
A Novel Hybrid Scoring Function
for Extreme-Scale Virtual Screen-
ing in Drug Discovery

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria In-
formatica

Author: ZHANG YUEDONG

Student ID: 971513
Advisor: Prof. Gianluca Palermo
Co-advisors: Davide Gadioli, Gianmarco Accordi
Academic Year: 2022-23

i

Abstract

Drug discovery, traditionally challenged by lengthy development cycles, high costs, and
substantial failure rates, has seen alleviation of these issues through the integration of var-
ious in-silico methods. This thesis primarily contributes to the Lead Identification stage of
In-Silico Drug Discovery by introducing a Hybrid Scoring Function, DrugXGBScore. It is
designed to assess Protein-Ligand Complex conformations generated during the Molecu-
lar Docking phase of Structure-Based Virtual Screening (SBVS). This function efficiently
identifies a set of optimal ligands for a target protein from a large-scale drug molecule
database, subsequently facilitating their advancement to wet laboratory experimental
testing. Differentiating itself from other scoring functions, DrugXGBScore is specifically
engineered to provide not only acceptable prediction accuracy but also an optimal bal-
ance with computing performance. This dual objective is attained through a two-pronged
approach: algorithmically, by integrating Knowledge-based and Machine-learning scor-
ing functions, and technologically, by seamlessly incorporating DrugXGBScore into our
custom-designed High-Performance Computing (HPC) pipeline. The hybrid approach
utilizes the straightforward structure of Knowledge-based methods, ensuring smooth in-
tegration with our HPC pipeline, while the Machine-learning component is designed to
further enhance prediction accuracy. Additionally, the utilization of a high-performance
GPU within our HPC pipeline plays a pivotal role in fulfilling our comprehensive HPC
objectives. Based on the final evaluation results, DrugXGBScore not only achieved ac-
ceptable levels of prediction accuracy but also demonstrated remarkable computational
performance. In a case study involving a target protein comprising 8,313 atoms, our HPC
pipeline achieved an impressive throughput of 3,347 ligands per second while screening
28,500 decoys. This represents a performance enhancement of approximately four orders
of magnitude compared to CPU-only processing.

Keywords: In-Silico Drug Discovery, High-Throughput Virtual Screening, High-Performance
Computing, Hybrid Scoring Function

Abstract in lingua italiana

La scoperta di farmaci, tradizionalmente composta da cicli di sviluppo lunghi, costi elevati
e tassi di fallimento sostanziali, ha visto un alleggerimento di questi problemi attraverso
l’integrazione di vari metodi in silico. Questa tesi contribuisce principalmente alla fase di
Lead Identification nell’ambito della scoperta di farmaci in silico, introducendo una Scor-
ing Function Ibrida, DrugXGBScore. È progettata per valutare le conformazioni del com-
plesso Proteina-Ligando generate durante la fase di docking molecolare dello Structure-
Based Virtual Screening. Questa funzione identifica efficientemente un insieme ottimale
di ligandi per una proteina bersaglio da un’ampia database di molecole farmaceutiche,
facilitando successivamente il loro avanzamento ai test sperimentali in laboratorio. Dif-
ferenziandosi da altre Scoring Functions, DrugXGBScore è specificamente progettata per
fornire un tradeoff ottimale tra l’accuratezza della previsione e le prestazioni di calcolo.
Questo duplice obiettivo è raggiunto attraverso un approccio bifronte: algoritmicamente,
integrando Knowledge-based e Machine Learning Scoring Functions, e tecnologicamente,
incorporando senza problemi DrugXGBScore nella nostra pipeline di Calcolo ad Alte
Prestazioni (HPC) personalizzata. L’approccio ibrido utilizza la struttura semplice dei
metodi Knowledge-based, assicurando un’integrazione fluida con la nostra pipeline HPC,
mentre la componente di Machine Learning è progettata per migliorare ulteriormente
l’accuratezza della previsione. Inoltre, l’utilizzo di una GPU ad alte prestazioni all’interno
della nostra pipeline HPC gioca un ruolo fondamentale nel realizzare i nostri obiettivi com-
plessivi di HPC. Basandosi sui risultati della valutazione finale, DrugXGBScore non solo
ha raggiunto livelli accettabili di precisione di previsione ma ha anche dimostrato notevoli
prestazioni di calcolo. In uno caso di studio che coinvolge una proteina bersaglio com-
posta da 8.313 atomi, la nostra pipeline HPC ha raggiunto un impressionante through-
put di 3.347 ligandi al secondo durante lo screening di 28.500 decoys. Questo rappre-
senta un miglioramento delle prestazioni di circa quattro ordini di grandezza rispetto
all’elaborazione solo CPU.

Parole Chiave: Scoperta di Farmaci In-Silico, Screening Virtuale ad Alto Rendimento,
Calcolo ad Alte Prestazioni, Funzione di Valutazione Ibrida

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Background 5
1.1 In-Silico Drug Discovery . 5
1.2 Virtual Screening . 7

1.2.1 Ligand-based virtual screening (LBVS) 8
1.2.2 Structure-Based Virtual Screening (SBVS) 10

1.3 Molecular Docking . 12
1.4 Extended-connectivity fingerprints (ECFPs) 14
1.5 PDBbind database . 16
1.6 The CASF-2016 . 18
1.7 High Performance Computing . 22

1.7.1 Computer infrastructure level . 22
1.7.2 Computer hardware level . 24
1.7.3 Computing framework level . 29
1.7.4 Computing algorithm level . 35

2 State of the art 37
2.1 Physics-Based Scoring Functions . 37

2.1.1 Force Field Scoring Functions . 37
2.1.2 Scoring Function of DOCK . 38
2.1.3 Quantum Mechanics (QM) Related Scoring Functions 38

2.2 Empirical Scoring Functions . 39

vi | Contents

2.2.1 X-Score . 39
2.3 Knowledge-Based Scoring Functions . 40

2.3.1 DrugScore . 41
2.3.2 DrugScore CSD . 45
2.3.3 DrugScore 2018 . 46

2.4 Machine Learning Scoring Functions . 48
2.4.1 Gradient boosting . 49
2.4.2 Extreme Gradient Boosting (XGBoost) 51

3 Methodology 57
3.1 Overview of the Hybrid scoring function: DrugXGBScore 57
3.2 Optimization of Knowledge-based DrugScore2018 59

3.2.1 Data Selection and Preprocessing 59
3.2.2 Training process . 60
3.2.3 Inference process . 62

3.3 Training the Machine Learning SF: XGBoost 65
3.3.1 Data Preparation . 65
3.3.2 XGBoost Hyperparameter Optimization 67

3.4 Linear Combination of Optimized DrugScore2018 & XGBoost 68
3.5 Deployment on the HPC Pipeline . 70

3.5.1 CPU Multi-Threading . 71
3.5.2 GPU Acceleration . 71
3.5.3 Special optimization for Ligand Vibration 75

4 Experimental results 77
4.1 Optimized DrugScore2018 Results . 77
4.2 XGBoost and Linear Combination Results 86
4.3 Overall DrugXGBScore Outcomes . 90
4.4 HPC Implementation Outcomes . 93

5 Conclusions and Future Directions 101

Bibliography 103

List of Figures 113

List of Tables 117

Acknowledgements 119

1

Introduction

Traditional methods of drug discovery and development, which span stages from target
identification to clinical trials, are characterized by high risk, time-intensive processes,
and prohibitive costs. Drawing from the detailed research conducted by DiMasi et al.
[20] during the early 21st century, it was discerned that the anticipated expenditure for
the entire development and subsequent approval of a new drug is approximately US$ 900
million. For the R&D period, the authors noted that if research and development began
in 2001, approval would be expected roughly 12 years later. In addition, the drug devel-
opment process exhibits a notable failure rate. According to a report from the Center of
Medical Research (CMR) spanning the years 2008 and 2009, the failure rate of phase II
clinical trials alone was as high as 82% [37].
Fortunately, the advent of computational methods in drug discovery and development
during the 21st century can mitigate the aforementioned issues. As an illustrative ex-
ample, during the COVID-19 pandemic, Gadioli et al. [26] introduced the EXSCALATE
molecular docking platform for High-Performance Virtual Screening of 15 binding sites of
12 SARS-CoV-2 viral proteins. They deployed EXSCALATE on two modern supercom-
puters, CINECA-M100 and ENI-HPC5, achieving a combined computational power of 81
PFLOPS. Remarkably, they completed the screening of all 70 billion small molecules in
just 60 hours, performing over one trillion ligand-pocket evaluations and setting a new
record in the scale of virtual screening.
In the aforementioned example, the concept of High-Throughput Virtual Screening (HTVS)
is highlighted. It is a prominent computational technique within the realm of In-Silico
Drug Discovery. Utilizing the capabilities of High-Performance Computing (HPC), it
swiftly screens extensive compound libraries to identify potential drug candidates to for-
ward to in-vitro experiments. Here, ‘virtual’ signifies that the screening is executed within
a computational milieu rather than a traditional laboratory setting. This computational
screening is facilitated by specialized software, such as ‘Molecule Docking’. These pro-
grams typically begin by sampling the conformation of a complex, which consists of target
macromolecules (such as proteins, proteases, or nucleic acids, representing diseases) and
small molecule ligands (representing potential drug candidates). They then use a math-

2 | Introduction

ematical model, known as a Scoring Function, to evaluate the binding affinity, which
indicates the strength of the interaction between the molecules. A higher binding affinity
signifies a stronger interaction. This thesis primarily centers around the Scoring Function,
which is essential for the effectiveness and success of High-Throughput Virtual Screening
(HTVS). Inaccuracies in the scoring function can compromise the entire HTVS process,
while inefficiencies may hinder evaluating sufficient ligands within the time budget. There-
fore, both accuracy and efficiency are of paramount importance for a scoring function.
In literature, Scoring Functions are typically classified into four categories: Physics-Based,
Empirical, Knowledge-Based, and Machine Learning Scoring Functions [42]. However,
most existing Scoring Functions compete with each other in prediction accuracy, while
ignoring the importance of computational performance. Therefore, our work intends to
introduce a new scoring function that considers both prediction accuracy and computa-
tional performance. Notably, since accuracy and computational performance often stand
in opposition at the algorithm level, striking an optimal balance between them is cru-
cial. Simultaneously, maximizing the utilization of available hardware and infrastructure
within budgetary constraints is also a key consideration.
This study introduces a novel scoring function designed to balance prediction accuracy
with computational performance. It addresses these aspects both at the algorithmic
level and through the utilization of advanced hardware capabilities, particularly GPUs.
Our primary objective is to achieve satisfactory accuracy while significantly enhancing
computational performance, thereby enabling the rapid screening of extensive compound
libraries. The scoring function we introduce, named DrugXGBScore, is a hybrid that
adeptly merges the advantages of both knowledge-based and machine-learning scoring
functions. "DrugXGBScore" is an acronym for Drugscore and XGBoost. More specifically,
to achieve our objective, we integrated the optimized Drugscore2018, a Knowledge-based
scoring function, with the recently popular machine learning algorithm eXtreme Gradi-
ent Boosting (XGBoost). Drugscore2018’s simple structure allows for easy and efficient
integration into our High-Performance Computing pipeline, while XGBoost contributes
to further enhancing the prediction accuracy. The foundational concept of this combined
model is partially inspired by the research presented in two articles: one by Wang et al.
published in 2017 [68], and another by Lu et al. published in 2019 [43]. They combined
two distinct types of scoring functions to enhance the overall prediction accuracy in their
studies. To further enhance the computational efficiency, we custom-designed an HPC
pipeline specifically for DrugXGBScore, harnessing the power of our advanced Nvidia A-
100 high-performance GPU to achieve our High-Performance Computing objectives.
Our scoring function, DrugXGBScore, was evaluated for predictive accuracy using the
Comparative Assessment of Scoring Functions 2016 (CASF-2016) benchmark. CASF-

| Introduction 3

2016 provides a comprehensive framework for assessing the performance of various scoring
functions, highlighting their strengths and weaknesses. It employs four key metrics: scor-
ing power, ranking power, docking power, and screening power. These metrics collectively
offer insights into the prediction accuracy of a scoring function [63]. For computing per-
formance, we employ various indicators for monitoring, including CPU/GPU utilization,
GPU memory usage, and throughput. Within the CUDA segment, the CUDA Profil-
ing Tools are utilized to assess GPU performance. Finally, our comprehensive evaluation
demonstrates that DrugXGBScore attains a mid-to-upper tier accuracy compared to other
scoring functions in the CASF-2016 Power tests. In terms of computational performance,
it remarkably screens all 28,500 decoys of a protein with approximately 8,000 atoms in
just 8 seconds. For comparison, performing the same task using only a CPU would require
nearly 27 hours, highlighting the significant efficiency of our HPC pipeline.
Let’s provide an overview of the structure of this thesis, which spans five chapters. Chap-
ter 1 presents key concepts such as In-Silico Drug Discovery and High-Performance Com-
puting (HPC). Chapter 2 reviews state-of-the-art technologies, highlighting developments
like Drugscore, among others. In Chapter 3, we detail our contributions, including our
optimization of Drugscore, its integration with XGBoost, and incorporation into the HPC
pipeline. Chapter 4 showcases our experimental results, highlighting the prediction accu-
racy of our algorithm in comparison with other scoring functions. It also emphasizes the
enhanced computational performance of our HPC pipeline relative to using only CPUs.
The final Chapter 5 concludes our findings and outlines future research directions inspired
by this thesis.

5

1| Background

In this chapter, we provide the foundational knowledge underpinning this thesis, primarily
focusing on two domains: In-Silico Drug Discovery and High-Performance Computing
(HPC). For In-Silico Drug Discovery, we adopt a top-down approach that begins with
an overview of the Drug Discovery process, progresses through Virtual Screening, and
delves into the Molecular Docking phase. We then introduce the tools employed in our
research, including Extended-Connectivity Fingerprints (ECFPs), the source database
for training and testing our model, and the CASF-2016 benchmark for evaluating the
prediction accuracy of our proposed Hybrid Scoring Function. On the High-Performance
Computing front, we present a structured level model to provide a logical and architectural
exposition of HPC. We hope this level model can enable readers to achieve both a broad
and elevated comprehension of the thesis topics.

1.1. In-Silico Drug Discovery

In the modern landscape of pharmaceutical research, "In-Silico Drug Discovery" emerges
as a powerful and revolutionary approach. Stemming from the Latin term "in silico",
which means "in silicon", it alludes to the use of computer and computational strategies
for drug discovery, evoking the idea of performing experiments in the virtual realm rather
than in biological test tubes or on petri dishes.
Traditionally, drug discovery was a lengthy, expensive, and often hit-or-miss process,
where numerous compounds were synthesized and then tested for their therapeutic ef-
ficacy. With the exponential growth in computational power and the development of
sophisticated algorithms, the landscape of drug discovery has been transformed. Instead
of relying solely on conventional lab-based methods, researchers now harness the power
of computers for initial drug candidate screening. Those molecules that show promise
in computational tests are then taken forward for subsequent in-vitro evaluations. This
integration of computational and experimental methods has led to the birth and rapid
evolution of in-silico drug discovery.
The objective of the in-silico drug discovery process is to identify a small set of potential

6 1| Background

drug molecules. These molecules could either be novel or existing ones identified through
the drug repositioning process [55]. Regardless of its origin, the molecule should bind to a
specific target implicated in disease onset [9] and influence its activity in a therapeutically
beneficial manner. This process unfolds in a multi-step approach, consisting of four main
stages: target identification, target validation, lead identification, and lead optimization.
According to Georg C. Terstappen and Angelo Reggiani [65], the drug discovery process
is divided into early and late phases. The early phase encompasses target and lead dis-
covery, while the late phase focuses on clinical evaluation and development, as illustrated
in Figure 1.1. In-silico methods are predominantly utilized in the early phase of drug
discovery.

Target
validation

Target
identification

Lead
identification

Lead
optimization

Preclinical
evaluation

Clinical
evaluation

Target discovery Lead discovery

Early pharmaceutical research Late pharmaceutical R&D

In-silico

Figure 1.1: Drug discovery process as proposed by Georg C. Terstappen and Angelo
Reggiani [65].

The early pharmaceutical research phase encompasses target and lead discovery.
Targets typically refer to biological macromolecules, including nucleic acids and proteins
such as receptors, transporters, enzymes, and ion channels [9]. Leads, on the other hand,
are novel chemical molecules identified to act on these targets [65]. The drug discovery
process typically begins by selecting suitable drug targets. It’s essential to validate these
targets, ensuring with a high level of ‘confidence’ that they have a genuine relation to the
disease in question. Once a target is validated, the focus shifts to ‘lead identification’.
This phase is about finding compounds that can modify the target’s behavior. For ex-
ample, with receptors, these might be activators (agonists) or deactivators (antagonists).
For enzymes, they could be boosters (activators) or suppressors (inhibitors), and for ion
channels, the compounds might act as openers or blockers [65]. While the concept of in-
silico methods permeates every early stage shown in Figure 1.1, this thesis will primarily
concentrate on the lead identification phase.
Lead identification encompasses several subfields, including de-novo design, High Through-
put Screening (HTS), and Virtual Screening. De-novo design is a method that uses com-
putational techniques to design novel molecular structures from scratch based on the
desired biological activity and selectivity, without relying on known compounds as ref-

1| Background 7

erences [58]. In contrast, Virtual Screening screens large chemical libraries to identify
potential candidates from pre-existing molecules [60]. Furthermore, it’s pivotal to distin-
guish between High-Throughput Screening (HTS) and High-Throughput Virtual Screen-
ing (HTVS). While both are integral tools in drug discovery, they serve distinct roles
and processes. HTS is an experimental method that physically tests a vast number of
compounds against a biological target in the lab to empirically determine those that elicit
a desired biological effect [45]. In contrast, HTVS is a computational approach that uses
algorithms to predict which compounds from a digital library might bind to or influence
a target, eliminating the need for immediate physical testing. Compounds identified by
HTVS as having high predicted affinity or activity are subsequently validated experi-
mentally [60]. A detailed comparison between these two methods is presented in Table
1.1. This discussion will focus on Virtual Screening, especially High-Throughput Virtual
Screening.

HTVS HTS

Type Computational method Experimental method
Process Uses computer algorithms to pre-

dict the binding or activity of com-
pounds from a digital library.

Physically tests compounds against
a biological target in the lab.

Purpose Identify potential drug candidates
or active compounds without phys-
ical testing.

Empirically determine active com-
pounds with desired biological ef-
fect.

Outcome Compounds with predicted high
affinity or activity are validated ex-
perimentally.

Active compounds are further re-
fined for potential drug develop-
ment.

Table 1.1: Comparison between High-Throughput Virtual Screening (HTVS) and High-
Throughput Screening (HTS) [45, 60].

1.2. Virtual Screening

High-Throughput Virtual Screening (HTVS) has emerged as a powerful tool in drug
discovery, addressing persistent challenges in High-Throughput Screening (HTS), such as
low hit rates and high expenses. HTVS complements HTS and, when combined with
structural biology, efficiently identifies potential drug candidates from extensive libraries
tailored to specific targets, considering aspects of ligand flexibility and binding interactions
[44]. This integrated approach significantly reduces drug discovery time and costs while

8 1| Background

lowering the failure rate. HTVS consists of two primary methods: Ligand-Based Virtual
Screening (LBVS) and Structure-Based Virtual Screening (SBVS). The choice between
SBVS and LBVS depends on the availability of physicochemical information. SBVS is
preferred when structural data for the target protein is accessible. In cases with limited
structural information, LBVS, especially effective when biological data exists for a large
set of compounds, becomes the preferred approach [7].

1.2.1. Ligand-based virtual screening (LBVS)

Ligand-based virtual screening (LBVS) harnesses information from known ligands (molecules
capable of binding to target proteins) to predict the activity of novel compounds. Within
the LBVS framework, methods predominantly fall into three categories: similarity-based,
pharmacophore-based, and Quantitative Structure-Activity Relationship (QSAR) based
approach [7]. Of these, the similarity-based approach stands as both fundamental
and paramount. It operates primarily on the similarity-property principle, positing that
structurally related molecules likely possess similar biological activities. As highlighted by
Willett, this foundational concept was first explicitly articulated by Johnson and Maggiora
[34, 72]. Guided by this principle, a straightforward virtual screening strategy emerges:
First, calculate the similarity between a known molecule (often termed as the reference or
target structure) and each candidate molecule found within a database (typically a large
chemical library). Next, rank the candidate molecules based on their computed similari-
ties, and then conduct real screening exclusively on the top-ranked candidates [72].
In similarity-based virtual screening, it’s essential to use an appropriate descriptor to
represent the molecules and a precise measure to assess the similarity between the ref-
erence structure and the candidate molecules in the database. Descriptors can be cat-
egorized by their dimensionality into one-dimensional (1D), two-dimensional (2D), or
three-dimensional (3D) types. While 1D descriptors capture bulk properties like molec-
ular weight and size, 2D descriptors generate array representations by simplifying the
molecular atomic information, such as through connectivity indices. Conversely, 3D de-
scriptors rely on molecular conformations, for instance, it may take into account aspects
like solvent-accessible surface area [27, 73]. On the other hand, for the similarity measure,
as proposed by Willett, it consists of three components, "The representation that is used
to characterize the molecules that are being compared; The weighting scheme that is used
to assign differing degrees of importance to the various components of these represen-
tations; The coefficient that is used to determine the degree of relatedness between two
structural representations" [72]. Since we utilized a specific 2D descriptor, a type of 2D
Fingerprint known as Extended-connectivity fingerprints (ECFPs), to assess the diversity

1| Background 9

of ligands in our dataset, we decided to use the 2D Fingerprint as a representative exam-
ple of a descriptor. A detailed discussion on Extended-connectivity fingerprints (ECFPs)
can be found in Section 1.4.
The 2D Fingerprint is a computational representation of a molecule, translating its
structural and chemical features into a binary or integer vector. This representation fa-
cilitates efficient molecular similarity and diversity analyses and serves as a specific type
of structural depiction [57, 72]. After obtaining the 2D fingerprints of both the reference
structure and the candidate molecules, the subsequent step involves computing their sim-
ilarity by an appropriate measure. The Tanimoto coefficient is a widely used measure of
this similarity. It is defined as the ratio of the intersection of the two fingerprints to their
union, as depicted in Eq 1.1.

T (A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(1.1)

In this equation, the numerator A ∩ B denotes the count of shared bits between the
two fingerprints, while the denominator A ∪ B signifies the total bit count across both
fingerprints. Additionally, |A| and |B| quantify the non-empty bins in sets A and B
respectively [27]. For a comprehensive illustration of this process, we can refer to the
study by Garcia-Hernandez et al. [27]. In their work, they employed the Extended reduced
Graphs (ErG) methodology [62] to streamline the 2D representation of the compound.
This process is depicted in Fig 1.2.

Reference structure

Candidate molecule

ErG Fingerprint

11011101010

11101100101

Tanimoto coefficient Similarity Index

Figure 1.2: The process of calculating the Tanimoto similarity between the reference
structure and the candidate molecules. [27]

As demonstrated in the previous example, the 2D fingerprint is derived from the structure

10 1| Background

of each compound. By calculating the Tanimoto coefficient between each pair of reference
structure and candidate molecule, and then ranking these similarity scores, thus enabling
us to efficiently execute a straightforward ligand-based virtual screening.

1.2.2. Structure-Based Virtual Screening (SBVS)

Unlike LBVS, Structure-Based Virtual Screening (SBVS) utilizes the structural informa-
tion of the target protein to identify potential ligands. This approach proves especially
beneficial when the structure of the target protein is known or can be reliably predicted.
With the 3D structure of the target in hand, SBVS employs both docking and scoring
techniques to shortlist potential candidates for in-depth analysis. The Structure-Based
Virtual Screening (SBVS) workflow can be summarized into distinct phases, as depicted
in Figure 1.3. It commences with the data preparation phase, during which both the
compound database and the target protein undergo necessary preparations for analysis.
This phase includes crucial data processing tasks such as filtering and the addition of
charges to the compounds. Subsequently, the core of the SBVS process unfolds, featuring
two pivotal steps: molecular docking and scoring. Molecular docking’s objective is to
predict the conformation and orientation (or posing) of ligands within the target binding
site. This step entails comprehensive sampling of the coordinate space within the binding
site, commonly known as conformational sampling or conformational searching. Follow-
ing that, the scoring process evaluates each potential ligand pose, providing a predicted
binding mode for each compound [38, 44]. In the post-processing phase, further opera-
tions are executed to refine the selection of potential compounds. A notable technique
in this context is consensus scoring. Charifson et al. [14] demonstrated that combining
the results of multiple scoring functions in an intersection-based consensus approach can
significantly enhance the ability to discriminate between active and inactive enzyme in-
hibitors. In addition, the technique of rescoring also warrants attention. This method
involves re-evaluating the top-ranked ligands from the initial screening using a more ac-
curate scoring function, serving to refine or validate the results [56]. The ultimate step
involves the selection of compounds that meet the criteria established in the earlier stages,
and these chosen compounds are forwarded for experimental assay. This marks a critical
transition from computational predictions to practical laboratory testing, emphasizing
the iterative and interdisciplinary nature of the drug discovery process.
We will explore the details of Molecular Docking in the following Section 1.3.

1| Background 11

Molecular docking

Ligand

Receptor • Monte Carlo methods
• Genetic algorithms
• …

Conformational sampling

Complex

• Physics-Based
• Empirical
• Knowledge-Based
• Machine-Learning-Based

Scoring

Favorate
Complex

Select compounds for assay

• Consensus scoring
• Geometric analysis
• Shape complementarity
• Solvation corrections
• Cluster analysis

Post-process

Preparing Datadabse
• Filter
• Generate conformer data
• Add charges
• …

Preparing Target
• Add H and relax
• Add charges
• Check ionizations
• …

Structure-Based Virtual Screening (SBVS)

Figure 1.3: The typical workflow for virtual screening against a specific target [42, 44]

12 1| Background

1.3. Molecular Docking

This section delves into the intricacies of molecular docking, with a primary emphasis on
the conformational sampling aspect, commonly known as docking. Molecular docking is
categorized into two primary approaches: rigid docking and flexible docking. To illustrate
these approaches, we turn to the models developed by Fan et al. [23], presented in Figure
1.4.

Receptor Ligand

Rigid

(A) lock-and-key model

(B) Induced fit model

Receptor Ligand

Flexible

Figure 1.4: Two models of molecular docking by Fan et al. [23]

The lock-and-key model [Figure 1.4 (A)] portrays the docking of receptors and ligands as
a rigid interaction, analogized to the precise fitting of a key into its corresponding lock
[23, 48]. However, in reality, this process exhibits significant flexibility. This ‘flexibility’
denotes the capacity of receptors and ligands to dynamically adapt their shapes. Unlike
static, immutable structures, these molecules have the ability to modify their conforma-
tions, similar to how a material might be bent or reshaped for a better fit. Such molecular
flexibility ensures an optimized interaction between receptors and ligands. This concept
aligns closely with the Induced Fit model [Figure 1.4 (B)] introduced by Fan et al. [23],
where the ligand adjusts its shape to interact optimally with a specific binding site. While
geometric complementarity is crucial, energy complementarity and pre-organization en-
sure that receptors and ligands achieve the most stable structure, ultimately minimizing
free energy [5, 23, 40].
As previously discussed, the complexity of the docking process makes conformational
searching especially challenging. Consequently, a reliable search algorithm becomes in-
dispensable. Currently, various search algorithms, including Monte Carlo (MC), Genetic

1| Background 13

Algorithms (GAs), and Simulated Annealing (SA), address both ligand flexibility and, to
some extent, protein flexibility.

Category Method/Algorithm

Systematic Incremental Construction
Conformational Search
Databases

Random/Stochastic Monte Carlo(MC)
Genetic Algorithms
Tabu Search

Simulation/Deterministic Molecular Dynamics(MD)
Energy Minimization

Table 1.2: The categories of conformational searching methods [11, 38]

These algorithms can be broadly classified into three categories [11, 38], as detailed in
Table 1.2.

1. Systematic Search Algorithms: These algorithms utilize a grid that represents
each formal ‘degree of freedom’—essentially the independent parameters or direc-
tions in which a system can change. During the search, every grid value is explored
combinatorially. However, as these degrees of freedom grow, the evaluations re-
quired scale up quickly. To manage this exponential growth, termination criteria
are implemented to sidestep regions known to yield undesirable results.

2. Stochastic Search Algorithms: This method involves making random alter-
ations, typically adjusting one degree of freedom in the system at a time. A primary
challenge with stochastic searches is the ‘uncertainty of convergence’. This means
that there’s no guaranteed path to a global minimum solution, or it might take
an unpredictably long time to find it. To enhance the likelihood of convergence,
multiple independent runs are typically executed.

3. Deterministic Searches: In this approach, the initial state determines the po-
tential moves leading to the next state, typically ensuring that the energy of the
new state is equal to or less than the starting state. A distinctive characteristic of
deterministic searches is their repeatability: given the exact same starting system
(including every degree of freedom) and identical parameters, they will always yield

14 1| Background

the same final state. However, a notable limitation of deterministic algorithms is
their tendency to get trapped in local minima because they cannot overcome energy
barriers.

Summing up, every algorithm brings its distinct strengths and weaknesses. Various dock-
ing programs employ them based on their specific needs. Notably, certain programs may
utilize multiple algorithms. For example, AutoDock might use both the Monte Carlo
(MC) and Simulation methods, as well as Dock might combine Incremental Construction
with the Simulation method [38].

1.4. Extended-connectivity fingerprints (ECFPs)

Extended-connectivity fingerprints (ECFPs) are a type of topological fingerprint utilized
for molecular characterization. Developed specifically for structure-activity modeling,
they diverge from the traditional topological fingerprints that were primarily designed for
substructure and similarity searching [57].
The process of generating ECFP involves three primary stages [57]:

1. Initial Assignment Stage: Each atom in the molecule is allocated an integer
identifier. This could be based on attributes like the atomic number.

2. Iterative Updating Stage:

• Atoms collect their own identifiers and those of their immediate neighbors into
an ordered array. The order is based on the identifiers and the bonds that
connect them to ensure consistency(avoid order-dependence).

• A hash function is used to transform this array into a new integer identifier for
the atom.

• These new identifiers replace the old ones, and they are added to the fingerprint
set.

• This updating process is repeated for a predefined number of iterations.

3. Duplicate Identifier Removal Stage: All duplicate identifiers within the set are
removed. The final set of unique integer identifiers constitutes the ECFP fingerprint.

As an example of this process, Figure 1.5 illustrates the generation of the ECFP fingerprint
for the molecule butyramide, showcasing three iterations: ECFP 0, ECFP 2, and ECFP
4, where the numbers 0, 2, and 4 indicate the respective search diameters. Within this
figure, the three blue boxes depict the search results corresponding to these different

1| Background 15

radii. Specifically, at a search radius of 0, the sequence from left to right represents
the search results for all atoms of butyramide, with ‘A’ denoting any unknown atom
at this stage. Notably, the yellow areas in the figure highlight the typical duplicates
that need to be eliminated. Following the removal of these duplicates, a search using
the next radius is conducted for each unique structure, consistent with the methodology
described in the previous paragraph. The ultimate goal of this process is to derive the
ECFP fingerprint, which consists of an array consolidating unique hash values from all
iterations, as exemplified by the ‘hash values’ field on the right side of the figure.

1 A

2 A

3 A

A

A

4

N

A

6

A N

A

A A
5

6

3 A

A

A 3 N
3 N

O

A

4

O

O O

A A

2

3

A A

1

A

A A

A

A

6

N

A

5

Duplicated

O

1

2

3
4

5

6

Features from initial atom identifiers

New Features after first iteration (Dupulicate removed)

New Features after second iteration (Dupulicate removed)

Note: Next iterations discover no more new features

EFCP 0

Hash values
734603939
1559650422
-1100000244
1572579716
-1074141656

Hash values
863188371
-1793471910
-1789102870
-1708545601
-932108170
2099970318

Hash values
-87618679
1112638790
-627599602

EFCP 2

EFCP 4

Figure 1.5: The ECFP generating process [57]

The strength of this methodology, rooted in the Morgan algorithm-based updating pro-
cess [47], lies in its ability to create identifiers for large substructures using only local
operations. Although each atom only interacts with its direct neighbors, the resulting
identifiers can signify extensive substructures. When applied across the entire molecule,
the resulting set encapsulates substructural information from every part, providing a blend
of detailed and generalized structural information [57].
ECFPs come with several advantageous qualities:

• Rapid calculation capability.

• Non-predefined nature, allowing representation of a vast array of molecular features,
inclusive of stereochemical information.

• Features that signify the presence of specific substructures, aiding in the clearer
interpretation of analysis outcomes.

• The adaptability of the ECFP algorithm, which can be tweaked to produce varying

16 1| Background

kinds of circular fingerprints suitable for diverse applications.

ECFPs have been applied in a wide range of applications, including Structure-Activity
Relationship Modeling, Virtual Screening, and Compound Library Analysis [57]. In our
methodology, assessing the diversity of ligands in the database is crucial. We employed
ECFPs to produce molecular descriptors and then computed the Tanimoto coefficients for
each pair of ligands. This quantitative analysis of ligand diversity allowed us to judiciously
exclude overly similar ligands from the training set, mitigating potential model bias.

1.5. PDBbind database

PDBbind [53] is a comprehensive biomolecular database offering a curated collection of
experimentally measured binding affinity data for biomolecular complexes sourced from
the Protein Data Bank (PDB). Between 2015 to 2020, PDBbind consistently updated its
database in response to the ongoing expansion of PDB. As of 2023, the latest available ver-
sion is PDBbind v2020. This version encompasses various complexes, including protein-
ligand, nucleic acid-ligand, protein-nucleic acid, and protein-protein. In our methodology,
we exclusively used the protein-ligand complexes. These are further subdivided into two
sets: the "refined set", consisting of 5,316 complexes, and the "general set", which in-
cludes 14,127 complexes.
For every protein-ligand complex, PDBbind provides PDB files detailing both the entire
protein and its distinct binding pocket. The protein’s PDB file captures comprehensive
atomic information, including atoms’ 3D coordinates, bond types, residue names, and
more. Meanwhile, the pocket represents a specialized area on the protein’s surface where
molecules, especially ligands, can bind, influencing the protein’s function. Ligands are
presented in both mol2 and sdf formats. Both formats store molecular structure data;
however, the mol2 format offers additional details like SYBYL atom types, making it
particularly useful when its atom types assignment quality can be trusted.
In the PDBbind database, the most crucial information for our analysis of protein-ligand
complexes is the binding affinity data, which is provided in the forms of Kd, Ki, and IC50.
Of these, the dissociation constant Kd, is an equilibrium constant signifying the tendency
of a larger entity to reversibly disassemble into its smaller components. It’s frequently
employed to describe the binding affinity between a ligand L and a protein P , indicating
how tightly the ligand associates with the receptor [12]. The interaction between a ligand
and protein can be conceptualized as a two-state process. As illustrated in Equation 1.2,
the ligand-protein complex can revert to its separate entities L and P and vice versa,

1| Background 17

maintaining a dynamic equilibrium upon reaching a stable status.

LP ⇌ L+ P (1.2)

The corresponding dissociation constant (Kd) is defined in Equation 1.3. Within this
equation, [L] and [P] signify the concentrations of free ligand and protein, respectively,
whereas [LP] indicates the concentration of the ligand-protein complex when 50% of the
receptors are bound by ligands. A smaller Kd value signifies a tighter ligand binding,
reflecting a higher affinity between the ligand and receptor.

Kd =
[L][P]

[LP]
(1.3)

The inhibitory constant (Ki) is a distinct form of equilibrium dissociation constant (Kd),
signifying the equilibrium binding affinity of a ligand that diminishes the activity of the
molecule it binds to. Ki denotes the inhibitor ligand concentration required to occupy half
of the receptor sites in the absence of any competing ligands. A lower Ki value indicates
a higher binding affinity, meaning less inhibitor ligand is necessary to inhibit the activity
of its binding target [12].
Additionally, PDBbind includes the Half-maximal inhibitory concentration (IC50) as a
measure of binding affinity for certain protein-ligand complexes. IC50 denotes the con-
centration at which a competitive antagonist decreases the activity/binding of an agonist
to a specific enzyme, receptor, or transporter by half. This metric can be derived from
in-vitro or ex-vivo binding assay curves and serves to quantify the antagonist’s affinity for
an enzyme or receptor. The IC50 value is influenced by three key aspects: the antagonist’s
receptor affinity (with higher affinity leading to a lower IC50), the concentration of the
displaced ligand (where greater ligand concentrations necessitate more antagonist for 50%
inhibition, raising the IC50), and the dissociation constant (Kd) for the ligand-receptor
pairing (with a smaller Kd meaning more antagonist is required to oust the ligand, hence
a higher IC50) [12].
Finally, while PDBbind offers various measurements (Kd, Ki, and IC50) for distinct
protein-ligand complexes, they share consistent units. For our data analysis, we can
consider these measurements as equivalent, or choose to use the -log transformed data
directly provided by PDBbind.

18 1| Background

1.6. The CASF-2016

CASF-2016 [63], representing the Comparative Assessment of Scoring Functions - 2016
update, is a widely recognized benchmark for evaluating scoring functions. Dramatically
speaking, one might describe it as "a scoring function for scoring functions". CASF-2016
provides a test dataset comprising 285 protein-ligand complexes, each marked by high-
quality crystal structures and reliable binding constants. This benchmark is anchored by
four critical metrics - scoring power, ranking power, docking power, and screening power
- each designed to objectively discern the strengths and weaknesses of a particular scoring
function. We will delve deeper into these four evaluation metrics in this section.
Scoring Power evaluates the proficiency of a scoring function in producing binding scores
that have a linear correlation with the experimental values of protein-ligand complexes.
The primary metric utilized is the Pearson correlation coefficient (R), as illustrated in
Equation 1.4, comparing predicted binding affinities with their experimental counterparts.
In this equation, xi represents the binding score for the ith complex, x̄ is the average score,
and yi denotes the experimental binding constant for that complex. A higher Pearson
correlation coefficient denotes greater accuracy in scoring power.

R =

∑n
i (xi − x̄) (yi − ȳ)√∑n

i (xi − x̄)2
√∑n

i (yi − ȳ)2
(1.4)

As a reference, CASF-2016 also documents the standard deviation (SD) between the
experimental and predicted values, as seen in Equation 1.5. Here, the predicted val-
ues undergo linear regression, with "a" and "b" denoting the intercept and slope of the
regression line, respectively.

SD =

√∑n
i [yi − (a+ bxi)]

2

n− 1
(1.5)

Ranking Power measures a scoring function’s proficiency in accurately ordering the
known ligands of a specific target protein based on their binding affinities, given the
exact binding poses. Unlike scoring power, ranking power doesn’t necessitate a linear
relationship between calculated binding scores and experimental binding results. The
primary metric employed is the Spearman’s rank correlation coefficient (ρ), detailed in
Equation 1.6. In this context, rxi represents the rank of the binding score for the ith
complex, ryi denotes the rank of its experimental binding constant, and n is the total

1| Background 19

sample count.

ρ =

∑n
i (rxi − r̄x̄) (ryi − r̄ȳ)√∑n

i (rxi − r̄x̄)2
√∑n

i (ryi − r̄ȳ)2
(1.6)

CASF-2016 also employs Kendall’s rank correlation coefficient to assess the Ranking
Power, as detailed in Equation 1.7. In this equation, Pconcord and Pdiscord denote the
count of matching and mismatching pairs, respectively. Each sample i is defined by
(xi, yi), where xi is the calculated binding data and yi is its observed counterpart. A pair
(i, j) matches if both x and y rankings align (either xi > xj with yi > yj or vice versa).
If they contradict, they’re mismatched. T and U are the counts of tied rankings for x

and y. If xi = xj and yi = yj simultaneously, that pair isn’t included in T and U . The
denominator represents the total possible pair combinations among the samples.

τ =
Pconcord − Pdiscord√

(Pconcord + Pdiscord + T)(Pconcord + Pdiscord + U)
(1.7)

Additionally, the Predictive Index (PI) [54] is also adopted by CASF-2016, as detailed
in Equation 1.8. In this metric, Wij denotes the difference in experimental binding data
between ligand i and j, given as Wij = abs (Ej − Ei). Cij evaluates the alignment between
the rank orders of experimental binding data (Ei and Ej) and predicted scores (Pi and
Pj). Specifically, Cij = 1 when Ej−Ei

Pj−Pi
> 0, Cij = −1 when Ej−Ei

Pj−Pi
< 0, and Cij = 0 if they

are equal. Beyond its basic ranking capability, PI underscores the significance of correctly
ranking ligands with marked differences in experimental binding data.

PI =

∑n
j>i

∑n
i WijCij∑n

j>i

∑n
i Wij

(1.8)

Docking Power measures a scoring function’s proficiency in distinguishing the native
ligand binding pose from computer-generated decoys. As depicted in Figure 1.6, the
scoring function under evaluation is tasked with scoring ligand-docked complexes. All
these complexes feature the same protein/ligand but in various docked poses and posi-
tions. Among the set, one represents the native ligand binding pose, while the rest are
computer-generated decoys. Once scored, the complexes are ranked based on their scores.
Subsequently, the similarity between the native binding pose and the top-ranked bind-
ing pose is quantified using Root Mean Square Deviation (RMSD) values. This RMSD
metric, introduced by Allen et al. [4], is computed based on the Hungarian algorithm, as

20 1| Background

Rank1

Rank2

Rank3

Scoring Function
Being Assessed

Protein

Ligand

Ligand Docked onto Protein Rank Based on Scores
Success if RMSD ≤ threshold

Native ligand
binding pose

Computer-
generated

decoys

Figure 1.6: Docking Power assessment process

detailed in Equation 1.9.

RMSD =

√√√√ 1

N

N∑
i=1

(
(xi − x′

i)
2 + (yi − y′i)

2 + (zi − z′i)
2) (1.9)

In this equation, N represents the total number of heavy atoms in the ligand molecule.
The coordinates xi, yi, and zi correspond to the ith atom in the native binding pose, while
x′
i, y

′
i, and z′i refer to its coordinates in the top-ranked binding pose. The final Docking

Power evaluation results are indicated by success rates of ranking Top1, Top2, and Top3.
A docking is deemed successful when its RMSD value falls below a set threshold, typically
2.0 Å.
Screening Power measures a scoring function’s proficiency in identifying the true binder
for a target protein amidst a collection of random ligands with varied binding poses. In
CASF-2016, the screening power was assessed using a cross-docking approach. As il-
lustrated in Figure 1.7, each target protein has 285 associated ligands: 5 positives and
280 negatives. For every ligand, 100 potential binding poses are prepared. The scoring
function under evaluation needs to score all these protein-ligand pairs across their varied
poses. The highest binding score among the poses is noted as the predicted score for
that ligand. Subsequently, all 285 ligands are ranked in descending order based on these
scores. The scoring function’s screening power is determined by its ability to rank the

1| Background 21

…

Total of 285
Ligands: 5 Positives
and 280 Negatives

Target Protein

Positive Ligand

Negative Ligand

Each protein-
ligand pair has

100 binding poses

Figure 1.7: Explanation of the Screening Power Test Set

true binders (positives) towards the top positions.
Unlike other versions of CASF, CASF-2016 splits Screening Power into two distinct parts:
forward and reverse screening power. The forward screening power aims to identify po-
tential small-molecule ligands for a selected target protein. Its criteria include both the
success rate, similar to docking power, and the enhancement factor (EF) which is unique
to the forward screening power test. The success rate indicates the accuracy of identifying
the true positive binder by assessing if the best ligand is found within the top 1%, 5%,
or 10% of candidates across all 57 target proteins in the test set. Also, the enhancement
factor, defined in Equation 1.10, quantifies the enrichment of true binders among the
top-ranked ligands relative to a random ranking expectation. In this equation, NTBα

denotes the number of true binders observed among the top α-ranked candidates (with α

being 1%, 5%, or 10%) selected by the scoring function being assessed. NTBα represents
the total number of true binders for a given target protein, which is five in CASF-2016.
Lastly, the enhancement factor is averaged across all 57 target proteins in the dataset.

EFα =
NTBα

NTBtotal × α
(1.10)

On the other hand, the reverse screening power focuses on identifying potential target
proteins for a given ligand. This is a new feature in CASF and is simple, requiring no
extra computations. Unlike the forward screening power, which ranks ligands for each

22 1| Background

protein, the reverse screening power ranks proteins for each ligand. The indicator for
reverse screening power is the success rate, determined by whether the optimal target is
found within the top 1%, 5%, or 10% of rankings.

1.7. High Performance Computing

In this section, we present a hierarchical model for introducing High-Performance Com-
puting (HPC), as illustrated in Figure 1.8. This model systematically categorizes HPC
into distinct tiers, offering a logical and structured overview. At the broadest tier, the
Computer infrastructure level, there’s an emphasis on leveraging large-scale infras-
tructures, exemplified by supercomputers. Moving to the Computer hardware level,
the spotlight is on exploiting parallel computing capabilities through technologies such
as multi-core CPUs, GPUs, FPGAs and specially-designed hardware accelerators. At the
Computing framework level, the focus is on incorporating parallel computing frame-
works like MPI, OpenCL, and CUDA. Finally, at the Computing algorithm level,
the essence is on devising high-performance algorithms tailored to specific computational
tasks.
The levels mentioned above are set to interplay and complement one another. For in-
stance, when developing a high-performance algorithm for a specific task, it is essential
to consider not only the task’s execution, time complexity, and space complexity but also
the effective use of the computing framework. This includes invoking tools like OpenMP
for multithreading and CUDA for GPU acceleration, ensuring seamless alignment with
the computing hardware and even underlying infrastructure, such as supercomputer, to
maximize computational potential.

1.7.1. Computer infrastructure level

Today, using large-scale cluster computer infrastructure for high-performance computing
has become commonplace. As of June 2023, according to the 61st edition of the TOP500
report, the world’s fastest supercomputer is "Frontier" at Oak Ridge National Labora-
tory in the U.S. It boasts 8,699,904 cores and its theoretical peak performance reaches an
impressive 1,679.82 Peta Floating Point Operations Per Second (PFLOPS) [66].
Supercomputer architectures are sophisticated, encompassing a multitude of diverse com-
ponents. Consider the ‘Node Architecture’, Even back in 2004, the supercomputer "Blue-
Gene/L" of IBM already boasted 65,536 nodes [2]. Each node in such setups functions
akin to a standalone computer, typically equipped with multiple CPUs or GPUs, mem-
ory, and sometimes storage. Given the sheer number of nodes, the role of ‘Interconnects’

1| Background 23

Computer
hardware level

Computer
infrastructure level

Computing
framework level

Computing
algorithm level

Figure 1.8: A Hierarchical Model for Introducing High-Performance Computing (HPC)

becomes paramount. Nodes within a supercomputer are interconnected, predominantly
via high-speed networks. As a case in point, Italy’s supercomputer "Leonardo" employs a
Quad-rail NVIDIA HDR100 Infiniband for its interconnection, which can transfer 200 Gb
of data per second [17]. This interconnection component enables super rapid data transfers
between nodes, crucial for tasks necessitating regular inter-node communication. Beyond
this, the integrity of the entire system often relies on other essential components, ranging
from Storage clusters to the likes of Cooling Systems, Fault Tolerance mechanisms, Re-
dundancy strategies, and dedicated Power systems.
Using such large-scale computing infrastructures in drug discovery is becoming increas-
ingly prevalent. For example, Gadioli et al. [26] utilized the EXSCALATE platform on
two HPC machines: ENI HPC5 and CINECA Marconi100, ranked 15th and 26th on the
61st edition of TOP500 [66], respectively. After combining them, the two machines deliv-
ered a peak throughput of 81 PFLOPS. They processed a chemical library with over 70
billion ligands, targeting 15 binding sites across 12 SARS-CoV-2 viral proteins. Astonish-

24 1| Background

ingly, in a span of just 60 hours, they achieved the colossal feat of executing a TRILLION
dockings. However, even such powerful, expansive large-scale infrastructures have their
limitations. Specifically, they typically serve as public computing resources and possess
inherent barriers that not all researchers can easily navigate. Thus, it’s essential to ac-
knowledge the significance of compact, cost-effective, and readily accessible computing
hardware for high-performance computing tasks.

1.7.2. Computer hardware level

In the realm of the computer hardware level for high-performance computing, the em-
phasis is squarely on parallel computing, primarily facilitated by multi-core CPUs/GPUs.
Additionally, this level incorporates specialized hardware accelerators tailored for distinct
computational tasks. To gain a deeper understanding, it’s essential to familiarize ourselves
with three foundational theoretical concepts: Instruction-Level Parallelism, Data-Level
Parallelism, and Thread-Level Parallelism.
Since approximately 1985, processors have utilized pipelining to overlap the execution of
instructions, enhancing performance. This concept of overlapping instructions is termed
Instruction-level parallelism (ILP), as it allows for parallel evaluation of the instruc-
tions. Two primary strategies exist for leveraging ILP: (1) a hardware-centric approach
that dynamically identifies and utilizes parallelism, and (2) a software-driven method that
seeks out parallelism statically during compilation. Processors adopting the dynamic,
hardware-driven technique, like the Intel Core series, are predominant in the desktop and
server sectors [30, p.148]. The interest in ILP reached its zenith at the start of the 21st
century, marked by the emergence of iconic processors like the Pentium 4. This proces-
sor employed speculative scheduling with seven functional units and featured a pipeline
exceeding 20 stages in depth [30, p.245]. While instructions can overlap and execute in
parallel to some extent, there are inherent limitations and challenges to this approach.
A principal barrier to parallel execution is the emergence of "hazards," which can be
categorized into three types: [52, p.277 - p.284]:

1. Structural Hazard: This arises when an intended instruction cannot proceed in
its designated clock cycle due to hardware constraints that prevent the simultaneous
execution of a specific combination of instructions.

2. Data Hazard (Pipeline Data Hazard): Occurs when an instruction cannot
execute in its assigned clock cycle because the necessary data is not yet available.

3. Control Hazard (Branch Hazard): This takes place when the fetched instruction
isn’t the one required, meaning the sequence of instruction addresses doesn’t match

1| Background 25

the pipeline’s expectations.

Indeed, numerous technologies have been developed to mitigate these hazards. For ex-
ample, to address data hazards, techniques like forwarding (or bypassing) and pipeline
stalling (often referred to as "bubbling") are employed. For control hazards, branch pre-
diction is a common solution. However, diminishing returns are evident in this domain as
well. While some challenges can be addressed, inherent boundaries persist. These limita-
tions have steered interest towards multicore architectures. Nonetheless, understanding
these limitations is essential in striking a balance between ILP and thread-level parallelism
[30].
Shifting our attention to Data-Level Parallelism (DLP), it’s essential to mention a
classification of parallel hardware proposed in the 1960s that remains relevant today. This
classification hinges on the number of instruction streams and data streams. Specifically
[52]:

• SISD (Single Instruction stream, Single Data stream): The Instruction-level par-
allelism discussed earlier primarily focuses on SISD, which is a characteristic of a
standard uniprocessor.

• SIMD (Single Instruction stream, Multiple Data streams): Here, the same instruc-
tion operates on multiple data streams, typical in a vector processor.

• MISD (Multiple Instruction streams, Single Data stream): A potential example of
an MISD processor could be a "stream processor". This would involve executing a
series of computations on a single data stream in a pipeline manner, such as parsing
network input, decrypting and decompressing the data, searching for matches, and
more.

• MIMD (Multiple Instruction streams, Multiple Data streams): Typically associ-
ated with standard multiprocessors, like CPUs and GPUs.

In the context of Data-Level Parallelism, our primary focus is on SIMD, where a sin-
gle instruction processes identically structured data. A quintessential application of this
architecture is the Graphics Processing Unit (GPU), which is also a crucial hardware
component for High-Performance Computing at the computer hardware level. It’s im-
portant to note that a GPU is not strictly an SIMD processor, it contains an array of
multithreaded SIMD units. Essentially, a GPU is a MIMD architecture constructed from
these multithreaded SIMD processors [52, p.526]. In our methodology, we utilize Nvidia’s
GPU. Therefore, we’ll use the Nvidia GPU as a representative example to delve into GPU
architecture and memory structures.

26 1| Background

NVIDIA offers an array of specialized GPU architectures, including Fermi, Kepler,
Maxwell, Pascal, Volta, Turing, Ampere and Hopper. Among these, while each possesses
its distinct performance attributes, we will primarily delve into Fermi. NVIDIA has seg-
mented the Fermi architecture into four models, each tailored for a different price point,
and equipped with either 7, 11, 14, or 15 multithreaded SIMD processors. To guarantee
consistent scalability across different GPU models, the Thread Block Scheduler hardware
is designed to assign thread blocks to the appropriate SIMD processors. A streamlined
depiction of the datapath within a multithreaded SIMD processor is illustrated in Figure
1.9 [52, p.526]. This particular processor showcases 16 SIMD lanes, and its SIMD Thread
Scheduler operates multiple independent SIMD threads, selecting which ones to run on
the processor.

526 Chapter 6 Parallel Processors from Client to Cloud

registers than do vector processors. Unlike most vector architectures, GPUs also
rely on hardware multithreading within a single multi-threaded SIMD processor
to hide memory latency (see Section 6.4).

A multithreaded SIMD processor is similar to a Vector Processor, but the former
has many parallel functional units instead of just a few that are deeply pipelined,
as does the latter.

As mentioned above, a GPU contains a collection of multithreaded SIMD
processors; that is, a GPU is a MIMD composed of multithreaded SIMD processors.
For example, NVIDIA has four implementations of the Fermi architecture at
di! erent price points with 7, 11, 14, or 15 multithreaded SIMD processors. To
provide transparent scalability across models of GPUs with di! ering number of
multithreaded SIMD processors, the " read Block Scheduler hardware assigns
blocks of threads to multithreaded SIMD processors. Figure 6.9 shows a simpli# ed
block diagram of a multithreaded SIMD processor.

Dropping down one more level of detail, the machine object that the hardware
creates, manages, schedules, and executes is a thread of SIMD instructions, which
we will also call a SIMD thread. It is a traditional thread, but it contains exclusively
SIMD instructions. " ese SIMD threads have their own program counters and
they run on a multithreaded SIMD processor. " e SIMD ! read Scheduler includes
a controller that lets it know which threads of SIMD instructions are ready to
run, and then it sends them o! to a dispatch unit to be run on the multithreaded

FIGURE 6.9 Simplifi ed block diagram of the datapath of a multithreaded SIMD Processor.
It has 16 SIMD lanes. " e SIMD " read Scheduler has many independent SIMD threads that it chooses from
to run on this processor.

Instruction register

Regi-
sters

1K × 32

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Address coalescing unit Interconnection network

Local Memory
64 KiB

To Global
 Memory

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

SIMD Lanes
(Thread

Processors)

Figure 1.9: A simplified representation of the datapath of a multithreaded SIMD processor
by Patterson and Hennessy [52, p.526]

In GPU architecture, memory structures also hold significant importance. Thoroughly
understanding the memory structure of the GPU you’re working with is essential for op-
timal high-performance programming. Within NVIDIA GPUs, each multithreaded SIMD
processor is equipped with an on-chip memory known as Local Memory. This memory
is shared among the SIMD Lanes of that specific processor but is not shared with other
multithreaded SIMD processors. The entire GPU, which encompasses all thread blocks,
taps into the off-chip DRAM, often termed GPU Memory. As depicted in Figure 1.10,
the memory hierarchy of NVIDIA GPUs can be further detailed: each thread maintains
its own private memory, and every thread block has local memory. Threads executing

1| Background 27

SIMD instructions pool resources from this Local Memory. Additionally, the entire GPU
Memory, covering all thread blocks, is open for access to vectorized loops. [52, p.528].
Please note that the memory terminology used here, such as ‘Local memory’, reflects
Patterson et al.’s hardware-centric interpretation. This might differ from CUDA’s official
definitions from the computing framework perspective. For CUDA’s definitions, refer to
the subsection 1.7.3.

528 Chapter 6 Parallel Processors from Client to Cloud

since their working sets can be hundreds of megabytes. ! us, they will not " t
in the last level cache of a multicore microprocessor. Given the use of hardware
multithreading to hide DRAM latency, the chip area used for caches in system
processors is spent instead on computing resources and on the large number of
registers to hold the state of the many threads of SIMD instructions.

Elaboration: While hiding memory latency is the underlying philosophy, note that the
latest GPUs and vector processors have added caches. For example, the recent Fermi
architecture has added caches, but they are thought of as either bandwidth ! lters to
reduce demands on GPU Memory or as accelerators for the few variables whose latency
cannot be hidden by multithreading. Local memory for stack frames, function calls,
and register spilling is a good match to caches, since latency matters when calling a
function. Caches can also save energy, since on-chip cache accesses take much less
energy than accesses to multiple, external DRAM chips.

CUDA Thread

Thread block

Per-Block
Local Memory

Grid 0

. . .

Grid 1

. . .

GPU Memory

Sequence

Inter-Grid Synchronization

Per-CUDA Thread Private Memory

FIGURE 6.10 GPU Memory structures. GPU Memory is shared by the vectorized loops. All threads
of SIMD instructions within a thread block share Local Memory.Figure 1.10: The GPU Memory structures by Patterson and Hennessy [52, p.528]

Lastly, we delve into Thread-Level Parallelism (TLP). As previously noted, the em-
phasis on TLP has grown mainly because of the stagnation in uniprocessor performance.
This stagnation results from the diminishing benefits of instruction-level parallelism (ILP)
and increasing concerns about power consumption. TLP heralds a transformative period
in computer architecture, marking the rise of multiprocessors from entry-level to high-end
systems. TLP inherently involves multiple program counters and is predominantly lever-
aged through MIMD. Our discussion centers on multiprocessors, defined as computers
with closely integrated processors. These processors, under the coordination of a sin-
gular operating system, share memory within a unified address space [30, p.344, p.345].
Shared-memory multiprocessors are categorized into two groups based on the number of

28 1| Background

processors and the resulting memory organization.
The first type, as shown in Figure 1.11, known as symmetric shared-memory multipro-
cessors (SMPs), usually has up to eight cores. These processors equally access a central-
ized memory, hence the name ‘symmetric’. SMP systems are also referred to as Uniform
Memory Access (UMA) multiprocessors because all processors access memory at the same
speed, regardless of multiple memory banks. Notably, while all cores in a multicore system
share a central memory, in configurations where multiple multicore systems are connected,
each system has its own memory, resulting in a distributed memory architecture.

5.1 Introduction ! 347

from memory, even if the memory is organized into multiple banks. Figure 5.1
shows what these multiprocessors look like. The architecture of SMPs is the
topic of Section 5.2, and we explain the approach in the context of a multicore.

The alternative design approach consists of multiprocessors with physically
distributed memory, called distributed shared memory (DSM). Figure 5.2 shows
what these multiprocessors look like. To support larger processor counts, mem-
ory must be distributed among the processors rather than centralized; otherwise,
the memory system would not be able to support the bandwidth demands of a
larger number of processors without incurring excessively long access latency.
With the rapid increase in processor performance and the associated increase in a
processor’s memory bandwidth requirements, the size of a multiprocessor for
which distributed memory is preferred continues to shrink. The introduction of
multicore processors has meant that even two-chip multiprocessors use distrib-
uted memory. The larger number of processors also raises the need for a high-
bandwidth interconnect, of which we will see examples in Appendix F. Both

Figure 5.1 Basic structure of a centralized shared-memory multiprocessor based on
a multicore chip. Multiple processor–cache subsystems share the same physical mem-
ory, typically with one level of shared cache, and one or more levels of private per-core
cache. The key architectural property is the uniform access time to all of the memory
from all of the processors. In a multichip version the shared cache would be omitted
and the bus or interconnection network connecting the processors to memory would
run between chips as opposed to within a single chip.

ProcessorProcessorProcessorProcessor

Main memory I/O system

One or
more levels

of cache

One or
more levels

of cache

One or
more levels

of cache

One or
more levels

of cache

Shared cache

Private
caches

Figure 1.11: Symmetric Shared-memory Multiprocessors (SMPs) by Hennessy and Pat-
terson [30, p.347]

Another design method involves multiprocessors with distributed memory, known as dis-
tributed shared memory (DSM). As shown in Figure 1.12, to accommodate more pro-
cessors, memory is distributed instead of centralized. This is because a central memory
system can’t handle the bandwidth needs of numerous processors without causing sig-
nificant access delays. As processors become faster with heightened memory bandwidth
demands, distributed memory is preferred, not just for larger multiprocessors but also for
configurations as compact as two-chip multicore processors. It’s in this context that DSM
multiprocessors, also known as NUMA (nonuniform memory access), have varying access
times based on data’s location in memory. While the DSM’s distribution of memory across

1| Background 29

nodes enhances bandwidth and minimizes local memory latency, it introduces complexity
in data communication between processors. Moreover, DSM demands additional software
effort to leverage the augmented memory bandwidth offered by its distributed structure
[30, p.347, p.348]. Regardless of whether it’s an SMP or DSM setup, processors commu-
nicate through a shared address space. This means any processor can access any memory
location with the right permissions. Both SMP and DSM have ‘shared memory’ because
of this communal address space [30, p.348].

348 ! Chapter Five Thread-Level Parallelism

directed networks (i.e., switches) and indirect networks (typically multidimen-
sional meshes) are used.

Distributing the memory among the nodes both increases the bandwidth
and reduces the latency to local memory. A DSM multiprocessor is also called
a NUMA (nonuniform memory access), since the access time depends on the
location of a data word in memory. The key disadvantages for a DSM are that
communicating data among processors becomes somewhat more complex, and
a DSM requires more effort in the software to take advantage of the increased
memory bandwidth afforded by distributed memories. Because all multicore-
based multiprocessors with more than one processor chip (or socket) use
distributed memory, we will explain the operation of distributed memory multi-
processors from this viewpoint.

In both SMP and DSM architectures, communication among threads occurs
through a shared address space, meaning that a memory reference can be made
by any processor to any memory location, assuming it has the correct access
rights. The term shared memory associated with both SMP and DSM refers to the
fact that the address space is shared.

In contrast, the clusters and warehouse-scale computers of the next chapter
look like individual computers connected by a network, and the memory of one
processor cannot be accessed by another processor without the assistance of soft-
ware protocols running on both processors. In such designs, message-passing
protocols are used to communicate data among processors.

Figure 5.2 The basic architecture of a distributed-memory multiprocessor in 2011 typically consists of a multi-
core multiprocessor chip with memory and possibly I/O attached and an interface to an interconnection net-
work that connects all the nodes. Each processor core shares the entire memory, although the access time to the
lock memory attached to the core’s chip will be much faster than the access time to remote memories.

Memory I/O

Interconnection network

Memory I/O Memory I/O

Multicore
MP

Multicore
MP

Multicore
MP

Multicore
MP

Memory I/O

I/O MemoryMemory I/O Memory I/O Memory I/O

Multicore
MP

Multicore
MP

Multicore
MP

Multicore
MP

Figure 1.12: Distributed Shared-memory Multiprocessors (DMPs) by Hennessy and Pat-
terson [30, p.348]

1.7.3. Computing framework level

Several parallel computing APIs and frameworks are designed to drive your devices for
high-performance computing tasks. To offer a structured overview, we’ve categorized them
by their main focus: CPUs or GPUs, as detailed in Table 1.3. However, the demarcation
between these tools isn’t always distinct. Many are multifaceted and can be applied
beyond their core intention. For example, Intel’s oneAPI encompasses both CPUs and
GPUs but notably gravitates towards GPU operations [33]. Likewise, while Apple’s Metal
is equipped to manage tasks across a spectrum of processors, it predominantly emphasizes
GPU-centric activities [32]
In our methodology, we leveraged CUDA (Compute Unified Device Architecture)
to drive our high-performance computing hardware - the NVIDIA A-100 GPU. Therefore,
this section will center on CUDA, showcasing it as a quintessential example of parallel
computing frameworks. NVIDIA introduced CUDA in 2006 as a general-purpose parallel
computing platform and programming model, specifically crafted to tap into the parallel
compute engine of NVIDIA GPUs. While CUDA’s software environment predominantly
supports high-level programming in C++, it is versatile enough to accommodate other

30 1| Background

Parallel Computing APIs/Frameworks

Target Hardware APIs/Frameworks

Primarily for CPU OpenMP (Open Multi-Processing)
pthreads (POSIX Threads)
MPI (Message Passing Interface)
oneTBB (oneAPI Threading Building Blocks)
Cilk, Cilk++, Cilk Plus and OpenCilk

Primarily for GPU CUDA (Compute Unified Device Architecture)
AMD ROCm
Microsoft DirectCompute

Both CPU and GPU OpenCL (Open Computing Language)
(Heterogeneous Computing) SYCL

HIP (Heterogeneous-Compute Interface for Portability)
Intel oneAPI
Metal (by Apple)

Table 1.3: Classification of Parallel Computing APIs/Frameworks

languages, APIs, and directives-based approaches like FORTRAN, DirectCompute, and
OpenACC [18, Chapter 1.2].
One of CUDA’s defining features is its scalability. Given the significant variation in
core numbers across NVIDIA’s product range — from the affordable GeForce GPUs to
the professional Quadro and Tesla units — a robust scale parallel programming model is
essential. CUDA addresses this need through three foundational abstractions: a hierarchy
of thread groups, shared memories, and barrier synchronization. As described by the
CUDA official introduction [18, Chapter 1.3]:

"These abstractions provide fine-grained data parallelism and thread paral-
lelism, nested within coarse-grained data parallelism and task parallelism.
They guide the programmer to partition the problem into coarse sub-problems
that can be solved independently in parallel by blocks of threads, and each
sub-problem into finer pieces that can be solved cooperatively in parallel by
all threads within the block."

The decomposition described above not only preserves language expressiveness by facil-
itating thread cooperation during the resolution of each sub-problem but also ensures
"Automatic Scalability". As illustrated in Figure 1.13, a multithreaded CUDA program
is depicted as divided into various blocks. Different GPU models feature varying numbers
of Streaming Multiprocessors (SMs). To run a compiled CUDA program, only the count
of physical multiprocessors is needed. Notably, each block of threads can be scheduled

1| Background 31

to any available multiprocessor within a GPU, either concurrently or sequentially, and in
any order [18, Chapter 1.3].

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

SM 0 SM 1 SM 0 SM 1 SM 2 SM 3

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Multithreaded CUDA Program

GPU with 2 SMs GPU with 4 SMs GPU with 8 SMs…

Figure 1.13: Automatic Scalability [18, Chapter 1.3]

An integral aspect of CUDA’s parallel computing model lies in its distinct approach
to structuring computational tasks and data management: the Thread Hierarchy and
Memory Hierarchy. These hierarchies underpin the framework’s capacity to efficiently
distribute workloads across the vast parallel architecture of NVIDIA GPUs. By under-
standing these hierarchies, developers can harness the full potential of CUDA, optimizing
performance by tailoring computation to the GPU’s unique characteristics. As depicted
in Figure 1.14, threads perform parallel computations in CUDA and are grouped into
blocks. These blocks form a grid. Each block has its own shared memory accessible to its
threads, streamlining inter-thread communication within that block. On the other hand,
all threads, irrespective of their block, can access the global memory; however, this comes
at a higher latency than the shared memory.

32 1| Background

Grid

Thread Block Thread Block
Shared Memory Shared Memory

Thread Block Thread Block
Shared Memory Shared Memory

Thread Block Thread Block
Shared Memory Shared Memory

Thread Block Thread Block
Shared Memory Shared Memory

Global Memory
Global Memory
shared between
all GPU kernels

Per block
shared memory

Per thread
registers and
local memory

Figure 1.14: Thread Hierarchy and Memory Hierarchy [18, Chapter 2.2, 2.3]

In Subsection 1.7.2, we highlighted that CUDA’s interpretation of memory hierarchy ter-
minologies may differ when viewed from the computing framework’s perspective compared
to other contexts. Below is a concise breakdown of these terminologies [18, Chapter 5.3.2]:

• Thread Register: Serving as the fastest memory type, every thread maintains a
private set of these registers. The available register space can influence the concur-
rent execution capability of threads.

• Local Memory: Each thread has its own dedicated local memory that isn’t shared
with others. For NVIDIA GPUs, it’s important to note that despite its name,
local memory is off-chip, making its access slower than shared memory or registers.
Accesses to local memory are reserved for certain automatic variables.

• Shared Memory: On-chip and shared among threads within the same thread
block, this memory type boasts faster access times than local or global memories.

• Global Memory: Positioned as the primary off-chip storage, it exhibits slower
access times in contrast to on-chip memories. Nonetheless, it’s universally accessible,
permitting all threads to read and write.

To give readers a general insight into the utilization of CUDA and the execution of
programs through this platform, we explore its collaboration with the CPU — an approach
known as Heterogeneous Programming. Fundamentally, CUDA’s programming model
divides the hardware into two essential components: the host, which includes the CPU and
its associated memory, and the device, representing the GPU and its dedicated memory.

1| Background 33

Code running on the GPU is termed the "kernel" code, which is launched by the host
and executed by the device. To illustrate this dynamic, we provide a C programming
example that demonstrates the interplay between the CPU and GPU, as depicted in
Figure 1.15. This illustration divides the computing system into two components: the
Host and the Device. The Host initiates the Device, and while the Device is in execution,
the Host can either continue its own tasks sequentially or employ specific commands, such
as cudaDeviceSynchronize(), to pause the Host’s thread and await the completion of the
Device’s execution. The key distinction here lies in the execution behavior: Host threads
operate sequentially, while Device threads operate concurrently.

34 1| Background

C Program
Sequential
Execution

Host C Code:
Serial Execution

Device Code:
Parallel kernel
Kernel0<<<>>>()

Host C Code

Kernel1<<<>>>()

Host thread

Device

Back to Host
thread

Lanch Kernel0

Grid 0

Block (0, 0) Block (0, 1)

Block (1, 0) Block (1, 1)

Device

Grid 0

Block (0, 0) Block (0, 1)

Block (1, 0) Block (1, 1)

Block (2, 0) Block (2, 1)

Lanch Kernel1

cudaDeviceSynchronize()

cudaDeviceSynchronize()

Figure 1.15: CUDA Heterogeneous Programming [18, Chapter 2.4]

1| Background 35

1.7.4. Computing algorithm level

Within our High-Performance Computing level model, the Computing Algorithm level
stands out as the most pivotal. If a program is designed with inherent inefficiencies, for
instance, utilizing high-complexity algorithms, even the most optimal use of computer
hardware or state-of-the-art large-scale infrastructure may not deliver desired outcomes.
These inefficiencies not only compromise performance but also squander precious hardware
resources. Consequently, we posit that the cornerstone of high-performance computing
lies in a meticulously designed program. Hence, a best practice usually is to adopt a
two-fold approach to crafting an effective program for your problem. First, address the
computability aspect to ensure the problem can be solved algorithmically. Once this is
confirmed, the subsequent step involves crafting a new algorithm or utilizing existing al-
gorithms and data structures while aiming to minimize computational complexity.
Computability and complexity are foundational concepts in the theory of computation,
each with its intricate and philosophical layers. Though closely related, complexity the-
ory seeks to categorize problems as either ‘easy’ or ‘hard’, whereas computability theory
differentiates between those that are solvable and those that are not [61, p.3]. In the
current scenario, regarding computability, we presuppose the existence of an algorithm
(or Turing machine) capable of solving every instance of the problem while directing our
primary attention solely to the complexity aspect.
Within the realm of High-Performance Computing, addressing complexity is inevitable.
Even if a problem is decidable and theoretically computable, it might remain impractical
to solve if it demands excessive time or memory resources. Complexity primarily delves
into the time, memory, and other resources crucial for solving computational problems
[61, p.275]. Among these, time complexity and space complexity are of paramount im-
portance. While this discussion predominantly centers on time complexity, the principles,
and notations applied to space complexity mirror those of the former.
Evaluation of time complexity primarily hinges on two methods: worst-case and average-
case analysis. The worst-case analysis examines the longest running time for inputs of
a specific length. Conversely, the average-case analysis assesses the average running time
across inputs of a given length. Given this backdrop, it’s important to note that the
precise running time of an algorithm can be an intricate expression, leading us to typi-
cally resort to estimation. Delving further, one prevalent method, known as asymptotic
analysis, aims to estimate the algorithm’s running time on large inputs. This approach
hinges on focusing on the highest order term of its runtime expression, overlooking its
coefficient and any lower order terms, primarily because the highest order term stands
out as the predominant factor for large inputs [61, p.276].

36 1| Background

In asymptotic analysis, specific notations are employed, notably Big-O notation and
Small-o notation, to denote an algorithm’s complexity. Big-O notation indicates that
one function is asymptotically "no more than" another. Conversely, to convey that one
function is asymptotically "less than" another, we employ the Small-o notation. This
differentiation between Big-O and Small-o is akin to the distinction between ≤ (less than
or equal to) and < (strictly less than) [61, p.277, p.278].
Note that, as previously discussed and illustrated in Figure 1.8, each layer in our hi-
erarchical model is interdependent. The algorithmic complexity of the program cannot
be solely equated with its computational performance, as it is also closely tied to the
computational framework employed and the hardware used.

37

2| State of the art

After conformational sampling using the selected search algorithm in the molecular dock-
ing process, the next critical step is to evaluate these conformations using a scoring func-
tion. This mathematical model predicts the binding affinity between a ligand and its
receptor, playing a crucial role in the molecular docking process by enabling the ranking
of ligands based on their predicted binding affinities. Broadly, scoring functions can be
categorized into four types: Physics-Based, Empirical, Knowledge-Based, and Machine
Learning scoring functions. The classical scoring functions, which include the first three
categories, are defined based on their feature items and typically employ linear regression
techniques. In contrast, Machine Learning-based scoring functions incorporate nonlinear
regression through advanced machine-learning approaches [42].
In this chapter, we provide a detailed overview of these four types of scoring functions
and discuss state-of-the-art scoring functions relevant to our approach. Our method-
ology draws upon, refines, or is inspired by these established techniques, incorporating
improvements where necessary. Various Scoring functions will also be further compared
and analyzed in the experimental results section with our proposed approach.

2.1. Physics-Based Scoring Functions

Essentially, Physics-based scoring functions can be categorized into three types: force
field, solvation models, and quantum mechanics methods. Each comes with its own set
of strengths and limitations.

2.1.1. Force Field Scoring Functions

The force field scoring function is the most classic method. It calculates the binding energy
Ebind by summing up the van der Waals interactions (EvdW , often reflecting the non-
bonded attraction or repulsion between atoms) and electrostatic interactions (Eelec, which
capture the interactions between charged entities) between protein-ligand atom pairs,
as represented in Equation 2.1. This method predominantly accounts for the enthalpic
contribution to energy. While it offers computational efficiency, its omission of entropy

38 2| State of the art

and solvent effects means the force field-based SF can be notably suboptimal [42, 46].

Ebind = EvdW + Eelec (2.1)

To improve the force field-based SF, one can incorporate the torsion entropy of ligands
and consider the solvation/desolvation effects (∆Gsolv). These effects can be represented
by both explicit and implicit solvent models [42], as formulated in Equation 2.2.

Ebind = EvdW + Eelec +∆Gsolv (2.2)

2.1.2. Scoring Function of DOCK

In this context, we highlight the scoring function of DOCK as a representative example
of a force field that takes into account the solvent effect. As illustrated in Equation 2.3,
it adopts its energy parameters from the Amber force fields [31, 46, 70, 71]. Within this
equation, the terms Aij

r12ij
− Bij

r6ij
signify van der Waals (VDW) interactions, while qiqj

ε(rij)rij

denote electrostatic or Coulombic interactions. Here, rij represents the distance between
protein atom i and ligand atom j; Aij and Bij are the VDW parameters; and qi and qj

signify atomic charges. Notably, the solvent effect is implicitly captured using a simple
distance-dependent dielectric constant, ε(rij), in the Coulombic term [31].

E =
∑
i

∑
j

(
Aij

r12ij
− Bij

r6ij
+

qiqj
ε(rij)rij

) (2.3)

While this example incorporates the solvent effect through a distance-dependent dielectric
factor, it doesn’t sufficiently account for the desolvation effect. According to the research
by Huang et al. [31], the charged groups prefer aqueous environments, whereas non-polar
groups gravitate towards non-aqueous settings. The desolvation energy, being a many-
body interaction term, is contingent on the specific geometric and chemical contexts
surrounding solute atoms. Overlooking the desolvation effect can skew a scoring function
towards Coulombic electrostatic interactions, leading to a bias for highly charged ligands.

2.1.3. Quantum Mechanics (QM) Related Scoring Functions

Regardless, the aforementioned scoring functions are rooted in force fields. Their main
limitation is that the predictive accuracy for binding energy heavily depends on the func-
tional form of the potential energy and related parameters, which are challenging to
pinpoint [42]. Hence, scoring functions (SF) rooted in quantum mechanics (QM) or the

2| State of the art 39

hybrid quantum mechanical/molecular mechanics (QM/MM) approach are formulated
to address the intricacies of covalent interactions, polarization, and charge transfer in
docking [42], as illustrated in Equation 2.4.

Ebind = EQM/MM +∆Gsolv (2.4)

The quantum mechanics (QM) based SF offers a substantial improvement in prediction
accuracy over the Force field SF. However, its heightened computational demand remains
a significant challenge, even when employing the hybrid quantum mechanical/molecular
mechanics (QM/MM) approach [15].

2.2. Empirical Scoring Functions

Empirical scoring functions (SFs) estimate protein-ligand binding affinity by accumulat-
ing energetic components such as hydrogen bonds, hydrophobic effects, and steric clashes.
These functions are formulated as linear combinations of terms that depict different en-
ergy interactions at the protein-ligand interface, though specific terms can differ among
scoring functions [10, 22, 25, 36, 69]. Empirical scoring functions have an evident draw-
back. The weights of the energetic components are determined by multivariate regression
analysis using a training set with known binding affinities. Consequently, the accuracy of
empirical SFs is profoundly anchored to the quality of the experimental data, which may
introduce biases [36, 39]. Conversely, empirical scoring functions also present several no-
table advantages. Firstly, being calibrated with a diverse set of protein-ligand complexes
enhances their adaptability beyond specific ligands or proteins. Secondly, each term not
only has a clear physical meaning but, when combined with its assigned weight, our un-
derstanding of the receptor-ligand binding process is enhanced. Lastly, they are capable
of achieving a prediction accuracy level of around 2 kcal/mol in binding affinity, which is
deemed suitable for many structure-based virtual screening endeavors [13].

2.2.1. X-Score

A practical example of an empirical scoring function is X-Score, as shown in Equation
2.5. For simplicity, we’ve consolidated the hydrophobic term HP from three separate
algorithms into a single term, HP. For a comprehensive presentation of X-Score, refer to

40 2| State of the art

Wang et al. [69].
X − Score = w0

+ wV DW · VDW

+ wH−bond · HB

+ wrotor · RT

+ whydrophobic · HP

(2.5)

In this equation 2.5, each w represents a weight determined during training process. The
terms VDW, HB, RT, and HP correspond to the free energy change of van der Waals
interaction, hydrogen bonding, deformation effect, and hydrophobic effect, respectively.

2.3. Knowledge-Based Scoring Functions

Knowledge-based scoring functions extract pairwise potentials from the three-dimensional
configurations of numerous protein-ligand complexes, using the inverse Boltzmann statis-
tical principle. The underlying assumption is that the frequency of various atom pairs
at distinct distances correlates with their interaction, which is then translated into a
distance-dependent potential of mean force [42]. Similar to the empirical scoring function,
the knowledge-based scoring function encompasses both training and prediction processes.
In the training phase, the function counts occurrences of each protein-ligand complex to
construct the model. During prediction, it retrieves the pairwise atomic occurrences of
the protein-ligand complex from the model and then follows the computing workflow to
compute the binding affinity [28].
Knowledge-based SFs provide several advantages. Foremost, they effectively balance com-
putational costs with predictive accuracy, distinguishing them from physics-based and
empirical SFs. Additionally, the potentials derived from knowledge-based SFs are reliant
solely on structural information, eschewing the need for experimental binding affinity
data. This sidesteps potential ambiguities in binding affinities due to varying experi-
mental conditions. Consequently, knowledge-based SFs are better suited for predicting
binding poses rather than the binding affinities themselves [42].
However, knowledge-based SFs come with their own set of challenges. A pivotal com-
ponent in these scoring functions is the ‘reference state’, which serves as a baseline or
standard condition against which other states are compared. The determination of this
reference state is not straightforward, primarily because it is an abstract representation
that might not have a direct physical analog. Within the computational process, pin-
pointing an accurate reference state often proves elusive, given the myriad of factors that
can influence molecular interactions. To circumnavigate this challenge, two predominant

2| State of the art 41

strategies have emerged. The first approximates the reference state by analyzing the ran-
dom distribution of atomic pairs within the training set. In contrast, the second strategy
refines this approximation using correction factors, such as the volume factor correction
and physics-based iterative methods, to bolster accuracy [42].
In this section, DrugScore is highlighted as a specific example of a knowledge-based scoring
function. Since its introduction in 2000, DrugScore has undergone significant refinements
across three primary versions. Each of these versions was developed by the research group
at Heinrich-Heine-Universität Düsseldorf, led by Prof. Dr. Holger Gohlke. Throughout
its evolution, while the core principles of the original DrugScore remained intact, each
iteration introduced unique enhancements and features, aiming to address evolving chal-
lenges in the field.
To illustrate the differences among the three versions, the original DrugScore classifies
atoms into 17 types using the Sybyl atom types and incorporates both atom-pair po-
tentials and Solvent-Accessible Surface (SAS) potentials. While they started with 6,026
protein-ligand complexes, the final training set might be fewer due to specific exclusion-
ary rules applied [28]. On the other hand, DrugScoreCSD stands apart by deriving its
pair-wise potentials from small-molecule crystal structures in the Cambridge Structural
Database (CSD), as opposed to protein-ligand complexes. It includes 18 atom types, no-
tably adding an atom type for iodine, and omits the use of SAS-potentials [67]. Building
on these advancements, DrugScore2018 expands the model to encompass 25 atom types
and utilizes an extensive training set of roughly 40,000 protein-ligand complexes from the
Protein Data Bank (PDB). Importantly, similar to DrugScoreCSD, DrugScore2018 also
does not consider SAS-potentials [21].
Further details of these versions will be discussed in the subsequent subsections.

2.3.1. DrugScore

DrugScore [28] utilizes training data from the ReLiBase database system, a three-dimensional
platform focused on storing and analyzing protein-ligand complex structures [29]. This
database houses 6,026 PDB protein structures, each containing ligands annotated with
bond and atom types based on the SYBYL type convention. Gohlke et al. [28] applied
a set of specific filtering rules to the dataset, each addressing a distinct purpose. For
instance, to avoid the influence of atypical drug molecule sizes on the model, they ex-
cluded complexes with covalently bound ligands or those with ligands comprising fewer
than six or more than 50 non-hydrogen atoms (heavy atoms). In another instance, given
the first pass effect in the liver, they set a stringent upper limit of about 600 Daltons for a
typical organic molecule. Additionally, they excluded any complexes later used to assess

42 2| State of the art

predictive accuracy.
In the model, they assigned 17 Sybyl types to atoms, as outlined in Table 2.1. S.2 (sulfur
sp2) was grouped with S.3, and N.4 (positively charged nitrogen) with N.3, mainly due
to their rare presence or ambiguous assignment criteria. The training process primarily

Symbol Description
C.3 Carbon sp3
C.2 Carbon sp2
C.ar Carbon in aromatic rings
C.cat Carbon in amidinium and guanidinium groups
N.3 Nitrogen sp3
N.ar Nitrogen in aromatic rings
N.am Nitrogen in amid bonds
N.pl3 Nitrogen in amidinium and guanidinium groups
O.3 Oxygen sp3
O.2 Oxygen sp2

O.co2 Oxygen in carboxylate groups
S.3 Sulfur sp3
P.3 Phosphorus sp3
F Fluorine
Cl Chlorine
Br Bromine
Met Ca, Zn, Ni, Fe

Table 2.1: 17 Sybyl atom types used in DrugScore.

involves counting occurrences for each protein-ligand atom type pair. Specifically, the
occurrence Ni,j(r) at each distance r is calculated from every Protein-Ligand complex, as
shown in Equation 2.6.

Ni,j(r) =
∑
i

∑
j

δ (|r⃗i − r⃗j| , r) (2.6)

In Equation 2.6, i and j represent individual atom types of the protein and ligand within
the complex, respectively. The expression |r⃗i − r⃗j| denotes the Euclidean distance be-
tween atom i and j. The function δ is a form of the Dirac delta function that assumes
the value 1 when r ⩽ |r⃗i − r⃗j| ⩽ r+dr and 0 otherwise. The bin size dr should be strate-
gically chosen to ensure both a high resolution and a sufficient data sample within each
bin. According to the findings of Gohlke et al. [28], a dr value of 0.1 Å was determined
to produce satisfactory results.
In the model, the distance r is constrained between a minimum value rmin of 1 Å and
a maximum rmax of 6 Å. The choice of 1 Å as the minimum accounts for typical metal-
to-oxygen/nitrogen contacts, which typically occur around 1.8 Å. For distances shorter

2| State of the art 43

than 1 Å, such proximate contacts will not be present in both crystal structures and
computer-docked complexes due to van der Waals repulsion. The choice of 6 Å as the
upper limit is motivated by the intention to focus on the geometrical discrimination of
various ligand binding modes. This specific threshold ensures that highly specific inter-
actions are dominant. Additionally, another advantage of selecting 6 Å is that it is short
enough to exclude the possibility of a water molecule acting as a mutual mediator in a
ligand-to-protein interaction.
It’s important to acknowledge the inherent uncertainties in experimental data during the
training process. As noted by Kossiakoff et al. in 1992 [41], atom position inaccuracies
can reach up to 0.4 Å for a resolution of 2.5 Å. Given a bin size of 0.1 Å, such a distance
becomes significant and cannot be overlooked. Gohlke et al. [28] employed a special
smoothing function to address these uncertainties. They utilized a triangular weighting
scheme to spread a single hit across multiple bins. Specifically, they allocated one hit to
all adjacent bins within 0.2 Å, with the weight linearly decreasing from one to zero from
the targeted bin.
Subsequently, the prediction phase involves computing the total score using the model,
as presented in Equation 2.7. This equation primarily consists of two components: the
atom-pair potential and the Solvent-Accessible Surface (SAS) potential. The atom-pair
potential, represented as

∑
ki

∑
lj
∆Wi,j(r), is calculated as the sum of all pairwise po-

tentials between protein and ligand atoms at a given distance r. The SAS potential,
expressed as

∑
ki
∆Wi (SAS, SAS0)+

∑
lj
∆Wj (SAS, SAS0), accounts for the sum of the

SAS potentials for all individual protein and ligand atoms

∆W =γ
∑
ki

∑
lj

∆Wi,j(r)+

(1− γ)×

∑
ki

∆Wi (SAS, SAS0) +
∑
lj

∆Wj (SAS, SAS0)

 (2.7)

Within this context, the coefficient γ serves as a tunable parameter, which has been
empirically optimized to a value of 0.5.
For the atom-pair potential term, it is reasonable to assume that the total preference,
∆W , for a specific binding geometry can be approximated by summing the individual
contributions. This includes contributions from ki ligand atoms of type i and lj protein
atoms of type j. Specifically, this relationship is expressed in Equation 2.8.

∆Wi,j(r) = Wi,j(r)−W (r) = − ln [gi,j(r)]− (− ln [g(r)]) = − ln
gi,j(r)

g(r)
(2.8)

44 2| State of the art

Within this context, ∆Wi,j represents the net statistical preferences, derived from com-
paring the mean statistical preferences of subsystems, Wi,j, to the reference system W .
Further, Wi,j(r) denotes the absolutely pairwise potential between atom types i and j at a
distance r. It corresponds to gi,j(r), which signifies the normalized radial pair distribution
function for atoms of types i and j separated by a distance in the interval [r, r + dr], as
depicted in Equation 2.9. For Ni,j(r), one has to compute the distance r between atoms
i and j and then extract the count of occurrences from the model.

gi,j(r) =
Ni,j(r)/4πr

2∑
r (Ni,j(r)/4πr2)

(2.9)

On the other hand, W (r) serves as the reference system, encapsulating all non-specific
information relevant to all atom pairs found in typical protein environments. Meanwhile,
g(r) is the normalized mean radial pair distribution function for a distance between any
two atoms within the range [r, r + dr], as illustrated in Equation 2.10.

g(r) =

∑
i

∑
j gi,j(r)

ij
(2.10)

Additionally, both radial distribution functions (as per Equations 2.9 and 2.10) are nor-
malized using the volume 4πr2 of the corresponding spherical shell for the interatomic
distance r. This normalization facilitates quicker convergence to zero at greater distances
[8].
In the original DrugScore, the Solvent-Accessible Surface (SAS) potential term is con-
sidered. This feature is not present in its subsequent versions, DrugScore CSD and
DrugScore2018. As illustrated in Equation 2.7, both the Protein and Ligand atoms in-
dependently compute their respective SAS potentials, which are then aggregated. The
underlying algorithm for computing the SAS potential of each atom is presented in Equa-
tion 2.11.

∆Wi (SAS, SAS0) = Wi(SAS)−Wi (SAS0) = − ln
gi(SAS)

gi (SAS0)
(2.11)

For this equation, gi represents the normalized distribution function of the surface area
for atom i in its buried state (SAS), compared to its solvated state (SAS0), considering
both ligand and protein separately. Consequently, gi is derived using an approximate
cube algorithm, as depicted in Equation 2.12.

gi(SAS) =
Ni(SAS)∑
SAS Ni(SAS)

or gi (SAS0) =
Ni (SAS0)∑

SAS0
Ni (SAS0)

(2.12)

2| State of the art 45

More specifically, gi(SAS) denotes the probability of observing an atom of type i with an
exposed solvent-accessible surface (SAS) within a complexed state. In contrast, gi(SAS0)

conveys the probability of finding that same atom, having an equivalent solvent-accessible
surface, in a fully dissociated state. In this context, Ni(SAS) is the count of instances
where atom i presents a solvent-accessible surface in the complexed state, whereas Ni (SAS0)

tallies the instances of atom i revealing a solvent-accessible surface when completely un-
bound. The denominator acts as a normalization factor, accounting for the cumulative
occurrences across both conditions.

2.3.2. DrugScore CSD

DrugScoreCSD [67], while sharing a similar formalism with the original DrugScore, distin-
guishes itself primarily in the derivation of its distance-dependent pair potentials. Unlike
the original which sources these potentials from protein-ligand complexes, DrugScoreCSD
derives them from nonbonded interactions observed in small organic molecule crystal
packings. Opting for this approach offers notable benefits: the higher resolution of small
molecule structures delivers more balanced distributions of atom types in contact data.
Consequently, it yields potentials with enhanced statistical significance and finer shape
details.
Regarding specifics, DrugScoreCSD utilizes data from the Cambridge Structural Database
(CSD). The required entries are queried using the ConQuest engine. From the CSD,
28,642 entries were considered as crystal packings. For each entry, one central molecule
is fully embedded within a comprehensive contact environment comprised of neighboring
molecules. Each molecule within the crystallographic asymmetric unit was examined once
to determine its nonbonded contact distances to all surrounding molecules in the crystal
packing. For units with multiple molecular entries, molecules outside the asymmetric
parts were included in the packing. As illustrated in Figure 2.1, the depicted calcium-
acetylacetone complex features a calcium ion at the center, represented by the green ball.
For deriving the pair potentials, only the acetylacetone and the calcium ion are considered
as central molecules. In this framework, complexed metal ions are treated as independent
"molecules". Uncomplexed water molecules, nonmetal ions, and molecules containing
fewer than six heavy atoms are excluded.
For compatibility with the original DrugScore, DrugScoreCSD uses the same atom types
for each atom in the crystal packing, as listed in Table 2.1. The sole exception is the intro-
duction of a new atom type for iodine (I). As for its computation approach, DrugScoreCSD
prioritizes the pairwise potential and omits the SAS potential. For the details of the pair-
wise potential procedure, one can refer directly to the original DrugScore’s equations,

46 2| State of the art

Ca

Acetylacetone
CH3C(O)CH=C(OH)CH3 Acetylacetone

CH3C(O)CH=C(OH)CH3
H2O

H2O

H2O

Figure 2.1: Example of a crystal packing used for the derivation of pair potentials, adapted
from [67].

spanning from Equation 2.6 to 2.10.

2.3.3. DrugScore 2018

Developed by Dittrich et al., DrugScore2018 [21] is an enhanced version of its predecessor.
Its most notable advancement is the expansion of the original 17 atom types in DrugScore
to 25. The eight additional types introduced in this version are detailed in Table 2.2.
Another enhancement in DrugScore2018 is its utilization of a more extensive training
dataset, reflecting its expanded model capacity. The data is sourced from the Protein
Data Bank (PDB), incorporating close to 40,000 protein-ligand complexes.

Atom Type Description
I Iodine

C.1 sp-hybridized Carbon (e.g., in alkynes)
N.1 sp-hybridized Nitrogen (e.g., in a nitrile group)
N.2 sp2-hybridized Nitrogen
N.4 Protonated sp3-hybridized nitrogen (e.g., protonated amino groups)
S.2 sp2-hybridized Sulphur
S.O Sulphoxide sulphur
S.O2 Sulphone sulphur

Table 2.2: Newly introduced atom types in DrugScore2018.

In reality, the PDB contains much more than 40,000 protein-ligand complexes. The

2| State of the art 47

method DrugScore2018 employs to select suitable protein-ligand complexes and assess
the quality of the selected dataset is notably worth mentioning. To identify the most
suitable protein-ligand complexes for deriving the potentials, the following criteria were
established:

• Retain only entries having a resolution of 2.5 Å or better, ensuring that structural
features separated by at least 2.5 Å can be confidently discerned.

• Exclude complexes containing ligands that appear in the PDB more frequently than
500 times to mitigate potential biases in the derived potentials.

• Remove ligands with fewer than 10 or more than 100 heavy atoms. Additionally,
ligands with unresolved (missing) atoms were excluded.

• Restrict the selection to no more than four identical ligands per PDB entry. It’s
important to note that while certain ligands may be excluded, they can still be
present within the receptor structure.

On the other hand, DrugScore2018 evaluates the quality of the selected dataset by em-
phasizing two key aspects: ligand diversity and the impact of the predominant protein
cluster on the potentials. To address ligand diversity, DrugScore2018 incorporates two
evaluation criteria. First, the Tanimoto indices, as discussed in subsection 1.2.1, are uti-
lized to measure the similarity among ligands. Second, combine the principal component
analysis (PCA) and molecular quantum numbers (MQNs) [6] to gauge the chemical space
coverage of the ligands. A high ligand similarity can lead to biases in the potentials de-
rived, while a limited span in the chemical space can substantially hinder the model’s
capacity for generalization.
In the potential derivation process, DrugScore2018, much like DrugScoreCSD, focuses
exclusively on the Pairwise Potential, omitting the SAS-Potential. This streamlined ap-
proach significantly enhances computing efficiency. Most of the derivation procedure
aligns with the original DrugScore, as outlined from Equation 2.6 to 2.10. However, a mi-
nor adjustment in DrugScore2018, which applies to Equation 2.9, is the inclusion of a dr

term in the normalized radial pair distribution, as presented in Equation 2.13. Typically,
dr is set to 0.1 Å.

gi,j(r) =
Ni,j(r)/4πr

2dr∑
r (Ni,j(r)/4πr2dr)

(2.13)

48 2| State of the art

2.4. Machine Learning Scoring Functions

The scoring functions we have discussed so far are typically referred to as classic scor-
ing functions. While these incorporate elements reminiscent of machine learning, they
do not qualify as pure machine-learning scoring functions. For example, the process of
determining weights during the training phase of empirical scoring functions bears simi-
larities to supervised learning. Similarly, the methodology used in knowledge-based scor-
ing functions, which involves extracting occurrences from each protein-ligand complex to
construct the model, can be likened to unsupervised learning. However, genuine machine
learning-based scoring functions significantly differ from these empirical and knowledge-
based scoring functions, which only integrate certain aspects of machine learning. True
machine-learning scoring functions explicitly employ machine-learning algorithms, such
as support vector machines, random forests, or gradient boosting, to predict the effective-
ness of decoys as potential ligands directly.
The general training procedure for machine learning scoring functions is illustrated in
Figure 2.2. Mirroring conventional machine learning workflows, it primarily involves two
stages: data processing and model training. Initially, data is extracted and preprocessed
from specific databases and then split into training, validation, and test sets. Subse-
quently, the designated model is trained, and its predictive accuracy is evaluated.

Data selection

Training Validation Evaluation

Data preprocessing
• Cleaning
• Transformation
• Feature Engineering
• Normalization/Standardization
• Splitting

Training set Validation set Test set

Model Selection

SVM Decision tree Neural network

Figure 2.2: The general training process of machine learning scoring function.

While these trained models show promise in numerically evaluating binding affinity, their
practical applications in drug discovery present certain limitations. In studies such as the
one by Wang et al. [68], machine-learning based scoring functions excel at numerically

2| State of the art 49

evaluating binding affinity compared to classical scoring functions. However, they don’t
consistently outperform in searching for correct ligands. As a result, they are rarely in-
tegrated directly into docking software but are typically employed for rescoring based on
classic scoring functions [42, 74].
In machine learning, the primary tasks are classification and regression. However, within
the realm of Drug Discovery, regression algorithms are used more frequently. They are
usually employed to predict the binding affinity between target macromolecules (diseases)
and ligand small molecules (drugs). Although various algorithms are available for regres-
sion tasks, our methodology predominantly incorporates decision tree-based algorithms.
In this section, we delve deeply into the regression aspect of the two decision tree al-
gorithms. Given that the Machine Learning Scoring Function is a direct application of
Machine Learning algorithms in the Scoring Function domain, our discussion will primar-
ily concentrate on the algorithms themselves.

2.4.1. Gradient boosting

Gradient Boosting, as described by Jerome H. Friedman in [24], is a robust machine-
learning algorithm. Friedman developed it specifically for regression gradient boosting
in 1999. The term ‘Gradient’ denotes its use of gradient descent to minimize loss, while
‘Boosting’ implies the method of sequentially training a series of weak learners. Each
new learner specifically addresses the errors made by its predecessors. A weak learner
is defined as a model that performs marginally better than random chance. In Gradient
Boosting, decision trees, typically of shallow depth, are frequently employed as these weak
learners.
Let’s delve into the detailed methodology behind Gradient Boosting. Firstly, we denote
our input data as {(xi, yi)}ni=1 , where xi represents the features and yi signifies the labels.
Typically, each instance might have multiple features but only one label. In this nota-
tion, the subscript i indicates the i-th sample, and the range i = 1 to n encompasses all
samples, with n being the total number of samples. Following that, we must also define
a differentiable loss function L(yi, F (x)), where F (x) represents the predicted value from
the model. Commonly, the squared-error (y − F (x))2 is used as the loss function. To
simplify its derivative by canceling the square term, the loss function can be multiplied
by 1

2
. This results in 1

2
(y − F (x))2.

The main part of the Gradient Boosting is presented in Algorithm 2.1. This process will
be repeated over M iterations, where M is a hyperparameter that requires careful selec-
tion. Too small a value for M can lead to underfitting, while an excessively large M risks
overfitting. Such overfitting can yield high accuracy on the training set but compromises

50 2| State of the art

the model’s generalization capability.

Algorithm 2.1 Gradient Boosting by Friedman [24]

Require: Training data {(xi, yi)}ni=1, a differentiable loss function L(yi, F (x)), number
of iterations M

1: Initialize model with a constant value: F0(x) = argmin
ρ

∑N
i=1 L(yi, ρ)

2: for m = 1 to M do
3: Compute "pseudo-responses": ỹi = −

[
∂L(yi,F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

, i = 1, N

4: Fit a weak learner: am = argmina,β

∑N
i=1 [ỹi − βh (xi; a)]

2

5: Find the best gradient descent step-size ρm:
ρm = argminρ

∑N
i=1 L (yi, Fm−1 (xi) + ρh (xi; am))

6: Update model: Fm(x) = Fm−1(x) + ρmh (x; am)
7: end for

Ensure: Model FM(x)

Initially, the model is set to a constant value, which is determined by minimizing the loss
function. For the squared-error, this optimal constant is simply the mean of all labels.
Following this initialization, the algorithm begins its iterative process. It successively
trains a series of weak learners, with each one focused on rectifying the errors from the
preceding learners. At the start of each iteration, the algorithm calculates the pseudo-
responses, denoted by ỹi, for each sample. This computation is based on the derivative of
the loss function with respect to the predicted value, F (x), from the model of the previous
iteration, Fm−1(x). Given the influence of the loss function in this gradient boosting pro-
cess, as opposed to linear regression, each ỹi should not be viewed as a normal residual.
Instead, it is best understood as a ‘pseudo residual’.
Subsequently, as outlined in the fourth step of Algorithm 2.1, we fit a new weak learner
represented by the function h (x; a). This function is a parameterized interpretation of
the input variables x, defined by parameters a = {a1, a2, ...}. The parameter am denotes
the output value of the weak learner, with the subscript m indicating its index. The pro-
cess of fitting varies based on the type of weak learner used. For example, when using a
decision tree as the weak learner, the fitting process involves finding the optimal splitting
variables and split locations. Similarly, the output values am also depend on the tree’s
splitting variables, split locations and means of the terminal nodes. However, the general
optimization strategy is outlined in the equation presented in the fourth step. Within
this equation, Friedman also introduces β as the scaling factor for the weak learner.
In the fifth step, we need to establish the optimal stepsize ρ, for gradient descent. This
value is determined by minimizing the loss function, which evaluates the difference be-
tween the training data yi and the combined output of the old model Fm−1 (xi) with a
new weak learner h (xi; am) scaled by its stepsize ρ, as illustrated in Algorithm 2.1, Step

2| State of the art 51

5. This step embodies the core principle of Gradient Boosting - operating as a greedy
algorithm with a stagewise strategy, each new learner directly rectifies the errors of its pre-
decessors. Notably, there is an essential difference between the stagewise approach used
by Gradient Boosting and the stepwise approaches. The stagewise method incrementally
adds to the model without adjusting previous inclusions. In contrast, the stepwise ap-
proach might adjust or even omit earlier terms based on specific criteria when introducing
new components to the model.
Finally, in the last step, the model is updated by incorporating the new weak learner
ρmh (x; am) into the previous model Fm−1(x), as depicted in Algorithm 2.1, Step 6. This
process continues until the desired number of iterations is reached. Notably, in practice,
we often introduce the learning rate ν in this step, as highlighted in Equation 2.14.

Fm(x) = Fm−1(x) + νρmh (x; am) (2.14)

This hyperparameter determines the magnitude of parameter updates during model train-
ing. A lower learning rate diminishes the influence of each weak learner on the overall
model, potentially enhancing its accuracy. However, this can slow down the learning
process, so striking the right balance is crucial.

2.4.2. Extreme Gradient Boosting (XGBoost)

Compared to the Gradient Boosting discussed in Subsection 2.4.1, Extreme Gradient
Boosting (XGBoost) [16] introduces an "Extreme" dimension. It builds upon the founda-
tional Gradient Boosting by incorporating features like regularization, parallel learning,
and hardware optimization, elevating it from a basic algorithm to an industrialized tool.
Consequently, industries can directly utilize XGBoost through the API developed by Chen
et al. [16], benefiting from its high prediction accuracy and exceptional computing per-
formance without navigating complex technical details. In this section, we will discuss
XGBoost from two perspectives: first, the construction of its unique regression tree, and
second, its optimization for hardware utilization.
Distinguishing itself from other Gradient Boosting algorithms, XGBoost employs a unique
regression tree as its weak learner for regression tasks. This tree is tailored, integrating
a regularization term to reduce overfitting and addressing issues related to expansive
datasets, numerous features, and data sparsity. For optimal split finding, XGBoost pro-
vides three algorithms: the Exact Greedy Algorithm, the Approximate Algorithm, and the
Sparsity-aware Split Finding algorithm. The Exact Greedy Algorithm evaluates all pos-
sible splits across every feature, making it accurate but less efficient for vast datasets.

52 2| State of the art

Conversely, the Approximate Algorithm segments the data and uses these partitions
specifically for split finding. This approach is more commonly used, especially consid-
ering the size of datasets in modern regression tasks. Finally, to further accommodate
the challenges posed by missing values, leading to sparse datasets, XGBoost offers the
Sparsity-aware Split Finding algorithm.

Algorithm 2.2 Exact Greedy Algorithm for Split Finding [16]
Require: I, sorted instance set of current node
1: GL ← 0, HL ← 0
2: for j in range(1, len(I)+1) do
3: GL ← GL + gj, HL ← HL + hj

4: GR ← G−GL, HR ← H −HL

5: score← max
(
score,

G2
L

HL+λ
+

G2
R

HR+λ
− G2

H+λ

)
6: end for
7: Split with max score

Ensure: Updated Regression Tree

As outlined in Algorithm 2.2, the Exact Greedy Algorithm meticulously evaluates the
split position for each node. Given I as the instance set of a node, it is sorted based on
its feature attributes; GL represents the sum of the residual values of instances in the
left leaf and gj represents the sum of the residual values of the newly added elements,
while HL and hj indicate their counts. The residual value of an instance is the difference
between its predicted value from the previous tree and its actual value. During the loop,
splits are evaluated in sequence using the equation G2

L

HL+λ
+

G2
R

HR+λ
− G2

H+λ
to determine the

Gain for each potential split. Ultimately, the split with the highest gain is selected. After
this decision, child nodes are re-evaluated. This iterative process continues until no viable
splits remain or a predetermined number of iterations is reached. An integral aspect of
this procedure is the incorporation of a regularization term λ during Gain calculation.
In this context, term G2

L

HL+λ
is referred to as ‘similarity’. A higher similarity indicates a

more favorable split. The difference between the sum of the child node similarities and
the parent node similarity defines the gain. By introducing the regularization term, the
similarity is reduced, making the splitting process more conservative. This, in turn, helps
manage the complexity of the regression tree. Be aware that Algorithm 2.2 doesn’t cover
all methods to manage the complexity of the regression tree, like tree pruning. Through
the integration of the parameter ‘gamma’, once the tree is fully generated, any splits
yielding a gain less than gamma are pruned away. In this way, combined with the regu-
larization term, the complexity of the regression tree is further controlled.
Algorithm 2.3 outlines the Approximate Algorithm’s process, which unfolds in two dis-
tinct stages. The first stage, encompassing Steps 1 to 4, identifies split points. The second

2| State of the art 53

Algorithm 2.3 Approximate Algorithm [16]
1: for k = 1 to m do
2: Propose Sk = {sk1, sk2, ..., skl} by percentiles on feature k.
3: Proposal can be done per tree (global), or per split (local).
4: end for
5: for k = 1 to m do
6: Gkv ←=

∑
j∈{j|sk,v≥xjk≥sk,v−1} gj

7: Hkv ←=
∑

j∈{j|sk,v≥xjk≥sk,v−1} hj

8: end for
9: Follow same step as in previous section to find max score only among proposed splits.

stage, involving Steps 5 to 8, focuses on mapping data points to their corresponding buck-
ets and aggregating them. Specifically, the process starts by identifying candidate split
points skv, where k denotes the feature index and v represents the index of split points, de-
rived from the feature distribution percentiles. This is often achieved using the Weighted
Quantile Sketch method, which typically ensures an even distribution of data across each
quantile. Additionally, this step can be executed either globally or locally, with the dis-
tinction based on the timing of the proposals. The global method suggests all candidate
splits initially and uses them throughout tree construction. In contrast, the local method
updates its proposals after each split. While the global approach has fewer proposal steps,
it typically needs more candidate points since they aren’t refined post-split. The local
method, which refines candidates post-split, might be better suited for deeper trees. After
identifying the split points, the algorithm maps continuous features into distinct buckets,
as outlined in Steps 6 and 7 of Algorithm 2.3. The expression sk,v ≥ xjk ≥ sk,v−1 indicates
that all data between sk,v and sk,v−1 will be mapped into the same bucket. Each bucket
is treated as an indivisible unit. Finally, the Approximate algorithm uses the buckets
divided in this step to perform subsequent operations identical to those in Algorithm 2.2,
instead of using scattered individual data points.
Next, Algorithm 2.4 outlines the Sparsity-aware Split Finding algorithm. The primary
distinction between this algorithm and the Basic Exact Greedy Algorithm is its dual cal-
culation of Gain during node splitting. Initially, it assigns all missing values to the right
using GR ← G−GL; subsequently, it places them on the left using GL ← G−GR. Ulti-
mately, the algorithm adopts the split associated with the highest Gain. This approach
offers an ingenious and straightforward solution to handle missing values, significantly
enhancing XGBoost’s proficiency in addressing real-world challenges.
Furthermore, XGBoost employs three distinct strategies to optimize hardware utilization.
The first strategy employed by XGBoost is the use of Column Block for Parallel Learn-
ing. In this approach, data is organized into in-memory units, termed as ‘blocks’. Within

54 2| State of the art

Algorithm 2.4 Sparsity-aware Split Finding [16]
Require: I, sorted instance set of current node
Require: Ik = {i ∈ I|xik ̸= missing}
1: // enumerate missing value goto right
2: GL ← 0, HL ← 0
3: for j in range(1, len(Ik)+1) do
4: GL ← GL + gj, HL ← HL + hj

5: GR ← G−GL, HR ← H −HL

6: score← max
(
score,

G2
L

HL+λ
+

G2
R

HR+λ
− G2

H+λ

)
7: end for
8: // enumerate missing value goto left
9: GR ← 0, HR ← 0

10: for j in range(1, range(len(Ik), 0, -1) do
11: GR ← GR + gj, HR ← HR + hj

12: GL ← G−GR, HL ← H −HR

13: score← max
(
score,

G2
L

HL+λ
+

G2
R

HR+λ
− G2

H+λ

)
14: end for
15: Split and default directions with max gain
Ensure: Updated Regression Tree

these blocks, data is stored column-wise using the Compressed Sparse Column (CSC)
format, with each column sorted according to its respective feature value. This columnar
structure facilitates parallel processing, enabling individual columns to be processed in
parallel across multiple threads or within distributed systems.
Subsequently, XGBoost employs Cache-aware Access. As illustrated in Figure 2.3, mod-
ern computers utilize a hierarchical memory layout. The closer the memory is to the CPU,
the faster it’s accessed, albeit with a smaller capacity. When the CPU requires data, it
first attempts the cache. A cache miss necessitates a more time-consuming query to the
Main Memory. To address this, XGBoost strategically positions and prefetches frequently
used data, such as gradient statistics, in cache memory nearer to the CPU. This approach
reduces cache miss rates and thereby enhances performance.

CPU Disk

Main MemoryCache Memory

Figure 2.3: Memory Layout

2| State of the art 55

CPU

Disk
Main Memory

…

Compressed
blocks

Fetch to memory

Decompress by an
independent
thread

Figure 2.4: Block Compression

Lastly, XGBoost leverages Out-of-Core Computing, which is beneficial when handling
datasets that exceed memory capacity. During computation, XGBoost employs a ded-
icated thread to prefetch blocks from the disk into the main memory buffer, allowing
processing to occur in parallel with disk reading. Additionally, XGBoost incorporates
Block Compression and Block Sharding techniques to further enhance its Out-of-Core
Computing capabilities. Figure 2.4 illustrates the Block Compression technique. Blocks
stored on the disk are compressed, and once fetched into the main memory buffer, an in-
dependent thread decompresses them. This strategic approach significantly reduces data
transfer time, ensuring efficient data retrieval. On the other hand, the Block Sharding
technique, depicted in Figure 2.5, partitions the data across multiple disks. Each disk is
assigned a pre-fetcher thread to transfer the data into an in-memory buffer. Afterward,
the training thread alternates reading from these buffers. When multiple disks are in use,
this strategy notably enhances the system’s efficiency, delivering a substantial boost to
disk reading throughput.

CPU

Disk

Main Memory

…

Fetch to memory in parallel

Label…Feature1

45.6…1.8

45.9…1.5

30.2…1.5

40.5…1.1

………

20.1…1.3

Label…Feature1

45.6…1.8

45.9…1.5

Label…Feature1

30.2…1.5

40.5…1.1

Label…Feature1

………

20.1…1.3

Pre-fetcher thread

Pre-fetcher thread

Pre-fetcher thread

Figure 2.5: Block Sharding

57

3| Methodology

In this chapter, we will present our proposed methodology in detail. Our objective is to
identify a set of optimal ligands for the target protein from a vast library of drug molecules
and then forward them for subsequent in-vitro experimentation. A significant challenge
in this multidisciplinary domain of Drug Discovery and High-Performance Computing
(HPC) is striking a balance between prediction accuracy and computational performance.
To address this challenge, our methodology took into account various HPC levels. At
the computing algorithm level, we introduced DrugXGBScore, a hybrid scoring function
that combines knowledge-based and machine learning approaches. This scoring function
leverages the straightforward structure of the knowledge-based scoring function while
benefiting from the potential predictive accuracy of machine learning scoring functions.
On the other hand, at the Computing framework and hardware level, we employed CUDA
to effectively deploy DrugXGBScore on our state-of-the-art HPC hardware.
This chapter is structured into two main parts. From Section 3.1 to Section 3.4, we
provide a detailed exploration of our proposed hybrid scoring function, DrugXGBScore.
In Section 3.5, we outline the deployment of DrugXGBScore within our HPC Pipeline.

3.1. Overview of the Hybrid scoring function: DrugXG-

BScore

Our proposed scoring function, DrugXGBScore, integrates two different types of scor-
ing equations as a hybrid solution. This approach draws inspiration from the work of
Wang et al. [68] and Lu et al. [43]. They integrated various types of scoring functions,
specifically the empirical and machine learning scoring functions, to enhance prediction
accuracy. However, a key distinction in our methodology is our imperative to address
the HPC challenge, balancing prediction accuracy with computational performance, in-
stead of merely prioritizing accuracy. To achieve this balance, we chose to combine the
Knowledge-based and Machine learning scoring functions. The simpler structure of the
Knowledge-based scoring function readily meets our HPC demands, while a well-trained
Machine learning scoring function can further enhance prediction accuracy.

58 3| Methodology

The general workflow of our hybrid scoring function, DrugXGBScore, is shown in Fig-
ure 3.1. The primary objective of this workflow is to score the Protein-Ligand Complex.
Initially, the three-dimensional coordinates of all atoms in the Protein and Ligand, accom-
panied by their SYBYL atom types [21, 51], are inputted into the system. The subsequent
calculation steps involve scoring with our optimized DrugScore2018 and XGBoost, and
then combining these two scores to yield the final score. This final score quantifies the
binding affinity of the Ligand to its Protein at that specific pose or position. A higher
final score indicates greater binding affinity.

Protein-Ligand Complex
to be assessed

Ligand
Protein

Knowledge-Based Scoring Function

Feature Matrices

Machine learning Scoring Function

Linear Combination

𝛂 × Normalized(Best_Score)

(1 - 𝛂) × Score

Final Score of
DrugXGBScore 🎉

+ +

Feature Matrix with
maximum potential

Pre-process with
ligand vibration

Figure 3.1: The general workflow of DrugXGBScore

More specifically, for the Protein-Ligand complex under assessment, it is first scored us-
ing the Knowledge-based scoring function, DrugScore2018, which we have optimized as
detailed in Section 3.2. In this step, we introduced a novel concept named ‘ligand vibra-
tion’. By setting a specific radius, we maneuver the ligand in various directions within the
complex to generate new conformations. These conformations are individually assessed,
with the most optimal potential selected as the final result. This procedure can be likened
to a simplified Molecular Dynamics (MD) simulation, mitigating inherent uncertainties
from experimental data [41] and enhancing training set quality via these straightforward
maneuvers. Subsequently, feature matrices are derived from Optimized DrugScore2018,
and then the feature matrix with the highest potential is selected as input for the Machine
Learning scoring function. For this task, we chose XGBoost as the Machine Learning al-
gorithm. This is a renowned and extensively utilized approach, as elaborated in Section

3| Methodology 59

2.4.2. Our choice of XGBoost is driven not only by its robust predictive prowess but also
by its built-in high-performance computing capabilities. Finally, after normalizing the
Knowledge-based and Machine Learning scores to the same scale, we employed a linear
combination, characterized by the parameter α with the complementary weight being
1 − α to integrate them. Drawing inspiration from recommendation system algorithms,
such linear combinations are prevalent methods for combining different recommender sys-
tem approaches.

3.2. Optimization of Knowledge-based DrugScore2018

3.2.1. Data Selection and Preprocessing

We sourced the training set for this optimized version of DrugScore2018 from PDBBind
v2020 [53]. This version comprises a total of 19,443 Protein-Ligand Complexes, with
5,316 in the "refined set" and 14,127 in the "general set". The data selection procedure
comprises two steps. Initially, we implemented a preliminary data filtering, with certain
aspects drawing from the methodology of Dittrich et al. [21]. The filtering strategies are
detailed below:

• Excluded complexes with resolution > 2.5 Å.

• Excluded ligands with < 10 or > 100 heavy atoms (i.e., atoms other than Hydrogen).

• Excluded complexes in the PDBBind coreset (note: the coreset is used as the CASF-
2016 test set).

• Excluded ligands that have a Tanimoto Similarity value > 0.2 and, concurrently, a
frequency > 200.

• Excluded ligands with binding affinity values where -logKd/Ki < 6.0.

Two points from the list warrant further emphasis. First, to ensure ligand diversity,
we employ Extended-connectivity fingerprints (ECFPs), as detailed in Section 1.4. Each
ligand is assigned a fingerprint, and its Tanimoto Similarity value is then calculated against
others. Ligands exhibiting a Tanimoto Similarity value greater than 0.2 are ranked by
their frequency of occurrence. A higher frequency suggests that the ligand frequently
exhibits high similarity with other ligands. If a ligand appears more than 200 times in
this list, it is excluded. Second, given that the Knowledge-based scoring function operates
similarly to an Unsupervised learning process, we aim to mitigate the undue influence of
low binding affinity ligands. Thus, ligands with binding affinity values of -logKd/Ki less
than 0.6 are excluded.

60 3| Methodology

After applying the filtering strategy outlined above, the training dataset was narrowed
down to 6,048 complexes. Subsequently, we conducted control variable experiments on
these complexes. Under consistent conditions, we trained models on different sizes of
training subsets and assessed their predictive capabilities. The final training set was
chosen based on the model exhibiting the top prediction accuracy. It’s important to
mention that, according to the PDBBind developers [53], the refined set typically holds a
higher quality compared to the other set. Given this, our selection process gave precedence
to the inclusion of complexes from the refined set. In the end, the final training set is
composed of 2,900 complexes: 1,146 from the ‘refined set’ and 1,754 from the ‘general
set’. The results of the control variable experiments can be found in Section 4.1.
After completing the data selection, all the chosen protein-ligand complexes need to be
preprocessed. A key component of this step is the accurate assignment of the SYBYL
atom type [21, 51] to every atom in both the protein and ligand. The precision of this
assignment directly impacts the dataset’s quality. For this purpose, we evaluated various
tools, including OpenBabel [64] and Fconv [49]. Due to potential ambiguities inherent
in the SYBYL atom type, the assignment results were not always satisfactory. After
assessing multiple tools, we settled on OpenBabel. The finalized atom types that we used
in our optimized version of DrugScore2018 are detailed in Table 3.1.

3.2.2. Training process

The training process for our optimized version of DrugScore2018, as depicted in Figure
3.2, primarily comprises two phases: calculating “Occurrences” and “Potentials”. In the
Occurrences calculation phase, we opted to process each Protein-Ligand complex indi-
vidually before consolidating the results. This method offers more flexibility than the
traditional approach of accumulating complexes sequentially. It enables the easy selec-
tion of training subsets, inclusion or exclusion of specific complexes, and expedites the
subsequent model evaluation process. The calculation of Occurrences adheres to the orig-
inal DrugScore method, as detailed in Section 2.3.1, Equation 2.6. In this process, we
calculate the Euclidean distance between each protein and ligand atom. If the distance
between a specific protein and ligand atom pair falls within the threshold range of 1.0
to 6.0, it’s considered a hit, indicating an "Occurrence" at that distance. Regrettably,
as discussed in Section 2.3.1, the interaction ‘hit’ between the protein and ligand carries
inherent uncertainty. As noted by Kossiakoff et al. [41], for a protein-ligand complexes
resolution of 2.5 Å, inaccuracies in atom positions can be as substantial as 0.4 Å. To ad-
dress this inherent uncertainty, Gohlke et al. [28] introduced a smoothing function known
as the Triangular Weighting Scheme, illustrated in Figure 3.3 A. In this approach, a single

3| Methodology 61

Symbol Description

C.1 sp-hybridized Carbon
C.2 Carbon sp2
C.3 Carbon sp3
C.ar Carbon in aromatic rings
C.cat Carbon in amidinium/guanidinium groups

N.1 sp-hybridized Nitrogen
N.2 Nitrogen sp2
N.3 Nitrogen sp3
N.4 Protonated Nitrogen sp3
N.ar Nitrogen in aromatic rings
N.am Nitrogen in amide bonds
N.pl3 Nitrogen in amidinium/guanidinium groups

O.2 Oxygen sp2
O.3 Oxygen sp3

O.co2 Oxygen in carboxylate groups

S.2 Sulphur sp2
S.3 Sulphur sp3
S.o Sulphoxide sulphur
S.o2 Sulphone sulphur

P.3 Phosphorus sp3

F Fluorine
Cl Chlorine
Br Bromine
I Iodine

Met All built-in metal atom types in OpenBabel

Table 3.1: The 25 SYBYL atom types [21, 51] utilized in our optimized DrugScore2018.

‘hit’ is distributed across several bins. Specifically, a hit is assigned to all neighboring bins
within a 0.2 Å radius of the central bin α, with its weight linearly diminishing from one to
zero across that range [28]. Additionally, in our investigations for the optimized version
of DrugScore2018, as depicted in Figure 3.3 B, we also experimented with a more direct
approach called the Full Weighting Scheme. In this approach, a single hit is uniformly
distributed to all adjacent bins. For a detailed evaluation of their impacts, please refer to
Section 4.1.
After calculating the occurrences for each complex, we integrate them to derive the Po-
tentials. The resulting potential values for each atom pair at various distances constitute
our final model. Similar to the occurrences calculation, the potential calculation also
follows the original DrugScore method in Section 2.3.1, as illustrated in Equations 2.8

62 3| Methodology

Calculate the Potentials

.

.

.

2,900 Preprocessed
Protein-Ligand Complexes

Calculate the Occurrences

Integration Occurrences of all 2,900 complexes Final Model of the Optimized DrugScore2018

Figure 3.2: Training process of Optimized DrugScore2018

to 2.10. It’s worth noting that, in contrast to the original DrugScore, we excluded the
Solvent-Accessible Surface (SAS) potential term and focus solely on the pairwise poten-
tials between protein and ligand atoms.

3.2.3. Inference process

The inference process of our optimized DrugScore2018 is illustrated in Figure 3.4. The
input for this process consists of the 3D coordinates of all atoms, along with their SYBYL
atom types [21, 51], in the Protein-Ligand complex, and the output is a score and a feature
matrix, which will be utilized in the subsequent XGBoost phase. The entire process is
divided into four main steps. Initially, we conduct Ligand Vibration calculations for the
Protein-Ligand complex. Then, for each newly calculated conformation of the complex,
we compute the Euclidean distances between all protein atom pairs based on their coordi-
nates. These distances are utilized to extract the corresponding potential values from our
trained Optimized DrugScore2018 model, thereby forming a Feature Matrix. The final
score is determined by summing all potential values within this matrix. Ultimately, only
the best score and the associated feature matrix with this top score will be output.
In this process, the calculation of Euclidean distances represents the most computation-
ally intensive step, and thus it is the primary target of our optimization efforts in the
following High-Performance Computing (HPC) section.
The Output Feature Matrix. The Feature Matrix, serving as the output of the Op-
timized DrugScore2018 and the input for the subsequent XGBoost phase, is a crucial
component of our methodology. To provide a clearer insight, we present an example of
a Feature Matrix as shown in Figure 3.5. This matrix contains 31,875 elements. Due to
the large number of elements, the figure only displays 100 protein-ligand atom pairs. For

3| Methodology 63

1.0
0.5 0.5

𝛂
0 0

𝛂 -1 𝛂 +1𝛂 -2 𝛂 +2

Full weighting scheme

1.0

𝛂𝛂-1 𝛂+1𝛂-2 𝛂+2

1.0 1.0 1.01.0

Triangular weighting scheme

(A)

(B)

Figure 3.3: Illustration of Weighting Schemes: (A) Triangular Weighting Scheme and (B)
Full Weighting Scheme for Atom Position Uncertainty

these pairs, all distances of the same atom pair are aggregated, with non-zero compo-
nents highlighted in blue and zero-valued components left blank. Predominantly, many
elements are zero, suggesting that their corresponding atomic pairs don’t influence the
final outcome. These values represent potential values rather than straightforward scores.
Therefore, a more negative value denotes a higher score. For clarity in visual representa-
tion, the X-axis of the figure is inverted.
Ligand vibration Technique. For every protein-ligand complex under evaluation, we
conducted Ligand vibration. This "Ligand vibration" represents a novel concept in our
optimized DrugScore2018 compared to the original. It addresses the previously mentioned
atom position uncertainty by simply adjusting the Ligand’s position during the inference
phase. The adjustment spans 27 directions, as illustrated in Figure 3.6. The black dots
indicate the ligand’s position in its original conformation. The ligand then shifts to the
positions marked by the 6 orange dots (faces), 8 red dots (corners), and 12 green dots
(edges), resulting in 26 new conformations. Including the original position, there are a
total of 27 conformations. For the moving radius, we treated it as a hyperparameter and
conducted ‘Try-and-Assess’ experiments. As a result, we determined 0.2 Å to be optimal.
Detailed comparative analysis can be found in Section 4.1. As mentioned in the previous
paragraph, each of these new conformations will be individually evaluated (illustrated in
Figure 3.4), only the conformation with the highest score can be selected for output.

64 3| Methodology

Protein-Ligand Com
plex

to be assessed

Ligand
Protein

Execute
the

Ligand
Vibration

Ligand Shifted U
pw

ard by 0.2Å

Ligand Shifted Dow
nw

ard by 0.2Å

Ligand Shifted Leftw
ard by 0.2Å

...

Total of 27 directions

Com
pute Distance for all

new
 Conform

ations

O
btained

Feature
M

atrix

...

O
utput the Feature

M
atrix w

ith Best Score

Score: -181.12565119770215

Score: -181.12565119770215

Score: -101.2700860135976

Score: -98.77443968833927

Retrieve
PotentialValues

from
the

M
odelfor

Each
M

atched
Protein-Ligand

Atom
Pair

Score obtained
by sum

m
ing all

Potential Values

Figure 3.4: Inference Process of Optimized DrugScore2018

3| Methodology 65

Figure 3.5: Example of XGBoost Feature Matrix

3.3. Training the Machine Learning SF: XGBoost

As outlined in Section 3.1, the inference process of XGBoost leverages the Feature Matrix
from Optimized DrugScore2018 as input to predict binding affinity values. In this section,
we will focus on the training process of XGBoost, including its data preparation and
hyperparameter optimization process.

3.3.1. Data Preparation

For the features utilized in XGBoost, we selected the potential values of protein-ligand
atom pairs at various distances. As previously discussed, these features are conveniently
generated using the pre-trained Optimized DrugScore2018. The entire workflow for this
generation process is depicted in Figure 3.7. This workflow consists of three main steps.
Initially, we select and preprocess the Protein-Ligand Complexes data. Next, we input all
complex data into Optimized DrugScore2018 to generate the Feature Matrix (a zoom-in
example is shown in Figure 3.5). Finally, we compress all these feature matrices into a
single Feature Matrix, which forms the final training dataset.
Given the characteristics of XGBoost as a supervised learning method, its approach
to data selection and utilization for training significantly differs from the unsupervised

66 3| Methodology

Figure 3.6: The 27 Vibration Directions for the Ligand

learning-like method used in Optimized DrugScore2018. XGBoost’s supervised nature
eliminates the need to account for biases from low-affinity ligands, allowing for the use of a
more extensive dataset. Therefore, for the XGBoost dataset, we applied just three criteria
in contrast to the multiple filtering strategies of Optimized DrugScore2018. Specifically,
we:

• Excluded complexes with resolution > 2.5 Å.

• Excluded ligands with < 10 or > 100 heavy atoms (i.e., atoms other than Hydrogen).

• Excluded complexes in the PDBBind coreset (note: the coreset is used as the CASF-
2016 test set).

After applying these filtering rules, we ultimately secured 12,813 protein-ligand complexes
for the XGBoost training set.
Next, we processed these complexes with our Optimized DrugScore2018’s inference mech-
anism, activating the ligand vibration. In this case, only the potential value matrix with
the best score is chosen as the feature matrix for each complex. Incidentally, we also
experimented without applying ligand vibration as a control group. Detailed results can
be found in Section 4.2.
In the end, the feature matrices from each protein-ligand complex are flattened and merged
into a unified 2D matrix, which then serves as the input for XGBoost. Given our dataset
of 12,813 protein-ligand complexes, and considering that our Optimized DrugScore2018
model identifies 25 types of protein atoms and 25 types of ligand atoms with 51 distance
bins, the dimension of each individual feature matrix is 25 × 25 × 51. As a result, the
final input feature matrix has 12,813 rows and 31,875 columns. Each row represents a

3| Methodology 67

.

.

.

12,813 Preprocessed
Protein-Ligand Complexes

Optimized
DrugScore2018

Inference Process

.

.

.

Generated Feature Matrices Output

Features

-2.3…00.81.8

-1.1…1.200

2.1…0.10.2-3.1

……………

1.1…0.3-1.20

Flatten Feature Matrices to
a 2D Matrix, Labeled with
Binding Affinity Data

Label

2.5

6.0

3.4

…

5.1

Final Input Feature Matrix for XGBoost Training

Figure 3.7: XGBoost Data Preparation Process

protein-ligand complex, while each column indicates the potential value for a specific
protein-ligand atom pair at a particular hit distance bin. It’s crucial to highlight that
many elements within the feature matrix are zeros. These zeros don’t denote missing
data. Instead, they indicate that certain atom pairs at specific distances have no impact
on the final potential, neither positive nor negative. This non-impact is also considered
a feature. Moreover, the label for each training complex is derived from the PDBBind
index file, using the -logKd/Ki field.

3.3.2. XGBoost Hyperparameter Optimization

Regarding the theoretical underpinnings of XGBoost, including topics like weak learners
and tree construction, please consult Section 2.4.2. Here, our emphasis is on the hy-
perparameter optimization of XGBoost tailored to our specific problem. The primary
hyperparameters we optimized for XGBoost include [19]:

• learning_rate: This parameter signifies the step size shrinkage. It’s used in up-
dates to prevent overfitting. After each boosting iteration, we can directly ascertain
the weights of new features. The learning rate reduces these feature weights to
ensure a more conservative boosting progression.

• max_depth: This refers to the maximum depth of the trees. Making the max
depth larger can lead to a more complex model, increasing the risk of overfitting.

• min_child_weight: This parameter indicates the minimum sum of instance weight
a child node must have. If a tree division results in a leaf node whose total instance
weight is below this threshold, then further partitioning is halted. A higher value
for this parameter results in a more conservative algorithm.

68 3| Methodology

• gamma: This denotes the minimum loss reduction necessary to continue partition-
ing a tree’s leaf node. The higher this parameter is set, the more conservative the
algorithm becomes, resulting in fewer tree leaves and a less complex model.

• subsample: This parameter denotes the ratio of the samples used for every boosting
iteration. It serves to prevent overfitting.

• colsample_bytree: This parameter denotes the ratio of the features used for every
boosting iteration.

• reg_alpha: This represents the L1 regularization on weights.

• reg_lambda: This represents the L2 regularization on weights.

• n_estimators: The number of the weak learners (trees).

In the loss function, we adopted the squared loss (reg:squarederror), illustrated in Equa-
tion 3.1. Here, i represents the training sample number, yi is the true label, and ŷi denotes
the predicted value. The objective aims to minimize L(θ).

L(θ) =
n∑

i=1

(yi − ŷi)
2 (3.1)

For the aforementioned hyperparameters, we employed Grid Search to optimize them.
Define a range for each parameter, test all combinations, and choose the one yielding the
lowest loss. For parameter initial ranges, we reference common values or default settings.
For instance, if the default value for ‘learning_rate’ is 0.3, we might initially test it at
[0.1, 0.3, 0.5]. Based on the outcomes, the choice can be further refined; if 0.1 yields the
best result, we’d then test within the range [0.05, 0.1, 0.15]. This procedure is somewhat
tedious, necessitating multiple manual adjustments. The final decision was based on
applying the parameter set in practice and evaluating the model’s screening power using
CASF-2016. Only parameter combinations that yield satisfactory screening power can be
ultimately selected.

3.4. Linear Combination of Optimized DrugScore2018

& XGBoost

After sequentially acquiring scores from the aforementioned knowledge-based and machine
learning scoring functions, we employed the linear combination approach to derive the final
score for DrugXGBScore. Given the differing scales of the knowledge-based and machine

3| Methodology 69

learning scoring functions, we applied Max-Min Normalization to the scores from our
Optimized DrugScore2018 before combining them, ensuring alignment with the XGBoost
scale, as illustrated in Equation 3.2.

yscaled =
y − ymin

ymax − ymin

× (12.0− 2.0) + 2.0 (3.2)

The variable y represents the score obtained from the Optimized DrugScore2018. Since
these scores are predominantly negative, we convert their sign first to positive to align
with the scores derived from XGBoost. The values ymin and ymax denote pre-defined
minimum and maximum scores. It’s crucial that these preset values accurately represent
the underlying characteristics without being excessively extreme. Therefore, we selected
them based on the scoring power test results of DrugScore2018. The normalized score,
yscaled, is subsequently adjusted to align with the scale utilized by XGBoost, spanning
from 2.0 to 12.0.
Subsequently, using the adjustable hyperparameter α and its complement, we achieved a
linear combination of the two scores, as illustrated in Equation 3.3.

DrugXGBScore = α×Normalize(OptimizedDrugScore2018)

+ (1− α)× XGBoostScore
(3.3)

We employed Bayesian Optimization to optimize α. This method is a sequential, model-
based technique specifically designed for noisy black-box functions [59]. In our approach,
we treated the entire scoring function as a black-box, then utilized the CASF-2016 screen-
ing power test result, referring only to the average enrichment factor among the top 1%,
as the objective function to optimize the parameter α. The specific steps are outlined
in Algorithm 3.1. In this procedure, α is the hyperparameter we aim to optimize, y

Algorithm 3.1 Bayesian Optimization Procedure [59]
1: for n = 1, 2, 3, ... do
2: Select αn+1 by optimizing the acquisition function f :

αn+1 = argmax
α

f (α;Dn)

3: Query the objective function to obtain yn+1

4: Augment data with:
Dn+1 = {Dn, (αn+1, yn+1)}

5: Update the statistical model
6: end for

70 3| Methodology

represents the average enrichment factor among the top 1%, while D denotes the pa-
rameter/result set. The acquisition function, f , takes the current α and D as inputs to
guide the optimization process. As demonstrated in Algorithm 3.1, unlike Grid Search,
which exhaustively tests all possible combinations, Bayesian Optimization refines its next
optimization value using data from previous iterations. This adaptive approach is why
we chose Bayesian Optimization.
Figure 3.8 depicts the optimization process. Within it, the Screening Power test and
Bayesian Optimization work in tandem, with the efficacy of the Bayesian Optimization
hinging on the Power test results. Since α value changes are independent of the opti-
mized drugscore2018 and XGBoost scores (as shown in Equation 3.3) and the CASF-2016
Screening Power test is time-intensive and costly, we input the optimized drugscore and
XGBoost results into Bayesian Optimization instead of directly using the final DrugXG-
BScore. This approach bypasses the need for a full Screening Power test during each α

update iteration, significantly reducing optimization time.

DrugXGBScore

CASF-2016 Screening Power test

Optimized
DrugScore2018 Result

XGBoost Result

Combine
with 𝛂

Calculate average
enrichment factor

Generate a new 𝛂 using
the acquisition function

Bayesian Optimization

Final DrugXGBScore
Large Test Set

Optimal 𝛂 value

Figure 3.8: Combination Parameter Optimization Process

3.5. Deployment on the HPC Pipeline

To boost large-scale drug discovery, we integrated DrugXGBScore into the High-Performance
Computing (HPC) pipeline, thereby enhancing high-performance virtual screening. This
HPC pipeline is a specialized computational framework designed to handle complex and
computing-intensive tasks. It employs advanced computing technologies and hardware,
such as parallel computing and high-performance GPUs, to significantly accelerate our
overall computing processes. During deployment, we strategically utilized our hardware
for optimal parallel computing across both CPU and GPU platforms. We activated
all CPU cores to operate independently for maximum efficiency. Concurrently, on the
GPU, we tailored our algorithms for optimal execution using CUDA, aligning them with
hardware capabilities. These approaches ensure superior computational performance and
throughput.
In practice, the input of our HPC pipeline consists of one or more proteins and their

3| Methodology 71

corresponding decoys that need to be screened. The output is the predicted score for each
decoy, with higher scores indicating a greater binding affinity to the respective protein.

3.5.1. CPU Multi-Threading

Figure 3.9 depicts our CPU multi-threading strategy, wherein the primary thread assigns
distinct threads to simultaneously process each protein during virtual screening, free from
data dependencies. In cases where the task involves only one protein, it can still be dis-
tributed across multiple threads to enable the concurrent screening of various ligands.
As outlined in Section 3.1, our choice of XGBoost for the DrugXGBScore was due to its
inherent high-performance computing capabilities. Consequently, upon the launch of each
individual thread, XGBoost dynamically generates subsidiary threads to meet its compu-
tational demands. For our Multithreading Computing Framework, we utilized OpenMP

Main Thread

Thread for each protein XGBoost C API Thread

Figure 3.9: CPU Multiple Threads

(Open Multi-Processing) [1], a well-established and user-friendly library with stable per-
formance (refer to Section 1.7.3). Leveraging OpenMP, we launched 18 threads from the
main thread on our device, which has 20 CPU cores. This approach was strategically
chosen to prevent oversubscription and the resultant thread competition, as XGBoost’s
autonomous thread management could lead to more than 20 threads vying for CPU time,
causing inefficiencies due to excessive context switching.

3.5.2. GPU Acceleration

We enhanced our DrugXGBScore by implementing GPU acceleration with an Nvidia
A-100 SXM4 40GB [50]. The NVIDIA A100, based on the advanced Ampere microarchi-
tecture, is purpose-built for artificial intelligence, data analytics, and high-performance
computing, making it ideally suited for our computational requirements. Figure 3.10

72 3| Methodology

visualizes the entire GPU accelerating process, using a single thread and protein as a
representative example. This process is consistent across all other threads. In this figure,
‘host’ denotes the CPU and its memory, tasked with executing the main program, han-
dling memory transfers, and launching the CUDA kernels. ‘Device’ refers to the GPU and
its memory, which are dedicated to running the kernels. Our optimized DrugScore2018

Feature MatrixDrugscore Score

Pass to XGBoost C API

XGBoost
C API
Operation

XGBoost Score

DrugScore
CUDA Kernel
Operation

Final Score𝛂

1-𝛂

Host

Device

Our Optimized
Drugscore2018
Model

Protein Ligands

Normalization

CUDA Stream

Figure 3.10: GPU Accelerating Process for a single CUDA stream

model and proteins are initially transferred to GPU memory, followed by the ligands
awaiting screening. The kernel is then invoked to compute the DrugScore and generate
its associated feature matrix. After computation, the data are transferred back to the host
memory, where the feature matrix is passed to the XGBoost C API. Finally, the resulting
scores are linearly combined with the normalized DrugScore results (refer to Section 3.4).
To maximize efficiency, we endeavored to perform all computing-intensive tasks within the
CUDA kernel while minimizing memory transfer between host and device. Furthermore,
as depicted by the dotted line in the center of the figure, we allocated a CUDA stream to
each thread, facilitating concurrent execution of CUDA kernels and data transfers.
Figure 3.11 illustrates the CUDA kernel computational workflow. Given the large volume
of ligands awaiting screening, individual processing would lead to suboptimal perfor-
mance, while simultaneous screening of all ligands is computationally unfeasible. Hence,
we adopt batch processing, concatenating the atomic matrices of ligands within a batch
into an extended matrix for kernel computation. Subsequently, the kernel calculates dis-
tances between ligand atoms and protein atoms, extracts potential values from our trained
DrugScore model, and populates the corresponding feature matrix. Ultimately, the score
for each ligand in the batch is derived using a block reduction technique that aggregates
the potential values within each feature matrix to yield the respective score.
The procedure depicted in Figure 3.11 involves two kernel invocations: the first to obtain
feature matrices, and the second to execute block reduction. The implementation of the
first kernel invocation is depicted in Figure 3.12, where each curved arrow represents a
GPU thread. These threads individually calculate the distances between protein/ligand

3| Methodology 73

Protein Atoms Matrix

Ligands Atoms Matrics

… …

Feature Matrix for every Ligand

Calculation of Feature
Matrix for Each Protein
Ligand Complex

…

DrugScore Result

Block Reduction: Summing
Potential Values in Feature
Matrices to Derive
DrugScore Results

DrugScore Model

Batch Processing

Figure 3.11: CUDA Kernel Calculation Process

atomic pairs, retrieve potential values based on hit distances, and populate the Feature
Matrix accordingly. The figure illustrates that we utilize two-dimensional grids and blocks,
with the x-axis corresponding to the atoms of each ligand and the y-axis to the atoms
of the protein. Block size is determined by the GPU’s capacity, and grid dimensions are
calculated by dividing the total number of ligand/protein atoms by the block size. No-
tably, the calculation for the total number of blocks may yield a non-integer value. Since
C++ inherently truncates fractions during division, this can result in an insufficient block
count. To address this, we adopt the standard solution of incrementing the block count
by one, hence the formula: ⌈Ligand Rows

Block Size ⌉ and ⌈Protein Rows
Block Size ⌉, where ⌈·⌉ denotes the ceiling

function that rounds up to the nearest integer.
Figure 3.13 presents the implementation of the second CUDA kernel invocation, which
employs block reduction to condense extended matrices. Our task involves compressing a
concatenated matrix of feature matrices into a compact matrix of scores. We determine
the grid’s X-dimension by dividing the length of each feature matrix by the block size,
while the Y-dimension is set to the number of ligands. During execution, each thread
computes its value autonomously. After the reduction, the first thread in each block
records the block’s aggregate to the appropriate location in global memory.

74 3| Methodology

Grid
⎡Ligands Rows / Block Size⎤

…

…

Block Size

Bl
oc

k
Si

ze

⎡P
ro

te
in

 R
ow

s /
 B

lo
ck

 S
ize
⎤

…
…

Block Size

Bl
oc

k
Si

ze

…

…

Block Size

Bl
oc

k
Si

ze

…

…

Block Size
Bl

oc
k

Si
ze

…
…

Block

Figure 3.12: Implementation of the Kernel Invocation for Feature Matrix

Grid

Block Size

…

Block

…

Block Size

…

Block Size

…

Block Size

…N
um

be
r o

f L
ig

an
ds

…

Global Memory

⎡Length of each feature matrix / Block Size⎤

Figure 3.13: CUDA Kernel Block Reduction

3| Methodology 75

3.5.3. Special optimization for Ligand Vibration

In Section 3.2, we explored the optimization of DrugScore2018 through the innovative
Ligand Vibration technique. Distinct from other methods, such as parameter optimiza-
tion, this technique incurs computational overheads, potentially impacting computing
performance in the prediction stage. To mitigate this, we developed a specialized CUDA
implementation aimed at minimizing the performance impact of this technology.
Figure 3.14 illustrates the CUDA kernel operation applied to the original Ligand Batch
Matrix, expanding it by computing the new coordinates of each ligand, and storing these
in an expanded matrix. As depicted in Figure 3.6, for our optimized DrugScore2018, each
ligand is vibrated in 26 directions, including the original coordinates, yielding 27 distinct
conformations. Consequently, the expanded matrix is 27 times the size of the original.

…

…

Ligand Batch Matrix

Ligand Batch Expanded Matrix

…
Expanded Matrix Calculation
via CUDA Kernel

Figure 3.14: Schematic Diagram of Ligand Vibration Matrix Expansion

To efficiently manage the expanded matrix, we applied specific configurations. Consider-
ing drugs are typically small molecules, we standardized all ligands to a uniform length,
such as 100. As discussed in Section 3.2, the DrugScore2018 training dataset excluded
ligands with more than 100 heavy atoms, making a standardized length of approximately
100 reasonable. However, this standardization is flexible and can be adjusted depending
on the ligands being screened. Ensuring uniform ligand matrix lengths means that the
extended matrix for each batch remains consistent in size, which allows us to preallocate
GPU memory space before batch processing. This approach facilitates the reuse of the ex-
tended matrix across various batches, thereby avoiding the computational overhead from
repeated memory allocations and deallocations.
The CUDA kernel implementation for expanding the ligand vibration matrix, illustrated
in Figure 3.15, employs a one-dimensional configuration. The grid dimension is set to
match the number of ligands per batch, with each block dedicated to processing a single
ligand. Meanwhile, the block dimension corresponds to the number of atoms within a lig-

76 3| Methodology

and, ensuring that each thread is tasked with computing and placing the new coordinates
of a single atom, based on the vibration direction, into the appropriate location within
the expanded matrix. This implementation is straightforward and resource-efficient. With
the ‘Number of Ligands in Batch’ and ‘Number of Atoms in Ligand’ being modest, it will
require only limited GPU resources. By operating with CUDA streams, this kernel can
execute concurrently with other kernels, facilitating kernel-level overlapping in the GPU
pipeline.

Grid

Number of Atoms

…

Block

…

Number of Atoms

…

Number of Ligands in Batch

Figure 3.15: CUDA Kernel Implementation for Ligand Vibration Matrix Expansion

77

4| Experimental results

In this chapter, we detail the experimental results for each component of our proposed
methodology and provide relevant discussions. We present not only the positive final
outcomes but also compare them with control group results to highlight the efficacy of
our specific choices. We will separately discuss the DrugXGBScore and its layout results
within the HPC pipeline. Within DrugXGBScore, we employ a bottom-up approach,
initially highlighting the enhancements of Optimized DrugScore2018 and XGBoost before
revealing the overall DrugXGBScore outcome.
We used CASF-2016 [63] to evaluate the predictive accuracy of our DrugXGBScore. As
detailed in Section 1.6, CASF-2016 comprises four tests: Scoring Power, Ranking Power,
Docking Power, and Screening Power. The Screening Power test is notably the most
resource-intensive, followed by the Docking Power test, with the Scoring and Ranking
Power tests being comparatively lightweight. Our main reference is the outcome of the
Screening Power test, but the Scoring and Ranking Power test results provide preliminary
insights. While a minor underperformance in the Scoring/Ranking Power test doesn’t
necessarily indicate poor Docking/Screening Power outcomes, if a component completely
fails the Scoring/Ranking Power test, it’s prudent to skip the Docking/Screening Power
test to save computational resources and time.

4.1. Optimized DrugScore2018 Results

In this section, we delve into the experimental test results and analysis for the Optimized
DrugScore2018, corresponding to the proposal detailed in Section 3.2. Our focus encom-
passes the selection of specific technical details and the results from the CASF-2016 Power
Test.
Data Selection Analysis. First, we assessed our Optimized DrugScore2018 data se-
lection process using the CASF-2016 Screening Power tests. As described in Section 3.2,
we applied five exclusion strategies and further refined our selection from the filtered sets
with different sizes based on their predictive power. Among our filtering strategies, three
were previously validated by Dittrich et al. [21]: excluding complexes with a resolution

78 4| Experimental results

greater than 2.5, excluding complexes in the PDBBind coreset (used by CASF-2016 as a
test set), and excluding ligands with fewer than 10 or more than 100 heavy atoms. This
eliminated the need for re-testing these strategies. After applying them, 10,088 complexes
remained. Additional filtering of ligands with binding affinity values where -logKd/Ki is
less than 6.0 brought the number down to 8,637. Lastly, removing ligands with a Tan-
imoto Similarity value greater than 0.2 and a frequency above 200 left a final count of
6,048 complexes. Subsequently, we sampled subsets from the filtered 6,048 complexes and
assessed the Screening Power of the DrugScore2018 model trained on them under consis-
tent conditions. Notably, during this sampling, we consistently gave priority to complexes
from the PDBbind "refined set".

Filtering Sampling

Compounds

Figure 4.1: Screening Power of Models Trained Using Corresponding Selection Sets

The results are presented in Figure 4.1. The x-axis represents the size of the selected
training set, while the y-axis depicts the average enrichment factor among the top 1% for
the corresponding model. From the results, it’s evident that the model performs optimally
when the training set size is between 2800 and 2900. We ultimately selected 2900 to max-
imize the number of complexes used for training while ensuring the best outcome. Of the
2,900 complexes, 1,146 are sourced from the PDBbind "refined set", with the remaining
1,754 derived from the PDBbind "general set". Additionally, as observed in Figure 4.1,
results for sets with fewer than 2800 or more than 3000 complexes show significant un-
derperformance. We theorize that sets with fewer than 2800 complexes may not provide

4| Experimental results 79

sufficient data for model training, leading to under-saturation. Conversely, for sets larger
than 3000, incorporating a greater number of complexes from the lesser-quality PDBbind
"general set", in comparison to the PDBbind "refined set", considerably weakens the
screening power.
Smoothing Function Analysis. As detailed in Section 3.2, we implemented two
smoothing functions in the DrugScore2018 model to address atom position uncertainty:
the Triangular Weighting Scheme and the Full Weighting Scheme, as illustrated in Fig-
ure 3.3. The test results are depicted in Figure 4.2. When compared under identical

Figure 4.2: TWS vs FWS

conditions, the milder Triangular Weighting Scheme (TWS) exhibits higher Screening
Power than the more aggressive Full Weighting Scheme (FWS). The average enrichment
factor among the top 1% improves by 0.35. Given the sizable test set for the Screening
Power, even a 0.01 improvement is noteworthy without substantially impacting compu-
tational efficiency. Importantly, while TWS and FWS differ in the training phase, their
computational performances are identical during inference. Therefore, with the same
computational performance but improved prediction accuracy, TWS proves to be more
advantageous.
Final Optimized DrugScore2018 Model Analysis. After the detailed data selection,
preprocessing, and application of the Triangular Weighting Scheme, the occurrences of
our finalized model are presented on the left side of Figure 4.3. Note that such figures
aggregate all distance bins for a given atom pair. According to Velec et al. [67]’s findings,
potentials derived from over 500 pair interactions ensure sufficiently smooth and reliable

80 4| Experimental results

Our Model Trained on 2,900 Complexes Our Model Trained on 10,088 Complexes

Figure 4.3: Our Model Occurrences

results. Our model, trained on 2,900 complexes (Figure 4.3 Left), encompasses 525 pair
interactions. Of these, 206 interactions have occurrences exceeding 500, while 133 fall
between 1 and 500. For reference, Figure 4.3 (Right) depicts a model trained using the
entire dataset of 10,088 complexes before our filtering, boasting 249 pair interactions with
occurrences exceeding 500. While the occurrences in this model are seemingly superior to
the final model, the increased noise in this training set prevented it from outperforming
the one trained on 2,900 complexes in the Screen Power test, as shown in Figure 4.1.
Similarly, we present the results for DrugScore Original [28] and DrugScore2018 [21] in
Figure 4.4 for comparison. Utilizing the same color scheme as in Figure 4.3, red in

DrugScore Original
DrugScore2018

Figure 4.4: Occurrences in DrugScore as reported by [28] and [21]

4| Experimental results 81

these figures indicates a Number of Occurrences equal to 0, orange represents occurrences
between 1 and 500, and green signifies occurrences greater than 500. Due to the use of
different datasets, the Number of Occurrences in our model differs from that in DrugScore.
Our final model’s number of green blocks lies between that of DrugScore Original, which
has 117 pair interactions exceeding 500, and DrugScore2018, with 289 pair interactions
exceeding 500. These observed differences might primarily stem from the data set qual-
ity. Enhancing this quality or obtaining higher-quality data could substantially boost our
model’s prediction accuracy. Additionally, in Chapter 5, we also discussed several future
directions for further improving data set quality.

Figure 4.5: Pairwise Potential of Our Final Model

The pairwise potential compiled from the occurrences is depicted in Figure 4.5. This
pairwise potential can be understood as our final Optimized DrugScore2018 model. As
detailed in Section 3.2, during the inference stage, we simply extract the potential value
from this model based on the hit atom pair with their Euclidean distance. Given that this
model represents potential values rather than mere scores, a more negative value signifies
a stronger positive influence on the final result. As illustrated in Figure 4.5, darker colors
indicate superior potential values, while lighter shades denote inferior potential.

82 4| Experimental results

Ligand Vibration Technique Analysis. As described in Section 3.2, we employed
the ligand vibration technique during the inference stage to manage the uncertainty in
protein-ligand conformations. This approach also partially mitigates issues related to our
dataset quality. While moving the ligand in 27 directions around its original position, we
considered the movement radius as a hyperparameter. We then evaluated the screening
power for each radius and selected the one that exhibited the highest screening power as
our final choice. The results are depicted in Figure 4.6. A vibration radius of 0.2 yields
the best Screening Power. This aligns, to some degree, with the findings of Kossiakoff et
al. [41] and Gohlke et al. [28], suggesting that for a resolution of 2.5 Å, atom position
inaccuracies can be up to 0.4 Å.
In Figure 4.6, compared to the control group "No Vibration", there’s a noticeable en-
hancement in Screening Power for vibration radii between 0.15 and 0.25, with a peak at
0.2. However, unlike the cost-free improvement seen with Triangular Weighting Scheme
and Full Weighting Scheme, Ligand Vibration introduces a significant computational ex-
pense. Still, as discussed in Section 3.5.3, we’ve optimized the use of hardware for the
Ligand Vibration Technique, allowing its integration into our Optimized DrugScore2018
with minimal overhead.

Figure 4.6: Ligand Vibration with Specific Radius

Optimized DrugScore2018 Power Test Result. After employing CASF-2016 Screen-
ing Power Test to finalize the aforementioned techniques and parameters, we conducted
a comprehensive evaluation of the final Optimized DrugScore2018 using CASF-2016. We
primarily used DrugScore2018 as the baseline, aiming to achieve results comparable to it.

4| Experimental results 83

(B) DrugScore2018(A) Our Optimized DrugScore2018

Figure 4.7: Scatter Plot Comparison

Figure 4.8: Scoring Power Comparison

See Figures 4.7 and 4.8 for the Scoring Power test results. Figure 4.7 presents a scatter
plot that maps the scores from our Optimized DrugScore2018 model and DrugScore2018
against the experimental binding affinities data for the 285 Protein-Ligand Complexes
tested, all within a two-dimensional space. The central solid line represents the linear
regression line, while the dotted lines above and below depict the regression line adjusted
by one standard deviation above and below, respectively. While the scores of the two
scoring functions operate on different scales, it’s the relative values, rather than the abso-
lute ones, that matter. Thus, they remain comparable in this figure. Figure 4.8 displays
the Pearson correlation coefficient (R) and the standard deviation in fitting (SD) for the
two scoring functions. A higher Pearson correlation coefficient is desirable, while a lower

84 4| Experimental results

Figure 4.9: Ranking Power Comparison

standard deviation is preferable. Given the similar values achieved by both functions,
we adjusted the y-axis range in the figure to emphasize their differences. From these
two figures, it’s evident that the scoring power of our Optimized DrugScore2018 slightly
surpasses that of DrugScore2018. However, the difference is negligible. In essence, their
performances are virtually identical.
Figure 4.9 presents the results of the Ranking Power test, comparing three metrics: Spear-
man correlation coefficient (SP), Kendall correlation coefficient (tau), and Predictive In-
dex (PI). Larger values for these metrics indicate better performance. As with previ-
ous figures, we also adjusted the y-axis scale here to emphasize the differences between
them. The results indicate that our Optimized DrugScore2018 has a slight edge over
DrugScore2018 in Ranking Power, with metric differences approximating 1%.

Figure 4.10: Docking Power Comparison

4| Experimental results 85

Figure 4.10 presents the Docking Power test results. In this figure, red, orange, and green
denote the success rates for the top 1, top 2, and top 3 binding poses, respectively, as
ranked by the scoring function. Overall, our Optimized DrugScore2018’s docking power
closely mirrors that of DrugScore2018, with a difference of less than 1%. Given that the
test set for Docking Power is substantially larger than that for Scoring Power, this dis-
crepancy is acceptable.
The Screening Power of our Optimized DrugScore2018 and DrugScore2018 is depicted in
Figures 4.11 and 4.12, representing the Forward Screening Power and Reverse Screening
Power, respectively. A key metric to consider from these figures is the average enrichment
factor for the top 1% in Forward Screening Power, highlighted on the right side of Figure
4.11. Additionally, the success rate for Forward Screening Power is displayed on the left
of Figure 4.11. The tri-colored bars indicate the best ligand being identified among the
top 1%, 5%, and 10% candidates. Figure 4.12 focuses on Reverse Screening Power, with
the colors similarly representing the best target discovery within the top 1%, 5%, and
10% candidates.

Figure 4.11: Forward Screening Power Comparison

From the results presented in both figures, our Optimized DrugScore2018 demonstrates a
success rate closely aligned with DrugScore2018 in both Forward and Reverse Screening
Powers. However, a noteworthy divergence is observed in the crucial metric: the aver-
age enrichment factor among the top 1%, where we see a difference of 0.58 compared to
DrugScore2018. We theorize this discrepancy arises due to the vast size of the Screening
Power test set, exposing the quality limitations in our dataset. Fortunately, as evidenced
in Sections 4.2 and 4.3, the integration of XGBoost not only bridged this gap but also
further enhanced the average enrichment factor of our hybrid scoring function.

86 4| Experimental results

Figure 4.12: Reverse Screening Power Comparison

4.2. XGBoost and Linear Combination Results

In Sections 3.1 and 3.3, we detailed the integration of XGBoost with our Optimized
DrugScore2018 and explored its training process. This section shifts our focus to the
results and analysis of XGBoost. We will examine the application of the Ligand Vibra-
tion Technique within XGBoost, present the findings from the XGBoost Grid Search, and
discuss the outcomes of the CASF-2016 Power Test. Its outcomes become significant only
when integrated with our Optimized DrugScore2018. Therefore, we utilize the Optimized
DrugScore2018 and its direct combination with XGBoost results as a baseline to empha-
size the improved outcomes. Notably, we do not consider the combination parameter α

(as referenced in Equation 3.3) within this discussion.
Ligand Vibration Technique in XGBoost. Similar to our Optimized DrugScore2018,
we also employed the Ligand Vibration Technique in XGBoost. However, while Optimized
DrugScore2018 incorporates it during the inference stage, XGBoost uses the feature set
from the output of vibrated DrugScore2018 for model training, applying the Ligand Vi-
bration Technique during the training phase. This approach offers a clear advantage: it
avoids using such a computing-intensive technique in inference, eliminating unnecessary
computational costs.
As illustrated in Figure 4.13 A and B, the XGBoost model trained with the vibrated

4| Experimental results 87

Figure 4.13: XGBoost Screening Power Comparison: Considering Vibration
Effects. (A) XGBoost without Ligand Vibration. (B) XGBoost with Ligand Vibration.
(C) Combined Optimized DrugScore2018 and XGBoost, excluding Ligand Vibration. (D)
Combined Optimized DrugScore2018 and XGBoost, including Ligand Vibration. (E)
DrugScore2018.

feature set marginally outperforms the non-vibrated counterpart. Though the enhance-
ment is modest, it represents a significant improvement given that there’s no additional
computational cost during the inference phase. When integrated with our Optimized
DrugScore2018, the enhancement from Ligand Vibration becomes evident (refer to Fig-
ure 4.13 C and D). Remarkably, the combined result surpasses the screening power of
DrugScore2018 (see Figure 4.13 E), mitigating, to some extent, the inherent limitations
of our dataset’s quality.
XGBoost Grid Search Analysis. As discussed in Section 3.3, we employed grid search
to determine the best hyperparameters for XGBoost. Table 4.1 specifically lists the de-
fined parameter ranges, culminating in 19,683 potential configurations. When subjected
to three-fold cross-validation, this gave rise to 59,049 model evaluations.

88 4| Experimental results

Parameter Range of Values

colsample_bytree 0.7, 0.8, 0.9
gamma 0.0, 0.05, 0.1
learning_rate 0.03, 0.05, 0.07
max_depth 8, 9, 10
min_child_weight 5, 6, 7
n_estimators 500, 550, 600
subsample 0.7, 0.8, 0.9
reg_alpha 0.0, 0.05, 0.1
reg_lambda 0.0, 0.05, 0.1

Table 4.1: Range of Parameters for XGBoost Grid Search

However, exploring every configuration was impractical, it was also unnecessary due to the
independence of some parameters. By testing them individually, we significantly cut down
our experimental efforts. After several attempts, we pinpointed the optimal configuration,
which we present below. This configuration achieved a Root Mean Square Error (RMSE)
of 1.426.

• colsample_bytree=0.8

• gamma=0.05

• learning_rate=0.05

• max_depth=10

• min_child_weight=6

• n_estimators=600

• reg_alpha=0

• reg_lambda=0.05

• subsample=0.8

XGBoost Power Test Analysis. Figure 4.14 is the Scoring Power Scatter Plot of
the XGBoost model. Based on the visualization in the figure, XGBoost’s scoring power
exhibits a marked improvement compared to DrugScore2018 (refer to Figure 4.7). The
majority of points lie close to the solid regression line, with only a few outliers beyond
the bounds of the regression line adjusted for standard deviation.

4| Experimental results 89

Figure 4.14: Scoring Power Scatter Plot for XGBoost Model

In Figure 4.15, we present the CASF-2016 Power Test results for the XGBoost model.
Within each subfigure: (A) represents our Optimized DrugScore2018 results, (B) show-
cases the XGBoost results, (C) depicts its direct combination with DrugScore2018, and
(D) displays the DrugScore2018, which serves as the control group. The figure shows that
the integration of DrugScore2018 with XGBoost enhanced performance in Scoring, Rank-
ing, and Screening Power tests. Although Docking Power doesn’t see a significant boost,
it yields results consistent with our Optimized DrugScore2018. Of these, XGBoost’s Scor-
ing Power stands out, with its Pearson correlation coefficient (R) reaching 0.733. This
score surpasses most Scoring Functions provided in CASF2016 (refer to the comparison
in Section 4.3).
While XGBoost’s marked improvement in Scoring Power is commendable, it’s not entirely
positive. This may suggest that we’ve trained XGBoost more towards Scoring Power than
Screening Power, our primary concern. The loss function of XGBoost, used in both grid
search and training, resembles the squared error in Equation 3.1, inherently aligned with
Scoring Power.

90 4| Experimental results

Scoring Power Ranking Power

Docking Power Screening Power

Figure 4.15: XGBoost Power Test Result. (A) Optimized DrugScore2018. (B) XG-
Boost. (C) Combined Optimized DrugScore2018 and XGBoost. (D) DrugScore2018.

4.3. Overall DrugXGBScore Outcomes

In this section, we evaluate our proposed DrugXGBScore. Using the parameter alpha
from Equation 3.3, we combined the Optimized DrugScore2018 with the XGBoost model.
Subsequently, we performed a Power Test on DrugXGBScore and compared its perfor-
mance with other Scoring Functions highlighted in CASF-2016.
Bayesian Optimization Analysis. In Section 3.4, we discussed the use of Bayesian
Optimization to identify the optimal value for α. Figure 4.16 illustrates these results. On
the x-axis, we have the α values, and the y-axis shows the corresponding target, defined
as the average enrichment factor among the top 1%.
As the outcomes of 30 iterations presented in Figure 4.16, the optimal α value consis-
tently hovered around 0.37, and we ultimately chose 0.37051443623449176 as the final

4| Experimental results 91

Figure 4.16: Bayesian Optimization Result

result. In this context, an α of 0 signifies exclusive reliance on Optimized DrugScore2018,
while a value of 1 indicates sole dependence on XGBoost. The optimal solution’s leftward
inclination suggests a greater contribution from Optimized DrugScore2018 to the final
score. Consequently, our final reference result’s average enrichment factor among the top
1% improved from 3.75, as noted with the direct combination (equivalent α set to 0.5) in
Section 4.2, to 4.52.
Comparison of DrugXGBScore with Other Scoring Functions. Figure 4.17
presents the results of our DrugXGBScore Power test, alongside comparisons with other
example scoring functions provided by CASF-2016, listed in order. In the four subgraphs,
our Optimized DrugScore2018 appears in green, XGBoost in orange, the final DrugXG-
BScore in red, and the other Scoring Functions in blue. The first row displays Scoring
Power and Ranking Power, and the right of the second row presents Screening Power. In
line with our previous approach, we use the Pearson correlation coefficient (R), Spearman
correlation coefficient (SP), and the Average enrichment factor for the top 1% as respec-
tive reference target values. Meanwhile, on the left of the second row, Docking Power
showcases success rates for the top 1, top 2, and top 3 binding poses. The color grada-
tion reflects these rates, with the darkest shade denoting Top1 and the lightest indicating
Top3.
From the data presented in Figure 4.17, our DrugXGBScore (highlighted in red) achieves

92 4| Experimental results

near-optimal performance in Scoring and Ranking Power and ranks in the upper-middle
tier for Docking and Screening Power. We believe this result aligns well with the prediction
accuracy requirements for this drug discovery task.

Figure 4.17: Comparison of DrugXGBScore with Other Scoring Functions. Key:
Green - Optimized DrugScore2018; Orange - XGBoost; Red - DrugXGBScore; Blue -
Other scoring functions.

4| Experimental results 93

4.4. HPC Implementation Outcomes

In this section, we detail the acceleration impact achieved by integrating DrugXGBScore
into our custom-designed HPC pipeline, with a focus on the enhancements in computa-
tional performance. We adopted a bottom-up approach to analyze the performance im-
provements resulting from specific technique trade-offs during the HPC pipeline construc-
tion. Subsequently, we assess the overall performance enhancements achieved through
GPU acceleration in comparison to CPU-only usage. For the evaluation dataset, we uti-
lized the off-the-shelf CASF-2016 Screening Power benchmark, which includes 57 target
proteins, each accompanied by 28,500 decoys (ligands), amounting to a total of 1,624,500
decoys for screening. This extensive test set served as the basis for assessing the compu-
tational performance of our DrugXGBScore, with throughput and total running time as
the principal metrics for evaluation.
Analysis of Simultaneous Thread Execution. In Section 3.5, we noted that our CPU
comprises 20 cores, and to prevent oversubscription due to additional threads generated
by XGBoost, we strategically launched only 18 threads concurrently. Consequently, we
conducted a test using all proteins and their corresponding decoys from the Screening
Power dataset, comparing the overall running time when launching 18 and 20 threads
concurrently.

The result presented in Figure 4.18 indicates that launching 18 or 20 threads simul-

Figure 4.18: Result of CPU Threads Test

94 4| Experimental results

taneously exerts a negligible influence on the total screening time. However, given the
substantial size of the dataset, the observed enhancement of approximately three seconds
is also noteworthy. Importantly, the thread count for this operation can be dynamically
tuned to suit the capabilities of a particular device. This experiment underscores the
critical need to address the oversubscription issue associated with XGBoost. To optimize
performance, it is advisable to set the thread launch count to approximately 10% less
than the total number of available CPU cores.
Analysis of the Impact of Ligand Vibration Technology on Computing Per-
formance. As outlined in Section 3.2, the Ligand Vibration Technique was adopted
to mitigate uncertainty in protein-ligand conformations, thereby enhancing dataset qual-
ity. While this technique inherently increases computing cost, Section 3.5.3 details how we
have refined hardware utilization to integrate this technique into our Optimized DrugScore2018,
effectively minimizing the additional overhead. To assess the effectiveness of our optimiza-
tions and the extent to which the Ligand Vibration Technique affects computing perfor-
mance, we conducted a controlled experiment. This evaluation was carried out under
uniform conditions to directly compare scenarios without the technique to those where it
was applied post-hardware optimization.

Figure 4.19: Performance Impact of the Ligand Vibration Technique

The results shown in Figure 4.19 demonstrate that the Ligand Vibration Technique will
impact overall performance despite optimization efforts. This effect is attributed to cal-
culating 27 vibration directions and the subsequent prediction for all of them. However,
our project’s objective extends beyond computing performance impacts to striking an op-

4| Experimental results 95

timal balance between prediction accuracy and computational efficiency. In this screening
test, which encompassed 57 proteins and 1,624,500 decoys, the application of the Ligand
Vibration Technique led to an increase in processing time of only 20 seconds, rather than
multiplying the total running time by 27. This modest increase indicates the effective-
ness of our optimization efforts. Considering the enhancement in prediction accuracy, as
demonstrated in Figure 4.6, this additional time is deemed a justifiable and acceptable
computational expense. Moreover, Ligand Vibration functions can be treated as an in-
dependent component within our DrugXGBScore HPC pipeline. Its activation can be
tailored based on specific application scenarios and requirements.
NVIDIA Nsight Systems Visual Evaluation. After finalizing the technical specifi-
cations, we advanced to a comprehensive evaluation of the DrugXGBScore’s performance
throughout the entire HPC pipeline. To gain insights into the internal execution dynamics
of our pipeline, NVIDIA Nsight Systems was utilized for an in-depth visual analysis. This
allowed us to determine whether our pipeline can effectively implement parallel comput-
ing between threads and streams.

(a)

(b)

Figure 4.20: Visual Report Generated by NVIDIA Nsight Systems

Figure 4.20 is an overview of the program execution, captured from NVIDIA Nsight Sys-
tems’ visual evaluation report. As shown in this figure, the program’s entire execution
took approximately 240 seconds. Running the program in Debug Mode is necessary to

96 4| Experimental results

generate this report, so the total runtime exceeds that of Release Mode. The left side
of the figure depicts all the CUDA Streams. Our execution logic assigns a non-default
Stream to each thread, resulting in a total of 57 non-default Streams corresponding to
the 57 Proteins. Additionally, each thread is provided with a default Stream for han-
dling operations such as CUDA Malloc, Memory Set, and CUDA Free. The shaded area
in the figure represents the execution status of each Stream. For instance, as indicated
by label ‘a’, it encompasses both the kernel call and the data transfer operation. The
overlapping of kernel and memory operations across different Streams, as exemplified by
the yellow-lined area labeled ‘b’, demonstrates the effectiveness of parallel computing in
this implementation. In this specific area, at least 9 streams are executing operations
concurrently.

(2a)

(1a)

(1b)

(3) (4)

(2b)

Figure 4.21: Overlapping Detail in Visual Report

Figure 4.21 provides an in-depth view of the parallel computations. It displays three
Kernel instances, each serving a distinct purpose. Kernel 1 is dedicated to calculating
the Ligand Vibration matrix. Kernel 2 computes the mutual distances between protein-
ligand atoms, subsequently integrating these values into the feature matrix as outlined in
Figure 3.11. Kernel 3 is responsible for Block Reduction. This figure notably illustrates
a typical instance of Kernel overlapping within the green area, where Kernels 1, 2, and 3
in different Streams partially coincide. Kernel 2, being the most computation-intensive,
shows minimal overlap with other Kernels, in contrast to the more substantial overlapping
observed between Kernels 2 and 3. Additionally, the figure also highlights the parallelism
between memory operations and kernel executions. The red block, marked as ‘4’, rep-

4| Experimental results 97

resents the CUDA asynchronous memory copy operation, which is overlapped with our
most computation-intensive Kernel 2 for optimized performance.
In summary, the visual report from Nvidia Nsight System reveals that our HPC imple-
mentation of DrugXGBScore achieved fundamental stream-level parallel computing, with
kernels and memory operations overlapping effectively to fulfill high-performance com-
puting objectives.
Comparative Analysis of GPU Acceleration versus CPU-Only Usage. Subse-
quently, we conducted a performance evaluation of DrugXGBScore in a CPU-only setup.
This was compared with the total runtime following GPU acceleration under identical
conditions, allowing us to assess the extent of performance improvement achieved by the
HPC pipelines.
To this end, we conducted two distinct sets of experiments to comprehensively evaluate
the performance of DrugXGBScore under various scenarios.

• In the first set, we utilized all 57 proteins for screening, along with their correspond-
ing 1,624,500 ligands.

• For the second set, our focus was on screening potential decoys for a single protein,
ACETYLCHOLINESTERASE, which has 8313 atoms, is identified by PDB Code
1E66, and includes 28,500 decoys.

Additionally, as previously discussed, Ligand Vibration can be considered an independent
component. To demonstrate our HPC pipeline’s performance across different application
scenarios, we conducted tests on the two aforementioned sets under two conditions: with
and without activating the Ligand Vibration Technique.

(A) (B)

Figure 4.22: Comparative Analysis of our HPC Pipeline Performance without Ligand
Vibration

The results of the DrugXGBScore experiments, conducted without the Ligand Vibration
Technique, are displayed in Figure 4.22. Panel A illustrates the total running time, while

98 4| Experimental results

Panel B shows the ligand throughput per second. The blue bars represent the CPU-
only runs for both 57 proteins and ACETYLCHOLINESTERASE, whereas the red bars
denote the GPU-accelerated runs for these entities. Due to the substantial runtime differ-
ence between CPU-only and GPU-accelerated runs, a Logarithmic Scale was utilized for
the Y-axis. Furthermore, considering the impracticality and extensive duration required
to run the entire large dataset on a CPU-only setup, we chose to extrapolate CPU-only
runtimes from a smaller sampled subset rather than conducting a direct measurement, in
order to conserve time and computing resources.
Analyzing the results depicted in the figure, the disparity in running time is striking,
spanning four orders of magnitude. For instance, screening about 30,000 decoys for a
protein similar to ACETYLCHOLINESTERASE, which has approximately 8,000 atoms,
takes only 5 seconds using our GPU-accelerated pipeline, achieving a throughput of 5455
decoys per second. In contrast, the same task requires 6781 seconds (nearly 2 hours)
when using only the CPU with 18 cores, managing to process only 4 decoys per second.
Notably, these results do not even account for the use of our Ligand Vibration Technique.

(A) (B)

Figure 4.23: Comparative Analysis of our HPC Pipeline Performance with Ligand Vibra-
tion

The implementation of the Ligand Vibration Technique further accentuates the discrep-
ancy in performance, as shown in Figure 4.23, where the total running time differs by
four orders of magnitude. As depicted in Panel A, for a single protein with Vibration
activated in 27 directions, the screening of its 28,500 decoys requires 105,023 seconds,
approximately 27 hours. Remarkably, conducting the entire CASF-2016 Screening Power
test, which involves 1,624,500 decoys for all 57 test proteins, takes nearly 55 days on a
CPU-only setup. However, the efficiency significantly improves with our GPU acceler-
ation. Screening 28,500 decoys for a single protein now takes just 8.51 seconds, while
completing the entire Screening Power test requires only 184 seconds. The throughput

4| Experimental results 99

astonishingly reaches approximately 3,300 and 8,700 ligands per second, respectively. It is
noteworthy that while the throughput with CPU-only shows little variation between dif-
ferent scenarios, it differs notably post-GPU acceleration. This discrepancy is attributed
not only to the significant variation in the number of atoms among different proteins but
also to the startup time involved in GPU acceleration. Such non-computational overhead
includes tasks like memory allocation, freeing up GPU memory, and memory transfer.
Additionally, a critical observation from Figures 4.22 and 4.23 is the marked contrast in
CPU-only runtimes between scenarios with and without the Ligand Vibration Technique,
which shows an approximately 15-fold difference. In contrast, the disparity in total run-
time post-GPU acceleration between using and not using the Ligand Vibration Technique
is only about 20 seconds, essentially negligible. This fact further highlights the effec-
tiveness of the optimizations applied to the Ligand Vibration Technique, as discussed in
Section 3.5.3. Considering its significant contribution to prediction accuracy, the activa-
tion of the Ligand Vibration component in practical applications is highly advantageous.

101

5| Conclusions and Future

Directions

In the drug discovery cycle, the persistent challenges of extended timelines, substantial
costs, and high failure rates continue to be critical issues addressed by both academia and
industry. With the advent of advanced in-silico methods, there has been an alleviation of
these challenges.
In this thesis, we introduced a novel contribution to the field of in-silico drug discovery,
particularly in the Lead Identification phase. Our focus is predominantly on Structure-
Based Virtual Screening (SBVS). This process entails the sampling of conformations for
each Protein-Ligand Complex during Molecular docking, followed by the evaluation of
these conformations using a Scoring function. The ultimate goal is to identify a set of
optimal ligands for the target protein and advance them to wet laboratories for further
experimental validation. To achieve this, we developed ‘DrugXGBScore’, a hybrid scoring
function designed to maximize computational performance while maintaining high predic-
tion accuracy to meet the High-Throughput Virtual Screening (HTVS) requirement. This
Hybrid Scoring Function is a linear combination of Knowledge-based and machine-learning
scoring functions. It harnesses the straightforward structure of the Knowledge-based
scoring function for seamless integration with our high-performance computing pipeline.
Concurrently, the machine learning scoring function significantly enhances prediction ac-
curacy. Following this, we deployed the entire Hybrid Scoring Function into an HPC
pipeline, tailor-made for our DrugXGBScore. Leveraging the advanced capabilities of
our state-of-the-art Nvidia A-100 high-performance GPU, this HPC pipeline ensures that
the computational demands of screening suitable ligands from extensive drug molecule
libraries are adequately met.
Ultimately, our DrugXGBScore underwent comprehensive evaluation, rigorously assessing
both its prediction accuracy and computational performance. In terms of prediction ac-
curacy, our analysis of the CASF-2016 Power test results revealed that DrugXGBScore’s
Scoring and Ranking Power nearly matched the best levels among the benchmark scoring
functions. Furthermore, it also achieved a mid-upper tier performance in the Docking

102 5| Conclusions and Future Directions

and Screening Power tests. This performance of DrugXGBScore effectively meets our
established criteria for prediction accuracy. Simultaneously, in terms of computing per-
formance, our HPC pipeline demonstrated a remarkable improvement. When screening
28,500 decoys for the target protein ACETYLCHOLINESTERASE, the total execution
time using our HPC pipeline was over four orders of magnitude faster compared to relying
solely on the CPU. Specifically, this task required only 8.5 seconds with our HPC pipeline,
in sharp contrast to nearly 27 hours with just the CPU. Additionally, the throughput in-
creased dramatically from an average of 0.27 decoys per second to 3,347 decoys per second.
Notably, this throughput is expected to rise further with larger volumes of decoys, as they
more effectively distribute the startup time. Overall, the large increase in computational
performance with our HPC pipeline, as opposed to using only the CPU, is extraordinary.
However, our research is not without limitations. A primary challenge we encountered
was the quality of the training datasets, which significantly impacted our model training
process. It is clear that the dataset quality had a considerable effect on the final prediction
accuracy. Improving it could substantially enhance prediction accuracy, thus increasing
the success probability of the ligands identified for further testing in wet laboratory ex-
periments. Crucially, such improvements in dataset quality would not adversely affect
computing performance. With access to higher-quality training datasets, our DrugXGB-
Score could be significantly improved from its current state.
Looking toward future directions, we are confident that the research presented in this
thesis holds substantial scalability and possibly offers meaningful guidance for advanc-
ing the field of Structure-Based Virtual Screening (SBVS). Firstly, addressing dataset
quality issues is crucial. As discussed in the previous paragraph, high-quality datasets
can significantly improve prediction accuracy without adversely affecting computing per-
formance. Given the high costs associated with data collection, in scenarios where high-
quality protein-ligand structure or binding affinity data are not readily available, we could
explore the use of emerging technologies, such as DeepMind’s AlphaFold [35], to opti-
mize our existing datasets. Secondly, regarding the scoring function, the application of
machine learning algorithms has already yielded substantial improvements in prediction
accuracy. Our future efforts should not be limited to the XGBoost algorithm currently
in use. We could experiment with various machine/deep learning algorithms, even pop-
ular Large Language Models (LLMs) [3], to further enhance prediction accuracy. Lastly,
in terms of computing performance, we could utilize high-performance GPU clusters or
even large-scale computing infrastructures. This approach would significantly enhance
the computational capabilities of our HPC pipeline, potentially transforming both the
running time and throughput to an incredible higher level.

103

Bibliography

[1] Openmp. https://www.openmp.org/. Accessed: 2023.

[2] N. Adiga, G. Almasi, G. Almasi, Y. Aridor, R. Barik, D. Beece, R. Bellofatto,
G. Bhanot, R. Bickford, M. Blumrich, A. Bright, J. Brunheroto, C. Cascaval, J. Cas-
tanos, W. Chan, L. Ceze, P. Coteus, S. Chatterjee, D. Chen, G. Chiu, T. Cipolla,
P. Crumley, K. Desai, A. Deutsch, T. Domany, M. Dombrowa, W. Donath, M. Eleft-
heriou, C. Erway, J. Esch, B. Fitch, J. Gagliano, A. Gara, R. Garg, R. Germain,
M. Giampapa, B. Gopalsamy, J. Gunnels, M. Gupta, F. Gustavson, S. Hall, R. Har-
ing, D. Heidel, P. Heidelberger, L. Herger, D. Hoenicke, R. Jackson, T. Jamal-
Eddine, G. Kopcsay, E. Krevat, M. Kurhekar, A. Lanzetta, D. Lieber, L. Liu, M. Lu,
M. Mendell, A. Misra, Y. Moatti, L. Mok, J. Moreira, B. Nathanson, M. New-
ton, M. Ohmacht, A. Oliner, V. Pandit, R. Pudota, R. Rand, R. Regan, B. Rubin,
A. Ruehli, S. Rus, R. Sahoo, A. Sanomiya, E. Schenfeld, M. Sharma, E. Shmueli,
S. Singh, P. Song, V. Srinivasan, B. Steinmacher-Burow, K. Strauss, C. Surovic,
R. Swetz, T. Takken, R. Tremaine, M. Tsao, A. Umamaheshwaran, P. Verma,
P. Vranas, T. Ward, M. Wazlowski, W. Barrett, C. Engel, B. Drehmel, B. Hil-
gart, D. Hill, F. Kasemkhani, D. Krolak, C. Li, T. Liebsch, J. Marcella, A. Muff,
A. Okomo, M. Rouse, A. Schram, M. Tubbs, G. Ulsh, C. Wait, J. Wittrup, M. Bae,
K. Dockser, L. Kissel, M. Seager, J. Vetter, and K. Yates. An overview of the Blue-
Gene/l supercomputer. In SC ’02: Proceedings of the 2002 ACM/IEEE Conference
on Supercomputing, pages 60–60. doi: 10.1109/SC.2002.10017. ISSN: 1063-9535.

[3] M. R. AI4Science and M. A. Quantum. The impact of large language models on
scientific discovery: a preliminary study using GPT-4. URL http://arxiv.org/

abs/2311.07361.

[4] W. J. Allen and R. C. Rizzo. Implementation of the hungarian algorithm to account
for ligand symmetry and similarity in structure-based design. 54(2):518–529. ISSN
1549-9596. doi: 10.1021/ci400534h. URL https://doi.org/10.1021/ci400534h.
Publisher: American Chemical Society.

[5] J. Audie and S. Scarlata. A novel empirical free energy function that explains

https://www.openmp.org/
http://arxiv.org/abs/2311.07361
http://arxiv.org/abs/2311.07361
https://doi.org/10.1021/ci400534h

104 | Bibliography

and predicts protein–protein binding affinities. 129(2):198–211. ISSN 0301-4622.
doi: 10.1016/j.bpc.2007.05.021. URL https://www.sciencedirect.com/science/

article/pii/S0301462207001536.

[6] M. Awale, R. van Deursen, and J.-L. Reymond. MQN-mapplet: Visualization of
chemical space with interactive maps of DrugBank, ChEMBL, PubChem, GDB-
11, and GDB-13. 53(2):509–518. ISSN 1549-9596. doi: 10.1021/ci300513m. URL
https://doi.org/10.1021/ci300513m. Publisher: American Chemical Society.

[7] P. Badrinarayan and G. N. Sastry. Virtual high throughput screening in new
lead identification. 14(10):840–860, 2011. ISSN 1875-5402. doi: 10.2174/
138620711797537102.

[8] I. Bahar and R. L. Jernigan. Inter-residue potentials in globular proteins and the
dominance of highly specific hydrophilic interactions at close separation 1 1 edited
by b. honig. 266(1):195–214. ISSN 0022-2836. doi: 10.1006/jmbi.1996.0758. URL
https://www.sciencedirect.com/science/article/pii/S0022283696907585.

[9] M. H. Baig, K. Ahmad, M. Adil, Z. A. Khan, M. I. Khan, M. Lo-
hani, M. S. Khan, and M. A. Kamal. Drug discovery and in sil-
ico techniques: A mini-review. 04(1), 2014. ISSN 23296674. doi:
10.4172/2329-6674.1000123. URL http://www.omicsgroup.org/journals/

drug-discovery-and-in-silico-techniques-a-minireview-2329-6674-1000123.

php?aid=43621.

[10] H.-J. Bohm. The development of a simple empirical scoring function to estimate the
binding constant for a protein-ligand complex of known three-dimensional structure.
8(3):243–256. ISSN 0920-654X, 1573-4951. doi: 10.1007/BF00126743. URL http:

//link.springer.com/10.1007/BF00126743.

[11] N. Brooijmans and I. D. Kuntz. Molecular recognition and docking al-
gorithms. 32(1):335–373. doi: 10.1146/annurev.biophys.32.110601.142532.
URL https://doi.org/10.1146/annurev.biophys.32.110601.142532. _eprint:
https://doi.org/10.1146/annurev.biophys.32.110601.142532.

[12] P. Canada. Glossary, 2023. URL https://pharmacologycanada.org/Glossary.
Accessed: 6 Oct 2023.

[13] C. Catana and P. F. W. Stouten. Novel, customizable scoring functions, parameter-
ized using n-PLS, for structure-based drug discovery. 47(1):85–91. ISSN 1549-9596.
doi: 10.1021/ci600357t. URL https://doi.org/10.1021/ci600357t. Publisher:
American Chemical Society.

https://www.sciencedirect.com/science/article/pii/S0301462207001536
https://www.sciencedirect.com/science/article/pii/S0301462207001536
https://doi.org/10.1021/ci300513m
https://www.sciencedirect.com/science/article/pii/S0022283696907585
http://www.omicsgroup.org/journals/drug-discovery-and-in-silico-techniques-a-minireview-2329-6674-1000123.php?aid=43621
http://www.omicsgroup.org/journals/drug-discovery-and-in-silico-techniques-a-minireview-2329-6674-1000123.php?aid=43621
http://www.omicsgroup.org/journals/drug-discovery-and-in-silico-techniques-a-minireview-2329-6674-1000123.php?aid=43621
http://link.springer.com/10.1007/BF00126743
http://link.springer.com/10.1007/BF00126743
https://doi.org/10.1146/annurev.biophys.32.110601.142532
https://pharmacologycanada.org/Glossary
https://doi.org/10.1021/ci600357t

| Bibliography 105

[14] P. S. Charifson, J. J. Corkery, M. A. Murcko, and W. P. Walters. Consensus
scoring: A method for obtaining improved hit rates from docking databases of
three-dimensional structures into proteins. 42(25):5100–5109. ISSN 0022-2623.
doi: 10.1021/jm990352k. URL https://doi.org/10.1021/jm990352k. Publisher:
American Chemical Society.

[15] P. Chaskar, V. Zoete, and U. F. Röhrig. Toward on-the-fly quantum mechani-
cal/molecular mechanical (QM/MM) docking: Development and benchmark of a
scoring function. 54(11):3137–3152. ISSN 1549-9596. doi: 10.1021/ci5004152. URL
https://doi.org/10.1021/ci5004152. Publisher: American Chemical Society.

[16] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 785–794. doi: 10.1145/2939672.2939785. URL http://arxiv.

org/abs/1603.02754.

[17] Cineca. Leonardo supercomputer - hpc system, 2023. URL https://

leonardo-supercomputer.cineca.eu/hpc-system/. Accessed: 2 Sep 2023.

[18] N. Corporation. Cuda c programming guide. Available at: https://docs.nvidia.

com/cuda/cuda-c-programming-guide/, 2023. Accessed: 2023-09-05.

[19] X. Developers. Xgboost parameters documentation. URL https://xgboost.

readthedocs.io/en/stable/parameter.html. Accessed: 2023.

[20] J. A. DiMasi, R. W. Hansen, and H. G. Grabowski. The price of innovation:
new estimates of drug development costs. 22(2):151–185, 2003. ISSN 0167-
6296. doi: 10.1016/S0167-6296(02)00126-1. URL https://www.sciencedirect.

com/science/article/pii/S0167629602001261.

[21] J. Dittrich, D. Schmidt, C. Pfleger, and H. Gohlke. Converging a knowledge-based
scoring function: DrugScore 2018. 59(1):509–521. ISSN 1549-9596, 1549-960X. doi:
10.1021/acs.jcim.8b00582. URL https://pubs.acs.org/doi/10.1021/acs.jcim.

8b00582.

[22] M. D. Eldridge, C. W. Murray, T. R. Auton, G. V. Paolini, and R. P. Mee. Em-
pirical scoring functions: I. the development of a fast empirical scoring function to
estimate the binding affinity of ligands in receptor complexes. 11(5):425–445. ISSN
1573-4951. doi: 10.1023/A:1007996124545. URL https://doi.org/10.1023/A:

1007996124545.

[23] J. Fan, A. Fu, and L. Zhang. Progress in molecular docking. 7(2):83–89. ISSN

https://doi.org/10.1021/jm990352k
https://doi.org/10.1021/ci5004152
http://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1603.02754
https://leonardo-supercomputer.cineca.eu/hpc-system/
https://leonardo-supercomputer.cineca.eu/hpc-system/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://xgboost.readthedocs.io/en/stable/parameter.html
https://xgboost.readthedocs.io/en/stable/parameter.html
https://www.sciencedirect.com/science/article/pii/S0167629602001261
https://www.sciencedirect.com/science/article/pii/S0167629602001261
https://pubs.acs.org/doi/10.1021/acs.jcim.8b00582
https://pubs.acs.org/doi/10.1021/acs.jcim.8b00582
https://doi.org/10.1023/A:1007996124545
https://doi.org/10.1023/A:1007996124545

106 | Bibliography

2095-4697. doi: 10.1007/s40484-019-0172-y. URL https://doi.org/10.1007/

s40484-019-0172-y.

[24] J. H. Friedman. Greedy function approximation: A gradient boosting machine. 29
(5):1189–1232. ISSN 0090-5364, 2168-8966. doi: 10.1214/aos/1013203451. URL
https://projecteuclid.org/journals/annals-of-statistics/volume-29/

issue-5/Greedy-function-approximation-A-gradient-boosting-machine/10.

1214/aos/1013203451.full. Publisher: Institute of Mathematical Statistics.

[25] R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz,
M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis, and
P. S. Shenkin. Glide: A new approach for rapid, accurate docking and scoring.
1. method and assessment of docking accuracy. 47(7):1739–1749. ISSN 0022-2623.
doi: 10.1021/jm0306430. URL https://doi.org/10.1021/jm0306430. Publisher:
American Chemical Society.

[26] D. Gadioli, E. Vitali, F. Ficarelli, C. Latini, C. Manelfi, C. Talarico, C. Silvano,
C. Cavazzoni, G. Palermo, and A. R. Beccari. EXSCALATE: An extreme-scale
virtual screening platform for drug discovery targeting polypharmacology to fight
SARS-CoV-2. 11(1):170–181. ISSN 2168-6750. doi: 10.1109/TETC.2022.3187134.
Conference Name: IEEE Transactions on Emerging Topics in Computing.

[27] C. Garcia-Hernandez, A. Fernández, and F. Serratosa. Ligand-based virtual screening
using graph edit distance as molecular similarity measure. 59(4):1410–1421. ISSN
1549-9596. doi: 10.1021/acs.jcim.8b00820. URL https://doi.org/10.1021/acs.

jcim.8b00820. Publisher: American Chemical Society.

[28] H. Gohlke, M. Hendlich, and G. Klebe. Knowledge-based scoring function to pre-
dict protein-ligand interactions. 295(2):337–356. ISSN 0022-2836. doi: 10.1006/
jmbi.1999.3371. URL https://www.sciencedirect.com/science/article/pii/

S0022283699933715.

[29] M. Hendlich. Databases for protein–ligand complexes. 54(6):
1178–1182. ISSN 0907-4449. doi: 10.1107/S0907444998007124.
URL //scripts.iucr.org/cgi-bin/paper?ba0006. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1107/S0907444998007124.

[30] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, 5th edition, 2012. ISBN 978-0-12-383872-8.

[31] S.-Y. Huang, S. Z. Grinter, and X. Zou. Scoring functions and their evaluation
methods for protein–ligand docking: recent advances and future directions. 12

https://doi.org/10.1007/s40484-019-0172-y
https://doi.org/10.1007/s40484-019-0172-y
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boosting-machine/10.1214/aos/1013203451.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boosting-machine/10.1214/aos/1013203451.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boosting-machine/10.1214/aos/1013203451.full
https://doi.org/10.1021/jm0306430
https://doi.org/10.1021/acs.jcim.8b00820
https://doi.org/10.1021/acs.jcim.8b00820
https://www.sciencedirect.com/science/article/pii/S0022283699933715
https://www.sciencedirect.com/science/article/pii/S0022283699933715
//scripts.iucr.org/cgi-bin/paper?ba0006

| Bibliography 107

(40):12899–12908. ISSN 1463-9084. doi: 10.1039/C0CP00151A. URL https:

//pubs.rsc.org/en/content/articlelanding/2010/cp/c0cp00151a. Publisher:
The Royal Society of Chemistry.

[32] A. Inc. Metal for developers, 2023. Available at: https://developer.apple.com/

metal/. Accessed: 2023-09-05.

[33] Intel. oneapi: What is it?, 2022. Available at: https://www.intel.com/content/

www/us/en/developer/articles/technical/oneapi-what-is-it.html#gs.

5bcnsj. Accessed: 2023-09-05.

[34] M. Johnson and G. Maggiora. Concepts and Applications of Molecular Similarity.
John Wiley, 1990. ISBN 978-0-471-62175-1.

[35] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunya-
suvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl,
A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back,
S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska,
T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu,
P. Kohli, and D. Hassabis. Highly accurate protein structure prediction with Al-
phaFold. 596(7873):583–589. ISSN 1476-4687. doi: 10.1038/s41586-021-03819-2.
URL https://www.nature.com/articles/s41586-021-03819-2. Number: 7873
Publisher: Nature Publishing Group.

[36] M. Kadukova and S. Grudinin. Convex-PL: a novel knowledge-based potential for
protein-ligand interactions deduced from structural databases using convex opti-
mization. 31(10):943–958. ISSN 1573-4951. doi: 10.1007/s10822-017-0068-8. URL
https://doi.org/10.1007/s10822-017-0068-8.

[37] I. Khanna. Drug discovery in pharmaceutical industry: productivity chal-
lenges and trends. 17(19):1088–1102, 2012. ISSN 1359-6446. doi: 10.1016/
j.drudis.2012.05.007. URL https://www.sciencedirect.com/science/article/

pii/S1359644612001833.

[38] D. B. Kitchen, H. Decornez, J. R. Furr, and J. Bajorath. Docking and scoring
in virtual screening for drug discovery: methods and applications. 3(11):935–949.
ISSN 1474-1784. doi: 10.1038/nrd1549. URL https://www.nature.com/articles/

nrd1549. Number: 11 Publisher: Nature Publishing Group.

[39] O. Korb, T. Stützle, and T. E. Exner. Empirical scoring functions for ad-
vanced protein-ligand docking with PLANTS. 49(1):84–96. ISSN 1549-9596. doi:

https://pubs.rsc.org/en/content/articlelanding/2010/cp/c0cp00151a
https://pubs.rsc.org/en/content/articlelanding/2010/cp/c0cp00151a
https://developer.apple.com/metal/
https://developer.apple.com/metal/
https://www.intel.com/content/www/us/en/developer/articles/technical/oneapi-what-is-it.html#gs.5bcnsj
https://www.intel.com/content/www/us/en/developer/articles/technical/oneapi-what-is-it.html#gs.5bcnsj
https://www.intel.com/content/www/us/en/developer/articles/technical/oneapi-what-is-it.html#gs.5bcnsj
https://www.nature.com/articles/s41586-021-03819-2
https://doi.org/10.1007/s10822-017-0068-8
https://www.sciencedirect.com/science/article/pii/S1359644612001833
https://www.sciencedirect.com/science/article/pii/S1359644612001833
https://www.nature.com/articles/nrd1549
https://www.nature.com/articles/nrd1549

108 | Bibliography

10.1021/ci800298z. URL https://doi.org/10.1021/ci800298z. Publisher: Amer-
ican Chemical Society.

[40] D. E. Koshland. The key-lock theory and the induced fit theory. 33(2324):2375–
2378. ISSN 0570-0833, 1521-3773. doi: 10.1002/anie.199423751. URL https://

onlinelibrary.wiley.com/doi/10.1002/anie.199423751.

[41] A. A. Kossiakoff, M. Randal, J. Guenot, and C. Eignebrot. Variabil-
ity of conformations at crystal contacts in BPTI represent true low-energy
structures: Correspondence among lattice packing and molecular dynam-
ics structures. 14(1):65–74. ISSN 1097-0134. doi: 10.1002/prot.340140108.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.340140108.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/prot.340140108.

[42] J. Li, A. Fu, and L. Zhang. An overview of scoring functions used for protein–ligand
interactions in molecular docking. 11(2):320–328, 2019. ISSN 1867-1462. doi: 10.
1007/s12539-019-00327-w. URL https://doi.org/10.1007/s12539-019-00327-w.

[43] J. Lu, X. Hou, C. Wang, and Y. Zhang. Incorporating explicit water molecules and
ligand conformation stability in machine-learning scoring functions. 59(11):4540–
4549. ISSN 1549-9596. doi: 10.1021/acs.jcim.9b00645. URL https://doi.org/10.

1021/acs.jcim.9b00645. Publisher: American Chemical Society.

[44] P. D. Lyne. Structure-based virtual screening: an overview. 7(20):1047–1055.
ISSN 1359-6446. doi: 10.1016/S1359-6446(02)02483-2. URL https://www.

sciencedirect.com/science/article/pii/S1359644602024832.

[45] L. M. Mayr and D. Bojanic. Novel trends in high-throughput screening. 9(5):580–
588, 2009. ISSN 1471-4892. doi: 10.1016/j.coph.2009.08.004. URL https://www.

sciencedirect.com/science/article/pii/S1471489209001283.

[46] E. C. Meng, B. K. Shoichet, and I. D. Kuntz. Automated docking with grid-based
energy evaluation. 13(4):505–524. ISSN 1096-987X. doi: 10.1002/jcc.540130412. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540130412. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.540130412.

[47] H. L. Morgan. The generation of a unique machine description for chemi-
cal structures-a technique developed at chemical abstracts service. 5(2):107–113.
ISSN 0021-9576. doi: 10.1021/c160017a018. URL https://doi.org/10.1021/

c160017a018. Publisher: American Chemical Society.

[48] J. L. Morrison, R. Breitling, D. J. Higham, and D. R. Gilbert. A lock-and-key model

https://doi.org/10.1021/ci800298z
https://onlinelibrary.wiley.com/doi/10.1002/anie.199423751
https://onlinelibrary.wiley.com/doi/10.1002/anie.199423751
https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.340140108
https://doi.org/10.1007/s12539-019-00327-w
https://doi.org/10.1021/acs.jcim.9b00645
https://doi.org/10.1021/acs.jcim.9b00645
https://www.sciencedirect.com/science/article/pii/S1359644602024832
https://www.sciencedirect.com/science/article/pii/S1359644602024832
https://www.sciencedirect.com/science/article/pii/S1471489209001283
https://www.sciencedirect.com/science/article/pii/S1471489209001283
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540130412
https://doi.org/10.1021/c160017a018
https://doi.org/10.1021/c160017a018

| Bibliography 109

for protein–protein interactions. 22(16):2012–2019. ISSN 1367-4803. doi: 10.1093/
bioinformatics/btl338. URL https://doi.org/10.1093/bioinformatics/btl338.

[49] G. Neudert and G. Klebe. fconv: format conversion, manipulation and feature
computation of molecular data. 27(7):1021–1022. ISSN 1367-4803. doi: 10.1093/
bioinformatics/btr055. URL https://doi.org/10.1093/bioinformatics/btr055.

[50] NVIDIA Corporation. Nvidia a100 gpu. https://www.nvidia.com/en-us/

data-center/a100/. Accessed: 2023.

[51] N. I. of Health (NIH). The sybyl data structure document. https:

//tccc.iesl.forth.gr/education/local/quantum/molecular_modeling/

guide_documents/SYBYL_data_document.html, 1994. Accessed: 2023.

[52] D. A. Patterson and J. L. Hennessy. Computer Organization and Design - The
Hardware/Software Interface. Morgan Kaufmann, 5th edition, 2014. ISBN 978-0-12-
407726-3.

[53] PDBbind. Pdbbind database, 2023. URL http://www.pdbbind.org.cn/. Accessed:
3 Oct 2023.

[54] D. A. Pearlman and P. S. Charifson. Are free energy calculations useful in practice?
a comparison with rapid scoring functions for the p38 MAP kinase protein system.
44(21):3417–3423. ISSN 0022-2623. doi: 10.1021/jm0100279. URL https://doi.

org/10.1021/jm0100279. Publisher: American Chemical Society.

[55] S. Pushpakom, F. Iorio, P. A. Eyers, K. J. Escott, S. Hopper, A. Wells, A. Doig,
T. Guilliams, J. Latimer, C. McNamee, A. Norris, P. Sanseau, D. Cavalla, and
M. Pirmohamed. Drug repurposing: progress, challenges and recommendations. 18
(1):41–58. ISSN 1474-1784. doi: 10.1038/nrd.2018.168. URL https://www.nature.

com/articles/nrd.2018.168. Number: 1 Publisher: Nature Publishing Group.

[56] G. Rastelli and L. Pinzi. Refinement and rescoring of virtual screening results. 7.
ISSN 2296-2646. URL https://www.frontiersin.org/articles/10.3389/fchem.

2019.00498.

[57] D. Rogers and M. Hahn. Extended-connectivity fingerprints. 50(5):742–754. ISSN
1549-9596. doi: 10.1021/ci100050t. URL https://doi.org/10.1021/ci100050t.
Publisher: American Chemical Society.

[58] G. Schneider and U. Fechner. Computer-based de novo design of drug-like molecules.
Nature Reviews Drug Discovery, 4(8):649–663, 2005. doi: 10.1038/nrd1799. URL
https://doi.org/10.1038/nrd1799.

https://doi.org/10.1093/bioinformatics/btl338
https://doi.org/10.1093/bioinformatics/btr055
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://tccc.iesl.forth.gr/education/local/quantum/molecular_modeling/guide_documents/SYBYL_data_document.html
https://tccc.iesl.forth.gr/education/local/quantum/molecular_modeling/guide_documents/SYBYL_data_document.html
https://tccc.iesl.forth.gr/education/local/quantum/molecular_modeling/guide_documents/SYBYL_data_document.html
http://www.pdbbind.org.cn/
https://doi.org/10.1021/jm0100279
https://doi.org/10.1021/jm0100279
https://www.nature.com/articles/nrd.2018.168
https://www.nature.com/articles/nrd.2018.168
https://www.frontiersin.org/articles/10.3389/fchem.2019.00498
https://www.frontiersin.org/articles/10.3389/fchem.2019.00498
https://doi.org/10.1021/ci100050t
https://doi.org/10.1038/nrd1799

110 | Bibliography

[59] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the
human out of the loop: A review of bayesian optimization. 104(1):148–175. ISSN
1558-2256. doi: 10.1109/JPROC.2015.2494218. URL https://ieeexplore.ieee.

org/document/7352306?denied=. Conference Name: Proceedings of the IEEE.

[60] B. K. Shoichet. Virtual screening of chemical libraries. 432(7019):862–865, 2004. ISSN
1476-4687. doi: 10.1038/nature03197. URL https://www.nature.com/articles/

nature03197. Number: 7019 Publisher: Nature Publishing Group.

[61] M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 3 edition,
2012. ISBN 978-1-133-18779-0. ISBN-10: 1-133-18779-X.

[62] N. Stiefl, I. A. Watson, K. Baumann, and A. Zaliani. ErG: 2d pharmacophore descrip-
tions for scaffold hopping. 46(1):208–220. ISSN 1549-9596. doi: 10.1021/ci050457y.
URL https://doi.org/10.1021/ci050457y. Publisher: American Chemical Soci-
ety.

[63] M. Su, Q. Yang, Y. Du, G. Feng, Z. Liu, Y. Li, and R. Wang. Comparative assessment
of scoring functions: The CASF-2016 update. 59(2):895–913. ISSN 1549-9596. doi:
10.1021/acs.jcim.8b00545. URL https://doi.org/10.1021/acs.jcim.8b00545.
Publisher: American Chemical Society.

[64] O. B. D. Team. Open babel: The open source chemistry toolbox, 2023. URL http:

//openbabel.org. Accessed: 2023.

[65] G. C. Terstappen and A. Reggiani. In silico research in drug discovery. 22(1):23–
26. ISSN 0165-6147. doi: 10.1016/S0165-6147(00)01584-4. URL https://www.

sciencedirect.com/science/article/pii/S0165614700015844.

[66] Top500. List of top supercomputers, 2023. URL https://www.top500.org/. Data
from the June 2023 ranking, 61st edition of the TOP500.

[67] H. F. G. Velec, H. Gohlke, and G. Klebe. DrugScoreCSDKnowledge-based scoring
function derived from small molecule crystal data with superior recognition rate of
near-native ligand poses and better affinity prediction. 48(20):6296–6303. ISSN
0022-2623. doi: 10.1021/jm050436v. URL https://doi.org/10.1021/jm050436v.
Publisher: American Chemical Society.

[68] C. Wang and Y. Zhang. Improving scoring-docking-screening pow-
ers of protein–ligand scoring functions using random forest. 38(3):
169–177, 2017. ISSN 1096-987X. doi: 10.1002/jcc.24667. URL

https://ieeexplore.ieee.org/document/7352306?denied=
https://ieeexplore.ieee.org/document/7352306?denied=
https://www.nature.com/articles/nature03197
https://www.nature.com/articles/nature03197
https://doi.org/10.1021/ci050457y
https://doi.org/10.1021/acs.jcim.8b00545
http://openbabel.org
http://openbabel.org
https://www.sciencedirect.com/science/article/pii/S0165614700015844
https://www.sciencedirect.com/science/article/pii/S0165614700015844
https://www.top500.org/
https://doi.org/10.1021/jm050436v

5| BIBLIOGRAPHY 111

https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24667. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.24667.

[69] R. Wang, L. Lai, and S. Wang. Further development and validation of empirical
scoring functions for structure-based binding affinity prediction. 16(1):11–26. ISSN
1573-4951. doi: 10.1023/A:1016357811882. URL https://doi.org/10.1023/A:

1016357811882.

[70] S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta,
and P. Weiner. A new force field for molecular mechanical simulation of nucleic acids
and proteins. 106(3):765–784, . ISSN 0002-7863. doi: 10.1021/ja00315a051. URL
https://doi.org/10.1021/ja00315a051. Publisher: American Chemical Society.

[71] S. J. Weiner, P. A. Kollman, D. T. Nguyen, and D. A. Case. An
all atom force field for simulations of proteins and nucleic acids. 7
(2):230–252, . ISSN 1096-987X. doi: 10.1002/jcc.540070216. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540070216. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.540070216.

[72] P. Willett. Similarity-based virtual screening using 2d fingerprints. 11(23):1046–
1053. ISSN 1359-6446. doi: 10.1016/j.drudis.2006.10.005. URL https://www.

sciencedirect.com/science/article/pii/S1359644606004193.

[73] L. Xue and J. Bajorath. Molecular descriptors in chemoinformatics, computa-
tional combinatorial chemistry, and virtual screening. 3(5):363–372. ISSN 13862073.
doi: 10.2174/1386207003331454. URL http://www.eurekaselect.com/openurl/

content.php?genre=article&issn=1386-2073&volume=3&issue=5&spage=363.

[74] L. Zhang, H.-X. Ai, S.-M. Li, M.-Y. Qi, J. Zhao, Q. Zhao, and H.-S. Liu. Vir-
tual screening approach to identifying influenza virus neuraminidase inhibitors us-
ing molecular docking combined with machine-learning-based scoring function. 8
(47):83142–83154. ISSN 1949-2553. doi: 10.18632/oncotarget.20915. URL https:

//www.oncotarget.com/article/20915/text/. Publisher: Impact Journals.

https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24667
https://doi.org/10.1023/A:1016357811882
https://doi.org/10.1023/A:1016357811882
https://doi.org/10.1021/ja00315a051
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540070216
https://www.sciencedirect.com/science/article/pii/S1359644606004193
https://www.sciencedirect.com/science/article/pii/S1359644606004193
http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1386-2073&volume=3&issue=5&spage=363
http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1386-2073&volume=3&issue=5&spage=363
https://www.oncotarget.com/article/20915/text/
https://www.oncotarget.com/article/20915/text/

113

List of Figures

1.1 Drug discovery process as proposed by Georg C. Terstappen and Angelo
Reggiani [65]. 6

1.2 The process of calculating the Tanimoto similarity between the reference
structure and the candidate molecules. [27] 9

1.3 The typical workflow for virtual screening against a specific target [42, 44] 11
1.4 Two models of molecular docking by Fan et al. [23] 12
1.5 The ECFP generating process [57] . 15
1.6 Docking Power assessment process . 20
1.7 Explanation of the Screening Power Test Set 21
1.8 A Hierarchical Model for Introducing High-Performance Computing (HPC) 23
1.9 A simplified representation of the datapath of a multithreaded SIMD pro-

cessor by Patterson and Hennessy [52, p.526] 26
1.10 The GPU Memory structures by Patterson and Hennessy [52, p.528] 27
1.11 Symmetric Shared-memory Multiprocessors (SMPs) by Hennessy and Pat-

terson [30, p.347] . 28
1.12 Distributed Shared-memory Multiprocessors (DMPs) by Hennessy and Pat-

terson [30, p.348] . 29
1.13 Automatic Scalability [18, Chapter 1.3] . 31
1.14 Thread Hierarchy and Memory Hierarchy [18, Chapter 2.2, 2.3] 32
1.15 CUDA Heterogeneous Programming [18, Chapter 2.4] 34

2.1 Example of a crystal packing used for the derivation of pair potentials,
adapted from [67]. 46

2.2 The general training process of machine learning scoring function. 48
2.3 Memory Layout . 54
2.4 Block Compression . 55
2.5 Block Sharding . 55

3.1 The general workflow of DrugXGBScore 58
3.2 Training process of Optimized DrugScore2018 62

114 | List of Figures

3.3 Illustration of Weighting Schemes: (A) Triangular Weighting Scheme and
(B) Full Weighting Scheme for Atom Position Uncertainty 63

3.4 Inference Process of Optimized DrugScore2018 64
3.5 Example of XGBoost Feature Matrix . 65
3.6 The 27 Vibration Directions for the Ligand 66
3.7 XGBoost Data Preparation Process . 67
3.8 Combination Parameter Optimization Process 70
3.9 CPU Multiple Threads . 71
3.10 GPU Accelerating Process for a single CUDA stream 72
3.11 CUDA Kernel Calculation Process . 73
3.12 Implementation of the Kernel Invocation for Feature Matrix 74
3.13 CUDA Kernel Block Reduction . 74
3.14 Schematic Diagram of Ligand Vibration Matrix Expansion 75
3.15 CUDA Kernel Implementation for Ligand Vibration Matrix Expansion . . 76

4.1 Screening Power of Models Trained Using Corresponding Selection Sets . . 78
4.2 TWS vs FWS . 79
4.3 Our Model Occurrences . 80
4.4 Occurrences in DrugScore as reported by [28] and [21] 80
4.5 Pairwise Potential of Our Final Model . 81
4.6 Ligand Vibration with Specific Radius . 82
4.7 Scatter Plot Comparison . 83
4.8 Scoring Power Comparison . 83
4.9 Ranking Power Comparison . 84
4.10 Docking Power Comparison . 84
4.11 Forward Screening Power Comparison . 85
4.12 Reverse Screening Power Comparison . 86
4.13 XGBoost Screening Power Comparison: Considering Vibration

Effects. (A) XGBoost without Ligand Vibration. (B) XGBoost with
Ligand Vibration. (C) Combined Optimized DrugScore2018 and XGBoost,
excluding Ligand Vibration. (D) Combined Optimized DrugScore2018 and
XGBoost, including Ligand Vibration. (E) DrugScore2018. 87

4.14 Scoring Power Scatter Plot for XGBoost Model 89
4.15 XGBoost Power Test Result. (A) Optimized DrugScore2018. (B)

XGBoost. (C) Combined Optimized DrugScore2018 and XGBoost. (D)
DrugScore2018. 90

4.16 Bayesian Optimization Result . 91

| List of Figures 115

4.17 Comparison of DrugXGBScore with Other Scoring Functions.
Key: Green - Optimized DrugScore2018; Orange - XGBoost; Red - DrugXG-
BScore; Blue - Other scoring functions. 92

4.18 Result of CPU Threads Test . 93
4.19 Performance Impact of the Ligand Vibration Technique 94
4.20 Visual Report Generated by NVIDIA Nsight Systems 95
4.21 Overlapping Detail in Visual Report . 96
4.22 Comparative Analysis of our HPC Pipeline Performance without Ligand

Vibration . 97
4.23 Comparative Analysis of our HPC Pipeline Performance with Ligand Vi-

bration . 98

117

List of Tables

1.1 Comparison between High-Throughput Virtual Screening (HTVS) and High-
Throughput Screening (HTS) [45, 60]. 7

1.2 The categories of conformational searching methods [11, 38] 13
1.3 Classification of Parallel Computing APIs/Frameworks 30

2.1 17 Sybyl atom types used in DrugScore. 42
2.2 Newly introduced atom types in DrugScore2018. 46

3.1 The 25 SYBYL atom types [21, 51] utilized in our optimized DrugScore2018. 61

4.1 Range of Parameters for XGBoost Grid Search 88

119

Acknowledgements

I would like to express my deepest gratitude to my advisors, Prof. Gianluca Palermo,
Davide Gadioli, and Gianmarco Accordi, for their invaluable guidance, support, and ex-
pertise throughout my Master’s thesis journey.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Background
	In-Silico Drug Discovery
	Virtual Screening
	Ligand-based virtual screening (LBVS)
	Structure-Based Virtual Screening (SBVS)

	Molecular Docking
	Extended-connectivity fingerprints (ECFPs)
	PDBbind database
	The CASF-2016
	High Performance Computing
	Computer infrastructure level
	Computer hardware level
	Computing framework level
	Computing algorithm level

	State of the art
	Physics‑Based Scoring Functions
	Force Field Scoring Functions
	Scoring Function of DOCK
	Quantum Mechanics (QM) Related Scoring Functions

	Empirical Scoring Functions
	X-Score

	Knowledge‑Based Scoring Functions
	DrugScore
	DrugScore CSD
	DrugScore 2018

	Machine Learning Scoring Functions
	Gradient boosting
	Extreme Gradient Boosting (XGBoost)

	Methodology
	Overview of the Hybrid scoring function: DrugXGBScore
	Optimization of Knowledge-based DrugScore2018
	Data Selection and Preprocessing
	Training process
	Inference process

	Training the Machine Learning SF: XGBoost
	Data Preparation
	XGBoost Hyperparameter Optimization

	Linear Combination of Optimized DrugScore2018 & XGBoost
	Deployment on the HPC Pipeline
	CPU Multi-Threading
	GPU Acceleration
	Special optimization for Ligand Vibration

	Experimental results
	Optimized DrugScore2018 Results
	XGBoost and Linear Combination Results
	Overall DrugXGBScore Outcomes
	HPC Implementation Outcomes

	Conclusions and Future Directions
	Bibliography
	List of Figures
	List of Tables
	Acknowledgements

