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1. Introduction
Emergency departments (EDs) strive to provide
high-quality 24/7 emergency care to severely ill
or injured patients. ED performance and over-
crowding affect the functioning of other parts of
the hospital and, indirectly, the "healthcare sys-
tems and communities at large" [1]. Poor per-
formance of the ED and overcrowding lead to
delays, prolonged hospitalization, and improper
resource allocation, which reduce the quality of
the provided care and increase costs. Moreover,
these negative consequences can lead to worse
patient health outcomes and high admission and
re-admission rates or produce adverse effects for
the providers, the healthcare system, and the
community [1]. Exposing the providers to heavy
workload, for instance, hinders timely service
provision and clinical decision-making, thus in-
creasing the length of stay (LOS) [1]. This
consequence is particularly relevant since longer
LOS increases the risk of contracting hospital-
acquired infections and is "associated with higher
patient mortality and worse outcomes" [2].

1.1. Purpose and goals
Due to the issues introduced above, to guaran-
tee the proper functioning of the hospitals in

their entirety and, thus, improve patient out-
comes, it is crucial to monitor and enhance ED
performance continuously. To achieve this, this
thesis aims to find a suitable way to evaluate
the clinical impact of complex patient charac-
teristics on ED logistics and to support hospital
management in better understanding and inter-
vening regarding the problems leading to exces-
sive LOS within the ED. More specifically, the
main goal consists in achieving such an aim by
designing and implementing a simplified and em-
pirical process model describing the ED system.
In this perspective, patient flow modeling based
on real-world data can help find which factors
impact the system performance in given situa-
tions, support decisions concerning resource al-
location and utilization, and help improve the
process pathways and perform patient stratifica-
tion. The primary benefit of achieving this the-
sis’ goals is that the employed approach for eval-
uating the impact of clinical covariates on logis-
tical outcomes could become the starting point
for future operational research studies aiming to
test LOS optimization procedures in the ED.
Consequently, it could become easier to avoid
the discussed negative consequences of longer
LOS on patients, staff, and management.
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2. Materials and methodology
Data sampling was performed by the hospi-
tal Akademiska sjukhuset, which provided two
datasets regarding the patients who sought care
from their ED in 2019. The datasets were then
analyzed and bridged through Python program-
ming, and relevant information was extracted.
The ICD-10 terminology associated with the
main diagnosis of each patient was simplified to
the corresponding macro diagnostic area by be-
ing shortened to the first letter (variable "sim-
ple_diag"). Other variables of interest were
computed. The patients with no age informa-
tion, those discharged in 2020, and those who
visited the ED during June, July, and August,
were censored from the dataset. The latter was
reshaped to introduce a time coordinate and
a state variable to interpret the process as a
Continuous-Time Markov Chain (CTMC) for
performing the parameter estimation from the
data. After having grouped four possible modal-
ities of discharge ("taken in charge by consul-
tants", "death of the patient", "redirected", and
"other, unspecified"), a numerical identifier was
associated with each of the remaining states as
in figure 1. Contextually, these were assigned to
have the patients in one of the two initial states
at time 0, in state 3 after one minute, and in one
of the final states at time "LOS + 1 minute".
Five independent sub-sets were extracted with
different random seeds and a stratified sampling
by proportionate allocation of the values taken
by simple_diag. Four samples contained 933 or
934 patients each and were used to extract suit-
able covariate sets; a sample of 5031 patients
was used to assess the model’s validity. For all
such samples, the distribution of all the covari-
ates resulted consistently among the sub-sets.

2.1. Modeling approach & technique
The employed modeling approach is "nonlinear
mixed-effects modeling" (NLMEM). It includes
fixed (F.E) and random effects (R.E), where
F.E represent typical population values, and
R.E represent inter-individual, intra-individual,
and residual variability. It describes a response
variable as a function of the predictor vari-
ables while recognizing correlations within sam-
ple subgroups, providing a good compromise be-
tween ignoring data groups entirely and fitting
each group separately. A nonlinear mixed-effects

model for M individuals and ni observations on
the ith individual can be described as:

yij = f(ϕij ,vij) + ϵij ,

i = 1, ...,M, j = 1, ..., ni. (1)

ϵij is a normally distributed within-individual
error term and f a general, real-valued, differen-
tiable function of an individual-specific parame-
ter vector ϕij and a covariate vector vij . When
equation 1 describes a mixed-effects model that
is nonlinear, f must be nonlinear for at least one
component of ϕij . The latter is modeled as:

ϕij = Aijβ +Bijbi, bi ∼ N (0,Ψ), (2)

where β is the F.E vector, bi is the R.E vector
for the ith individual, and Ψ is the variance-
covariance matrix. The matrices Aij and Bij

are individual-dependent and possibly depen-
dent some covariates at the jth observation [3].
Given the choice of NLMEM and the intention
to exploit its data longitudinalization, but also
given the performed data analysis and compar-
ison among modeling techniques, it was chosen
to describe the process as a Markov Chain with
"memory 1". In this framework, the observed
data take values in a fixed finite set of categories,
and the observations for any ith individual are of
a sequence of random variables. The dependence
between observations from the same individual
is defined so that, for each observation, to deter-
mine the distribution of yij , no older value than
the one of the immediately preceding observa-
tion is needed. Being the observations reported
at different times for each patient, a CTMC ap-
proach was selected. In a CTMC, the system
stays "in the current state for some random time
before transitioning" to a new one [4].

Figure 1: 6-states Markov Chain Model.

The base model in figure 1 was translated into a
structural model in Monolix, the chosen software
for implementing the NLMEM approach.
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2.2. Parameter estimation and addi-
tional tasks

Once designed the structural model, it was
chosen to estimate the parameters via "Max-
imum Likelihood Estimation" and to describe
q34 (transition from the ED to the home), q35
(ED to a hospital ward), and q36 (ED to an-
other discharge type) with a log-normal proba-
bility distribution. The first task performed on
the dataset estimated the population parameters
via the "Stochastic Approximation Expectation-
Maximization" (SAEM) algorithm. The sec-
ond task estimated the conditional distribu-
tion for each individual and parameter and com-
puted conditional means and standard devia-
tions. The third task estimated the mode of
the conditional distribution for each individual.
The fourth task returned the correlation ma-
trix and the uncertainty of the estimated pa-
rameters. Moreover, it computed the condition
number (C.N) to help detect any model over-
parameterization. The fifth task estimated
the log-likelihood and computed the corrected
Bayesian Information Criterion (BICc).

2.3. Model and procedure design
An experimental protocol was defined to pro-
cess the available data and select meaningful co-
variates to be included in the process model for
describing complex patient characteristics in re-
lation to the LOS within the ED. The protocol
is shown in figure 2, and the extraction of the
data sub-sets mentioned in such a scheme is dis-
cussed in chapter 2. Concerning the employment
of the automatic covariate model building
tool called "COSSAC", this algorithm exploits
the information contained in the base model run
to choose which covariate to try. It uses the cor-
relation between individual parameters (I.P) or
R.E and covariates as hints at possibly relevant
parameter-covariate relationships. Such corre-
lation values are calculated using samples from
the a posteriori conditional distribution (see sec-
tion 2.2). For evaluating the continuous covari-
ates, Pearson’s correlation test is used to derive
a p-value, whereas ANOVA is employed for the
categorical covariates. These p-values are then
used to sort which random effect-covariate rela-
tionships to include in the model [4]. The COS-
SAC iteration yielding the best covariate set was
mainly chosen based on the value of the BICc.

Figure 2: Experimental protocol.

Figure 3: Validation protocol.

Concerning validity assessment, this is shown
in figure 3. Starting from the base model, the as-
sociated initial estimates for the "testing" data
sub-set, and the covariate sets selected with the
COSSAC algorithm, each set was individually
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applied to such a base model. For each set, a
parameter estimation run was executed on the
"testing" sub-set, the outputs were compared,
and one covariate was a posteriori excluded. The
covariate sets subjected to covariate exclusion
were tested again on the "testing" data sub-set.
All model outputs were compared, and the best-
performing model was determined accordingly.

3. Results
After comparing the existing modeling tech-
niques for process modeling in healthcare, re-
sults related to the steps of the experimen-
tal protocol (figure 2) were produced. In the
first estimation run of the base model with-
out covariates on the five data sub-sets, the
relative standard error (R.S.E.) for all param-
eters resulted reasonably across the data sub-
sets. The Shapiro-Wilk (S.W.) normality test
on the R.E and the transformed I.P confirmed
their normality. The T-test among R.E showed
no correlation. The values of the C.N indicated
good confidence in the model not being over-
parameterized, and the normalized prediction
distribution errors (NPDEs) resulted normally
distributed. At this stage, two covariates on
which the I.P clearly showed no dependence were
excluded. The application of the COSSAC algo-
rithm to the four "training" data sub-sets then
produced the results shown in section 3.1.

3.1. CTMC Modeling
For random seed n° 1 the selected covari-
ates are: "T" for q34; "AmbulYN", "K", and
"ScanYN" for q35; "MA_unit" and "Z" for q36.
For seed n° 2: "R" for q34; "K" and "age"
for q35; "Z" for q36. For seed n° 3: "M" and
"age" for q34; "MA_unit" and "age" for q35;
"A", "K", and "ScanYN" for q36. For seed
n° 4: "E", "K", "M", "ScanYN", and "age"
for q34; "A", "I", "K", and "Z" for q35; "Z"
for q36. Once for each set of covariates, a set
was applied to the base model, and a new esti-
mation run was performed on the corresponding
data sub-set from which the covariate set had
been extracted. For all sets, the new estima-
tion resulted in good R.S.E. on the population
parameters, normally distributed NPDEs, and
improved likelihood values. However, for seeds
1 and 3, it became impossible to compute the
standard error and R.S.E. for a F.E of the co-

variate MA_unit. Moreover, the C.N. resulted
in 65.19 for seed 2 but was not computable for
seeds 1,3, and 4. Lastly, the correlation test be-
tween I.P and covariates suggested removing two
possible classes of MA_unit for seed 1.

3.2. Validity analysis
The extracted covariate sets were applied to the
base model and tested on the "testing" data
sub-set. The S.W. normality tests confirmed
the normality of all R.E and transformed I.P
in the test with no covariates. The Kolmogorov
Smirnov adequacy test confirmed that the I.P
were samples from a mixture of transformed nor-
mal distributions. No correlation between R.E
was found, and the NPDEs were normally dis-
tributed. The C.N values indicated good confi-
dence in the model not being over-parameterized
for the model with no covariates and the one
with covariate set number 2 since such C.Ns were
much smaller than 100. For the model with the
fourth covariate set, the C.N was equal to 98.01.
For the covariate sets 1 and 3, the C.N indi-
cated a high risk of overfitting. Moreover, the
distribution of q35 showed two peaks only for
the model with covariate set number 4. The co-
variate sets 1 and 3 included dependences on the
covariate MA_unit. For such two cases, rerun-
ning the same test after excluding MA_unit led
to a mild worsening of some likelihood indicators
but a great improvement of the C.Ns.

4. Discussion
Concerning the base model’s performance on the
five sub-sets, no clinically meaningful parameter
showed any large R.S.E., the transformed R.E
were normal and uncorrelated, and the trans-
formed I.P and NPDEs were normal. Addition-
ally, the base model showed no signs of overfit-
ting. By applying "COSSAC" to four data sub-
sets to find covariates able to capture the vari-
ability affecting q34, q35, and q36, each covariate
could be selected up to 12 times. The covari-
ate sets producing the greatest improvement in
likelihood were chosen. Among the 28 explored
covariates, figure 4 shows those selected at least
once but only those selected at least thrice are
discussed here. K (digestive system diseases)
seems to be the variable that best describes LOS
variability in the model. This may be because
more than 50% of the patients with "K" as their
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simple_diag had "abdominal pain" as their chief
complaint, which is affected by great LOS vari-
ability due to how various the causes of such
pain could be and the effort to evaluate them.
Z represents conditions of no specific disorder
but in which treatment was warranted (e.g., due
to self-poisoning), and it was selected by three
COSSAC runs for q36. Such a result implies Z ’s
strong ability to explain the LOS variability for
patients who are not sent home or admitted to
a ward. This is reasonable since around 50% of
the patients with "Z" as their simple_diag were
discharged in a way included in the category
"other". In most cases, the ED staff provided
them with basic cures and then sent them to spe-
cialized clinics. age was chosen by two COSSAC
runs for q34 and q35. A reasonable explanation
for this output is that several young patients vis-
ited the ED for intoxication or poisoning, thus
requiring prompt care and soon becoming trans-
ferable to the hospital wards (short LOS within
the ED) due to the ease in understanding the
causes of their conditions, whereas several el-
derly patients visited the ED for simple needs
(e.g., disorientation) but could not leave until
a special mean of transportation would be avail-
able for taking them home (long LOS within the
ED). The medical imaging covariate ScanYN
was selected three times, which is reasonable
since medical imaging can increase patient LOS
regardless of how they are discharged. This re-
sult also proves the importance of such a variable
in LOS variability, thus constituting a hint for
where to focus future improvements.

Figure 4: Count of the selected covariates.

4.1. Final model assessment
After employing the COSSAC algorithm with
all covariate sets, it was possible to assess their
ability to help the model describe the clinical
variability embedded into complex patient char-

acteristics. On the "training" sets, the models
failed in computing the effects of MA_unit for
seeds 1 and 3 and the C.N for seeds 1, 3, and
4. However, the latter was a sample size is-
sue. It was then possible to test the covariate
sets on the "testing" data sub-set. Once again,
the achieved R.E and NPDEs resulted normal
and uncorrelated. On such a larger data sam-
ple, the C.N could be computed in all cases, but
its value indicated overfitting with sets 1 and
3. Grouping the information given by the C.Ns
and the estimations on the "training" data sub-
sets led to excluding MA_unit from models 1
and 3. A new estimation run for these mod-
els, this time without MA_unit, produced good
C.Ns. At this stage, it was possible to evaluate
the best-performing covariate set and propose
a final model. The fourth covariate set yielded
the best likelihood values but a relatively high
C.N (98.01). Moreover, the plot of the I.P es-
timated with this model showed two peaks for
q35, which had never happened in the other es-
timations. Due to the second peak, the higher
C.N, and the highest number of included covari-
ates, the model was excluded for its low gener-
alization capability. Then the third model was
excluded since it showed the worst likelihood val-
ues and the second-worst C.N. The two remain-
ing models were compared regarding likelihood
values, better in the second one, in terms of C.N,
better in the first one, and concerning number
and quality of the included covariates. The first
model included five covariates (no MA_unit),
two of which were not selected in any other
model. The second model included only four co-
variates, two of which had been selected in two
other models and one in another model. Even-
tually, considering all the mentioned factors, the
second model was defined as the best.

4.2. Value of the approach
NLMEM is not commonly employed to evalu-
ate the impact of clinical covariates on logis-
tical outcomes in process modeling. However,
the data analysis revealed high complexity in
patient characteristics and some data sparse-
ness. Moreover, the assessment of the conven-
tional approaches showed several relevant limita-
tions that these face when trying to describe the
variability embedded into health logistics data.
More specifically, these tend not to allow for
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much differentiation among the covariates that
are significant for each modeled state transition
nor for the consideration of R.E. Therefore, it
was reasoned that a NLMEM approach would
have helped design an effective process model
by allowing to differentiate among the signifi-
cant covariates for each modeled state transi-
tion. Furthermore, it was reasoned that such an
approach would have made the designed model
less affected by data sparseness than with more
conventional approaches. Lastly, NLMEM in-
corporates both F.E and R.E and allows extract-
ing insight from the data using a population ap-
proach, thus fitting a model to data coming from
all the subjects without losing the notion of indi-
viduals and allowing for discrimination between
inter-individual and intra-individual variability.
The ability to estimate variability and covariate
effects is very relevant for this application area.

4.3. Limitations
The model does not represent the system in its
full complexity, and the boundaries are limited
to the ED and the employment of the imaging
department for ED patients. The process model
does not automatically update the parameters
over time if the system’s conditions change. Ex-
plicit outlier removal was not performed on LOS
values, but precautions were taken. The model
was informed by real-world data, which may in-
clude wrong information. The high computa-
tional demand of the approach led to the need
to sub-sample the dataset and carefully design
the number of transitions allowed by the model.

4.4. Future work
A supplementary validation could be per-
formed. The employed approach could be used
to inform operational research. A compu-
tational parallelization feature could be de-
signed. The results achieved with the COSSAC
algorithm could be compared to other covari-
ates selection techniques. Time-varying co-
variates could be introduced to account for the
yearly variability within the system, or several
model scenarios could be analyzed separately.

5. Conclusions
This thesis applied mixed-effects modeling to
hospital medical records. Within the chosen ap-
proach, a Markov Chains model of patient flow

that could capture and describe the impact of
patient complex characteristics on the logistics
of the ED was designed, tested, and validated.
This was done to bridge logistical systems and
the clinical insights of the hospital, which is par-
ticularly challenging due to the difficulty in deal-
ing with high patient volumes and clinical vari-
ability embedded into real clinical data. Accord-
ingly, this work aimed at improving the under-
standing of how such data could be better ex-
ploited for healthcare modeling to potentially
achieve a better organization of the hospitals in
the future, and it managed to develop an ap-
proach for estimating covariate effects on param-
eters linked to the process description in the ED.
Furthermore, due to how much the performance
of the ED affects the functioning of the other
hospital wards and, indirectly, healthcare sys-
tems and communities, the technique applied in
this thesis, as well as the deriving model, were
designed so that they could become the starting
point for future operational research studies to
test LOS optimization procedures on the ED.
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