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Abstract

WORK-RELATED MUSCULOSKELETAL DISORDERS (WMSDs) are impairments
of the human body structures that are provoked or worsened primarily by
work and by the effects of the immediate environment in which work is con-

ducted. WMSDs are the leading cause of disability in four of the six World Health
Organisation (WHO) regions, with substantial economic costs and a severe impact on
the quality of life. The careful monitoring of workers’ exposure to the factors which
may contribute to their development is of crucial importance in industrial environments,
aiming to lay the foundation of risk prevention and reduction programs. Nevertheless,
in the brand-new industrial scenario, featured by frequently varying workflows and
unstructured work stations, the traditional view of occupational ergonomics is rather
weak and barely applicable. In fact, the most widely used tools are still “pen-and-
paper” observational approaches, which need to be carried out in an off-line stage. On
the other hand, numerous techniques have been proposed by researchers to estimate
humans’ physical load, relying on direct measurements collected on the human body
through sensors devices. But complex laboratory-based approaches are hardly person-
alisable and impractical for industrial settings. Accordingly, the scientific objective of
this thesis is to fill in this gap, by introducing a novel framework for the evaluation
and improvement of human ergonomics, which implements online, personalisable, and
reconfigurable strategies to account for workers’ ergonomic demands.

The proposed framework entails three main components: the observation layer, the
warning layer, and the action layer.

Within the observation layer, data about the humans’ motion and the interaction
forces they exchange with the environment are measured with fit-for-industry sensor
devices, and a subject-specific model of the human body is identified. Their integration
enables to define and estimate a human ergonomics monitoring system. The latter is a
comprehensive set of indexes to assess humans’ physical exposure, accounting online
for multiple ergonomic risk factors to the development of WMSDs. Both kinematic
and dynamic aspects are addressed, taking into account the whole-body human. To val-
idate the proposed monitoring system, an experimental analysis is conducted on twelve
subjects considering three different tasks, which represents typical jobs in manufactur-
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ing industries and, additionally, are associated with different potential risk factors. As
a result, the ergonomic indexes that better explain the physical load required in each
analysed activity are established, confirmed by the outcome of a surface electromyog-
raphy (sEMG) analysis.
The proposed human ergonomics monitoring system will be addressed in Chapter 4.

Within the warning layer, the levels of the ergonomic risk associated with the es-
timated indexes are determined. Then, by taking advantage of intuitive and practical
feedback interfaces (i.e. visual and vibrotactile), this information is conveyed to the
workers to improve their risk-awareness. Both the proposed solutions prove their po-
tential in assisting humans in their occupational activities through corrective feedback
interfaces.
The two devised feedback strategies will be presented in Chapter 5.

Within the action layer, an optimisation procedure is adopted to estimate a more er-
gonomic human body configuration by minimising a selected ergonomic index accord-
ing to certain constraints. Subsequently, a worker can be facilitated to achieve such an
optimal condition by following the guidance of a collaborative robot, thus mitigating
the effect of the associated risk factor. The experimental investigations conducted to
evaluate the performance of this human-robot collaboration (HRC) framework provide
evidence of its capability to reduce the effort on human joints, due to the robot reactive
behaviour. Such findings are supported by the results of a sEMG analysis. The pro-
posed strategy shows promising capabilities to reduce humans’ exposure to the factors
that may determine WMSDs, ensuring workers’ well being while enforcing productiv-
ity. Therewith, its key strength in the applicability to realistic industrial environments
is exhibited.
The HRC framework developed will be presented in Chapter 6.
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CHAPTER1
Introduction

1.1 Work-related Musculoskeletal Disorders

Work-related musculoskeletal disorders (WMSDs) are impairments of the human loco-
motor system that are provoked or worsened primarily by work and by the effects of the
immediate environment in which work is carried out [1]. As listed in the International
Classification of Diseases [2], they comprise more than one hundred and fifty diag-
noses that affect the human body structures such as muscles, joints, tendons, ligaments,
nerves, bones, and the localised blood circulation system. The majority of WMSDs are
cumulative disorders, arising from repeated and prolonged exposure to high but also
low-intensity loads induced on the body. These entail lifelong conditions and are as-
sociated with ongoing pain and disability. However, WMSDs can also refer to acute
traumas, such as sprains, fractures and luxations that may occur during an accident and
are short-lived. Some WMSDs, such as carpal tunnel syndrome in the wrist, are charac-
terised by well-established signs and specific symptoms. Other ones are not rigorously
defined, because only pain or discomfort exists without evidence of clear symptoma-
tology. The body districts main affected by WMSDs are the back, neck, shoulders and
upper limbs, but also disorders in the lower limbs have been reported. Musculoskele-
tal conditions are typically characterised by pain (often persistent) and restrictions in
mobility, dexterity and functional ability. They reduce individual’s capacity to work
and participate in social roles with associated impacts on mental well-being, and, at a
broader level, they undermine the prosperity of communities.

Accurate data on the incidence and prevalence of WMSDs are difficult to obtain, and
comparing official statistics across countries is quite complex [3]. However, it is widely
recognised that musculoskeletal conditions affect people throughout the life-course in
all the regions of the world. As a matter of fact, WMSDs were the leading cause of
disability in four of the six World Health Organisation (WHO) regions in 2017 (ranked
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Chapter 1. Introduction

second in the East Mediterranean Region and third in the African Region) [4]. Accord-
ing to the Global Burden of Disease (GBD), WMSDs account for the 16% of all years
lived with disability and between 20% and 33% of people across the globe live with a
painful musculoskeletal condition [5]. A recent report from the United States of Amer-
ica suggests that one American adult in two suffers from musculoskeletal pathologies -
the same number of people that live with cardiovascular or chronic respiratory diseases
combined [6]. On the other hand, conclusions derived from the 4th European Work-
ing Conditions Survey [7] state that about 60 million workers reportedly suffer from
WMSDs in Europe. In particular, the 80% of the claimed occupational diseases in Italy
in 2018 have been located in the industrial sector, with a WMSDs prevalence of about
65% [8].

Table 1.1: Most cited physical risk factors associated with WMSDs [9–11].

Risk factor Occupational task associated Possible consequences

High-intensity
force exertion

Lifting, carrying, pushing,
pulling heavy objects

Acute overloading of the
musculoskeletal structures

Repetitive and
monotonous movements

Painting, carpentry,
shoveling, assembly

Accumulation of
local muscle fatigue

Recurrent or sustained
awkward postures

Working with
heavily bent or twisted

trunk, or hands and
arms above shoulders

Progressive overloading of
the musculoskeletal structures

Localised
external pressure

Pressing the body or
part of the body

(such as the hand)
against hard or sharp edges

Damages in superficial tissues
and loss of sensitivity

Vibrations
(both whole-body

and hand-arm)

Working with driller
or pneumatic hammer;

sitting on a tractor
or a forklift

Hand arm vibration:
loss of sensitivity

Whole-body vibration:
dorso-lumbar injuries

(e.g. hernia)

Temperature Any type of task
General worsening

of working conditions

WMSDs are a cause of concern not only because of the health effects on individ-
ual workers but also for the economic impact on businesses and the extremely heavy
charge to companies and healthcare systems. The true extent of WMSDs costs within
the workplace is difficult to assess and compare due to the different organisation of
insurance systems, the lack of standardised assessment criteria and the questionable
validity of reported data [12]. However, considering the results of multiple studies,
some insights can be provided. The estimated expenditure associated with WMSDs is
among the 0.5% and 2% of gross domestic product (GDP) across the European Union,
with costs attributed to lost productivity and absences around 240 billion Euros [13].
In the United States, the indirect and direct costs of WMSDs are equivalent to approxi-
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1.2. Human Ergonomics Monitoring and Assessment

mately 1.4% of GDP (213 billion Dollars) [14]. Instead, the direct and indirect costs of
WMSDs to the Canadian economy are estimated at 20 billion Dollars [15].

The causes of WMSDs are usually multifactorial and there are numerous well-
established work-related risk factors for the various types of musculoskeletal disor-
ders [16]. These include physical and biomechanical factors, organisational and psy-
chosocial factors, individual and personal factors that may act uniquely or in com-
bination. The ones of major interest in the scope of this thesis are the physical and
biomechanical risk factors. The most commonly cited ones are presented in Table 1.1
with some examples of the occupational tasks associated and the possible consequences
which may arise in their presence [9–11].

1.2 Human Ergonomics Monitoring and Assessment

The accurate monitoring of workers’ exposure to the factors which may contribute to
the development of WMSDs has been of crucial importance to both epidemiologists and
ergonomists conducting research investigations. In parallel, a growing interest in this
respect has been shown by ergonomics practitioners, occupational health physicians,
employers, employee representatives, and regulating authorities to lay the foundations
of risk prevention and reduction programs in the industrial environment. It is nowadays
acknowledged that such programs should be grounded upon ergonomics principles and
incorporate the holistic evaluation of all the possible aspects of the work system so that
optimal solutions can be achieved [17]. Among the issues which should be addressed,
task design, worker/equipment interfaces, individual demands (including motivation),
training procedures, work schedule/organization, and legal requirements are the most
frequently cited [18].

In this context, a significant number of methods and approaches have been devel-
oped in the last decade to assess the exposure to the risks associated with WMSDs,
or identifying potentially hazardous tasks or risk factors within a job [17, 19]. Focus-
ing on the industrial scenario, the great majority of tools currently adopted to evaluate
workers’ ergonomics relies on subjective judgements and systematic observations. The
first, in the forms of experts’ reports and self-questionnaires, have the benefit of being
straightforward to use, applicable to a broad range of occupational situations, and can
be conducted for extended periods and long duration. However, subjective ratings are
vulnerable to numerous influences and multiple studies have shown that they present
too low validity and reliability for a throughout ergonomics evaluation. On the other
hand, systematic observations are generally recorded and stored on Pro-forma sheets
which are filled in by specialists while assessing the workplace. Many of them have
been conceived on the basis of the two most widespread normative which address occu-
pational ergonomics, namely, the International Organization for Standardization (ISO)
11228 and the European Standards (EN) 1005. Alongside such normative, several tools
and procedures have been proposed by many researchers to address workers’ exposure
through an observational approach. The vast majority of them though, analyses a par-
ticular manual material activity or a single risk factor and such an high specificity ex-
tremely limits their applicability: National Institute for Occupational Safety and Health
(NIOSH) index - carrying and lifting; Snook and Ciriello tables - pushing and pulling;
occupational ripetitive actions (OCRA) index - low loads at high frequency; ovako
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working posture analysing system (OWAS), rapid upper limb assessment (RULA) &
rapid entire body assessment (REBA) indexes - posture and movements. In addition,
it has been demonstrated that the evaluation outcome for the same task using different
indexes may be divergent, and sometimes even contradictory due to a lack of preci-
sion and reliability. To provide a consistent and exhaustive unique measure of workers’
ergonomic risk, the ergonomic assessment worksheet (EAWS) method has been devel-
oped. The EAWS includes different sections focusing on all the essential aspects of
workplace evaluation whose corresponding results can be easily compared and inte-
grated. Nevertheless, both EAWS and the other indexes mentioned, must be employed
as an off-line procedure after collecting observations/recordings on the analysed activi-
ties, which is rather time-consuming and does not provide immediate results. Moreover,
the underlying analysis can be carried out only by trained experts. For the above rea-
sons, these so-called “pen-and-paper” techniques are suitable for relatively static and
steady jobs but may underestimate the ergonomic risk of more dynamically varying
and frequently changing activities, which are becoming increasingly widespread in the
current industrial scenario.

Seeking to overcome the drawbacks of the observation-based methods, some inves-
tigations have been conducted to combine them with measurements directly collected
on the human body by using suitable sensor systems. Algorithms for the automatic
completion of RULA, REBA, and to some extent EAWS have been proposed, which
mostly rely on different technologies that implement motion-capture systems. Such
frameworks represent a major improvement w.r.t. the traditional approach for workers’
ergonomics evaluation but, still, they largely focus on the kinematic aspects of the ac-
tivities while underestimating the influence of dynamic variables as interaction forces,
which are generally considered as constant throughout the task.

On the other hand, to take into account the contribution of the external interac-
tions, the moments and forces developed within the body due to their effect must be
addressed. To this purpose, direct measurements on the subjects are generally inte-
grated with more or fewer complex models of the human body. Several systems have
been developed that adopt detailed biomechanical models of the human musculoskele-
tal structure to estimate the human dynamic states such as joint reactions (forces and
torques) by using inverse dynamics and then optimisation techniques to compute the
muscle tensions. Some of these algorithms even gave rise to advanced simulation and
analysis software including OpenSim, AnyBody, and virtual interactive musculoskele-
tal system (VIMS), to cite a few. However, the sophisticated models underneath these
approaches require the identification of a huge number of musculoskeletal parameters.
Otherwise, they can be obtained by means of anthropometric standards and tables thus
the achieved dynamic states are not subject-specific. An alternative solution consists
in directly measuring muscle activity using EMG and exploiting empirical models to
convert such activity into muscle tensions. Nevertheless, even these models incorporate
numerous parameters and the use of EMG is accompanied by several issues: the correct
placement of the EMG sensors, an ever-present noise affecting the signal, the distur-
bances caused by adjacent muscles, the relative movement of the electrodes w.r.t. the
measured muscle, and finally, the limitation imposed by the number of available EMG
channels. Moreover, both the inverse dynamics and EMG-based techniques, again due
to their complexity, are quite computationally expensive and this may undermine the
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online applicability of most of them.
In general, the methods that integrate direct measurements collected through sensor

technologies with systematic observations or human body models allow an accurate and
throughout evaluation of human physical load but they happen to be more suitable for
analysis and investigations in laboratory settings than for workers’ exposure assessment
in a real industrial environment.

Despite that, the adoption of sensors to drive and facilitate the evaluation of human
ergonomics has proven to have a high potential and should not be disregarded. The
primary requirement in this respect is the choice of devices that pose no hindrance to the
humans’ movements, enabling them to perform their activities without any constraint
or discomfort. Hence, the deployment of wearable and lightweight sensor technologies
is of crucial importance. Several commercial solutions are available on the market
nowadays, which are easy to set up and calibrate, offer a comfortable fit and can be
used for prolonged periods (long battery life). Additionally, a number of them feature
online capabilities, showing promising possibilities to be employed by human operators
in a real workplace.

To sum up, the tools to assess ergonomic risk factors in the brand-new industrial
background, should provide quantitative evaluation and anticipation of the human psycho-
physical conditions and delivered effort across the working activity. This entails the
development of modular fit-for-workplaces sensor technologies and online monitoring
systems to account for human kinematic but also dynamic states. Such frameworks
should address the varying conditions and demands that feature occupational tasks and
adapt to the single worker’s specific requirements, filling in the gap between the sim-
plistic traditional ergonomics evaluation procedure, non-scalable and insufficient, and
the complex laboratory-based techniques, hardly customisable and impractical for in-
dustrial settings. In this respect, the development of online, personalisable and com-
prehensive strategies to account for human physical exposure to WMSDs would be
extremely beneficial.

1.3 Human-Robot Collaboration Frameworks for Lean Production and
Services Industry

The current industrial scenario is witness to the rise of an ever-growing number of small
and medium enterprises (SMEs). To meet the needs of the contemporary market that is
increasingly oriented toward mass customisation, SMEs must implement low-volume
and high-mix production processes, which thus require to frequently rearrange work-
stations and re-schedule the activities of the operators. Ensuring that workers follow
ergonomics best practices in such contexts is rather challenging and controversial in
terms of economic sustainability [20]. In such contexts, in fact, human operators have
to perform in, and interact with environments which vary continuously and dynami-
cally. Consequently, they may be exposed to greater hazards in terms of postures and
loads, increasing the already alarming statistics on WMSDs [13]. These latest working
conditions make the traditional view of occupational ergonomics, in both the design of
workplaces and definition of training procedure, less valid and barely applicable [21].
To address human factors in the current industrial scenario, the tools for the online mon-
itoring of workers’ ergonomics should be integrated with highly adaptive and easily
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re-configurable systems to take preventive action in the mitigation of the identified risk
factors, thus accounting for workers’ well-being while ensuring productivity. A possi-
ble solution to this issue is offered by the so-called human-robot collaboration (HRC)
frameworks, which combine humans’ expertise, adaptability and problem-solving ca-
pacities with robots precision, endurance and power [22, 23]. In the last decade, the
design and development of collaborative robots have become an important trend both
in academia and in the industry worldwide. HRC technologies perfectly fit the require-
ments of the so-called Industry 5.0, which will bring the spotlight back on humans,
recognising their predominance over robots in the accomplishment of elaborated and
skill-demanding occupational activities [24]. Future industries will need to adapt their
work schedule and processes so as to ensure stimulating and healthy working condi-
tions. In this perspective, the robot is no more the substituting agent but is a “smart
tool” which supports the workers in their duties, empowers their abilities and reduces
their physical effort [22]. In this respect, the development of strategies that guarantee
safety and effective effort sharing is one of the key factors to be considered [25]. Nev-
ertheless, current HRC systems address the problem of safety by avoiding accidental
collisions and impacts [26, 27] or by simply following dedicated guidelines published
in international standards such as ISO/TS 15066 to account for certain force, pressure
and velocity limits, given the hardware characteristics [28]. On the contrary, without
disregarding the safety aspect, the direct effective interaction of the robot with human
co-workers should be exploited to provide them with intelligent physical assistance.

1.4 Objectives and Contributions of the Thesis

In light of the above considerations, the foremost goal of this thesis is the development
of an online human ergonomics monitoring system, combined with feedback interfaces
and assistive robotic strategies to guide and help humans in performing tasks in the
most comfortable and ergonomic body configurations to reduce pain and consequent
injuries. The main scientific premises that drive the thesis to achieve this goal can be
summarised as follows

• P1. To guarantee a safe interaction and context-aware assistance, robots must
monitor online humans’ motion and the profile of the interaction forces they ex-
change with each other and the environment.

• P2. These data can be collected using proper sensor systems. Wearable and
lightweight technologies are preferable since they do not add constraints on hu-
man mobility and are better suited for industrial environments.

• P3. Integrating the gathered data with a human body model, it is possible to
estimate the physical exposure of the humans performing their working activities
in terms of ergonomic risk factors (e.g. joint overloading, fatigue, compressive
forces).

• P4. With the aim to mitigate human physical exposure and consequently reduce
the ergonomic risks, collaborative robots and feedback technologies can provide
support and assistance to the workers.
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1.5. Overview of the Framework and Thesis Structure

Accordingly, the main contributions of this thesis are:

• C1. A human ergonomics monitoring system to evaluate human kino-dynamic
states while categorizing related ergonomic risk factors (this contribution has led
to the scientific publications [29–32]).

• C2. Feedback interfaces to alert humans about their physical exposure (this con-
tribution has led to the scientific publications [33, 34]).

• C3. A HRC framework to make the robots guide the movements of the humans
toward more comfortable and ergonomic body configurations (this contribution
has led to the scientific publications [35–37]).

1.5 Overview of the Framework and Thesis Structure

The overview of the proposed framework is represented graphically in Figure 1.1.
Three layers can be distinguished which correspond to the three key components of
the procedure for assessing and improving human ergonomics: the observation layer,
the warning layer, and the action layer.
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Figure 1.1: Overview of the proposed framework including the three key components for assessing and
improving human ergonomics: the observation layer, the warning layer and the action layer. Each
layer will be addressed in a specific Chapter of the thesis as highlighted on the left of the scheme.

Within the observation layer, information about the humans’ motion and the forces
they exchange with the environment are measured with suitable sensor systems, and a
model of the human body is identified. Their integration allows to define and estimate
what we refer to as the “ergonomics monitoring system” (C1), namely a comprehen-
sive set of indexes to assess humans’ physical exposure during occupational activities
which account online for multiple ergonomic risk factors. Both kinematic and dynamic
aspects are tackled, taking into account the whole-body. The warning layer entails then
the definition of the levels of the ergonomic risk associated with the estimated indexes.
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Chapter 1. Introduction

Using intuitive and practical feedback interfaces (C2) (e.g. visual and vibrotactile) this
information is provided to the humans to alert them about their physical exposure. Fi-
nally, a posture optimisation procedure underlies the action layer, in which the robot
assistance helps humans to reach more ergonomic body configurations to avoid pain
and consequent injuries (C3).

Based on this multi-layer structure, this thesis is organised as follows.
In Chapter 2, the state-of-the-art in the monitoring and assessment of human ergonomics
in the workplace is presented. In Chapter 3, the sensor technologies to detect human
motion and interaction forces profiles are described and the human body model adopted
in this thesis is illustrated. Chapter 4 addresses the whole-body online ergonomics mon-
itoring system (observation layer). A detailed explanation of all the indexes defined to
assess ergonomic risk factors is provided and, additionally, their validation and compar-
ison with a standard ergonomic tool is outlined. In Chapter 5, two feedback solutions to
make humans aware of the level of risk associated with their occupational tasks are in-
troduced (warning layer). Chapter 6 tackles the robotic strategy to guide an individual
toward a more ergonomic behaviour determined by a posture optimisation procedure
(action layer) with some application scenarios. Finally, Chapter 7 summarises the key
points of this thesis highlighting its contribution to the field and discusses future per-
spectives.

8
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CHAPTER2
State-of-the-art in Human Ergonomics Monitoring

and Assessment

The dramatic health condition of workers employed in manual processing and assem-
bly activities nowadays requires a specific and tailored set of normative and indices to
minimise the risks of WMSDs [38]. In contrast with many occupational diseases that
have their origin in exposure to particular hazardous agents, most WMSDs are char-
acterised as multifactorial [39]. As already mentioned, findings of scientific research
have identified physical, psychosocial/organizational, and individual occupational risk
factors, which contribute to the development of WMSDs. Although the importance of
workplaces’ social and organisational drivers and individual characteristics should not
be underestimated, only physical exposure will be addressed here. A range of meth-
ods have been developed over the years for the assessment of physical hazards for
WMSDs [17] and the objective of this Chapter is to provide an overview of the most
widely known and used ones.

The Chapter is organised as follows. Section 2.1 presents the traditional tools used
in the industry to assess workers’ physical exposure, which mostly rely on observations
and subjective judgments. Section 2.2 outlines the more laboratory-based approach to
evaluate the physical load by using measurements directly collected on the human body.
Section 2.3 introduces some groundbreaking frameworks for WMSDs prevention that
attempt to address the needs of the brand-new industrial environment.

2.1 Current Tools in Industry - Subjective and Observational Methods

In one of the earliest studies on the assessment of workload [40], the authors propose
that mechanical exposure during physical work should be described by three main di-
mensions: level/intensity of the force, repetitiveness/frequency of the shifts between

9



i
i

“output” — 2020/11/17 — 15:07 — page 10 — #20 i
i

i
i

i
i

Chapter 2. State-of-the-art in Human Ergonomics Monitoring and Assessment

force levels, and duration/time the physical activity is performed. Such dimensions
have thereafter established the guidelines for assessing workers’ physical effort. How-
ever, data should also be recorded for the other important exposure factors, such as
postural variation, rate of movement, and vibrations. Adopting the general model pro-
posed in [41], which describes how the working situation induces responses and health
effects in the workers, we can distinguish two types of physical exposure: external
and internal exposure. The work environment and the actual working method, i.e., the
movements and exerted forces that workers with their anthropometrical characteristics
exploit to perform a certain activity, are the external exposure. Internal exposure in-
stead refers to the corresponding moments and forces within the human body. On the
other hand, earlier reports [39, 40] conventionally categorise the methods to evaluate
physical exposure in the following three groups (ordered according to some peculiar
features, as represented in Figure 2.1):

• subjective judgements: reports from experts or self questionnaires from workers;

• systematic observations: collected on-site or afterward from video recordings;

• direct measurements: performed at work or during laboratory simulations.

Figure 2.1: Overview of trade-offs when selecting a method for the assessment of physical exposure.

Subjective judgements and systematic observations are determined to tackle ex-
ternal exposure. The first, in form of experts’ reports and self-questionnaire, give only
limited insight into the occurrence of tasks and activities. Further information can be
obtained from observations, directly on the workplace or at a later stage, analysing
video recordings of workers’ activities. The vast majority of tools employed in the
current industrial scenario to assess workers’ ergonomics relies on such two categories
that will be covered in the present Section 2.1. A more detailed description will be
provided and the methods that they gather will be presented building on some compre-
hensive reviews [17, 19, 42, 43], in which ergonomics tools were listed, classified, and
compared.

On the other hand, direct measurements can be employed to estimate both external
and internal exposure. In the first case, using mainly motion-capture systems and force
sensors, it is possible to obtain large quantities of highly accurate data on a range of ex-
posure variables, which are often combined with observational methods for best results.
In the second case, to address internal exposure, direct measurements are generally in-
tegrated with more or fewer complex models of the human body. The corresponding
category will be addressed in Section 2.2.

10
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2.1. Current Tools in Industry - Subjective and Observational Methods

Additionally, at the end of the present Section (2.1), a paragraph is dedicated to
introducing some examples of commercial software and platforms for the workplace
assessment. These platforms basically apply some of the normative and methods pre-
sented in this Chapter and provide industries with tools for assessing the ergonomics of
their workers as well as other aspects, such as productivity, workplace set-up, and time
management.

2.1.1 Subjective Judgements

To assess physical workload, body discomfort, or job stress, it is possible to use self-
report methods and collect data directly from the workers, investigating both physical
and psychosocial factors. These methods take the form of body map [44] (see Figure
2.2a), rating scales [45,46] (see Figure 2.2b), questionnaires or interviews [47–50] and
checklists [51–54].

(a)

(b)

Figure 2.2: (a) Corlett’s body map for body map discomfort score [44]. (b) the original Borg CR10
Scale® [46] used to measure the perception of intensity of any experience.

Almost all the strategies for subjective judgements developed up to now are built
on the basis of the above-mentioned earliest attempts. Traditionally, data were col-
lected using written means but more recent innovations include self-evaluations through
video film recordings or the use of web-based questionnaires. These tools are impor-
tant because ergonomists need to concentrate on the feeling of the workers. Some
authors even state that “If the person tells you that he/she is loaded and effortful, then
he/she is loaded and effortful whatever the behavioural and performance measures may
show” [55]. These methods, which are based on subjective judgements, have the benefit
of being straightforward to use, applicable to a wide range of work situations, and can
be performed for extended periods and long duration. In addition, they are appropri-
ate for surveying great numbers of subjects at comparatively low cost. As a result, the
data sets obtained (with multiple subjects and extended recording-time) are rather large,
ensuring that the information collected is representative of the occupational groups be-
ing investigated. Nevertheless, subjective ratings are vulnerable to many influences
and several studies have shown that they have too low validity [56] and reliability [50]
in relation to the needs for ergonomic interventions. Moreover, difficulties with self-
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Chapter 2. State-of-the-art in Human Ergonomics Monitoring and Assessment

reports may arise from varying levels of worker literacy, comprehension, or question
interpretation.

2.1.2 Systematic Observations

To systematically record workplace exposure to be assessed by an observer and stored
on Pro-forma sheets, several methods have been developed. Most of them have been
conceived on the basis of the two most relevant and widespread normative which tackle
the ergonomic assessment issue, namely the ISO 11228 and the EN 1005. These norms
aim to establish ergonomic recommendations to ensure operators’ health. They include
different sections, which focus on different aspects of the analysis of manual handling
activities. The first section of ISO 11228 (ISO 11228-1) and the second section of
EN 1005 (EN 1005-2) attempt to define specific limits for repetitive and non-repetitive
manual lifting and carrying of objects whose weight is 3 kg or more, taking into account
multiple aspects of the performed task: intensity, frequency, and duration. ISO 11228-2
and EN 1005-3 analyse the impact of pushing and pulling actions on the whole muscu-
loskeletal system aiming to identify potential risks in relation to the weight of the object
and the type of tools used. ISO 11228-3 and EN 1005-5 assess the tasks involving low
loads that are handled at high frequency. Finally, ISO 11226, which is the extension
of ISO 11228, and EN 1005-4 present the guidelines adopted to assess workers’ body
postures during a manufacturing or an assembly activity.

As stated above, in parallel with these standards, in the last decades many researchers
proposed useful tools and approaches to assess the ergonomics of working conditions.
The postures and movements of the worker can be carefully evaluated by a bunch of
indicators, which cover the whole body both considering the upper and lower limbs as
well as the spine, neck and head. Posturegram [57], Posture targeting [58], OWAS [59],
RULA [60] (see Figure 2.3a), hand-arm-movement analysis (HAMA) [61], PLIBEL (a
method assigned for the identification of ergonomics hazards) [62], quick exposure
check (QEC) [63] (see Figure 2.3b and 2.3c) and REBA [64] are pen-and-paper1 based
observational techniques that are mainly posture-based. They are relatively inexpensive
to carry out, and the postural assessments can be made in several different workplaces
without disrupting the workers. The main issue with these techniques is that the in-
termittent recording procedures lack precision and thus reliability. Besides, no general
guidelines are available to control and evaluate the trade-off between repeated and pro-
longed exposure and the criteria for determining the optimum number of observations
are still unclear. For these reasons, the application of pen-and-paper based observa-
tional methods has been restricted to relatively static jobs, where body postures are
held for long periods, or the body movement follows a simple pattern that is repeated
during work.

Even if work posture is found to be an important factor associated with WMSDs in
some body regions, other workplace factors such as load/force, repetition, duration of
movement, vibration, and their interaction/combination have to be considered for the
physical exposure assessment. Similar to these techniques for posture analysis, there
is muscle fatigue analysis (MFA) [65]. In this approach, each body part is scaled into
four effort levels according to its working position, but even to the duration of the ef-

1These methods are called “pen-and-paper” since they were applied by using written means at the time they were created.
However, at present, the electronic version of the worksheets are available for practitioners of ergonomics.
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2.1. Current Tools in Industry - Subjective and Observational Methods

(a) (b) (c)

Figure 2.3: (a) rapid upper limb assessment (RULA) [60] worksheet and quick exposure check (QEC)
[63] assessment form (b) and scoring form (c), respectively.

fort and the frequency. Considering lifting and carrying loads, NIOSH equations [66]
are adopted to define the suggested load weight limit to be lifted by human opera-
tors considering the worker gender, the forces exerted on the spine structure and the
calories consumed during the effort. Mechanical exposure can then be evaluated with
respect to intensity (or magnitude), repetitiveness and duration even with the Strain
Index, the american conference of governmental industrial hygienists - threshold limit
values (ACGIH TLV) [67], LUBA (an assessment technique for postural loading on
the upper body based on joint motion discomfort and maximum holding time) [68] and
manual handling assessment charts (MAC) [69]. Snook and Ciriello [70] proposed a
detailed procedure to assess the exerted force to perform pushing and pulling activities
taking into account the weight of the handled object, the frequency, and duration of the
action as well as the actual distance of pushing and pulling. Finally, there are methods
that focus on the evaluation of actions performed at high frequency with low loads and
consider even the recover time like OCRA, a concise index for the assessment of expo-
sure to repetitive movements of the upper limb [71]. Although these indices are more
comprehensive and have been widely adopted both by practitioners and researchers,
they present several limitations. First, it has been demonstrated that the evaluation
results for the same task using different indices are divergent, and sometimes even con-
tradictory because of a lack of precision and reliability. Second, subjective variability
can influence the evaluation results, even when using the same observational method
for the same task. Finally, they do not provide a consistent and overall measure of
the ergonomic risk. In fact, every index focuses on a specific manual material activity,
despite an operator generally performs multiple activity types during a shift or a cycle
time. In view of this, the EAWS method [72] has been developed to provide a unique
and exhaustive ergonomic analysis. The EAWS is made of four different sections (see
Figure 2.4) that focus on each specific aspect of manual material activities. Specifically,
the sections cover: postures and movements, action forces, manual material handling,
and upper limb, respectively. A great strength of this approach is the comparability
of the results of each section and the possibility to integrate their outcomes. This en-
ables a comprehensive risk evaluation that includes every biomechanical risk to which
an operator may be exposed during a working task. In fact, EAWS provides one score
for each section and also a final score can be computed, which summarises the analy-
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Chapter 2. State-of-the-art in Human Ergonomics Monitoring and Assessment

sis outcomes. Such scores are all shown in a traffic light scheme (green, yellow, red)
according to Machinery Directive 2006/42/EC (EN 614), making their interpretation
straightforward and easy to use.

Figure 2.4: EAWS sections: section 0 - header/overall evaluation/extra points, section 1 - posture and
movements, section 2 and 3 - action forces/manual material handling, section 4 - upper limbs.

Nevertheless, both EAWS and the other indexes mentioned, must be employed as an
off-line procedure after collecting observations/recordings on the analysed activities (or
when performing simulations of the workplace), which is rather time-consuming and
does not provide immediate results. Furthermore, the dynamic aspects of the tasks are
considered to a limited extent (e.g., interaction forces are considered constant through-
out the task). Finally, all the required analyses can be carried out only by trained ex-
perts.

2.1.3 Commercial Software for Ergonomics Assessment

There is a significant number of software and platforms that provide the industries with
tools for assessing the ergonomics of their workers as well as other aspects, namely,
productivity, workplace set-up, and time management. Two categories of software can
be distinguished:

1. Software for simulations: editor for manual work activities (EMA), digital hu-
man modelling (DHM) in production ergonomics (Human builder, Jack, rech-
nergestütztes anthropmet-risches mathematisches system zur insassensimulation
(RAMSIS) which translates as computer-aided anthropometrical mathematical
system for occupant simulation);

2. Software for direct assessment of real workplace: ErgoPlus, HumanTech, Ki-
netica Labs, Cority, ErgoWeb, ScaleFit;

3. Software with both possibilities: MTM-Ergonomics, NextGen Ergonomics.

On the other hand, the above-mentioned software can be distinguished on the basis
of their capability to address kinetic and dynamic aspects of workers’ activities and to
be applied online in the workplace or as an off-line procedure. The categorisation made
accordingly is represented in Figure 2.5.
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2.1. Current Tools in Industry - Subjective and Observational Methods

Figure 2.5: Overview of the available commercial software for ergonomics assessment categorised on
the basis of their capabilities.

Ergoplus, ErgoWeb, HumanBuilder and Cority provide ergonomics evaluations with
traditional tools (such as REBA and RULA), which are based on human kinemat-
ics only. EMA, RAMSIS, Jack, and MTM-Ergonomics offer the possibility to take
into account in the evaluation procedure weights and forces applied during the work-
ers’ activities (thus also dynamic aspects). However, they all need the user to specify
such weights/forces manually, which are then considered to be constant throughout the
whole task. Finally, NextGen Ergonomics includes measurements with EMG sensors
and force sensors, thus, it considers the actual interaction forces exerted during a task.
Nevertheless, all these software conduct ergonomics analysis in an off-line phase on
the basis of recorded data or by means of their companies’ support team observations.
Only Kinetica Labs and HumanTech present a more straightforward approach: they
allow the user to collect data with the video camera of any mobile device and they
perform ergonomics evaluations in few minutes thanks to a sensor-less video-based
motion-capture system. But this is not still an online evaluation and the estimated kine-
matic and kinematic variables are not accurate.

Figure 2.6: Snapshot of Industrial Athlete software, provided by ScaleFit.
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Chapter 2. State-of-the-art in Human Ergonomics Monitoring and Assessment

Only the recently-introduced software Industrial Athlete, provided by ScaleFit (see
Figure 2.6), offers an online workplace analysis on-site conducting ergonomic assess-
ments according to international standards and considering also the monitoring of loads
and forces involved in the working tasks. Notwithstanding this, there is a lack of tools
that offer an online ergonomics evaluation considering even interaction forces exerted
during occupational activities. However, several researches are currently investigating
in this direction.

2.2 Laboratory-based Approaches - using Direct Measurements

With the objective to facilitate the assessment of exposure variables in the workplace,
in the last decade, an extensive number of researchers have focused their effort in de-
veloping techniques relying on sensor systems that directly collect measurements on
the human body. As mentioned at the beginning of Section 2.1, direct measurements
can be employed to both tackle external and internal physical exposure. In this Section,
some cases in point of research studies conducted to this end will be presented.

2.2.1 Direct Measurement for External Exposure

To monitor humans’ physical external exposure, as defined in Section 2.1, several in-
vestigations have been carried out in which mainly motion-capture data are successfully
combined with observational methods (described in Section 2.1).

In [73], the authors first employ a magnetic motion-capture technology to evaluate
by means of the RULA method the activities that an operator perform in a virtual envi-
ronment. A similar investigation is conducted in [74] but replacing the magnetic tech-
nology with a marker-based optical system. By using instead inertial sensors, a biome-
chanical model of the upper body is developed in [75] (see Figure 2.7a), to enable the
real-time ergonomic assessment of manual tasks in an industrial environment. A major

(a) (b)

Figure 2.7: (a) On-body sensor network employed in [75] composed of inertial sensors coupled with
goniometers (left) and underlying biomechanical model of the upper body (right) with rotation axes
for local body frames, and degrees of freedom (DoFs) of each joint. (b) Screenshots of the graphical
interface developed in [76] to alert the user about the level of risk of the body posture according to
REBA scoring.

improvement in this direction is constituted by the introduction of optical marker-less
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2.2. Laboratory-based Approaches - using Direct Measurements

motion-capture systems, due to their reduce cost, ease of use and the absence of cum-
bersome suits and markers. A range camera is employed in [77] for human posture
analysis and ergonomic categorisation. The low-cost and portable Kinect camera was
used in [78] for assessing assembly operations and in [79] for lifting/lowering tasks.
This last study provides also the validation of a skeleton data correction, comparing the
postures detected by Kinect with ground-truth data. All the above-mentioned studies
implement ergonomic assessment using RULA but alternative tools have been proposed
in combination with direct measurements. In [76] the REBA worksheet is filled in au-
tomatically and online by taking advantage of an optical marker-based motion-capture.
A graphical interface was also developed here (see figure 2.7b) to inform the user about
the ergonomics evaluation results. The REBA is also considered in [80], to determine
the optimal posture of the human during a human-robot collaborative task.

Alternatively, the EAWS method is adopted in [38] to provide the automatic assess-
ment of the ergonomic risk in manual manufacturing and assembly activities employ-
ing a network of marker-less depth cameras. The automatic completion of the EAWS
is also the objective of the authors in [81], which develop an activity recognition algo-
rithm based on supervised learning.

All the frameworks just introduced represent a significant improvement with re-
spect to the traditional approach for workers’ ergonomics evaluation since they offer
the possibility to automatize and perform online the procedure described in Section
2.1. Nevertheless, such methodologies are rather detailed and complex thus their com-
puterised version may be susceptible to errors. Furthermore, as previously said, they
largely focus on the kinematic aspects of the tasks while underestimating the influence
of dynamic variables as interaction forces, which are generally considered as constant
throughout the task.

2.2.2 Direct Measurement for Internal Exposure

To address humans’ physical internal exposure, namely, the moments and forces de-
veloped within the body while performing a task, direct measurements are generally
integrated with more or fewer complex models of the human body.

Several algorithms have been proposed for estimating muscle tensions and joint
loads using detailed models of the musculoskeletal system. One of the most well-
know is the algorithm underlying the open-source software “OpenSim” [82] (see Figure
2.8a). This platform allows to create dynamic simulations of movement that integrates
off-the-shelf models describing the anatomy and physiology of the elements of the neu-
romusculoskeletal system and the mechanics of multi-joint movement. Consequently, it
provides the estimation of meaningful variables such as muscle and joint forces, which
are difficult to be measured experimentally. Similar capabilities are offered by the sim-
ulation software “Anybody” [83], which is capable of analysing the musculoskeletal
architecture of humans or other animals as rigid-body systems. Hence, standard meth-
ods of multi-body dynamics (i.e. inverse kinematics and inverse dynamics) can be
applied but integrating in the model reasonable representation of the muscle geome-
try and the recruitment pattern of the muscles. Both OpenSim and AnyBody can be
fed with recordings of the human movements as well as contact forces which are col-
lected while performing activities that require to be analysed. An analogous package is
VIMS [84].
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(a)
(b)

Figure 2.8: (a) Snapshot of the open-source software OpenSim [82] (b) Visual feedback presented to the
user during real-time estimation and visualization of muscle tensions in [85].

Besides the massive studies behind the development of these platforms, there are
also some minor works in which muscle models are proposed to account for physical
exposure. In [86], an approach to compute musculoskeletal loading is presented to
predict both synergistic and antagonistic muscle activity. In [87], three different mus-
culotendon models are introduced and compared to simulate musculotendon dynamics.
Muscle energy consumption is instead tackled in [88] using a phenomenological model
in conjunction with a simple Hill-type [89] model for muscle contraction. In [90], al-
gorithms developed in robotics for multi-body systems are exploited to address human
somatosensory information using a motion-capture system. Finally, a model of the
lower limb is developed in [91] to study the influence of bi-articular muscles on the
force distribution and joint loads during walking, using optoelectronic motion tracking.

All the above-mentioned platforms and methodologies account for joint reactions
(forces and torques) by using inverse dynamics and then optimisation techniques to
compute the muscle tensions. Nevertheless, due to the actuation redundancy (the num-
ber of muscles is greater than the number of degrees of freedom (DoFs) of the system)
a desired motion in terms of joint torques can be achieved by an infinite number of
activation patterns of the muscles. It is therefore impossible to obtain precise muscle
tension information only from motion data. Another drawback is that the complex mus-
culoskeletel models underlying require the identification of a large number of param-
eters [92]. Alternatively, they can be obtained by means of anthropometric standards
and tables [93, 94] thus they are not subject-specific.

An alternative solution is to directly measure muscle activation using EMG and ex-
ploit empirical models [89, 95] to convert such activation into muscle tensions. Some
emblematic examples follows.
The long-term monitoring of low back physical exposure and cumulative compression
by using an EMG-based technique is tackled in [96]. In [97], EMG measured in the
back and shoulders is evaluated as an indicator of peak and cumulative workload. In
addition, its relationship with injury indicators and other workload measurements is
explored. In [98], muscle force and joint load are estimated specifically for the knee
using a EMG-driven approach while the lumbar spine is addressed in [99]. sEMG
is employed as stand alone acquisition tool for ergonomic purposes in [100]. Finally,
muscle tension estimation by means of optical motion-capture and EMG measurements
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is enriched with a visual feedback interface (see Figure 2.8b) in [85], where a muscu-
loskeletal human model overlays the images recorded from a standard video camera.

Nevertheless, even EMG-based approaches incorporate numerous parameters and
the use of EMG presents several drawbacks. Firstly, correct placement of the EMG
sensors is quite difficult. Secondly, EMG signals, especially those obtained by non-
invasive sEMG measurements, are inevitably affected by various noise signals or arti-
facts [101] and often mixed up with disturbances from other muscles. Thirdly, the rela-
tive movement of the electrodes with respect to the measured muscle during the sEMG
measurements in dynamic conditions makes their estimates questionable and may lead
to incorrect conclusions [102]. In addition, EMG information are strictly limited by
the number of available EMG channels and finally, many EMG-based approaches are
conceived for specific body parts.

Furthermore, again due to their complexity, both inverse dynamics and EMG-based
techniques are rather computationally expensive and this affects the online capabilities
of most of them.

To sum up Section 2.2, several sensor technologies can be used to collect direct
measurements on the human body to be integrated with observational methods or hu-
man body models aiming to assess physical exposure. However, when considering this
approach some disadvantages must be taken into account. Firstly, the attachment of
sensors directly to the subject may result in discomfort and possibly lead to changes or
even limitations in workers’ behaviour. Secondly, the high data generation capacity of
many of these systems may be considered impractical by several practitioners due to
the time required for the analysis and interpretation of the data. In addition, direct mea-
surement systems require a considerable initial investment to purchase the equipment,
as well as the resources necessary to cover the costs of maintenance and employment.
Finally, highly trained and skilled technical staff is needed to ensure their effective
operation. In conclusion, they look more suitable for analysis and investigations in
laboratory settings than for workers’ activities assessment in an industrial environment.

Despite that, the adoption of sensors to drive and facilitate the evaluation of human
ergonomics has proven to have a high potential and should not be disregarded.

2.3 The need for Online, Personalisable, and Flexible Technologies

Today’s manufacturing industries must meet the demands of the contemporary mar-
ket, and fulfill its customisation needs with high-mix low-volume production processes
[103]. Subsequently, industrial procedures must adapt to constantly varying workflows,
which require the workers to frequently change tasks and switch between different
work stations. In such dynamically changing environments, the workers may be ex-
posed to greater ergonomic risks in terms of body postures and load, threatening to
raise the already alarming incidence of WMSDs [13]. In such a context, the traditional
view of occupational ergonomics to ensure workers’ well-being is less valid and hardly
applicable [21]. As previously discussed, the vast majority of tools employed in the
current industrial scenario to account for workers’ exposure relies on pen-and-paper
based techniques. Besides their electronic versions are available, these methods require
complex and time-consuming procedures, which can be implemented only off-line at
a later stage. Moreover, only trained specialists can carry out the analysis. Different
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strategies have been proposed by the research community, addressing the automatic
completion of a portion of these worksheets (i.e. RULA, REBA and EAWS). However,
to our knowledge, these solutions are still confined to laboratory settings. Furthermore,
it should be reminded that, in general, the dynamic aspects of workers’ task execution
(e.g. complex physical interactions) are underestimated by such observational tech-
niques. With the view to overcoming this limitation, the integration of measurements
collected directly on the workers with human body models represents a promising per-
spective. However, finding the best trade-off in terms of the human model complexity
as well as the suitable number, cost, and invasiveness of the sensor systems is a chal-
lenging task. Moreover, anatomic model-based approaches usually make use of human
anthropometric standards and tables thus they are not subject-specific and are charac-
terized by a high level of uncertainty.

In the brand-new industrial background, the tools to evaluate human physical ex-
posure should entail modular fit-for-workplaces sensor technologies and online human
kino-dynamic states monitoring systems. Such frameworks should address the vary-
ing activities involved in the working process and adapt to an individual’s specific de-
mands, filling in the gap between the simplistic traditional ergonomics monitoring,
non-scalable and insufficient, and the complex laboratory-based approaches, hardly
customisable and impractical for industrial settings. For these reasons, many researches
have recently focused their effort on developing online, personalisable and comprehen-
sive strategies to account for human physical ergonomic risk factors. Some promising
examples of these innovative approaches are introduced hereafter.

(a)
(b)

Figure 2.9: (a) Latent space representation for a 2D task (a plane) with eleven data point inputs shown
as red crosses, these are the simulated values from a musculoskeletal model with Anybody [83]. On
the right, a visualization of the posture associated with the latent point, shown as a black dot on the
left figure, and the corresponding max joint moment on the color bar as a line. [104] (b) Ergonomic
indicators for evaluating biomechanical demands in manual activities in [105] (find here the details
of the equations).

In [104], the authors propose the optimisation of “contextual ergonomics models”
to successfully reduce the muscle activation of subjects performing a drilling task. The
presented models are gaussian process latent variable models, which are trained off-line
with detailed musculoskeletal simulations but can be employed in a low-dimensional
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latent space (see Figure 2.9a), ensuring online capabilities. Multiple ergonomic in-
dicators are defined in [105] (see Figure 2.9b), which are capable of quantifying ex-
haustively and concisely the physical demands endured by a worker when executing
various manual activities. The objective here is to orient the design of a collabora-
tive robot but the proposed set of variables, due to their ease of computation, may be
employed to implement an online ergonomics assessment. These approaches tackle
exhaustively both the kinematic and dynamic aspects of the workers’ activities and
can operate online with practical sensor systems but still lack a fundamental aspect,
which is the ability to include subject-specific features. In fact, the development of
personalisable human models has been the topic of recent European projects such as
H2020 socio-physical interaction skills for cooperative human-robot systems in agile
production (SOPHIA) [106] and the European Research Council (ERC) project Ergo-
Lean [107], where this thesis have directly contributed to. These two projects aim to
create new human-state monitoring frameworks (e.g., see [31,32,108]) that are capable
of estimating human kino-dynamic states during work. In another European project,
advancing anticipatory behaviors in dyadic human-robot collaboration (AnDy) [109],
a novel sensor suit called AnDySuit, has been developed, capable of measuring online
human whole-body dynamics. The big data sets collected with the AnDySuit can be
used to generate ergonomic and anticipatory models which are then employed online by
collaborative robots to adapt their control, ensuring a more efficient and ergonomic in-
teraction. In particular, the control framework introduced in [110], proposed a method
to link ergonomics targets such as muscular effort and body posture to human kinematic
and dynamic quantities such as joint torque and joint angles/velocities. The approach of
employing the principles of humanoid robotics to model human kinematics, dynamics
and effort shows promising opportunities for humans’ physical exposure assessment.
In fact, the computational cost would be significantly lower than the one characteris-
ing detailed musculoskeletal models, ensuring online2 capabilities. Furthermore, the
sensor systems required to address the human kino-dynamic states in this view can be
limited to light-weight and wearable devices for motion-capture and force detection
since there is no need for high accuracy. Impractical acquisitions using EMG sensors
can be avoided as well.

With the purpose to pursue this idea, a novel technique for the online estimation
of the joint torque variations in humans is introduced in [108] (which has been the
theoretical departure point of this thesis). The method is based on the deviations of
the centre of pressure (CoP) and ground reaction force (GRF) in the presence of an
external load applied on the human body and provides an intuitive and easy to use index
for human physical load while performing quasi-static heavy manipulation tasks. The
statically equivalent serial chain (SESC) technique is employed here to obtain the CoP
estimation, which provides the identification of subject-specific body segment inertial
parameters (BSIPs), tailoring the estimated quantities and thus accounting for workers’
individual features. In a later work [31], the cumulative effect of joints overloading is
addressed aiming at the evaluation of joint fatigue during repetitive activities in which,
instead, light payloads are involved. Since only the effect of the external load has been
tackled so far, this thesis, above all, will focus on integrating the above-mentioned

2It is worth to remind here that the term “online” is different from “real-time”. The latter enforces limits on time latency that
can be ensured only following specific technological requirements while the first simply means that responses are given in a timely
manner, without timely relationship enforcing them.

21



i
i

“output” — 2020/11/17 — 15:07 — page 22 — #32 i
i

i
i

i
i

Chapter 2. State-of-the-art in Human Ergonomics Monitoring and Assessment

estimators in a comprehensive set of indexes which takes into account the multiple
ergonomic risk factors to the development of WMSDs.
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CHAPTER3
Material and Methods

In this Chapter, the materials and methods adopted in this thesis are presented. Section
3.1 addresses the sensor technologies selected to collect data about human motion and
the interaction forces he/she exchanges with the environment. In Section 3.2, the hu-
man modeling bases are addressed. It is important to underline here that all the models
and methods employed in this thesis have been conceived in view of their application
and usage in an industrial environment. Hence, they are aimed at a simplified - not
simplistic - approach that focuses on fast identifiability of the models and online ca-
pabilities of the methods, respectively. The solutions proposed here were built starting
from the development of the overloading joint torque index proposed in [108], which
will be discussed in detail in Section 4.2. Its computation required a model of the
human whole-body CoP and the knowledge of the contact point of the external load ap-
plied on the human body, which causes the joint overburden. Based on that, Section 3.2
is organised as follows. First, the simplified model used to represent the human biome-
chanical structure as a multi-body system is described. Next, the SESC technique [111]
to obtain a reduced-complexity model of the whole-body CoP is introduced. In addi-
tion, two approaches to extend the human model are proposed: an online method to
detect and locate the application point of the external load and a learning technique to
estimate the human feet vertical ground reaction force (vGRF) and CoP to encompass
the double-support. For the latter two approaches, also an experimental validation is
provided. 1

1Parts of this Chapter have been published in [29, 32]
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Chapter 3. Material and Methods

3.1 Human Tracking Tools: Wearable and Lightweight Sensor Systems

To monitor workers’ physical exposure during their occupational activities, the use of
wearable and lightweight sensor technologies is of crucial importance. Wearable sys-
tems, in fact, pose no hindrance to the humans’ movements, allowing them to carry out
their tasks without any constraints or discomfort. Furthermore, unlike laboratory-based
equipment that demands a dedicated controlled area, wearable sensors can be used in
most environments. They are easily transportable, usually not requiring any stationary
units (e.g. transmitter, receiver, or cameras) [112], and they can be used for prolonged
periods of time (long battery life). Additionally, they are, in general, easy to set up, cal-
ibrate and use, and do not require highly skilled operators. Finally, it is worthwhile to
mention within the aim of this thesis that a number of them feature online capabilities.

The sensor systems adopted for the purposes of this thesis are:

• An inertial-based motion-capture suit, the Xsens MVN Biomech suit, commer-
cialised by Xsens Technologies B.V. (headquarters: Enschede, Netherlands);

• a Kistler force plate, commercialised by Kistler Holding AG (headquarters: Win-
terthur, Switzerland);

• the OpenGo sensor insoles, commercialised by Moticon GmbH (headquarters:
Munich, Germany);

While the Xsens suit and the Moticon insoles have been selected in view of the above
considerations, the Kistler force plate is employed for validation purposes (a deeper
discussion will follow in this Section). A brief description of these devices, illustrating
their main features and highlighting their merits, follows in this Section.

3.1.1 Motion-capture Suit

The measurement of the human whole-body motion is achieved using the Xsens MVN
Biomech suit [113]. This motion-capture system is based on inertial sensors located
on the human body, which measure the acceleration, velocity, and magnetic field of
the body segments on three orthogonal axes. These data are then processed to obtain a
reasonable representation of the human movements and postures [114].

Extensive literature exists that reviews and compares different motion-capture tech-
nologies [115, 116], even specifically in the field of robotics [117] and occupational
ergonomics [118]. The most common alternative to inertial devices for the monitoring
of human motion is offered by the optical motion-capture systems. This technology
utilises data that is captured from image sensors to triangulate the three-dimensional
(3D) position of a subject between two or more cameras, calibrated to provide over-
lapping projections. Marker-based technologies (e.g. Optitrack™by NaturalPoint Inc.,
Vicon by Vicon Motion Systems Ltd) exploit active or passive markers displaced in
specific parts of the human body. They can reach a high level of accuracy but their set-
up is rather complex and time-consuming. In addition, the markers must be mounted
on cumbersome suits or directly on the body thus becoming uncomfortable and even
constrictive for the user. This major drawback is overcome by the latest advance in
motion-capture, namely marker-less optical systems (using e.g. Kinect by Microsoft,
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RealSense™by Intel®, Roboception by Roboception GmbH), which frees the operator
to perform his activities without wearing any suit nor having sensors located on the
body. Nevertheless, this technology relies on the images collected by depth cameras
that are processed by computer vision algorithms which, despite becoming increasingly
sophisticated over time, still present a limited accuracy. Moreover, optical systems in
general suffer from visibility issues due to the occlusions and the limited range of cam-
eras. As a result, inertial motion-capture seems to be the best solution to be adopted in
real industrial environments. Specifically, the Xsens suit can be employed in a broad
variety of scenarios, just ensuring to remain within the range of the wireless network.
The users are not forced to limit their movements to a specific measurement volume
and it is not necessary to place or install any fixed infrastructure. The set-up of the
system, including calibration, is in fact very fast (less than 10 minutes) and rather easy
to deploy. However, a disadvantage of this technology is that it does not ensure an
accurate absolute position of the limbs due to a positional drift which compounds over
the recording time.

In addition, it is worth mentioning one of the main contemporary issues in 3D mo-
tion analysis, which affects all the technologies just described, now commonly referred
to as the soft tissue artifacts (STA). The marker/sensors whose recorded trajectories are
used to reconstruct the human motion are placed directly on the skin or on a dedicated
suit. Due to the interposed soft tissues or the movement of the suit w.r.t. the body,
they are not rigidly fixed to the underlying bones. Hence, the local mobility of these
markers/sensors leads to errors that, in some cases, are of the same order of magnitude
as the motions at the joints being investigated [119].

(1)

(2)

(3)

(4) (5)
(6)

(8)(10)

(7) (9) (11)

(12)
(13)

(14)

(15)

(16)

(17)

Figure 3.1: Wearable lycra suit provided by Xsens embedding seventeen IMUs with their relative labels
[120]. Also mounting straps are available as the mounting system to support the sensors, keeping
the same locations on the body. In this thesis, this second option has been mainly used for greater
practicality.
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Chapter 3. Material and Methods

Going into details, the MVN Biomech suit, depicted in Figure 3.1, is provided with
seventeen miniature inertial measurement units (IMUs) called MTx/MTw. IMUs inte-
grates rate gyroscopes to measure 3D angular velocities, accelerometers to measure 3D
accelerations (including gravity), magnetometers to measure 3D earth magnetic field,
as well as atmospheric pressure using a barometer. Both a lycra suit or mounting straps
are available as mounting system to support the sensors (MTx and MTw respectively).
While MTx require a cable system, MTw are wireless trackers (see Figure 3.2). In this
thesis, the second option (involving MTw) has been mainly used for greater practicality.
The specifications about MTw are listed in Table 3.1.

Table 3.1: Xsens IMUs specifications [120]

Specification Numerical Value

Sampling rate2 1000 Hz
Operating Voltage 4.5 − 30 V

Power consumption 350 mW
Operating temperature range −40to + 85 °C

Gyroscopes bias stability 20 deg/h
Timing accuracy 10 10−6s

Static accuracy (roll/pitch) < 0.5 deg
Static accuracy (heading) < 1 deg

Dynamic accuracy 2 deg RMSE
Angular resolution 0.05 deg

Link IMUs

Trunk Pelvis (1)
L5
L3

T12
T8 (2)

Head Neck
Head (3)

Arm Shoulder (4)-(5)
UpperArm (6)-(7)
ForeArm (8)-(9)

Hand (10)-(11)

Leg UpperLeg (12)-(13)
LowerLeg (14)-(15)

Foot (16)-(17)
Toe

Figure 3.2: On the left, Xsens IMUs are shown: MTx on the top and MTw on the bottom respectively.
The table on the right depicts the set of links for human model with the relative parent joints and
associated sensors.

The system runs in real-time with a maximum update rate of 240 Hz for MTx and
60 Hz for MTw, respectively. In order to estimate the variations of the body links orien-
tation and position, gyroscope and accelerometer signals are continuously updated and

2Maximum IMUs update rate depends on amount of IMUs used.

26



i
i

“output” — 2020/11/17 — 15:07 — page 27 — #37 i
i

i
i

i
i

3.1. Human Tracking Tools: Wearable and Lightweight Sensor Systems

integrated within a biomechanical model of the human body (detailed information can
be found in [120]). The Xsens human model includes twenty-three segments (pelvis,
L5, L3, T12, T8, neck, head, and right and left shoulder, upper arms, fore arms, hands,
upper legs, lower legs, feet and toes) linked together by twenty-two joints with three
DoFs. The seventeen IMUs are attached to such body segments as indicated in the
Table on the right of Figure 3.2. The origins of the joints are defined in the centre of
the functional axes with the directions of the x − y − z axes being related to functional
movements (see the left side of Figure 3.3).

q
S

L

L

Si

Si

i

+1

+1L i

q
S

L

i+1

i+1

i

i

G

W

W

Figure 3.3: On the left, orientation and position of the sensors w.r.t. the link frames. Si is the sensor
frame, Li is the link frame, LiqSi is the quaternion that express the transformation between the sensor
and the link. [113] On the right, Xsens model of a subject performing N-pose. The global frame ΣW

is also highlighted. [120]

When a sensor is attached to the human body, the initial transformation between
the sensor and the body segment on which is located is unknown. Moreover, assess-
ing the distances between body segments by numerical integrating the accelerations is
pretty difficult. To tackle this issue and express the body segment kinematics in a global
frame, a calibration procedure must be performed. During this process, the orientation
of the sensors w.r.t. the segments (see the left side of Figure 3.3) and the relative dis-
tances between joints in a-priori known body configuration are determined. The subject
must keep this configuration, called N-pose, depicted on the right side of Figure 3.3,
during the whole calibration phase. After the calibration procedure, all the sensors’ po-
sitions and orientations can be estimated by integrating the gyroscope data and double
integrating the accelerometer data in time. Then, to achieve six full DoFs tracking of the
subject, the information coming from the sensors is translated to body segments using
the above-mentioned biomechanical model and the sensor pose w.r.t. the body segment,
found in the calibration step. It should be pointed out that the uncertainty of the joint
position and rotation increase throughout time, due to the sensor noise related to skin
and STA. However, the resulting error is compensated by using the joint measurement
updates, exploiting the knowledge that two segments are on average connected but with
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Chapter 3. Material and Methods

statistical uncertainty. In addition, a Kalman filter is used to correct the kinematics for
both the drift and the uncertainty of the joint position. Summing up, the Xsens MVN
Biomech suit provides the 3D position, velocity, acceleration, orientation, angular ve-
locity, and angular acceleration of all the twenty-three body segments w.r.t. a global
(earth-fixed) coordinate system ΣW

3 (illustrated in Figure 3.3). Then, the Euler angles
ZXY (flexion/extension, abduction/adduction, internal/external rotation) are extracted
for all the twenty-two joints. Additionally, the positions and the trajectories of some
points of interest, the anatomical landmarks, are provided in the links frames. These
points are not measured directly as in traditional optical motion-capture systems but es-
timated by using the measured segment kinematics in combination with the anatomical
model. The center of mass (CoM) 3D position is also computed, based on the segment
poses together with a body mass distribution model. The software provided with the
system, MVN Studio is an easy-to-use graphical user interface (GUI) and allows the
visualization of the subject movements in real-time and from previous recordings. Data
streaming through user datagram protocol (UDP) connection is also available.

3.1.2 Force Sensors

To measure the reaction forces that the human exchanges with the ground and to com-
pute the position of the human CoP, suitable instrumentation for collecting force/pres-
sure data is required. In this thesis, two alternative devices have been adopted for this
purpose: a force plate and sensor insoles.

Figure 3.4: Kistler multicomponent force plate Type 9260AA (left) and OpenGo sensor insoles (right).

The force plate is a Kistler multicomponent force plate Type 9260AA and is de-
picted on the left of Figure 3.4. The corresponding specifications are listed in Table
3.2. This device is designed specifically for use in gait and balance analysis. Rather
than having to be mounted on a frame like conventional force plates, it can simply be
used on a flat surface and, due to its low weight, it is easily portable. Hence, it has
the benefit of being conveniently relocated in different places within the experimental
area or even moved to different experimental areas. Despite the very wide measuring
range (see Table 3.2), the Kistler force plate ensures a high accuracy and linearity over
the entire spectrum of applications and guarantees overload protection both for static

3The Xsens suit global frame ΣW is adopted as the human model global frame which will be defined in Section 3.2.1.
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Table 3.2: Kistler force plate specifications [121]

Specification Variable Numerical Value

Natural frequency fn(x, y) ≈ 400 Hz
fn(z) ≈ 200 Hz

Dimensions 600 × 500 × 50 mm
Measuring range Fx, Fy −2.5 . . .2.5 kN

Fz 0 . . .5 kN
Overload Fx, Fy −3/3 kN

Fz 0/8 kN
Linearity % FSO < ±0.5
Hysteresis % FSO < 0.5
Crosstalk Fx < − > Fy < ±2.5 %

Fx, Fy− > Fz < ±2.5 %
Fz− > Fx, Fy < ±0.5 %

Max CoP error ax ≈ 2 mm
ay ≈ 2 mm

Operating temperature range 10 . . .50 °C
Weight 8.6 kg

and impulse loads. These last two features in particular, make this force plate a reli-
able mean to obtain a ground truth for the human GRF and CoP. In fact, within this
thesis it is mainly used when a new proposed method must be assessed and validated.
Nevertheless, force platforms severely reduce human mobility by its very definition.
Therefore, once a properly validated technique requires to be applied in real industrial
environments, alternative solutions are needed.

To this end, the OpenGo fully integrated sensor insoles by Moticon GmbH have
been considered in this thesis. The corresponding pressure sensor specifications are
listed in Table 3.3. These insoles measure the plantar pressure distribution, total loads,

Table 3.3: OpenGo sensor insoles specifications.

Specification Value

Principle capacitive
Quantity 13 sensors per insole
Coverage ≈ 50 %

Range 0.0 − 40.0 N/cm2

Output resolution 7 bit
Sampling frequency4 5,10,25,50,100 Hz

and acceleration of the foot. The CoP and the total force are not provided directly but
they can be calculated based on the sensor data. OpenGo are easily wearable (they
have to be placed inside the shoes) and completely wireless thus they do not impose
any restriction on the wearers’ mobility. As shown in Figure 3.4, thirteen capacitive
pressure sensing pads are included in the devices, along with a 3D accelerometer. To
improve the reliability of the information measured, a supplementary mechanical part
has been developed [34], consisting of a thin and flexible surface placed as an additional
attachment on the top of the OpenGo. The designed part presents some protuberances

4OpenGo sampling rate depends on the amount of sensing pads used.
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Chapter 3. Material and Methods

on the lower surface that match the centres of the capacitive pressure sensing pads,
enabling a more effective distribution of the user body weight over the insole. This
expedient allows increasing significantly the accuracy of the measured data.

It should be noted that, using OpenGo sensor insoles, it is possible to achieve only
the single foot CoP. Then, the whole-body CoP vector CP = [CPx CPy]T ∈ R2 in the
global frame (which will be defined in Section 3.2.1) can be calculated as

CP =
fL ⋅CP,L + fR ⋅CP,R

fL + fR
, (3.1)

where fL and fR are the GRF of left and right foot, respectively and CP,L and CP,R

are the CoP of left and right foot, respectively, transformed from their local frame and
expressed in the global frame.

3.2 Human Dynamic Modeling Bases

In this Section, the human modeling basis on which this thesis is grounded and devel-
oped are addressed.

3.2.1 Human Body Model

As illustrated in Fig. 3.5, the human body in this thesis is modelled as a floating-based
sequence of rigid links interconnected by revolute joints. The pelvis frame is set as
the human base frame Σ0 and it is attached to the inertial frame ΣW , which represents
the global frame, through six virtual DoFs. Each link has a mass, mi, (with link index
i ∈ [1 ⋯ ni]) and the total mass M is represented by the sum of the link masses, i.e.,
M = ∑mi. x0 ∈ R3 and θ0 ∈ R3 are the position and the orientation of the base frame
Σ0, respectively. The position vector of the CoM for each link, ci ∈ R3, is represented
w.r.t. the local frame Σi. di ∈ R3 is the link length vector w.r.t. the previously connected
link local frame Σi−1. The rigid links are articulated through nj revolute joints, and
the angular position of those joints is denoted as qh = [q1 . . . qnj]T ∈ Rnj . The
generalized coordinate of the system is defined by q = [xT0 θT0 qh].

3.2.2 Whole-Body Centre of Pressure Model

The traditional approach to estimate the CoM of the human body consists in measuring
the subjects’ pose and making use of the anthropometric heuristic data [93,94] proposed
in the literature to approximate the mass and composition of each limb. Nevertheless,
the information in these anthropometric tables was compiled for a given population thus
it does not accurately represent any individual. Age, gender and fitness level may affect
the error of the CoM estimation [122]. A methodology for the real-time identification of
the full BSIPs from motion and contact force was proposed in [123], which addresses
subject-specific parameters. Alternatively, a reduce-complexity approach, called the
SESC technique, was introduced in [111] to obtain the human BSIPs based on the work
in [124]. The SESC parameters can then be employed to achieve a subject-specific
estimation of the whole-body CoM. As a result, the whole-body CoP estimation can
thus be accomplished, both in static and dynamic conditions.

It has been proved in [111] that the whole-body CoM position of any branched chain
(e.g. the human body with arms and legs) is equivalent to the end-effector position of
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W

0

Figure 3.5: A sagittal floating-base model of the human body. The SESC to estimate the CoM position is
attached to the base frame Σ0 and represented by a red and black dot-dash chain with the computed
CoM. The transformation from the inertial frame ΣW to the base frame Σ0 with six virtual DoFs is
depicted as well.

a virtual chain known as the SESC. Its structure can be set up by using the static and
geometric parameters (i.e. mass, length and CoM of each link) of the original chain as

φi =
1

M
[mici +

ni

∑(di+1

L

∑
l=i
ml)] . (3.2)

where ni is the number of local frame and L is the last local frame in each branch. As
a result, the CoM of the original structure in the global frame ΣW , denoted as CM , can
be obtained through a forward kinematics operation and modelled as

CM = x0 +BΦ, (3.3)

where x0, as previously said, is the position of Σ0, matrix B = [A0 ⋯ An] ∈
R3×3(n+1) contains i-th link rotation matrices Ai ∈ SO(3) w.r.t. ΣW . Matrix Φ =
[φT0 ⋯ φTn ]

T ∈ R3(n+1) includes the vector of SESC parameters φi ∈ R3, which
refers to the unknown BSIPs of the human.

The identification of the parameter vector Φ can be accomplished by writing Equa-
tion 3.3 in a regressor form as

0CM = CM − x0 = BΦ, (3.4)

where 0CM is the CoM represented in Σ0. The rotation matrices in B and the human
base frame position vector x0 are achieved, in this thesis, by means of the motion-
capture system outlined in Subsection 3.1.1. On the other hand, the CoM vector cannot
be collected directly from any sensor technology. However, it is possible to obtain the
ground-projected CoM, which corresponds to the CoP in the static condition, using
measuring instruments for the ground reaction forces. Therefore, the whole-body CoP
vector CP = [CP ∣x CP ∣y]T ∈ R2 w.r.t. the ΣW is achieved using the devices introduced
in Subsection 3.1.2.
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Expressed as in 3.4, the identification of the SESC parameters can be considered
as a classical least-squares problem and it can be solved using the stacked matrices B
and vectors 0CP (the CoP represented in Σ0.) for a set of p human poses defined as
W ∈ R2p×3(n+1) and Ω ∈ R2p×1, respectively. The vector of the identified Φ̂ ∈ R3(n+1)

can then be estimated as
Φ̂ = W+Ω, (3.5)

where W+ = (WTW)−1
WT is the Moore-Penrose generalised inverse.

In static conditions, the CoP can be computed by projecting the whole-body CoM
estimated by (3.3) with the identified SESC parameters (3.5) onto the x-y plane. Con-
versely, when considering dynamic conditions, the position of CoP w.r.t. the CoM can
be obtained by using the differences between the angular momentum variations and the
acceleration about the CoM [93, 125]. However, given that the angular momentum of
the CoM is negligible for a rotationally stable body resting on a flat ground surface, we
can obtain the estimated CoP vector ĈP on the contact surface as

ĈP =
⎡⎢⎢⎢⎣

ĈP ∣x
ĈP ∣y

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

ĈM ∣x
ĈM ∣y

⎤⎥⎥⎥⎦
−

ĈM ∣z
¨̂
CM ∣z + g

⎡⎢⎢⎢⎢⎣

¨̂
CM ∣x
¨̂
CM ∣y

⎤⎥⎥⎥⎥⎦
, (3.6)

where g is gravitational constant, ĈM is the estimated CoM vector from the SESC, and
¨̂
CM ∣x, ¨̂

CM ∣y and ¨̂
CM ∣z are the linear accelerations of the CoM. Hence, to estimate the

CoP of the human body, the second derivative of the CoM vector and g alone can be
considered. Additionally, the Kalman filtering approach can be used to compute the
acceleration of the CoM vector [126].

It should be noted that the SESC technique reaches an accuracy of the CoM estima-
tion comparable to the one achieved by the classical models that are based on articulated
chains [122,127]. Furthermore, since it is based on a geometrical reconstruction of the
CoM, the observability of the CoM position is complete [128]. Finally, a great strength
of this method is that, due to its principled simplification approach, it can be applied
online [129].

3.2.3 External Load Localisation

In [32], a novel method to detect and locate the contact point of an external load ap-
plied on the human body was introduced. The proposed technique relies on a torque
equilibrium condition on the human sagittal plane, which involves a whole-body CoP
model, identified by using the SESC method described in Subsection 3.2.2, along with
the measured CoP and the vGRF. A statistical analysis approach is then integrated
in the procedure to increase the accuracy of the estimation (affected by sensor noise
and uncertainties in the model) to the extent required for industrial applications. The
contact point localisation capability of the proposed approach is tested through a simu-
lation study using Simscape MultibodyTM. Then, an experimental analysis is conducted
on two human subjects to investigate its performance in realistic settings, considering
three different application points of a load applied on the participants’ body.

Contact Point Localisation Method

To achieve the contact point location of an external load applied on the human body,
it is possible to consider a torque equilibrium condition, which can be approximated
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by an equivalent mechanical system performing quasi-static movements. Assuming a
generic force vector F that acts on a rigid body system, the result of the interaction is
the joint torque vector T defined as

T = xp ×F, (3.7)

where xp represents the contact point vector. In case of multiple interaction forces,
several torques act on the body simultaneously. If the body stays at rest, it means
that such torques are balanced and there is no net torque (Tnet = 0) acting on the
body which thus is said to be in an equilibrium condition. Considering likewise the

𝑪"#$

𝐟#& 𝐟#$

𝐟'

x)'

𝑪"#&

𝑨𝑼𝑨𝟐 < 𝑨𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍𝟐 ≪ 𝐴56 , 𝐴786 , 𝐴776

Contact link

𝜇:

+𝜎:−𝜎:

⋮

Torso (T)
U-arm (UA)
L-arm (LA)

L-leg (LL)

Normality test
&

Confidence interval

Example:

Figure 3.6: The overall procedure to detect the contact point combining a torque equilibrium condition
and statistical analysis approach.

interaction forces acting on the body on the left side of Figure 3.6, a torque is produced
by an external load and the equilibrium condition can be described as

CPwt × fwt = CPwo × fwo − xah × fh, (3.8)

where CPwt and CPwo are the body CoP in the loaded and not loaded condition, re-
spectively. fwt is the vGRF vector applied at CPwt , which is obtained by the sum of
the body weight and the external load, while fwo represents the body weight alone. fh
refers then to the load that is applied at the contact point xah . By making the assump-
tion of a single load applied on the body thus a unique contact point, the latter can
be defined as fh = −(fwt − fwo). Taking into account that on a flat surface - that com-
monly characterises industrial work spaces - the vGRF is substantially higher than the
tangential components of the GRF, such components can be neglected and the vGRF
can then be expressed by the human body weight, which is acting on the projected CoP
position [130]. Therefore, by projecting all the forces onto the ground, the equilibrium
equation of the torques about a pivot (i.e. ankle joint) for the human in the sagittal
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plane, can be written as

xah∣x =
CPwt∣xfwt −CPwo∣xfwo

(fwt − fwo)
, (3.9)

where xah∣x is the x-coordinate of the application point of the external load (i.e. con-
tact point). The whole-body CoP vector CPwo is obtained with the SESC technique
presented in Subsection 3.2.2 while the CoP vector CPwt can be measured by using a
suitable sensor system (see Subsection 3.1.2).

At this point, the location of the contact point must be determined. First, the link
which includes the contact point must be identified. Next, the position of the contact
point on such a link must be estimated. The procedure employed in this study will be
presented hereafter and the corresponding pseudocode is illustrated in algorithm 1.

Algorithm 1 Detection of contact point position.

1: procedure CONTACTPOINT(xah∣x)
2: Initialize: nj ← 0, j = 1, . . . , k

N ← 0
3: while true do
4: for j = 1→ k do
5: xj

ah∣y ← π�(xah∣x) ∩
zÐx
linkj ▷ compute the intersection

6: if xj
ah∣y ≠ 0 then

7: Xj
ah

[nj]← linkxj
ah,i

8: nj ← nj + 1

9: µ̂j ← MEAN(Xj
ah

) ▷ compute the sample mean
10: σ̂j ← STD(Xj

ah
) ▷ compute the sample standard deviation

11: if nj > 50 then
12: A2,j ← using (3.12)
13: if A2,j < A2

critical then ▷ contact point link found
14: N ← j

15: if N ≠ 0 then
16: δNm ← using (3.13)
17: if δNm < δm,threshold then ▷ contact point position found
18: break
19: return µ̂N

First of all, the algorithm starts establishing whether it exists the point of intersection
between π�(xah∣x), which is the perpendicular line passing through xah∣x, and a j-th link

segment
zÐx
linkj (with link index j ∈ [1 ⋯ k]). It should be noted that it is possible to

find multiple candidates for the load application point on y-axis (xah∣y), in the event that
the perpendicular line π�(xah∣x) intersects along its path more than one link. Every time
an intersection point linkxjah w.r.t. Σlink is computed for a j-th link, its measurement
is collected and stored in the j-th link corresponding vector Xj

ah
. Then, to identify

the best candidate, i.e. the contact point which approaches the most probable value,
the mean value of the data set in Xj

ah
is considered and a statistical hypothesis test for

normality is implemented. It is important to underline here that the estimation of the
load contact point obtained by using (3.9), is based on the measurements gathered with
sensor devices thus some disturbances due to sensors noise must be taken into account.
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Additionally, the humans’ natural ever-present movement generates some artifacts (e.g.
STA [113], the motion of fabric sensors w.r.t the body in suit-based sensing technolo-
gies [131]) which inevitably affects the estimation procedure. To model the resulting
error, the Gaussian model is broadly used in inertial body tracking [132, 133] as well
as in the analysis of human motion [134]. Likewise, the data set built in the procedure
just explained can be characterised as [135, 136]

Xj
ah
∼N (µ̂j, σ̂2,j), (3.10)

where µ̂j and σ̂j are the mean value and the standard deviation of Xj
ah

, respectively, and
N denotes the normal (i.e. Gaussian) distribution. Therefore, in this study, the approach
to identify a contact point from an approximate probability distribution is assumed
to rely on the normality assumption. The one-sided Anderson-Darling test [137] is
implemented online to this end. Prior to the test, the element xjah,i of Xj

ah
for i = 1, ..., nj

must be sorted such that xjah,1 ≤ xjah,2 ≤ ... ≤ xj
ah,nj

and standardised as

sji =
xjah,i − µ̂

j

σ̂j
. (3.11)

First, a sufficient number of samples must be collected until the condition nj > 505 is
satisfied. Then, test statistic A2,j for the j-th link can be defined as

A2,j = −nj −
nj

∑
i=1

2i − 1

nj
[ln(F (sji)) + ln(1 − F (sj

nj+1−i))] . (3.12)

where F is the standard normal cumulative distribution function and ln is the natural
logarithm. Whether A2,j goes beyond a pre-defined critical value, the hypothesis of
normality is rejected with some significance level. The critical values depends on the
significance level and on the number of samples, and can be found in [138]. Accord-
ingly, the first link whose sample of contact points exhibits a value of A2,j under the
critical value A2

critical, it is selected as the contact point link N (see Figure 3.6). This
is in compliance with the expectation that the data set underlying the estimated contact
point must be normally distributed. Once the contact point link is identified, the con-
tact point position linkxNah w.r.t. Σlink must be computed. At this stage, to establish if
enough accuracy is reached by the collected sample or not, a method to monitor the
estimated range of the desired parameter (i.e. contact point) is needed. Due to the nor-
mality assumption previously made, the confidence interval of the sample mean can be
used for this purpose. By definition, a confidence interval provides an estimated range
of values which is likely to include an unknown population parameter, the estimated
range being calculated from a given sample [139]. Since the mean of the sample of the
contact point link µ̂N is considered to be equal to the estimated contact point position
linkxNah , the magnitude of its confidence interval gives an estimate of the accuracy of the
contact point computation. As soon as this confidence interval falls below a pre-defined
threshold δm,threshold, the sample mean µ̂N is established as the contact point position.
The confidence interval of the mean δNm is determined as

δNm = ±z* σ̂N√
nN

such as − z* σ̂N√
nN

≤ µ̂N ≤ +z* σ̂N√
nN

, (3.13)

5The choice of the threshold for the number of samples to be collected is related to the selection of the critical value of A2,j

(further details will follow in this Section).
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where z* is a critical value which expresses the confidence level of the interval. The
critical values for computing the confidence intervals depends on the significance level
and can be found in [140].

Experimental Analysis

The experimental analysis to validate the proposed contact point detection technique is
presented hereafter. First, a simulation study is conducted with Simscape MultibodyTM

(formerly SimMechanicsTM), a multibody simulation environment for 3D mechanical
systems developed and commercialised by MathWorks, Inc. (Natick, Massachusetts,
USA). Next, experiments on two human subjects using data collected with sensor sys-
tems are performed as a proof-of-concept, to test the detection capability of the tech-
nique in real settings considering three different application points of an external load.
The whole experimental procedure was carried out in accordance with the Declaration
of Helsinki and the protocol was approved by the ethics committee Azienda Sanitaria
Locale (ASL) Genovese N.3 (Protocol IIT_HRII_001).

17 poses × 7 segments × 3 locations

Object

[Pose1, Forearm, L1] [Pose1, Forearm, L2] [Pose6, Thigh, L2] [Pose17, Torso, L2]

Figure 3.7: Some examples of the body configurations and the object placement conditions employed
for the contact point estimation in the simulation performed with SimMechanicsTM and the proposed
technique.

Simulation experiments were destined and developed to evaluate the feasibility of
the proposed technique in the localisation of an external load on the body links in
different body configurations. A total of 357 conditions (17 poses ×7 segments ×3
locations) were simulated to investigate the accuracy of the method in detecting the
contact points. In Figure 3.7, a few of these cases are presented as an example. These
simulations were indeed to figure out the expected performance of the proposed tech-
nique, prior to the experimental analysis that revealed the effective capabilities in a real
environment. The simulation was conducted using a personal computer with an Intel
Core i7, CPU 2.50 GHz processor, 16.0 GB 1600 MHz RAM and for integration, a
ode15s solver was employed. The state variables (e.g. joint angles) were collected
from a SimMechanicsTM model. On the other hand,Cp and f of the human model (see
Equation 3.8) were obtained by means of a virtual force plate, which was located at the
bottom of the foot link. To consider feasible and realistic human postures, the data to
simulate the body configurations were measured through the Xsens MVN Biomech suit
described in Subsection 3.1.1. For each body configuration, three fixed points (prox-
imal, central, distal) on each one of the seven links considered (forearm, upper arm,
torso, left thigh, left shank, right thigh, and right shank) were assumed to be, one by
one, the load application point. In each of these 17 × 7 × 3 conditions, the estimated

36



i
i

“output” — 2020/11/17 — 15:07 — page 37 — #47 i
i

i
i

i
i
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and measured CoP and vGRF were simulated and the contact point was achieved as
explained in the previous paragraph. It should be noted that, in the simulation study,
the contact point link was assumed to be known thus only the estimation error of the
proposed technique was assessed.

Figure 3.8: Overview of the experimental setup. All the sensors involved in the experiment are illustrated
on the left. The three different body locations in which a weight was placed to simulate the external
load are illustrated on the right.

For the experiments on human subjects, two healthy volunteers, one female and one
male, labeled as subject 1 and subject 2, respectively, (age: 28 and 34 years; mass:
50 and 76 kg; height: 171 and 178 cm) were involved in the experimental session. A
written informed consent was obtained for both of them. The Xsens MVN Biomech
suit presented in Subsection 3.1.1 was used to track the whole-body motion. On the
other hand, the whole-body CoP and vGRF were collected using the Kistler force plate
presented in Subsection 3.1.2. The experimental setup is depicted on the left side of
Figure 3.8. The experimental procedure included an off-line calibration experiment
and a validation experiment.

In the calibration experiment, the subjects were asked to hold twenty-five static pos-
tures to build a proper input data set for the CoP model estimation by means of the
SESC technique presented in Subsection 3.2.2. During the data collection, the postures
were chosen arbitrarily by the subjects, but with the requirement to vary the orienta-
tions of each body link as much as possible in between, to gather variables as linearly-
independent as possible. The movements were constrained to the sagittal plane since
a human sagittal model is considered in this study. Accordingly, both the estimated
and measured CoP employed were projected onto such a plane for the computations.
Once the SESC parameters were identified off-line, they could be employed to estimate
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online the human whole-body CoP in any body configuration.
For the validation experiment, the subjects were required to perform three sessions.

In each session, a 4 kg weight was placed in one of the three pre-selected positions on
the human body - hands, mid-forearms, and mid-upper arms - as shown in Figure 3.8,
distributed equally on the two limbs (2 kg for each one). The measured linear position
of the contact points in the corresponding link frame Σlink, considered to be the real
ones, were respectively: 0.31 m w.r.t forearm frame ΣFA, 0.14 m w.r.t ΣFA and 0.22
m w.r.t upper arm frame ΣUA. Once the load was placed, the subjects were asked to
move freely in the sagittal plane in a quasi-static way and perform symmetrical move-
ments with both the upper and lower limbs for the entire duration of the experiment.
Meanwhile, the contact point xah was detected using the proposed algorithm 1. A sig-
nificance level of 0.05 (5%) was selected to set both the Anderson-Darling test critical
value and the z* value to compute the confidence interval. The corresponding values
are given in Table 3.4 along with the confidence interval threshold, which was set ar-
bitrarily (a further discussion about the value of δm,threshold follows above). For each

Table 3.4: Anderson-Darling test critical value, z* value and confidence interval threshold according to
a significance level of 0.05 (5%)

A2
critical z* δm,threshold[m]

0.735 1.96 0.01

experimental condition, the percentage errors between the real and the estimated linear
positions of the contact point w.r.t Σlink were computed and the time needed to detect
the contact point was measured.

Results

The results of the simulation study to estimate the contact point position using the
proposed technique are shown in Figure 3.9. The colored bars represent the mean value
among all the simulated body configurations of the contact point computed through
the proposed technique, in the proximal (blue), central (orange), and distal (yellow)
location on the link, respectively, for each link. The considered links are forearm (FA),
upper arm (UA), torso (T), left thigh (LT), left shank (LS), right thigh (RT), right shank
(RS). The black line superimposed on the bars represents the maximum and minimum
error of the contact point position estimation between all the body configurations. In
each condition, the percentage errors between the expected and the computed contact
point were calculated and the mean and the standard deviation values, computed among
all the contact point positions and body configurations, were obtained for each link.
Specifically, the results of such computations are: 17.53% ± 20.56% for the forearm,
0.95% ± 2.71% for the upper arm, 7.18% ± 21.44% for the torso, 2.47% ± 8.98% for
the left thigh, 0.62% ± 0.85% for the left shank, 2.32% ± 10.07% for the right thigh
and 4.35% ± 14.68% for the right shank, respectively. Since static body postures were
considered in the simulation study, a simple computation of the contact point using
(3.9) and the knowledge about the contact link were sufficient to accurately identify
the contact point position xNah . Nevertheless, as previously explained, a criterion to
identify the contact link must be set without a priori knowledge thus the Anderson-
Darling normality test is employed. Moreover, to ensure a good level of accuracy with
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Figure 3.9: The results of the contact point estimation using SimMechanicsTM and the proposed tech-
nique in the forearm (FA), upper arm (UA), torso (T), left thigh (LT), left shank (LS), right thigh (RT),
right shank (RS) links, are illustrated in error bar plots.

real data, which are inevitably affected by artifacts and noise, the concept of confidence
level δm is introduced.

The results of the the validation experiment on human subjects are hereafter pre-
sented. The percentage error of the contact point positions and the time needed to
estimate it, in each experimental condition, are illustrated in Table 3.5, for subject 1
and subject 2, respectively.

Table 3.5: Results of the validation experiment. The percentage error of the contact point positions and
the time needed to estimate it are shown for both subject 1 and 2.

Subject Experimental condition Percentage error Estimation time

Hands 1.022% 9.4 s
1 Mid-forearms 20.92% 16.1 s

Mid-upper arms 11.15% 14.4 s

Hands 1.17% 16.0 s
2 Mid-forearms 48.04% 27.2 s

Mid-upper arms 16.05% 17.5 s

The changes of A2,N and δNm during the contact point detection phase, on the y-axis
and on the x-axis respectively, are shown in Figure 3.10 for subject 1 (first row) and
subject 2 (second row), respectively, in each experimental condition, namely consid-
ering a load applied on the hands (left column), mid-forearms (middle column) and
mid-upper arms (right column). The red square represents the starting point while the
green square represents the instant in which the contact point is detected. The blue
dashed lines represent the thresholds for A2,N and ∣δNm ∣, namely A2

critical (horizontal line)
and ∣δm,threshold∣ (vertical line), respectively. The contact point link is selected as soon as
A2,N < A2

critical meaning that the hypothesis of normality for the data set of the contact
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Figure 3.10: Results of the validation experiment: the profiles of A2 and δm, on the y-axis and on
the x-axis respectively, computed and monitored over the experiment for subject 1 (first row) and
subject 2 (second row), in each experimental condition, for the correspondent contact point link:
hands (left column), mid-forearms (middle column) and mid-upper arms (right column). The red
square represents the starting point while the green square represents the instant in which the contact
point is detected. The blue dashed lines represent the thresholds for A2,N and ∣δNm ∣, namely A2

critical
(horizontal line) and ∣δm,threshold∣ (vertical line), respectively.

point link can be accepted. Nevertheless, the contact point link is not changed even if
the value of A2,N return beyond the threshold. In fact, it should be noted that in some
cases, in the end point, A2,N > A2

critical. The contact point position is then found when
the value of ∣δNm ∣ is under the threshold ∣δm,threshold∣. This means that the confidence level
of the mean value is included within the pre-defined threshold. In all the experimental
conditions, even if the condition nj > 50 was satisfied and values A2,j were computed
also for other candidate links, the link that satisfies first the condition A2,N > A2

critical
was always the actual contact point link. Finally, typical results of the correlation be-
tween the choice of δm,threshold and estimation time are shown in Figure 3.11. By setting
a higher threshold, the contact point position could be found faster, nevertheless, with a
larger confidence interval thus with less accuracy. Hence, ∣δm,threshold∣ has been set equal
to 0.01 m as a good compromise between time and accuracy.

Discussion

In the simulation study, results indicated that the estimation error of the contact point
position, computed between all the body configurations considered, was significantly
low in most of the links. However, some exceptions were found for the torso and the
forearm. This is most likely due to a failure in computing the intersection between the
perpendicular line passing through xah∣x and the link segment. In fact, when the vertical
projection lies slightly beyond the link end-point, the contact position can not just be
detected and this leads to a misleading increment of the percentage error. Accordingly,
we can state that the proposed method is able to accurately estimate the contact point
position in most of the cases, with a low chance of failure occurring in extreme con-
ditions (i.e. in the proximity of the link end-points). An analysis of the performance
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Figure 3.11: Illustrative trend of δNm during the validation experiment represented with varying val-
ues of δm,threshold. By setting a higher threshold, the contact point position could be found faster,
nevertheless, with a larger confidence interval thus with less accuracy.

of the proposed method in real settings indicated that some factors, such as movement
artifacts (that are present even during quasi-static motion) and the noise introduced by
sensor systems, could affect the accuracy of the estimation. To compensate for this ef-
fect in this work, a statistical analysis approach was introduced with the aim to improve
the accuracy of the estimation. As a result, in the validation experiment, the link was
correctly identified for all three experimental conditions for both the subjects, and the
localisation accuracy is deemed acceptable to the extent of the industrial applications
addressed in this thesis. Furthermore, the time needed to detect the contact point was
less than half a minute thus the ’industrial-fast’ detection capacity of the proposed sys-
tem is demonstrated. Accordingly, the proposed method shows a promising potential
to quickly detect the contact point position. It should be pointed out that, due to the
assumption of quasi-static, sagittal, and symmetric movements and the capability of
the method to work only with vertical forces, the proposed framework can be deployed
in certain specific industrial tasks, which are quite numerous (lifting, carrying, pick and
place in the sagittal plane, etc.).
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3.2.4 Extension to Bipedal Models

The SESC technique described in Subsection 3.2.2 allows to identify a model of the hu-
man whole-body CoP. Hence, it can be employed to represent the human biomechanical
system as a planar serial chain that includes only one GRF. The development of this
reduced model to a bipedal one, thus including the reaction forces exchanged by both
feet with the ground, would enable the tracking of human states in a wider work space,
broadening the potential applications to more realistic and complex scenarios. To this
end, a method to estimate the feet CoP and GRF, during double-support, on the basis
of the whole-body CoP and the total GRF is required. Nevertheless, the computation
of physically feasible contact forces to match a desired net contact wrench, known as
the force distribution problem (FDP), is known to be an under-determined problem. In
fact, when the full BSIPs are not available, it is not possible to obtain analytically the
feet CoP and GRF.

In the robotics community, several authors addressed this issue using constrained
optimisation methods that employed sub-optimal solutions by applying simplifying as-
sumptions [141, 142]. A specific objective - the tangential force [143], contact force
norms [144], ground force magnitudes [141], and ankle torques [142] - was selected on
the basis of the context or the application targeted and the corresponding objective func-
tion was then minimised. Similarly, an optimisation procedure was proposed in [145]
to solve the force distribution problem (FDP) during human gait. Nevertheless, these
optimisation approaches require to establish a-priori which strategy a human is going
to use to perform a task, which may be a huge presupposition. Alternatively, the con-
cept of “Smooth Transition Assumption” was introduced in [146], involving a smooth
function that is adjusted for the double-support phase between the uniquely determined
values of the GRF components of the single-support phase. However, this method is
specifically developed for gait analysis. On the other hand, more recent works showed
the potential of neural networks in predicting GRF and CoP during different human
motions as gait [147] and standing/sitting/squatting actions [148].

Accordingly, the aim of [29] is to propose a novel approach to solve the un-determinacy
of the FDP for the human. A relation is built which connects the whole-body GRF and
CoP to the feet GRF and CoP, directly on the basis of the data measured on the human
subjects. A synergistic method is then developed to combine the information enclosed
in the SESC model for the whole-body CoP estimation with the ability of learning
techniques to implicitly detect complex nonlinear relationships between variables.

The corresponding procedure is shown in Figure 3.12. In an off-line phase, a large
dataset is built to implement the proposed method. Using external sensor systems,
sets of measurements of the human whole-body pose along with CoP and GRF are
collected upon a large number of static postures. Firstly, this dataset is used to identify
the CoP model with the SESC technique (see Subsection 3.2.2). Next, to design and
train a feed-forward ANN employed for solving the FDP. Once the proposed synergistic
model is identified, it can be used online to obtain the feet CoP and GRF estimation.
An experimental analysis is conducted on five subjects to investigate its capabilities.

Learning Technique to Estimate Feet Centres of Pressure

Prior to using this technique, the whole-body CoP model using the SESC technique
presented in Subsection 3.2.2 must be identified. Then, to manage the double-support
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Figure 3.12: The procedure for estimating the feet GRF and CoP using the synergistic model.

indeterminacy and thus the case in which nf is equal to 2 in (4.4), the multi-layer
ANN technique is employed. The feet GRF and CoP are estimated using as inputs
the whole-body CoP estimated by the SESC model and body configurations measured
with a motion-capture system. This consideration is to reduce the amount of mod-
eling uncertainty that is expected to be learned by the ANN. Supporting this choice,
it has been shown that supervised multi-layer ANN with the proper input data and
non-linear activation functions are capable of representing accurate approximations and
mappings [149]. Specifically, a feed-forward ANN with one hidden layer including a
sufficient number of neurons can fit any finite input-output mapping problem [150]. To
achieve the best results possible, different combinations of training functions, numbers
of neurons in the hidden layer, and sets of input data are tested. As regards the input
data, the whole-body ĈP from the SESC model, the orientation matrix of the simplified
human model B and the pelvis, the left foot and the right foot positions are ultimately
employed for the training and the validation. As regards the structure, a feed-forward
ANN is built, which is composed of one hidden layer containing four neurons with a
non-linear activation function and an output layer with a linear function. The network
is trained with the target data (e.g. the measured feet CoP using a suitable pressure sen-
sor) using the weights and bias values according to Levenberg-Marquardt optimisation.
Consequently, by using the proposed synergistic model, the feet CoP ĈP,R and ĈP,L

can be estimated online. In addition, deriving from (3.1), the distribution gain ζ can be
obtained for each foot as

[ζL ζR] = [∣ ĈP−ĈP,R
ĈP,L−ĈP,R ∣ ∣ ĈP−ĈP,L

ĈP,R−ĈP,L ∣] . (3.14)

where ζL and ζR are the distribution gains for the left and the right foot, respectively.
Reminding that ∑i ζi = 1 it is possible to compute the gain related to one foot and then
subtract its value from 1 to obtain the gain related to the other foot.
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Chapter 3. Material and Methods

Experimental Analysis

The experimental analysis to validate the proposed learning technique is presented here-
after. The whole experimental procedure was carried out in accordance with the Dec-
laration of Helsinki and the protocol was approved by the ethics committee Azienda
Sanitaria Locale (ASL) Genovese N.3 (Protocol IIT_HRII_001). Five healthy male
volunteers (age: 28.6 ± 4.3 years; mass: 84.7 ± 10.7 kg; height: 182.2 ± 2.9 cm) 6

were recruited in the experimental session. A written informed consent was obtained
after explaining the experimental procedure. Each subject was asked to wear the Xsens
MVN Biomech suit presented in Subsection 3.1.1 and the OpenGo sensor insoles pre-
sented in Subsection 3.1.2) and then required to hold two hundred static postures for the
data collection. During the acquisition, the body configurations were chosen by each
subject arbitrarily but with the requirement to change the orientations of each segment
and the position of the feet CoP as much as possible in between, to obtain variables
as linearly-independent as possible. A large number of postures collected along with
their variability are necessary to build a suitable set of input data for the parameters
identification of the proposed synergistic model.

Results

Table 3.6 presents the means and the standard errors of the position of the CoP with
respect to the ΣW to evaluate the performance of the SESC technique implemented
with the selected sensor systems.

Table 3.6: Means and standard errors of the position between the whole-body CoP measured using
the OpenGo sensor insoles, and the CoP estimated by the identified SESC model. The errors are
computed for each subject on the x-axis and on the y-axis across two hundred postures.

Subject
CoP errors (m)

CPx,L CPy,L

1 1.34* ± 0.04* 1.33* ± 0.04*
2 1.57* ± 0.04* 1.34* ± 0.04*
3 1.45* ± 0.04* 1.56* ± 0.04*
4 1.76* ± 0.05* 1.70* ± 0.05*
5 1.83* ± 0.05* 1.40* ± 0.05*

*All the values in the table are multiplied by 10−2

This position error was computed in x- and in y-direction for all the two hundred
postures performed by five subjects. We compared CPwt and ĈPwo positions, computed
with (3.1) using data measured by the OpenGo sensor insoles and estimated by the
SESC model, respectively, without the effect of external forces. The mean position
error was 1.83× 10−2m in the x-direction and 1.40× 10−2m in the y-direction across all
postures for the subject with the worst results. Hence, the SESC CoP estimate using
the OpenGo sensor insoles has an equivalent performance as the literature-based one
with high-end sensors [122], providing solid evidence on the accuracy of the online
CoP model.

For the training of the ANN we used one hundred sixty static poses (around 80% of
the whole data set) which were in fact adopted as the training set. Then, forty postures

6Subject data is reported as: mean ± standard deviation.
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3.2. Human Dynamic Modeling Bases

were used as the validation set to examine the network performance (around the other
20% of the whole data set). In Figure 3.13 the results for one subject are presented,
showing the profile of the x coordinate of the CoP w.r.t. the ΣW , measured with the
OpenGo sensor insoles (red line) and estimated by means of the proposed method (blue
line) both for the left (upper chart) and for the right (lower chart) foot.
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Figure 3.13: X coordinate of the position of the CoP measured (red line) using the OpenGo sensor
insoles and estimated (blue line) by the synergistic method, for the left foot (upper chart) and for the
right foot (lower chart). The feet CoP position errors are expressed in the inertial (global) frame.
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Figure 3.14: Graphical representation of the means and standard errors of the position for the left foot
(left chart) and for the right foot (right chart) between the feet CoP measured using the OpenGo
sensor insoles and the feet CoP estimated by the synergistic method. The feet CoP position errors are
expressed in the inertial frame and computed for each subject on the x-axis and on the y-axis across
forty postures.

Figure 3.14 is a graphical representation of the means and the standard errors of the
position between the feet CoP w.r.t. the ΣW , measured and estimated. These errors
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Chapter 3. Material and Methods

were computed for each subject on the x-axis and on the y-axis for the left foot and for
the right foot across the postures of the validation set.

Discussion

The magnitude of the error was uniform between the subjects, demonstrating that the
proposed synergistic approach can deal with varying patterns of movement and human
body models with different inertial parameters. The consistency of the error in the x
and y directions and the level of accuracy achieved were suitable for the extent re-
quired by the industrial scenarios addressed in this thesis. The results proved that the
proposed synergistic model is capable of solving the un-determinacy of the FDP for
the human and provided promising evidence on its capabilities to achieve the feet CoP
and GRF estimation in an online stage. The choice to use a neural network to solve the
FDP was due to the ability of such techniques to learn multi-input multi-output non-
linear systems, and to the fact that finding a nonlinear approximation by hand would
not have been feasible considering the large input-output dimension. The training of
several prototypes of neural networks with different numbers of layers attributed the
best performance to the single-layer neural network.
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CHAPTER4
Human Ergonomics Monitoring System

In view of the considerations made in Section 2.3, the foremost objective of this the-
sis is to define an online human ergonomics monitoring system, which can provide on
the fly, just as the workers are performing their tasks, a comprehensive set of indexes
that account for multiple ergonomic risk factors (e.g. awkward postures, mechanical
overloading of the body, repetition frequency, etc.) and thus enable the assessment
of a broad range of manual material activities typically conducted in industrial envi-
ronments. Unlike the traditional approaches that focus particularly on the kinematic
variables, this thesis places a great emphasis on the dynamic aspects of the tasks (i.e.
forces or torques acting on and inside the body), which may contribute significantly
to the development of WMSDs. Accordingly, kinematic variables such as joint an-
gles, velocities, and accelerations are integrated with overloading torque, fatigue, and
power, human CoM potential energy, and compressive forces (by taking advantage of
some estimated indicators which were investigated and developed in previous studies)
to establish an exhaustive method for the assessment of physical exposure in the work-
place. Furthermore, to provide subject-specific values for such indicators, this thesis
has focused on the development of personalisable and re-identifiable human models.

As mentioned in Section 1.5, this Chapter will address the first block of the frame-
work proposed in this thesis (see Figure 1.1): the observation layer. In Figure 4.1, the
observation layer is emphasised with its key elements. Integrating the data about human
motion and interaction forces, measured through suitable sensor systems (presented in
Section 3.1) within a human model (presented in Section 3.2), it is possible to estimate
the physical exposure of the humans performing their working activities in terms of er-
gonomic risk factors (e.g. joint overloading, fatigue, compressive forces). Hence, the
human ergonomics monitoring system can be defined as a set of indexes, which from
now on will be referred as “ergonomic indexes” and are expressed as ωh(q) ∈ Rnj ,
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Figure 4.1: First block of the framework proposed in this thesis for the assessment and improvement of
human ergonomics: the observation layer (see Section 1.5).

where q refers to the generalized coordinate of the system and nj is the number of the
joints (see Section 3.2.1). Such indexes, with the corresponding equation, scope, and
the ergonomic risk factor that each one of them seeks to address are listed in Table 4.1
and will be presented in detail in this Chapter.

Table 4.1: The proposed set of “ergonomic indexes” to assess human kino-dynamic states taking into
account multiple ergonomic risk factors. The corresponding scope - kinematics or dynamics - and
equation are included for each of them.

SCOPE INDEX EQUATION RISK FACTOR

K
in

em
at

ic
s Joint Displacement ω1(q) =

∣qh∣
qmax
h
−qmin

h

Awkward body postures

Joint Velocity ω2(q) =
q̇h

q̇h
max Abrupt and sudden efforts

Joint Acceleration ω3(q) =
q̈h

q̈h
max

High-intensity forces
due to inertia

Overloading
Joint Torque ω4(q) =

∆τs
∆τmax

Mechanical overburden
of the musculoskeletal stucture

Overloading
Joint Fatigue ω5(q) =

τF (t)
τF,max(t)

Repetitive and monotonous
movements

D
yn

am
ic

s

Overloading
Joint Power ω6(q) =

P
Pmax =

q̇h∆τs
q̇h

max∆τmax .
Mechanical overburden

of the musculoskeletal stucture

CoM
Potential Energy ω7(q) =

∆EP

∆Emax
P

=
∆CM ∣z

∆CM ∣zmax Awkward body postures

Compressive Forces ω8(q) =
fC
fmax
C

Mechanical overburden
of the musculoskeletal stucture

Section 4.1 addresses the variables related to joint kinematics (i.e. joint displace-
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ment, joint velocity, and joint acceleration). Section 4.2 introduces the “overloading
joint torque”, originally proposed in [108] which accounts for the torque variations
induced on the human joints by an external load. In Section 4.3 the fatigue model in-
troduced in [31] to evaluate the cumulative effect of the overloading torque induced on
the joints over time, namely “overloading joint fatigue”, is presented. Section 4.4 tack-
les the “overloading joint power” and the potential energy associated with the human
CoM. Finally, in Section 4.5, a tool for the assessment of the direct effect of an external
force on the human joints [151] is proposed. For the overloading joint torque and the
overloading joint fatigue (indexes w4 and w5, respectively) some experimental results
of their application are also provided. 1

In addition, in Section 4.6, an experimental analysis conducted on twelve subjects
to validate the proposed set of indexes as a human ergonomics monitoring system is
presented.

1Parts of this Chapter have been published in [31, 32]
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Chapter 4. Human Ergonomics Monitoring System

4.1 Joint Kinematic Variables

4.1.1 Joint Displacement

The first index ω1(q) is the joint displacement, which is considered as the distance
from the mechanical joint limit, and can be defined as

ω1(q) =
∣qh∣

qmax
h − qmin

h

,

where qh = [q1 . . . qnj]T ∈ Rnj is the joint angles vector, ∣qh∣ is the vector including
its absolute values, qmax

h and qmin
h are the vector including the joints upper and lower

boundaries and nj is the number of joints. The values of qmax
h and qmin

h can be found in
literature [152].

The aim of monitoring the joint displacement is to detect wherever the body con-
figurations that a worker is adopting to perform his/her occupational activities are not
ergonomic. In fact, certain specific human postures have proven to be a potential cause
of injuries and musculoskeletal diseases [153]. For example, long-lasting activities
involving trunk inclination may cause degenerative disorders in the lumbar region, es-
pecially if the task is conducted over a period of many years. Furthermore, keeping
inconvenient body configurations for a long duration is connected with long-term ac-
tivation of muscles that may result in muscular fatigue and a significant and harmful
reduction in blood circulation. Such unfavourable postures are mostly related to spe-
cific sections of the human range of motion (ROM) which should be avoided (e.g. in
proximity to the maximum limits). Hence, the joint displacement index ω1(q) offers
a straightforward method to identify them, thus preventing all the associated negative
effects. It should be noted that the time factor is not considered in ω1(q) so far, but it
will be investigated in future studies on this topic.

4.1.2 Joint Velocity

The second index ω2(q) is the joint normalised angular velocity and it can be defined
as

ω2(q) =
q̇h

q̇max
h

,

where q̇h ∈ Rnj is the joint velocities vector, q̇h
max is the vector including the joints

maximum velocities and nj is the number of joints. The values of q̇h
max can be found

in literature [154].
As reported by some researchers, when assessing dynamically varying activities,

the direct measurement of human motion - in terms, for example, of joint velocity and
acceleration - can provide more relevant information than posture analysis for the er-
gonomics risk of the low back [155] and wrist [156,157]. Joint velocities, in particular,
are suggestive of eventual abrupt movements that may be frequently associated with
sudden and acute efforts potentially leading to severe injuries. Accordingly, by means
of the joint velocity index ω2(q), such hazardous situations can be detected.
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4.1.3 Joint Acceleration

The third index ω3(q) is the joint normalised angular acceleration and it can be defined
as

ω3(q) =
q̈h

q̈max
h

,

where q̈h ∈ Rnj is the joint accelerations vector, q̈max
h is the vector including the joints

maximum accelerations and nj is the number of joints. The values of q̈max
h can be

obtained experimentally, by estimating directly their value on the individuals.
As mentioned above, joint accelerations have already been investigated as a method

to assess the risk factors to the development of WMSDs [158, 159]. As a matter of
fact, the forces induced inside the human body are affected by the joint accelerations
as biomechanically explained by Newton’s second law, force = mass × acceleration.
When high accelerations are in place, such forces may lead to the potential overload of
musculoskeletal tissues, thereby causing internal stresses, or compressing the nerves,
thus increasing the risk of injuries. This can happen when the subjects perform actions
that require high accelerations to be accomplished in an efficient way (e.g. hammering).
With the aim to recognise the risk associated with such scenarios, the joint acceleration
can be tracked by means of the corresponding index ω3(q).

4.2 Overloading Joint Torque

In [108], a technique to account online for the torque variations induced on the hu-
man main joints by an external load, defined as the “overloading joint torques” was
originally proposed. The method is based on the displacement of the CoP, computed
from the difference between an estimated one and a measured one. The estimated CoP
can be obtained, in static conditions, by projecting the whole-body CoM estimated by
taking advantage of the SESC technique presented in Subsection 3.2.2. Besides, when
considering dynamic conditions, the position of CoP with respect to the CoM can be
computed using 3.6. On the other hand, the measured CoP can be collected using a
suitable sensor system.

If no interactions of the human with the external environment (or with a tool/object)
occur, the estimation of the CoP vector ĈPwo obtained with the model is comparable to
the measured one CPwt . On the other hand, whether an external load is applied on the
human body, the estimated and the measured CoP vectors differ. Hence, the overload-
ing joint torque vector can be estimated accordingly, by using the CoP displacement
vector. The human body model described in Subsection 3.2.1 is employed here for this
purpose.

The human joint torque vector τwo with no external load except the human body
weight can be computed by using ĈPwo and the vGRF vector fwo as

STτwo = τb −
nf

∑
i=1

JĈPwo,i
(q)T fwo,i. (4.1)

Similarly, the torque vector τwt, which takes into account the effect of eventual external
loads, can be computed by using CPwt and the vGRF vector fwt as

STτwt = τb −
nf

∑
i=1

JCPwt,i
(q)T fwt,i −

nh

∑
j=1

Jah,j(q)T fh,j, (4.2)
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Chapter 4. Human Ergonomics Monitoring System

where τb ∈ Rn+6 is equal to M(q)q̈ +C (q, q̇) q̇ +G(q) ∈ Rn+6. fwo and fwt are the
vGRF vectors applied at the CoP of each foot without and with considering the effect
of external loads. Hence, they can be deemed as the weight of the human body and the
weight measured by a suitable sensor system, respectively. nf is the number of contact
forces exchanged with the ground. fh refers to the interaction forces that are applied at
the contact points ah, excluding the feet contacts. nh is the number of contact points
where the external forces are applied. In addition, S = [0n×6 In×n] ∈ Rn×(n+6) is the
actuation matrix and Jpi(q) is the contact Jacobian at the point pi (e.g. positions of
the feet CoP, application point of an external load) with respect to ΣW . The relation
between the vGRF variation ∆fw,i = fwt,i − fwo,i and the interaction force fh can be
defined as

∆F =
nf

∑
i=1

∆fw,i = −
nh

∑
j=1

fh,j. (4.3)

At this point, deriving from (4.1), (4.2) and (4.3), the overloading joint torque vector
can then be defined as

∆τs = ST (τwt − τwo)

=
nh

∑
j=1

Jahj(q)Tηj∆F −
nf

∑
i=1

(J∆CPi(q)T fwt,i + JĈPwoi(q)
T ζi∆F), (4.4)

with J∆CPi = JCPwti − JĈPwoi is the Jacobian of the CoP displacement. It is worthwhile
noticing that τb does not affect the overloading joint torque vector ∆τs in any body
configuration because the external load effect is included in ∆τs itself. Due to this
consideration, the number of parameters to be identified for the human model [160] are
considerably reduced. 0 ≤ ζi, ηj ≤ 1 are the distribution gains for vGRF and interaction
forces, respectively, which can be computed knowing the body configuration [161,162]
(N.B. ∑i ζi = 1, ∑j ηj = 1 is a necessary condition). As a result, the fourth index w4(q)
is the joint normalised overloading torque and it can be defined as

ω4(q) =
∆τs

∆τmax

where ∆τmax is the vector including the maximum values of the human joint torque.
The tuning and personalisation of the maximum torque values in ∆τmax are based on
experiments on subjects. Increasing torque profiles are applied on the selected body
joints, one at a time, until the subjects start to feel discomfort. In such a specific instant,
the resulting torque values are estimated (based on the applied force and the lever arm)
and compared to the ones extracted from literature [70, 163, 164]. If these values are
comparable, the experimental ones are used as the maximum torque values. If the
differences is significant, the “safest” choice, i.e., the smallest value for the maximum
torque, is chosen.

As mentioned above, the overloading joint torque estimates the overload induced on
the human joints by an external load. As a result, the corresponding index ω4(q) can
be employed to account for the mechanical overburden of musculoskeletal structures
induced by the weight of a tool or object. It should be pointed out that this method takes
into account only the vertical component of external forces thus it can be deployed in a
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certain class of industrial tasks, which nevertheless, are quite numerous (lifting/lower-
ing, carrying, pick and place, etc.).

4.2.1 Experimental Application of the Method

The second objective of [32] was to apply the proposed method, which allows to iden-
tify the contact point of an external load applied on the human body (see Subsection
3.2.3), to the estimation of the overloading joint torque. In fact, the assumption of a
fixed and predefined contact point (i.e. the human hand/s holding an object) was made
so far within the procedure to estimate ∆τs, as it was originally developed in [108].
Hence, its integration with an online contact point localisation method would enable to
extend the potential of the overloading joint torque technique, by improving its flexibil-
ity to varying interaction conditions in realistic industrial settings.2 In this Subsection,
the experimental analysis conducted on two human subjects as a proof-of-concept, to
investigate such an integration, is presented. First, the contact point position was lo-
calised on the subjects’ bodies. Then, the overloading joint torques induced by the
external load were computed accordingly using a slight variant of the procedure de-
scribed above.

Overloading Joint Torque Method Extension

Let us resume Equation 4.2 in which the overloading torque vector τwt, considering the
effect of any external force, is computed by using CPwt and the vGRF vector fwt as

STτwt = τb −
nf

∑
i=1

JTCPwtifwt,i −
nh

∑
j=1

JTahj fh,j, (4.5)

where nf is the number of contact forces exchanged with the ground. fwo and fwt are
the vGRF vectors applied at the CoP without and with the effect of external forces. fh
represents the weight of the object/tool that is applied at the contact point xah and nh
is the number of contact points where the external loads are applied. A single contact
point nh = 1 is considered here. While the contact Jacobians at the CoP vectors JCP
have fixed parameters, the Jacobian Jah at the contact points xah varies, depending on
which body link the load is applied to and on the application point position of the load
in such a body link, so it is a function of q and xah . Conversely, in the procedure
described above (Section 4.2), the Jacobian Jah was fixed like JCP . Then, deriving
from (4.1) and (4.2), the overloading joint torques can be defined as

∆τs = ST (τwt − τwo) = −JTahfh +
nf

∑
i=1

(JT
ĈPwoi

ζifh − JT∆CPifwt,i), (4.6)

with the Jacobian of the CoP displacement defined as J∆CPi = JCPwti − JĈPwoi .

Experimental Analysis

Two healthy volunteers, one female and one male, labeled as subject 1 and subject 2,
respectively, (age: 28 and 34 years; mass: 50 and 76 kg; height: 171 and 178 cm)

2A video showing the whole procedure to detect online the contact point and estimate the joints physical load is available at
https://youtu.be/uqide04oABk.
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were recruited in the experimental analysis. A written informed consent was obtained
for both of them. To monitor the human whole-body motion, the Xsens MVN Biomech
suit presented in Subsection 3.1.1 was employed, while the whole-body CoP and vGRF
were measured using the Kistler force plate presented in Subsection 3.1.2. The whole
experimental procedure was carried out in accordance with the Declaration of Helsinki
and the protocol was approved by the ethics committee ASL Genovese N.3 (Protocol
IIT_HRII_001). The experimental setup is depicted in Figure 4.2.

Figure 4.2: Overview of the experimental setup. All the sensors and the object involved in the experiment
are shown on the left. The visual feedback that was provided to the subjects is illustrated on the right,
showing the current status: the estimated contact point and the level of the joints overloadings.

For purposes of the experiment, the subjects were asked to move freely in the sagit-
tal plane in a quasi-static way and perform symmetrical movements with the upper and
lower limbs while holding a 5 kg box. The movements were constrained to the sagit-
tal plane since a human sagittal model was considered. The experimental session was
divided into two phases. In the first phase, the contact point xah was detected using
the procedure explained in Subsection 3.2.3. A significance level of 0.05 (5%) was
selected to set both the Anderson-Darling test critical value and the z* value to com-
pute the confidence interval. Accordingly, A2

critical was equal to 0.735, z* was equal to
1.96 and δm,threshold was equal to 0.01 m, respectively. In the second phase, once the
contact point position was found, the overloading torque vector on the human main
joints was computed using (4.4), by varying the contact point Jacobian Jah depending
on the contact point position xah estimated. To compute the whole-body CoP model,
needed for the computation of the overloading joint torques, the SESC parameters,
identified specifically for the recruited subjects in previous experimental analysis, were
employed. During the experiment, the participants were provided with visual feedback
(see Section 5.1) showing the current body configuration, the position of the estimated
contact point, and the overloading torque on the more meaningful joints, as illustrated
in the right side of Figure 4.2.
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4.2. Overloading Joint Torque

Results

(a) Results for subject 1.

(b) Results for subject 2.

Figure 4.3: Results of the experimental application of the contact point detection method in the estima-
tion of the overloading joint torques. For subject 1 (a) and for subjects 2 (b), respectively, the human
posture in some illustrative instants throughout the experiment (upper graph) are represented. The
overloading torques induced by the external load are displayed in the form of spheres superimposed
on the stick-model, color-coded to denote a high (red), medium (yellow) or (low) level. Their trend
is also illustrated (lower graph) in the human main joints: hip (H), knee (K), ankle (A), torso (T),
shoulder (S) and elbow (E).
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Chapter 4. Human Ergonomics Monitoring System

In Figure 4.3 the results of the demonstration experiments are illustrated for subject 1
(Figure 4.3a) and for subject 2 (Figure 4.3b), respectively. As explained in the pre-
vious paragraph, the experiment was divided into two phases: the contact point de-
tection and the overloading joint estimation. A black dotted line separates the two
phases in the plots. For each subject, two graphs are reported. In the upper one, the
two-dimensional (2D) stick-model of the human is depicted in some illustrative body
configurations throughout the experiment. Only during the second phase, the overload-
ing joint torques, which are computed based on the contact point estimated in the first
phase, are displayed in the form of spheres superimposed on the stick-model, color-
coded to denote a high (red), medium (yellow) or (low) level of joint overloading. De-
tails about how the three levels of the ergonomic index are determined will be provided
in Section 5.1. The contact point position is depicted as well through a pink square.
This information was provided online to the subject by means of the graphical inter-
face during the experiment. The percentage error of the contact point positions and the
estimation time are: 5.04% and 19.60 s for subject 1 and 9.83% and 5.80 s for subject
2, respectively. In the lower graph, the overloading torque values for the human main
joints: hip (H), knee (K), ankle (A), torso (T), shoulder (S), and elbow (E) are shown.
In the first phase, before the black dotted line, the values are zero since the contact point
is not found yet while in the second phase, after the black dotted line, it is possible to
compute them. As explained in the previous paragraph, only symmetrical movements
were performed in this experiment thus the information of the two legs and arms is
considered to be equal.

Discussion

For both subjects 1 and 2, the link including the contact point was correctly identified
and the localisation accuracy is considered acceptable to the extent of the industrial
applications addressed in this thesis. Accordingly, it is possible to assume that the
overloading torque computed on the basis of the estimated contact points are good in-
dicators for the mechanical overburden of the human body structures while performing
activities with an external load.

4.3 Overloading Joint Fatigue

For the mitigation of risks associated with repetitive and monotonous lightweight tasks,
the overloading joint torque method presented in Section 4.2 would not be suitable. In
fact, the overloading torques induced by a light payload (e.g. a lightweight tool) are
low/moderate and the associated risk of joint injuries is not significant. On the other
hand, even if the instantaneous overloading torques are not high, the building up of
their effect on the joints over a protracted period of time could become hazardous.
Accordingly, the focus of [31] was to develop a whole-body fatigue model to evaluate
the cumulative effect of the overloading torque induced on the joints throughout time
by light payloads. In addition, since the perception of fatigue is expected to be subject-
specific, an index called fatigue ratio K is considered in the model, which is computed
experimentally. The less the subjects can support a load, the greater the fatigue ratio K
and the quicker the accumulation of joint fatigue.
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4.3. Overloading Joint Fatigue

Fatigue and Recovery Model

The proposed overloading joint fatigue model is based on the model proposed in [42]
and represented by an RC circuit with zero initial charge state, which is mathemati-
cally modelled by a differential equation. However, in [42] the fatigue ratio K was
considered as a constant and set equal to 1 while it is estimated experimentally in the
presented model. The overloading joint fatigue of the i-th joint τFi at a time instant t
can be defined as

τFi (t) = ∆τmax
i

⎛
⎝

1 − e∫
T

0
−Ki∆τi(t)

∆τmax
i

dt⎞
⎠
, (4.7)

where ∆τmax
i is the maximum joint overloading for the i-th joint, Ki is the fatigue ratio

for the i-th joint (see next section for details), and ∆τi(t) is the overloading torque for
the i-th joint at a time instant t, computed as explained in Section 4.2.

Along with the overloading joint fatigue model, a recovery model should also be
modelled to describe how the force generation capacity is recovered during rest periods.
The recovery model can be defined as

τFi (t) = τmax
i − (τmax

i − τF0
i )e−Rit, (4.8)

where τF0
i is the initial value of the overloading fatigue and Ri is the recovery ratio for

the i-th joint, which is set to 2.4Ki in accordance with other works on recovery models
found in literature [165, 166].

In the new proposed overloading joint fatigue and recovery models, we assume that
the relationship between the models is represented by the threshold τ th

i = 0.33∆τmax
i .

The model can then be defined as

τFi (t) =
⎧⎪⎪⎨⎪⎪⎩

Fatigue model if ∆τi(t) > τ th
i

Recovery model otherwise
.

Fatigue Ratio Identification

Since fatigue is strictly related to the individual’s physical capacity and feelings, the
fatigue ratio Ki must be subject-specific and can be identified experimentally, for each
i-th joint. To obtain this ratio, we consider the overloading fatigue model in static con-
ditions, resulted from a constant overloading joint torque in a fixed body configuration.
A time interval TF is defined, similarly to the maximum endurance time (MET) pre-
sented in [167], by the period from the beginning of the trial to the time instant at which
joint overloading fatigue reaches the current overloading torque ∆τ̄i at joint i. Hence:

τFi (t) = ∆τmax
i (1 − e−Ki∣∆τ̄i∣TF ) = ∆τ̄i, (4.9)

where ∣∆τ̄i∣ is the normalised current overloading joint torque, defined as ∆τ̄i/∆τmax
i .

Consequently, the fatigue ratio Ki is obtained from the measured TF in (4.9) as

Ki = −
ln (1 − ∣∆τ̄i∣)

∣∆τ̄i∣TF
. (4.10)
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The fatigue ratio Ki is computed for each i-th joint since the strength exerted by
each joint varies and thus the fatigue occurs in different timings.

As a result, the fifth index ω5(q) is the joint normalised overloading fatigue and it
can be defined as

ω5(q) =
τ F (t)
τ F,max(t) .

where τ F,max is the vector including the maximum values of the human joint fatigue and
can be estimated experimentally. The accumulation of local joint fatigue due to exter-
nal load, which can be monitored by means of ω5(q), can result from repetitive actions
with lightweight tool/objects protracted over long periods of time. On the other hand,
repetitive and monotonous movements are among the most frequently cited risk factors
associated with WMSDs, in both experimental science and epidemiologic investiga-
tions [168]. Hence, the overloading fatigue index can be another beneficial indicator of
humans’ physical exposure in the workplace.

4.3.1 Experimental Application of the Method

In this Subsection, the experimental analysis carried out on ten subjects to validate the
overloading fatigue model proposed in [31] is presented. First, the procedure for the
identification of the fatigue ratio, Ki is described. Next, the outcome of the overload-
ing fatigue model is evaluated by means of a sEMG signal analysis in static conditions.
Finally, the capability of the model to monitor online the progression of fatigue is pre-
sented for ten subjects performing a painting task with a lightweight tool. Accordingly,
three experimental sessions can be distinguished: the model identification, the off-
line validation, and the online validation. It should be noted that, since tools with a
known mass and inertial properties were considered in this experimental analysis, the
overloading joint torques were estimated by means of the extended algorithm devel-
oped in [169] which enables to perform the computations without the need for external
(force/pressure) sensors.

Experimental Setup

Ten healthy volunteers, seven males and three females, (age: 30.1 ± 3.8 years; mass:
65.5 ± 29.5 kg; height: 176.2 ± 5.2 cm) 3 were recruited in the experimental analysis.
A written informed consent was obtained after explaining the experimental procedure.
The whole experimental procedure was carried out in accordance with the Declaration
of Helsinki and the protocol was approved by the ethics committee Azienda Sanitaria
Locale (ASL) Genovese N.3 (Protocol IIT_HRII_001).

For the model identification experiment, to determine Ki by means of (4.10), the
subjects had to keep a defined position until they were able to support a load without
changing even minimally the body configuration. In this way, it was possible to assume
that the overloading joint torque ∆τ̄ , which is a function of the body configuration and
external load, was constant throughout the experiment. The time interval, defined as
TF , since the subjects started holding the load till when they were no longer able to

3Subject data is reported as: mean ± standard deviation.
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support it, i.e. when they reached a high level of fatigue, was measured. Firstly, the
fatigue ratio Ks was computed for the shoulder joint, given the value of the correspon-
dent overloading joint torque ∆τ̄s in the selected body configuration. To this aim, the
subjects were asked to stand and hold a 1.5 kg weight (corresponding to the weight of
the painting tool) with the dominant hand, having the arm raised at a 90°angle with the
torso and the elbow slightly bent, the other arm by their side. Then, the fatigue ratio
for the other joints Ki could be obtained proportionally, on the basis of the ratio be-
tween the maximum overloading joint torque for the shoulder ∆τmax

s and the maximum
overloading joint torque for the i-th joint ∆τmax

i .

For the off-line validation experiment, the outcome of the proposed overloading fa-
tigue model was compared to physiological fatigue expressed as the variations of the
maximum power frequency (MPF) of some significant sEMG signals. In fact, muscle
fatigue during submaximal, i.e. isometric contractions, has been shown to be accom-
panied by decreases in the MPF [170]. Six sEMG sensors were placed on the arm
of each subject, specifically on the following muscles: the anterior deltoid (AD), the
posterior deltoid (PD), the biceps (BC), the triceps (TC), the brachioradialis (BR) and
the extensor carpi ulnaris (EC). To monitor the whole-body motion the subjects were
asked to wear the Xsens MVN Biomech suit presented in Subsection 3.1.1. Then, they
were required to assume the same body configuration described above (for the fatigue
ratio identification experiment) and to perform three trials: to hold the 1.5 kg weight
without changing the defined position for three different time interval, respectively 90,
60 and 30 seconds, with the necessary rest time in between. During these trials, the
sEMG signals were measured and the overloading joint fatigue was estimated. Prior
to the analysis, the sEMG signals were filtered (passband: 1-500 Hz) to remove move-
ment artifacts. Linear regression was then used to extract from the sEMG data the
linear model for the MPF, in accordance with studies for sEMG-based fatigue analysis
in literature [171, 172]. Both the MPF and the overloading fatigue time series were
normalised over time to correspond to the same number of samples for the sake of
comparison and the overloading fatigue values were normalised between 0 and 1. It
should be pointed out that MPF gives a fatigue estimation at the muscle level while
the overloading fatigue model is expressed at the joint level thus a direct comparison
between the two variables is not possible. However, their similarities in the percentage
of decrement/increment and in the trend can be assessed.

For the online validation experiment, since the aim of the overloading fatigue model
is to estimate the risk associated with repetitive lightweight tasks in real-life environ-
ments, a typical scenario in the manufacturing industry was selected, namely manual
spray painting, which has proven to result in a high incidence of WMSDs [173]. Hence,
the capability of the overloading fatigue model to monitor online the progression of fa-
tigue exhibited during manual spray painting was assessed. The subjects, wearing the
Xsens suit, were asked to hold a 1.5 kg spray gun with their dominant hand and stand
in front of a car bumper (the object which needed to be painted) placed approximately
at the height of their torso. Next, following a set of sound signals which dictated a spe-
cific timing, they were asked to simulate the painting action with a spray gun in eight
predefined points on the car bumper (i.e. P1, P2,⋯, P8), in accordance with a specific
order (see Fig. 4.4). After the starting signal, the subjects had to process each point
for approximately 15 seconds and, as soon as they heard another sound signal, they
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Chapter 4. Human Ergonomics Monitoring System

Figure 4.4: Experimental setup for the online validation experiment of the proposed fatigue model. The
subjects were asked to hold a 1.5 kg spray gun with their dominant hand and stand in front of a car
bumper (the object which needed to be painted) placed approximately at the height of their torso.
Next, following a set of sound signals which dictated a specific timing, they were asked to simulate
the painting action with a spray gun in eight predefined points on the car bumper (i.e. P1, P2,⋯, P8),
in accordance with a specific order.

were asked to change body configuration to pass to the subsequent point as quickly as
possible. The overloading fatigue in the crucial human joints was estimated throughout
the experiment for all the subjects and its values were normalised between 0 and 1.
Subjects’ motion was constrained to the sagittal plane since a human sagittal model is
considered in this study. In addition, given that the movements of the leg were almost
symmetric, the overloading torques on the joints of the legs were assumed to be equal
in the right and in the left one.

Results

The results of the off-line validation experiment are shown in Figure 4.5 for one selected
subject. The first line of graphs is related to the variables representative for the shoul-
der, i.e. the MPF decrement in the AD and PD muscles and the estimated normalised
overloading fatigue ∣τFS ∣ in the shoulder joint. The second line of graphs, instead, is re-
lated to the variables representative for the elbow, i.e. the MPF decrement in the BC and
in the TC muscles and the estimated normalised overloading fatigue ∣τFE ∣ in the elbow
joint. The MPF trend in the BR and in the EC muscles, in retrospect, were considered
not significant for the analysis. The mean and the standard deviation of the decrement
ratio for both the MPF and the overloading fatigue between all the ten subjects in the
three experimental conditions were computed. A t-test was performed and it resulted
that all the analysed data come from a normal distribution at the 1% significance level
hence the mean and the standard deviation were considered as good indicators for the
analysis. Considering all the subjects, the results for the shoulder joint are presented in
Table 4.2 while the results for the elbow joint are presented in Table 4.3.

The results of the online validation experiment are illustrated in Figure 4.6 and 4.7.
In Figure 4.6a the profile of the angles in all the main joints (hip (H), knee (K), ankle
(A), shoulder (S), and elbow (E)) exhibited by one subject throughout the experiment
are depicted. In Figure 4.6b, the normalised overloading torque ∣∆τ ∣ (left side) and
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4.3. Overloading Joint Fatigue

Figure 4.5: Trend of the the MPF of the sEMG signals measured in the anterior deltoid (AD), poste-
rior deltoid (PD), biceps (BC) and triceps (TC) muscles and trend of the overloading joint fatigue
estimated in the shoulder and in the elbow throughout 3 different trial lasting 90, 60 and 30 seconds
respectively, for one subject.

Table 4.2: Mean and standard deviation computed between ten subjects of the MPF of the EMG signals
measured in the anterior deltoid (AD) and posterior deltoid (PD) muscles and of the overloading
joint fatigue estimated in the shoulder in three trials lasting 90, 60 and 30 seconds, respectively.

Period
EMG % dec. Fatigue % inc.

AD PD Sho
90s 24.92±10.08 20.06±8.74 94.42 ± 10.38
60s 16.45±12.71 15.73±9.78 87.48±14.24
30s 6.90±9.65 4.02±9.02 65.32±14.56

the normalised overloading fatigue ∣τ F ∣ (right side) are presented in the shoulder (S)
and in the elbow (E) - the joints more at risk for this specific task - for one subject.
These graphs show how the trend of the overloading fatigue varied depending on the
value of the overloading torque: if ∣∆τ ∣ was over the threshold, ∣τ F ∣ increased while it
decreased under the threshold since the recovery mode was initiated. In Figure 4.7 the
mean and the standard deviations of the joint overloading torque (left side) and of the
fatigue (right side), respectively, computed between all the ten subjects are displayed
in all the main joints (hip (H), knee (K), ankle (A), shoulder (S) and elbow (E)). It is
evident that the trend of the overloading torque was very similar between the subjects
since the timing of the task was fixed and the body configurations chosen by the subjects
were very similar. The overloading fatigue, instead, is more variable since it depends
on the subject-specific fatigue ratio K.
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Table 4.3: Mean and standard deviation computed between ten subjects of the MPF of the EMG signals
measured in the biceps (BC) and triceps (TC) muscles and of the overloading joint fatigue estimated
in the elbow for three trials lasting 90, 60 and 30 seconds, respectively.

Period
EMG % dec. Fatigue % inc.

BC TC Elb
90s 8.27±7.50 19.48±5.20 57.03 ± 8.13
60s 4.47±9.80 14.81±7.58 46.43±8.45
30s -0.34±6.91 6.21±8.54 31.97±8.77

P1   P2   P3   P4   P5   P6   P7   P8

(a)

P1   P2   P3   P4    P5    P6   P7    P8

(b)

Figure 4.6: (a) joint angles profiles in the main body joints: hip (H), knee (K), ankle (A), shoulder (S)
and elbow (E) for one subject. (b) overloading joint torque (red line) and overloading joint fatigue
(blue line) estimated in the shoulder (S) and in the elbow (E) for one subjects.

Figure 4.7: Mean and standard deviation of the overloading joint torque (left side) and of the overload-
ing joint fatigue (right side) computed between ten subjects in the main body joints: hip (H), knee
(K), ankle (A), shoulder (S) and elbow (E).
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Discussion

In this paragraph, the results of the off-line validation experiment are first discussed
and then the outcome of the online validation experiment is addressed.

In Figure 4.5 it is possible to observe that, as expected, a longer trial corresponds to a
greater decrement of the sEMG signals MPF in all the considered muscles. Correspond-
ingly, the overloading fatigue model is able to reproduce the same trend but, clearly, in
the opposite way, since the progression of fatigue is described through an increasing
function in the proposed method. For all the subjects, an increment trend comparable
to the decrement trend of the sEMG signals MPF, in the three experimental conditions,
is demonstrated. In view of the above, the overloading fatigue model shows promising
capabilities to account for the accumulation of physiological fatigue throughout time.
It should be pointed out that the performance of the proposed approach was tested by
executing isometric, i.e. constant length (static) muscle contractions because sEMG
measurements can be considered far more reliable in such conditions and can be used
for evaluations. Nevertheless, as previously said, in dynamic conditions sEMG estima-
tions are questionable while the proposed model has the potential to be employed even
in the dynamic case, i.e. when the subject moves to perform a task or applies different
forces at hand.

On the other hand, the results of the online validation experiment highlight the ben-
efit, introduced by the proposed fatigue model, of addressing the cumulative effect of
the overloading torque throughout time. Considering the elbow joint in Figure 4.6b as
an example, the overloading torque value remained moderate and almost constant over
the entire duration of the task thus it did not represent a potential source of risk. Con-
versely, the overloading fatigue took into consideration its cumulative contribution and,
after some time, increased significantly, proving its capability to identify the hazards
associated with fatigue progression while performing repetitive tasks involving light
payloads.
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4.4 Energy-related Variables

4.4.1 Overloading Joint Power

The sixth index ω6(q) is the joint normalised overloading power which can be defined
as

ω6(q) =
P

Pmax
= q̇h∆τs

q̇h
max∆τmax

.

where ∆τs is the overloading joint torque vector, ∆τmax is the vector including the
corresponding maximum values, q̇h is the joint velocity vector and q̇h

max is the vector
including the joints maximum velocities. Based on human joint power, several proce-
dures can be found in the literature with the aim to estimate the physical effort needed
during gait [174,175] but also to detect potential risk in manual material handling [99].
Overloading joint power is different from joint power in his classical conception since
the overloading joint torques (which takes into account only the effect of an external
load) and not the net joint torques are employed in the computation. Nevertheless, it is
considered worthwhile to investigate also ω6(q) as a further possible indicator of the
physical expenditure during occupational activities.

4.4.2 Delta CoM Potential Energy

In [176], the change in potential energy of human body masses was employed as a mea-
sure of performance within an optimisation-based approach to model human motion.
Based on that, the “delta CoM potential energy” index was developed. The potential
energy for the CoM of the human body can be obtained by multiplying the height of the
CoM, thus the z-coordinate, by the force of gravity and the human body mass. How-
ever, such a quantity is not evaluated directly but rather its variation between different
body configurations is considered. Accordingly, two potential energies are defined:
E0
P = mgTC0

M ∣z which is associated with a neutral and natural body configuration and
EP = mgTCM ∣z which is associated with the current one. Hence, delta CoM potential
energy can be defined as

∆EP = EP −E0
P =Mg∆CM ∣z =Mg(CM ∣z −C0

M ∣z),
where M is the mass of the subject, g is the gravity acceleration and ∆CM ∣z is the
variation of the z-coordinate of the CoM, with C0

M ∣z the CoM in the neutral posture
and CM ∣z the CoM in the current one. Such a quantity provides the degree of deviation
of the the posture of the subjects from a neutral and convenient body configuration.
Hence, to some extent, it is capable to monitor the risk associated with awkward and
unfavourable postures, which, as noted above, are a major contributor to the develop-
ment of WMSDs. Accordingly, the seventh index ω7(q) is the normalised delta CoM
potential energy and it can be defined as

ω7(q) =
∆EP

∆Emax
P

= ∆CM ∣z
∆CM ∣zmax

.

where ∆CoMmax
z is the maximum displacement of the CoM height (z-coordinate) and

it can be estimated experimentally. It should be noted that only the vertical movement
of the human CoM is taken into account by this index. Nevertheless, the horizontal
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deviations of the CoM (strictly related to the CoP) are thoroughly evaluated by the
overloading joint torque and by the other associated indexes.

4.5 Compressive Forces

With the aim to account for the balanced inward (“pushing”) forces that result from the
interaction of the human with the environment or objects, a new index was proposed in
[151]. In particular, the concept of the proposed “compressive forces” was conceived to
overcome the limitations of the overloading joint torque index. In fact, there are certain
body configurations or task-dependent force profiles (magnitude and direction) that are
characterised by negligible joint torques but considerable compressive forces, which
may be harmful to the musculoskeletal system. For instance, this happens with body
configurations at the edge of the human reachability map, like the one represented in
Figure 4.8, where interaction forces present short lever arm but significant compressive
potential on the joints. Additionally, the compressive force index takes into account

Figure 4.8: Explanatory body configuration in which interaction force profiles (magnitude and direction)
may result in negligible joint torques due to a small lever arm but can induce high compressive forces
at the human joints.

all the components of the external force, in contrast with the overloading joint torque
which is based only on the objects’ gravitational load.

To address these so called compressive forces, a free-body diagram approach was
considered that account for the direct effect on the body of an external forces applied at
the end-effector, in accordance with Newton’s third law. Hence, the effect of an external
force fh ∈ R3, applied at the human end-effector, on a body joint i can be computed as

fC,i = Ri
0R

0
W fh,EE, (4.11)

where R0
i ∈ SO(3) expresses the orientation of frame Σ0 relative to frame Σi and

R0
W ∈ SO(3) expresses the orientation of frame ΣW relative to frame Σ0 (see Section

3.2.1 for details about the human model adopted in this thesis). fh can be measured
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with a suitable forque/torque (F/T) sensor. It should be noted that compressive forces,
as defined here, are not intended as biomechanics-related variables but rather are the
result of geometric considerations.

Based on the above, the eighth index ω8(q) is the joint normalised compressive
force and it can be defined as

ω8(q) =
fC

fmax
C

where fC is the compressive force vector and fmax
C is the vector including the corre-

sponding maximum values, which can be found experimentally.
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4.6 Validation of the Human Ergonomics Monitoring System

To validate the human ergonomics monitoring system developed in this Chapter, an ex-
perimental analysis was conducted on twelve subjects considering three different tasks
that represent typical occupational activities in manufacturing industries and, addition-
ally, are associated with different potential risk factors to the development of WMSDs.
While the subjects were performing such activities, their whole-body motion and the
forces they exchanged with the environment were measured. Then, the set of proposed
ergonomic indexes was computed in an off-line phase. It should be underlined that, as
previously said, the proposed indexes are conceived to perform an online evaluation.
However, in this study, they are computed a posteriori for the sake of a thorough anal-
ysis. The outcome of the proposed indexes is investigated to establish their link with
the main ergonomic risk factor such as mechanical overloading of the body structures
or monotonous actions repetitiveness. To provide a benchmark of the effective physical
effort required for the tasks, muscle activity is monitored throughout the whole duration
of the experiments. In addition, a comparison is made with the ergonomic risk scores
resulting from the EAWS [72], which are a well-recognised and exhaustive method to
evaluate workers’ physical exposure. The corresponding analysis and computations are
carried out in collaboration with Fondazione Ergo (headquarters: Varese, Italia).

The reasoning underlying this experimental analysis is expressed with the objective
to offer the proposed human monitoring system as a possible tool to assess human
ergonomics, with the added groundbreaking benefit of an online and subject-specific
evaluation.

4.6.1 Experimental Analysis

In this section, the experimental analysis conducted on human subjects to validate the
proposed ergonomics monitoring system is presented. Firstly, a calibration experiment
was performed to identify the subject-specific whole-body CoP model by means of the
SESC technique presented in Section 3.2.2. Next, three different tasks were performed
by each participant with the aim to simulate, in the laboratory settings, occupational
activities which are commonly carried out by workers in the current industrial sce-
nario. Such tasks were selected to encompass the most significant risk factors in the
workplace: mechanical overloading of the body joints, variable and high-intensity in-
teraction forces, and repetitive and monotonous movements. Accordingly, lifting/low-
ering of a heavy object, drilling, and painting with a lightweight tool were consid-
ered, respectively, in this study. While the subjects were carrying out such activities,
the data regarding the whole-body motion and the forces exchanged with the environ-
ment (both GRF and interaction forces at the end-effector) were collected. Lastly, the
full set of ergonomics indexes (see Table 4.1) to the assessment of human whole-body
kino-dynamic states was estimated in an off-line phase. The whole experimental pro-
cedure was carried out in accordance with the Declaration of Helsinki and the protocol
was approved by the ethics committee ASL Genovese N.3 (Protocol IIT_HRII_001).
Twelve healthy volunteers, eight males and four females, (age: 28.9 ± 3.5 years; mass:
69.3 ± 13.5 kg; height: 173.9 ± 6.8 cm)4 were recruited in the experimental analysis. A
written informed consent was obtained after explaining the experimental procedure.

4Subject data is reported as: mean ± standard deviation.
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MVN
Biomech Suit

Kistler
Force plate

Delsys Trigno
EMG

Static pose 1 Static pose n

Figure 4.9: Overview of the experimental setup. All the sensors involved in the experiments are illus-
trated. For the calibration experiments, they were asked to hold twenty-five static postures.

For the calibration experiment, the subjects were asked to wear the Xsens MVN
Biomech suit, presented in Subsection 3.1.1, to track the whole-body motion and to
stand on the Kistler force plate, presented in Subsection 3.1.2, to measure the whole-
body CoP and vGRF. The experimental setup is depicted in Figure 4.9. Then, they
were asked to hold twenty-five static postures to build the input data set required for
the SESC parameters identification, following the procedure presented in Subsection
3.2.2. During the acquisition, the body configurations were selected arbitrarily by the
subjects, but with the requirement to vary the orientations of the body segments as
much as possible in between, to collect data as linearly-independent as possible. The
subjects were required to the extent possible to restrict their movements to the sagittal
plane since a human sagittal model is adopted in this thesis. Accordingly, both the
estimated and measured human CoP were projected onto such a plane for the sake of
computations. Once the SESC parameters were identified for each participant, they
could be used to achieve the subject-specific whole-body CoP estimation in any body
configuration.

For the validation experiments, the subjects were asked to wear the Xsens MVN
Biomech suit and to stand on the Kistler force plate, to track the whole-body motion
and the CoP and GRF, respectively. In addition, ten sEMG sensors were placed on the
body of each subject to measure muscle activity as a reference to the effective physical
effort required for the tasks. Specifically, the following muscles were analysed: the
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Anterior Deltoid (AD), the Posterior Deltoid (PD), the Biceps Brachii (BC), the Triceps
Brachii (TC), the Trapezius Descendens (TR), the Erector Spinae (ES), the Gluteus
Maximus (GM), the Rectus Femoris (RF), the Biceps Femoris (BF) and the Tibialis
Anterior (TA). As in the calibration experiment, the subjects were required to bound
their movements to the sagittal plane. Accordingly, the selection of the muscles was
made considering the ones more involved in flexion/extension movements. Prior to the
experiment, the maximum voluntary contraction (MVC) exerted by each muscle was
recorded for all the participants with the aim to normalise the muscle activity. Then,
the subjects were required to perform the three selected tasks to simulate industrial
occupational activities.

These tasks are illustrated in the next paragraphs and the corresponding procedure
and experimental setup as well as the rationale for the selection are provided. Note that,
for all the tasks, a trial is referred to as a work cycle. Additionally, a final paragraph
presents the processing performed on the data collected during the experiments.

Task 1: Lifting/Lowering a Heavy Object

As explained in Section 1.1, many disorders and injuries that affect the musculoskeletal
system are mainly provoked by the mechanical overload of biological structures such as
muscles and joints. The potential overload of tissues results from high-intensity forces
or torques which act on and within the human body. Among the occupational activi-
ties that coincide with high mechanical requirements, one of the most commonly per-
formed in manual manufacturing industries is the handling/carrying of heavy objects.
The detrimental effect of mechanical overload primarily depends on the magnitude of
the force required to accomplish it. Accordingly, the lifting/lowering of boxes charac-
terised by different weight (thus demanding different effort) was the selected task to
evaluate the overburden of body structures as an ergonomics risk factor. To reproduce
such a task, the scenario represented in Figure 4.10 was defined.

The subjects had to place their feet in a pre-defined position (on the force plate), 0.5
m far from the wall, and keep them there for the whole duration of a work cycle. The
task consisted in lifting/lowering a box on a shelving (with shelves 0.3 m long) and put
it/take it at/from three different height levels that where located under the human knees
(V1, 0.6 m w.r.t. the floor), at the level of the pelvis (V2, 1.15 m w.r.t. floor) and over
the shoulder (V3, 1.7 m w.r.t. floor), respectively. Specifically, the subjects had to pick
up the box from the floor, put it on the selected height, keep the position for 3 seconds
(without supporting the weight of the box), and then pick up again the box and put it on
the floor. The weights of the boxes were 2.5, 5, and 10 kilograms, respectively. During a
work cycle, all the possible combinations of box weight/height level were considered in
a randomized order. The sequences of the nine box weight/height level combinations
(ordered from 1 to 9) to be performed within each work cycle are specified in Table
4.11. The subjects were required to perform three work cycles and between one work
cycle and the following, there was a resting period of 2 minutes.

Task 2: Drilling

As mentioned in the previous paragraph, the load affecting the musculoskeletal system
during working activities depends mainly on the magnitude of the force exerted/ex-
perienced by workers. Nevertheless, other factors can contribute to its intensification,
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Figure 4.10: Scenario for ergonomics assessment while performing a lifting/lowering task with a heavy
object.

Figure 4.11: The sequences of the nine box weights × height levels combinations (ordered from 1 to 9)
to be performed within each work cycle for task 1.

HeightTrial 1 V1 V2 V3

2.5 Kg Box 1 7 3
5 Kg Box 9 4 5

W
ei

gh
t

10 Kg Box 6 8 2

HeightTrial 2 V1 V2 V3

2.5 Kg Box 9 4 2
5 Kg Box 1 8 7

W
ei

gh
t

10 Kg Box 3 6 5

HeightTrial 3 V1 V2 V3

2.5 Kg Box 6 3 9
5 Kg Box 5 8 2

W
ei

gh
t

10 Kg Box 7 4 1

namely the direction of the force, its variability over time, and the postural demands re-
quired to develop it. Accordingly, to assess concurrently these determinants the drilling
of panels located in different position and orientations in the work space was selected
as the second task, and the scenario represented in Figure 4.12 was defined for this
purpose.

The subjects had to place themselves in the same configuration defined for task 1.
The task consisted in drilling three wood panels that are located in three different posi-
tions (D1, D2, D3) on a shelving, highlighted in green in Figure 4.12. The holes, made
with the driller, had to be performed approximately in the points where the red crosses
(x) are depicted. Specifically, the three points to be drilled are located at the follow-
ing horizontal and vertical coordinates: (0.15,1.7) m, (0.0,1.3) m and (0.15,0.6) m
respectively. During a work cycle, each point had to be drilled for 10 seconds, in the
sequence D1, D2, D3, with a break of approximately 5 seconds in between. Through-
out the whole duration of the task, the interaction forces developed at the hand/tool
interface were measured. For this purpose, the subjects had to keep the driller through
a dedicated handle, which was connected to a F/T sensor (see the left side of Figure
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(a)

(b)

Figure 4.12: (a) Scenario for ergonomics assessment while performing a drilling task. (b) The tool
employed for the task: a driller connected to a F/T sensors and supported by a dedicated handle.
The F/T sensor frame is also highlighted.

4.12). The tool (driller+handle) had to be used with only the dominant hand while the
other arm had to be kept stationary along the body. The weight of the full tool was 2.5
kg. The subjects were required to perform three work cycles and between one work
cycle and the following, there was a resting period of 2 minutes. The work cycles were
all performed following the same procedure.

Task 3: Painting with a Lightweight Tool

An other of the most frequently cited contributors to musculoskeletal failures is rep-
resented by monotonous and repetitive manipulations protracted over long periods of
time. In fact, repetitive actions with light-weight objects may result in the accumula-
tion of local muscle fatigue, which can cause severe injuries [177,178]. The pain felt in
muscles, nerves, and tendons caused by repetitive movements and overuse can be de-
scribed with the general term repetitive strain injury (RSI) and mostly affects the upper
body structures.

Accordingly, a spray painting task with a lightweight spray gun was selected to
evaluate the risk of RSI and the scenario represented in Figure 4.13 was defined.

The subjects had to place themselves in the same configuration defined for the pre-
vious tasks. The task consisted in painting two helmets along their whole surface (the
surface accessible at best considering the positioning of the helmets) with a spray-gun.
The helmets were hanging from a hook at two different height levels (V2, V3) that are
1.15 m and 1.7 m respectively. During a work cycle, the subjects had to spray each
helmet (first the one located at V3, next the one located at V2) moving smoothly and
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Figure 4.13: Scenario for ergonomics assessment while performing a spray painting task.

slowly the spray-gun in proximity to the helmet: from the top to the bottom for 10 sec-
onds, then from to the bottom to the top for 10 seconds and finally again from the top
to the bottom for 10 seconds. In total, each helmet has to be painted for 30 seconds,
with a break of 5 seconds approximately in between. The subjects were required to
perform three work cycles and between one work cycle and the following, there was a
resting period of 2 minutes. The work cycles were all performed following the same
procedure.

Data Processing

For all the tasks described above, for all the related trials (work cycles), and for all the
twelve subjects, the full set of ergonomic indexes proposed in this thesis (see Table 4.1)
to the assessment of human whole-body kino-dynamic states was estimated. For task 1
and task 2, the most significant events throughout the execution of the tasks were iden-
tified and data were cut accordingly, with the aim to extract the data sections of interest
to the analysis. Specifically, for each trial of Task 1, nine data sections corresponding
to a lifting action and nine data sections corresponding to a lowering action were ex-
tracted (due to the three box weights × the three height levels experimental conditions).
On the other hand, three data sections corresponding to a drilling action were extracted
for each trial of task 2. For task 3, no cutting was performed in any of the trials. In
fact, the repetitiveness of movements and actions over time and thus the build-up of
the effects of physical exposure was analysed in this case. Subsequently, the data of
each action for trials 1 and 2 and the full data of task 3 were normalised over time to
101 frames (0 − 100% of the action or task progression) for the sake of comparison.
The latter operations were performed for all twelve subjects. Finally, the data were
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averaged among the three trial for each subject and then, among the twelve subjects.
The sEMG signals for all the ten muscles were first filtered (pass band: 1-500 Hz) to
remove movement artifacts. Then, they were rectified and normalised using the MVC
values previously recorded for each subject.

4.6.2 Results

In this Subsection, the results of the validation experiments are presented for all the
three selected tasks performed by twelve subjects. A specific paragraph is dedicated to
the outcome of the analysis carried out using the EAWS method.

Task 1: Lifting/Lowering a Heavy Object

In Figures from 4.14 to 4.20 some of the proposed ergonomic indexes are presented
for task 1. Both the lifting (red lines) and lowering (blue lines) actions are illustrated
considering all the three box weights, namely 2.5 (a - first row), 5.0 (b - second row),
and 10.0 kg (c - third row) and the three height levels, namely low (dashed lines), mid
(dotted lines) and high (solid lines). The mean values computed among the twelve
subjects (in turn averaged among the three trials) for the overloading torque ∣∆τ ∣, the
overloading power ∣P ∣, the angle q, the velocity ∣q̇∣ and the acceleration ∣q̈∣ are repre-
sented in the human main joints. Specifically, each Figure corresponds to a joint: hip (H
- Figure 4.14), knee (K - Figure 4.15), ankle (A - Figure 4.16), back (B - Figure 4.17),
shoulder (S - Figure 4.18), elbow (E - Figure 4.19), and wrist (W - Figure 4.20). The
standard deviation values computed among the twelve subjects are also highlighted for
∣∆τ ∣ and ∣P ∣. The just mentioned ergonomic indexes are selected for task 1 since they
are expected to provide more relevant information for the purpose of physical exposure
assessment in relation to the specifications of the task itself. In fact, since considerable
mechanical overloading of the body is envisaged during lifting/lowering of a heavy
load, overloading joint torque and overloading joint power will be analysed. In addi-
tion, the full joints kinematics (i.e., angles, velocities and accelerations) and the CoM
potential energy are examined. Note that all the quantities presented are normalised
with respect to their maximum value as defined in Chapter 4 except the joint angles for
whom the raw value is given for the sake of the analysis.

At the hip level, no significant differences can be observed on the whole. ∣∆τH ∣ and
∣PH ∣ values show similar trends and both remain in the lower half of the plot for all the
box weight and height level conditions. qH increases following the height level condi-
tion from low to high, but is almost equal among different boxes weights. As expected,
only flexion is performed and in a similar way for all the experimental conditions. ∣q̇H ∣
shows different profiles among the experimental conditions but its maximum value is
approximately the same. ∣q̈H ∣ is quite constant in the lifting phase except for a peak
at the end of the action at low height level for all the box weight conditions. In the
lowering phase, more variable trends can be noted among the experimental conditions.
However, maximum acceleration values are quite low and similar to each other.

At the knee level, ∣∆τK ∣ and ∣PK ∣ values are generally higher than at the hip level.
Among different height levels they don’t show meaningful differences but, from 2.5 to
10.0 kg of the box weight, an increment, more pronounced for ∣∆τK ∣, can be observed
in both the lifting and lowering phase. qK is almost equal for all the experimental
conditions except a slight decrement for low height level. As at the hip level, only
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flexion is always performed with no particular variations. ∣q̇K ∣ shows a sort of M-
shaped profile and its maximum value is approximately the same in all the experimental
conditions, a bit lower than at the hip level. ∣q̈K ∣ tends to increase in the lifting phase
and to decrease in the lowering phase and, as at the hip level, maximum values do not
show significant magnitudes.

At the ankle level, ∣∆τA∣ exhibits an increase from 2.5 to 10.0 kg of the box weight as
at the knee level and similarly, there are no significant differences among height levels.
A comparable behaviour is shown by ∣PA∣ but less prominent. qA presents comparable
values and limited ROM for all the experimental conditions. As regards ∣q̇A∣ and ∣q̈A∣,
the observations done at the knee level can be repeated.

At the back level, a substantial rise in ∣∆τB ∣ with increasing weight of the box can be
noted, together with a moderate one with increasing height level. As a result, very high
values of overloading are reached in some conditions, especially with 10.0 kg. ∣PB ∣ is
overall quite low, except a small increment for the 10 kg box condition. No significant
flexion can be observed from qB. Its ROM grows from low to high height levels. Both
∣q̇B ∣ and ∣q̈B ∣ are rather low and steady among all the experimental conditions.

At the shoulder level, ∣∆τS ∣ exhibits trends similar to those at the back level, in-
creasing considerably with the box weight and less with the height level. Accordingly,
also at the shoulder level, significant values of overloading are achieved and mostly
for the 10.0 kg box weight condition. ∣PB ∣ is overall low but it presents a peak at the
end of the actions which increases both with the box weight and the height level. As
for the previous joints, qS ROM increases with the height level and its trend does not
vary significantly among different experimental conditions. ∣q̇S ∣ maximum values are
higher than at the knee, ankle, and back level and comparable to those at the hip level.
The profiles are similar among the experimental conditions. ∣q̈S ∣ tends to increase in
the lifting phase and to decrease in the lowering phase and maximum values are not
meaningful as at the knee and ankle level.

At the elbow level, what was said as regards the shoulder level can be basically
repeated. The only exception is that ∣∆τE ∣ seems to be higher for the mid height level
than for the high height level for all the box weight conditions. In addition, it should
be noted that qE , as qK , at the knee level approaches the ROM boundaries and tends to
grow over the course of the actions.

At the wrist level, ∣∆τW ∣ do not show meaningful differences among height levels
but present a considerable growth with increasing box weight and thus high values of
overloading can be observed, as for the back, shoulder, and elbow. On the whole, ∣PW ∣
is low, except for a slight increment for the 10 kg box weight condition. qW and ∣q̇W ∣
do not exhibit relevant peculiarities since qW ROM is limited and ∣q̇W ∣ is globally low
and approximately steady. On the other hand, ∣q̈W ∣ shows quite variable profiles among
the different experimental conditions and is significantly higher than for all the other
joints.

To recap, ∣∆τ ∣ in the lower body presents overall a moderate value. No meaningful
differences can be observed among different height levels but a modest rise can be noted
with increasing box weights. On the other hand, ∣∆τ ∣ in the upper body (back + arm)
shows substantial growth with increasing weight of the box and an appreciable growth
also with increasing height level. At the elbow level, ∣∆τE ∣ exhibits a higher value for
the mid height condition. Most likely, for the high height condition, the load was sup-
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ported mostly by the shoulder thus the effort in the elbow do not increase. No relevant
information is provided by ∣P ∣ in general, except for some peaks that increase with both
the box weight and height level conditions, noticeable at the shoulder and elbow level.
Considering q, the most remarkable ROM and maximum values are presented at the
knee and at the elbow level, to a small extent at the hip level. The values of ∣q̇∣ are
globally moderate and steady among different experimental conditions and the same
reasoning is valid for the values of ∣q̈∣, excluding the more considerable accelerations
exhibited at the wrist level.

In Figures 4.21, 4.22 and 4.23 the muscle activity in the leg, in the back and in
the arm, respectively, is presented for task 1. Both the lifting (dark green lines) and
lowering (light green lines) actions are illustrated considering all the three box weights,
namely 2.5 (first row), 5.0 (second row) and 10.0 kg (third row) and the three height
levels, namely low (dashed lines), mid (dotted lines) and high (solid lines). The mean
and standard deviation values computed among the twelve subjects (in turn averaged
among the three trials) are represented. Specifically, the muscles analysed are: the
Rectus Femoris (RF), the Biceps Femoris (BF) and the Tibialis Anterior (TA) for the
leg, displayed in Figure 4.21; the Trapezius Descendens (TR), the Erector Spinae (ES)
and the Gluteus Maximus (GM) for the back, displayed in Figure 4.22; the Anterior
Deltoid (AD), the Posterior Deltoid (PD), the Biceps Brachii (BC) and the Triceps
Brachii (TC) for the arm, displayed in Figure 4.23, respectively.

The leg muscles globally show a moderate activity and similar profiles among all
the different experimental conditions. The only exception is the BF that presents no-
ticeable growth with increasing box weight. It should be noted that similar behaviour
is exhibited by the ∣∆τ ∣ in the lower body joints. The back muscles activity overall
augment with increasing box weight. TR, in particular, presents considerable growth
also with increasing height level. A very similar trend is visible in the arm muscles,
more notably in the AD and BC, to a less extent in the TC, which is generally not very
active. As for the lower body, the muscles of the back and of the arm basically reflect
the pattern of ∣∆τ ∣ in the upper body joints.

In Figure 4.24, The CoM potential energy is depicted. No significant differences
can be observed, neither to vary box weight or to vary height levels.
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Figure 4.14: Task 1: overloading torque ∣∆τ ∣, overloading power ∣P ∣, angle q, velocity ∣q̇∣ and acceleration ∣q̈∣ in the hip while lifting (red lines) and lowering
(blue lines) a box of 2.5 (a), 5.0 (b), and 10.0 (c) kg at three different height levels, namely low (dashed lines), mid (dotted lines), high (solid lines). The mean
among twelve subjects (among three trials for each one) is represented. The standard deviation is also highlighted for ∣∆τ ∣ and ∣P ∣.
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Figure 4.15: Task 1: overloading torque ∣∆τ ∣, overloading power ∣P ∣, angle q, velocity ∣q̇∣ and acceleration ∣q̈∣ in the knee while lifting (red lines) and lowering
(blue lines) a box of 2.5 (a), 5.0 (b), and 10.0 (c) kg at three different height levels, namely low (dashed lines), mid (dotted lines), high (solid lines). The mean
among twelve subjects (among three trials for each one) is represented. The standard deviation is also highlighted for ∣∆τ ∣ and ∣P ∣.
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Figure 4.16: Task 1: overloading torque ∣∆τ ∣, overloading power ∣P ∣, angle q, velocity ∣q̇∣ and acceleration ∣q̈∣ in the ankle while lifting (red lines) and lowering
(blue lines) a box of 2.5 (a), 5.0 (b), and 10.0 (c) kg at three different height levels, namely low (dashed lines), mid (dotted lines), high (solid lines). The mean
among twelve subjects (among three trials for each one) is represented. The standard deviation is also highlighted for ∣∆τ ∣ and ∣P ∣.

79



i
i

“output”
—

2020/11/17
—

15:07
—

page
80

—
#90

i
i

i
i

i
i

C
hapter

4.
H

um
an

E
rgonom

ics
M

onitoring
S

ystem

(a) 2.5 Kg

0

0.5

1
Low height

0 50 100

0

0.5

1

Mid height

0 50 100

High height

0 50 100

0

0.5

1
Low height

0 50 100

0

0.5

1

Mid height

0 50 100

High height

0 50 100

-1

0

1

0 50 100

-1

0

1

0

0.5

1

0 50 100

0

0.5

1

0

0.5

1

0 50 100

0

0.5

1

(b) 5.0 Kg

0

0.5

1
Low height

0 50 100

0

0.5

1

Mid height

0 50 100

High height

0 50 100

0

0.5

1
Low height

0 50 100

0

0.5

1

Mid height

0 50 100

High height

0 50 100

-1

0

1

0 50 100

-1

0

1

0

0.5

1

0 50 100

0

0.5

1

0

0.5

1

0 50 100

0

0.5

1

(c) 10.0 Kg

0

0.5

1
Low height

0 50 100

0

0.5

1

Mid height

0 50 100

High height

0 50 100

0

0.5

1
Low height

0 50 100

0

0.5

1

Mid height

0 50 100

High height

0 50 100

-1

0

1

0 50 100

-1

0

1

0

0.5

1

0 50 100

0

0.5

1

0

0.5

1

0 50 100

0

0.5

1

Figure 4.17: Task 1: overloading torque ∣∆τ ∣, overloading power ∣P ∣, angle q, velocity ∣q̇∣ and acceleration ∣q̈∣ in the back while lifting (red lines) and lowering
(blue lines) a box of 2.5 (a), 5.0 (b), and 10.0 (c) kg at three different height levels, namely low (dashed lines), mid (dotted lines), high (solid lines). The mean
among twelve subjects (among three trials for each one) is represented. The standard deviation is also highlighted for ∣∆τ ∣ and ∣P ∣.
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Figure 4.18: Task 1: overloading torque ∣∆τ ∣, overloading power ∣P ∣, angle q, velocity ∣q̇∣ and acceleration ∣q̈∣ in the shoulder while lifting (red lines) and lowering
(blue lines) a box of 2.5 (a), 5.0 (b), and 10.0 (c) kg at three different height levels, namely low (dashed lines), mid (dotted lines), high (solid lines). The mean
among twelve subjects (among three trials for each one) is represented. The standard deviation is also highlighted for ∣∆τ ∣ and ∣P ∣.
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Figure 4.19: Task 1: overloading torque ∣∆τ ∣, overloading power ∣P ∣, angle q, velocity ∣q̇∣ and acceleration ∣q̈∣ in the elbow while lifting (red lines) and lowering
(blue lines) a box of 2.5 (a), 5.0 (b), and 10.0 (c) kg at three different height levels, namely low (dashed lines), mid (dotted lines), high (solid lines). The mean
among twelve subjects (among three trials for each one) is represented. The standard deviation is also highlighted for ∣∆τ ∣ and ∣P ∣.
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Figure 4.20: Task 1: overloading torque ∣∆τ ∣, overloading power ∣P ∣, angle q, velocity ∣q̇∣ and acceleration ∣q̈∣ in the wrist while lifting (red lines) and lowering
(blue lines) a box of 2.5 (a), 5.0 (b), and 10.0 (c) kg at three different height levels, namely low (dashed lines), mid (dotted lines), high (solid lines). The mean
among twelve subjects (among three trials for each one) is represented. The standard deviation is also highlighted for ∣∆τ ∣ and ∣P ∣.
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Figure 4.21: Task 1 - muscle activity expressed as % of the MVC in the leg muscles (RF, BF, TA) while lifting (dark green lines) and lowering (light green lines) a
box of 2.5 (first row), 5.0 (second row), and 10.0 (third row) kg at three different height levels, namely low (dashed lines), mid (dotted lines), high (solid lines).
The means and the standard deviations among twelve subjects (among three trials for each one) are represented.
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Figure 4.22: Task 1 - muscle activity expressed as % of the MVC in the back muscles (TR, ES, GM) while lifting (dark green lines) and lowering (light green lines)
a box of 2.5 (first row), 5.0 (second row), and 10.0 (third row) kg at three different height levels, namely low (dashed lines), mid (dotted lines), high (solid lines).
The means and the standard deviations among twelve subjects (among three trials for each one) are represented.
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Figure 4.23: Task 1 - muscle activity expressed as % of the MVC in the arm muscles (AD, PD, BC, TC) while lifting (dark green lines) and lowering (light green
lines) a box of 2.5 (first row), 5.0 (second row), and 10.0 (third row) kg at three different height levels, namely low (dashed lines), mid (dotted lines), high (solid
lines). The means and the standard deviations among twelve subjects (among three trials for each one) are represented.

86



i
i

“output”
—

2020/11/17
—

15:07
—

page
87

—
#97

i
i

i
i

i
i

4.6.
Validation

ofthe
H

um
an

E
rgonom

ics
M

onitoring
S

ystem
(a) Box of 2.5 kg

0

0.5

1
Low height

0 50 100

0

0.5

1

Mid height

0 50 100

High height

0 50 100

(b) Box of 5.0 kg

0

0.5

1
Low height

0 50 100

0

0.5

1

Mid height

0 50 100

High height

0 50 100

(c) Box of 10.0 kg

0

0.5

1
Low height

0 50 100

0

0.5

1

Mid height

0 50 100

High height

0 50 100

Figure 4.24: Task 1 - CoM potential energy variations while lifting (red lines) and lowering (blue lines) a box of 2.5 (a), 5.0 (b), 10.0 (c) kg at three different height
levels (low, mid, high). The means and the standard deviations among twelve subjects (among three trials for each one) are represented.
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Chapter 4. Human Ergonomics Monitoring System

Task 2: Drilling

In Figure 4.25, the overloading joint torques and the compressive forces are presented
for task 2. As for task 1, only the quantities which are expected to provide more relevant
information for the purpose of physical exposure assessment with respect to the type
of task, are selected among the proposed ergonomics indexes. In fact, while drilling,
different factors can contribute to stress the musculoskeletal system (i.e., the magni-
tude, the direction, and the variability of the force exerted/experienced by the subjects)
that can be addressed by the selected indexes. Neither the joint kinematics nor CoM
potential energy are presented since they do not show meaningful variations throughout
the task, in line with the fact that subjects were basically steady. All the three drilling
actions, corresponding to the three different positions (D1, D2, D3) of the panels to be
drilled, are illustrated. The mean and the standard deviation values computed among
the twelve subjects (in turn averaged among the three trials) for overloading torque
∣∆τ ∣ (yellow lines) and the compressive force ∣fC∣ (purple lines) are represented in the
human main joints. Specifically, each Subfigure corresponds to a joint: hip (H) in (a),
knee (K) in (b), ankle (A) in (c), back (B) in (d), shoulder (S) in (e), elbow (E) in (f),
wrist (W) in (g). Observing Figure 4.25 on the whole, it is evident that both ∣∆τ ∣ and
∣fC∣ are quite steady over the task progression, in accordance with what stated above.
∣∆τ ∣ is quite low in the lower body and even less significant in the upper body, with no
meaningful differences among drilling locations in any joints. On the other hand, ∣fC∣
shows substantially higher values and more variability between joints and experimental
conditions. At the hip level, ∣fC,H∣ presents comparable values in D2 and D3 and a
higher value in D1. At the knee level, no relevant differences can be observed between
D1, D2, and D3. At the ankle level, ∣fC,A∣ is considerable in D1 and shows a slight
decrement in D2 and a further one in D3. At the shoulder level, the same trend as at the
back level can be noted for ∣fC,S∣ while at the elbow level, the exact opposite behaviour
is exhibited by ∣fC,E∣. Finally, at the wrist level, ∣fC,E∣ is lower in D2 while higher com-
parable values can be observed in D1 and D3. To recap, the overloading joint torque
∣∆τ ∣ does not seem to provide relevant information about the physical effort required
for the task. Most likely, this is due to the fact that the overloading joint torque, as it is
defined, considers only the gravitational component of the force thus the weight of the
tool. Since while drilling the tool is partially supported by the drilled interface, such a
component is not significant during this specific task. Accordingly, ∣∆τ ∣ is overall not
significant. On the other hand, the compressive force takes into account all the compo-
nents of the external force induced on the human end-effector. In fact, this information
is provided by the F/T sensor mounted purposely on the driller. As a result, ∣fC∣ enables
to estimate the effect of the external force on the human body structure considering all
its contributing factors (i.e. magnitude, direction, variability). In fact, remarkable dif-
ferences can be distinguished among different experimental conditions and at different
joint levels.

In Figures 4.26 the whole-body muscle activity is presented for task 2. For all the
three drilling actions, corresponding to the three different positions (D1, D2, D3) of
the panels to be drilled, the mean and standard deviation values computed among the
twelve subjects (in turn averaged among the three trials) are illustrated. Specifically,
each Subfigure corresponds to an analysed muscle: the Rectus Femoris (RF) in (a), the
Biceps Femoris (BF) in (b), the Tibialis Anterior (TA) in (c), the Trapezius Descendens

88



i
i

“output” — 2020/11/17 — 15:07 — page 89 — #99 i
i

i
i

i
i

4.6. Validation of the Human Ergonomics Monitoring System

(TR) in (d), the Erector Spinae (ES) in (e), the Gluteus Maximus (GM) in (f), the
Anterior Deltoid (AD) in (g), the Posterior Deltoid (PD) in (h), the Biceps Brachii
(BC) in (i) and the Triceps Brachii (TC) in (j).

As regards the leg muscles, RF shows significant activity in D1, low activity in D2,
and moderate activity in D3. The activity in BF is overall not very high. In TA a mean-
ingful but decreasing activity can be observed in D1 while low values are presented in
the other conditions. Hence, likewise for ∣fC∣ in the lower body joints, the higher effort
is generally found in D1. As regards the back muscles, TR shows comparable activities
in D1 and D2 and lower activity in D3. ES is moderately active in D1 and less active in
D2 and D3 while GM globally presents decent values although the standard deviation
is quite high. No particular similarities can be found with the trend of ∣fC∣ in the back
joint. The most meaningful activity among the arm muscles is exhibited by AD with
considerable activity in D1, moderate activity in D2 but a low activity in D3. Such a
trend corresponds to the trend of ∣fC∣ in the shoulder, which can be also correlated to
the muscle activity in TR. Both PD and BC do not show meaningful activities except
for a slight increment in D3 for PD. TD is a little more active, mostly in D2. As for the
back, no particular similarities can be found between the trend of muscle activity and
compressive forces in the upper body with the only exception of the shoulder. However,
it is expected that the external force repartition over the joints cannot be easily related
to more sophisticated physiological quantities such as muscle activity.
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Figure 4.25: Task 2 - overloading torques (yellow lines) and compressive forces (purple lines) in the main joints (hip, knee, ankle, spine, shoulder, elbow, wrist)
while drilling three panels that are located in three different positions (high, mid, low) on a shelving. The means and the standard deviations among twelve
subjects (among three trials for each one) are represented.

90



i
i

“output”
—

2020/11/17
—

15:07
—

page
91

—
#101

i
i

i
i

i
i

4.6.
Validation

ofthe
H

um
an

E
rgonom

ics
M

onitoring
S

ystem
(a) Leg: RF

0 50 100

0

0.2

0.4

0.6

0.8

1
D1

0 50 100

D2

0 50 100

D3

(b) Leg: BF

0 50 100

0

0.2

0.4

0.6

0.8

1
D1

0 50 100

D2

0 50 100

D3

(c) Leg: TA

0 50 100

0

0.2

0.4

0.6

0.8

1
D1

0 50 100

D2

0 50 100

D3

(d) Back: TR

0 50 100

0

0.2

0.4

0.6

0.8

1
D1

0 50 100

D2

0 50 100

D3

(e) Back: ES

0 50 100

0

0.2

0.4

0.6

0.8

1
D1

0 50 100

D2

0 50 100

D3

(f) Back: GM

0 50 100

0

0.2

0.4

0.6

0.8

1
D1

0 50 100

D2

0 50 100

D3

(g) Arm: AD

0 50 100

0

0.2

0.4

0.6

0.8

1
D1

0 50 100

D2

0 50 100

D3

(h) Arm: PD

0 50 100

0

0.2

0.4

0.6

0.8

1
D1

0 50 100

D2

0 50 100

D3

(i) Arm: BC

0 50 100

0

0.2

0.4

0.6

0.8

1
D1

0 50 100

D2

0 50 100

D3

(j) Arm: TC

0 50 100

0

0.2

0.4

0.6

0.8

1
D1

0 50 100

D2

0 50 100

D3

Figure 4.26: Task 2 - muscle activity expressed as % of the MVC in the selected muscles (AD, PD, BC, TC, TR, ES, GM, RF, BF, TA) while drilling three panels
that are located in three different positions (D1, D2, D3) on a shelving. The means and the standard deviations among twelve subjects (among three trials for
each one) are represented.
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Task 3: Painting with a Lightweight Tool

In Figure 4.27, the overloading joint fatigue and the overloading joint torque are pre-
sented for task 3. The overloading fatigue is expected to be the ergonomic index that
better represents the effect on the human body of light but repetitive efforts protracted
for a long duration. The overloading torque is illustrated to highlight the relevance of
taking into account its cumulative effect over time even if its instantaneous value is not
significant. As for task 2, neither the joint kinematics nor CoM potential energy are pre-
sented since they do not show meaningful variations throughout the task, in line with
the fact that subjects were basically steady. As previously said, for task 3 no specific
actions were selected within its execution, the full-time series is considered. However,
the two phases of the task, corresponding to the two helmets to be painted, are dis-
tinguished on the plots by means of vertical dashed lines (which actually indicate the
time breaks in between). The mean and the standard deviation values computed among
the twelve subjects (in turn averaged among the three trials) for overloading fatigue
∣τF ∣ (pink lines) and overloading torque ∣∆τ ∣ (light blue lines) are represented in the
human main joints. Specifically, in Subfigure (a) the lower body joints are illustrated,
namely hip (H), knee (K), and ankle (A), while in Subfigure (b) the upper body joints
are illustrated, namely back (B), shoulder (S), elbow (E), wrist (W), respectively.

At the lower body level, the trend of ∣∆τ ∣ and ∣τF ∣ is very similar among all the
joints. ∣∆τ ∣ in the leg, in the knee, and in the ankle present a low value that becomes
higher in the second phase of the task. Correspondingly, ∣τF ∣ grows slowly in the
first phase while increases faster in the second phase. However, ∣τF ∣ do not achieve
significant values, in accordance with the fact that ∣∆τ ∣ values in the second phase
are more meaningful but oscillating. At the upper body level, analogous profiles are
exhibited in the back and in the shoulder. ∣∆τB ∣ and ∣∆τS ∣ show quite high values in the
first phase and moderate/low values in the second phase. As a result, ∣τF,B ∣ and ∣τF,S ∣
increase very quickly in the first phase achieving also extremely high values and drop in
the second phase. At the elbow level, ∣∆τE ∣ is moderate in the first phase and slightly
minor in the second phase thus ∣τF,E ∣ increase slowly in the first phase and decrease
in the second phase, respectively. On the contrary, at the wrist level, ∣∆τW ∣ is not
significant in the first phase and grows in the second phase leading to an increment in
∣τF,W ∣. What is not evident observing these results but it should be underlined, it is that
the overloading fatigue model is extremely sensitive to the threshold which has been
set to distinguish among fatigue and recovery phase. This explains why the increment
of ∣τF ∣ can be very fast or a bit slower for similar values of ∣∆τ ∣.

In Figures 4.28 the whole-body muscle activity is presented for task 3. As for the
ergonomic indexes, the full task is considered and the two phases are indicated on
the plots by means of vertical dashed lines. The mean and standard deviation values
computed among the twelve subjects (in turn averaged among the three trials) are rep-
resented. Specifically, in Subfigure (a) the lower body muscles are illustrated, namely
the Rectus Femoris (RF), the Biceps Femoris (BF) and the Tibialis Anterior (TA); in
Subfigure (b) the back muscles are illustrated, namely the Trapezius Descendens (TR),
the Erector Spinae (ES) and the Gluteus Maximus (GM); in Subfigure (c) the upper
body muscles are illustrated, namely the Anterior Deltoid (AD), the Posterior Deltoid
(PD), the Biceps Brachii (BC) and the Triceps Brachii (TC).

As regards the leg muscles, the activity of RF and TA, and to a lesser extent of
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BF, is lower in the first phase and higher in the second phase, always quite oscillating.
Accordingly, the trend of the lower muscles activity is comparable to the trend of ∣∆τ ∣
and ∣τF ∣ in the lower body joints. As regards the back muscles, TR is more active in
the first phase and less active in the second one while ES shows the exact opposite
behaviour. The activity of GM is moderate and quite constant throughout the whole
task. No particular similarities can be found with the trend of ∣∆τ ∣ and ∣τF ∣ in the back
joint. As regards the arm muscles, AD and TC exhibit significant activity in the first
phase and lower activity in the second phase thus their trend is comparable to the one
of ∣∆τ ∣ and ∣τF ∣ in the shoulder and in the elbow. On the other hand, PD and BC are
overall a little active throughout the whole task.
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(a) Lower body: hip, knee, ankle
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Figure 4.27: Task 3 - overloading fatigue (pink lines) and overloading torque (light blue lines) in the
main joints (hip, knee, ankle, spine, shoulder, elbow, wrist) while painting with a lightweight spray-
gun. The means and the standard deviations among twelve subjects (among three trials for each one)
are represented.
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(a) Leg: RF, BF, TA
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Figure 4.28: Task 3 - muscle activity expressed as % of the MVC in the selected muscles (AD, PD,
BC, TC, TR, ES, GM, RF, BF, TA) while painting with a lightweight spray-gun. The means and the
standard deviations among twelve subjects (among three trials for each one) are represented.
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Ergonomics Assessment with the EAWS

To assess the potential of the proposed ergonomics monitoring system, its outcome was
compared with the ergonomic risk scores provided by a well-recognised and widely
used tool to evaluate workers’ physical exposure, namely the EAWS method [72]. Since
the EAWS method requires a quite complex and sophisticated procedure and a priori
specific knowledge of typical industrial processes, the corresponding analysis and com-
putations were conducted in collaboration with Fondazione Ergo (headquarters: Varese,
Italia). It should be noted that to perform EAWS analysis for the simplified activities
considered in the present experimental investigation, several assumptions have been
made to contextualise them in a real workplace. For instance, since the level of per-
formance of the recruited subjects was not realistic compared to an actual worker, the
task timing was defined according to standard base time using the Methods-Time Mea-
surement - Universal Analyzing System (MTM-UAS) method [179]. In fact, in the
industrial environment, it is necessary to quantify work with respect to a regulatory
level of performance [180]. As explained in Section 2.1, the EAWS enable a compre-
hensive and unique ergonomic risk evaluation. In fact, four different sections that focus
on each specific aspect of manual material activities are included and their results can
be integrated into a combined score presented in an intuitive traffic light scheme (green,
yellow, red) according to the Machinery Directive 2006/42/EC (EN 614). Accordingly,
the evaluation of the three occupational tasks considered in this experimental analysis
(i.e., lifting/lowering, drilling, and painting) by means of the EAWS method resulted in
a total score for each of them, indicative of the associated ergonomics risk level. The
EAWS score was computed for each trial of every task and then the mean value among
the resulting score was computed. This procedure was repeated for all the twelve sub-
jects. As a result, each subject presented a EAWS final score for each task. It should be
noted that for task 1 three different ratings were computed, considering the box weight
conditions in a separate way. The mean and the standard deviation values which were
finally computed among all the subjects and the corresponding risk level are illustrated
in Table 4.4.

Table 4.4: Mean and standard deviation6 computed among twelve subjects of the EAWS final scores for
all the task considered in the experimental analysis.

Task Activity Condition EAWS Final Score Risk level5

1 lifting/lowering 2.5 Kg box 38.8 ± 1.2†† Moderate
5.0 Kg box 41.7 ± 1.7†† Moderate
10.0 Kg box 48.7 ± 6.9†† Moderate

2 drilling 23.1 ± 5.0† Low

3 painting 14 ± 0.0† Low

For task 1, the inter-subject variability of the EAWS score only depends on the
worker gender, i.e. the male and the female subjects, respectively, have the exact same
rating among them. This was due to the level of risk associated with the box weight
which was indeed gender-specific. It can be noted that, as expected, the EAWS score

6The risk level associated with the EAWS score is determined as follows: the range 0− 25 points corresponds to a low risk (†),
the range 25 − 50 points corresponds to a moderate risk (††) and a value > 50 points corresponds to a high risk, respectively.
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of the lifting/lowering task grows with increasing box weight. Looking at the mean
among the subjects, the risk level associated is moderate (††) for all the experimental
conditions. Nevertheless, considering the 10 kg box one, the EAWS score is quite close
to the higher threshold (> 50) and the standard deviation equal to 6.9 suggests that for
some subjects the risk level turns into high. It should be observed that the growing trend
of the risk level with the box weight was likewise identified by the proposed human
ergonomics monitoring system. For task 2, each trial of each subject exhibits a rather
different EAWS score since the maximum value (worst condition) of the force exerted
while drilling was taken into account. Similarly, as for the last experimental condition
in task 1, the rating is quite close to the mid threshold (> 25) and presents a significant
standard deviation (5.0). Thus, the risk level considering the mean value is low (†) but
for some subjects it turns into moderate. On the other hand, for task 3, the EAWS score
was exactly the same for each subject, leading to a standard deviation equal to 0.0 In
fact, neither the gender nor other individual factors influenced the evaluation of this
specific activity but only the task timing. The risk level associated is then low for all
the subjects, abundantly within the low part of the range.

4.6.3 Discussion

To assess, on the whole, the results of the experimental analysis presented in this Sec-
tion, the outcome of the proposed ergonomic indexes has been resumed in the aggre-
gated polar plots illustrated in Figures 4.29, 4.30 and 4.31 for task 1, task 2 and task
3, respectively. For task 1, a plot for each experimental condition (box weight, height
level) is provided. For task 2, three plots corresponding to the three different positions
(D1, D2, D3) of the panels to be drilled are shown. For task 3, two plots are consid-
ered to represent the two phases, i.e. the two helmets to be processed, of the painting
activity.

Each plot includes eight axes to correspond to the eight ergonomic indexes listed
in Table 4.1. For each index, the maximum normalised values of the action/phase are
exhibited for all the considered joints, specifically: hip (H), knee (K), ankle (A), back
(B), shoulder (S), elbow (E) and wrist (W). To highlight the scope of the ergonomic
indexes, two separate areas are enhanced on the polar plots: the pink area encompasses
the indexes accounting for kinematic aspects while the light blue area encompasses the
indexes accounting for dynamics aspects.

Let us consider the plots in Figure 4.29, relative to task 1. Focusing on the pink area,
which comprises the indexes accounting for the kinematics aspects, it can be noted that
the highest values are reported by ω1 i.e. the joint displacement index. As already ob-
served, at the hip, knee, and elbow level the joint angles approach the boundaries of the
ROM to a slight different extent among the experimental conditions, suggesting that the
subjects could have been required to adopt potentially unfavourable postures to execute
this specific task. As regards ω2, the values are gathered approximately in the mid-
dle of the range and no meaningful differences in joint velocities can be found among
the different experimental conditions. Similarly, as shown by ω3, comparable joint ac-
celerations are exhibited by the subjects, even varying the conditions, with values in
the lower half of the index range for all the joints. Interestingly, the only exception is
the acceleration at the wrist level which presents rather high values. Since the varia-
tions of wrist acceleration have proven to correlate with ergonomic risk factor in the
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workplace [181], this data acquire certain importance for the purposes of the current
analysis.

(a) 2.5 Kg, low height (b) 2.5 Kg, mid height (c) 2.5 Kg, high height

(d) 5 Kg, low height (e) 5 Kg, mid height (f) 5 Kg, high height

(g) 10 Kg, low height (h) 10 Kg, mid height (i) 10 Kg, high height

Figure 4.29: Polar plots to represent the overall outcome of the proposed ergonomic indexes for task 1.
For each experimental condition, i.e. box weight and height level, the maximum normalised values of
each index over the trial are illustrated in the human main joints: hip (H), knee (K), ankle (A), back
(B), shoulder (S), elbow (E) and wrist (W).

On the other hand, focusing on the light blue area of the polar plots, which covers
the indexes accounting for the dynamics aspects, it can be noted that the more relevant
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information is provided by ω4, the overloading joint torque index. ω5 and ω6 remain
generally low and steady among the different experimental conditions, ω7 (which is
actually joint-independent) is slightly higher but likewise without considerable varia-
tions. ω8 cannot just be estimated due to the absence of full knowledge about inter-
action forces for this task. Conversely, the overloading joint torque index exhibits a
clear growth with increasing box weight and to a small extent with increasing height
level. Hence, it is possible to state that ω4 is able to account for the varying ergonomic
risk posed by different experimental conditions considering the lifting/lowering of a
heavy object. Furthermore, its trend is comparable to the muscle activity one, measured
through sEMG, in most of the considered muscles, providing proof of its capability to
address human physical effort. Specifically, the percentage increase of the muscle ac-
tivity between the 2.5 kg box and the 5.0/10.0 kg boxes (averaged among height levels
which showed less significant variations) is 51.3/112.9 % in the AD, 33.4/115.9 % in
the PD, 67.9/175.1 % in the BC, 9.1/69.3 % in the TC, 49.8/143.5 % in the TR and
27.1/90.1 % in the ES, 13.2/33.5 % in the GM, 23.8/57.6 % in the RF, respectively 7.
The muscle activity in BF and TA instead is approximately constant among different
experimental conditions.

(a) D1 (b) D2 (c) D3

Figure 4.30: Polar plots to represent the overall outcome of the proposed ergonomic indexes for task
2. For each experimental condition, i.e. the positions (D1, D2, D3) of the panels to be drilled, the
maximum normalised values of each index over the trial are illustrated in the human main joints.

Let us then observe the plots relative to task 2, illustrated in Figure 4.30. Consider-
ing the indexes accounting for the kinematics aspects (pink area), it can be noted that
either ω1, ω2 and ω3 show low values in all the experimental conditions, except the
joint displacement at the elbow level (in line with the task requirements), meaning that
kinematics variables are not significantly predictive of the ergonomics risk associated
with this specific activity. This is consistent with the fact that the subjects were basi-
cally steady throughout its whole duration. On the other hand, considering the indexes
accounting for the dynamics aspects, the predominance of ω8 over the other indexes is
clearly noticeable. The compressive forces index is overall far higher than all the other
indexes and presents a certain increment in D1 with respect to D2 and D3, most likely

7The reported values of sEMG are the ones exhibited by the muscles in the same instant in which the maximum value of the
compared index ω, which is shown in the polar plots, was found.
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due to the fact that in D1 the gravitational component of the external force was greater
because of the tool weight. Similarly, the sEMG signals display more significant values
in D1 than in the other two conditions in several muscles, meaning that ω8 correlates
to muscle activity to some extent. Specifically, the percentage increase of the muscle
activity between D2/D3 and D1 is 130.3/1153.1 % in the AD, 32.2/93.0 % in the BC
6.3/267.7 % in the TR, 112.7/24.1 % in the ES, 3.5/18.9 % in the GM, 358.7/106.1 %
in the RF and 47.6/85.2 % in the TA, respectively. The muscle activity in PD was 86.7
% lower in D2 but in 14.9 % in D3 than in D1, probably due to the task requirements.
The same explanation can be given for the muscle activity in TC, which is highest in
D3, lower in D2, and even less significant in D1. Accordingly, it is possible to state that
ω8 is capable to reveal the physical load associated with the considered drilling activity.

(a) First helmet (b) Second helmet

Figure 4.31: Polar plots to represent the overall outcome of the proposed ergonomic indexes for task 3.
For each phase of the task, i.e. one of the two helmets to be painted, the maximum normalised values
of each index over the phase are illustrated in the human main joints.

Lastly, let us focus on the plots depicted in Figure 4.31, relative to task 3. Consid-
ering the kinematics-related variables (pink area), it can be observed that rather mean-
ingful values are shown by ω1 at the elbow and knee level, to a lesser degree at the
hip level, meaning that potentially risky body configurations could have been adopted
by the subjects to accomplish the task. On the other hand, ω2 and ω3 are altogether
very low thus bearing no information for the purposes of the ergonomics assessment.
Similarly as in task 1, the only exception is the acceleration of the wrist that, as already
mentioned, may be suggestive of potential hazards. Considering then the dynamics-
related variables, it is evident that the most relevant indexes to explain the physical
exposure of the task are ω4 and ω5, in comparison with all the other indexes which are
basically negligible. Moreover, the trend of the muscle activity is comparable to the
one displayed by both the overloading torque and fatigue in the lower body and in the
arm, giving further evidence of the capability of ω4 and also ω5 to account for human
effort. Specifically, the raising of the overloading torque and fatigue in the legs between
the first and the second phase is accompanied by a percentage increase of muscle ac-
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tivity of 348.5 % in the RF, 177.5 % in the BF, and 624.5 % in the TA. Conversely,
the overloading torque and fatigue in the arms are reduced between the first and the
second phase but still matching the activity in most of the muscles with a percentage
decrement of 78.2 % in the AD, 15.2 % in the BC, 48.8 % in the TC and 42.9 % in the
TR. Nevertheless, by adopting the polar plot representation, which takes into account
the maximum values of the mean among twelve subjects, it is not possible to appreciate
the benefit introduced by the overloading fatigue index to address the cumulative effect
of the overloading torque. In fact, it should be reminded that considerable standard
deviation values are exhibited by ω5.

In view of the above, some conclusive remarks can be drawn for the human er-
gonomics monitoring system introduced in this Chapter. As regards kinematics-related
variables, the most beneficial index in assessing physical exposure is represented by
ω1. The joint displacement index allows to detect wherever the human current body
configuration lays within specific sections of the human ROM which should be avoided
(e.g. in proximity to the maximum limits). Hence, by monitoring how often and how
long these body configurations are maintained, it is possible to determine if a potential
ergonomic risk exists. As a matter of fact, joint kinematics in general has extensively
been used in the analysis of human movement and joint angles, in particular, have
widely been employed to identify human awkward or unfavourable postures while per-
forming work activities. Concerning joint velocities and accelerations, no significant
information is offered byω2 andω3 in the context of this experimental analysis, exclud-
ing the rather significant accelerations exhibited by the wrist, which should be taken
into account since they have been demonstrated to correlate with occupational risks.
Nevertheless, the three tasks considered were quite steady and regular and did not re-
quire the development of significant speeds and accelerations. Hence, the joint velocity
and acceleration indexes should be investigated more thoroughly.

As regards dynamics-related variables, a specific index has been identified that bet-
ter explains the physical load required in each considered task, supported by the out-
come of the sEMG analysis. Specifically, the overloading joint torque index ω4 is the
more promising mean to account for the mechanical overburden of the body structures
in tasks involving the handling of heavy objects (task 1). Instead, considering task in
which all the components of the interaction forces at the hand/tool interface are rele-
vant - not only the gravitational one - (task 2), the joint compressive forces index ω8

has proven to be more predictive of the risk associated with dynamically varying inter-
action forces. In fact, in these cases, the overloading joint torque may underestimate
the hazard. Finally, to account for fatigue accumulation while executing repetitive and
monotonous prolonged activities (task 3) the overloading joint fatigue index ω5 hap-
pens to be more valuable since it takes into consideration the cumulative effect of the
risk and not the instantaneous one. However, as already mentioned, the sensitivity of
the overloading fatigue model to thresholds must be further investigated. Additionally,
concerning the overloading joint power index ω6 and the CoM potential energy index
ω7 similar observations can be made. Not remarkable or not easily interpretable infor-
mation appears to be provided by such variables but this may be due to the fact that,
as already noticed, no considerable velocities or unexpected movements were required
to accomplish the analysed tasks. Conversely, regular, smooth, and constant-speed ac-
tions were repeated. Hence, the potential of both the indexes should be investigated
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Chapter 4. Human Ergonomics Monitoring System

more deeply while conducting more dynamically varying jobs, likewise for ω2 and ω3.
Ultimately, a comparison should be made between the proposed set of ergonomic in-

dexes and the EAWS. It is critical to note that EAWS are conceived and usually applied
in real industrial scenarios. On the contrary, for the sake of this experimental analysis,
they have been adopted with simplified activities that were designed to simulate occu-
pational tasks and were conducted during experiments in laboratory settings. Accord-
ingly, several assumptions have been made to contextualise such simplified tasks in the
workplace which was intended to be replicated. Bearing in mind the above, it should be
observed that EAWS happens to be subject-specific only to a certain degree. For task 1,
only the gender was taken into account to compute the final score, i.e. the male and the
female subjects present the same rating among them. For task 3, the exact same score
is assigned to all the subjects, since its estimation is mainly based on the task timing,
which is set according to standard base time using the MTM-UAS method [179]. The
inter-subject variations are instead more significant for task 2 since the maximum force
exerted in each trial by each subject was considered. However, it is possible to state
that the set of ergonomic indexes proposed in this thesis pays much more attention to
the individual’s behaviours and demands while performing a potentially risky task. In
fact, it is based on a subject-specific model of the human body. In addition, the EAWS
analysis consists in a rather complex and articulated procedure that can be conducted
only in an off-line phase and, according to the author of this thesis, to some extent
is affected by the subjective opinions of the expert who carries out the analysis. Due
to the current ongoing technological developments, an accessible and easy-to-use ver-
sion of EAWS will be probably available soon. Nevertheless, this method seems still
to lack a full evaluation of all the dynamics aspects underlying the execution of occu-
pational tasks. In light of the above, the integration of a well-recognised tool for the
human ergonomics assessment in the workplace as the EAWS with the proposed hu-
man ergonomics monitoring system would allow a more comprehensive and thorough
analysis of the whole range of risk factors associated with occupational activities, tak-
ing equally into account the relative kinematics and dynamics aspects and addressing
workers’ specific requirements.
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CHAPTER5
Feedback interfaces for Situational Awareness

To continuously encourage humans to avoid awkward body postures or unfavourable
physical loading conditions, appropriate warning modalities are an essential require-
ment. By using intuitive and practical feedback interfaces the workers can be informed
about the excessive overburden of the body structure and thus guided towards more
ergonomic and convenient working conditions. With the aim to improve human risk-
awareness, multiple different technologies (e.g. visual, auditory, and haptic) can be
exploited.

In the last decade, an increasing interest has been aroused by augmented reality
(AR) [182]. Several commercial systems for AR (as well as virtual reality (VR)) were
developed (e.g. Oculus Rift by Oculus VR, Hololens by Microsoft, Tango by Google)
and proposed as a promising tool to improve workers’ ergonomics [183]. Nevertheless,
recent research has shown that the implementation of AR for industrial applications is
challenging [184]. Visual displays may be disadvantageous in terms of the cognitive
load in some specific applications [185], and may limit the natural field of view of the
workers. Furthermore, despite the constant advances in the field, these devices still
present several technological and perceptual limitations: obtrusiveness of the equip-
ment, need for frequent recalibrations, general discomfort if used for long periods of
times, and low luminance of the micro-displays, to cite a few [186].

Audio devices were also considered as a form of ergonomic intervention. In par-
ticular, in [187] the Spineangel by Movement Metrics Ltd was developed to monitor
trunk posture during daily activities and to supply audio feedback to the wearer when-
ever specific postural thresholds were exceeded. However, due to the always-working
machinery, the industrial settings are generally very noisy and audio modalities may be
ineffective in such contexts.

To reliably provide feedback even in boisterous workplaces, sensory substitution
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Chapter 5. Feedback interfaces for Situational Awareness

techniques such as vibrotactile interfaces were proposed and their effectiveness has
been validated in a range of applications: human navigation [188, 189], posture aware-
ness [190] and posture control in rehabilitation [191]. In particular, in [192] a method
to drive the position of the human through a vibrotactile device was introduced in
a human-robot collaboration context. Similarly, visual feedback was considered to
reduce hazardous postural behaviours [193, 194] and even then integrated in human-
robot interaction frameworks [76]. Nevertheless, the above-mentioned solutions pro-
vide feedback that only contains kinematic information, neglecting equally valuable
aspects as the physical loading on the joints, or just focus on specific body parts.

To tackle these issues, two feedback solutions were proposed within the purposes of
this thesis: a graphical interface to provide visual feedback and a vibrotactile device as
a sensory substitution modality. The latter, especially, offers the huge benefit of being
wearable and wireless thus it can assist the users within a broad area and allow them
to act freely in the work space without the need to focus on any specific spot. The
graphical interface is one of the main contributions of this thesis. For the development
of the vibrotactile device, the author of this thesis just acted as a minor collaborator,
however, it is considered worthwhile to include the related work here. A description
of these two approaches, illustrating their main features and highlighting their merits,
follows in Section 5.1 and in Section 5.2, respectively. 1
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Physical Exposure Feedback
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Figure 5.1: Second block of the framework proposed in this thesis for the assessment and improvement of
human ergonomics: the warning layer (see Section 1.5). The warning layer follows the observation
layer addressed in Chapter 4.

As mentioned in Section 1.5, this Chapter will hence address the second block of the
framework proposed in this thesis (see Figure 1.1): the warning layer. In Figure 5.1, the
warning layer is emphasised with its key elements. Once the set of indexes to account

1Parts of this Chapter have been published in [33, 34]
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5.1. A Graphical Interface for Visual Feedback

for the human ergonomic risk factors has been defined within the observation layer,
criteria to set their level must be established. Considering a generic ergonomics index
ωh(q) ∈ Rnj , as introduced in Chapter 4, three classes can be defined to categorise the
associated level of hazard, as illustrated in Table 5.1.

Table 5.1: Step-wise scheme for ergonomic index levels.

Ergonomics index level Control threshold

LOW 0 < ωh ≤ 0.3 ωmax
h

MEDIUM 0.3 ωmax
h < ωh ≤ 0.6 ωmax

h

HIGH 0.6 ωmax
h < ωh ≤ ω

max
h

The purpose of defining a number of specific levels is to make the ergonomic indexes
accessible to the feedback interfaces. In fact, the three classes defined in Table 5.1 are
adopted to color-code a graphical mean and to set the degree of vibration for the visual
interface and for the vibrotactile device, respectively.

5.1 A Graphical Interface for Visual Feedback

The main focus of [34] was to propose an intuitive graphical interface to make humans
aware of potentially risky body configurations while being exposed to external loads.
By means of a dedicated screen, both dynamic and kinematic meaningful information
on the whole body can be provided online to the user, as illustrated in Figure 5.2.
The Robot Operating System (ROS) 3D visualizer RViz2 is employed for displaying
purpose.

Kinematic data refer to the current body configuration of the user, depicted by using
a virtual simplified model of the human system that consists of a branched structure
of rigid bodies. The position of the human CoP can be represented as well, whether
estimated or measured. The dynamic information is expressed in terms of overloadings
induced on the human joints by an external load using the method described in 4.2. The
estimated overloading joint torques are illustrated with spheres superimposed on the hu-
man body model and located in the main joints (hip, knee, ankle, shoulder, elbow). As
anticipated above, the level of the index selected to be displayed by the graphical inter-
face is color-coded to denote a high (red), medium (orange), or low (green) value which
corresponds to the ergonomic risk associated. This traffic light scheme has been recog-
nised by the Machinery Directive 2006/42/EC (EN 614) and enables a straightforward
interpretation and ease of use of the indexes. The three levels of the overloading joint
torque are hence determined as explained in in Table 5.1, considering the overloading
joint torque ∆τ as the ergonomics index ωh.

As shown in Figure 5.2, different tools/objects can be represented and thus distin-
guished through a different color/shape in the graphical interface. Depending on their
weight, the external load induced on the human body varies and thus the estimation
procedure of the overloading joint torques can be tuned accordingly. In each row of
the Figure, three different postures are depicted, passing from a high-risk condition,
denoted by considerable values of the overloadings on the joints, to a more safe and
comfortable one in which the physical effort is minimised, as suggested by the lower

2http://wiki.ros.org/rviz
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Chapter 5. Feedback interfaces for Situational Awareness

Figure 5.2: An overview of the graphical interface: in each row, the human is represented in three
different body configurations, without any tool in the first row and with two different tools in the
second and third row, respectively. The level of overloading joint torque is color-coded to denote a
high, medium, or low value, and illustrated in the main joints of the human body.
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5.2. ErgoTac: a Vibrotactile Feedback Device

values of the overloadings. Regarding the first row, it shows the human operating with-
out any tool and thus without the effect of any external load. Hence, the overloading
on the joints is always low. The second and the third row, instead, depict the human
operating with two different types of tools, respectively.

To sum up, the proposed graphical interface can help the users to learn and achieve
more ergonomic configurations during industrial job duties. Even though it was origi-
nally proposed to report the level of the overloading joint torque (Section 4.2), it can be
reset to provide the user with information about the level of other alternative ergonomic
indexes. For example, in [31], in lieu of the overloading torques, their cumulative effect
over time, defined as overloading fatigue and explained in Section 4.3 was illustrated
in the human main joints. In Subsection 6.2.2 further details will be provided about its
use in this respect.

Furthermore, its functionalities can be extended to represent much other valuable
information for the purpose of ergonomics monitoring and improvement. In [32] a
method was presented to detect and locate an external load exerted on the human (as
mentioned in Section 4.2) and the graphical interface is exploited to depict, among
other information, the estimated load application point on the human body.

In addition, the proposed graphical interface was combined with the HRC frame-
work which will be presented in Chapter 6, in the context of several studies [29,31,35]
to provide the human subjects with further guidance to perform their task. In this re-
spect, some experimental results of the visual interface’s capability to give intuitive and
beneficial feedback to workers can thus be found in Section 6.2.

5.2 ErgoTac: a Vibrotactile Feedback Device

Opting for vibrotactile devices as a feedback modality for the improvement of human
ergonomics guarantees stable, smooth, and intuitive ways to make the humans aware of
the hazards connected to excessive loading on the musculoskeletal structure or incon-
venient body postures, thus preventing the development of WMSDs.

With the aim to improve human risk-awareness in the execution of heavy or repeti-
tive industrial tasks, in [33] a novel wireless and wearable vibrotactile technology called
“ErgoTac” was introduced. The proposed device provides online whole-body feedback
to humans with the information about excessive overloading of body joints by applying
appropriate tactile stimuli, and drive them towards more ergonomic physical exposure
conditions. A user study on ten human subjects was performed to validate the approach.
While performing a lifting task with a heavy object, the subjects were required to re-
configure their body posture by following the vibrotactile feedback guidance so as to
reduce the effort on the joints. Statistical analysis is included in the experimental re-
sults which prove the potential of ErgoTac in assisting the workers in their occupational
activities.

5.2.1 Specifications of ErgoTac

The developed device ErgoTac, depicted in Figure 5.3, is designed as a wireless vibro-
tactile feedback interface that can be located in proximity to the most meaningful joints
of the human body to alert the user about the level of the overloading joint torques,
whose computation is addressed in 4.2. By following the provided stimuli, the body
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Figure 5.3: The specifications and components of the developed wearable vibrotactile feedback device
ErgoTac which can be worn on the upper limb (left), lower limb (middle), or even on the back (right).

configuration can be modified attempting to reduce the vibrations and thus to minimize
the effect of an external load on the joints. As a result, more ergonomic postures can be
achieved. Considering the industrial environment as the primary target, the wearability
and handiness of the hardware components are major requirements in the designing
process. In view of this, the weight and dimensions of ErgoTac are 28 g and 68.1 mm
×37.0 mm ×17.3 mm, respectively. Its case is realised in lightweight plastic by means
of a 3D printer. To be adaptable to the shapes of the human body, the bottom surface
of the device is slightly curved and practical stretchable bands are used to attach it to
the body segments (e.g. thigh, upper arm, etc.). Then, to further ensure the portability
of the device, Bluetooth low energy which uses 2.4 GHz spectrum wireless protocol
has been integrated with a portable microcontroller (Adafruit Feather M0 Bluefruit).
Since wireless communication supports multi-point connections, multiple ErgoTac can
be connected simultaneously. To control the single feedback device, an RF-module
(nRF51 Dongle, Nordic Semiconductor) is connected to the user side via a universal
serial bus (USB) and an area of 10 m can be covered. Moreover, to avoid impracti-
cal wiring, the battery is placed inside the box. A small size Lithium-polymer battery
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5.2. ErgoTac: a Vibrotactile Feedback Device

with a rated voltage of 3.7V and a capacity of 300 mAh is selected as a trade-off be-
tween size and power. Battery life is approximately 3 hours. Finally, to control the
intensity of the vibrotactile stimulation, pulse-width modulated (PWM) drive signals
are employed. On the other hand, a mini eccentric rotating mass (ERM) vibration mo-
tor is used to generate the vibrotactile effect. The corresponding rated voltage of 3.7
V allows a frequency which is approximately 121 Hz thus is sufficient to stimulate the
human skin for the considered purpose [195].

5.2.2 Integration with the Observation Layer

The aim of ErgoTac is to drive the users toward body configurations in which the over-
loading joint torques, estimated as explained in Section 4.2, are minimised. For this
reason, the strength of the vibrotactile feedback is tuned to reflect the level of the over-
loading effect in certain specific joints. As a result, the users can modify their move-
ments looking for lower stimuli that correspond to minor efforts in performing their
task, thus preventing potential injuries. Accordingly, three different levels have been
selected for the amplitude of the vibration (high, medium, and low) and associated
with the overloading joint torque levels as explained in in Table 5.1, considering the
overloading joint torque ∆τ as the ergonomics index ωh.

The selected feedback amplitude is transmitted online to ErgoTac to activate the
motor and the PWM duty cycle is controlled with a sensitivity level of 30%, 60% or
100% to produce a low, medium, or high vibration, respectively. To make the user
easily distinguish the different levels of vibrations, a considerably different frequency
of the ERM vibration motor is considered for each of them.

5.2.3 Experimental Setup

The experimental setup is shown in Figure 5.4. To track human motions, the Xsens
suit, presented in Section 3.1 was used. To measure the GRF and CoP, the Kistler force
plate presented in Section 3.2 was used. Five ErgoTac devices were located on the hu-
man body, specifically onto the upper-arm, the forearm, the pelvis, the thigh, and the
shank. The stimulation induced on such body segments corresponded to the overload-
ing level computed on the shoulder, elbow, hip, knee, and ankle, respectively. Muscle
activity was measured in the whole body for the entire duration of the task, using the
Delsys Trigno Wireless system to collect EMG signals. Specifically, four muscles were
considered: anterior deltoid (AD), biceps (BC), L5 paraspinal (L5) and lateral gastroc-
nemius (LG) with the aim to assess the capability of the proposed approach to reduce
human physical loading. The whole experimental procedure was carried out in accor-
dance with the Declaration of Helsinki and the protocol was approved by the ethics
committee ASL Genovese N.3 (Protocol IIT_HRII_001). Ten healthy subjects, nine
males and one female, (age: 28.9 ± 3.2 years; mass: 76.4 ± 8.5 kg; height: 1.80 ± 0.04
m)3 were recruited in the experimental analysis. A written informed consent was ob-
tained after explaining the experimental procedure. First, the human model of each
subject was identified by using the SESC technique (presented in Section 3.2) during
an off-line calibration phase. The subjects were required to wear the MVN Biomech
suit and stand on the Kistler force plate and then to perform two hundred different static

3Subject data is reported as: mean ± standard deviation.
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Trigno
EMG

Object
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Biomech Suit

Kislter
Force plate

ErgoTac

Figure 5.4: Overview of the experimental setup. All the sensor systems involved in the experiment and
the vibrotactile devices are illustrated.

body configurations to collect a sufficient dataset for the model parameters identifica-
tion. The CoP model thus estimated was then used during in an online phase to address
overloading joint torques. Among the industrial tasks which are usually associate with
high risk of musculoskeletal injuries, the lifting task is one of the most cited [163,196]
thus it was selected for the experimental analysis. Accordingly, all the subjects were
asked to hold a heavy object (mass: 5.7 kg) and handle it using both hands. Prior to
the experiment, all the subjects were trained to distinguish the three levels of vibrations
and thus the degree of joint overloadings. Three sequential phases were included in the
experimental session: the box lifting (3 sec.), the box handling by following vibrotac-
tile feedback via ErgoTac - changing online the body configuration while attempting to
reduce the level of the stimuli and thus the degree of the joint overloading - and, finally,
the termination of the motion as soon as the lowest vibrotactile feedback possible was
sensed in most of the devices. Throughout the whole task, the subjects were constrained
to keep the object at a predefined height that was set at the beginning of the session.
The experimental conditions consisted in fact in three different heights of the object:
0.3m, 0.6m, and 0.9m, respectively. A different trial was conducted for each one of
them thus three trials for each subject were conducted. To validate the capability of the
proposed device in guiding the user toward the reduction of the overloading joint torque
by means of the vibrotactile stimuli, the muscle activity recorded at the beginning and
at the end of the task was compared for all the subjects. Statistical differences were
also tested using a post-hoc t-test with Bonferroni correction. The level of statistical
significance was set to 0.05.
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Figure 5.5: Results of vibrotactile feedback experiments with ErgoTac. The amplitude of the feedback
(upper figures) is high in phase (A), then the human pose is adjusted following the stimuli toward
phase (C) in which the amplitude is minimised. The overloading joint torques (second plot from top)
in the human joints are reduced and the displacement of the CoP (bottom plot) likewise decreases
between ĈP (SESC) and CP (force plate).

5.2.4 Results

Figure 5.5 illustrates the experimental results considering the three different experi-
mental conditions (constrained height of the object) of one selected subject, taken as
an example. Different sequences of movements to reach the final configuration were
exhibited by the ten participants thus make an average of their outcomes was not possi-
ble. The first row depicts three body configurations in certain instants during the task.
The vibrotactile feedback amplitude for each joint is highlighted through color-coded
spheres superimposed on the stick-model of the human. This information was provided
online to the subjects during the experiments. Phase (A), which corresponds to the
box lifting phase, is characterised by a high-risk body configuration, thus the ErgoTac
clearly provided the most significant level of stimuli to alert the user about the danger.
Phase (B) corresponds to the mid-phase while re-configuring the posture by following
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Chapter 5. Feedback interfaces for Situational Awareness

the ErgoTac guidance. The final phase (C) corresponds to the minimisation of the risk
of joint overloadings when the lowest amplitude of vibrotactile feedback was reached.
The plots in the second row show the estimated overloading joint torque in the main
joints (H: hip, K: knee, A: ankle, S: shoulder, E: elbow) while the plots in the last row
illustrate the displacement of the CoP computed between the measured and estimated
vectors, respectively. The average time needed to complete the task among all the ten
subjects for each experimental condition was: 19.92±8.53 s (condition 1), 17.08±7.43
s (condition 2), and 23.50 ± 18.16 s (condition 3), respectively.

In Table 5.2 the overall experimental results are presented. The reduction rate of the
overloading joint torque in each joint and the corresponding variations of the muscle
activity (filtered and normalised), respectively, were averaged across the subjects for
each condition. It should be noted that body configurations in the final phase after
re-configuring due to the vibrotactile feedback, were not the same for all subjects.

Table 5.2: Experimental results for ten subjects. The results are separated according to the three ex-
perimental conditions for the overloading joint torque (SH: shoulder, EL: elbow, HP: hip, KN: knee,
AK: ankle) and muscle activity (AD: anterior deltoid, BC: biceps, L5: L5 paraspinal, LG: lateral
gastrocnemius). The decrement ratio of data is reported as: mean (standard error of the mean).

Index Condition 1 Condition 2 Condition 3

Overloading

joint torque

[Nm]

SH
26.73

(6.38)

38.71

(7.97)

30.33

(4.05)

EL
8.89

(8.09)

5.86

(5.56)

1.29

(3.80)

HP
64.49

(7.75)

61.09

(8.54)

58.32

(9.51)

KN
70.87

(9.41)

56.76

(10.18)

59.27

(9.37)

AK
70.87

(9.13)

58.67

(9.32)

57.87

(9.62)

Muscle

activity

[%]

AD
81.26

(6.86)

96.62

(0.51)

80.38

(8.60)

BC
6.00

(31.79)

29.27

(10.66)

33.17

(10.57)

L5
45.03

(8.79)

53.72

(4.43)

60.69

(6.17)

LG
20.98

(28.40)

50.68

(10.82)

63.48

(6.00)

Figure 5.6 shows the box plots for the overloading joint torque and muscle activ-
ity corresponding to the data collected in phase (A) (blue box plots) and in phase (C)
(green box plots), respectively, for all the subjects. The values of the overloading joint
torque in the shoulder, hip, knee, and ankle joint estimated in phase (A) were signifi-
cantly higher than in phase (C) considering the overall conditions. On the other hand,
the overloading joint torque reduction in the elbow joint was not meaningful. The
differences were, respectively, 2.12±1.61 Nm (p =.23) in condition 1, 1.48±1.21 Nm
(p =.27) in condition 2 and 0.68±0.65 Nm (p =.34) in condition 3 and they were sta-
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Figure 5.6: Statistical results of the joint overloading and the muscle activity for ten subjects during the
experiments with ErgoTac. The joints overloading (SH: shoulder, EL: elbow, HP: hip, KN: knee, AK:
ankle) of most of the joints resulted in phase (A) are significantly greater than phase (C), except the
EL joint. Most of muscles activity (AD: anterior deltoid, BC: biceps, L5: L5 paraspinal, LG: lateral
gastrocnemius) showed a significant difference between phase (A) and phase (C), except in the BC
(condition 1 and 2) and LG (condition 2). Asterisks indicate the level of statistical significance after
post-hoc t-tests: ∗p <.05, ∗∗p <.01 and ∗∗∗p <.001

tistically not significant. Similarly, the muscle activity measured on the AD and L5
displayed a considerable difference between phase (A) and phase (C). On the contrary,
the muscle activity measured in LG in condition 1, and the muscle activity measured
in BC in condition 1 and 2 showed statistically not significant results. In all the other
conditions, the differences of the muscle activity in the same muscles were instead sta-
tistically significant. Specifically, as regards LG the variation was: 17.09 ± 8.03 Nm
(p = .07) in condition 1, as regards BC the variation was: 8.18 ± 7.56 Nm (p = 0.33) in
condition 1 and 11.92 ± 5.32 Nm (p = .27) in condition 2.

5.2.5 Discussion

Observing the results of the overloading joint torques in the different phases, it is pos-
sible to state that, due to vibrotactile feedback guidance, the overloading torques in the
joints throughout the task exhibit an overall reduction. As shown in Table 5.2, the corre-
sponding decrement was 44.37%, 44.22%, and 41.41% in each experimental condition,
respectively. The majority of the joints presented significantly lower overloading joint
torques in the final phase, excluding the elbow joint. Since a constraint on the height of
the object was imposed for the task, most likely the elbow joint had a major role than the
other joints in accomplishing the task thus it reconfigured differently. The results also
indicate that the reduction rate of the overall muscle activity was 38.32%, 57.57% and
59.43% in each experimental condition, respectively. In particular, the variations in DT
and L5, which belong to the most common areas of human injuries (i.e. lumbar spine),
exhibit meaningfully lower muscle activity in the final phase. The muscle activity in
BC and LG had increased or slightly reduced but not as much as in the other joints. Fol-
lowing the same reasoning done for the overloading joint torque, the activity of these
muscles was most likely connected to the task constraint of maintaining the object at
the same height as well as balancing the body during the task. However, it is possible
to affirm that the workload generally decreased under the task constraints, and steady
external forces were distributed into the joint minimising the overloading effect, by
re-configuring the human pose according to the guidance of the vibrotactile feedback.
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Experimental results provided first evidence on the capability of the proposed online
feedback device and method to achieve more ergonomic behaviours while performing
the desired industrial tasks. It is worth mentioning that humans could also recognize
the overloading effect on the joints by means of their own kinesthetic feedback. Never-
theless, most of the time the associated risk is underestimated and thus neglected. This
is one of the reasons why many work-related health issues are experienced every year
in industrial environments. In addition, some tasks require a constant but low level of
overloadings that may be negligible for the workers on the spot, but it has consider-
able effects over longer periods. Therefore, a warning interface to make humans aware
of all the inappropriate working conditions can make a major contribution in reducing
work-related risks.
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CHAPTER6
A Human-Robot Collaboration Framework to

Guide the Humans toward More Ergonomic
Postures

In the current industrial background, to address workers’ ergonomic demands while
ensuring productiveness and efficiency, highly adaptable and quickly re-configurable
systems with online data processing capabilities are required. As already mentioned
in Section 1.3, a promising solution in this respect, is offered by collaborative robots,
which can put their precision, endurance, and power at the service of workers. However,
in order to guarantee human safety, such robotic assistants are usually programmed to
avoid accidental collisions and impacts but seldom conceived to enter in direct contact
with humans to offer effective help.

With the aim to take advantage of the intelligent physical support of the robot to
mitigate workers’ ergonomic risks, an HRC control approach was originally proposed
in [129] to guide the human toward more convenient behaviour in a co-manipulation
task. Within the context of this thesis, the application and extension of this HRC frame-
work has been addressed to different extents [29, 31, 197] and it will be presented in
Section 6.2. As mentioned in Section 1.5, this Chapter will indeed cover the third
block of the framework proposed in this thesis (see Figure 1.1): the action layer. In
Figure 6.1, the action layer is emphasised with its key elements.

Once the set of indexes to account for the human ergonomic risk factors has been
defined within the observation layer, and their level of risk has been established in the
warning layer, preventive action must be taken to mitigate their effect. Accordingly,
assuming to consider only one specific ergonomic index at a time, wherever its level
of risk is medium/high (ωh > 0.3ωmax

h ), an optimisation procedure is triggered to esti-
mate more ergonomic working conditions. Essentially, the selected ergonomic index is
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Figure 6.1: Third block of the framework proposed in this thesis for the assessment and improvement of
human ergonomics: the action layer (see Section 1.5). The action layer follows the observation layer
addressed in Chapter 4 and the warning layer addressed in Chapter 5.

minimised according to certain specific constraints and the human body configuration
in terms of qh (the joint angles vector, see Subsection 3.2.1), which satisfies at best all
the requirements, is obtained as a result. Such a body configuration is considered to
be more ergonomic since it minimises the effect of the risk factor associated with the
selected index. In addition, by introducing a collaborative robot as a further actor in the
working task execution, the human can be facilitated to achieve more ergonomic con-
ditions by following its guidance. In fact, assuming a co-operation or co-manipulation
1 activity, the trajectory of the robot end-effector can be adjusted to drive the worker
from a risky body configuration to the estimated optimal one.

This Chapter is organised as follows. Section 6.1 describes the online optimisation
procedure just mentioned to estimate more ergonomic human body postures. In Section
6.2, some applicative examples of the HRC framework addressed in this Chapter are
presented.2 First, its implementation to human bipedal models is illustrated. Next, its
extension by means of a trigger mechanism based on human physical fatigue thresholds

1Co-operation activities are referred, for example, to those tasks in which the robot is holding an object and the human is
operating on it with or without a tool (drilling, polishing, screwing, etc.) while co-manipulation tasks are referred, for example, to
the co-sharing or handover of objects between the human and the robot.

2Parts of this Chapter have been published in [29, 31, 197]
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6.1. Body Posture Optimisation Procedure

is introduced. In addition, the case study of a multi-human and mobile-robot collabo-
rative team is provided.

6.1 Body Posture Optimisation Procedure

The aim of the anticipatory robot assistance is to encourage the human partner to per-
form the collaborative task in a more efficient way, i.e. adopting behaviours that avoid
the excessive overloading of body tissues. In this view, an online optimisation proce-
dure can be implemented to estimate ergonomic human postures, given the informa-
tion about human movements and external forces profiles, the task objectives and its
constraints. To achieve such an optimal body configuration, the minimisation of any
selected index, accounting for an ergonomic risk factor, must be performed in the joints
that are subject to potential injuries. Accordingly, the optimisation problem can be
designed by setting as the objective function the sum of the weighted norms of the er-
gonomic index, which is function the human joint angles vector qh, subject to nonlinear
inequality constraints

min
qh

f(qh) =
1

2

nj

∑
i=1

λi∣ωi(qh)∣2, (6.1)

subject to: qmin ≤ qh ≤ qmax, (6.2)
hstable(qh) ≤ 0, (6.3)
hshare(qh) ≤ 0, (6.4)
hManipulability(qh) ≤ 0, (6.5)

where ωi(q) is the i-th joint ergonomic index, selected among the ones listed in Table
4.1 (excluding joint kinematics indexes), λi is a weight associated with the joint i, and
h are inequality box constraints.

All the weights (λ > 0) per optimisation cycle are computed by ∣ωi/ωmaxi ∣ and kept
fixed, with ωi and ωmaxi representing the actual ergonomic index value at the beginning
of optimisation and its maximum value at the i-th joint, respectively. The weights λi
are introduced to set priorities between the joints, namely to pay more attention within
the quadratic optimisation process to those ones which were more prone to risks. As
an instance, ωi ≈ ωmaxi means that that the i-th joint is subject to a higher hazard thus it
should get the highest priority via λi ≈ 1 with respect to the other joints.

Several constraints have been considered in the proposed optimisation process and
they will be all illustrated hereafter. However, within the applicative examples of the
HRC framework that are addressed in Section 6.2, just some of them are usually se-
lected at a time. Accordingly, the details about the specific constraints adopted for each
approach will be provided case to case.

To ensure that the body configuration resulting from the optimisation is feasible
and safe, (6.2) expresses a boundary condition on the joint angles, which are restricted
within the human body joint physiological limits, represented by lower (qmin) and upper
(qmax) boundaries. The second constraint is associated with postural stability. A set of
inequality constraints is considered in (6.3) to ensure that the position of CoP exists
only within the convex hull of the contact points (i.e. within the support polygon of
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feet). Accordingly, the inequality constraint (6.3) can be formulated as

hstable(qh) ∶= ĈPwo(qh) − conv{px,y
F ∣j} ≤ 0, (6.6)

where ĈPwo(qh) is the CoP model as explained in Subsection 3.2.2, conv{px,y
F ∣j} is

the convex hull including each possible j-th contact point px,yF and it can be com-
puted through the forward kinematic of the feet. Next, (6.4) expresses an inequality
constraint related to the shared space between the human and the robot. Wherever a
co-manipulation task is considered, the position of the co-manipulated object is con-
strained not only within a maximum distance from the human base but also a maximum
distance from the robot base, to ensure a feasible and convenient working area for both
the operators. Consequently, the inequality constraint (6.4) can be defined as

hshare(qh) ∶=
⎧⎪⎪⎨⎪⎪⎩

pobj(qh) − pH ∣th ≤ 0,

−(pobj(qh) − pR∣th) ≤ 0,
(6.7)

where pR∣th and pH ∣th are the position threshold considering the robot and the human
work space, respectively, and pobj(qh) is the co-manipulated object’s position. All of
them are computed using forward kinematics. Both the thresholds and the object’s po-
sition are represented in the base frame, hence, the constraint should be represented
within the shared Cartesian work space. Finally, the constraint in (6.5) is connected
to the endpoint manipulability of the human arm. It is well-recognised that humans
typically adjust the configuration of their body and limbs tending to maximise both the
kinematic and dynamic aspects according to the given tasks and environmental condi-
tions [198]. In robotics, the classical quantity used to account for the kinematic and
dynamic properties of a robot end-effector is the manipulability, which notices how
well the end-effector can produce velocity or force in different directions of the Carte-
sian space [199]. This concept can be applied also to humans. The directions of the best
velocity and force axes can be obtained from the eigenvectors and the eigenvalues of
human arm Jacobian Ja(qa) ∈ Rm×l, where m is the size of Cartesian space and l is the
number of considered joints in the arm, included in qa, which is the joint angles vector
specific to the arm. The manipulability can be geometrically represented as an ellipsoid
at the level of the end-effector, whose radius in a specific direction refers to the capabil-
ity to generate velocity/force. To provide an example, let us consider a specific task that
requires an object/tool to be manipulated in a complex way. Such a task would proba-
bly involve a generation of force/velocity at the end-effector which is almost equal in
all the directions of the Cartesian space. Hence, the configuration of the arm should be
adjusted seeking to keep the end-effector where the endpoint manipulability ellipsoid
is isotropic.

In view of the above considerations, the position of an object/tool - being manipu-
lated by the human or co-manipulated by a human and a robot - can be also constrained
by the human arm endpoint manipulability. Accordingly, the inequality constraint (6.5)
can be defined as

hManipulability(qh) ∶= wmin − ∣det(Ja(qa))∣ ≤ 0, (6.8)

where wmin is the manipulability threshold. If wmin = 1, the algorithm will search for
the optimal minimum ergonomic index within human arm endpoint positions, where the
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6.2. Experimental Application of the HRC Framework

manipulability ellipsoid is isotropic. In other cases, it will search within some region
around isotropy. The application of all the constraints just presented in the optimisation
process guarantees the stability and safety of both the partners in the collaboration task.

Once the human optimal body configuration is computed using (6.1), it is expressed
in the Cartesian space along with the current human body configuration, by applying
forward kinematics. Then, the difference between the two configurations can be em-
ployed to compute the trajectory for the robot end-effector. To achieve safe and adaptive
interaction between the human and robot, a Cartesian impedance controller is generally
employed to control it, setting the translational and the rotational stiffness to 1500 N/m
and 150 Nm/rad in all axes, respectively. These values provide a reasonable trade-
off between the trajectory tracking performance and end-effector compliance. Then,
by following the guidance of the robot, humans can be facilitated to achieve more er-
gonomic and convenient body configurations.

6.2 Experimental Application of the HRC Framework

In this Section, some applicative examples of the online optimisation procedure just
explained, to improve workers’ ergonomics within HRC contexts, are provided.

6.2.1 Toward the Extension of the Work Space

The synergistic model presented in Subsection 3.2.4 to estimate the human feet GRF
and CoP, was originally proposed in [29] to extend the overloading joint torque estima-
tion procedure presented in Subsection 4.2. In fact, the latter could be so far applied to
human biomechanical models represented by planar serial chains that include only one
GRF. Its extension to bipedal models by means of the synergistic model, and thus the
computation of the overloading joint torque for both the legs, would allow the tracking
of human states in a wider work space, broadening the applications of the technique to
more realistic and complex scenarios.

Learning technique
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Figure 6.2: The overall procedure for estimating the feet GRF and CoP using the synergistic model
(left), and reducing the overloading joint torque during HRC in the online phase (right).

The capability of the synergistic model to enable the online estimation of the over-
loading joint torques encompassing double-support, was investigated in a human-robot
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load sharing task. The overall procedure, which complements the off-line step intro-
duced singularly in Subsection 3.2.4, is illustrated in Fig. 6.2. Two main parts can be
distinguished: the off-line and the online phase. The off-line phase corresponds to the
stage already addressed in Subsection 3.2.4 to estimate the human feet GRF and CoP
combining the SESC method with a learning technique. In the online phase, the over-
loading torques induced on the main human joints while manipulating a heavy object in
collaboration with a robot were first computed. Next, the robot end-effector trajectory
was optimised to minimise such overloadings, by considering the human, the robot,
and the task constraints. Being assisted by the robot, the subject could then change
the body configuration to achieve a more ergonomic and comfortable condition. The
experimental analysis conducted to evaluate the online performance of the synergistic
model within the HRC framework will be addressed in detail in this Subsection.

Experimental Setup

The experimental setup is illustrated in Figure 6.3. The whole experimental procedure
was carried out in accordance with the Declaration of Helsinki and the protocol was
approved by the ethics committee Azienda Sanitaria Locale (ASL) Genovese N.3 (Pro-
tocol IIT_HRII_001). One healthy subject (age: 30 years; mass: 76.5 kg; and height:
1.78 m) was asked to wear the MVN Biomech suit and the OpenGo sensor insoles
(see Section 3.1). The external object (width: 0.33 m; depth: 0.56 m; height: 0.23 m;
mass: 8 kg) was grasped from one side by the human hands and from the other side by
the Pisa/IIT Softhand [200] which was attached to a KUKA Lightweight robot (LWR).
The points of interaction of the human with the object were assumed to be located at
the end of the forearm links and a symmetric distribution ratio among them was con-
sidered. Accordingly, in Equation (4.4) (see Section 4.2) the values of ηj were set to
0.5 for both the left and right hand while the values of ζj were computed using (3.14)
(see Section 3.2.4). For the purpose of the experiment, the subject had to achieve the
load sharing task with the robot in a way that optimised the working conditions while
considering the task constraints and prevent any excessive load on the human body
joints. To this end, the optimisation process described in Section 6.1 was adopted. As
already mentioned, the ergonomic index selected to be minimised was the overload-
ing joint torque. On the other hand, the constraints considered in the procedure were
the joint angles boundary condition (6.2), the postural stability condition (6.3) and the
human-robot shared space condition (6.4). As a result of the optimisation, during the
HRC task, the subject being assisted by the robot was induced to move the object and
to modify his body configuration so as to reach more ergonomic loading conditions. In
addition, to make the subject aware of several meaningful information and to provide
him with further guidance to perform the task, the graphical interface presented in Sec-
tion 5.1 was adopted. The level of the overloading estimated on the main joints and
the current body configuration along with the optimal one were shown to the subject
throughout the whole experiment, as depicted in the low part of Figure 6.3.

Results

Figure 6.4 illustrates the results of HRC experiment. The first row depicts three spe-
cific body configurations adopted by the subject while performing the task: the un-
optimised (A), in motion (B) and optimised (C) posture, respectively. The overloading
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Figure 6.3: Overview of the experimental setup. All the sensors and devices involved in the experiment
are shown on the top. The visual feedback provided to the subject performing the HRC task is
displayed on the bottom.

joint torques estimated in the corresponding instants are represented as spheres super-
imposed on the human stick model and color-coded to denote their level (see Section
5.1). The first graph presents the trajectory that the robot end-effector followed to assist
the subject during the task, both in time (left chart) and space (right chart). The sec-
ond graph presents the numeric values of the estimated overloading torques ∣∆τ ∣ in the
human main joints: left hip (LH), left knee (LK), left ankle (LA), right hip (RH), right
knee (RK), right ankle (RA), elbow (E) and shoulder (S), respectively. The overload-
ing joint torques in the left and right arm had similar values because the arms moved
symmetrically to hold the external object, thus the results for the right arm only are pro-
vided. It can be noted that starting from the initial configuration (A) to the optimised
one (C) ∣∆τ ∣ tend to significantly decrease in all the joints throughout the experiment.
Specifically, the overall percentage of decrement was around 72.6% on average (56.1%
in the arms, 92.2% in the left leg and 35.3% in the right leg).3. In addition, to provide
a benchmark of the effective effort required to the subject during the task, the whole-
body muscle activity was recorded with nine sEMG sensors. Specifically, anterior del-

3Overloading torque reduction percentage in the shoulder: 62.4%, elbow: 45.8%, left hip: 91.4%, left knee: 91.8%, left ankle:
93.4%, right hip: 40.5%, right knee: 7.8%, right ankle: 43.5%.
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Figure 6.4: Results of the human-robot load sharing task experiment. The sequence of the pictures on
the top shows the progress of the experiment: un-optimised state (A), transition (B) and optimised
state (C). The first plot shows the robot optimal trajectory both in space (left chart) and time (right
chart). The second plot shows the calculated overloading joint torques. The third plot shows the
displacements between the estimated and measured feet CoP for the right foot and for the left foot.

toid (AD), biceps (BC), L5 paraspinals (L5), right and left vastus lateralis (R.VL and
L.VL), right and left rectus femoris (R.RF and L.RF), and right and left tibialis anterior
(R.TA and L.TA) were the selected muscles. The reduction rates of the EMG signals
(filtered and normalised) were computed and resulted in 70.9% in the AD, 8.6% in the
BC, 27.9% in L5, 62.3% on average for the right leg and 72.3% on average for the
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left leg. Finally, the lower plot of Fig 5.5 shows the displacements between the feet
CoP measured by the sensor insoles and the feet CoP estimated by the proposed syn-
ergistic method. It was worth noticing that passing from configuration (A) to (C) this
displacement decreases both for the right foot and for the left foot.

Discussion

By observing the degree of the overloading joint torques represented by the color-coded
markers in the first row of Figure 6.4, it can be noticed that, throughout the task, the
external forces were redistributed among the joints so as to reach the human optimal
configuration in phase (C). The fact that the elbow joint did not show the lowest level
of joint overloading can be related to the condition, imposed by the task, of holding
the heavy object. Correspondingly, as exhibited by the overloading joint torque values
presented in the first plot, starting from the initial configuration (A) to the optimised one
(C) ∣∆τ ∣ had a significant decrement in all joints, proving that the effect of the external
load on human joints was reduced due to the robot reactive behaviour. The reduction
rates demonstrated by the sEMG signals confirm that an effective reduction of the effort
required to the subject was simultaneously achieved. Finally, the minimisation of the
difference between CP and ĈP provides further evidence of the method capability to
make the human achieve more ergonomic configurations.

6.2.2 Using Fatigue Thresholds to Trigger the Robot Behaviour

A whole-body fatigue model has been presented in Section 4.3 to evaluate the cumu-
lative effect of the overloading torque, induced on human body joints throughout time
by light payloads. In [31], this fatigue model was originally proposed, and additionally
integrated into the HRC framework addressed in this Chapter. In particular, the so-
called overloading fatigue was adopted to set the timing for the optimisation procedure
described in Section 6.1 and thus to trigger the collaborative robot assistance. By the
time overloading fatigue exceeded a predefined threshold in a joint, the robot reacted
and guided the subject towards a more ergonomic body configuration, to prevent further
accumulation of fatigue.

The experimental analysis conducted to assess the integration of the overloading
fatigue model into the HRC framework will be addressed in detail in this Subsection.4

Experimental setup

One female healthy subject (age: 27 years; mass: 57 kg; height: 171 cm) was recruited
for the HRC experiment. The whole experimental procedure was carried out in accor-
dance with the Declaration of Helsinki and the protocol was approved by the ethics
committee Azienda Sanitaria Locale (ASL) Genovese N.3 (Protocol IIT_HRII_001).
She was asked to wear the MVN Biomech suit (see Section 3.1.1), to hold a 1.5 kg
spray gun with her dominant hand, and to paint a predefined area on a car bumper (the
object which has to be painted for the purpose of the task). A KUKA LWR, provided
with an impedance controller to ensure safety in HRC and equipped with a Pisa/IIT
Softhand [200], was holding the car bumper. In Figure 6.5 the experimental setup is
illustrated. Considering the area which needs to be painted - the yellow area on the car

4A video showing the whole procedure is available at https://youtu.be/6Qw0Jz0EcdQ.
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Figure 6.5: Overview of the experimental setup. All the sensors and devices involved in the experiment
are illustrated as well as the visual feedback provided to the subject during the experiment.

bumper highlighted in the picture - the subject was expected to adopt a wide range of
body postures to accomplish the task. Accordingly, different joints were supposed to
accumulate fatigue during different stages. Consequently, for better results, the optimi-
sation procedure had to occur multiple times throughout the experiment and to focus
selectively case by case on the fatigued joint. Therefore, each time the overloading joint
fatigue in a specific joint overcame a pre-defined threshold, the optimisation procedure
described in Section 6.1 was triggered. As already mentioned, the ergonomic index
selected to be minimised was the overloading joint fatigue. On the other hand, the con-
straints considered in the process were the joint angles boundary condition (6.2), the
postural stability condition (6.3) and the human-robot shared space condition (6.4). As
a result of the optimisation, the subject was induced to modify her body configuration
by following the robot guidance so as to reach a more ergonomic loading condition. As
a support tool to the robot assistance, the subject was provided with the visual feedback
described in Section 5.1, showing the current body configuration and the current level
of the overloading fatigue on the main joints.

Results

The results of the experimental analysis to evaluate overloading fatigue mitigation
through HRC are shown in Figure 6.6. Figure 6.6a illustrates the four key moments of
the experiment (i.e. stage 1, 2, 3, and 4). Some color-coded spheres are placed on the
main joints of the subject to indicate the level of the overloading fatigue at that instant:
high (red), medium (orange), and low (green) level (see Section 5.1). The trends of the
normalised overloading fatigue in the main joints are presented in Figure 6.6b. Initially,
the subject began to process a point on the top of the car bumper by assuming a body
configuration which made the shoulder joint accumulate excessive fatigue, as shown in
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the fourth line of the graph in Figure 6.6b. As soon as overloading fatigue overcame
a threshold (stage 1), which is set to 1/2 of the ∆τmaxi , the optimisation procedure
was triggered and the subject was guided by the collaborative robot toward a more er-
gonomic body configuration, which led to a lower overloading torque in the shoulder
and promoted the recovery phase (stage 2). In this case, the optimisation procedure was
more focused on the upper body and resulted in a decrement of the overloading fatigue
in the shoulder. In Figure 6.6d, the trajectory of the collaborative robot end-effector
is shown: to make the subject reached the optimal body configuration, the car bumper
was brought at a lower height at stage 2.

Subsequently, the subject started processing a point on the bottom of the car bumper
by assuming a body configuration which, this time, made the lower body accumulate
fatigue (stage 3), mainly in the hip joint, as shown in the first line of the graph in Figure
6.6b. Similarly, as soon as the overloading fatigue overcame the threshold, the optimi-
sation procedure was triggered and the subject was guided by the collaborative robot
toward a body configuration which led to a minor overloading torque in the lower body
joints and initiated again the recovery mode (stage 4). In this case, the optimisation
procedure was more concentrated in the lower body and made the overloading fatigue
decrease in the hips, knees, and ankles. To this aim, the collaborative robot brought the
car bumper at a higher height at stage 4 (see Figure 6.6d). Figure 6.6c illustrates the
trends of the normalised overloading torque in the main joints.

Discussion

It is worth noticing that the values of the overloading torque, illustrated in Figure 6.6c,
remained moderate (around the 50% of their maximum value) in all the joints through-
out the entire duration of the experiment. In [129], where the HRC framework was
originally proposed, the optimisation procedure was performed when the overloading
torque reached a value close to the maximum one since heavy tools which generated
high overloadings were considered. In this experimental analysis, a lightweight tool is
considered and the overloading torques it induces on the joints are not so high. Hence,
the optimisation procedure would not be initiated within the HRC framework origi-
nal setting. In fact, as previously mentioned, the risk of joint injuries while support-
ing light payload is not related to the instantaneous loading they induce, but rather on
their prolonged and repeated use over time. This is the reason why we developed an
overloading fatigue model which accounts for the cumulative effect of the overloading
torque throughout time and thus represents a good criterion to set the timing of the
optimisation procedure when performing tasks with lightweight tool.
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Figure 6.6: Overloading fatigue mitigation through HRC: (a) Key moments of the HRC experiment. (b)
overloading fatigue and (c) overloading torque in the hip(H), knee(K), ankle(A), shoulder(S) and
elbow(E) joints for one subject performing the HRC experiment. (d) collaborative robot trajectory:
the robot assistance promoted the recovery phase after fatigue in B and D.
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6.2. Experimental Application of the HRC Framework

6.2.3 Multi-Human Mobile-Robot Collaborative Teams

The HRC framework tackled in this Chapter, has demonstrated its capability to mit-
igate the risk associated with joint mechanical overloading taking advantage of the
assistance of a collaborative robot, which guides the human toward more ergonomic
postures. Nevertheless, the proposed approach, as implemented so far, severely lacked
flexibility due to the fixed base of the robot. As a result, its applicability in real indus-
trial scenarios, including multiple workers that operate in a broad area, may be rather
limited. To increase the potential of collaborative robotic technologies in the work-
place, while meeting the requirements of frequently varying production processes, the
concept of mobility must be integrated into the robot control framework (see Fig.6.7).

Co-Worker 1

Co-Worker 2

Mobile-based robot

Figure 6.7: The proposed multi-human mobile-robot control framework aims to improve workers’ er-
gonomics by integrating an optimisation procedure into a mobile collaborative robot assistant.

Accordingly, the first focus of [197] was to introduce a new MObile Collaborative
robotic Assistant (MOCA), composed of a lightweight manipulator arm, an underactu-
ated hand, and a mobile platform driven by four omni-directional wheels, which enables
agile mobility in the work space and is provided with advanced interaction and manip-
ulation features. Secondly, an ergonomics module to anticipate and mitigate the human
risk factors by means of the optimisation procedure explained in Section 6.1 was inte-
grated into the system, to ensure workers’ well-being and the improvement of working
conditions. The resulting control framework was able to ensure robot adaptation to
multiple human workers’ kinodynamic states and variable tasks while addressing their
ergonomic requirements. An experimental analysis was conducted to evaluate the pro-
posed strategy, simulating a simple manufacturing line that involves two subjects and
the MOCA, and it will be presented in this Subsection.5

5A video showing the whole procedure is available at https://youtu.be/Ug1Bpwo_eeo.
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Figure 6.8: Overview of the experimental setup: two subjects and MOCA were involved in the experi-
ment (bottom). The visual feedback provided to the subjects during the experiment (top).

Experimental setup

Two human healthy subjects (labeled as 1 [female] and 2 [male]) were recruited for
the experimental session. Two different tasks were defined for them: subject 1 had
to perform a handover task, passing an object to MOCA, while subject 2 had to per-
form a drilling task on the same object that was held by MOCA. The experimental
setup of the experiment is illustrated in Fig. 6.8. The whole experimental procedure
was carried out in accordance with the Declaration of Helsinki and the protocol was
approved by the ethics committee Azienda Sanitaria Locale (ASL) Genovese N.3 (Pro-
tocol IIT_HRII_001). The actors involved were MOCA and the two human subjects.
Each subject was asked to wear the MVN Biomech suit presented in Section 3.1.1. A
global frame ΣW was defined on the floor of the experimental area to localise in the
shared work space the frame of each actor involved. Accordingly, both MOCA and the
MVN Biomech suits worn by the human subjects were calibrated so as to set ΣW as
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6.2. Experimental Application of the HRC Framework

their global frame. The local frames of subject 1, subject 2 and MOCA, were respec-
tively defined as ΣT1, ΣT2 and ΣM . The experimental procedure included two stages:
the handover task performed by subject 1 and the drilling task performed by subject 2.
During the first stage, subject 1 held an object and MOCA approached her, assuming
a configuration that drove her to adopt the optimal body posture for handing over the
object to MOCA. Next, during the second stage, MOCA approached subject 2 offering
him the object which he had to drill, in a way that he could assume the optimal body
configuration to perform the task.

Both the human subjects in their respective stages had to accomplish their own task
in the best working conditions considering the task constraints. Hence, for each subject,
the optimal body configuration to perform the corresponding activity was estimated
through the procedure described in Section 6.1. Since the conditions and requirements
of the two tasks defined were different, different constraints were considered in the
optimisation process. For subject 1, the optimisation constraints concerned the support
polygon 6.3 and the shared work space 6.4 between the human subject and MOCA. For
subject 2, the optimisation constraints concerned the human support polygon 6.3 and
the human subject’s manipulability 6.5.

Results

The results of the multi-human MOCA team experiment are illustrated in Figure 6.9.
The optimised postures of each subject and the variations of MOCA configurations,
provided by the visual feedback interface, are displayed in the first row of Figure 6.9a.
The bottom plot illustrates the positions of the two subjects in the work space while per-
forming their task and highlight the trajectories (position and orientation) that MOCA
followed to guide them toward the optimal working conditions.

Figure 6.9b represents the whole sequence of tasks execution considering both the
robot and the subjects’ points of view. The first two plots illustrate the external in-
teraction forces and positions, which were measured at MOCA end-effector w.r.t ΣW .
The variations of the overloading torques in the human main joints are depicted in the
bottom graph of Figure 6.9b, for each subject during the execution of their respective
task. For subject 2, also the value of manipulability throughout the experiment is pro-
vided. In the “homing phase”, MOCA waited for the task of subject 1 to start. Then,
as soon as optimisation procedure was performed, the locomotion phase was triggered
and the robot was controlled to move towards the first optimised configuration so as to
pick up the object from subject 1. When this task was finished, MOCA was notified
about the task accomplishment: its end-effector was pushed by the subject with a force
overcoming a pre-defined threshold (Fy ≥ 20N ). In this respect, it should be noted that
the increment exhibited by the overloading joint torques at the end of the task was due
to the human act of pushing the robot. Thereafter, the robotic arm (but not the mobile
platform) came back to the homing configuration and MOCA waited for the next task
to initiate. Similarly as before, when the optimisation procedure was performed, the
locomotion phase started and the robot was controlled to move towards the second op-
timised configuration for offering the object to subject 2, which had then to operate on
it. During the drilling task, the manipulability of the subjects maintained a high value,
around 83.45%, meaning that the manipulability ellipsoid became nearly isotropic (see
the bottom of the right graph in Figure 6.9b).
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Subject 2

Subject 2Subject 1

Subject 1

𝚺𝑴𝑯
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z𝚺𝑴

Locomotion
path
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Subject 1 Subject 2
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”Drilling"
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Accomplishing
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task

(b)

Figure 6.9: Experimental results of the the multi-human mobile robot collaboration framework in the
execution of simple manufacturing tasks. (a) The trajectory of the mobile platform during the exe-
cution of two tasks by the subjects (bottom) and the visual feedback provided to the subjects (top).
(b) The interaction forces and the position of MOCA end-effector are illustrated in the first two rows,
respectively, and the overloading joint torques and manipulability (only subject 2) estimated by the
ergonomics module for each subject are illustrated in the bottom.

Discussion

The proposed HRC framework was able to mitigate the physical load for multiple hu-
mans performing different tasks in a broad working area, introducing a considerable
improvement in the applicability of the robotics solutions within the industrial environ-
ment. The salient feature of the strategy is the mobility of the collaborative robot which,
combined with the capability of the ergonomics module to address workers’ health, can
meet the demands of the numerous unstructured and unergonomic workplaces which
dot the current manufacturing scenario.
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CHAPTER7
Conclusions

The thesis herein presented introduced a novel online human ergonomics monitoring
system, which adopted an exhaustive set of indexes to account for multiple ergonomic
risk factors (e.g. unfavourable postures, mechanical overloading of the body tissues,
repetitive movements, etc.) and thus enabled to assess workers’ physical exposure
to the major determinants of WMSDs. The proposed ergonomic indexes were com-
bined with intuitive feedback interfaces (i.e. visual or vibrotactile) to enhance workers’
awareness about their kino-dynamic states and the associated level of hazard. There-
with, they were integrated within a HRC framework to guide and assist the humans
toward more convenient body configurations and loading conditions to execute their
working activities. Such an improved attitude was achieved by taking advantage of an
online optimisation procedure that minimised the ergonomic indexes according to the
task and environment constraints thus mitigating the corresponding risk factor.

To adapt to workers’ physical characteristics and individual demands, the framework
proposed in this thesis was grounded on a subject-specific model of the human body. In
fact, the majority of the dynamics-related ergonomic indexes included in the monitor-
ing system relied on the SESC technique, which enabled to obtain the subject-specific
BSIPs of the human. Such parameters could then be adopted to achieve the estimation
of the whole-body CoP. With the aim to extend the human model adopted in this thesis
and broaden its potential applications in real industrial scenarios, two approaches were
proposed.
First, a learning technique to estimate the feet CoP and GRFs on the basis of the whole-
body CoP and total GRF was developed. As a matter of fact, the SESC method allowed
to represent the human biomechanical system as a planar serial chain that includes only
one GRF. By exploiting the ability of artificial neural networks to implicitly detect
complex nonlinear relationships between variables, the upgrade of this reduced model
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Chapter 7. Conclusions

to a bipedal one was accomplished. As demonstrated by the corresponding experimen-
tal validation, the proposed learning approach thereby allowed the tracking of human
states in a wider work space.

Next, a novel method to approximately detect the contact point when an external
load is exerted on the human body was introduced. The proposed approach relied on
a torque equilibrium condition on the human sagittal plane integrated with a statistical
analysis approach to increase the accuracy of the estimation. Its capability to provide a
rather accurate and quick online estimation of the contact point was demonstrated both
in a simulation study and in an experimental analysis conducted on human subjects.
Consequently, this method permitted to avoid a-priori assumptions when tracking the
human dynamic states, further tailoring the human model adopted in this thesis to the
varying interaction conditions featuring workers’ activities.

In view of achieving an extensive and thorough analysis of the whole range of risk
factors associated with occupational activities, a human ergonomics monitoring system
was outlined in this thesis. Such a tool consisted in a comprehensive set of indexes
that encompassed not only the kinematics of workers’ actions but put also particular
attention to dynamic aspects (i.e. forces or torques acting on and inside the body),
which may assume a significant role in contributing to WMSDs. For all the indexes
proposed, a definition and justification were provided, specifying the ergonomic risk
factor that each of them sought to address.

To validate the proposed ergonomics monitoring system, an experimental analysis
was conducted on twelve subjects considering three different tasks, which represented
typical occupational activities in manufacturing industries and, additionally, were as-
sociated to different potential risk factors to the development of WMSDs. Among the
kinematics-related indexes, the joint displacement was identified as the most benefi-
cial tool in assessing physical exposure due to its capability to detect unfavourable
body postures. As regards dynamics-related variables, a specific index was found that
better explained the physical load required in each considered task, evaluated by the
outcome of the sEMG analysis. Specifically, to account for the mechanical overbur-
den of the body structures during the lifting/lowering of heavy objects, the overloading
joint torque index demonstrated to be the more promising novel index. Considering a
task in which all the components of the interaction forces at the hand/tool interface are
relevant, like the drilling task, the joint compressive forces index proved to be more
predictive of the risk associated. Finally, to account for fatigue accumulation while
executing repetitive and monotonous prolonged activities like painting, the overload-
ing joint fatigue index gave proof to be more informative. It was also noted that the
potential of the remaining indexes must be investigated more deeply considering more
dynamically varying activities.

In addition, a comparison was made with the ergonomic risk scores resulting from
the EAWS, which are a well-recognised tool to evaluate workers’ physical exposure.
It is noteworthy that EAWS are conceived for industrial environments and thus several
assumptions were made to contextualise the experimental analysis in a real workplace,
however, some advantages of the proposed framework compared to them were detected.
In fact, EAWS happened to be subject-specific only to a certain extent and could be
conducted only in an off-line by trained experts. Furthermore, they seemed to lack the
full assessment of the dynamics aspects of the working activities. For these reasons, the
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integration of EAWS with the proposed human ergonomics monitoring system would
allow a more comprehensive and thorough analysis of the whole range of risk factors
associated with occupational tasks, taking equally into account the relative kinematics
and dynamics aspects and addressing workers’ specific requirements.

With the aim to improve humans’ risk-awareness, providing them with information
about the degree of hazard associated with their activities, two feedback solutions were
proposed in this thesis. The related interfaces were able to communicate the magnitude
of an ergonomic index (selected among the ones constituting the proposed monitoring
system) for which three levels were defined -high, medium, low- to categorise the extent
of the corresponding risk factor addressed.

Firstly, a graphical interface was presented which took advantage of the ROS 3D
visualizer RViz. By means of a dedicated screen, it was able to illustrate to the user both
kinematic and dynamic meaningful information. The first was represented through a
virtual simplified model of the human body while the second was expressed in terms of
a dynamics-related ergonomic index. The selected index was illustrated with spheres
superimposed on the human body model, located in the main joints, and its level was
color-coded to denote a high (red), medium (orange) or low (green) risk. This traffic
light scheme enabled a straightforward interpretation and ease of use of the interface,
which proved to be an intuitive mean to alert workers about their physical exposure. In
fact, it was adopted as a part of several experimental analysis within the context of this
thesis and successfully employed to convey the level of the overloading joint torque
and fatigue indexes during their respective investigations. Nevertheless, the proposed
graphical interface had the severe disadvantage of requiring the users to focus on a
specific spot, potentially interfering with the smooth execution of their activities.

Such a limitation was overcome by the second feedback strategy proposed: a vi-
brotactile device called ErgoTac that acted as a sensory substitution modality. ErgoTac
offered the huge benefit of being wearable and wireless thus it could assist the users
within a broad area allowing them to act freely in the work space. The level of the
selected ergonomic index in this case (the overloading joint torque) was reported by
means of a different vibration intensity of the device. An experimental study on ten
human subjects was performed to validate the approach. While performing a lifting
task with a heavy object, the subjects were required to reconfigure their body posture
by following the vibrotactile feedback guidance so as to reduce the effort on the joints.
The results, supported by statistical analysis, demonstrated the potential of ErgoTac in
assisting the workers in their occupational activities.

Ultimately, a HRC framework was proposed as a solution to address workers’ er-
gonomic demands in today’s SMEs, which are featured by frequently varying work
flows and unstructured work stations. Taking into account a specific ergonomic index,
wherever its level of risk was medium/high, an optimisation procedure was employed
to estimate a more ergonomic human body configuration by minimising the selected
index according to certain constraints. Then, the human subjects could be facilitated to
achieve such an optimal condition by following the guidance of a collaborative robot
thus mitigating the effect of the risk factor associated. The main objective of the pro-
posed HRC framework in this thesis was to introduce and evaluate its feasibility as well
as flexibility, demonstrating robot’s ergonomic collaboration with, and work in close
proximity to, human co-workers. Hence, diverse applications were presented, which
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can be tackled not only considering a fixed collaborative robot with a single co-worker
but also a mobile robotic platform with multi co-workers.

First, the proposed synergistic model to estimate the feet CoP and GRF was de-
ployed to enable the online estimation of the overloading joint torque index for human
bipedal models and investigated in a human-robot load sharing task. An experimental
analysis was conducted on one subject as a proof of concept, supported by an sEMG
analysis. The corresponding findings provided evidence of the framework capabil-
ity to reduce effort on human joints, during double-support, due to the robot reactive
behaviour. Next, the proposed overloading fatigue model was exploited in the HRC
framework as a trigger mechanism for the optimisation procedure. By the time fatigue
exceeded a pre-defined threshold in any joint, the optimal body configuration was es-
timated by minimising the overloading joint torque index and the human was guided
by the collaborative robot assistance to avoid the accumulation of further fatigue. Also
in this case, the experimental validation of the method proved the capability of the
HRC framework to mitigate the risk associated with the mechanical overloading of the
human joints. However, repetitive and prolonged tasks with light-weight tools were
addressed in this study showing additionally the HRC system adaptability to different
occupational activities along with the flexibility of the optimisation procedure timing.
Last, the case study of a multi-human and mobile-robot collaborative team was inves-
tigated. The HRC framework, as implemented so far, severely lacked flexibility due
to the fixed base of the robot. As a result, its applicability in real industrial scenarios,
including multiple workers that operate in a broad area, was rather limited. Hence, to
increase the potential of collaborative robotic technologies in the workplace, the robotic
platform MOCA was introduced, featured by agile mobility and advanced interaction
and manipulation features. The optimisation procedure was integrated into its control
system, enabling MOCA to mitigate the risk of excessive effort in the human joints in
terms of overloading torque, for multiple workers performing different tasks. An ex-
perimental analysis was conducted simulating a simple manufacturing line where two
human subjects performed a handover and drilling task, respectively, collaborating with
MOCA. The effectiveness of the task-dependent optimisation was validated by means
of the sEMG measurements, torque variations, and considerations on the manipulability
aspect. The proposed strategy then demonstrated its key strength in the applicability to
the real industrial environments, which demand for high flexibility in the few-of-a-kind
production processes.

One of the main limitations of the proposed framework to assess and improve hu-
man ergonomics lies in the sensor technologies employed for the tracking of human
kino-dynamic states. All the devices adopted in this thesis are rather expensive and
sophisticated. Hence, a considerable initial investment to purchase the equipment is re-
quired as well as the resources necessary to cover the costs of maintenance, which may
not be affordable by many SMEs. Moreover, highly trained and skilled technical staff
is needed to ensure their effective operation. In addition, although the sensor systems
adopted (i.e. Xsens suit, OpenGo sensor insoles) are wearable and lightweight, the at-
tachment of devices directly to the subjects may still result in discomfort and possibly
lead to changes or even limitation in workers’ behaviour, especially for a prolonged
time. Accordingly, in future works more affordable and convenient systems will be
investigated as an alternative, as for instance low-cost vision system (i.e. Kinect, Robo-
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Ception, RealSense) combined with machine learning algorithms, which are becoming
more and more widespread as a motion-capture system. As mentioned in Section 3.1.1,
such technologies lack accuracy and suffer from visibility limitations but the continu-
ous technological innovations in this field seek to tackle these issues.

The proposed human ergonomics monitoring system showed promising capabili-
ties to address different risk factors to the development of WMSDs while assessing
multiple working activities. However, there are many possibilities for further develop-
ments. First, as already mentioned, some of the ergonomic indexes introduced should
be deeper investigated considering more dynamically varying tasks and more artic-
ulated experimental conditions. Next, novel indexes could be added, which address
other risk factors across the extensive list of possible determinants for musculoskeletal
conditions. Last, feasible strategies to combine the proposed monitoring system with
well-recognised tools to assess workers’ ergonomics (e.g. EAWS) should be conceived,
with the aim to enable an exhaustive and thorough analysis of the whole range of risk
factors associated with work, considering all the essential related aspects.

Concerning the feedback interfaces, future studies will focus on the improvement
of the proposed solutions. The screen-based visual feedback system will be converted
into a fully-fledged GUI. The latter will allow the user to select a specific ergonomic
index to be displayed, to adapt the feedback features depending on the task and its
relative conditions and to store and make available meaningful information about the
users’ parameters, but also about the results of ergonomics analysis. On the other hand,
the main shortcoming of the ErgoTac device is that no instructions regarding the cor-
rect direction of motion can be provided to the users. A possible solution would be
adopting a higher number of vibrotactile devices (e.g., in antagonistic configurations)
to orient movements toward an optimal path. However, this may excessively augment
the cognitive load of the users. In this regard, an interesting development of this inter-
face would include the investigation of the optimal number of devices and the influence
of the person’s own perception in recognising the risk level.

Finally, considerable scope for improvement is envisaged for the HRC framework.
So far the optimisation procedure could be adopted with one ergonomic index at a time.
Thus, a major and beneficial improvement in this respect would be the development of
a multi-objective optimisation technique, which allows the simultaneous minimisation
of multiple ergonomic indexes. In such a way, multiple ergonomic risk factors would
be addressed at once and higher flexibility and re-configurabilty would be given to the
robot control system. The latter would then be able to automatically handle different
tasks without the need to be reprogrammed.
Additional novel constraints could be considered for the revised version of the optimi-
sation procedure, taking into account different aspects in the execution of the task or in
the workplace environment conditions.

On the other hand, the intelligence of robots, which allows understanding the en-
vironmental conditions and co-workers’ intentions by using perception systems, will
be employed to further improve the versatility of the HRC framework in real indus-
trial settings. Some preliminary works following this aspect were attempted. In [37],
the framework showed that a mobile-based collaborative robot was able to navigate to-
wards human partners for serving the ergonomic collaboration behaviour. Meanwhile,
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it was also able to distinguish obstacles such as the coexisting humans or fixed objects
by using navigation strategies in the robot control system.1 In [35], in the ergonomic
HRC framework, a vision system was included that enabled to track the human inten-
tion: which tool/part is intended to be manipulated, if the worker is left or right-handed,
or moves within the work space. Consequently, the cobot was able to keep addressing
workers’ ergonomic demands in a flexible way.

The final objective in this respect is to transform the HRC framework in a modular
system whose components (i.e. ergonomics module, vision module, navigation module,
manipulation module. etc.) can be rearranged and combined in multiple ways to ensure
the best results in the improvement of humans’ health and working conditions.

1A video showing the whole procedure is available at https://youtu.be/vorn4GwCT2g.
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[139] VJ Easton and JH. McCollś. Statistics glossary v1.1. http://www.stats.gla.ac.uk/steps/
glossary/. Available on line.

[140] C Bulpitt. Confidence intervals. Lancet, 1(8531):494–7, 1987.

[141] BJ Stephens and CG Atkeson. Dynamic balance force control for compliant humanoid robots. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 1248–1255. IEEE, 2010.

[142] S Lee and A Goswami. A momentum-based balance controller for humanoid robots on non-level and non-
stationary ground. Autonomous Robots, 33(4):399–414, 2012.

[143] L Righetti, J Buchli, M Mistry, and S Schaal. Control of legged robots with optimal distribution of contact
forces. In Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International Conference on, pages 318–
324. IEEE, 2011.

[144] S Hyon, JG Hale, and G Cheng. Full-body compliant human–humanoid interaction: balancing in the presence
of unknown external forces. IEEE Transactions on Robotics, 23(5):884–898, 2007.

[145] U Lugrís, J Carlín, R Pàmies-Vilà, JM Font-Llagunes, and J Cuadrado. Solution methods for the double-
support indeterminacy in human gait. Multibody system dynamics, 30(3):247–263, 2013.

[146] L Ren, RK Jones, and D Howard. Whole body inverse dynamics over a complete gait cycle based only on
measured kinematics. Journal of biomechanics, 41(12):2750–2759, 2008.

[147] T Sim, H Kwon, SE Oh, S Joo, A Choi, Hyun M Heo, K Kim, and JH Mun. Predicting complete ground
reaction forces and moments during gait with insole plantar pressure information using a wavelet neural
network. Journal of biomechanical engineering, 137(9), 2015.

147

http://www.stats.gla.ac.uk/steps/glossary/
http://www.stats.gla.ac.uk/steps/glossary/


i
i

“output” — 2020/11/17 — 15:07 — page 148 — #158 i
i

i
i

i
i

Bibliography

[148] HS Choi, CH Lee, M Shim, JI Han, and YS Baek. Design of an artificial neural network algorithm for a
low-cost insole sensor to estimate the ground reaction force (grf) and calibrate the center of pressure (cop).
Sensors, 18(12):4349, 2018.

[149] K Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–257,
1991.

[150] S Karsoliya. Approximating number of hidden layer neurons in multiple hidden layer bpnn architecture.
International Journal of Engineering Trends and Technology, 3(6):714–717, 2012.

[151] L Fortini, M Lorenzini, W Kim, E De Momi, and A Ajoudani. A real-time tool for human ergonomics assess-
ment based on joint compressive forces. In 2020 International Conference on Robot & Human Interactive
Communication (RO-MAN). IEEE, 2020.

[152] M Whitmore, J Boyer, and K Holubec. NASA-STD-3001, Space Flight Human-System Standard and the
Human Integration Design Handbook. NASA, 2012.

[153] World Health Organization et al. Protecting workers’ health series no. 5. preventing musculoskeletal disorders
in the workplace; 2003, 2016.

[154] DM Jessop and MTG Pain. Maximum velocities in flexion and extension actions for sport. Journal of human
kinetics, 50(1):37–44, 2016.

[155] WS Marras, SA Lavender, SE Leurgans, FA Fathallah, SA Ferguson, Gary AW, and SL Rajulu. Biomechan-
ical risk factors for occupationally related low back disorders. Ergonomics, 38(2):377–410, 1995.

[156] JB Malchaire, NA Cock, A Piette, R Dutra Leao, M Lara, and F Amaral. Relationship between work con-
straints and the development of musculoskeletal disorders of the wrist: a prospective study. International
Journal of Industrial Ergonomics, 19(6):471–482, 1997.

[157] WS Marras and RW Schoemarxlin. Wrist motions in industry. Ergonomics, 36(4):341–351, 1993.

[158] A Bhattacharya, M Mueller, and V Putz-Anderson. Traumatogenic factors affecting the knees of carpet
installers. Applied Ergonomics, 16(4):243–250, 1985.

[159] KA Grant, PW Johnson, and TL Galinsky. Evaluation of an accelerometric activity monitor as an exposure
assessment tool in ergonomic studies. Applied Occupational and Environmental Hygiene, 10(5):461–466,
1995.

[160] J Jovic, A Escande, K Ayusawa, E Yoshida, A Kheddar, and G Venture. Humanoid and human inertia
parameter identification using hierarchical optimization. IEEE Transactions on Robotics, 32(3):726–735,
2016.

[161] SH Hyon. Compliant terrain adaptation for biped humanoids without measuring ground surface and contact
forces. IEEE Transactions on Robotics, 25(1):171–178, Beb 2009.

[162] H Jeong, K Yamada, M Kido, S Okada, T Nomura, and Y Ohno. Analysis of Difference in Center-of-Pressure
Positions between Experts and Novices during Asymmetric Lifting. IEEE Journal of Transl. Eng. in Health
and Medicine, 4:1–11, 2016.

[163] JC E Van Der Burg, JH Van Dieën, and HM Toussaint. Lifting an unexpectedly heavy object: The effects on
low-back loading and balance loss. Clinical Biomechanics, 15(7):469–477, 2000.

[164] DE Anderson, ML Madigan, and MA Nussbaum. Maximum voluntary joint torque as a function of joint
angle and angular velocity: model development and application to the lower limb. Journal of biomechanics,
40(14):3105–3113, 2007.

[165] JZ Liu, RW Brown, and GH Yue. A dynamical model of muscle activation, fatigue, and recovery. Biophysical
journal, 82(5):2344–2359, 2002.

[166] DD Wood, DL Fisher, and RO Andres. Minimizing fatigue during repetitive jobs: optimal work-rest sched-
ules. Human factors, 39(1):83–101, 1997.

[167] D Imbeau, B Farbos, et al. Percentile values for determining maximum endurance times for static muscular
work. International Journal of Industrial Ergonomics, 36(2):99–108, 2006.

[168] BP Bernard and V Putz-Anderson. Musculoskeletal disorders and workplace factors; a critical review of
epidemiologic evidence for work-related musculoskeletal disorders of the neck, upper extremity, and low
back. DHHS (NIOSH) Publication, 1997.
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