjoint folds. In general, k fold cross validation can be done with any number 
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starting from two to the number of data points (called leave-one-out-cross-validation). Starting 

form n samples, doing k-fold cross validation, n/k samples are placed into k disjoint folds. We train 

our model with all folds but one, validate on the fold that was left out, and repeat for all folds. In 

the end we average the validation error, and this gives us an estimate of the true error. Cross 

validation can also be used to find parameter to optimize the regularization parameters. 

 

3.8.3	Classification	algorithms	
 

Classification is one of the main tasks of machine learning problems, requires the use of machine 

learning algorithms that learn how to assign a predefined class label based on training examples. In 

this specific case, using mainly the features extracted from the waveforms before and after the 

vasopressor administration, to be able to predict if the lactate level will be abnormal after 12 hours 

or not. 

Exits many types of classification problems, we talk about binary classification problem for those 

tasks that have two class labels, in this case 1 for abnormal lactate level (>2 mmol/L) and 0 for 

normal lactate level (<= 2 mmol/L). 

It is common to model a binary classification task with a model that predicts a Bernoulli probability 

distribution for each example. 

The Bernoulli distribution is a discrete probability distribution that covers a case where an event will 

have a binary outcome as either a 0 or 1. For classification, this means that the model predicts a 

probability of an example belonging to class 1, or the abnormal state. 

Popular algorithms that can be used for binary classification include all the algorithms used in this 

study: 

• Logistic Regression 

• k-Nearest Neighbors 

• Decision Trees 

• Support Vector Machine 

• Naive Bayes 
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• Logistic	Regression 

As explained before other than feature selection process, the logistic regression might be also used 

as classification algorithm, by inserting all the features of the set and fitting a multivariate logistic 

regression with the purpose of obtaining a decision hyperplane that separates different classes.  

• K-Nearest	Neighbors 

A k-nearest neighbors’ classifier is an example of a lazy learning method due to the fact that 

generalization of the training data is, in theory, delayed until a query is made to the system. More 

specifically, an instance learning method, because the algorithm involves comparing new instances 

with instances in the training set. Keeping the labelled training set, the k-NN classifier will label a 

new point with the label of the majority of the k points in the training set that are closer to the new 

point. To implement a k-NN classifier, we need to start by defining a distance function, Minkowski 

distance for continuous numerical features and Hamming distance for categorical features. When 

data increases k-NN classifier is an impractical choice in environments where predictions need to be 

made rapidly. Moreover, there are faster algorithms that can produce more accurate classification 

and regression results. 

• Support	Vector	Machines 

Support vector machines (SVM) are a family of separation methods for classification and regression 

developed in the context of statistical learning theory. A margin classifier is a classifier that provides 

a measure of the distance between the frontier and the points closest to it. This is the margin of the 

classifier. A maximum margin classifier is a classifier that maximizes this distance. With logistic 

regression, we can approximate this using regularization, but this requires modifying the loss 

function to include the regularization term. A better option is to make margin maximization an 

explicit goal for our loss function. Figure.3.8.3.1 shows the margin, which is the distance between 

the frontier and the examples closest to it. These vectors are called the support vectors. To explicitly 

maximize the margin, we can consider the signed distance between a vector and the decision 

hyperplane:  
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𝑟 = E
→+ 	𝑥 + 𝑤3

| |
F
→| |

 

 

 

 

The goal is to find the hyperplane that maximizes the minimum distance to points being classified. 

The value of r is positive on one side of the decision hyperplane and negative on the other, the 

value. Normalize distance is invariant to scaling: the problem of maximizing the margin is equivalent 

to the problem of minimizing the norm of w increasing the distance between the discriminant and 

the closest points. This is thus a constraint optimization problem. Usually the dataset is linearly non 

separable, it is necessary to relax the constraints by replacing them with weaker conditions which 

allow for the presence of possible misclassification errors, and to modify the objective function of 

the optimization problem. This can be done by introducing a new set of slack variables di , i ∈ M, 

which measure the positive differences between the values of the misclassified examples on the 

vertical axis and the ordinate values along the canonical hyperplane that defines the region 

associated with the class value yi.  

𝑚𝑖𝑛𝒘,I,J =	
1
2 ~
|𝑤*|~ + 𝜆J𝑑4

?

40)

	

	

�𝑦4
(𝒘K𝒙4 − 𝑏) ≥ 1 − 𝑑4 					𝑖 ∈ 𝑀

𝑑4 ≥ 0							𝑖	 ∈ 𝑀 	

	

One method for solving constraint optimization problems is to use Lagrange multipliers. Often 

dealing with non-linearly separable dataset we have to move away from a 2d view of the data to a 

higher dimension. In such cases, one may resort to mappings of the attributes which allow one to 

obtain linearly separable datasets in the transformed space, which is called the feature space. m 

points in a general position in the n-dimensional space can be linearly separated if m ≤ n + 1, the VC 

dimension of the class of hyperplanes is n + 1, so that the number of possible linear separations is 

2m. Fortunately, there exists a wide class of mappings which can be evaluated in a very efficient 

Figure 3.8.3.1Margin, is the distance to the point that 
is closest to the frontier 
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way, consisting of kernel functions, for which the mapping of the original observations into the 

feature space is not explicitly computed.  

• Naïve	Bayes	Classifier 

Naïve Bayes classifier are a family of probabilistic classifier based on Bayes’ theorem: 

P(C = c|X = x) =
P(C = c)P(X = x|C = c)

P(X = x)  

P(C=c|X=x) is the probability that a given observation c belongs to a specific target class x, called 

posterior probability, while the opposite, P(X=x|C=c), is called conditional probability. P(X=x) and 

P(C=c) are prior probabilities, sowing the likelihood of an outcome in a given dataset. 

The Bayes classifier is ideal in the sense that it minimizes the probability of misclassifying. This Naïve 

Bayes classifier is so called because of the assumption that all features are conditionally 

independent on the the target class. This hypothesis allows us to write  

𝑃(𝑋 = 𝑥	|	𝐶 = 𝑐) =+𝑃(𝑥*|𝑐)
+

,-.

 

In general, this is not true. However, since we are not concerned with the absolute probability values 

but merely with finding the class that maximizes these values, the Naïve Bayes classifier tends to 

work rather well. In addition, it is very easy to apply. For a Naïve Bayes classifier we would only need 

to find the probability distribution of each feature given the class. We would only need to compute 

the proportions of features belonging to the different classes. The Naïve Bayes classifier can be 

written as: 

CLMïOP	RMSPT = argmaxU∈{3,),...,U}	 ln P(CZ) +JlnP(X@|C[)
L

\0)

 

 

• Decision	Trees 

Classification trees are a wide used method for both classification and regression, due to their 

simplicity, easy interpretability and robustness to outliers. The development of a classification tree 
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corresponds to the training phase of the model and is regulated by a recursive procedure of heuristic 

nature, based on a divide-and-conquer partitioning scheme referred to as top-down induction of 

decision trees, creating a model that is able to predict the value of a target variable by learning 

simple decision rules inferred from the data features. It is also necessary to set a metrics that 

evaluates the impudicity of split data and minimize this metric at each node. For each node of the 

tree it is necessary to specify the criteria used to identify the optimal rule for splitting the 

observations and for creating the descendant nodes. Usually, both choices are performed by 

calculating an evaluation function, for each attribute and for each possible partition, which provides 

a heterogeneity measure in the values of the target class between the examples belonging to the 

parent node and those belonging to the descendants. It is necessary to maximize the evaluation 

function, which provides a heterogeneity measure in the values of the target class between the 

examples belonging to the parent node and those belonging to the descendants. Heterogeneity 

indices satisfy these properties, also referred to as impurity or inhomogeneity measures. The most 

popular are the misclassification index, the entropy index and the Gini index. At the end of the 

procedure, when no tree node can be further subdivided, each leaf node is labeled with the value 

of the class to which the majority of the observations in the node belong, according to a criterion 

called majority voting. It is necessary to decide a stopping criterion to establish at each node 

whether the development should be continued recursively, or stopped, considering the current 

node as a leaf. Finally, it is appropriate to apply a few pruning criteria, first to avoid excessive growth 

of the tree during the development phase (pre-pruning), and then to reduce the number of nodes 

after the tree has been generated (post-pruning ). Starting from a training dataset it is possible to 

construct an exponential number of distinct classification trees. The main problems of decision trees 

are that, building it, requires algorithms capable of determining an optimal choice at each node and 

also are prone to overfitting, especially when the tree is particularly deep. 

 Ideally, we would like to minimize both error due to bias and error due to variance, random forests 

mitigate this problem well. A random forest is simply a collection of decision trees whose results are 

aggregated into one final result. Their ability to limit overfitting without substantially increasing error 

due to bias is why they are such powerful models. Random forest or random decision forest are an 

ensemble learning method for classification, regression and other tasks that operate by constructing 

a multitude of decision trees at training time and outputting the class that is the mode of the classes 

(classification) or mean prediction (regression) of the individual trees. Those algorithms correct for 
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decision trees' habit of overfitting to their training set. Is difficult to interpret but is able to cellulate 

some feature importance. 

Another technique really popular derived from decision trees, that have been used a lot in this thesis 

project is gradient boosting. Boosting is a sequential technique which works on the principle of an 

ensemble. It combines a set of weak learners and delivers improved prediction accuracy. At any 

instant t, the model outcomes are weighed based on the outcomes of previous instant t-1. The 

outcomes predicted correctly are given a lower weight and the ones miss-classified are weighted 

higher. With the ensemble strategy, a “strong” predictive model is constructed by combining simple 

(“weak”) trees. This is known to lower the risk of overfitting that would arise when having a single 

(highly complex) tree. With respect to other tree-based ensemble algorithms, XGBOOST can handle 

missing values by defining, for each node, a default direction to be followed in case a missing value 

is present in that node. 

• Confusion	matrices	and	ROC	curves 

After the construction and selection of a specific model using the greed search for parameter 

optimization, in order to test the performance of the considered binary classifier the used statistical 

measures of performance. The confusion matrix is one of the accuracy measurement methods that 

not only consider the number of accurate predictions, but also the type of error committed. should 

be accounted for, rows correspond to the observed values and whose columns are associated with 

the values predicted using a classification model, as shown in figure.3.8.3.2. 

 

 

 

 



93 
 

 
Figure 3.8.3.2 Confusion matrix 

 

The elements of the confusion matrix have the following meanings: 

1. True positive: the example belongs to class 1 and was predicted to belong to class 1.  

2. False positive: the example belongs to class 0 and was predicted to belong to class 1. 

 3. True negative: the example belongs to class 0 and was predicted to belong to class 0.  

4. False negative: the example belongs to class 1 and was predicted to belong to class 0.  

The different possible error measures are: 

• Accuracy (Ac)of the classifier is the proportion of correctly classified observations with respect to 

the total. 

• Sensitivity (Se), also called recall or true positive rate. Measures the proportion of correctly 

classified positive observations with respect to the total number of positive observations defined 

as: 

Se = TP (3.41) TP +FN 

• Specificity (Spe), also called true negative rate, is the proportion of correctly classified negative 

observations with respect to the total number of negative observations defined as: 

Spe = TN (3.42) TN +FP 

Those gives us another useful measure of the performance of a classifier, the F1 score, which is the 

harmonic mean of precision and recall:  
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𝐹1 =
2	 × 	true	positives

2	 × 	true	positives	 + 	f	alse	positives	 + 	f	alse	negatives	 

 

𝐹1 =
2	precision	 × 	recall	
precision	 + 	recall  

Sensitivity, therefore, quantifies the avoidance of false negative and specificity does the same for 

false positives. For any test, there is usually a trade-off between the measures, this trade-off can be 

represented graphically using a receiver operating characteristic curve (ROC) plotted by computing 

the fraction of true positives and false positives at different score thresholds. The ROC chart visually 

expresses the information content of a sequence of con- fusion matrices and allow the ideal trade-

off between the number of correctly classified positive observations and the number of incorrectly 

classified negative observations to be assessed. The point (0,1) represents the ideal classifier, which 

makes no prediction error since its proportion of false positives is null (fp = 0) and its proportion of 

true positives is maximum (tp = 1). The point (0,0) corresponds to a classifier that predicts the class 

{−1} for all the observations, while the point (1,1) corresponds to a classifier predicting the class {1} 

for all the observations. [60]A classifier performs all the better the greater the fraction of true 

positives relative to the false positives for different threshold levels. In other words, the larger the 

area below the ROC curve the better the classifier’s performance 
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Chapter	4		

Results		
4.1	Characterization	Study		
 
As mentioned earlier, according to literature, the main role of vasopressor is to activate adrenergic 

receptor in order to increase blood pressure, acting as vasoconstrictors. Despite that, they might 

induce several effects as increasing or not CO, effecting the contractility or heart rate or the preload.  

Many experiments were made previously to evaluate and compare the effects of physiologic and 

pharmacologic sympathetic stimulation with vasopressor infusion. As mentioned above, the dose 

of vasopressor used, but also the titration and the duration of the administration, are able to 

generate different effects on the autonomic system.  

First of all, the cohort used in this study, after performing Lilliefors's statistical test, resulted to be 

non-normally distributed.  

Afterwards the Wilcoxon Signed Rank Test was performed to analyze the differences between the 

features computed respectively on the segment extracted before and after the vasopressor 

administration in a cohort composed by 23 non-ventilated and non-sedated subjects. This choice 

has been made in order to obtain, in the first place, results not influenced by other administrations 

and treatments. In order to describe only the changes induced only by the vasopressor to the 

cardiovascular system. As expected, blood pressure is significant high after vasopressor 

administration, with a median increase of the Systolic Arterial Pressure of ∆AVSS = 14,91310725 

mmHg (pValue 0,002603199). A significantly increase is observed also in Diastolic Pressure 

∆AVDD =	3,778764871 (pValue 0,000915678). Even if is not significant, it’s interesting to notice 

that AVNN is increasing too ( ∆AVNN =	27,19368858, pValue 0,059331739) so the heart rate is 

decreasing. Several temporal indexes accounting for variability were found to be higher (SDNN, 

SDNNIDX, NN20, pNN20, RMSSD, logRMSSD, SD, SD1, SD2) after the administration even if not 

significant. 

Investigating the features obtained from the RR spectrum, there is a significant increase in VLF and 

LF. Median ∆VLF = 0,033250395 pValue0,033250395, ∆LF =0,084449547 pValue0,038619639. 
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Figure 4.1.2 Left: boxplot of the median Gain12 (feedback) between the before and after administration. Right: boxplot of the median 
Gain21(feedforward) between the before and after administration in non-sedated, non-ventilated patients 

Investigating the features extracted from the BP spectrum, no significant differences were found 

between the pre and post administration segment, in general SS LF are increasing while SS HF 

decreasing, especially, DD LF and DD HF behave the opposite way.  

Looking the feature computed using Point process model, Gain12 represents the feedback 

mechanism of the baroreflex and is decreasing ∆GAIN12 =-30,079963	p	value	0,135356. Hence 

the feedforward gain G21, is significantly increasing ∆GAIN21 =0,000373366	 pValue= 

0,204330247.		

Total Cross spectrum and coherence were found to increase even if not significantly increase in 

median and average but with a significant increase standard deviation of both of them: 

∆BivaCRTOT	std =1952,69445 pValue(0,02080324) ∆𝐶hoTOT	std =0,01132959 pValue 

0,03861964) . 
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Figure 41.2 Left: boxplot of the median Gain12 (feedback) between the before and after administration. Right: boxplot of the median 
Gain21(feedforward) between the before and after administration in non-sedated, non-ventilated patients 

Regarding non-linear features sample, entropy is increasing while the Hurst exponent significantly 

decrease (pValue = -0,000202), this might indicate an improvement in the subject's condition even 

if, as it is possible to see in Figure 4.3, H value is still >0.5 for most of the subjects before and after 

the administration. 

 
Figure 4.1.3 Left: boxplot of the Hurst exponent between the before and after administration in non- sedated, non-ventilated patients 

The same test was repeated on the entire population of 123 subjects, thus including those who were 

sedated and ventilated. As specified above, the purpose is to verify whether the changes found, 

before and after vasopressor administration, are maintained in the whole population despite the 

action of treatments that heavily affect the autonomic system. The patients considered are sedated 

and ventilated for the whole-time window considered. In addition, being in intensive care, they are 

subjected to many treatments and affected by different pathologies. We can consider all the 

different pathologies, treatments, administrations as included in the baseline and see if the action 

of the vasopressor drug is still trackable using the features extracted from the waveforms. 
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The difference in the pressure value before and after administration remains significant, in addition 

the AVNN also becomes significant (pValue 0,001955035) with a mean increase of 18,63541569, 

while VLFs and LFs lose their significance and temporal indexes that account for variability are now 

decreasing. 

 
Figure 4.1.4 Left: boxplot of the SAP between the before and after administration. Right: boxplot of RR LF to HF between the before 
and after administration in the hole cohort 

No significant change can be seen in this case looking at the simpatho-vagal balance. 

Computing the Wilcoxon Rank Sum Test, comparing non ventilated and ventilated patients 

respectively before and after the vasopressor administration, the behavior in the LF and HF band 

results to be opposite. 

 
Figure 4.1.5 Starting from the left boxplot of the RR HF nu before administration for non-ventilated subjects then for ventilated again 
RR HF nu for non-ventilated subjects after administration and again for ventilated 



99 
 

 
Figure4.1.6 Starting from the left boxplot of the RR LF nu before administration for non-ventilated subjects then for ventilated, again 
RR LF nu for non-ventilated subjects after administration and again for ventilated 

Looking at time varying frequency components, other significant results are found, Gain12 is still 

decreasing with significant slope both in low frequency, high frequency band and the total 

(∆Gain12TOT]^_AP = −0,0044094, pValue = 0,00967801). Looking at the G21 gain, not only the 

slopes are significant, but also the mean and median value 

((∆Gain21TOT̀ Pa@Mb =0,00026204, pValue = 	0,00205729), showing a significant increase. Cross 

spectrum is also significant ( average, slope and standard deviation) while coherence is now 

significative only in LF band (∆bivaCRTOTcOd =

113,100548	pValue	0,01718712, ∆	CohLF]^_AP =-6,159E-06 0,02828014) 

It was noticed that, about 35 patients out of 123, instead of a decrease in the heart rate are 

experiencing a significative increase. Therefore, the Wilcoxon Signed Rank Test was performed on 

the whole cohort dividing the population in two groups: non-responding subjects (35) and 

responding subjects (88).  

Many significant differences were noticed between those two groups. 

The Wilcoxon Signed Rank Test was performed again inter groups while the Wilcoxon Rank sum 

intra groups. In responding subjects, as they were defined, AVSS significantly increase 

(∆AVSS=16,6517317 pValue 8,85746E-05),but also AVDD (∆AVDD= 6,103157939, pValue 2,27714E-

13) and AVNN (∆AVNN= 10,15173416, pValue 0,014421754) while G12 is still decreasing (∆G12 tot 

median = -30,079963 pValue 0,1353569). 
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In non-responding subjects ∆AVSS=-8,853826525 (pValue 2,47703E-07), AVDD decreases too, 

(∆AVNN= -4,19173743, pValue=0,000937681), AVNN (∆AVNN=12,24638888, pValue 0,055319323) 

still increasing non significantly, the baroreflex gain G12 remains pretty much the same.  

Regarding RR and ABP spectra are still hard to interpret since different subjects show contrasting 

trends, in general responding subjects has a higher HF and LF activation also before the 

vasopressor administration, after it LF remains almost equal while HF decrease. For non -

responding subjects LF are always very low while HF seems to increase a little after the 

administration, figure 4.1.11, 4.1.12. 

 
Figure 4.1.9 Starting from the left boxplot of the mean SAP nu before administration for non-responding subjects then for responding, 
again the mean SAP for non-responding subjects after administration and again for responding 
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Figure 4.1.10 Starting from the left boxplot of the median Gain12(feedback) before administration for non-responding subjects then 
for responding, again median G12 gain (feedforward) for non-responding subjects after administration and again for responding 

 

 
Figure 4.1.11 Starting from the left boxplot of the RR LF nu before administration for non-responding subjects then for responding, 
again RR LF nu for non-responding subjects after administration and again for responding 
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Figure 4.1.12 Starting from the left boxplot of the RR HF nu before administration for non-responding subjects then for responding, 
again RR HF nu for non-responding subjects after administration and again for responding 

As was mentioned previously the cohort was divided according to changes in lactate level between 

“Low level” and “high-level” population. The former, experience a significant increase in systolic 

blood pressure (∆AVSS =5,62124798) while the latter expressed a significant rise in diastolic blood 

pressure (∆AVDD =6,299010869).  

 

Figure 4.1.13 Starting from the left boxplot of the SAP before administration for high lactate subjects then for low lactate, again SAP 
for high lactate subjects after administration and again low lactate 
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Figure 4.1.14 Starting from the left boxplot of the DAP before administration for high lactate subjects then for low lactate, again DAP 
for high lactate subjects after administration and again low lactate 

In low level subjects also SS_HF becomes significative. It is interesting to notice that, looking at the 

RR spectra, even it is not significant, subjects with lower lactate has a higher LF component while 

subjects with higher lactate show a predominance of HF component after the administration. In 

fact, the sympathovagal balance is shifted downwards for low level patients and upwards for the 

others.  

 

Figure 4.1.15 Left: boxplot of the RR LF between the before and after administration. Right: boxplot of the mean RF LF to HF between 
the before and after administration in low lactate population 
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Figure 4.1.16 Left: boxplot of the RR LF between the before and after administration. Right: boxplot of the mean RF LF to HF between 
the before and after administration in high lactate population 

Feedback and feedforward gains also seem to have conflicting behaviors in the two populations as 

can be seen in figures 4.1.17, 4.1.18: 

 

Figure 4.1.17 Left: boxplot of median G12 between high lactate and low lactate before and after administration. 

Stratifying for other comorbidities: sepsis, diabetes, hypertension and liver disease no clear 

differences were found with respect to the total population of 123 subjects. Fisher’s exact test 

confirms that there is no association between the non-responding/responding population and the 
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considered comorbidities. Initially the Wilcoxon Rank Sum Test for non-doubled pair was performed 

to detect the differences intra groups and with respect to the control ones, while afterwards the 

Wilcoxon Signed Rank was used to find the difference into groups. No significant differences were 

found between the starting population and the different groups. In general, however, the less a 

subject is affected by serious diseases or powerful administration, the more visible are the 

autonomic changes induced by vasopressor therapy. 

 

Figure 4.1.19 Fisher's exact test 

	

4.2	Correlation		
 

The correlation study was carried out using the Spearman's correlation coefficient to analyze 

whether there is a relationship between the features extracted from waveforms and the lactate 

value, in order to verify how and how much these variables vary together.  

Association does not mean necessarily a causal relation between both variables; the correlation 

coefficient rho shows how strong is the relationship between the two variables. If it’s positive they 

are moving in the same direction while, if is negative implies that when one is increasing the other 

is decreasing. A strong correlation is+/-0.8 and above while a weak correlation is below +/-0.5, for 

values in between there is a sufficient correlation. 
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First of all, was tested the correlation of the features extracted from the pre and post segments with 

the lactate level collected in the 12 hours before (initial lactate level) and after (final lactate level) 

the administration. Features from both segments result more correlated with the lactate level 

before the onset as we can see in Figure 4.2.1, 4.2.2. Spearman’s Rho highest value is 0.6 for features 

of the waveform and initial lactate, while for final lactate the highest Rho value is 0.3, stating a low 

correlation. 

 

 
Figure 4.2.1 Left: barplot of the Sperman’s correlation coefficient (rho) for only significantly correlated features between initial lactate 
level and features before the onset. Right: barplot of the Sperman’s correlation coefficient (rho) for only significantly correlated 
features after the onset and initial lactate level 

 

 
Figure 4.2.2 Left: barplot of the Sperman’s correlation coefficient (rho) for only significantly correlated features between final lactate 
level and features before the onset. Right: barplot of the Sperman’s correlation coefficient (rho) for only significantly correlated 
features after the onset and final lactate level 
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Stratifying the population according to normal (<2 mmol/L) and abnormal (>2 mmol/L) lactate.  

Testing all possible combinations subjects with abnormal lactate level seems to have higher 

correlation with indexes as shown in Figure. 4.2.3, 4.2.4. 

 

 

Figure4.2.3Left: barplot of the Sperman’s correlation coefficient (rho) for only significantly correlated features between initial lactate 
level and features before the onset for subjects with lactate >2 mmol/L. Right: barplot of the Sperman’s correlation coefficient (rho) 
for only significantly correlated features before the onset and initial lactate level for subjects with lactate <= 2 mmol/L 

 

Figure 4.2.4Left: barplot of the Sperman’s correlation coefficient (rho) for only significantly correlated features between initial lactate 
level and features after the onset for subjects with lactate >2 mmol/L. Right: barplot of the Sperman’s correlation coefficient (rho) for 
only significantly correlated features after the onset and initial lactate level for subjects with lactate <= 2 mmol/L 

The features the features that gave the highest correlation values are: 

From the scatterplot in Figure 4.2.5 we can see that subjects with normal lactate seems to follow a 

different dynamic compared to subjects with abnormal lactate. 
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Figure 4.2.5 Scatterplot of mean SAP of the before segment and initial lactate level dividing normal and abnormal subjects  

 

Considering lactate division in tree range instead of two: below 2 mmol/L, between 2 and 4 mmol/L 

and higher than 4 mmol/L, the division between groups is still visible.  

 

Figure 4.2.6 Scatterplot of mean SAP of the after segment and initial lactate level dividing normal and abnormal subjects 
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Figure 4.2.7 Scatterplot of mean SAP of the before segment and initial lactate level dividing normal lactate level (<=2 mmol/L), mid-
level (2-4 mmol/L) and abnormal level (>= 4 mmol/L). 

Last correlation analysis was made dividing between responding and non-responding subjects 

according to blood pressure as in the characterization part. Responding subject seems to be more 

correlated, especially with the features extracted from the waveform after the vasopressor 

administration. 

 

Figure 4.2.8 Left: barplot of the Sperman’s correlation coefficient (rho) for only significantly correlated features between initial lactate 
level and features after the onset for responding subjects (according to pressure). Right: barplot of the Sperman’s correlation 
coefficient (rho) for only significantly correlated features between initial lactate level and features before the onset for non-responding 
subjects (according to pressure 
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In this case, looking at the scatterplot using the same feature, there is no clear division between 

responding and non-responding population. 

 

Figure 4.2.9 Scatterplot of mean SAP of the before segment and initial lactate level dividing responding and non-responding subjects 

 
 

 
Figure 4.2.10 Scatterplot of mean SAP of the after segment and initial lactate level dividing responding and non-responding subjects 

 
Trying to fit the data of the previous graphs the line of the linear regression model seems to have 
different slopes. 
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Figure 4.2.11 Scatterplot of mean SAP of the before segment and initial lactate level dividing responding and non-responding 
subjects and fittimg the data with a linear regression model 

 
 

 
Figure 4.2.12 Scatterplot of mean SAP of the after segment and final lactate level dividing responding and non-responding subjects 
and fittimg the data with a linear regression model 
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Figure 4.1.14 Left: Correlation of the difference in features value and in lactate value (12h). Middle: Correlation of the difference in features 
value and in lactate value (12h) only in responding (pressure subjects). Right: Correlation of the difference in features value and in lactate 
value ( 12h) only in non-responding ( pressure subjects). 

 

  

 

 
At the end looking at the correlation between the differences, unexpectedly, the correlation was 
very low and almost not significant. 
 
 
 
 
 
 
 

	
	
	
	
	
	
	
	
The correlation study was repeated narrowing the width of the time windows considered to three 

hours around the administration. Considering therefore the reduced number of subjects, a small 

increase in the rho value can be noticed arriving at -0.6 for some features while considering the 

whole population and the 12-hour window the maximum rho value was 0.4 

 
Figure 4.1.15 Barplot of the Sperman’s correlation coefficient (rho) for only significantly correlated features between initial lactate 
level and features after the onset. 
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4.3	Lactate	prediction		
 

Lactate is a product of anaerobic metabolism, in fact, high levels of lactate in tissue is direct 

indication of tissue hypoxia and organ failure. Thus, serum lactate levels serve as diagnostic maker 

in critically ill patients. Predicting the kinetics of lactate is therefore very complex. Changes are 

relatively slow and is difficult to give an indication of the rate in lactate concentration. In addition, 

very few lactate sizes are available per patient. However, a decrease in lactate concentrations, as 

better prognosis, is consistent throughout the literature. In the extracted cohort is composed 123 

patients, as mentioned above. For whom no lactate measurements were found, was considered to 

have normal lactate level, in order to not decrease further the cohort. 

The method that gave best results for feature selection was logistic regression.  

The flag of initial lactate level (at the time of administration) was often chosen by features selection 

algorithm. It was verified that the results of the algorithm were not dictated solely by this 

information. Selected features are in line with the features found to be significant in the correlation 

and characterization studies.  

Some models performed better using only the features extracted from waveforms and lactate level 

others used also clinical information. 

Best results were given by: 

 

• Support vector machines, PRC curve area=0.56, ROC curve area =0.80. Optimizing parameter 

with grid search after features selection logistic regression. To build this model were used 

only the differences between the features in the pre and post segment, the features before 

the administration and the flag regarding lactate level in the 12 hours before the onset. SVM 

were trained using only the selected features: Flag lactate pre administration, pNN20_diff, 

DD spect slope_diff, bivaBP HF slope_diff, Gain12Lf_Med_diff, Gain12HFn_slope_diff, 

Coherence LF std_diff, SD ratio_pre, AVPP_pre, AVPTT_pre. 
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• Random forest PRC curve area=0.57, ROC curve area =0.80. Optimizing parameter again 

with greed search after features selection logistic regression. To build this model were 

used the differences between the features in the pre and post segment, the features 

before the administration, the flag regarding lactate level in the 12 hours before the onset 

and also demographic information and laboratory value. Random forest was trained using 

only the selected features: Flag lactate pre, SD_ratio_pre, AVNN_post, AVPP_post, 

AVPTT_post, 'PTT_spect_slope_post, Gain12TOT_Avg_post, DD_spect_slope_diff, 

'bivaRRLFn_Std_diff, GAIN12LFn_Med_diff, CohLF_Std_diff, gender, sedflag, propoflag, 

bilirubin, hemoglobin, lactate, platelet, potassium. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.1 Left: ROC curve SVM classifier. Right: PRC curve for SVM classifier 



115 
 

 

 

• XGBoost: PRC curve area=0.69, ROC curve area =0.81. To build this model were used again 

differences between the features in the pre and post segment, and the flag regarding lactate 

level in the 12 hours before the onset and also demographic information and laboratory 

value. 

 

•  

 

 

 

 

 

 

 

 

 

 

More relevant features according to the xgboost algorithm are: 

 
Figure 4.3.4 Most relevant features according to the XGBoost classifier 

All features used indicates the difference between pre and post segment. 
  

Figure 4.3.2 Left: ROC curve Random Forest classifier. Right: PRC curve for Random Forest classifier 

Figure 4.3.3 Left: ROC curve XGBoost classifier. Right: PRC curve for XGBoost classifier 
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4.4	Example	of	time	varying	dynamic		
As mentioned previously, point process modelling approach allows to obtain time-varying 

estimations of the power spectra in both LF and HF bands of RR, SAP and DAP, of coherence, cross 

spectrum and the two Gains, feedback (baroreflex sensitivity) and feedforward. Is therefore 

interesting to show the dynamics happening in these time-varying measures for some subjects.  

The following figures report, in order, the ECG and ABP signal for the whole hour extracted and 

then for the two 15 minutes window considered, with relative Tachogram, the systolic and 

diastolic blood pressure time series (blue and red respectively, in the same plot). Then the indexes 

extracted using the point process modelling, LF range and in HF range are color-coded, with blue 

representing LF range while red representing HF range.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5.4 Top: original ABP and ECG waveforms.  Left: First 15 minutes before the vasopressor administration. Respectively 
from the top: ECG; ABP, RR series, SAP, DAP and ABP power spectra in LF and HF band. Right: Last 15 minutes before the 
vasopressor administration. Respectively from the top: ECG; ABP, RR series, SAP, DAP and ABP power spectra in LF and HF 
band.  

 

 
 



117 
 

The shown waveforms come from a subject with no mechanical ventilation and sedative. The 

administration of vasopressor occurs around minute 25, the two black boxes represent respectively 

the first and the last 15 minutes of signal analyzed around it.  After the vasopressor administration 

we clearly see a rise in blood pressure and a higher heart rate variability. There is an increase of 

sympatho-vagal balance due to the increase in the LF power after the vasopressor administration. 

All those aspects, very straightforward cached by visual inspection are consistent with what was 

discovered during the characterization analysis.  

 

 
Figure4.5.1 ECG and ABP waveforms. Annotate and analyzed using PP model only the first and last 15 minutes highlighted in black 
boxes. 30 minutes around the administration are not considered. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4.5.2 First 15 minutes before the vasopressor administration. 
Respectively from the top: ECG; ABP, RR series, SAP, DAP, RR and SAP 
power spectra in HF and LF band, Gain 12 (baroreflex sensitivity) 

Figure 4.5.3 Last 15 minutes before the vasopressor administration. 
Respectively from the top: ECG; ABP, RR series, SAP, DAP, RR and 
SAP power spectra in HF and LF band, Gain 12 (baroreflex sensitivity) 
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From Figure 4.5.1 we can see the whole ECG and ABP waveforms. 30 minutes around the 

vasopressor onset are not considered due to the fuzziness of the measure. In figure 4.5.1 and 4.5.2 

it’s possible to look at the changes respectively before and after the administration. The 

considered subject was classified as non-responding subject, no rise in blood pressure is 

experienced, instead it decreases. Low lactate level subject, lactate is 1.4 mmol/L before the 

administration and 1.2 mmol/L after. This is one of the subjects for whom an abnormal behavior 

occurs. RR power spectra in the LF band are almost after administration. The G12 rises leading to 

an increase in the work done by the baroreflexes. The autonomic nervous system is certainly 

influenced by the administration of sedatives and mechanical ventilation. This example is 

important to underline the complexity of an environment like the intensive care unit. In fact, 

analyzed signals are often noisy, irregular and influenced by different things. 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure4.5.4Left: ECG,ABP,SAP(red),DAP(green).Then Bivariate. RR spectra, Gain12, Gain21,coherence in blue in the low frequency band, in 
red high frequency band.For the first 15 minutes beforef administration. Right: ECG,ABP,SAP(red),DAP(green).Then Bivariate. RR spectra, 
Gain12, Gain21,coherence in blue in the low frequency band, in red high frequency band.For the first 15 minutes after administration. 
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In this example the two considered windows show respectively 15 minutes before and after the 

vasopressor administration. Using the toolbox developed at spinLab it is possible to calculate and 

see the different dynamics in the RR spectra, baroreflex sensitivity, feedforward gain and 

coherence in both LF and HF range. During the 15 minutes after the vasopressor administration 

blood pressure, LF power of RR spectrum present higher values while HF decrease. The baroreflex 

sensitivity is also decreasing while the coherence which already had high values before 

administration increases still further. Lactate value is high 3 mmol/L before the administration and 

3.2 mmol/L 12 hours later. 
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Chapter	5	

Discussions	and	Conclusions		
5.1	Discussions	
 

5.1.1	Characterization	Study		
 
Considering the results obtained for non-sedated and non-ventilated subjects, as expected, all the 

average measures related to the Arterial Blood Pressure (SAP, MAP, DAP, Pulse Pressure) 

significantly increase after the vasopressor administration and heart rate is decreasing. Thus, we 

can say that, after the drug starts to be infused, blood pressure tends to be restored. Several 

temporal indexes accounting for variability were found to be higher after the administration, even 

if not significantly, higher heart rate variability is a sign of health conditions improvement. Before 

the administration, the heart was working hard to try to raise blood pressure, so heart rate was 

high. After the administration, Vasopressor drugs act as vasoconstrictors and blood pressure rises, 

consequently the heart muscles can relax. It’s interesting to notice that, not for all patient heart 

rates is decreasing, for a few subject heart rates is increasing. In fact, could be one of the reasons 

for AVNN loss of significance. To the subjects were administered 5 different types of vasopressor 

which have different effects on the cardiovascular system depending on type and titration. It’s 

worth mentioning that, more than 50% of the patients considered in this study received 

phenylephrine, a pure α-adrenergic antagonist that cause rise in blood pressure, stimulates 

baroreceptors by vagal reflex and might lead to bradycardia. Instead Epinephrine infusion for 

example, tends to increase heart rate.  

Significant increase in RRVLF, RRLF, clearly shows a shift upwards in the sympatho-vagal balance 

after vasopressor administration. A possible interpretation is an increase in the predominance of 

the sympathetic tone with respect to the vagal tone. In fact, despite the decrease in heart rate, 

temporal indexes accounting for variability tends to stay high consistent with the imbalance of the 

system towards the sympathetic.  

Looking at the ABP spectra, SS LF are associated to vasomotor tone and systemic vascular resistance, 

even if not significantly tends to slightly increase after the administration, probably due to the action 

of the drugs to the vascular resistance. SS HF are associated to mechanical effects of respiration and 
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vagally mediated changes and is decreasing in the post segment, according to the decrease of the 

vagal activity. 

 

Moreover, some interesting findings can be appreciated also in time-varying frequency features, 

generally low values of baroreflex sensitivity, both in low and in high frequency bands. In support 

to the assumptions made previously, we can hypothesize that G12 is decreasing because the 

working point of the baroreflex mechanism is repositioned in a lower point. In fact, the rise in blood 

pressure is due to the action of the vasopressor drug not to the baroreflex mechanism. All these 

trends confirm that autonomic control of the heart is already compromised right before the 

administration, baroreflex was not working well, in fact, the cardiovascular system was working too 

much without results, needing for pharmacological intervention. After it, blood pressure starts to 

increase, the sympatho-vagal balance moved towards the sympathetic. It is also evident an increase 

in coherence, for many patients, both in low frequency and high frequency band. Suggesting a loss 

of linear relationship in the system, which can be attribute to the pathology.  

 In the end, the analysis of complexity of the heart rate variability shows no significant difference in 

the measure of Sample Entropy. Anyway, the slight increase in most of the subjects expresses an 

increase in the information content of the heart rate variability.  

 

Considering the study extended to the entire population of 123 subjects, result related to blood 

pressure, have maintained almost the same. All the subjects receiving sedatives and/or under 

mechanical ventilation are very often associated with precautionary vasopressor administrations 

aimed to avoid or reduce hypotensive side-effects. After the drug infusion, blood pressure tends to 

rise, the same can't be said for autonomic indices. These interventions strongly influence the 

autonomic system by not making any more visible the changes in the sympatho-vagal balance. 

Looking at the spectra obtained from the RR series, subjects behave differently before and after 

administration. From these results we can affirm that looking at the power spectra, the effect of 

mechanical ventilation and sedatives is predominant. The time variance indices obtained from the 

point process model remains significant, Gain12 increases while G21 decreases, confirming what 

was been obtained in the previous characterization analysis excluding sedated and ventilated 

patients. 

 

Considering separately responding and non-responding subjects many differences has been found. 
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It is also noticeable that subjects who experience a decrease in blood pressure already start from a 

hypertensive condition. In particular, non-responding group shows significantly higher values in 

SDANN and TRI before the administration, this difference is not significative anymore. These 

findings do not surprise, because of the general hypotensive condition, which is well known to affect 

septic shock patient, even if this condition is not always present, as already discussed in the first 

part of this section.  

 The quite opposite stands and unexpected behavior of non-responding subjects would suggest the 

administration of some vasodilator or other vasoactive agents but looking at the different 

administration in the databases only two subjects have been observed, among 123, to which a 

vasodilator was administered around the vasopressor onset but one of the two experiences a 

pressure rise being classified among the responding. Table of subjects receiving other vasoactive 

agents. By varying the dosage of the administered vasopressor its effect changes, this could 

therefore be an explanation for the administration of a vasopressor drug in the presence of an 

already high-pressure value and a consequent decrease. Administered on purpose to hypertensive 

subjects with the intent to return the pressure to a normal level.  

 
Figure 4.1.13 Table representing other vasoactive agents administered to the subjects. only two vasodilators 

Looking again at the differences in the pre segment, the population classified as non-responsive 

starts from a much lower G12, increasing in the post segment, showing again an opposite behavior 

with respect to the responding subjects that undergoes to a decrease in G12. RR and ABP spectra 

are still hard to interpret since different subjects shows contrasting trends. In general, responding 

subjects has a higher HF and LF activation before the vasopressor administration. In the post 

segment LF remains almost equal for both populations, always lower in non-responding that in 

responding subjects, while HF decrease much more in responding subjects. 
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Regarding lactate level subdivision, it is interesting to notice that low level patients experience a 

much more significative increase in SAP while high level patient in DAP. They showed also different 

behavior also in the sympatho-vagal balance. Although not significantly, subjects classified as high-

level experience an increase in sympatovagal balance moving towards the sympathetic system. In 

subjects in with normal lactate value, 12 hours after administration, adecrease in the sympato-vagal 

balance shows a predominance of the vagal activity. 

	

5.1.2	Correlation	Study	
Serum lactate is a frequently monitored physiological marker in patients with sepsis, however, its 

importance as a therapeutic target is still a matter of debate. Some studies previously conducted 

examine the relationship of vasopressin use on serum lactate levels in patients with sepsis. 

Vasopressin is used in conjunction with norepinephrine during treatment of patients with septic 

shock. It turns out that patients receiving vasopressin were more likely to have their serum lactate 

levels rise when compared to matched patients who did not receive vasopressin [58]. 

In general, Sperman’s correlation coefficient indicates a significant slight correlation (pValue <0.05) 

for several features extracted from waveforms and lactate values considered. Considering the 

lactate 12 hours after administration rho remains around 0.3, indicating a weak correlation for both 

pre and post segments; while increase to 0.5, showing a higher correlation considering lactate level 

before the administration. 

Dividing the population between normal and abnormal lactate level, for some features, correlation 

increase up to 0.6 on subjects with abnormal lactate. From the scatterplot it’s possible to see a 

different behavior according to lactate level.  

Temporal indexes accounting for variability that shows a significant sufficiently high correlation 

coefficient are AVNN, SDNNIX, TRI, SDDD. The correlation turns out to be negative, when the lactate 

drops time indexes of cardiac variability rises and vice versa. In fact, a decrease in lactate value and 

an increase in cardiac variability are both signs of an improvement in the patient's health condition. 

Looking at the frequency component, power spectra derived from the RR series but also varying 

indexes extracted with the point process modelling (both cross spectra, gain and coherence) in both 

LF and HF band results to be slightly correlated.  

Moreover, stratifying for responding and non-responding subjects, according to blood pressure 

response, non-responding population seems to have a higher correlation with lactate level. From 
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the scatterplot the two population seem to behave in the same way but, fitting the data with linear 

regression, the different seems to indicate a different trend. We can interpret those results saying 

that higher lactate level is more correlated with the features extracted from the waveforms around 

the vasopressor administration. This can be related to the fact that according to literature 

vasopressor administration tends to increase lactate level. Moreover, higher lactate is associated 

with worsening condition so there could be a link between some features of waveforms that 

represent a need for vasopressor and the lactate level, or it could be an explanation considering the 

major correlation found in non-responding subjects. 

The studies cited above shows that no difference was found between the first physiological 

thresholds identified as lactate or HRV threshold during exercise. Physical activity brings a significant 

PNS activation with oxygen consumption, increasing blood lactate concentration. The results 

obtained in this study, confirm, as expected, the existence of a correlation between the features 

extracted from waveforms and the lactate value even if is not a strong correlation. Probably higher 

correlation values would probably have been obtained by measuring the lactate value at the time 

the autonomy indices were calculated, in fact, consider the three-hour window close to 

administration, all the correlation coefficients increase a little. 

 Moreover, Shock and infections can cause dilatation of the vessels thus vasopressors are used to 

constrict those areas, in order to increase blood pressure that can reduce blood flow to the organs, 

thus vasopressors should be avoided in lactic acidosis, if possible, because they may worsen tissue 

perfusion and increase lactate production. This could be an explanation for the fact that the 

extracted indexes are more correlated with the population that has an abnormal lactate or an 

abnormal response to vasopressor therapy. 

  

5.1.2	Lactate	level	prediction	Study	
Logistic regression for feature selection achieved the best results through the Random Forest 

classifier, reaching AUROC = 084. Thus, showing that, the developed model, was capable of 

providing very valuable information regarding lactate changes using the features extracted before 

and after the vasopressor administration. 

First, it is nice to see that, for both Random Forest, SVM and xgboost the best combination of 

features includes the differences between the pre and post segment. 
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It is interesting to notice that, all three models obtain better results by using the differences 

between pre and post-administration segments, although they were not significant in the 

correlation study. One of the most significant features in all three models is the difference in 

GAIN21LF. During the characterization study, in both cohorts, considering of only 23 patients and 

including ventilated and sedated patients, Gain21LF is always significant. Comparing the differences 

in the populations defined as responding and non-responding this variable lost its significance while 

comparing the differences between high level and low-level population it was significant again. A 

possible interpretation can be that, the increase in blood pressure brings a sympathetic activation 

and increase oxygen consumption, which in turn increase blood lactate concentration. 

Because to our knowledge there are no other studies trying to predict lactate level by using 

vasopressor-induced autonomic changes related parameters so there was no possibility of directly 

comparing our results with studies with a similar set-up.  

5.1.3	Summary	of	findings	and	innovations	
 

The most innovative aspect that characterize this study is the use of clinical data with indexes 

extracted from waveforms dealing with a real ICU scenario and not with a prospective cohort. 

In addition, there are very few studies in literature that combine the study of blood lactate level 

with vasopressor administration. Moreover, no one else investigates the link between these two 

elements using a time-varying model to extract autonomic indices from pressure and 

electrocardiogram signals. Main achievements obtained through this study can be summarized as 

follow: 

§ From the characterization analysis we found that vasopressors might be responsible, not 

only for an increase in pressure, but also for a parallel increase in the sympathetic-vagal 

balance. 

§ From the correlation study was discovered that parameters related to changes in 

autonomic activity induced by vasopressors are correlated with the level of lactate in the 

blood  

§  We can also say that parameters related to changes in autonomic activity induced by 

vasopressors may be able to provide indications on future lactate level and consequently 

on the oxygenation status of tissues. 
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§ From the results obtained we observed that it might be a link between activation of the 

sympathetic system due to vasopressor administration and an increase in lactate value. 

§ With more precise and especially a higher number of data, it might be possible to develop 

a model for the prediction of lactate kinetics using the indexes extracted from waveforms. 

 

5.1.4	Limitations	
There are several limitations in this study. First, the number of subjects was very low, and the 

selected waveforms were very noisy. Even with a manual correction of the signals, some extracted 

indices, especially using the point process model, are affected by noise.  

For all tree studies was the very small the number of available subjects. For the characterization 

part the number of subjects without ventilation and sedative was very low. Regarding the 

correlation part the number of lactate measures in the considered time windows has further 

reduced the population. In addition, carrying out a correlation study considering lactate 

measurements taken in different moments of time for each subject and very often at hours distance 

from the features considered greatly reduces the possibility of finding a high correlation. Regarding 

the prediction part the low number of subjects used for training and testing the models was also 

one of the biggest problems. 

 Another important limitation is that the timestamps related to the administration of the 

vasopressors were not quite precise, for this reason a 30-minute hole was left around it. Considering 

only the other 30 minutes, 15 before and 15 after may lead to a loss of information.  

In conclusion, The ICU is for sure the most complex environment in hospital care, there are many 

sources of noise in the data, the procedure under study does not follow a specific experimental 

protocol for each patient. 

Finally, since all the data considered came from a single-center database (Beth Israel Deaconess 

Medical Center), the developed models need to be validated on databases from other clinical 

centers.  
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5.2	Conclusions		
 

The ICU is a very critical and complex environment in which patients are constantly monitored by 

continuous acquisition of physiological measures, in fact MIMIC-III furnishes a huge amount of data. 

In the last years, there has been higher and higher interest in using big data and applying powerful 

machine learning and artificial intelligence techniques in medicine. The goal of big data analytics is 

ss I did in this study, to use mathematical algorithms and statistical methods helping physicians and 

nurses to make more personalized clinical decisions, reducing waste and errors and possibly 

reducing the cost of care. 

This work represents an attempt to apply algorithms and analysis to a real case scenario and not on 

a prospective cohort combining clinical data with indexes extracted from waveforms.  

The main innovations introduced in this study were those of binding autonomy indexes extracted 

from waveforms, using time models variants to a physiological marker such as lactate. 

We have used the acquired ECG and ABP waveform to characterize the physiological changes 

before, during, and after administration by assessing the variations in the autonomic nervous 

system action on the heartbeat and blood pressure. In addition, apart from having a confirmation 

on the drug's success in increasing blood pressure, it has been observed that vasopressor 

administration could be bring a sympathetic predominance with respect to their baseline autonomic 

state. However, this information is lost with the introduction of other invasive treatments so those 

changes should be further investigated. With regard to lactate, although it is still a debated element, 

it has been seen how, having more data and tools available, we can use lactate level as a marker for 

the patient's state of health and also try to predict its kinetics. 

Although we were not able to find previous studies with a similar set up, the results obtained 

(AUROC=0.84) are better than other considering either only lactate or only vasopressor 

administration for mortality prediction. For example, Liu et al [61]  compared the prognostic 

accuracy of the lactate level, the SOFA score and the qSOFA score for mortality prediction in septic 

patients using the MIMIC III database, obtaining an AUROC of 0.664, using lactate as independent 

predictor. On the other hand, Vallabhajosyula et al  developed a novel mortality prediction model 

for septic shock incorporating quantitative vasoactive medication usage, and obtained an 

AUROC of 0.73 [62]. 
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5.2.1	Future	steps	
The first future step is for certain to try to increase the number of subjects and of available lactate 

measures. Then reduce the width of the time windows considered and improve the signal quality 

of the waveforms. 

Having more subjects, it would be possible to carry out a correlation study by stratifying for the 

various treatments and comorbidities obtaining clearer results, coming from cleaner samples, in 

which only the dynamics of response to vasopressor therapy is captured. Finally, modifications 

introduced by dose titrations could be interestingly analyzed. Has been seen in addition how, 

despite the low number of measures, the correlation between lactate and indexes extracted from 

waveforms increases as the time window considered decreases. So much better results could be 

obtained by having lactate measurements within the same 15 minutes considered for waveforms. 

Having more patients and more lactate measures available would bring not only an improvement 

in the characterization and correlation study but also in the performance models. More data would 

not only increase statistical validity but would also solve one of the main problems regarding the 

prediction part the low number of subjects used for training and testing the models was also one of 

the biggest problems. Also, prediction study could be repeated using different time window trying 

to predict lactate level at different moment in time tracking its kinetics. 

Also, due to the collinearity of the measures, before the actual feature section process, an 

iterative multi-collinearity reduction process should be done. Besides, more complex machine 

learning algorithms might be used to try to have better results entering in the field of Deep 

Learning and Neural Networks. 

As a first future step towards multi-center validation, the models will be externally validated on 

other databases. 
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Appendix	

	
Table 5 W.S.R. Test for non-ventilated and non-sedated patient pre Vs post administration (23 subjects) 

Name Delta(median) h Pvalue n° increasing n°decreasing 

AVNN 27,19368858 FALSO 0,05933174 16 7 
SDANN 1,38287833 FALSO 0,7842886 10 13 
SDNN 31,8990453 FALSO 0,15285977 13 10 
SDNNIDX 21,0990239 FALSO 0,12086272 12 11 
NN20 109 FALSO 0,1710768 16 7 
pNN20 9,6294824 FALSO 0,31552639 14 9 
NN50 3 FALSO 0,21939719 12 11 
RMSSD 76,518925 FALSO 0,22375715 13 10 
logRMSSD 1,89710868 FALSO 0,08297979 13 10 
SDSD 76,5518532 FALSO 0,22375715 13 10 
SD1 50,2378152 FALSO 0,12832317 14 9 
SD2 32,6037589 FALSO 0,15285977 13 10 
SD_ratio 0,14238314 FALSO 0,42906726 12 11 
SD_prod 4039,56687 FALSO 0,23554997 13 10 

TRI 2,06004989 FALSO 0,20145117 14 9 

TINN 23,4375 FALSO 0,61330497 10 13 

AVSS 14,9131072 VERO 0,0026032 20 3 

AVDD 3,77876487 VERO 0,00091568 19 4 

AVPP 8,31235008 VERO 0,00890484 19 4 

AVPTT -0,0001474 VERO 0,0480448 7 16 

RR_VLF 0,03474423 VERO 0,03325039 18 5 

RR_LF 0,08444955 VERO 0,03861964 16 7 

RR_HF 0,8586236 FALSO 0,56334236 11 12 

RR_LFtoHF 0,07606433 FALSO 0,56334236 12 11 

RR_HFnu 0,14774194 FALSO 0,60511832 9 14 

RR_LFnu 0,01101809 FALSO 0,85519842 11 12 

SS_VLF -2962,3643 FALSO 0,54298914 9 14 

SS_LF -396,77265 FALSO 0,90316844 11 12 

SS_HF -804,37937 FALSO 0,54298914 8 15 

SS_spect_slope 0,16430628 FALSO 0,41153023 13 10 

DD_TOTPWR 1366,32972 FALSO 0,85519842 13 10 

DD_VLF -28,134732 FALSO 0,97573612 11 12 

DD_LF -132,95967 FALSO 0,64822869 10 13 

DD_HF 210,051559 FALSO 0,97573612 12 11 

Gain21TOT_Avg 0,00081481 VERO 0,03861964 14 9 
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Gain21TOT_Med 0,00076158 FALSO 0,08297979 13 10 

Gain21TOT_Std 0,00033291 VERO 0,01375452 18 5 

Gain12TOT_Med -69,805122 FALSO 0,15285977 9 14 

Gain12TOT_Std -7,0883622 FALSO 0,13613678 10 13 

Gain12TOT_Slope -0,0052908 VERO 0,0480448 10 13 

bivaCRTOT_Std 1952,69445 VERO 0,02080324 16 7 

GAIN21LF_Std 0,00066921 VERO 0,00424971 18 5 

GAIN21LFn_Slope -5,174E-05 VERO 0,01767456 7 16 

GAIN21HF_Avg 0,00058016 VERO 0,0480448 15 8 

GAIN21HF_Std 0,0002397 VERO 0,01062317 17 6 

GAIN21LFtoHF_Slope -0,0002925 VERO 0,00424971 7 16 

GAIN21LFntoHFn_Slope -0,0002925 VERO 0,00424971 7 16 

GAIN12HF_Slope -0,0061975 VERO 0,0480448 8 15 

CohLF_Slope -1,225E-05 VERO 0,02254126 7 16 

CohTOT_Std 0,01132959 VERO 0,03861964 14 9 

CohTOT_Med 0,03621391 FALSO 0,39442576 13 10 

bivaCRTOT_Med 22,9980189 FALSO 0,60511832 12 11 

H -0,000202 FALSO 0,07772065 8 15 

SampEn 0,11198615 FALSO 0,76101397 12 11 
 
 
Table 2 W.S.R Test  for non-ventilated, non-sedated responding patient pre Vs post administration (20  subjects) 

Name Delta (median) h pValue N increasing N decreasing 

AVNN 26,90343807 FALSO 0,15600358 13 7 

SDANN 0,73885085 FALSO 0,39053287 10 10 

SDNN 45,3559578 FALSO 0,10045796 11 9 

SDNNIDX 39,9196122 FALSO 0,12585852 10 10 

NN20 233 VERO 0,03332485 16 4 

pNN20 29,442832 FALSO 0,06195279 14 6 

NN50 151 FALSO 0,07848091 12 8 

RMSSD 85,5330533 FALSO 0,39053287 11 9 

logRMSSD 1,88115272 FALSO 0,14539978 11 9 

SDSD 85,5749173 FALSO 0,39053287 11 9 

SD1 54,1185627 FALSO 0,2471446 12 8 

SD2 35,9243003 FALSO 0,10842674 11 9 

TRI 2,75276044 FALSO 0,07313807 13 7 

TINN 50,78125 FALSO 0,44268698 10 10 

AVSS 16,6517317 VERO 8,8575E-05 20 0 

AVDD 6,80479233 VERO 0,00021908 18 2 

SDDD 0,56230021 FALSO 0,20433025 12 8 

AVPP 15,5351039 VERO 0,00033845 18 2 

SDPP 0,08597389 FALSO 0,37026127 11 9 
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AVPTT 0,00249795 FALSO 0,06195279 6 14 

SDPTT -0,0016145 FALSO 0,91082499 11 9 

RR_TOTPWR 1,0707532 FALSO 0,1353569 13 7 

RR_VLF 0,03591625 FALSO 0,08592386 15 5 

RR_LF 0,27380722 VERO 0,0400438 14 6 

RR_HF 0,83549222 FALSO 0,65415894 9 11 

RR_LFtoHF 0,08054292 FALSO 0,57548623 11 9 

RR_HFnu 0,11118427 FALSO 0,55029194 8 12 

RR_LFnu 0,01224764 FALSO 0,91082499 10 10 

SS_TOTPWR -3407,683 FALSO 0,65415894 6 14 

SS_VLF 2536,58717 FALSO 0,88129271 8 12 

SS_LF 464,386151 FALSO 0,57548623 10 10 

SS_HF -476,64964 FALSO 0,97021976 8 12 

DD_TOTPWR 2437,18483 FALSO 0,73687537 12 8 

DD_VLF 433,90163 FALSO 0,60121271 10 10 

DD_LF 30,4371581 FALSO 0,97021976 9 11 

DD_HF -42,612144 FALSO 0,76519844 11 9 

H -0,0003215 VERO 0,03656129 7 13 

SampEn 0,20250315 FALSO 0,57548623 11 9 

bivaRRVLF_Slope -1,041E-05 VERO 0,0400438 6 14 

bivaRRLF_Std 0,11318219 VERO 0,03334022 13 7 

bivaCRLF_Std -3,6616649 VERO 0,01237422 15 5 

Gain12TOT_Med -30,079963 FALSO 0,1353569 8 12 

Gain21TOT_Med 0,00037337 FALSO 0,20433025 11 9 

GAIN21LF_Std 0,00049257 VERO 0,01237422 15 5 

GAIN21LFn_Slope -0,0001306 VERO 0,01524006 6 14 

GAIN21HF_Std 0,0002389 VERO 0,03334022 14 6 

Gain21TOT_Std 0,00028611 VERO 0,04380372 15 5 

GAIN21LFtoHF_Slope -0,0007285 VERO 0,00171302 5 15 

GAIN21LFntoHFn_Slope -0,0007285 VERO 0,00171302 5 15 

CohHF_Std 0,01289413 VERO 0,04785751 12 8 

CohTOT_Std 0,01695785 VERO 0,01237422 14 6 
 
 
Table 3 W.S.R Test including ventilated, sedated patient pre Vs post administration (123  subjects) 

Name Delta (median) h pValue N increasing N decreasing 

AVNN 18,63541569 VERO 0,00195503 81 42 

SDANN -0,0395936 FALSO 0,34004231 64 59 

SDNN -4,50136 FALSO 0,99194461 62 61 

SDNNIDX -3,5344408 FALSO 0,9215853 65 58 

NN20 -3 FALSO 0,45531623 57 66 

pNN20 -0,4653022 FALSO 0,32953543 60 63 
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NN50 -2 FALSO 0,48760403 49 74 

RMSSD -1,6968883 FALSO 0,68447215 62 61 

logRMSSD -0,1508831 FALSO 0,6261613 62 61 

SDSD -1,6984054 FALSO 0,68447215 62 61 

SD1 -1,2073871 FALSO 0,89557808 64 59 

SD2 -7,3732443 FALSO 0,94566727 64 59 

TRI 0,12489218 FALSO 0,09424289 68 55 

TINN 0 FALSO 0,16101072 56 67 

AVSS 8,35294959 VERO 1,053E-06 88 35 

AVDD 4,74164749 VERO 3,1881E-05 87 36 

SDDD -0,2659668 FALSO 0,3648696 58 65 

AVPP 4,83825729 VERO 2,2568E-05 89 34 

SDPP 0,08056658 FALSO 0,49396827 58 65 

AVPTT -0,006376 VERO 0,00068675 43 80 

SDPTT -0,0007939 FALSO 0,13315001 56 67 

RR_TOTPWR -0,0991873 FALSO 0,69936639 66 57 

RR_VLF -0,0207381 FALSO 0,56156004 69 54 

RR_LF -0,0133136 FALSO 0,95571738 60 63 

RR_HF -0,0094955 FALSO 0,90756919 64 59 

RR_LFtoHF 0,03239447 FALSO 0,85975835 59 64 

RR_HFnu -0,0781461 FALSO 0,73900493 60 63 

RR_LFnu -0,0378011 FALSO 0,36220411 55 68 

SS_TOTPWR -2075,937 FALSO 0,82226069 61 62 

SS_VLF -45,922534 FALSO 0,86174148 59 64 

SS_LF 185,389165 FALSO 0,38801831 61 62 

SS_HF 775,080353 FALSO 0,79099199 59 64 

bivaRRHF_Slope -1,562E-07 VERO 0,00769034 52 71 

bivaRRTOT_Avg 0,74434823 VERO 0,00621828 79 44 

bivaRRTOT_Std 3,9393081 VERO 0,02357098 76 47 

bivaRRTOT_Slope -9,587E-08 VERO 0,03731315 54 69 

bivaBPHF_Slope -0,2027072 VERO 0,00327694 43 80 

bivaBPHFn_Std 0,00483112 VERO 0,00707835 73 50 

bivaBPHFn_Slope -9,051E-06 VERO 0,01571395 52 71 

bivaCRLFn_Slope 3,1596E-07 VERO 0,04726876 56 67 

bivaCRHF_Slope -0,0001145 VERO 0,00059212 41 82 

bivaCRHFn_Std 0,01296884 VERO 0,01376075 78 45 

bivaCRTOT_Avg 113,100548 VERO 0,01718712 76 47 

bivaCRTOT_Std 502,651853 VERO 0,04898296 73 50 

bivaCRTOT_Slope -0,003231 VERO 0,03420409 49 74 

GAIN21LF_Std 0,00016119 VERO 0,00338533 79 44 

GAIN21LF_Slope -4,422E-08 VERO 0,00093631 49 74 

GAIN21LFn_Slope -3,127E-05 VERO 0,00147137 47 76 
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GAIN21HF_Avg 0,00042727 VERO 0,00016767 77 46 

GAIN21HF_Med 0,00022395 VERO 0,00051942 77 46 

GAIN21HF_Std 0,00024305 VERO 1,1912E-05 85 38 

Gain21TOT_Avg 0,00038053 VERO 0,00160481 75 48 

Gain21TOT_Med 0,00026204 VERO 0,00205729 75 48 

Gain21TOT_Std 0,00012601 VERO 0,00102433 76 47 
GAIN21LFtoHF_Slope -3,449E-05 VERO 0,00088691 48 75 
GAIN21LFntoHFn_Slope -3,449E-05 VERO 0,00088691 48 75 
GAIN12LF_Slope -0,0038579 VERO 0,01033514 53 70 
GAIN12HF_Slope -0,0030581 VERO 0,01649278 54 69 
Gain12TOT_Med -6,800947 FALSO 0,1752896 54 69 
Gain12TOT_Slope -0,0044094 VERO 0,00967801 51 72 
GAIN12LFtoHF_Slope -1,048E-05 VERO 0,03191914 57 66 
CohLF_Slope -6,159E-06 VERO 0,02828014 49 74 
CohTOT_Med -0,0278279 FALSO 0,52638733 63 60 
H 6,3113E-06 FALSO 0,3648696 58 65 
SampEn -0,0873504 FALSO 0,32617575 64 59 

 
 
Table 4 W.S.R Test for responding (according to pressure) patient pre Vs post administration (88 subjects) 

name Delta(median) h pValue N increasing N decreasing 

AVNN 10,15173416 VERO 0,01442175 57 31 

SDANN 0,514495849 FALSO 0,05250636 52 36 

SDNN -5,795270672 FALSO 0,73923358 44 44 

SDNNIDX -3,458612349 FALSO 0,86781524 45 43 

NN20 0 FALSO 0,2190925 41 47 

pNN20 -0,275534517 FALSO 0,35908651 42 46 

NN50 -2 FALSO 0,27388847 36 52 

RMSSD -5,531799345 FALSO 0,46652193 41 47 

logRMSSD -0,416576595 FALSO 0,3406732 41 47 

SDSD -5,538523317 FALSO 0,46652193 41 47 

SD1 -3,916344537 FALSO 0,66521167 43 45 

SD2 -6,661320978 FALSO 0,59720185 47 41 

SD_ratio -0,099627174 FALSO 0,26838577 38 50 

SD_prod -83,32267219 FALSO 0,96349404 43 45 

TRI 0,572484884 VERO 0,02163062 50 38 

TINN 11,71875 FALSO 0,05943509 44 44 

AVSS 19,08642669 VERO 3,732E-16 88 0 

AVDD 6,103157939 VERO 2,2771E-13 79 9 

SDDD -0,03515984 FALSO 0,96017796 46 42 

AVPP 13,33610541 VERO 9,4815E-14 80 8 

SDPP 0,009765439 FALSO 0,80607668 42 46 
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AVPTT -0,009498904 VERO 9,5958E-08 19 69 

SDPTT -0,001333995 FALSO 0,10113474 39 49 

RR_TOTPWR -0,066843332 FALSO 0,68650468 46 42 

RR_VLF -0,017731821 FALSO 0,37997599 50 38 

RR_LF -0,025848227 FALSO 0,71114694 46 42 

RR_HF -0,020021006 FALSO 0,72046786 43 45 

RR_LFtoHF 0,046625457 FALSO 0,74237671 46 42 

RR_HFnu -0,102761054 FALSO 0,46397902 40 48 

RR_LFnu -0,031211588 FALSO 0,3687886 41 47 

RR_spect_slope -0,21422929 FALSO 0,10643809 34 54 

SS_TOTPWR 841,6620783 FALSO 0,23241321 49 39 

SS_VLF -551,7550086 FALSO 0,34490693 47 41 

SS_LF 352,9850996 FALSO 0,19854625 46 42 

SS_HF 720,9500356 FALSO 0,59720185 43 45 

H 8,90278E-06 FALSO 0,40531236 45 43 

SampEn -0,078734642 FALSO 0,23898716 49 39 

CohTOT_Med -0,035290713 FALSO 0,95686256 46 42 

Gain21TOT_Med 0,000461315 VERO 0,00573064 56 32 

Gain12TOT_Med -38,10034555 FALSO 0,10027167 39 49 

bivaCRTOT_Med -11,98354673 FALSO 0,67126882 47 41 

bivaRRHF_Slope -6,70208E-08 VERO 0,0356206 38 50 

bivaRRTOT_Avg 0,418473117 VERO 0,02116019 59 29 

bivaRRLFtoHF_Slope -1,42213E-05 VERO 0,04230599 35 53 

bivaRRLFntoHFn_Slope -1,42213E-05 VERO 0,04230599 35 53 

bivaBPHF_Slope -0,25588843 VERO 0,00897467 30 58 

bivaBPHFn_Std 0,007130784 VERO 0,0321259 52 36 

bivaBPHFn_Slope -1,04916E-05 VERO 0,02259886 36 52 

bivaCRLFn_Slope -3,37114E-06 VERO 0,02954573 36 52 

bivaCRHF_Slope -8,2435E-05 VERO 0,0014573 28 60 

bivaCRHFn_Std 0,011538147 VERO 0,04625599 55 33 

bivaCRTOT_Avg 110,0266365 VERO 0,0435897 55 33 

GAIN21LF_Avg 0,000477833 VERO 0,04490616 53 35 

GAIN21LF_Std 0,000181517 VERO 0,00210593 59 29 

GAIN21LF_Slope -4,77914E-08 VERO 0,00158807 34 54 

GAIN21LFn_Slope -2,02823E-05 VERO 0,00746334 35 53 

GAIN21HF_Avg 0,000508547 VERO 0,00085963 58 30 

GAIN21HF_Med 0,000268868 VERO 0,00241924 58 30 

GAIN21HF_Std 0,000392639 VERO 0,00017759 60 28 

Gain21TOT_Avg 0,000456103 VERO 0,00301024 56 32 

Gain21TOT_Med 0,000461315 VERO 0,00573064 56 32 

Gain21TOT_Std 6,16603E-05 VERO 0,00595361 53 35 

GAIN21LFtoHF_Slope -2,96517E-05 VERO 0,00113877 33 55 
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GAIN21LFntoHFn_Slope -2,79521E-05 VERO 0,00113877 33 55 

GAIN12HFn_Std 0,008768721 VERO 0,01510134 51 37 

GAIN12HFn_Slope -2,04269E-05 VERO 0,00683957 34 54 
 
 
 
Table 5 W.S.R Test for non-responding (according to pressure) patient pre Vs post administration (35 subjects) 

name Delta(median) H pvalue N increase N decrease 

VNN 12,2463889 FALSO 0,05531932 24 11 

SDANN -6,3561504 FALSO 0,27246545 12 23 

SDNN -5,8633733 FALSO 0,62316175 18 17 

SDNNIDX -0,8146543 FALSO 0,88280661 20 15 

NN20 -5 FALSO 0,52694584 16 19 

pNN20 -0,3562689 FALSO 0,55530478 18 17 

NN50 0 FALSO 0,61106454 13 22 

RMSSD 0,19876827 FALSO 0,54449597 21 14 

logRMSSD 0,0205068 FALSO 0,54449597 21 14 

SDSD 0,1988287 FALSO 0,54449597 21 14 

SD1 -0,0574661 FALSO 0,54449597 21 14 

SD2 -8,1680281 FALSO 0,51236106 17 18 

SD_ratio 0,04748493 FALSO 0,88280661 16 19 

SD_prod -70,341835 FALSO 0,74322708 19 16 

TRI -1,2412046 FALSO 0,58884418 18 17 

TINN -15,625 FALSO 0,68032295 12 23 

AVSS -8,8538265 VERO 2,477E-07 0 35 

AVDD -4,1917374 VERO 0,00093768 8 27 

SDDD -0,7068833 FALSO 0,13184112 12 23 

AVPP -8,1285993 VERO 0,00013545 9 26 

SDPP 0,73879482 FALSO 0,41281086 16 19 

AVPTT 0,01081936 VERO 0,0248361 24 11 

SDPTT 0,00060696 FALSO 0,79327034 17 18 

RR_TOTPWR -0,0564848 FALSO 0,74322708 20 15 

RR_VLF -0,0365231 FALSO 0,83138245 19 16 

RR_LF -0,0051965 FALSO 0,45118521 14 21 

RR_HF -0,0029059 FALSO 0,52296178 21 14 

RR_LFtoHF 0,07436663 FALSO 0,29451646 13 22 

RR_HFnu 0,08188392 FALSO 0,56646189 20 15 

RR_LFnu 0,00073585 FALSO 0,85701866 14 21 

RR_spect_slope 0,03045379 FALSO 0,76812789 17 18 

SS_TOTPWR -9174,795 FALSO 0,16886869 12 23 

SS_VLF -3350,5516 FALSO 0,10490292 12 23 

SS_LF -344,54013 FALSO 0,74322708 15 20 
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SS_HF 29,3874707 FALSO 0,68218849 16 19 

bivaRRTOT_Slope -1,786E-05 VERO 0,00088429 9 26 

bivaBPTOT_Slope -2,3468428 VERO 0,01466726 12 23 

bivaCRLFn_Std 0,01385351 VERO 0,04568897 26 9 

bivaCRTOT_Slope -0,051955 VERO 0,00031407 8 27 

GAIN21LFn_Avg -0,0565089 VERO 0,04749309 13 22 

Gain12TOT_Med 1,52577612 FALSO 0,97386734 15 20 

Gain21TOT_Med 0,0002411 FALSO 0,16385362 19 16 

GAIN21HF_Std 4,6563E-05 VERO 0,02002718 25 10 

GAIN12LF_Slope -0,0056097 VERO 0,04394295 12 23 

Gain12TOT_Slope -0,0071048 VERO 0,01278762 10 25 

GAIN12LFtoHF_Slope -8,703E-05 VERO 0,04935672 14 21 

GAIN12LFntoHFn_Slope -8,703E-05 VERO 0,04935672 14 21 

CohLF_Slope -1,357E-05 VERO 0,01916954 11 24 

H -7,486E-05 FALSO 0,63479043 13 22 

SampEn -0,1119978 FALSO 0,88280661 15 20 

bivaCRTOT_Med 1,00163757 FALSO 0,53367399 17 18 

      
 
 
Table 6 W.S.R Test Low lactate patients pre VS post administration ( 48 subjects) 

Name Delta(median) H PValue N increase N decrease 

AVNN 33,76504459 FALSO 0,136962249 33 15 

SDANN 3,159884834 VERO 0,024692264 24 24 

SDNN -5,351138269 FALSO 0,69672237 26 22 

SDNNIDX -6,318456495 FALSO 0,727297625 27 21 

NN20 -18,5 FALSO 0,887769622 22 26 

pNN20 -1,9416934 FALSO 0,960788456 23 25 

NN50 -2 FALSO 0,77722711 20 28 

RMSSD -1,949368656 FALSO 0,674106827 25 23 

logRMSSD -0,202421284 FALSO 0,829465256 25 23 

SDSD -1,951052465 FALSO 0,674106827 25 23 

SD1 -1,662946006 FALSO 0,622497267 26 22 

SD2 -7,656882211 FALSO 0,572679285 28 20 

SD_ratio 0,003389593 FALSO 0,674106827 21 27 

SD_prod -99,44906924 FALSO 0,821478322 26 22 

TRI 0,192089602 VERO 0,026036274 26 22 

TINN 0 FALSO 0,080321422 21 27 

AVSS 5,621247982 VERO 0,01832399 33 15 

AVDD 1,537090599 FALSO 0,259227035 30 18 

SDDD -0,185350542 FALSO 0,861581552 30 18 

AVPP 5,019232628 VERO 0,020450452 32 16 
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SDPP 0,893500679 FALSO 0,89392838 27 21 

AVPTT -0,005205422 FALSO 0,126456628 17 31 

SDPTT -0,000931576 FALSO 0,491963936 23 25 

RR_TOTPWR -0,085914444 FALSO 1 27 21 

RR_VLF -0,028645242 FALSO 0,644407981 28 20 

RR_LF -0,020228615 FALSO 0,821478322 22 26 

RR_HF -0,01031704 FALSO 0,789723121 28 20 

RR_LFtoHF -0,038405848 FALSO 0,934605076 20 28 

RR_HFnu -0,042783965 FALSO 0,918307864 24 24 

RR_LFnu -0,041140149 FALSO 0,447861925 20 28 

RR_spect_slope -0,084279595 FALSO 0,447861925 22 26 

SS_TOTPWR 2309,234118 FALSO 0,372221745 31 17 

SS_VLF 326,2404035 FALSO 0,967275024 27 21 

SS_LF 284,1822217 FALSO 0,355960795 28 20 

SS_HF 1002,764122 FALSO 0,148128723 27 21 

DD_TOTPWR 34,52801163 FALSO 0,98363407 29 19 

DD_VLF 141,8418544 FALSO 0,704322418 28 20 

DD_LF -256,1019001 FALSO 0,441750324 26 22 

DD_HF 43,70545681 FALSO 0,861581552 29 19 

H 1,22668E-05 FALSO 0,98363407 25 23 

SampEn -0,051833402 FALSO 0,286116048 28 20 

bivaCRLF_Med -0,332612589 FALSO 0,166164535 26 22 

bivaCRTOT_Med -16,77381451 FALSO 0,674106827 25 23 

Gain21TOT_Med -0,000215679 FALSO 0,196244727 29 19 

Gain12TOT_Med 1,258081894 FALSO 0,26798843 21 27 

CohTOT_Med 0,034431842 FALSO 0,666632055 24 24 

PP_spect_slope -0,187111076 VERO 0,043327469 19 29 

bivaRRLFtoHF_Slope -2,11919E-05 VERO 0,013833008 20 28 

bivaRRLFntoHFn_Slope -2,11919E-05 VERO 0,013833008 20 28 

bivaCRTOT_Avg 133,097108 VERO 0,045497424 34 14 

GAIN21LF_Slope -1,52202E-07 VERO 0,001325971 20 28 

GAIN21LFn_Slope -3,44846E-05 VERO 0,012690433 18 30 

GAIN21LFtoHF_Slope -4,69685E-05 VERO 0,015065478 19 29 

GAIN21LFntoHFn_Slope -4,69685E-05 VERO 0,015065478 19 29 

CohLF_Slope -1,02128E-05 VERO 0,012690433 16 32 
 
 
Table 7 W.S.R Test High lactate patients pre VS post administration (48 subjects) 

Name Delta(median) H pValue N increasing N decreasing 

VNN 35,4287101 FALSO 0,65800879 33 15 

SDANN 1,59371638 FALSO 0,74750008 24 24 

SDNN -8,9013591 FALSO 0,74750008 26 22 
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SDNNIDX -4,432873 FALSO 0,60087101 27 21 

NN20 8 FALSO 0,71729044 22 26 

pNN20 0,79545133 FALSO 0,71738089 23 25 

NN50 3 FALSO 0,83618164 20 28 

RMSSD -5,8759285 FALSO 0,25983505 25 23 

logRMSSD -0,4250186 FALSO 0,33413808 25 23 

SDSD -5,8777963 FALSO 0,25983505 25 23 

SD1 -4,9678023 FALSO 0,4445089 26 22 

SD2 -7,7077097 FALSO 0,87211803 28 20 

SD_ratio -0,1378279 FALSO 0,18418075 21 27 

SD_prod -68,927559 FALSO 0,42090992 26 22 

TRI -0,182152 FALSO 0,49390123 26 22 

TINN 0 FALSO 0,62445068 21 27 

AVSS 10,3416646 FALSO 0,05340584 33 15 

AVDD 6,29901087 VERO 0,02687559 30 18 

SDDD 0,44136404 FALSO 0,24320097 30 18 

AVPP -3,5999239 FALSO 0,27724064 32 16 

SDPP -0,1269357 FALSO 0,84053366 27 21 

AVPTT -0,0125961 VERO 0,01575549 17 31 

SDPTT -0,0006286 FALSO 0,51965655 23 25 

RR_TOTPWR -0,0718538 FALSO 0,51965655 27 21 

RR_VLF -0,0977618 FALSO 0,65800879 28 20 

RR_LF -0,0034705 FALSO 0,29542406 22 26 

RR_HF 0,00070897 FALSO 0,57316897 28 20 

RR_LFtoHF 0,47754758 FALSO 0,74750008 20 28 

RR_HFnu -0,1359171 FALSO 0,39806293 24 24 

RR_LFnu 0,02946865 FALSO 0,33413808 20 28 

RR_spect_slope 0,18454634 FALSO 0,90390763 22 26 

SS_TOTPWR 3171,80109 FALSO 0,25983505 31 17 

SS_VLF 450,597835 FALSO 0,39806293 27 21 

SS_LF -3,3170878 FALSO 0,13649771 28 20 

SS_HF 1385,4481 VERO 0,0486248 27 21 

SS_spect_slope 0,0192372 FALSO 1 20 28 

DD_VLF 1129,83398 FALSO 0,11654426 28 20 

DD_LF 435,269274 FALSO 0,13649771 26 22 

DD_HF 789,454886 FALSO 0,09895737 29 19 

H 3,5822E-05 FALSO 0,96790005 25 23 

SampEn 0,02829287 FALSO 0,80920397 28 20 

bivaCRTOT_Med 0,48613041 FALSO 0,68737362 25 23 

Gain21TOT_Med 0,00038171 FALSO 0,25983505 29 19 

Gain12TOT_Med 48,9104012 FALSO 0,57316897 21 27 

CohTOT_Med -0,0419794 FALSO 0,49390123 24 24 
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bivaRRLFn_Std 0,02384344 VERO 0,01575549 25 23 

GAIN21LF_Std 0,00016295 VERO 0,0175828 31 17 

GAIN21HF_Std 0,0001954 VERO 0,01959328 36 12 

GAIN12HF_Slope -0,0134825 VERO 0,0486248 21 27 

CohHF_Std 0,01439769 VERO 0,04420844 29 19 

CohTOT_Std 0,00928294 VERO 0,04420844 26 22 
 
 
Table 8 W.R.S. Test responding VS non-responding population before administration  

Name Delta(median) H P 

AVNN 52,3693071 FALSO 0,29068844 

SDANN 7,67568957 VERO 0,00485199 

SDNN -4,239808 FALSO 0,74721871 

SDNNIDX -4,4826386 FALSO 0,41153978 

NN20 -11 FALSO 0,23760825 

pNN20 -0,9726588 FALSO 0,27648807 

NN50 -1 FALSO 0,16395333 

RMSSD -6,6423572 FALSO 0,21232593 

logRMSSD -0,5257563 FALSO 0,21232593 

SDSD -6,6492599 FALSO 0,21232593 

SD1 -4,7017356 FALSO 0,29325528 

AVSS 12,3179749 VERO 8,4494E-06 

AVDD 10,3476768 VERO 0,00022823 

SDDD 1,63411055 VERO 0,03293753 

AVPP 6,92642063 VERO 0,010168 

RR_HF -0,0247191 FALSO 0,20622596 

RR_LFtoHF 0,03940509 FALSO 0,91296078 

RR_HFnu -0,1720808 FALSO 0,21027829 

RR_LFnu -0,0747966 FALSO 0,08995693 

RR_spect_slope -0,5873173 VERO 0,00310816 

SS_TOTPWR 8381,89798 FALSO 0,17762882 

SS_VLF 5815,26378 FALSO 0,19248979 

SS_LF 367,203887 FALSO 0,82041009 

SS_HF -175,38415 FALSO 0,84227002 

SS_spect_slope -0,1069792 FALSO 0,43754591 

DD_TOTPWR 3766,35406 FALSO 0,08376307 

DD_VLF 2150,58001 FALSO 0,10344847 

DD_LF 305,689871 FALSO 0,37731945 

DD_HF 105,041241 FALSO 0,5770257 

H 2,7818E-05 FALSO 0,42442641 

SampEn -0,0723274 FALSO 0,25399764 

bivaCRTOT_Med -20,701293 FALSO 0,24478299 
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Gain21TOT_Med -0,0006286 FALSO 0,26826759 

Gain12TOT_Med 32,5303871 FALSO 0,28057254 

CohTOT_Med -0,0427024 FALSO 0,60020742 

CohLF_Med -0,0709198 FALSO 0,9307643 
 
 
 
 
Table 9 W.R.S. Test responding VS non-responding population after administration 

Name Delta(median) H PValue 

AVNN 54,4639618 FALSO 0,12945537 

SDANN 0,805043327 FALSO 0,94414022 

SDNN -4,307910657 FALSO 0,43424433 

SDNNIDX -1,838680527 FALSO 0,40835477 

AVSS -15,62227831 VERO 2,266E-06 

NN20 -16 FALSO 0,44026717 

RR_VLF -0,025610702 FALSO 0,692711 

RR_LF -0,01999558 FALSO 0,19440984 

RR_HF -0,007604007 FALSO 0,35066799 

RR_LFtoHF 0,067146265 FALSO 0,692711 

RR_HFnu 0,012564131 FALSO 0,7771222 

RR_LFnu -0,042849197 FALSO 0,17762882 

RR_spect_slope -0,342634175 VERO 0,0168167 

SS_TOTPWR -1634,559123 FALSO 0,87749326 

SS_VLF 3016,467161 FALSO 0,96199864 

SS_LF -330,3213444 FALSO 0,79436259 

SS_HF -866,9467183 FALSO 0,692711 

SS_spect_slope -0,167104289 FALSO 0,84665721 

DD_TOTPWR 3257,631289 FALSO 0,32800639 

DD_VLF 822,2496494 FALSO 0,38647374 

DD_LF 107,9210621 FALSO 0,70932914 

DD_HF 272,6110236 FALSO 0,20824498 

H -5,59407E-05 FALSO 0,33078595 

SampEn -0,105590575 FALSO 0,31164823 

bivaCRHF_Med 0,962749628 FALSO 0,5770257 

Gain21TOT_Med -0,000848792 FALSO 0,55052601 

Gain12TOT_Med 72,15650876 FALSO 0,08177689 

CohTOT_Med 0,080884883 FALSO 0,49229824 

RR_spect_slope -0,342634175 VERO 0,0168167 

bivaBPTOT_Slope -2,771096927 VERO 0,03293753 

bivaCRTOT_Slope -0,05019362 VERO 0,04945096 

GAIN21LF_Slope 5,35707E-08 VERO 0,04816683 

GAIN12LF_Med 104,6547978 VERO 0,03940101 
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GAIN12LF_Std 32,40266569 VERO 0,03293753 
 
 
Table 10 W.R.S. Test of difference (post -pre) in responding VS non-responding population 

Name medianNR medianR h pValue 

AVNN 13,10527597 12,21454229 FALSO 0,759990882 

SDANN -2,19646844 1,621338044 VERO 0,048805353 

SDNN 0,778164679 0,021080168 FALSO 0,619841213 

SDNNIDX 1,206564283 0,14435256 FALSO 0,966466581 

NN20 -1 0 FALSO 0,265738454 

pNN20 0,162335116 0 FALSO 0,91517925 

NN50 0 0 FALSO 0,452880232 

RMSSD 0,633154816 -0,625822601 FALSO 0,481760306 

logRMSSD 0,065005276 -0,013965154 FALSO 0,374297973 

SDSD 0,631124197 -0,626040337 FALSO 0,481760306 

SD1 0,446236416 -0,079279962 FALSO 0,588563844 

SD2 -1,5138815 0,313140689 FALSO 0,440861876 

SD_ratio -0,010899333 -0,025222417 FALSO 0,655866663 

SD_prod 5,997330411 -3,740050646 FALSO 0,713505752 

TRI 0,026915114 0,341948252 FALSO 0,110773014 

TINN 0 3,90625 FALSO 0,169981005 

AVSS -8,278198997 12,19591164 VERO 6,1637E-18 

AVDD -4,796321013 5,502361562 VERO 4,10257E-11 

RR_VLF 0,001584067 0,001858175 FALSO 0,481760306 

RR_LF -0,000356351 3,78017E-05 FALSO 0,417953842 

RR_HF 0,000708971 -1,89182E-05 FALSO 0,546789815 

RR_LFtoHF -0,03346958 0,00726011 FALSO 0,362362339 

RR_HFnu 0,011569162 -0,005831086 FALSO 0,39265125 

RR_LFnu -0,031187343 -0,004584656 FALSO 0,899636252 

RR_spect_slope -0,036764029 -0,087428455 FALSO 0,6885791 

SS_TOTPWR -2184,30518 665,8390394 FALSO 0,067226931 

SS_VLF -1540,490458 117,0111844 FALSO 0,052105473 

SS_LF -14,39746525 70,52285494 FALSO 0,481760306 

SS_HF -85,48589627 -15,40571338 FALSO 0,584705968 

SS_spect_slope -0,000846464 -0,046456655 FALSO 0,655866663 

DD_TOTPWR -864,0558865 498,1580408 FALSO 0,144235295 

DD_VLF -367,2160018 58,25494308 FALSO 0,104641761 

DD_LF -99,07598213 -0,882678517 FALSO 0,308975081 

DD_HF -28,2472522 37,80487912 FALSO 0,953066483 

DD_spect_slope 0,028164785 -0,036844201 FALSO 0,235805538 

H -4,6339E-05 4,11629E-06 FALSO 0,855445719 

SampEn -0,026131687 0,0169568 FALSO 0,47480377 
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Gain21TOT_Med 0,000176107 0,000182076 FALSO 0,608027208 

Gain12TOT_Med -8,05314913 -11,73332261 FALSO 0,306317137 
 
 
Table 11 W.R.S. Test of difference (post -pre) in high lactate VS low lactate population  

Name delta(mean) H pValue 

AVNN 35,42871011 FALSO 0,658008785 

SDANN 1,593716382 FALSO 0,747500078 

SDNN -8,901359097 FALSO 0,747500078 

SDNNIDX -4,432872986 FALSO 0,600871012 

NN20 8 FALSO 0,71729044 

pNN20 0,79545133 FALSO 0,717380888 

NN50 3 FALSO 0,836181641 

RMSSD -5,875928501 FALSO 0,259835047 

logRMSSD -0,42501865 FALSO 0,334138081 

SDSD -5,87779629 FALSO 0,259835047 

SD1 -4,967802296 FALSO 0,444508903 

SD2 -7,707709717 FALSO 0,872118031 

AVDD 6,299010869 VERO 0,026875592 

AVPTT -0,012596131 VERO 0,015755486 

AVSS 10,34166458 FALSO 0,053405841 

RR_VLF -0,097761827 FALSO 0,658008785 

RR_LF -0,003470544 FALSO 0,295424056 

RR_HF 0,000708971 FALSO 0,573168974 

RR_LFtoHF 0,477547582 FALSO 0,747500078 

RR_HFnu -0,135917052 FALSO 0,398062926 

RR_LFnu 0,029468654 FALSO 0,334138081 

RR_spect_slope 0,184546344 FALSO 0,903907633 

SS_TOTPWR 3171,80109 FALSO 0,259835047 

SS_VLF 450,5978352 FALSO 0,398062926 

SS_LF -3,317087776 FALSO 0,136497711 

SS_HF 1385,448102 VERO 0,048624802 

SS_spect_slope 0,019237201 FALSO 1 

DD_TOTPWR 2422,933113 FALSO 0,147416199 

DD_VLF 1129,833976 FALSO 0,116544264 

DD_LF 435,269274 FALSO 0,136497711 

DD_HF 789,4548857 FALSO 0,098957365 

Gain21TOT_Med 0,000381711 FALSO 0,259835047 

Gain12TOT_Med 48,91040118 FALSO 0,573168974 

bivaRRLFn_Std 0,023843443 VERO 0,015755486 

GAIN21LF_Std 0,000162955 VERO 0,017582795 

GAIN21HF_Std 0,000195404 VERO 0,019593285 
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GAIN12HF_Slope -0,013482464 VERO 0,048624802 

CohHF_Std 0,014397686 VERO 0,044208439 

CohTOT_Std 0,009282942 VERO 0,044208439 
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