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Abstract: Immunotherapy (IO) has brought a significant revolution in the treat-
ment of non-small cell lung cancer (NSCLC). Hence, reliable biomarkers are re-
quired to identify patients that are most likely to benefit from this therapy. Since
available biomarkers, such as PD-L1, demonstrated limited predicted efficacy, there
is an urgent need for novel models to improve predictive capabilities. Analyzing
CT scans, using machine learning (ML) and deep learning (DL) techniques, of-
fers a promising approach to extract features from medical images and construct
predictive models. This study aims at developing two types of solutions to pre-
dict efficacy of IO in advanced NSCLC. The first is ML-based and utilizes six
different ML classifiers, by determining the best-performing one, while the sec-
ond employs an end-to-end DL pipeline. The evaluation is performed on two data
modalities: real-world data (RWD) and features extracted from CT scans. Baseline
CT scans and clinical data were retrospectively collected from a cohort of 375 pa-
tients with advanced NSCLC at Fondazione IRCCS Istituto Nazionale dei Tumori
di Milano. These patients received any-line of IO, either alone or in combination
with chemotherapy. The final objective of this study is two-fold. Firstly, compare
performances with the use of CT scans alone versus integrating them with RWD.
Secondly, to evaluate and compare the performance of ML and DL models in terms
of predictive accuracy. The final step for both the solutions involves conducting
an explainability analysis with the computation of SHapley Additive exPlanations
(SHAP) values. The main findings of the present work suggest that DL approach,
with an accuracy of 0.63, slightly outperforms ML, which achieved an accuracy of
0.61, in predicting IO response using only features derived from CT scans. However,
when the two data modalities are combined, ML achieves higher performance, with
an accuracy of 0.69, compared to DL, which achieved an accuracy of 0.64. These
results suggest another interesting observation. When the two data modalities are
combined, ML exhibit an increase in predictive performance and ability to predict
clinical benefit from IO. In the context of the explainability analysis, in ML models
trained on combination of RWD and CT scans features, SHAP values revealed that
the ECOG PS (RWD) and Large Dependence Emphasis (CT scan feature) had the
greatest impact on the predictions. In DL, SHAP values were assigned to image
pixels, revealing that the network predominantly concentrated on the edges of the
tumor region of interest (ROI). These initial achievements could be the base of the
ultimate goal of developing novel tools for selection of ideal candidates for IO. By
investigating future perspectives, this research may contribute to the development
of innovative approaches that can be applied in clinical practice.
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1. Introduction

According to estimates from the World Health Organization (WHO) cancer is the second leading cause of death
globally [1]. Among neoplasms, lung cancer is the leading cause of cancer death among men in the United
States [2] and Europe [3], accounting for an estimated 1,761,000 deaths worldwide in 2017 [4].
There are several causes that may develop this disease, including environmental agents (such as exposure to
asbestos, radon, radiation, and air pollution) as well as genetic factors. However, smoking remains the primary
risk factor. Consequently, screening is highly recommended for individuals at higher risk [5].
Lung cancer is classified in mainly two histological subtypes with different clinical behaviour: non-small cell
lung carcinoma (NSCLC), accounting for 80-85% of all lung cancer cases [6], and small-cell lung carcinoma
(SCLC). There are several types of NSCLC, depending on different kinds of cancer cells, exhibiting different
growth patterns and methods of spreading [5]: Squamous cell carcinoma that forms in the thin, flat cells lining
the inside of the lungs, Large cell carcinoma which may begin in several types of large cells and Adenocarcinoma
which begins in the cells that line the alveoli and make substances such as mucus.
In numerous instances, the diagnosis of lung cancer occurs when the disease has already reached an advanced
stage. Consequently, surgical intervention is often not feasible for such cases. Therefore, other options are
chemotherapy, radiotherapy, targeted therapy and IO [5]. Even if traditional therapies like chemotherapy and
radiotherapy provided benefit in terms of survival for lung cancer patients and are still incorporated in ther-
apeutic algorithms, the prognosis remained poor with an estimated median overall survival (OS) of about 14
months in the metastatic setting [7]. In this context, IO has brought a significant revolution in the treatment
of NSCLC. In fact, recent clinical studies demonstrated that IO, delivered either alone or in combination with
other therapies, could improve survival outcomes of advanced NSCLC patients, with about 20% of patients still
alive 5 years after diagnosis of metastatic disease [8].

IO aims at harnessing immune system in recognizing and attacking the tumor cells. There are several types
of IO, one of the most used involves the Immune Checkpoint Inhibitors (ICIs), which are drugs that block
the checkpoint proteins from binding with proteins on tumor cells and preventing that immune cells (T cells)
are switched off. Programmed death-1 (PD-1) is a cell surface receptor that functions as a T cell checkpoint.
Binding of PD-1 to its ligand, programmed death-ligand 1 (PD-L1) located in cancer cells, inhibits T cells from
killing tumor cells. To break the binding and restart the immune system, ICIs drugs are used, especially in the
case of PD-1/PD-L1 the main drugs are Nivolumab, Pembrolizumab, Atezolizumab, Avelumab and Durvalumab
[9].
Over the last decade, ICIs have transformed the treatment of advanced malignancies, however, response rates
can widely vary among patients [10]. Hence, biomarkers with high sensitivity and specificity are required to
identify patients that are most or least likely to experience a sustained response to these therapies [11].

There are several biomarkers tested by Food and Drug administration (FDA) [12] until now, but none of them
resulted as completely reliable.
PD-L1 was the first FDA-approved predictive biomarker for NSCLC in 2015 [12]. Testing the PD-L1 expres-
sion, is a standard for identifying individuals with advanced NSCLC that are more likely to respond to IO, used
alone or in combination with chemotherapy. In particular, it has been demonstrated a correlation between the
level of tissue PD-L1 expression and clinical benefits: when the PD-L1 was higher than one-half of tumor cells
(i.e. PD-L1 expression ≥ 50%), patients were more likely to respond. Despite this evidence, PD-L1 remains a
controversial biomarker for IO response [13].
Another potential biomarker is Tumor Mutational Burden (TMB), which is defined as the total number of
mutations per coding area of a tumor genome. It was demonstrated by Rizvi et al [14] that high number of
somatic mutations is thought to result in a higher response to checkpoint inhibition. Also this kind of biomarker
for IO in NSCLC remains uncertain since, despite these initial positive findings, subsequent data have revealed
a statistically nonsignificant benefit in patients with high TMB [15].
Due to these limitations, there is an urgent need to find improved and efficient biomarkers for IO response.
To reach this aim Artificial Intelligence (AI) techniques can be used, where radiomics solutions, quantitative
approach to medical imaging, are exploited.

The concept of radiomics, which has most broadly been applied in oncology, refers to the extraction of mine-
able data from medical imaging [16]. It is based on the concept that biomedical images contain information
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about disease that are imperceptible by the human eye [17]. Radiomic analysis can be computed on medical
images coming from different modalities: magnetic resonance imaging (MRI), computed tomography (CT), and
positron-emission-tomography (PET). Traditionally radiomic features are extracted from the region of interest
(ROI), usually segmented by expert radiologists, and they regard shape, grey-level intensities, texture, size or
volume of the ROI [18]. Both ML and DL algorithms may be used in order to process medical images and
extract information.
Multiple studies have explored predicting IO outcomes using radiomics from CT scans. Gonga et al. [19]
conducted a study on 224 advanced NSCLC patients using a CT-based radiomics approach. They aimed to
predict IO response, examine radiomics’ prognostic power for predicting progression-free survival (PFS) and
overall survival (OS). Two CT scans per patient were collected: pre-treatment and post-treatment. After tumor
segmentation and image resampling, 1118 CT-radiomic features were extracted. Delta radiomic features were
calculated by subtracting pre-treatment from post-treatment radiomics. Normalized features were ranked us-
ing recursive feature elimination (RFE) to select optimal features. A support vector machine (SVM) classifier
was implemented to predict IO response using pre-treatment and delta radiomics features. The study showed
that delta-radiomics improved treatment response prediction and enhanced PFS and OS outcomes compared
to pre-treatment radiomics. Another interesting work is by He et al. [20], where deep learning solution was
exploited to estimate the target tumor area, to distinguish High-TMB from Low-TMB patients and establish a
tumor mutational burden radiomic biomarker (TMBRB). CT images from a total of 327 patients with NSCLC,
were randomly divided into a training (n=236), validation (n=26), and test cohort (n=65). TMBRB was eval-
uated for its predictive capability in terms of OS and PFS. The biomarker successfully stratified patients in the
IO-treated cohort into high- and low-risk groups, showing superior results in terms of PFS outcome.
Recently, the need of high level of accountability and thus transparency is required in AI algorithms, especially
in the medical sector, where decisions derived from such systems affect humans’ lives. Explanations for machine
decisions and predictions are needed to justify their reliability [21]. For both ML and DL models, explanation
can be achieved by using post-hoc methods that approximate the behavior of a model by extracting relationships
between feature values and the predictions [22] [23]. Local Interpretable Model-Agnostic Explanations (LIME)
[24] and SHapley Additive exPlanations (SHAP) [25] are two examples of post-hoc explanation.

In the present study, baseline CT images and clinical data were retrospectively collected from a cohort of
375 patients diagnosed with advanced NSCLC at Fondazione IRCCS Istituto Nazionale dei Tumori di Milano.
These patients received any-line of IO, either alone or in combination with chemotherapy. The primary aim of
this study is to contribute to the research on predicting IO response in advanced NSCLC. This is achieved by
addressing a binary classification problem, which categorizes each patient if has or not a clinical benefit from
IO. The study assesses the predictive power of features extracted from CT scans. To achieve this objective,
two distinct pipelines are proposed. The first pipeline (ML solution) involves extracting radiomic features from
CT scans and feeding them into ML classifiers to predict IO response. The second pipeline (DL solution)
focuses on utilizing an end-to-end neural network to directly extract features from the images (DL features)
and predict therapy response. In both the ML and DL solutions, the evaluation is conducted using two distinct
data modalities: real-world data (RWD) and features extracted from CT scans. This aims at investigating
whether combining these two modalities or using them individually can enhance the classification performance.
Significant effort is dedicated to ensure the explainability and interpretability of both ML and DL models by
using SHAP technique. This is done to ensure that the results are comprehensible and can potentially be
translated into clinical practice.

2. Materials and Methods

2.1. Dataset

The population involved in this retrospective study consisted of data collected at National Cancer Institute
of Milan (Fondazione IRCCS Istituto Nazionale dei Tumori) between April 2013 and May 2022. The cohort
included 375 patients with advanced NSCLC who received any-line anti-PD(L)1 therapy either alone or in
combination with chemotherapy. Specifically, 305 patients were treated with IO, while 70 with the combination
of IO and chemotherapy.

2.2. Tumor segmentation

Baseline CT scans were acquired using a third generation dual-source CT scanner, Somatom Force provided
by Siemens Helthineers [26]. Baseline non-contrast-enhanced (NCE) and contrast-enhanced (CE) CT scans
were analyzed by four experienced radiologists, who identified primary tumors and involved lymph nodes. The
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segmentation was performed semiautomatically using syngo.via, an integrated imaging software provided by
Siemens Healthineers [27]. If neither the tumor and lymph nodes were present, the distant metastasis were
not segmented. In accordance with the guidance of clinicians, the present study included only patients who
had a primary tumor (lung tumor). A radiological assessment was performed for each patient, evaluating the
follow-up total body (TB-CT) scan. The TB-CT scan was conducted every 9-12 weeks or when signs of disease
progression were observed. The evaluation of the response was conducted based on the Response Evaluation
Criteria in Solid Tumors (RECIST1.1) criteria released in February 2000 and then updated to current 1.1 version
in 2009 [28].

2.3. Data collection and curation

Two types of data were utilized: RWD and features extracted from CT scans. The two types of data were
utilized in two distinct pipelines: a Machine Learning (ML) and a Deep Learning (DL) approach.
The RWD were obtained during regular clinical examinations conducted prior to the initiation of treatment.
From the extensive range of clinical values available, 16 specific baseline RWD were selected for inclusion in this
study based on clinicians hypothesis-driven. The 16 used clinical data are collected and defined in Table 1.

Table 1: RWD; TNM is a system for classification of malignancies: T (Tumor) describes the size of
the primary tumor and its’ invasion into adjacent tissues, N (Node) describes regional lymph node
involvement of the tumor, M (Metastasis) identifies the presence of distant metastases of the primary
tumor [29].

An extensive data curation procedure was performed. Data originating from multiple sources were integrated
into a coherent dataset, duplicate patients and inconsistent values were eliminated, and missing data were
identified and filled with the assistance of clinicians, whenever possible. Finally, textual data were converted
into numerical and categorical values, and imputation techniques were employed to address any remaining
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missing data. Specifically, a multivariate imputer was utilized to fill the missing values by modeling them as
a function of other available data [30]. The other data used were features extracted from the primary tumor
volume of patients’ baseline CT scans. In ML pipeline, they were calculated with pyradiomics package and
encompassed shape characteristics, grey level properties, grey tone differences, and statistical attributes [31].
Conversely, in DL approach, features were directly extracted from the neural network.

2.4. Outcome

The target value is represented by the best overall response, i.e. the best response recorded from the first
radiological evaluation until disease progression according to the RECIST1.1 criteria [28].
The outcome analyzed for this study is Clinical Benefit Rate (CBR), which is defined as the percentage of
patients who have achieved complete response (CR), partial response (PR), or at least four months of stable
disease (SD) as a result of therapy [32].
The outcome, additionally to the at least four months SD, takes into account also the patients that had a
progression but with still a clinical benefit after at least 9 months. Two classes were defined, as shown in Table
2:

Table 2: Clinical Benefit Rate: definition of classes

The choice of using a clinical endpoint rather than the radiologic alone was done after discussions with clinicians,
as this endpoint can better distinguish patients who benefit from IO from refractory patients.

2.5. Model development

Two different approaches were used: one ML-based and the other DL-based, as shown in Figure 1.
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(a)

(b)

Figure 1: Two approaches: (a) Machine Learning and Deep Learning Illustration of methodological
workflow

2.5.1 Machine Learning

The first approach is a classification using ML pipeline (Fig. 1). The ML pipeline consisted of the segmen-
tation extraction from the CT scans by using 3D slicer, an open source software for visualization, processing,
segmentation, registration, and analysis of medical images [33]. Then, both the CT scan and the correspond-
ing segmentation of each patient were converted to NRRD (Nearly Raw Raster Data) format in order to be
processed with Pyradiomics package [34]. Subsequently, several steps were undertaken to extract and process
the features [18]. Three different feature sets were provided as input to the ML classifiers: radiomic features,
a combination of radiomics and RWD, and RWD alone. Finally, ML techniques were employed to predict the
outcome and provide corresponding explanations.

Image pre-processing

Image processing was located between the image segmentation and feature extraction step. It was used to
homogenize and process images from which radiomic features would be extracted with respect to pixel spacing
and grey-level intensities [18].
The image pre-processing was composed of three steps: normalization, outliers removal, sampling.
First of all, after computing the region of interest (ROI), normalization was applied in order to rescale grey-levels
to a specific range. The normalized intensity (f(x)) was calculated by centering the original intensity (x ) at the
mean (µx) with standard deviation (σx), where s was the scaling factor (set to default value 1), as shown in
Equation (1.3.1):
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f(x) =
s(x− µx)

σx
(1.3.1)

After this initial step, outliers were eliminated, and both the CT scan and the segmentation mask were resampled
to ensure complete matching resolutions and voxel sizes across all the CT scans and segmentations. The pixel
spacing was set to 1, a linear interpolator was applied, and no necessary additional padding was added.

Radiomic Feature Extraction

After the pre-processing process, the extraction of radiomic features was performed. To achieve this, the
featureextractor module from the Pyradiomics package [34] was utilized with the default parameters (no filter
applied, and all the features enabled to extract).
A total of 107 features were extracted, which were categorized into seven different classes: 18 features of the first-
order class, 14 shape descriptors, 75 texture features of Gray Level Co-occurrence Matrix (GLCM), Gray Level
Size Zone Matrix (GLSZM), Gray Level Run Length Matrix (GLRLM), Neighbouring Gray Tone Difference
Matrix (NGTDM), and Gray Level Dependence Matrix (GLDM) [31]. The calculated features were stored and
returned in an Excel file, where each feature was assigned a unique name comprising the applied filter (no filter
applied in this study), the feature class, and the feature name.

Feature selection

Feature selection was performed separately on the three feature sets.
Starting from radiomics, due to the high correlation often observed among radiomic features [35], a three-step
feature selection process was implemented to eliminate redundant information in the dataset. The steps involved:
(1) correlation analysis, (2) manual selection, and (3) the application of the Maximum Relevance-Minimum Re-
dundancy (MRMR) analysis technique [36]. For the correlation analysis, the Pearson correlation coefficient was
computed, and features with correlation coefficients exceeding thresholds of 0.8 (indicating positive correlation)
and -0.8 (indicating negative correlation) were identified and removed. Following this initial filtering process,
the remaining features were further evaluated to identify and exclude variables that displayed similar behavior
across the two classes. This step aimed to eliminate poorly significant variables from the analysis and resulted
in 21 final radiomic features. As final step, the MRMR algorithm was applied. MRMR aims at selecting the
features that had maximum relevance with respect to the target variable and minimum redundancy with respect
to the features that have been selected at previous iterations. In practice, at each iteration i, a score is computed
for each feature to be evaluated (f ). The feature that has the highest score at each iteration is added to the
set of selected features. Once a feature goes into the bucket, it cannot come out. The score is computed by
dividing F-statistic between the feature and the target variable by the Pearson correlation between the feature
and all the features that have been selected at previous iterations.
Regarding the RWD alone, the Pearson correlation coefficient was also calculated and the MRMR feature se-
lector was directly applied, without any manual selection in this case.
In case of combination of features, the 21 radiomic features were merged with 16 RWD and subsequently MRMR
feature selection was performed.

Machine Learning classifiers and evaluation

The study goal was a binary classification carried out with six Machine Learning classifiers: Logistic Regression
(LR) [37], Random Forest (RM) [38], Support Vector Machine (SVM) [39], CatBoost [40], AdaBoost [41] and
K-nearest neighbors (KNN) [42]. The CatBoost classifier utilized the CatBoost package [43], while all other
models were implemented using scikit-learn [30] in Python 3.7.0 [44]. ML models were trained using the three
feature sets and were evaluated both on an independent test set and on an external validation set.
In order to evaluate which model reached the best results in terms of prediction, several evaluation metrics were
computed: Accuracy, Precision, Recall, F1-score, ROC curve and AUC and Confusion Matrix. Additionally,
cross-validation with 5 k-folds was applied.

SHAP values computation

Once the best ML classifier was found for each feature set, SHAP values [45] were used to explain model
predictions, identifying the features that had the greatest impact on the outcome and understanding how they
influenced it. Shapley values are based on the idea that the outcome of each possible combination of f features
(f going from 0 to F, where F is the number of all the possible features available) should be considered to
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determine the importance of a single feature [45]. SHAP requires to train a predictive model for each distinct
combination of features S ⊆ F . The models are equivalent in terms of hyperparameters and dataset, the only
thing that changes is the set of features included. The idea is that the gap between the predictions of two
combinations of features (that differ from the presence of a specific feature) can be imputed to the effect of this
additional feature. This is called "marginal contribution" of a feature and it is the difference between model
trained with that feature present and model trained without that feature. Therefore, to obtain the overall effect
of a feature the differences are computed for all subsets S ⊆ F \ {i}. All these marginal contributions are then
joined in a weighted average. The formula for calculating the SHAP value of a feature is reported below:

ϕi(f) =
∑

S⊆F\{i}

|S|! · (|F | − |S| − 1)!

|F |!
[f(S ∪ {i})− f(S)] (2.5.5.1)

where F is the total number of features. f(S) is the prediction given the subset S and f(S∪{i}) is the prediction
given S including feature i and their difference is the so called marginal contribution.
Two approaches were used to provide the explainability of the model: global, for understanding the overall
structure of how a model makes decisions, and local, for understanding how the model made decisions for a
single prediction.
For the global solution, a SHAP summary plot was exploited [46]. It combines feature importance with feature
effects and it shows the positive and negative relationships between the features and the target variable (CBR
outcome). Each data point on the plot corresponds to an observation (patient). The features are arranged on
the y-axis based on their importance for the model, with the most important feature positioned at the top. On
the x-axis, the plot indicates whether the effect of the feature value is associated with a higher (class 1) or lower
(class 0) target value. Additionally, a color map is used to represent the feature values, where red indicates high
values and blue represents low values.
For the local SHAP analysis, waterfall plots [46] were generated for four types of predictions: one True Positive
(TP), one True Negative (TN), one False Positive (FP), and one False Negative (FN). In these plots, the features
are ordered from top to bottom based on their importance, and the contribution of each feature to the individual
prediction is displayed. Features that move the prediction towards class 1 are represented by red bars, while
features that contribute to predict class 0 are represented by blue bars.

2.5.2 Deep Learning

The second approach included the implementation of an end-to-end solution of DL pipeline. End-to-end learn-
ing in deep learning means that a single neural network model is trained to directly process raw input data
and produce the desired prediction without relying on explicit intermediate representations or manual feature
engineering. The model learns to automatically extract relevant features and make classification in a single
integrated process, encapsulating multiple stages of a traditional pipeline within a single network architecture
[47]. Two different feature sets were used: deep learning features (DL features) coming from the CT scans and
a combination of DL features and RWD. For the feature combination, the same RWD used in ML pipeline were
introduced to the DL model to obtain complete comparable results between DL and ML techniques.
To perform the classification with the two different feature sets, two models were utilized (see Fig. 1). The
first model, a 3D Convolutional Neural Network (3DCNN), solely processed input images. The second model, a
bimodal model, received a combination of both DL features and RWD as input. Prior to feeding them into the
network, the CT scans and segmentations underwent preprocessing steps. In the two models, the images were
resized differently. In the 3DCNN model, the images were resized from their original size of 512x512 pixels to
a smaller size of 18x18 pixels. In the bimodal model, the images were resized to the size of 64x64 pixels. Only
10 slices were retained by selecting the slices containing the segmentation. Subsequently, the region of interest
(ROI) was computed.
After that, the neural models were trained and tested with the same training, test and external validation sets
used for ML.

3D Convolutional Neural Network

The model fed with images only was a 3D Convolutional Neural Network (3DCNN) (Fig. 2).
The 3DCNN took as input both the CT image and the segmentation, along with the labels provided in an
Excel file containing the CBR outcomes for each patient. The neural network architecture consisted of three
convolutional layers, each followed by a rectified linear unit (ReLu), a max pooling layer, and a dropout layer.
Additionally, there were two linear layers, with the final layer dedicated to binary classification. The corre-
sponding architecture is shown in Figure 2.
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Figure 2: 3D Convolutional Neural Network (3DCNN): to process CT scans and segmentations

Bimodal model

In the bimodal model, two data modalities (RWD and DL features) were processed. Two neural networks were
implemented: a 3DCNN (Figure 3a), slightly different from the one used in Section 2.5.2, for processing the 3D
images and extract relative features, and a Feed-Forward neural network (FNN) for handling the RWD (Figure
3b). The FNN consisted of two linear layers, each employing a rectified linear unit (ReLU) activation function
and a dropout layer.
The features pertaining to CT scans and RWD were extracted from these two neural networks and concatenated
within the Bimodal model, where the classification process was carried out.
This is an implementation of intermediate fusion [48], wherein the data corresponding to each modality are
concatenated prior to classification. Intermediate fusion involves the transformation of raw inputs into a higher-
level representation by mapping them through a stack of layers. By unifying the feature representation, bimodal
feature maps are obtained, later used for classification.
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Figure 3: (a) 3D Convolutional Neural Network (3DCNN): to process CT scans and segmentations
(b) Feed-Forward Neural Network (FNN): to handle RWD

Model evaluation

Both the deep learning models were trained and evaluated on an independent test set and on an external
validation set. 50 epochs were used to train the 3DCNN and 100 epochs for the bimodal model. In order to
evaluate the models’ performances, Accuracy and Loss function were computed for all the epochs and the best
model parameters were saved.

SHAP Explainability

At the end, in case of model with images only, local SHAP values were used to explain the model predictions.
As regards deep learning, classification tasks in particular, since features are essentially pixels, model explainabil-
ity helps to identify pixels which contribute negatively or positively to the predicted class [49]. After computing
the SHAP values, the important pixels for the prediction are assigned colors: red pixels represent positive SHAP
values that contributed to classify that image in class 1, while blue pixels represent negative SHAP values that
contributed to classify that image in class 0.
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3. Results

3.1. Dataset description

The patient cohort used in this study was derived from a larger database comprising a total of 556 patients
with NSCLC treated with IO as any-line of therapy for advanced disease. Figure 4 illustrates the workflow of
patients throughout the study. The initial training and test cohorts comprised 426 patients, while the initial
external validation cohort consisted of 130 patients. The external validation set consisted of patients collected
at the same institution (Fondazione IRCCS Istituto Nazionale dei Tumori), but at a later time.
Within these two main groups, certain patients had to be excluded from the analysis due to either the inability
to evaluate their response to therapy or the absence of a target lesion.
In consultation with the clinicians, it was decided that only patients with a primary lung tumor would be
included in the study, resulting in a final cohort size of 375 patients.
In particular, a total of 236 patients were used as the training set, while 59 patients were allocated to the test
set. Additionally, 80 patients were reserved as an external validation set exclusively for the best-performing
model.

Figure 4: Patients subdivision: train, test and external validation cohorts

Patients included in the database exploited in this study shown a very high heterogeneity, including patients
with different stages (IIIA, IIIB, IVA, IVB). Concerning the RWD, some values were missing. Specifically, 1%
of smoking history, 1% of histology type, 11% of surgery, 4.5% of line of therapy, 33% of PDL1 group, 3% of
ECOG PS, 8.5 % of tumor stage, 10% of node stage, 9% of metastases stage and 11% of number of metastatic
sites were not possible to recover. Data imputation was applied to fill these missing values by modeling them as
a function of other available data. The patients characteristics are summarized in Table 3. It should be noted
that the subgroups of each characteristic may not provide the total count due to the presence of missing data.

11



Table 3: Patients characteristics

3.2. Classification with Machine Learning pipeline

In this section, the results of each ML model are reported and divided according to the three different feature
sets used in the study.

3.2.1 Radiomics

Feature Selection

To select the best set of features to feed the ML models, the first step involved checking for highly correlated
features by displaying the correlation matrix (see Figure 20 in Appendix A.1). Highly correlated features were
removed as they carry nearly identical information, rendering it redundant to include all of them in the model.
Out of the initial 107 radiomic features, 77 were found to be highly correlated, leaving 30 remaining features.
Subsequently, the remaining features were plotted based on the outcome, and those that did not differentiate
between class 1 and class 0, as well as those with many outliers considered as noisy, were eliminated. After
consultation with clinicians, a total of 9 radiomic features were removed, resulting in a set of 21 remaining
radiomic features.
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To determine the optimal number of features for each ML classifier, various values were tested by the MRMR
feature selector, and their corresponding performances were calculated.
Specifically, in Fig. 5, accuracy performances were plotted for 5, 10, 15, 20, and 21 features, allowing for the
selection of the values that yielded the best results. The performances were evaluated using training, cross-
validation and testing, where training was mainly used in order to check if the model was overfitting. For each
model, the number of features that yielded the best performances in terms of train accuracy, cross-validation
(C-V) accuracy and test accuracy was selected.

(a) Logistic Regression Accuracy (b) Random Forest Accuracy

(c) SVM Accuracy (d) CatBoost Accuracy

(e) AdaBoost Accuracy (f) KNN Accuracy

Figure 5: Radiomic features. MRMR feature selection: Accuracies on train, cross-validation and test
set for different numbers of selected features: (a) Logistic Regression, (b) Random Forest (c) SVM (d)
CatBoost (e) AdaBoost (f) KNN

In particular, by referring to Figure 5, 15 radiomic features were selected for LR (Fig. 5a), 20 for Random
Forest (Fig. 5b), 10 for SVM (Fig. 5c), 21 for CatBoost (Fig. 5d) and AdaBoost (Fig. 5e), and 10 features for
KNN (Fig. 5f).

Performances

Performances of all classifiers with optimal number of features are shown in Table 4. The LR classifier demon-
strated the most promising results on radiomics dataset with an accuracy = 0.61 and AUC = 0.58.
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Table 4: Radiomics: Performances of classification models on the test set

The corresponding confusion matrix, which is used to display the results according to predicted and actual
values, is shown in Figure 23 in Appendix A.2. To assess the robustness and performance of this model, the
external validation set was utilized. The performance metrics of the LR model on the external validation set
are presented in Table 5.

Table 5: Radiomics: Performance of LR on external validation set

Explainability analysis

In this section are outlined the results obtained applying the SHAP algorithm on the best performing model LR
classifier by using 15 radiomic features for the classification of the CBR outcome. SHAP values are calculated
on test set. Both the global and the local Explainability results were reported in the following plots, where
Figure 6 shows how the features impact globally the predictions for all the patients, while in Figure 7 is shown
how the features influenced four single instances: True Positive (TP), True Negative (TN), False Positive (FP)
and False Negative (FN).
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Figure 6: Radiomics: Global Explainability of LR on test set

Figure 6 represents the global explainability performed on test set predictions. It’s evident that the feature
that has highest influence in the model’s outcome is Major Axis Length. It belongs to the shape class, where
features are descriptors of the three-dimensional size and shape of the ROI and are independent from the gray
level intensities distribution in the ROI. This kind of feature measures the largest axis length of the ROI-
enclosing ellipsoid [34]. Specifically, based on the plot, lower values of this feature move the prediction towards
class 1, meaning that they are associated with class 1, while higher values are more likely to be present in
patients belonging to class 0.

(a) True Positive (b) False Positive

(c) True Negative (d) False Negative

Figure 7: Local Explainability with radiomics on the test set: (a) Class 1 patient correctly classified
as such; (b) Class 0 patient incorrectly classified as class 1; (c) Class 0 patient correctly classified; (d)
Class 1 patient incorrectly classified as class 0

In Figure 7, four waterfall plots are depicted. Taking as examples True Positive (Fig. 7a) and False Positive
(Fig. 7b) E[f(x)] = 0.492 indicates the average of the predicted outcomes, while f(x) is the predicted outcome
(1 in both cases). Numbers on the bars represent the SHAP values. The sum of all the SHAP values is equal
to the quantity E[f(x)] - f(x). Also in this case the feature that has a highest influence on both the predictions
is the Major Axis Length. More precisely, if the value it’s low (mean is 60,38), which happens in both the
predictions (32.149 in TP and 35.249 in FP) it is associated with class 1. This could be clarified by referring
to Figure 7d, which explains a false negative prediction. In this case, the value of the same radiomic feature is
high (105.055), and it influences the prediction towards class 0.

3.2.2 RWD

In this section, results obtained with RWD alone are presented.
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Feature Selection

The correlation matrix demonstrated that none of the RWD were correlated with each other (see Fig. 22 in
Appendix A.1). Therefore, all of them were utilized as input for the MRMR algorithm, without any additional
manual selection before.
The optimal number of features among 5,10,15 and 16 for each model was determined by considering train,
cross-validation, and test accuracies, as outlined in Figure 8:

(a) Logistic Regression Accuracy (b) Random Forest Accuracy

(c) SVM Accuracy (d) CatBoost Accuracy

(e) AdaBoost Accuracy (f) KNN Accuracy

Figure 8: RWD. MRMR feature selection: Accuracies on train, cross-validation and test set for different
numbers of selected features: (a) Logistic Regression, (b) Random Forest (c) SVM (d) CatBoost (e)
AdaBoost (f) KNN

In case of RWD, 10 features were selected for LR (Fig. 8a), 16 for Random Forest (Fig. 8b), 15 for SVM (Fig.
8c), CatBoost (Fig. 8d) and AdaBoost (Fig. 8e), and 16 features for KNN (Fig. 8f).
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Performances

Subsequently, each ML model was trained using the determined optimal number of features, and the corre-
sponding performance metrics are presented in the table below:

Table 6: RWD: Performance of classification models on the test dataset

SVM fed with 15 features, resulted as the best performing model with an accuracy = 0.68 and AUC = 0.71.
The SVM confusion matrix is represented in Figure 24 in Appendix A.2. Then, it was tested on the external
validation set, bringing to the results presented in Table 7:

Table 7: RWD: Performance of SVM on the external validation set

17



Explainability analysis

As done before, SHAP values were calculated to compute the local and global explanation of best performing
model SVM on the test set.

Figure 9: RWD: Global Explainability of SVM on test set

Figure 9, in which is shown the global explanation, the RWD that has the highest influence in the model’s
outcome is Line of therapy. Specifically, lower values of this data move the prediction towards class 1, while
higher values are more likely to impact "negatively" on the model, meaning that they are associated with class
0.

(a) True Positive (b) False Positive

(c) True Negative (d) False Negative

Figure 10: Local Explainability with RWD on the test set: (a) Class 1 patient correctly classified as
such; (b) Class 0 patient incorrectly classified as class 1; (c) Class 0 patient correctly classified; (d)
Class 1 patient incorrectly classified as class 0

The four waterfall plots presented in Figure 10 depict predictions for True Positive, True Negative, False Positive,
and False Negative. Taking TN (Fig. 10c) and FN (Fig. 10d) as examples, the Line of therapy is equal to 3
and 2, respectively. This implies that the TN patient received therapy in the third line, while the FN patient
received therapy in the second line. In both cases, this feature contributes to predict class 0. However, for TN,
a higher value of Line of Therapy (3) results in a larger negative SHAP effect (-0.29), whereas for FN, with a
lower line of therapy (2), the negative SHAP effect diminishes (-0.2).

3.2.3 Radiomics and RWD combination

In this section, results achieved from the combination of radiomics and RWD are shown.
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Feature Selection

Correlation Matrix containing both radiomics and RWD is shown in Figure 21 in Appendix A.1. The matrix
revealed no correlation between the RWD either between each other or with the radiomics.
Same 77 correlated features were found, and the same set of 21 radiomic features, obtained after applying
the procedure described in Section 3.2.1 to remove highly correlated, poor informative and noisy features, was
utilized.
The 16 baseline RWD were included in this dataset, resulting in a dataset composed of 37 features. The MRMR
feature selector was then applied to select the optimal number of features for each model. Specifically, the
accuracy of all six ML models on cross-validation, training, and testing datasets was plotted for 5, 10, 15, 20,
25, 30, 35, and 37 features. This allowed to determine the optimal number of features that achieved the highest
performances for each model.

(a) Logistic Regression Accuracy (b) Random Forest Accuracy

(c) SVM Accuracy (d) CatBoost Accuracy

(e) AdaBoost Accuracy (f) KNN Accuracy

Figure 11: Radiomics and RWD. MRMR feature selection: Accuracies on train, cross-validation and
test set for different numbers of selected features: (a) Logistic Regression, (b) Random Forest (c) SVM
(d) CatBoost (e) AdaBoost (f) KNN

19



By referring to accuracies plotted in Figure 11, 25 features were selected for LR (Fig. 11a) and Random Forest
(Fig. 11b), 10 for SVM (Fig. 11c), 25 for CatBoost (Fig. 11d), 20 for AdaBoost (Fig. 11e) and 10 features for
KNN (Fig. 11f).

Performances

The evaluation metrics on test set for the six ML models with optimal number of radiomics and RWD are shown
in the Table 8.

Table 8: Radiomics and RWD: Performance of classification models on the test dataset

As for radiomic features dataset, the LR classifier performed better than the other models, achieving accuracy
= 0.69 and AUC = 0.73 with 25 features. The confusion matrix is shown in Figure 25 in Appendix A.2. LR
was tested on the external validation set and the results are presented in Table 9.

Table 9: Radiomics and RWD: Performance of LR on external validation set
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Explainability analysis

The features coming from the MRMR feature selection process are listed in Table 10.

Table 10: List of radiomics and RWD selected for LR

The SHAP values for LR fed with 25 features were computed on the test set. Global SHAP (see Fig. 12)
revealed that the two features that most strongly influenced the predictions were first ECOG PS (RWD) and
Large Dependence Emphasis (LDE), a radiomic feature. In the case of ECOG PS, higher values of this feature
shifted the predictions towards class 1, which is confirmation of what is assessed by clinical practice, as a lower
value on the ECOG PS scale indicates better patient clinical condition [50].
Large Dependence Emphasis belongs to the Gray Level Dependence Matrix (GLDM) class, wherein the features
quantify the number of connected voxels within a distance δ that depend on the center voxel. A neighbouring
voxel with a gray level j is considered dependent on center voxel with gray level i if |i− j| ≤ α [34].
LDE can be translated into a measure of the texture of the lesion, where higher values indicate a more homo-
geneous texture. The plot in Figure 12, reveals that high values for LDE are correlated with class 1, suggesting
that a more homogeneous texture is most likely to correspond to a class 1 patient.

Figure 12: Radiomics and RWD: Global explainability of LR on test set

In order to understand how the features impact single predictions, waterfall plots (Fig. 13) for the local
explainability were computed, by choosing again one TP, one TN, one FP and one FN.
Taking Figure 13c as an example, the feature that has the most significant impact on the prediction is ECOG
PS, which has a value of 2 and it brings the prediction towards class 0. In this case, the patient was correctly
classified as belonging to class 0. The same trend could be seen for the number of metastatic sites, which is also

21



(a) True Positive (b) False Positive

(c) True Negative (d) False Negative

Figure 13: Local Explainability with radiomics and RWD on test set: (a) Class 1 patient correctly
classified as such; (b) Class 0 patient incorrectly classified as class 1; (c) Class 0 patient correctly
classified; (d) Class 1 patient incorrectly classified as class 0

high in this case and it moves prediction towards class 0.
Moving on Figure 13d, it demonstrates that the two primary features influencing the prediction towards class
0 are ECOG PS and Large Dependence Emphasis (LDE). The incorrect prediction is reasonable considering
that ECOG PS (1) is relatively high (ranging from 0 to 2 in the present study), while LDE is low (below the
mean value of 426.3). As clarified by the plot in Figure 12, high values of ECOG PS and low values of LDE are
correlated with class 0, which further justifies the erroneous prediction.

3.3. Classification with the Deep Learning pipeline

For the training of DL models, Pytorch 1.13.1 library was used [51]. Cross Entropy Loss [52] was used in
the pipeline with only CT scans, while Binary Cross-Entropy with logits Loss (BCEWithLogitsLoss) [53] for
bimodal model. The loss function is used to quantify the model’s error by assessing the disparity between
the predicted output and the true target value. For both the solutions, Adaptive Moment Estimation (Adam)
optimizer was employed with a learning rate equal to 0.005. Adam optimizer is really used in deep learning
problems since it is fast, efficient and it requires little memory [54]. The method computes adaptive learning
rates for different parameters from estimates of first and second moments of the gradients and its primary goal
is to minimize the loss function.
The results obtained from the end-to-end deep learning solutions are categorized into the two feature sets used:
DL features and combination of DL features and RWD.

3.3.1 DL features

Cross Entropy Loss is applied. Cross Entropy loss measures the performance of a classification model whose
output is a probability value between 0 and 1. Cross Entropy loss increases as the predicted probability diverges
from the actual label.

Performances

CT scans and the corresponding segmentations were given as input to the 3DCNN. The plots showing training
and test accuracy and loss function are reported in Figure 14.
Based on both metrics, overfitting is present, which means that the model performs well during training but
performs poorly on test data, which represents unseen data. In case of accuracy, the majority of epochs show
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(a) Train and Test Loss (b) Train and Test Accuracy

Figure 14: DL features: Performance on training and testing: (a) Loss function (b) Accuracy

significantly lower test accuracy compared to the training accuracy. The train loss demonstrates a consistent
pattern of decreasing as the number of epochs increases. However, the test loss function exhibits an irregular
behavior, increasing instead of decreasing from left to right. The best value for test accuracy is 0.63, reached
at epoch 42, where the test loss is 0.887. In the same epoch, train accuracy is 0.63 and train loss is 0.852. As
done for ML pipeline, the external validation set was used in order to test the robustness and performance of
the model. The results on the external validation set are collected in Table 11.

Table 11: 3DCNN: Performance on external validation set in the best epoch

Explainability analysis

Local explanation on the test set was carried out using the SHAP algorithm, showcasing four predictions: TP,
TN, FP, and FN (Figure 15). Specifically, two images are presented for each prediction. The left image displays
one slice of the CT scan. In the slice, only segmentation is present, as the model resized the original CT scan
by zooming in on the ROI region. The right image represents the pixel-level explanation of the corresponding
slice.

(a) True Positive (b) False Positive (c) True Negative (d) False Negative

Figure 15: Explainability with DL features on test set: (a) Class 1 patient correctly classified as such;
(b) Class 0 patient incorrectly classified as class 1; (c) Class 0 patient correctly classified; (d) Class 1
patient incorrectly classified as class 0

In SHAP explanations, pixels that contribute to a specific prediction are assigned colors. Specifically, red pixels
influence the prediction towards class 1, while blue pixels influence the prediction towards class 0. Figure 15a
(TP) and Figure 15b (FP) provide examples. In both explanations, a significant number of red pixels can be
observed. In the case of TP, the region of the ROI highlighted in red leads to the correct prediction, whereas
in the case of FP, the highlighted pixels contribute to an incorrect prediction.
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3.3.2 DL features and RWD

Binary Cross-Entropy with logits Loss (BCEWithLogitsLoss), commonly used for binary classification problems,
was utilized [53]. This kind of loss combines a Sigmoid layer and the Binary Cross Entropy Loss (BCELoss) in
one single class. This version is more numerically stable than using a Sigmoid layer followed by a BCELoss as,
by combining the operations into one layer.

Performances

By adding RWD, training and test performances are plotted in Figure 16:

(a) Train and Test Loss (b) Train and Test Accuracy

Figure 16: DL features and RWD: Performance on training and testing: (a) Loss function (b) Accuracy

In Figure 16a, the loss behavior is illustrated. The training loss, again, follows a typical trend, decreasing from
the initial epochs as the number of epochs increases. However, the test loss indicates that the model may not
be learning effectively, as the loss value remains relatively stable without decreasing as seen in training.
In the accuracy plot (Fig. 16b), both the training and test accuracies show an increasing trend from left to
right. For the test set, the highest accuracy of 0.64 is achieved at epoch 60, where test loss is equal to 0.170. In
the same epoch, the train accuracy is equal to 0.64, while train loss is 0.022.
After these results were computed and the best model parameters were saved, the same model was tested on
the external validation set and the following results were reached:

Table 12: Bimodal model: Performance on external validation set in the best epoch

4. Discussion

4.1. Machine Learning: Response Outcome Results

One of the objectives of this study was to evaluate the predictive capability of radiomic features, either alone
or in combination with Real World Data (RWD), for determining the response to IO in patients with advanced
NSCLC. The Clinical Benefit Rate (CBR) was chosen as the outcome measure to predict, and three different
feature sets were utilized to investigate this purpose: radiomic features, RWD and a combination of radiomics
and RWD. Six different machine learning classifiers were trained to predict the CBR outcome for each of the
three feature sets. The best performing model was selected for each feature set: LR was found to be the best
performing model for both the radiomics and combination feature sets, while SVM was chosen as the best
performing model when only RWD were considered.
Figure 17b illustrates the performance of these best performing ML models for each feature set, as measured
by accuracy and AUC metrics.
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(a) Accuracy (b) AUC

Figure 17: ML performance comparison between three feature sets: radiomics, RWD and radiomics
combination, RWD

From figures it evident that in ML, radiomics alone were not efficient in the classification (accuracy = 0.61),
while RWD demonstrated greater robustness and efficiency in predicting therapy response (accuracy = 0.68).
However, the results of this study revealed that the addition of radiomics to RWD did not add significantly
more information compared to a prediction model based solely on RWD. In fact, accuracy reached with the
combination was 0.69, while RWD got 0.68. These findings are consistent with other studies, as explored by
Peisen et al. [55], where baseline CTs did not add additional information to the prediction of response after
three months, compared to a prediction model based on baseline clinical parameters alone. To provide a broader
perspective, the AUC metric is plotted (see Fig.17b), confirming the low predictive power of radiomics alone
(AUC = 0.58), while a similar performance of RWD and radiomics combination (AUC = 0.73) and RWD (AUC
= 0.71). Results in terms of AUC are useful for comparing the present study with other works found in the
literature, such as the work by Yu et al. [56], where the combination of RWD and radiomics achieved an AUC of
0.81. The results in the present study are slightly lower but still comparable. Furthermore, similar findings were
reported, as the combination of RWD and radiomics exhibited higher predictive power compared to radiomics
alone.

4.2. Explainability analysis Results

In order to provide a comprehensive explanation of how both radiomics and RWD are utilized to predict the
response in ML, SHAP Summary Plot obtained from the LR model trained on the combination of radiomics
and RWD (refer to Fig. 12 in Section 3.2.3) are considered. Firstly, it is important to note that the model
achieved an accuracy of 0.69 and an AUC of 0.73. These results indicate that further work is required to im-
prove the model’s performance and enhance its reliability. Although the AUC of 0.73 is considered acceptable,
it does not reach the level of excellence, particularly for medical applications, where AUC should be higher than
0.8 [57]. Given that the model’s performance is not outstanding, the reliability of its interpretability may be
compromised. As a result, the interpretability of the model may exhibit bias towards certain features and their
corresponding value explanations, which may not be entirely reliable.
As already discussed in Section 3.2.3, the RWD ECOG PS emerged as the most influential in making predic-
tions with the combination of RWD and radiomics. Additionally, the treatment received by the patients also
provides valuable information. Notably, the IO_IOCT indicates that patients who received a combination of
chemotherapy and IO (coded as IO_IOCT = 0) have a higher probability of positive response outcomes. This is
inline with clinical knowledge, since there are many studies that confirm that anti-PD-(L)1 antibody combined
with chemotherapy is more efficient than IO monotherapy for advanced NSCLC patients [58] [59]. The SHAP
Summary Plot reveals interesting insights into the radiomic features. For instance, the second feature, Large
Dependence Emphasis (LDE), is considered as an example. A higher value of LDE feature is associated with a
more homogeneous texture in terms of radiomic meaning. Homogeneity of the texture can be further supported
by visualizing the regions of interest (ROI) in two CT scans: one corresponding to a high value of LDE and the
other corresponding to a low LDE. To illustrate this, ROI images are presented in Figure 18. The left image
(Fig. 18a) represents the CT scan with a high LDE value, while the right image (Fig. 18b) corresponds to the
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CT scan with a low LDE value. By comparing these images, it becomes evident that the high LDE value is
associated with a more homogeneous texture, as indicated by the visually consistent appearance of the ROI. In
contrast, the low LDE value is indicative of a more heterogeneous texture, as observed by the presence of pixel
variations and irregularities within the ROI. This visual demonstration reinforces the relationship between the
LDE feature and the homogeneity of the texture in the CT scans.

(a) LDE = 581.914 (b) LDE = 257.381

Figure 18: Examples of two CT scans: (a) High value of Large Dependence Emphasis (b) Low value
of Large Dependence Emphasis

Another interesting feature to analyze is the Major Axis Length, which measures the largest axis of the ellipsoid
containing the ROI. By comparing two CT scans, the change in value can be easily assessed. In Figure 19a,
the image shows a larger tumor area (green zone), and as expected, the Major Axis Length value is higher.
Conversely, the Figure 19b depicts a smaller tumor region, which is confirmed by the lower value of this radiomic
feature.

(a) MajorAxisLength = 80.663 (b) MajorAxisLength = 30.327

Figure 19: Examples of two CT scans: (a) High value of Major Axis Length (b) Low value of Major
Axis Length

In the DL pipeline, SHAP values provided initial insights into the functioning of neural networks. However,
further analysis is necessary to fully comprehend which tumor characteristics contribute to specific predictions.
From figure 15 in Section 3.3.1, it seems that the network primarily focuses on the edges of the ROI. In all four
explanations, the colored pixels are concentrated along the edges, while the internal region of the ROI does not
significantly influence the prediction.

4.3. Comparison between ML and DL pipelines

One of the objectives of this study was to evaluate the performance of ML and DL techniques (Table 13) and
determine which approach could be superior in predicting IO response in this clinical context. Since the dataset
was balanced with respect to classes in the test set, the performances can be compared based on test accuracy
results.
When considering models that uses features derived from CT scans, DL (acc = 0.63) on the test set demonstrates
slightly higher efficiency compared to ML (acc = 0.61). However, when incorporating both RWD and features
derived from CT scans, ML technique (acc = 0.69) outperforms DL approach (acc = 0.64). Furthermore, when
combining CT scans features with RWD, ML techniques exhibit an increase in their predictive performance.
Indeed acc = 0.61 is achieved with radiomics only, while acc = 0.69 with the combination. However, this does
not happen for DL, where performance achieved using CT scan features (acc = 0.63) and performance with
the combination (acc = 0.64) can be considered comparable. Considering external validation, more significant
improvement when adding RWD to CT scan features is observed.
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Table 13: Machine Learning and Deep Learning performance comparison

4.4. Limitations and Future research

Finally, none of the ML and DL approaches with the present data types yielded satisfactory results that would
allow the model to be applied in possible clinical practice. There could be several reasons for this. Firstly
the population included an heterogeneous cohort of patients treated with IO in a wide range of time (2013 –
2023), when different CT image acquisition protocol were applied. In addition, CT scan exams were performed
at different Institutions. These two considerations could have produced some intrinsic noise during the feature
extraction. In both ML and DL pipelines, including wider and more homogeneous cohort of patients to the
current dataset would likely improve performance, particularly for DL methods, which benefit from large volumes
of data to effectively learn patterns. Secondly, the number of features utilized could be expanded. The current
image pre-processing and feature extraction and selection methods may not be the optimal solutions for this
type of problem. In the ML approach, it is important to note that no specific filter was applied to extract the
features. However, a broader range of features could be extracted by employing various types of filters, such
as Wavelet filters, Laplacian of Gaussian filters, and logarithmic filters. These filters are commonly used in the
field and have the potential to capture different aspects of the underlying data [31] [60]. his approach would
enable the inclusion of a larger quantity of radiomic features that could be explored in terms of their predictive
capabilities. Additionally, conducting a more precise analysis of highly correlated features would be crucial to
avoid excluding important features that are associated with the outcome. For both ML and DL approaches,
the implementation of additional image preprocessing techniques can enhance the quality of input images and
contribute to more accurate feature extraction. The third main limitation of the present study is that it is not
sufficient to apply ML and DL solely for predicting response outcomes. Survival outcomes, such as progression-
free survival (PFS) and overall survival (OS), should also be considered to gain a deeper understanding of
the problem. Additionally, the combination of RWD and CT scans with other data types, since they are more
relevant clinical outcomes. This is supported by numerous studies in the literature, including the work by Bohem
et al. ??, which demonstrated the improvements achieved by integrating features from different data modalities
(histopathological, radiomic, genomic, and clinical data) into multimodal models. Another potential solution,
considering the data types used in the present study, is the utilization of delta-radiomic features. These features
represent the differences between radiomics extracted from two CT scans: the baseline CT scan and the post-
treatment CT scan ??. Incorporating delta-radiomic features may provide valuable information on the changes
in radiomic characteristics over the course of treatment, potentially improving the predictive capabilities of the
models. Last main problem concerns DL approach, where preliminary were found. To improve performance,
transfer learning techniques could be employed. Transfer learning is a commonly used technique to improve
generalization in the current task by leveraging knowledge gained from previous tasks and datasets. In practice,
models are initially trained on a different dataset that is unrelated to the current task. The model’s weights
are saved, and then are used in the current model to avoid starting from random initializations. This approach
allows the model to benefit from the learned previous task, potentially enhancing performance on the current
task. Another potential approach for improvement is the exploration of different neural network architectures.

5. Conclusions

The objective of this study was to identify radiomic and clinical biomarkers associated with IO benefit in a
cohort of patients with NSCLC. With clinical and radiological data collected at Istituto Nazione dei Tumori di
Milano, both ML and DL pipelines were developed. The findings suggest that incorporating clinical evidence
with quantitative information extracted from medical images can improve the predictive performance of the
outcome. However, this improvement is observed only in the ML solution. It is worth noting that in the
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DL pipeline, the addition of RWD does not lead to a significant enhancement in performance in the test set.
Considering external validation, in DL more significant improvement when adding RWD to CT scan features is
observed. Furthermore, the main findings of the present study indicate that the ML solution outperforms the
DL approach when both data modalities are used. On the other hand, the DL model exhibits a slightly superior
performance compared to the ML model with CT scans features only. Medical applications require very high
reliability and performances in order to be applied in clinical practice. These initial achievements could be the
base of the ultimate and ambitious goal of developing novel tools for selection of ideal candidates for IO. So by
investigating and incorporating future perspectives, this research may have the potential to contribute to the
development of innovative approaches that can be applied in clinical practice.
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A. Appendix

A.1. Correlation Matrices

Figure 20: Radiomic features Correlation Matrix
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Figure 21: Radiomics and RWD Correlation Matrix
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Figure 22: RWD Correlation Matrix

A.2. Confusion Matrices

Figure 23: Radiomic features: LR Confusion Matrix on the test set
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Figure 24: RWD: SVM Confusion Matrix on the test set

Figure 25: Radiomics and RWD: LR Confusion Matrix on the test set
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