
POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E

BIOINGEGNERIA
DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

AN ASSESSMENT OF REPRODUCIBILITY AND

METHODOLOGICAL ISSUES IN NEURAL

RECOMMENDER SYSTEMS RESEARCH

Doctoral Dissertation of:
Maurizio Ferrari Dacrema

Supervisor:
Prof. Paolo Cremonesi
Tutor:
Prof. Francesco Amigoni
The Chair of the Doctoral Program:
Prof. Barbara Pernici

2020 – Cycle XXXII

Abstract

The design of algorithms that generate personalized ranked item lists is a
central topic of research in the field of recommender systems. In recent
years, in particular, the interest of the research community has moved to-
wards neural approaches based on deep learning, which have become dom-
inant in the literature. Since each of those publications claims substantial
progress over the state-of-the-art, it seems logical to expect the research
field to be on a steady trajectory of increased effectiveness. However, sev-
eral studies indicated the existence of certain problems in today’s research
practice, e.g., with respect to the choice and optimization of the baselines
used for comparison or to the design of the experimental protocol itself,
raising questions about the published claims. In order to assess the level of
progress, reproducibility and the existence of issues in the current recom-
mender systems research practice, this thesis attempts to reproduce recent
results in the area of neural recommendation approaches based on collab-
orative filtering. The analysis in particular focuses on articles published
at high level scientific conferences between 2015 and 2018. The results is
that out of 24 articles, only 12 can be reproduced and only 1 shows to be
consistently competitive against simple methods, e.g., based on the nearest-
neighbor heuristics or linear machine learning. In our analysis, we discuss
this surprising result and trace it back to several common issues in today’s
research practice, which, despite the many papers that are published on the
topic, have apparently led the recommender system field, for the task con-
sidered in our analysis, to a certain level of stagnation.

I

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Contributions . 3
1.3 List of Publications . 4

1.3.1 Invited Conference Paper 4
1.3.2 Journal Publication 4
1.3.3 Book Chapter . 4
1.3.4 Conference Paper 5
1.3.5 Workshop Paper . 5

1.4 Structure . 6

2 Preliminaries 9
2.1 Neural Recommender Systems 9

2.1.1 Multi-layer Perceptron 10
2.1.2 Autoencoder . 10
2.1.3 Convolutional Neural Network 13

2.2 Reproducibility Crisis . 15

3 Identifying relevant and reproducible articles 21
3.1 Paper Selection Criteria . 21
3.2 Relevant and Reproducible Papers List 23

4 Evaluation protocol and baseline algorithms 27
4.1 Experimental Setup . 27
4.2 Baseline Algorithms . 29

III

Contents

4.2.1 Popularity-Based Ranking 29
4.2.2 Nearest-Neighbor Methods 29
4.2.3 Graph-based Methods 34
4.2.4 Content-based and Hybrid Methods 35
4.2.5 Non-Neural Machine Learning Item-based Approaches 36
4.2.6 Non-Neural Machine Learning Matrix Factorization

Approaches . 37
4.3 Evaluation metrics . 40

4.3.1 Accuracy Metrics 40
4.3.2 Beyond-accuracy Metrics 42
4.3.3 Computation Time Metrics 44

4.4 Hyperparameter Tuning 45
4.4.1 Early Stopping Approach 46

4.5 Evaluation Framework . 47

5 Detailed results for reproducible articles 53
5.1 Collaborative Deep Learning for Recommender Systems (CDL) 53

5.1.1 Datasets and Evaluation 54
5.1.2 Methodological considerations 54
5.1.3 Results and Discussion 55

5.2 Collaborative Variational Autoencoder (CVAE) 56
5.2.1 Datasets and Evaluation 56
5.2.2 Methodological considerations 56
5.2.3 Results and Discussion 57

5.3 Neural Collaborative Filtering (NCF) 58
5.3.1 Datasets and Evaluation 59
5.3.2 Methodological considerations 59
5.3.3 Results and Discussion 60

5.4 Deep Matrix Factorization (DMF) 62
5.4.1 Datasets and Evaluation 62
5.4.2 Methodological considerations 63
5.4.3 Results and Discussion 64

5.5 Variational Autoencoders for Collaborative Filtering (Mult-
VAE) . 66
5.5.1 Datasets and Evaluation 66
5.5.2 Methodological considerations 67
5.5.3 Results and Discussion 68

5.6 NeuRec: On Nonlinear Transformation for Personalized Rank-
ing . 70
5.6.1 Datasets and Evaluation 70

IV

Contents

5.6.2 Methodological considerations 71
5.6.3 Results and Discussion 71

5.7 CoupledCF: Learning Explicit and Implicit User-item Cou-
plings . 74
5.7.1 Datasets and Evaluation 75
5.7.2 Methodological considerations 76
5.7.3 Results and Discussion 77

5.8 DELF: A Dual-Embedding based Deep Latent Factor Model
for Recommendation . 79
5.8.1 Datasets and Evaluation 81
5.8.2 Methodological considerations 81
5.8.3 Results and Discussion 83

5.9 Outer Product-based Neural Collaborative Filtering (Con-
vNCF) . 84
5.9.1 Datasets and Evaluation 84
5.9.2 Methodological considerations 85
5.9.3 Results and Discussion 86

5.10 Leveraging Meta-path based Context (MCRec) 88
5.10.1 Datasets and Evaluation 88
5.10.2 Methodological considerations 89
5.10.3 Results and Discussion 90

5.11 Collaborative Memory Network for Recommendation Sys-
tem (CMN) . 91
5.11.1 Datasets and Evaluation 91
5.11.2 Methodological considerations 92
5.11.3 Results and Discussion 92

5.12 Spectral Collaborative Filtering (SpectralCF) 94
5.12.1 Datasets and Evaluation 94
5.12.2 Methodological considerations 95
5.12.3 Results and Discussion 98

6 The Claimed Value of Convolutions over User-Item Embedding Maps 101
6.1 Background . 102
6.2 Principles and Assumptions of CNNs 103

6.2.1 CNNs on Embedding correlations 103
6.3 Overview of Analyzed Approaches 104

6.3.1 Convolutional Neural Collaborative Filtering 104
6.3.2 Convolutional Factorization Machines 105
6.3.3 Coupled Collaborative Filtering 106

6.4 Analysis . 107

V

Contents

6.4.1 Theoretical Considerations 108
6.4.2 Experiment Configurations 109
6.4.3 Varying the Input Topology 110
6.4.4 Ablation Studies . 111

6.5 Summary . 114

7 Result overview and discussion 115
7.1 Reproducibility . 115

7.1.1 Artifacts not available or not working 116
7.1.2 Difficulty to contact the authors 118

7.2 Methodological Issues . 120
7.2.1 Arbitrary experimental design 121
7.2.2 Selection and propagation of weak baselines 124
7.2.3 Errors and information leakage 127

7.3 Scalability . 130
7.4 Limitations . 134

8 Conclusions 137
8.1 Future Works . 140

A Hyperparameter range and distribution for baseline algorithms 141

B Equivalence of Hamming distance and Herfindahl index 145
B.1 Aggregate diversity metrics 145

B.1.1 Mathematical notation 145
B.1.2 Metrics . 146
B.1.3 Mean inter-list diversity 146
B.1.4 Hamming diversity 147

B.2 MIL as aggregate diversity 147
B.2.1 Diversity enhancing reranking 149

B.3 Summary . 150

C Detailed results for all the analyzed algorithms 151

Bibliography 153

VI

CHAPTER1
Introduction

1.1 Motivation

In the era of exponential information growth, personalized recommenda-
tions have become an important part of many online services we use today.

Among the earliest approaches to perform personalized recommenda-
tions are neighborhood-based algorithms, developed in the mid 1990s [98]
and early 2000s [104]. Those algorithms are based on a similarity between
items or users computed via heuristics, several of which are available and
have either been developed for specific recommendation tasks [2] or have
been borrowed from other domains [39, 113].

A very important milestone for the recommender systems community
was the Netflix Prize [11], which saw matrix factorization algorithms emerge
as a new and very competitive family of models [61, 66, 70, 96]. All matrix
factorization algorithms represent users and items in a low dimensional la-
tent space and the interactions between them is modeled by a dot product
of their embeddings. As opposed to the previous methods, matrix factor-
ization models rely mostly, but not exclusively, on machine learning.

Following the increasing popularity and success of deep learning in sev-
eral application domains, e.g., computer vision and text processing, nu-

1

Chapter 1. Introduction

merous neural approaches for collaborative filtering have been proposed in
recent years. For the most part, researchers try to apply to the recommen-
dation problem neural architectures and techniques that were proven suc-
cessful in other application areas, with the necessary adaptations [29, 132].

Despite several years of apparent continuous progress, evidence is start-
ing to mount that at least a portion of the algorithms claimed to outperform
the state-of-the-art, in fact, fail to do so. In those cases, the original claim
was due to a poor evaluation procedure.

More than a decade ago Armstrong et al. [4] observed that there was
no evidence of improvement for certain information filtering tasks over the
previous decade. They observed that the tendency to report weak base-
lines could easily give the impression of continuous incremental improve-
ments, even though none existed. Their findings have been recently con-
firmed and further discussed by other studies [65]. In particular, in 2019
Yang et al. [127] too observed how in an evaluation study little evidence
emerged that new complex neural methods for information retrieval were
in fact competitive against simple long known baselines. Further to this
point, Lin [74] observed how common it is to find new neural ranking pa-
pers reporting experimental evaluations on inadequately tuned baselines.

For recommender systems, only few of such evaluation studies have
been published [4, 65, 102]. For session-based recommendations, the em-
pirical analyses in [80] showed that in some cases very simple algorithms
can outperform recent more complex neural methods.

Another recent analysis for rating prediction tasks authored by Rendle et
al. in [97] analyzed articles published between 2015 and 2019 finding that
the results reported in those articles actually did not outperform much older
methods, when those were properly optimized. Rendle et al. traced those
results to both the tendency to report poorly optimized baselines and to the
lack of widely used standardized benchmarks. This finding confirms pre-
vious ones [65] observing how, despite several of such benchmarks being
available [102], their use remains limited.

Due to this mounting evidence, we were left wondering to what extent
recent complex neural methods were actually able to improve the quality of
another recommendation task, top-k recommendation based on user-item
rating matrices.

To that purpose, we conducted an extensive evaluation of the neural al-
gorithms published in high-level conferences which are common venues for
recommender systems research. The study included two parts. The first part
is an analysis of the reproducibility of published results, an essential part
of the scientific process. The second part is an evaluation of new complex

2

1.2. Research Contributions

neural models when compared against simple and long known baselines,
which often are not reported anymore.

1.2 Research Contributions

In this section we detail the research contributions of this study, which are
primarily related to a critical analysis of current research practices in the
recommender systems field.

Research Contribution 1: Assessment of reproducibility of pub-
lished research on top-k recommendation with neural approaches. A
preliminary step for the subsequent evaluation study is to be able to repro-
duce the results reported in published research. To this end, we reported
a detailed list of all the articles we analyze, for each one indicating the
publicly available source code and stating whether we could reproduce the
published result or not. If reproducing the results was not possible, we pro-
vide a motivation. We also attempted to communicate with the authors of
the articles if we encountered issues and report the results of this interac-
tions.

Research Contribution 2: Assessment of the competitiveness of neu-
ral algorithms for top-k recommendation against simple non-neural
baselines. As mentioned in the Motivation, several previous articles for
various information retrieval and recommender systems tasks observed that
new complex methods were never competitive against older and much sim-
pler baselines. In order to measure what level of progress has been achieved
thanks to those methods, we design a thorough evaluation study. In this
study we compare all reproducible neural algorithms against an ample set
of simple baselines belonging to different families of models, ensuring their
proper optimization.

Research Contribution 3: Assessment on the principal causes for
the lack of reproducibility and ways for improvement. From our re-
producibility analysis in Research Contribution 1 we could observe only
a limited number of algorithms to be reproducible. We therefore report
and discuss the issues we encountered and compare them with the ones ob-
served by other reproducibility studies in other fields of machine learning.
We also discuss possible directions for improvement.

Research Contribution 4: Assessment of the robustness of current
methodological practices and ways for improvement. From our evalu-
ation in Research Contribution 2 we could observe all but one algorithm
was consistently competitive against simple and well-known baselines. In
order to explain the reason for this remarkable result, we provide a detailed

3

Chapter 1. Introduction

analysis of the evaluation protocols each algorithm adopted and point out
at several possible limitations of the current experimental practice. Among
the most important observations, the apparent arbitrariness of the experi-
mental design as well as the often inadequate selection and optimization
of baselines. Furthermore, several errors in the evaluation protocols and in
the implementation of the original articles were observed. This analysis not
only uncovers severe shortfalls in the current experimental practice regard-
ing individual articles, it also shows how the effects spread in the future as
weak algorithms become the state-of-the-art and propagate to later ones.

1.3 List of Publications

1.3.1 Invited Conference Paper

[47] Methodological Issues in Recommender Systems Research, Maurizio
Ferrari Dacrema, Paolo Cremonesi, Dietmar Jannach, In Proceed-
ings of the 29th International Joint Conference on Artificial Intelli-
gence (IJCAI 2020) (Extended Abstract)

1.3.2 Journal Publication

[38] Movie Genome: Alleviating New Item Cold Start in Video Recommen-
dation, Yashar Deldjoo, Maurizio Ferrari Dacrema, Mihai Gabriel
Constantin, Hamid Eghbal-zadeh, Stefano Cereda, Markus Schedl,
Bogdan Ionescu, Paolo Cremonesi, User Modeling and User-Adapted
Interaction (UMUAI 2019)

[35] A Troubling Analysis of Reproducibility and Progress in Recommender
Systems Research, Maurizio Ferrari Dacrema, Simone Boglio, Paolo
Cremonesi, Dietmar Jannach, ACM Transactions on Information Sys-
tems (ACM TOIS 2019) (Under review)

1.3.3 Book Chapter

[30] Cross-domain recommender systems, Paolo Cremonesi, Maurizio Fer-
rari Dacrema, Shlomo Berkovsky, Iván Cantador and Ignacio Fernández-
Tobı́as, Chapter In Recommender systems handbook. Springer, 2020.

[31] User Preference Sources: Explicit vs. Implicit Feedback, Paolo Cre-
monesi, Franca Garzotto and Maurizio Ferrari Dacrema, Chapter
In Collaborative Recommendations: Algorithms, Practical Challenges
and Applications. World Scientific Publishing Company, 2019.

4

1.3. List of Publications

1.3.4 Conference Paper

[46] Are We Really Making Much Progress? A Worrying Analysis of Recent
Neural Recommendation Approaches, Maurizio Ferrari Dacrema,
Paolo Cremonesi, Dietmar Jannach, In Proceedings of the 13th ACM
Conference on Recommender Systems (RecSys 2019) (Long paper)
Best Long Paper Award

[49] Critically Examining the Claimed Value of Convolutions over User-
Item Embedding Maps for Recommender Systems, Maurizio Ferrari
Dacrema, Federico Parroni, Paolo Cremonesi, Dietmar Jannach, In
Proceedings of the 29th ACM International Conference on Informa-
tion and Knowledge Management (CIKM 2020) (Long paper)

[91] ContentWise Impressions: An industrial dataset with impressions in-
cluded, Fernando Benjamı́n Pérez Maurera, Maurizio Ferrari Dacrema,
Lorenzo Saule, Mario Scriminaci, Paolo Cremonesi, In Proceedings
of the 29th ACM International Conference on Information and Knowl-
edge Management (CIKM 2020) (Long paper)

[14] Estimating Confidence of Individual User Predictions in Item-based
Recommender Systems, Cesare Bernardis, Maurizio Ferrari Dacrema,
Paolo Cremonesi, In Proceedings of the 27th ACM Conference on
User Modeling, Adaptation and Personalization (UMAP 2019) (Long
paper)

[13] A novel graph-based model for hybrid recommendations in cold-start
scenarios, Cesare Bernardis, Maurizio Ferrari Dacrema, Paolo Cre-
monesi, In Proceedings of the 12th ACM Conference on Recommender
Systems (RecSys 2018) (Poster)

[45] Eigenvalue analogy for confidence estimation in item-based recom-
mender systems, Maurizio Ferrari Dacrema, Paolo Cremonesi, In
Proceedings of the 12th ACM Conference on Recommender Systems
(RecSys 2018) (Poster)

1.3.5 Workshop Paper

[48] Deriving item features relevance from collaborative domain knowl-
edge, Maurizio Ferrari Dacrema, Alberto Gasparin, Paolo Cremonesi,
In Proceedings of the Workshop on Knowledge-aware and Conversa-
tional Recommender Systems 2018 (RecSys 2018)

5

Chapter 1. Introduction

[3] Artist-driven layering and user’s behaviour impact on recommenda-
tions in a playlist continuation scenario, Sebastiano Antenucci, Si-
mone Boglio, Emanuele Chioso, Ervin Dervishaj, Shuwen Kang, Tom-
maso Scarlatti, Maurizio Ferrari Dacrema, In Proceedings of the
ACM Recommender Systems Challenge 2018 (RecSys 2018)

[28] Towards Evaluating User Profiling Methods Based on Explicit Ratings
on Item Features, Luca Luciano Costanzo, Yashar Deldjoo, Maurizio
Ferrari Dacrema, Markus Schedl, Paolo Cremonesi, Proceedings of
Joint Workshop on Interfaces and Human Decision Making for Rec-
ommender Systems (IntRS 2019) at the 13th ACM Conference on Rec-
ommender Systems (RecSys 2019)

[36] Leveraging laziness, Browsing-Pattern Aware Stacked Models for Se-
quential Accommodation Learning to Rank, Edoardo D’Amico, Gio-
vanni Gabbolini, Daniele Montesi, Matteo Moreschini, Federico Par-
roni, Federico Piccinini, Alberto Rossettini, Alessio Russo, Cesare
Bernardis, Maurizio Ferrari Dacrema, In Proceedings of the ACM
Recommender Systems Challenge 2019 (RecSys 2019)

[44] Multi-Objective Blended Ensemble For Highly Imbalanced Sequence
Aware Tweet Engagement Prediction, Nicolò Felicioni, Andrea Do-
nati, Luca Conterio, Luca Bartoccioni, Davide Yi Xian Hu, Cesare
Bernardis, Maurizio Ferrari Dacrema, In Proceedings of the ACM
Recommender Systems Challenge 2020 (RecSys 2020)

1.4 Structure

• Chapter 1 introduces this thesis and describes its motivations and re-
search contributions, as well as list the publications related directly or
indirectly with the work carried out for the writing of this thesis.

• Chapter 2 introduces the main concepts for neural recommender sys-
tems and the architectures analyzed in this thesis, as well as the issue
of reproducibility of published research.

• Chapter 3 details the criteria adopted for the reproducibility analysis,
therefore how were the articles surveyed and which is the adopted
definition of reproducibility.

• Chapter 4 details the evaluation protocol used by the comparative
analysis and describes all baseline algorithms used, the optimization

6

1.4. Structure

procedure and the metrics that are reported in the evaluation. The
evaluation framework used for the experiments is also described.

• Chapter 5 reports the detailed results for each reproducible algorithm,
providing a brief overview of the algorithm, the specific evaluation
protocol adopted in the original paper, the results when comparing
its recommendation quality with the baselines and an analysis of the
methodological issues we could observe in the paper or in the avail-
able implementation.

• Chapter 6 reports the analysis of a subset of algorithms which made
specific claims regarding the modeling capacity of Convolutional Neu-
ral Networks. The chapter reports the results of a specifically designed
study to verify those claims.

• Chapter 7 provides an overview of the results and a detailed discus-
sion along several dimensions both related to the reproducibility of the
results and to the methodological issues that could be observed.

• Chapter 8 presents the conclusions.

• Appendix A reports the detailed list of all hyperparameters for the
baseline algorithms, their range and distribution.

• Appendix B describes a side contribution of this thesis demonstrating
the equivalence of a group of beyond-accuracy metrics.

• Appendix C reports the full results for all analyzed algorithms of
which only the most significant ones are reported in the main text.

7

CHAPTER2
Preliminaries

In this Chapter we will first provide a brief overview of the architectures
used in neural recommender systems we analyze in this study. Secondly, we
will provide an overview on reproducibility for different fields of computer
science and the definition of reproducibility we apply in this study.

2.1 Neural Recommender Systems

In recent years a multitude of deep learning architectures have been devel-
oped for several tasks, e.g., computer vision, natural language processing,
audio recognition. For the purpose of this study we will briefly describe
the architectures that have been used in the recommender systems field, in
particular those employed by the algorithms we analyze [132]:

• Multi-layer perceptron

• Autoencoder

• Convolutional Neural Network

9

Chapter 2. Preliminaries

2.1.1 Multi-layer Perceptron

A Multi-layer perceptron (MLP) is a type of feed-forward neural network
which consists of at least three layers: an input layer, one or more hidden
layers and an output layer. Each layer has a non-linear activation function
and is fully connected. MLPs are known to be universal approximators
under certain assumptions [34,59]. In the recommender system field, MLPs
are often used to learn embeddings, projecting the data into a latent space
in a similar way as traditional matrix factorization algorithms do [57, 125].

To illustrate an example of MLP applied to a recommender systems
problem we can refer to perhaps the most cited among the articles we an-
alyze, Neural Collaborative Filtering (NCF) [57]. Figure 2.1 shows the
overall architecture which is constituted by two components: Generalized
Matrix Factorization (GMF) and a MLP. GMF is used to generalize matrix
factorization and simply computes the element-wise product of the user
and item embeddings, which is later fed to a fully connected layer allow-
ing to generalizes the traditionally used dot product. The MLP component
instead concatenates user and item embeddings using them as input for a
MLP neural network. The MLP network allows to model not only non-
linear behavior but also the interactions between embedding dimensions
which in traditional matrix factorization algorithms are not modeled. The
network structure follows the common strategy of a pyramid pattern, where
the input layer is the widest and every successive layer becomes smaller by
a certain coefficient. In case of NCF the number of neurons is halved at
every layer.

In the end, the final layers of GMF and MLP are concatenated and fed
to a last dense layer which computes the final prediction. This allows the
two parts to learn separate embedding sizes. The NCF framework allows
significant flexibility (e.g., choice of network structure, activation function,
embedding size) and has been further developed and specialized by several
other articles.

2.1.2 Autoencoder

An Autoencoder (AE) is a type of feed-forward neural network which is
used to learn an encoding of the data, i.e., to perform dimensionality reduc-
tion. Typically an AE has an encoding network, which may be composed
by one or more layers (i.e., is an MLP), and a decoding network. The two
are connected by an intermediate layer which acts as a bottleneck and will
represent the data encoding. An AE learns this representation in an un-
supervised way, the same data is used as both input and output, in order

10

2.1. Neural Recommender Systems

Figure 2.1: Architecture of the Neural Matrix Factorization algorithm, as described in the
original article [57]

for the AE to learn to encode it in the embedding and reconstruct from it,
optimizing as loss the reconstruction error.

Several variants of AEs exist, the most frequently found in the rec-
ommender systems algorithms we analyze are denoising and variational
[72, 73]:

Denoising Autoencoder (DAE): The purpose of a DAE is to learn a more
robust representation of the data. This is done by corrupting the input
adding a certain amount of random noise, while the output data is not
altered. The AE is therefore trained to reconstruct the original non-
corrupted data starting from a corrupted version. An example of DAE
in the algorithms we analyze is Collaborative Denoising Autoencoder
[122], the added noise is sampled from a Gaussian distribution.

Variational Autoencoder (VAE): The purpose of a VAE is to ensure the
learned encoding space is continuous. This is done by forcing the au-
toencoder to learn a latent representation that follows a Gaussian dis-
tribution. From Figure 2.2 we can see that in addition to the encoding
layer two other layers, with the same dimensionality, are introduced,
one representing the averages and the other the standard deviations of
the Gaussian distributions. In AEs the encoding space will have am-

11

Chapter 2. Preliminaries

ple regions the decoder has never observed during training, since the
input data will be associated with only one encoding, which can limit
the AE robustness to unseen data. VAEs, on the other hand, ensure
the input data will have slightly different encodings if presented to the
network multiple times, therefore the decoder will learn to decode a
wider range of encodings. This allows to use the decoder as a gener-
ative model by providing variations of the latent features. In order to
control the trade-off between learning a good encoding to reconstruct
the input data and an encoding which follows the unit Gaussian dis-
tribution, the loss function is composed by two terms. The first is the
usual reconstruction error, the second is the Kullback-Leibler diver-
gence, which measures how closely the latent feature representation
resembles a Gaussian distribution. The most competitive algorithm in
our analysis, Mult-VAE, belongs to this category [73].

Figure 2.2: Architecture of the Collaborative Variational Autoencoder algorithm, as de-
scribed in the original article [72]

When applied to the recommender system field, for the algorithms an-
alyze in this paper, the model is trained to learn to encode and decode the
whole user profile. Consider Figure 2.2, which represents a VAE. In that ex-
ample, both the input and output layer will have a number of neurons which
is equal to the total number of items. For recommender systems the AE can
be trained using both implicit and explicit (i.e., rating) interactions. Due to
the high sparsity of the interaction data the prevalence of zero values (i.e.,
missing interactions) can make the training difficult, among the proposed
mitigation strategies is to sample only some of the negative items [122].

12

2.1. Neural Recommender Systems

2.1.3 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a type of multilayer feed-forward
neural network that was developed for certain types of inputs, i.e., images,
that exhibit a semantically relevant topology [130]. In his foundational pa-
per Le Cun et. al [68] stated that:

A deficiency of fully-connected architectures is that the topol-
ogy of the input is entirely ignored. The input variables can be
presented in any (fixed) order without affecting the outcome of
the training. On the contrary, images (or time-frequency repre-
sentations of speech) have a strong 2D local structure: variables
(or pixels) that are spatially or temporally nearby are highly cor-
related. Local correlations are the reasons for the well-known ad-
vantages of extracting and combining local features before rec-
ognizing spatial or temporal objects, because configurations of
neighboring variables can be classified into a small number of
categories (e.g. edges, corners...). Convolutional Networks force
the extraction of local features by restricting the receptive fields
of hidden units to be local.

This important concept was further stressed by the paper describing the
widely known AlexNet for image classification [67], stating that CNNs are
based on a very important assumption regarding the nature of the processed
input data (i.e., the images), the locality of pixel dependencies. With data
exhibiting these properties, local features (e.g., lines, corners) emerge from
their respective immediate surroundings, regardless of their absolute po-
sition in the data. The importance of translation invariance and feature
locality for CNNs has been widely discussed, both in terms of spatial lo-
cality [69, 77, 112, 128], and time locality for sequence modeling [5].

The architecture of a CNN usually consists of a convolution layer and a
subsampling layer. Figure 2.3 shows an example of CNN; we can see that
multiple blocks of convolution and subsampling layers are concatenated.

The convolution layer uses a kernel, with certain weights, which is
moved across the two dimensional feature matrix (i.e., the image). By
sharing the kernel weight’s across the image a CNN can have fewer pa-
rameters than a fully connected neural network and can leverage the spatial
locality and location invariance of features. The subsampling layer (e.g.,
max pooling1) reduces the dimensionality of the data and allows successive
convolution layers a broader field of view. Successive convolutional layers

1The use of max-pooling to reduce the dimensionality of the data has been recently criticized, though [100]

13

Chapter 2. Preliminaries

are able to interpret increasingly complex patterns by further aggregating
lower-level features. Again it was stressed by [68] that after a set of fea-
tures has been detected, only the reciprocal relative positions are relevant,
not the absolute ones.

Figure 2.3: Architecture of a Convolutional Neural Network

The property of feature locality implicitly depends on a definition of
proximity between points. If we consider image data, pixels that are close
in the image will be perceived as close by an observer and are therefore
meaningful for the reconstruction of more complex patterns, therefore the
proximity in images is defined in spacial terms according to the 2D struc-
ture of the image itself. Depending on the use case, different definitions of
proximity may be used, e.g., for non-Euclidean data like social networks or
knowledge graphs [37].

Following its success in computer vision tasks, some articles propose
to use CNNs for collaborative filtering as well. Most of the existing ap-
proaches used for the traditional top-k recommendation problem can be
grouped into three categories [132]:

Feature extraction: In this case, a CNN is used to extract features from
heterogeneous data sources, e.g., images, video, audio, which are then
used in another recommendation model [114].

Pretrained embeddings: In such approaches, a CNN is applied on user or
item embeddings that were pretrained by another model [56, 123].

Learnable embeddings: Also in this case the CNN is applied on user or
item embeddings. Differently from the previous case, the embeddings
are an integral part of the model and are trained along with the CNN
(i.e., they are not pre-trained with another approach) [64, 131].

In this thesis we only analyze algorithms belonging to the last two cases,
when CNNs are applied on embeddings. CNNs have also been applied to

14

2.2. Reproducibility Crisis

session-based recommendations [129], and to sequential recommendations
[126].

As an example of CNN applied to the traditional top-k recommendation
problem we briefly describe one of the algorithms we analyze in this study.
Figure 2.4 shows the architecture of the ConvNCF algorithm [56].

Figure 2.4: Architecture of the Convolutional Neural Collaborative Filtering, as described
in the original article [56]

We can see that the network takes as input the one-hot encoding of the
user and item and learns to predict the rating associated to that interaction.
Via two fully connected layers, the one-hot encoding of users and items
is transformed into embeddings. Those embedding vectors are then mul-
tiplied via an outer product resulting in a square matrix which is called
interaction map. It is on that interaction map that the CNN is applied.
While in the original articles it is argued that this interaction map is anal-
ogous to an image and therefore the use of CNN is justified, this claim is
not demonstrated or discussed in detail. In Chapter 6 we will discuss the
claimed results and demonstrate they are not correct because they are based
on a flawed methodology.

2.2 Reproducibility Crisis

The independent reproducibility of experimental results has been for cen-
turies a cornerstone of the scientific development. Its importance is such
that as far back as 1637 Descartes, in Discourse on the Method of Rightly
Conducting One’s Reason and of Seeking Truth in the Sciences, described it

15

Chapter 2. Preliminaries

as an essential component of the scientific method. Usually, only after sev-
eral different researchers have been able to independently reproduce and
verify the experiments and conclusions reported in an article, that becomes
an accepted scientific fact.

In the last decade evidence started to mount that the scientific world
faces a significant reproducibility crisis spanning widely across several re-
search communities, e.g., psychology, medicine, chemistry, as well as sev-
eral fields of computer science. In cancer biology a landmark study pub-
lished in 2012 found as little as 11% of the reported results could be repro-
duced [8]. Some fields, like psychology, are dealing with this problem by
shifting their community culture to favor replication, and computer science
is slowly starting to do the same [62].

While warnings had been published many years ago [4], only in recent
years the computer science research community is starting to grapple with
the extent and implications of the problem. A significant quote from 2008
[40]:

The prevalence of very relaxed attitudes about communicat-
ing experimental details and validating results is causing a large
and growing credibility gap. It’s impossible to verify most of the
results that computational scientists present at conferences and
in papers.

Due to some ambiguities in the use of the terms reproducibility and
replicability [54], which we found are sometimes swapped, we first report
the definition that we will use in this study, as provided by the American
Statistical Association [19]2:

Reproducibility The numerical findings reported in the study can be re-
produced by using the original artifacts (i.e., data and source code).

Replicability The numerical findings reported in the study can be obtained
by repeating the entire study independently, following the described
methodology, without using any of the original artifacts.

One of the issues to overcome in the field of computer science is that
while researchers agree the reproducibility of empirical results is impor-
tant, what reproducibility means is not agreed upon [54]. Establishing
reproducibility in computer science requires to address several important
peculiarities of this field that will have an impact on the reproducibility of

2Recent SIGIR guidelines swap the definitions of reproducibility and replicability: https://sigir.
org/wp-content/uploads/2018/07/p004.pdf, see also ACM Artifact Review and Badging:
https://www.acm.org/publications/policies/artifact-review-badging.

16

https://sigir.org/wp-content/uploads/2018/07/p004.pdf
https://sigir.org/wp-content/uploads/2018/07/p004.pdf
https://www.acm.org/publications/policies/artifact-review-badging

2.2. Reproducibility Crisis

the experiments. It is known, for example, that several AI algorithms are
very sensitive even to hyperparameters that do not appear to be the most
important ones or may even produce substantially different results accord-
ing to the random number generator or initial seed [62]. Furthermore, it can
easily happen that even with identical settings and software, random seed
included, the algorithm will not produce the same results on a different ma-
chine, e.g., due to differences in the hardware impacting the model training
process.

In recent years several studies have tried to assess the level of repro-
ducibility in computer science and machine learning research. Gundersen
et. al in [54] attempted to quantify the level of reproducibility for empirical
research in AI by defining and reporting six reproducibility metrics for a
total of 400 research papers accepted at two different conference series be-
tween 2013 and 2016. Their findings are that AI research is not sufficiently
documented to allow the reproducibility of published results, but also that
the documentation practices have been improving with time. A strong point
made in the article is that the inability to reproduce published results im-
pacts the trustworthiness of science. In order to ensure the trustworthiness
of AI and machine learning, publications steps must be taken to improve
its currently low reproducibility. A follow-up study [53] compared articles
written by academics and industry practitioners showing that industry pa-
pers tend to show worse results in terms of the quality of the documentation
but no overall statistically significant difference in reproducibility could be
observed.

Similar results have been reported in several other studies. Collberg et.
al [26] examined 600 articles published in ACM conferences and journals
between 2011 and 2013, for each attempting to locate a publicly available
implementation or to implement the algorithm themselves, emailing the au-
thors if their attempts were unsuccessful. In their study Collberg et. al did
not attempt to verify the published results based on the provided implemen-
tation. Results show that only 42% of the papers could be reproduced and
only 60% of emails received a reply.

Vandewalle et. al [115] studied all 134 papers that were published in
the 2004 edition of IEEE Transactions on Image Processing. In their study
two or three reviewers per paper were asked to check its reproducibility
answering to a short list of questions mainly focused on the availability
of the artifacts and of details on the experimental setting, hyperparameters
and pseudocode. In their study therefore they did not try to reimplement the
algorithms. Vandewalle et. al could observe that in more than 80% of cases
the algorithm and the data were described with sufficient detail, however in

17

Chapter 2. Preliminaries

in only 33% of cases the data was publicly available and in less than 10%
of cases the source code was as well. The reason for the greater availability
of data with respect to the source code was the use of some standard image
datasets. Among the issues limiting the availability of source code and data
is the short lifetime of web pages, since when a researcher retires, moves
to another institution, or when the institution or lab websites are updated or
redesigned, the link reported in old articles may become invalid. Among
possible solutions are proposed the use of DOIs or institutional repositories.

The limited availability of source code for computational science was
further investigated by Stodden [107], who submitted a survey to authors
of articles published between 2008 and 2010 in the Neural Information Pro-
cessing Systems conference series. While most of the authors stated they
were willing to share the original artifacts, only 30% in the end did publicly
share the source code. The most frequent reasons for not sharing the arti-
facts were: the time required to prepare and document the publicly available
version, the need to provide assistance to researchers attempting to use the
source code, the possible use of the public implementation without citation.

In a 2019 study, Raff [94] attempted to assess the correlation of repro-
ducibility with other factors, e.g., year of publication, number of equations,
availability of pseudocode, number of authors. He found the year of pub-
lication does not significantly affect reproducibility so, if a crisis exists, it
has been going on for decades. An interesting finding is that Raff actually
found the number of equations per page to be negatively correlated with the
paper reproducibility. The authors do not provide a definitive explanation
for the phenomena but suggest two possibilities, the higher number of equa-
tions may make the paper less readable and impede its reproducibility, or
it may just be a manifestation of the higher complexity of certain methods
which are more difficult to use.

While most of the previous studies have focused on the pure repro-
ducibility of the results given the provided artifacts or on the replicability
using publicly available datasets, another important dimension to consider
is the methodological soundness of the evaluation protocol itself. A very
recent study by Christodoulou et. al [24] compared the performance of
logistic regression against machine learning methods for clinical predic-
tion modeling. The authors argue that previous studies comparing clinical
prediction models based on logistic regression and machine learning algo-
rithms suffered from methodological issues. In particular the reporting of
the methodology itself was incomplete and the validation procedure poor.
In the majority of the studies methodological issues were found e.g., op-
timization of the hyperparameters on the whole dataset (i.e., therefore in-

18

2.2. Reproducibility Crisis

cluding test data) or incorrect use for resampling on the data for validation.
An older study by Hand [55] for supervised classification, published in

2006, argued that numerous articles proposing complex algorithms that are
shown to outperform simpler ones often do not take into account aspects
of the real scenarios (i.e., the data used for training may not have the same
distribution as the real one which the classifier will be used on, the classes
definition may involve a level of uncertainty or arbitrariness) resulting in a
spurious evaluation which may overestimate the new model performance.
It is argued that those complex methods often yield to comparative per-
formance with respect to simpler ones and that this amplifies the impact
of uncertainty on the results, something which is typically not taken into
account, producing results which are not reliable or realistic.

More specifically within the machine learning community Sculley et
al. [105] observed how the current research culture poses too much empha-
sis on demonstrating a newly proposed method outperforms some baselines
but does not pay as much attention on the empirical rigor of the evaluation
procedure. Due to this, as several previous studies point out, gains of new
and more complex methods can be due to factors other than their better
modeling capacity, e.g., better hyperparameter optimization. Their find-
ings are cited by Lin [74] who observes similar issues in the Information
Retrieval domain, arguing that papers claiming to improve over the state-
of-the-art do so by comparing the new approach against weak or insuffi-
ciently optimized baselines. In a later article Lin [75], although recognizing
the significant progress achieved by neural methods in language modeling
tasks, still stressed the issue of inadequately tuned baselines. More than
a decade ago this very same observation was made in the field of Infor-
mation Retrieval by Armstrong et al. in 2009 [4], who observed how the
selection of weak baselines could create over time an illusion of continuous
incremental improvement. In particular, Armstrong reached a very strong
conclusion:

There is, in short, no evidence that ad-hoc retrieval technol-
ogy has improved during the past decade or more.

It is remarkable that ten years later Yang et al. [127] reached the very
same conclusion stating:

We do not find evidence of an upward trend in effectiveness
over time. In fact, the best reported results are from a decade ago
and no recent neural approach comes close.

The tendency to rely on weak evaluation protocols will create the illu-
sion of continuous progress. Similar findings have also been reported for

19

Chapter 2. Preliminaries

the recommender systems field. For the task of session-based recommenda-
tion it could be shown that a simple neighborhood-based is able to compete
if not outperform some recent neural algorithms [79, 80].

Several examples of this can also be found in other scientific commu-
nities, for example Makridakis et al. [81] recently showed that for the task
of time series forecasting old statistical methods were able to outperform
much more recent machine learning ones.

For the task of rating prediction Rendle et al. [97] too observed the re-
ported results for the baselines on a widely known dataset are often subop-
timal and that a carefully tuned baseline method is able to outperform all
newly proposed algorithms from 2015 to 2019. Rendle et al. observe these
results are particularly worrisome because the dataset is widely used in the
community. If it was possible to report suboptimal baselines for a widely
known dataset, other evaluations executed on less known datasets are even
more prone to unreliable results. These results are attributed to the fact that
in the community the difficulty of running baselines is mostly ignored and
the community lacks common benchmarks.

While a poor experimental methodology is not strictly speaking a repro-
ducibility issue when the results of the paper can be reproduced, it is still a
sign that the research field is unaccustomed to the independent verification
of published research and evaluation protocols. It would therefore seem
that the Information Retrieval field is in the same position as the Artificial
Intelligence field as pointed out by Raff [94], if a crisis exists, it has been
going on for decades.

20

CHAPTER3
Identifying relevant and reproducible

articles

In this Chapter we describe the criteria followed to select the articles ana-
lyzed in this study as well as the specific requirements for reproducibility.

3.1 Paper Selection Criteria

The articles analyzed in this thesis were selected following a systematic
approach. We define two categories of articles: relevant, if they are within
the scope of this study, and reproducible, if we were able to reproduce
the experimental setting and run the experiments.1 Note that, in order to
provide an evaluation as conservative as possible, we adopt a rather strict
definition of reproducibility as will be described later.

More precisely, we consider an article to be relevant if it meets the fol-
lowing constraints:

1This study combines aspects of reproducibility (we rely on the original source code and data) and of replica-
bility (if a data split is not available we generate a new one, if the original evaluation protocol contains an error
or information leakage we correct it).

21

Chapter 3. Identifying relevant and reproducible articles

• The paper has been published between 2015 and 20182 in the pro-
ceedings of one of the following conferences: SIGIR, KDD, TheWeb-
Conf (WWW), IJCAI, WSDM, RecSys. We do not include workshop
papers. All these conferences are common venues for recommender
systems research and are, except RecSys, classified as A* (i.e., flag-
ship conference, a leading venue in a discipline area) in the Australian
CORE ranking system3. RecSys is instead classified as B (i.e., good
conference, and well regarded in a discipline area), and was included
because it is entirely devoted to recommender systems research. The
articles have been selected manually from the conference proceedings.

• The paper is proposing a new deep learning algorithm for the clas-
sic top-k recommendation task. We did not consider articles targeting
other scenarios like group recommendation as well as articles using
deep learning to perform feature extraction from non structured data
like text, audio or images. Furthermore, the experimental evaluation
should include at least one classification accuracy or ranking accu-
racy metric. We did not consider articles evaluated only with rating
prediction metrics.

Among the relevant articles, we consider an article to be reproducible if
we can reproduce the experimental setup, a precondition to run the experi-
ments. The following requirements should be met:

• The source code written by the original authors is available, requiring
at most minimal modifications in order to execute correctly, which
means it should include the model itself, its training and a way to
compute the predictions. When applying modification ourselves the
core algorithm was never altered. While it is expected that a pa-
per should contain all necessary details to re-implement the proposed
model, many details that can have an impact on the final results may
not be described explicitly due to space reasons (e.g., initialization,
regularization, adaptive gradients, train batches)4. As in Collberg et.
al [26] we did not include articles having provided only a skeleton
version of the source code or articles whose source code did not ex-
ecute correctly or was missing dependencies we could not resolve.
Furthermore, we did not include articles for which only a third-party
implementation was available.

2The analysis did not extend before 2015 because the number of relevant articles, in the analyzed conferences,
decreased rapidly and amounted to only two. The analysis did not extend after 2018 as it was the most recent
year for which all conferences had already taken place.

3http://www.core.edu.au/conference-portal
4Similar observations were put forward, for example, in [102].

22

3.2. Relevant and Reproducible Papers List

• At least one of the datasets used for the evaluation in the original paper
is publicly available. It should be freely accessible either the training-
test splits used by the original authors or the article should contain
sufficient detail to reproduce the preprocessing and data split proce-
dure. We did not include articles using datasets that were crawled on
websites, since, although we could have crawled the data again our-
selves we could not guarantee the data had remained the same. We
also did not include articles evaluated only on datasets that could not
be made public due to non disclosure agreements or copyright issues.

If the constraints we have defined for a paper to be reproducible were
not met, we contacted all the authors by email. We waited a maximum of
30 days for a reply. If we did not receive a reply within that time or we did
receive a reply but we could not solve the issue, the paper was considered
not reproducible.

3.2 Relevant and Reproducible Papers List

Following the described methodology, we were able to identify 24 articles,
out of which 12 could be reproduced. Table 3.1 reports the statistics per
conference. Bearing in mind that the number of papers is too small for
reliable statistics, we still can see differences across conferences. In terms
of the ratio of reproducible articles over relevant articles, KDD and IJCAI
have the best positions. In terms of the number of relevant articles IJCAI
and RecSys are at the top of the list, however, while IJCAI has a high
reproducibility ratio, RecSys has the second lowest, with one reproducible
paper only. We could observe an increase in the quota of reproducible
articles in more recent years, this both related to the increased tendency to
provide the source code publicly, usually via GitHub, and partially to the
higher probability of receiving a reply from the authors.

Conference Rep. ratio Reproducible setup Not Reproducible

KDD 3/4 (75%) [60], [72], [119] [111]
IJCAI 5/7 (71%) [56], [133], [131], [23], [125] [86], [124]
WWW 2/4 (50%) [57], [73] [110], [43]
SIGIR 1/3 (30%) [42] [83], [21]
RecSys 1/5 (20%) [134] [108], [16], [101], [116]
WSDM 0/1 (0%) [122]

Total 12/24 (50%)

Table 3.1: Statistics of relevant and reproducible papers on deep learning algorithms for
top-k recommendation per conference series from 2015 to 2018.

23

Chapter 3. Identifying relevant and reproducible articles

We provide the detailed list of each relevant paper, divided per confer-
ence and ordered by year, in Table 3.2 (SIGIR, WWW), 3.3 (RecSys, KDD)
and 3.4 (WSDM, IJCAI). If the article has been classified as reproducible,
a link to the GitHub repository with the source code is provided, when
available. If the article is not reproducible, the motivation is provided. The
increasing popularity of deep learning is clearly visible observing that the
number of relevant papers published in 2018 is greater than the number of
those published in the previous three years combined, between 2015 and
2017.

SIGIR

2018 Collaborative Memory Network for Recommendation Systems
[42]

Reproducible: Yesa

2018 A Contextual Attention Recurrent Architecture for Context-Aware Venue Recommen-
dation [83]
Reproducible: No.
Motivation: The source code is publicly availableb but was missing the preprocessing code
and contains a bug preventing it to execute correctly. We received no reply.

2017 Attentive Collaborative Filtering: Multimedia Recommendation with Item and
Component-Level Attention [21]
Reproducible: No.
Motivation: The source code is publicly availablec but the data is not due to copyright reasons.

WWW

2018 Variational Autoencoders for Collaborative Filtering
[73]

Reproducible: Yesd

2018 Latent Relational Metric Learning via Memory-based Attention for Collaborative
Ranking [110]
Reproducible: No
Motivation: The source code is publicly availablee but contains only a skeleton of the model
and no documentation. We received no reply.

2017 Neural collaborative filtering
[57]

Reproducible: Yesf

2015 A Multi-View Deep Learning Approach for User Modeling in Recommendation Systems
[43]

Reproducible: No.
Motivation: The source code is not available. We received no reply.

ahttps://github.com/tebesu/CollaborativeMemoryNetwork
bhttps://github.com/feay1234/CARA
chttps://github.com/ChenJingyuan91/ACF
dhttps://github.com/dawenl/vae_cf
ehttps://github.com/vanzytay/WWW2018_LRML
fhttps://github.com/hexiangnan/neural_collaborative_filtering

Table 3.2: Relevant papers for SIGIR and WWW conferences.

24

https://github.com/tebesu/CollaborativeMemoryNetwork
https://github.com/feay1234/CARA
https://github.com/ChenJingyuan91/ACF
https://github.com/dawenl/vae_cf
https://github.com/vanzytay/WWW2018_LRML
https://github.com/hexiangnan/neural_collaborative_filtering

3.2. Relevant and Reproducible Papers List

RecSys

2018 Spectral Collaborative Filtering
[134]

Reproducible: Yes.a

2018 Recurrent Knowledge Graph Embedding for Effective Recommendation
[108]

Reproducible: No.
Motivation: The source code is not available. We received no reply.

2018 RecGAN: Recurrent Generative Adversarial Networks for Recommendation Systems
[16]

Reproducible: No.
Motivation: The source code is not available. We were informed that the source code could
not be shared.

2018 Attentive Neural Architecture Incorporating Song Features for Music Recommendation
[101]

Reproducible: No.
Motivation: The source code is not available. We were informed that the source code and data
have been deleted.

2016 Meta-Prod2Vec: Product Embeddings Using Side-Information for Recommendation
[116]

Reproducible: No.
Motivation: The source code is not available. We received no reply.

KDD

2018 Leverage Meta-path based Context for Top-N Recommendation with a Neural Co-
Attention Model [60]
Reproducible: Yesbc

2018 Multi-Pointer Co-Attention Networks for Recommendation
[111]

Reproducible: No
Motivation: The source code is publicly availabled but could not be used due to missing
dependencies. We were informed that a working version of the source code could not be
provided.

2017 Collaborative Variational Autoencoder for Recommender Systems
[72]

Reproducible: Yese

2015 Collaborative Deep Learning for Recommender Systems
[119]

Reproducible: Yesf

ahttps://github.com/lzheng21/SpectralCF
bhttps://github.com/librahu/MCRec
chttps://github.com/librahu/Dataset-In-Papers
dhttps://github.com/vanzytay/KDD2018_MPCN
ehttps://github.com/eelxpeng/CollaborativeVAE
fhttps://github.com/js05212/CDL

Table 3.3: Relevant papers for RecSys and KDD conferences.

25

https://github.com/lzheng21/SpectralCF
https://github.com/librahu/MCRec
https://github.com/librahu/Dataset-In-Papers
https://github.com/vanzytay/KDD2018_MPCN
https://github.com/eelxpeng/CollaborativeVAE
https://github.com/js05212/CDL

Chapter 3. Identifying relevant and reproducible articles

WSDM

2016 Collaborative Denoising Auto-Encoders for Top-N Recommender Systems
[122]

Reproducible: No.
Motivation: The source code is publicly availablea but could not be used due to lack of docu-
mentation. We received no reply.

IJCAI

2018 Outer Product-based Neural Collaborative Filtering
[56]

Reproducible: Yesb

2018 NeuRec: On Nonlinear Transformation for Personalized Ranking
[133]

Reproducible: Yesc

2018 CoupledCF: Learning Explicit and Implicit User-item Couplings in Recommendation
for Deep Collaborative Filtering [131]
Reproducible: Yesd

2018 DELF: A Dual-Embedding based Deep Latent Factor Model for Recommendation
[23]

Reproducible: Yese

2018 NPE: Neural Personalized Embedding for Collaborative Filtering
[86]

Reproducible: No.
Motivation: The source code is not available. We were informed that the source code could
not be provided at that time.

2017 Deep Matrix Factorization Models for Recommender Systems
[125]

Reproducible: Yesf

2017 Tag-Aware Personalized Recommendation Using a Hybrid Deep Model
[124]

Reproducible: No.
Motivation: The source code is not available. We received no reply.

ahttps://github.com/jasonyaw/CDAE
bhttps://github.com/duxy-me/ConvNCF
chttps://github.com/cheungdaven/NeuRec
dThe source code was not publicly available but the authors shared it with us upon request.
eThe source code was not publicly available but the authors shared it with us upon request.
fThe source code was not publicly available but the authors shared it with us upon request.

Table 3.4: Relevant papers for WSDM and IJCAI conferences.

26

https://github.com/jasonyaw/CDAE
https://github.com/duxy-me/ConvNCF
https://github.com/cheungdaven/NeuRec

CHAPTER4
Evaluation protocol and baseline

algorithms

In this Chapter we describe the experimental protocol used in the evaluation
of the reproducible neural algorithms as well as all baseline algorithms and
their hyperparameter optimization step. We further detail all classification
and ranking accuracy metrics as well as the beyond-accuracy metrics we
report.

4.1 Experimental Setup

For all the reproducible articles we compare the proposed neural model to
a set of simple baselines in order to assess whether it is competitive against
them or not in specific evaluation protocols. This comparison allows us to
quantify the progress that complex neural models allowed to make versus
simpler and older techniques. The experimental procedure is as follows:

• We build a wrapper around the original implementation of the neu-
ral algorithm. We keep the original code to build the model, training
it and computing the item scores (i.e., predictions). The item scores
are then passed to our own evaluation code which will sort them to

27

Chapter 4. Evaluation protocol and baseline algorithms

compute the final recommendation list and then the various evalua-
tion metrics, in such a way to guarantee all algorithms are evaluated
in exactly the same way. This allows us to have full control over the
experimental conditions and ensure that differences in the recommen-
dation quality are imputable to the recommender model alone and not
to other factors like how the metrics are computed, what sorting algo-
rithm is used etc.1

• We use the original training-test split, if available. If not, we get the
original version of the dataset and apply the preprocessing procedure
and split as described in the original paper. We further split the train-
ing data in order to obtain validation data to be used for the hyper-
parameter tuning of the baselines and the selection of the number of
training epochs. If the original paper describes how the validation
data is split, we apply that procedure, otherwise we apply the same
split used to create the test data.

• For each dataset we run a Bayesian hyperparameter tuning of our base-
lines, selecting the hyperparameters optimizing the recommendation
quality on the validation data. In order to select the evaluation metric
and cutoff to optimize, we used the information reported in the orig-
inal paper, if available. If not, we used the metric optimized in the
original source code (i.e., the one used by the original authors to se-
lect the number of training epochs of their algorithm). If none of them
is available, we select one of the ranking metrics reported in the orig-
inal paper and as cutoff we select an intermediate value between the
lowest and highest reported in the original results. Once the optimal
hyperparameters are selected, each baseline is trained using them on
the full training data (i.e., the union of the smaller train and validation
data). The model obtained in this way is then evaluated on the test
data under the original experimental conditions and methodology.

• The neural algorithm is trained on the training data using the same
hyperparameters as reported in the original article. If a hyperparam-
eter value is not described in the article we use the value reported in
the original source code but ask the authors for confirmation. Using
the original hyperparameters is appropriate in this case because we are
evaluating the model in exactly the same experimental conditions. The

1Although the details of the training (e.g., adaptive gradient, batches, regularization etc) and evaluation proto-
col are often overlooked in the articles, possibly due to space reasons, it is known that they can have a significant
impact on the numerical results. For example in [103] it was shown that even under the same evaluation protocol
the same algorithm, in different evaluation frameworks, produces quite different results.

28

4.2. Baseline Algorithms

number of epochs and the stopping criteria are usually not reported in
the articles, due to this we always select the number of epochs via
early stopping on the same validation data used to optimize the base-
lines hyperparameters (see Section 4.4.1). Once the number of epochs
has been selected, the neural model is trained again on the full training
data for that number of epochs and then evaluated on the test data.

4.2 Baseline Algorithms

Since the very first recommender systems related paper published in the
mid-nineties [98], a multitude of different algorithms have been proposed
as well as strategies to improve them. In order for our experimental eval-
uation to provide a broad picture, we selected several simple algorithms of
different families, some developed more than a decade ago, others more
recently. An overview of all the baselines we use is given in Table 4.1 and
the relative hyperparameters, their ranges and distributions are reported in
Appendix A.

4.2.1 Popularity-Based Ranking

Recommending the most popular items to everyone, without any person-
alization, is a common strategy in practice and in certain scenarios proves
to be quite effective. The method TopPopular implements this recom-
mendation approach. The popularity of an item is defined as the number
of interactions (i.e., explicit ratings or implicit interactions) the item has
received in the given dataset. The items are recommended in order of de-
creasing popularity. While this algorithm always ranks the items in the
same order, in all our experiments items already seen by the user will not
be recommended again to them, so different users may still be provided
with different recommendation lists

4.2.2 Nearest-Neighbor Methods

Nearest-neighbor techniques were among the very first collaborative filter-
ing models to be developed [76], dating back to the early GroupLens system
in 1994 [98]. This family of methods is based on a similarity between users
or items computed with a heuristic. The general idea is as follows:

• User-based (UserKNN) users that behaved similarly in the past, in-
teracting with the same items, are similar.

29

Chapter 4. Evaluation protocol and baseline algorithms

Family Method and Description

Non-personalised
TopPopular
Recommends the most popular items to everyone [33]

Nearest-Neighbor

UserKNN
User-based k-nearest neighbors [98]

ItemKNN
Item-based k-nearest neighbors [104]

Graph-based

P3α

A graph-based method based on random walks [27]

RP3β

An extension of P3α [90]

Content-Based

and Hybrid

ItemKNN-CBF
ItemKNN with content-based similarity [78]

ItemKNN-CFCBF
A simple item-based hybrid CBF/CF approach [85]

UserKNN-CBF
UserKNN with content-based similarity

UserKNN-CFCBF
A simple user-based hybrid CBF/CF approach

Non-Neural

Machine Learning

Item-based

SLIM ElasticNet
A scalable linear model [71, 87]

SLIM BPR
A variation of SLIM optimizing ranking [6]

EASER

A recent linear model, similar to auto-encoders [106]

Non-Neural

Machine Learning

Matrix Factorization

iALS
Matrix factorization for implicit feedback data [61]

PureSVD
A basic matrix factorization method [33]

NFM
A basic non-negative matrix factorization method [25]

FunkSVD
Matrix factorization for rating prediction [70]

MF BPR
Matrix factorization optimized for ranking [96]

Table 4.1: Overview of Baseline Methods

• Item-based (ItemKNN) items that received interactions from the same
users in the past are similar.

Conventionally, the similarities are represented as a square similarity

30

4.2. Baseline Algorithms

matrix S in which only the k most similar items or users are included. In
the traditional formulation, the dot product between the user profiles and
the similarity matrix is used to compute the model’s predicted ratings (or
more generally item scores). More precisely, the score of an item i for user
u sill be computed as follows. In case of an ItemKNN model:

R̂u,i =
∑

j∈KNN(i)

Ru,j · Si,j

In case of a UserKNN model:

R̂u,i =
∑

t∈KNN(u)

Rt,i · Su,t

Where KNN(·) is a function that returns the most similar entities (i.e.,
items or users) to the one provided as input.

Despite the simple linear nature of this family of methods, several hyper-
parameters can be selected and variants applied [18]. In this work we will
consider some of this variants and define a set of hyperparameters for both
UserKNN and ItemKNN. The full list of hyperparameters we optimized in
our experiments and their ranges are reported in Appendix A.

• Neighborhood Size: This is one of the most important parameters and
determines how many neighbors are considered for prediction. If the
number of neighbors is too small the model will have limited model-
ing capacity and only look for the very most similar users or items, on
the other hand a high number of neighbors may improve the recom-
mendation quality to an extent while adding increasing noise.

• Similarity Heuristic: This is another crucial parameter. There are a
great many different heuristics that have been proposed as ways to
measure the similarity. In our experiments we selected: Jaccard coeffi-
cient [93], Cosine [104], Asymmetric Cosine [2], Dice-Sørensen [39]
and Tversky [113] similarities which will be described shortly. Some
of these similarity measures also have their own parameters, as re-
ported in Appendix A, which we optimized as well.

• Shrinkage: A commonly used strategy to increase the support of the
computed similarity is the addition of a shrink term (i.e., a constant
term) to the denominator of the similarity heuristic. This lowers the
similarity between items or users that have only very few interactions,
as proposed in [9]. The shrinkage is applied to all similarities.

31

Chapter 4. Evaluation protocol and baseline algorithms

• Feature Weighting: Applying feature weighting to ratings was pro-
posed years ago in [120]. Feature weighting is more traditionally ap-
plied on features rather than collaborative data, however it can be ap-
plied both to items and users, allowing to weight the importance of
them to compute the final model. In our experiments we tested three
configurations: no weighting, TF-IDF or BM25. While several other
weighting strategies exist, those are among the most commonly used
in recommender systems.

• Normalization: Similarity heuristics have a denominator which is used
to normalize the value obtained by the dot product, this setting deter-
mines if we should use the denominator or not. Only some of the
similarity measures have this parameter.

Similarity Heuristic

In this Section all similarity heuristics will be described for collaborative
data, but the same heuristics are applied seamlessly to feature data. Vec-
tors ~ri, ~rj ∈ R|U | represent the ratings of a user for items i and j, respec-
tively, and |U | is the number of users. In case of CBF recommender vectors
~ri, ~rj ∈ R|F | would describe the features of items i and j, respectively, and
|F | is the number of features. Parameter h is the shrink term.

Cosine: The most frequently used similarity metric [104] is computed as
the normalized dot product of the vectors.

sij =
~ri · ~rj

‖~ri‖‖~rj‖+ h

Asymmetric Cosine: This parameterized variant of the cosine similarity
was described in [2], by the winning team of the Million Songs Dataset
(MSD) challenge.2 The paper shows that the Cosine similarity can be
represented as a product of the square roots of two conditional prob-
abilities, therefore attributing to the asymmetric cosine a probabilistic
interpretation.

sij =
~ri · ~rj

‖~ri‖α‖~rj‖1−α + h

Dice - Sørensen: Is a similarity measure defined on sets, therefore on boolean
vectors, described in [39]. Given two sets or vectors the respective

2https://www.kaggle.com/c/msdchallenge

32

https://www.kaggle.com/c/msdchallenge

4.2. Baseline Algorithms

Dice similarity can be computed as a linear function of Jaccard simi-
larity and vice versa. The Dice coefficient does not satisfy the triangle
inequality, it can be considered a semimetric version of the Jaccard
index. Equation 4.1 represents the Dice similarity computed on sets,
while Equation 4.2 on boolean vectors.

sAB = 2
A ∩B

‖A‖+ ‖B‖+ h
(4.1)

sij = 2
~ri · ~rj

‖~ri‖+ ‖~rj‖+ h
(4.2)

Jaccard - Tanimoto: Is a similarity measure on sets, therefore defined on
boolean vectors, described in [93]. The term Tanimoto is sometimes
used to refer to its formulation on vectors, however the corresponding
similarity is not a proper similarity since its distance does not preserve
the triangle inequality. Equation 4.3 represents the Jaccard similarity
computed on sets, while Equation 4.4 on boolean vectors.

sAB =
A ∩B

‖A‖+ ‖B‖ − ‖A ∩B‖+ h
(4.3)

sij =
~ri · ~rj

‖~ri‖+ ‖~rj‖ − ~ri · ~rj + h
(4.4)

Tversky: Is an asymmetric similarity measure on sets, generalising Dice-
Sørensen and Tanimoto-Jaccard coefficients, described in [113]. If
α = β = 1 Tversky is equal to the Tanimoto coefficient, if α = β =
0.5 Tversky is equal to the Dice coefficient.

sAB =
A ∩B

‖A ∩B‖+ α‖A−B‖+ β‖B − A‖+ h

Where− denotes the relative complement of two sets, therefore ‖B−
A‖ means the number of elements in B that are not in A and can be
represented as ‖B‖−‖A∩B‖. In case of boolean vectors the Tversky
similarity can be calculated as follows:

sij =
~ri · ~rj

α‖~ri‖+ β‖~rj‖+ (1− α− β) · ~ri · ~rj + h

33

Chapter 4. Evaluation protocol and baseline algorithms

While all these similarity metrics share some common characteristics
(i.e., they are all based upon the dot product of the vectors) they also have
some important differences. Namely, Asymmetric Cosine allows to take
into account the different probability that a profile will have something in
common with another. Think about popular items, they will be associated
to significantly more interactions than unpopular items, therefore they will
have interactions in common with other items with higher probability. Un-
popular items, on the other hand, will tend to have fewer interactions in
common. If we compare the set based similarities we can see how Dice
normalizes the dot product depending on how many interactions the two
profiles cumulatively have, while Jaccard only considers the unique ones.
Tversky further increases the complexity taking into account with different
weights the features that are not in common.

4.2.3 Graph-based Methods

Nearest-neighbor models, in their traditional form, compute similarities be-
tween pairs of items or users, therefore they consider only direct neigh-
borhoods. Graph-based models rely on a broader definition which takes
into account non-direct neighbors as well. Graph-based recommender sys-
tems usually define the user-item interaction data as an undirected bipartite
graph, where users and items that are associated to an interaction are con-
nected, but no direct connection exists between users or between items.
The recommendation process is defined via a random walk on this graph.
A traditional KNN would only consider direct user-item edges, while a
graph based model will also consider indirect connections following longer
paths, for example user-item-user-item. It is worth noting that a graph
based model can be represented as a similarity based recommender, as a
KNN would, by defining the similarity between two items as the transition
probability of a random walk starting from one to reach the other. This for-
mulation, which is the one we adopt, has the effect of removing the need
to simulate a random walk resulting in a deterministic model, and has the
same computation complexity of a KNN model.

In our study, we consider two graph-based methods called P3α [27] and
RP3β [90]. Both methods tend to lead to very competitive recommendation
quality at a low computational cost, comparable to the traditional KNN
models, and have been published in top-tier venues. Despite this, surpris-
ingly, both methods are very rarely used as baselines in the literature and
have a limited number of citations.

• P3α: This method was proposed by [27] and implements a two-step

34

4.2. Baseline Algorithms

random walk from users to items and vice-versa. The probabilities to
jump from a user to an item are computed from the normalized ratings
raised to the power of α. As previously mentioned, P3α is equivalent
to a KNN item-based algorithm, with the similarity matrix being com-
puted as the dot product of the probability vectors. Due to this, this
method hyperparameters also include the size of the neighborhood. In
order to ensure that the similarity row, after the selection of the neigh-
borhood represents a probability distribution, we normalize each row
of the similarity matrix with its l1 norm.

• RP3β: This is an improved version of P3α, proposed in [90]. Ob-
serving that P3α tends to exhibit a high popularity bias, RP3β ties to
mitigate this imbalance by dividing the similarity by the popularity
of the items raised to the power of β. Again, we subsequently select
the item neighborhood and then normalize each row of the similarity
matrix with its l1 norm. If β is 0, RP3β is equivalent to P3α. The hy-
perparameters of the algorithm are the size of the neighborhood and
the values for α and β.

4.2.4 Content-based and Hybrid Methods

All of the previously described baselines are pure collaborative models,
therefore they only rely on user-item interaction data. Some of the neural
models we analyze in this paper include side information about items or
users, which we will broadly refer to as features. Due to this we also in-
clude some content-based and hybrid baselines. Those baselines are KNNs
and can be applied on feature data seamlessly as their pure collaborative
counterparts, and they share the same hyperparameters.

• ItemKNN-CBF, UserKNN-CBF: A neighborhood-based content-based-
filtering (CBF) approach. The item (or user) similarities are computed
based on the items’ (or users’) content feature vectors (attributes) in-
stead of the interaction vectors [78]. We tested the same set of similar-
ity measures used for the collaborative KNN methods (Jaccard coef-
ficient, Cosine, Asymmetric Cosine, Dice-Sørensen and Tversky sim-
ilarity). The hyperparameters are the same as for the ItemKNN and
UserKNN methods.

• ItemKNN-CFCBF, UserKNN-CFCBF: A simple hybrid algorithm
based on item-item (or user-user) similarities and described in [85].
While in case of the pure collaborative versions the similarity is com-
puted using only the interaction vectors and in the CBF version the

35

Chapter 4. Evaluation protocol and baseline algorithms

similarity is computed using only the feature vectors, in this hybrid
version both vectors are used by concatenating them. The similar-
ity is computed, therefore, using both interactions and features data.
In case of item-based models the item profile is concatenated to the
item features, in case of user-based models the user profile is con-
catenated with the user features. The hyperparameters and similarity
measures are the same as for the ItemKNN and UserKNN, plus a pa-
rameter w that controls the relative importance of the content features
with respect to the collaborative features. When w is 0, this algorithm
is equivalent to the pure collaborative versions, either ItemKNN or
UserKNN.

4.2.5 Non-Neural Machine Learning Item-based Approaches

The amount of machine learning models proposed for top-k recommenda-
tion tasks is vast and selecting what represents the state of the art can be
difficult. In order to select suitable examples of algorithms that were con-
sidered state of the art before the widespread adoption of neural models we
followed the same criteria we adopted for KNN and graph-based baselines
and selected several basic models.

• SLIM ElasticNet: Sparse Linear Models (SLIM) is an item-based
regression method for top-k recommendation tasks, proposed in [87].
SLIM achieves very competitive recommendation quality and has been
used in numerous other papers. In our work, we use a more scalable
variant called ElasticNet proposed in [71], which learns the item sim-
ilarity matrix one item at a time (e.g. one column w at a time) by
solving a regression problem in such a way that the interactions for
the target item y are learned by using all other interactions as training
data. Both SLIM and SLIM ElasticNet optimize rating prediction ac-
curacy, therefore, although they allow to achieve competitive ranking
performance, they are not natively designed for item ranking tasks.
To implement SLIM ElasticNet we used a standard ElasticNet solver
provided in the scikit-learn package for Python.3 The hyperpa-
rameters of this method include the ratio of l1 and l2 regularization as
well as a regularization magnitude coefficient.

• SLIM BPR: The algorithm learns an item-item similarity matrix sim-
ilarly to SLIM ElasticNet, but it optimizes ranking accuracy via the

3https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
ElasticNet.html

36

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html

4.2. Baseline Algorithms

BPR loss function [6]. The BPR loss function was described in [96],
its main idea is to optimize ranking accuracy via gradient ascent by
drawing a triple: user, positive item and negative item. While SLIM
ElasticNet optimizes rating prediction, SLIM BPR tries to maximize
the difference between the score assigned for a user to an item they
interacted with (positive item) and an item they did not interact with
(negative item). The hyperparameters of this method include the num-
ber of neighbors as described in the Nearest-Neighbor Methods, the
regularization coefficients and whether the learned similarity matrix
should be symmetric or not.

• EASER: Is a linear item-based model for implicit feedback data re-
cently proposed in [106]. The article shows this method has similar-
ities with auto-encoders which, under the condition defined as “em-
barrassingly shallow”, the autoencoder becomes a linear model with a
closed-form solution. EASER, as opposed to the previous techniques,
does not require gradient descent or ascent and it exhibits very high
recommendation accuracy with remarkably fast training time. The
only hyperparameter is the choice of the regularization factor.

Since EASER has been published in 2019 the papers covered by our
study could not include it as a baseline. Nonetheless, we include it in
our study to investigate the competitiveness of shallow auto-encoders
as opposed to more complex and deep architectures.

4.2.6 Non-Neural Machine Learning Matrix Factorization Approaches

One of the most known families of recommender algorithms is Matrix Fac-
torization (MF). The application of matrix decomposition methods for col-
laborative filtering problems was investigated already in the early years of
recommender systems [17], and became a de-facto standard after the highly
successful FunkSVD method proposed during the Netflix prize competi-
tion (2006-2009). Matrix factorization algorithms have been widely stud-
ied and a multitude of them exist. In order to provide an overview that is
as complete as possible, we sample a few basic models each with particular
characteristics. Generally speaking, all the described matrix factorization
algorithms share the same model structure. U is the set of users and |U |
their number, similarly I is the set of items and |I| their number, f ∈ F
is the index of the latent factor whose total number is |F |; W ∈ R|U |x|F |
is a two-dimensional matrix containing the user factors and H ∈ R|I|x|F | is
a two-dimensional matrix containing the item factors. R ∈ R|U |x|I| is the

37

Chapter 4. Evaluation protocol and baseline algorithms

rating matrix. Given the latent factor matrices, a prediction is usually com-
puted as the dot product of the user’s factor and the item’s latent factors:

R̂u,i =

|F |∑
f

Wu,f ·Hi,f

• iALS: Alternating Least Squares was proposed in the seminal work by
Hu et al. [61]. In iALS multiple implicit feedback signals are trans-
formed into a confidence value c, which allows to model different
types of feedback. An example of such scenario could be made in
the video recommendation domain, if a user has opened the detailed
information of a recommendation, if hey have watched the trailer, if
they begun watching it and they stopped at the beginning, middle or
just before the end. In case the available feedback is explicit ratings,
the article suggests linear and logarithmic scaling functions, where α
and ε are parameters of the model:

cu,i =

{
1 + α · ru,i
1 + α · log

(
1 +

ru,i
ε

)
The article also proposed a particular optimization method (i.e., Al-
ternating Least Squares) that allows to render the optimization prob-
lem convex, by iteratively fixing one latent factor matrix and updating
the other. This strategy allows for iALS to scale very well on larger
datasets. A number of hyperparameters can be tuned for the method,
including the number of latent factors, the confidence scaling and the
regularization factor.

• PureSVD: This method corresponds to a the SVD decomposition of
the user-item interaction matrix and was proposed in [33]. PureSVD
has several advantages when compared to other matrix factorization
recommenders, namely it is a standard matrix decomposition tech-
nique therefore widely available in efficient mathematical libraries, it
is a simple model and has very fast computation time. The disad-
vantage of PureSVD is that it tries to represent the original user-item
interactions without distinguishing between existing interactions and
zeros. Its effectiveness can therefore be limited if too many missing
interactions are present and specific strategies may be put in place. To
implement PureSVD, we used a standard SVD decomposition method
provided in the scikit-learn package for Python.4 The only hy-

4https://scikit-learn.org/stable/modules/generated/sklearn.utils.
extmath.randomized_svd.html

38

https://scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.randomized_svd.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.randomized_svd.html

4.2. Baseline Algorithms

perparameter of this method is the number of latent factors.

• NMF: This method performs a Non Negative Matrix Factorization,
which is described in [25]. As opposed to PureSVD, NFM guarantees
all latent factors to be positive, at the cost of a higher computation
time. NFM decomposition is not unique and has a clustering property,
meaning it can be used to cluster items or users. We used a stan-
dard NMF decomposition method provided in the scikit-learn
package for Python.5 The hyperparameters of this method include the
number of latent factors and the solver.

• FunkSVD: This is one of the most widely known matrix factorization
algorithms, proposed by Simon Funk in his online article6 during the
Netflix Prize. This method optimizes rating prediction via MSE, is
therefore not natively designed for item ranking but rather for rating
prediction. In the original model only items that have been rated by
the user are used for training, this means that the model will never
be trained to distinguish between positive and negative items, exhibit-
ing poor ranking performance. In order to ensure the suitability of
FunkSVD for a top-k recommendation task we added a hyperparame-
ter which ensures a certain quota of the samples used during training
are randomly sampled among the unseen items and are associated with
a rating of 0. This greatly improves its performance for ranking tasks.
The embeddings of users and items are regularized with a Frobenius
norm. Another hyperparameter controls whether the model should
include the global bias, user bias and item bias. Other hyperparame-
ters include the learning rate, the regularization coefficients, and the
number of latent factors. Overall, the predicted rating is computed as
follows:

R̂ui = µ+ bu + bi +

|F |∑
f

Wu,f ·Hi,f

Where µ is the global bias, bu ∈ R|U | the user bias, bi ∈ R|I| the item
bias.

• MF BPR: This widely known algorithm was proposed in Rendle et
al. [96]. As opposed to FunkSVD, MF BPR is designed to optimize
ranking accuracy via the BPR loss and is a widely used baseline in the
articles we analyzed. This method, as opposed to FunkSVD, PureSVD

5https://scikit-learn.org/stable/modules/generated/sklearn.
decomposition.NMF.html

6http://sifter.org/˜simon/journal/20061211.html

39

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html
http://sifter.org/~simon/journal/20061211.html

Chapter 4. Evaluation protocol and baseline algorithms

and NFM, has been explicitly designed for implicit interactions. Fur-
thermore, as opposed to iALS, it is trained using gradient ascent. Hy-
perparameters of this method include the number of latent factor, the
learning rates and the regularization coefficients.

4.3 Evaluation metrics

In order to assess the recommendation quality of the algorithms we evaluate
in this study, we report two categories of metrics: accuracy metrics and
beyond-accuracy metrics.

4.3.1 Accuracy Metrics

Accuracy metrics are usually computed for a recommendation list of a cer-
tain length, i.e., cutoff k. All the metrics reported are computed for each
user independently and then averaged, so the equations reported in this sec-
tion refer to a single user.

We define rel(i) as a boolean vector having the same length as the rec-
ommendation list, its purpose is to model whether an item is relevant, i.e.,
is a correct recommendation, or not:

rel(i) =

{
1 if the item in position i is relevant
0 otherwise

Furthermore, consider relt as the total number of relevant items the user
has in the test data.

• Precision (Prec): This metric measures the quota of correct recom-
mendations received by a user over the recommendation list length.

Prec@k =
1

k

k∑
i=0

rel(i)

• Recall (Rec) This metric measures the quota of correct recommenda-
tions received by a user over the true positives in its test data.

Rec@k =
1

relt

k∑
i=0

rel(i)

• Hit Rate (HR): This metric computes the number of correct recom-
mendations a user received. If the data is split via leave-one-out its

40

4.3. Evaluation metrics

values are between 0 and 1. If the split is random holdout its value
may exceed 1. Hit rate is a non normalized version of Precision, if
the recommendation list length is constant for all users the two are
equivalent.

HR@k =
k∑
i=0

rel(i)

• Normalized Discounted Cumulative Gain (NDCG): As opposed to
the previous ones, this metrics takes also into account the ranking of
the correct recommendations. This metric was originally proposed to
evaluate the effectiveness of information retrieval systems [63] and
is among the most commonly used metrics in recommender systems
research (see Section 7.2.1).
Assuming that the recommendations for user u are sorted according
to the predicted relevance values in decreasing order, DCG is defined
as follows:

DCG@k =
k∑
i=0

2r(i) − 1

log2(i+ 1)

where r(i) is the true relevance, as found in the test data, for the item
ranked at position i. In case of datasets with explicit ratings, the rel-
evance will be equal to the rating, in case of implicit interactions the
relevance will be 1.
The cumulative gain for each user is normalized by computing the
ideal DCG for that same user, denoted as IDCG. While the DCG
considers all items in the recommendation list, the IDCG is computed
assigning to each item its true relevance (i.e., the one in the test data)
and therefore obtaining the best possible ranking. The NDCG is then
computed as follows:

NDCG@k =
DCG@k

IDCG@k

• Mean average precision (MAP): Is another metric used to measure
ranking quality, though is less common than NDCG (see Section 7.2.1).
MAP is computed based on the average precision (AP) at increasingly
longer recommendation lists, up to the cutoff value, of each user. The
AP of each user is defined as follows:

AP =
1

min(k, relt)

k∑
i=0

Prec@i · rel(i)

41

Chapter 4. Evaluation protocol and baseline algorithms

Finally, given the AP of each user, MAP will be defined as the global
average:

MAP =
1

|U |
∑
u∈|U |

APu

4.3.2 Beyond-accuracy Metrics

The core purpose of a recommender system is to assist the user in exploring
a catalogue, this of course requires finding relevant recommendations but
also to ensure the user is assisted in the discovery of new items. Beyond-
accuracy metrics measure how well the recommender is diversifying its
recommendations for different users. Broadly speaking, diversity metrics
can be classified in two different categories: individual diversity and aggre-
gate diversity. While individual diversity only measures what is perceived
by the user and is computed on each separate recommendation list, aggre-
gate diversity considers the system as a whole and is measured taking into
account the recommendations provided to all users [1,121]. We will define
rec(i) as the number of times item i has been recommended, and rect as
the total number of recommendations (i.e., cutoff value times the number
of test users).

In this study, we will focus on the following measures:

• Item Coverage: This aggregate diversity metric represents the quota
of items that were recommended at least once.

coverage =
1

|I|
∑
i∈I

rec(i) > 0 (4.5)

where |I| is the cardinality of the item set and rec(i) > 0 is 1 if the
item has been recommended at least once, 0 otherwise. Recommender
systems exhibiting low coverage will be able to recommend only a low
number of items, which can be a significant issue as the recommender
fails in one of its most important tasks and constrains user exploration.

• Shannon Entropy: This aggregate diversity metric measures the dis-
tributional dispersion of the recommendation frequency, taking into
account not only whether an item was recommended, but also how of-
ten. This metric is the Shannon entropy of how frequently each item
has been recommended.

Shannon = −
∑
i∈I

rec(i)

rect
· ln rec(i)

rect

42

4.3. Evaluation metrics

• Gini Diversity: This aggregate diversity metric is too a function of
how frequently an item is recommended. It is derived from the defi-
nition of the Gini Index, but has its range flipped in such a way that
a higher diversity recommender, therefore with balanced frequencies,
will have a low Gini Index but a high Gini Diversity. This formulation
is aimed at easing the comparison with other diversity metrics sharing
a common behavior. Note that the item frequency in this case needs
to be sorted by decreasing values. Function s(i) = j given item i will
provide its index j in the original non-sorted data.

Gini =
|I|∑
i=1

2i− |I| − 1

|I|
· rec(s(i))

rect

• Herfindahl Index (HHI): This aggregate diversity metric originated
from the economics sector and is a quadratic function of the item fre-
quency. Due to its quadratic nature it is more sensitive to changes in
the recommendation frequency of items that tend to be recommended
often.

HHI = 1− 1

rec2t

∑
i∈I

rec(i)2

• Mean Inter-List Diversity (MIL): This diversity metric compares
all user’s recommendation lists and measures how different they are
[135]. It is among the metrics which are computed on the actual rec-
ommendations received by each user rather than on the global item
count. This diversity considers the uniqueness of different user’s rec-
ommendation lists and has a value between 0 and 1. The less likely
any two users have been recommended the same items, hence the more
diverse the recommendations are, the closer MIL will be to 1. Note
that MIL was originally called Personalization, however we will not
use this name due to the fact that the highest value for this metric (i.e.,
1) is obtained by a non personalized Random recommender.

h(ua, ub) = 1− q(ua, ub)

c
(4.6)

Equation 4.6 represents the inter-list distance for two users ua and ub,
where q(ua, ub) is the number of common items in their recommen-
dation lists. Equation 4.7 shows how MIL is computed, as an average

43

Chapter 4. Evaluation protocol and baseline algorithms

over all inter-list distances, excluding the diagonal.

MIL =
1

|U |2 − |U |
∑

ua,ub∈U
ua6=ub

h(ua, ub) (4.7)

Computing MIL requires to compute function q(ua, ub) for all cou-
ples of users, which is quadratic in their number therefore being very
computationally expensive for all but the smallest datasets.

As a side contribution of this evaluation study, in Appendix B we
demonstrate that MIL diversity is actually a distributional diversity
metric, equivalent to both Herfindahl and Hamming diversity. This
result allows to clarify the meaning and limitations of MIL diversity
and allow its computation in negligible time.

• Hamming Distance: This is another metric defined between users
[121], applied by representing the user’s recommendation lists L as a
one-hot encoding LH of |I| elements. The Hamming distance is the
number of positions in which the two lists are different. Since the
Hamming distance can be computed from q(ua, ub) as H(ua, ub) =
|I| − q(ua, ub) Hamming distance and MIL diversity are equivalent.

It is possible to see that Shannon Entropy is logarithmic, Gini Diver-
sity is linear, given that the rec(i) data must be ordered beforehand, and
Herfindahl is quadratic. This means that all three metrics measure the same
phenomena, how recommendations are spread across items, but are are sen-
sitive to slightly different behaviors.

4.3.3 Computation Time Metrics

Although often overlooked, the computation time required to train a model
and to compute recommendations is an important aspect to take into ac-
count when deploying a recommender system. In recent years recom-
mender models have grown more and more complex and frequently re-
markably slower to train and to generate recommendations. This aspect
is hardly ever mentioned or measured in the original papers, despite being
very important. In order to provide a comprehensive picture, in addition
to accuracy and beyond-accuracy metrics, we also report measurements of
the train and recommendation generation time of all algorithms we evalu-
ate. In order to allow for a meaningful comparison, we ran all experiments

44

4.4. Hyperparameter Tuning

on a specific Amazon AWS instance.7 The measurements we report are the
following.

• Training Time: This metric reports the total time required to train the
model.

• Recommendation Time: This metric measures the time required to
generate all recommendation lists during the model evaluation.

• Throughput [usr/s]: This metric is computed from the Recommen-
dation Time and shows how many recommendation lists the model
is able to generate per second, i.e., to how many users is possible to
provide recommendations each second.

4.4 Hyperparameter Tuning

We performed extensive hyperparameter optimization for all examined base-
lines on each of the datasets used for evaluation. For the investigated neural
methods we relied on the optimal hyperparameters reported in the original
papers in all but one case. This is appropriate since in our experiments we
used the same datasets (if possible the same training-test split) and eval-
uation procedures as in the original papers. The only exception to this is
the SpectralCF algorithm (see Section 5.12). For SpectralCF we discov-
ered an issue in the provided dataset split which was probably the result
of an erroneous splitting procedure. Since the characteristics of a correct
data split were different, we could not use the same hyperparameters as re-
ported in the original article and so we performed a new hyperparameter
optimization, as will be discussed later.

The approach we adopted to search for the optimal hyperparameters is a
Bayesian search [3, 36, 38, 50, 58], using the Scikit-Optimize8 implementa-
tion. We did not use the more commonly found Grid search because it has
several important limitations, among which the high computational cost
and that its results are strongly affected by how the value ranges of con-
tinuous valued hyperparameters are discretized. Furthermore it has been
known for several years that even a Random search is often preferable and
more efficient than a Grid search [12]. A Bayesian search improves over a
Random search by providing a trade-off between exploration and exploita-
tion, allowing to explore the hyperparameter space in the first stages of the
search and then fine tune the best solution found.

7The computation time refers to the total instance time for one AWS instance p3.2xlarge, with 8 vCPU, 30GB
RAM, and one Tesla V100-SXM2-16GB GPU.

8https://scikit-optimize.github.io/

45

https://scikit-optimize.github.io/

Chapter 4. Evaluation protocol and baseline algorithms

For our Bayesian search we considered 50 cases for each algorithm. The
search is composed by three steps:

• First, 15 random samples from the distributions of the hyperparame-
ters are drawn and evaluated. These will constitute the initial points
used by the Bayesian Search.

• Then 35 other hyperparameter configurations are explored with the
Bayesian search. The hyperparameter configuration achieving the best
recommendation quality on the validation data will be selected.

• The model is trained with the optimal hyperparameters on the union
of train and validation data and then evaluated on the test data.

4.4.1 Early Stopping Approach

Many machine learning models are trained for a number of epochs in which
the model’s performance on the test data varies, first increasing and then
stabilizing or decreasing if the model begins to overfit, usually exhibiting
some degree of variance. The number of epochs represents another impor-
tant parameter to be determined as it can have a strong impact on the quality
of the overall model.

Despite this, in the articles we have analyzed neither the number of
epochs nor the stopping criteria are usually mentioned. The procedure used
to select this parameter in the original articles is therefore not clear. While
looking at the code shared or while discussing with the authors we fre-
quently came across bad experimental practices, e.g., number of epochs
selected using the test data or reporting the best recommendation quality
for each metric regardless of the epoch.

In our experiments we always selected the number of epochs, both for
the baselines and for the deep learning models, with early stopping on the
validation data. Early stopping is a widely used technique to select the op-
timal number of train epochs and is available in many libraries like Keras.9

The idea of early stopping is to periodically evaluate the model on the val-
idation data, while the model is being trained, and stop the training when
for a certain number of validation steps the model quality has not improved
over the best solution found so far. Early stopping has the advantage of se-
lecting the number of epochs with a transparent criterion, avoiding arbitrary
manual optimization, and often results in shorter training times.

To implement early stopping, we use two independent copies of the cur-
rent model. One is the model that is still being trained, the other is the

9For early stopping in Keras, see https://keras.io/callbacks/#earlystopping

46

https://keras.io/callbacks/#earlystopping

4.5. Evaluation Framework

model frozen at the epoch with the best recommendation quality found so
far. If the trained model, after further epochs, exhibits better recommenda-
tion quality than the best one found so far, the best model is updated. Since
the evaluation step is time consuming, we run five train epochs before each
validation step. Moreover, we choose to stop the training if for 5 consec-
utive validation steps the recommendation quality of the current model is
worse than the best one found so far.

4.5 Evaluation Framework

This thesis required extensive experimental evaluation. At the beginning
of the project no evaluation framework provided the necessary flexibility
to support the variety of baselines, neural algorithms as well as metrics and
evaluation protocols required for this study. Significant effort was therefore
devoted to the development of a suitable evaluation framework written in
Python. The framework and the documentation needed to install it and
replicate our experiments are accessible on Github10 (see also Appendix
C).

In this section the structure of the framework will be presented and de-
scribed via UML diagrams and flow diagrams, for the most important func-
tionalities. The framework contains the following packages:

Recommender Model: This package contains the classes required to build
and fit all recommender models.

Evaluation: This package contains the classes required to perform an eval-
uation of a given Recommender Model.

Hyperparameter Tuning: This package contains the classes required to
perform the hyperparameter tuning of a model.

The Recommender Model package contains all recommender models,
each as a separate class, and the auxiliary code required for fitting it. Each
model has its own class but models of the same family all inherit from an
abstract class. Figure 4.1 shows the hierarchy of the similarity based and
matrix factorization recommenders. Abstract methods are in italic. Figure
4.3 shows the hierarchy of all similarity based baselines, both item-based
and user-based. Figure 4.2 shows the hierarchy of all matrix factorization
baselines. The most important methods are:

• recommend: generates the recommendation list for a specific user.
10https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation

47

https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation

Chapter 4. Evaluation protocol and baseline algorithms

• compute item score: computes the prediction or score for each item,
according to the given model.

• load model: loads a previously saved model

• save model: saves the current model

• fit: given the training data, fits the current model, e.g., computes the
neighborhood-based heuristic, computes the training data decomposi-
tion, performs gradient descent etc.

As it is possible to see, a specialized class for early stopping exists and
all models requiring to select the number of epochs inherit from it, i.e.,
IncrementalTrainingEarlyStopping. This class provides some methods to
perform the incremental training and evaluations required by early stopping
as well as controlling the execution flow.

A high level execution flow for the early stopping is shown in Figure
4.4 with the sequence diagram of the train procedure for the SLIM BPR
method. This algorithm has a Python interface and then uses a Cython
module (i.e., C code) that performs the train process. The Incremental-
TrainingEarlyStopping class controls the training procedure invoking the
methods to train the recommender model one epoch at a time and then,
when necessary, evaluate it and update the best model.

<<abstract>>
BaseRecommender

recommend(user id):list
load model(folder, file name)
save model(folder, file name)
fit(**kwargs)
compute item score(**kwargs):list

<<abstract>>
BaseSimilarityMatrixRecommender

save model(folder, file name)

BaseItemSimilarityMatrixRecommender

compute item score(**kwargs):list

BaseUserSimilarityMatrixRecommender

compute item score(**kwargs):list

<<abstract>>
BaseMatrixFactorizationRecommender

save model(folder, file name)
compute item score(**kwargs):list

Figure 4.1: Class hierarchy for Similarity and matrix factorization recommender models.
The Similarity matrix recommenders have two sub-classes dependin on whether they
are item-based or user-based.

48

4.5. Evaluation Framework

<<abstract>>
BaseMatrixFactorizationRecommender

compute item score(**kwargs):list
save model(folder, file name)
load model(folder, file name)

PureSVD Recommender

fit(**kwargs)

NFM Recommender

fit(**kwargs)

IALS Recommender

fit(**kwargs)

FunkSVD Recommender

fit(**kwargs)

MF BPR Recommender

fit(**kwargs)

IncrementalTrainingEarlyStopping

train with early stopping()

Figure 4.2: Class hierarchy for matrix factorization recommender models used as base-
lines. The only algorithms supporting early stopping are iALS, FunkSVD and MF
BPR.

The Evaluation package contains all classes necessary to perform the
evaluation and compute the metrics we report. Figure 4.5 shows a sequence
diagram of the evaluation of a SLIM BPR model. The Evaluatior object
calls the recommend function on the SLIM BPR model which goes all the
way up to the main Recommender class. At this point, the scores for all
items are computed, in this case by the BaseItemSimilarityRecommender
class, of which SLIM BPR is a subclss. The item scores are returned to the
Recommender class which ranks them and provides the recommendation
list as output. Lastly, the Evaluator object computes the evaluation metrics.

The Hyperparameter Tuning package contains the class which performs
the optimization with Bayesian Search using the scikit-optimize
package for Python.11 The Evaluation package is used to implement the
objective function.

11https://scikit-optimize.github.io/stable/modules/generated/skopt.gp_
minimize.html

49

https://scikit-optimize.github.io/stable/modules/generated/skopt.gp_minimize.html
https://scikit-optimize.github.io/stable/modules/generated/skopt.gp_minimize.html

Chapter 4. Evaluation protocol and baseline algorithms

<<abstract>>
BaseSimilarityMatrixRecommender

save model(folder, file name)

BaseItemSimilarityMatrixRecommender

compute item score(**kwargs):list

ItemKNNCBFRecommender

fit(**kwargs)

ItemKNN CFCBF Hybrid Recommender

fit(**kwargs)

SLIMElasticNetRecommender

fit(**kwargs)

EASER Recommender

fit(**kwargs)

SLIM BPR Recommender

fit(**kwargs)

IncrementalTrainingEarlyStopping

train with early stopping()

BaseUserSimilarityMatrixRecommender

compute item score(**kwargs):list

UserKNNCBFRecommender

fit(**kwargs)

UserKNN CFCBF Hybrid Recommender

fit(**kwargs)

Figure 4.3: Class hierarchy for Similarity recommender models used as baselines. All
user-based models inherit from the BaseUserSimilarityMatrixRecommender class and
all item-based models inherit from the BaseItemSimilarityMatrixRecommender class.
The only algorithm supporting early stopping is SLIM BPR.

50

4.5. Evaluation Framework

SLIM BPR
Python

SLIM BPR
Cython

IncrementalTraining
EarlyStopping Evaluator

instantiate model

train with early stopping

run epoch

run epoch

evaluate model

update best model

LoopLoop Train step for each epoch

FitFit The fit function

Figure 4.4: Sequence diagram of the fit function in a SLIM BPR Recommender. The Fit
function calls first the Cython implementation of the model, then early stopping is used
to loop through the epochs. For each epoch, the model is fitted and evaluated.

51

Chapter 4. Evaluation protocol and baseline algorithms

Evaluator
SLIM BPR

Python
BaseItemSimilarity

Recommender
Recommender Metrics

recommend

recommend

compute item score

compute item score

item scores

item scores

item scores

item scores

Precision, Recall, MAP, ...

metric value

LoopLoop Evaluate each user

Figure 4.5: Sequence diagram of the evaluation of a recommender model and of the com-
putation of a recommendation list in a SLIM BPR Recommender. The recommend
function calls first the BaseRecommender class, which calls the function to compute
the item scores. The scores, in this case, are computed by a class SLIM BPR inherits
by, BaseItemSimilarityRecommender.

52

CHAPTER5
Detailed results for reproducible articles

In this Chapter we will provide a detailed analysis of the reproducible al-
gorithms reporting, for each of them: a description of the model and the
evaluation protocol adopted in the original article, methodological issues
we may have found, the results of our comparison with the new baselines
both in terms of recommendation quality and computation time. The arti-
cles are ordered by year of publication starting from the oldest one. Due
to the extensive number of results (i.e., 900 models evaluated, considering
all algorithms and experimental procedures) in this Chapter we only re-
port, for each analyzed algorithm, the most significant ones and summarize
the others in the text. The complete results containing the recommendation
quality on all datasets, the selected hyperparameters as well as training time
and throughput, are reported in Appendix C.

5.1 Collaborative Deep Learning for Recommender Systems
(CDL)

Collaborative Deep Learning for Recommender Systems (CDL) is the ear-
liest method we analyze and was proposed in [119] at KDD ’15. CDL is
a probabilistic feed-forward model of a stacked denoising autoencoder, it

53

Chapter 5. Detailed results for reproducible articles

applies deep learning to learn a hybrid joint representation of both content
and collaborative information.

5.1.1 Datasets and Evaluation

The evaluation in the original paper is based on three datasets:

CiteULike-a, CiteULike-t: The datasets have been collected in [117] and
[118]. CiteULike allows users to create their own collections of ar-
ticles, each of them has abstract, title, and tags. Both datasets are
relatively small (135k and 205k interactions, respectively).

Netflix Prize: This dataset is based upon the Netflix Prize dataset, which
contains movie ratings information, and is enriched by content infor-
mation like the movie plot, crawled from IMDB. Since IMDB con-
tent information was not provided by the authors, we did not use this
dataset in our experiments.

For each of these datasets, two sets of experiments were made in two
sparsity configurations, described by a parameter P , which indicates how
many interactions per user are left in the training set (with the rest going
to the test set). The two sets of experiments correspond to P values of 1
and 10, which result to 5.5k and 55.5k training interactions, respectively.
Note that with P = 1 there is only one training interaction per user in the
training dataset.

Several baseline techniques were explored in the original article, among
them a number of hybrid matrix factorization approaches, a content-based
deep learning technique designed for music recommendation, as well as
Collaborative Topic Regression, a combination of Latent Dirichlet Alloca-
tion on the content attributes and collaborative filtering on the interactions.
For evaluation purposes, P interactions for each user were randomly sam-
pled to be part of the training set as mentioned above. The average results
of five evaluation runs are reported as well as the standard deviation (omit-
ted from the tables but is mentioned in the text) which exhibits very small
values. The authors report Recall for comparably long list lengths (50 to
300), and Mean Average Precision for list length 300.

5.1.2 Methodological considerations

From a methodological perspective, there is no indication of why compa-
rably long list lengths were used for evaluation in the paper and why no
measurements were reported for list lengths below 50, which is commonly
the case in the literature (see Section 7.2.1, Table 7.5). Furthermore, only

54

5.1. Collaborative Deep Learning for Recommender Systems (CDL)

non-neural machine learning baselines were reported and no neighborhood-
based algorithms were present. Surprisingly, no pure content-based base-
lines were reported even though CDL is a hybrid model that uses content
information. Lastly, it is not clear how the hyperparameters could have
been tuned for the sparse data scenario, i.e., P=1, since any further split
would result in cold users and that would not allow a meaningful optimiza-
tion of the reported pure collaborative models, unless specific strategies are
put in place.

5.1.3 Results and Discussion

The article shows this method to outperform all baselines on all measures.
We could reproduce their results based on the provided code and dataset.1

Information about the validation set size was not provided in the original
paper. In order to optimize the baselines in our own evaluation, we created
a validation set using 20% of the training set. In the evaluation scenario
where P=1, due to the presence of only 1 training instance per user, any
sampling would result in cold users. Therefore, in our own experiments,
for this scenario the validation data is defined as a subset of the training
data. In the evaluation scenario where P=10, training and validation data
are disjoint.

Comparing CDL against our new baselines we can see that, in three
out of four configurations (CiteULike-a with P=10 and CiteUlike-t with
P=1 and P=10), CDL is consistently outperformed by our simple hybrid
technique (ItemKNN CFCBF) and, in many cases, also by the pure content-
based method (ItemKNN CBF). CDL is instead better than any of our base-
lines, by a large extent, only when removing all but one user interaction
from the CiteULike-a dataset (with P=1). In the settings where P=1, pure
collaborative filtering techniques are, as expected, not competitive.

Since the evaluation methodology is identical, we report exemplary re-
sults for CDL and Collaborative Variational Autoencoder in the follow-
ing Section 5.2. Table 5.1 shows exemplary results for the CiteULike-a
dataset for the setting P=10. In the table, we highlight in bold those entries
where a baseline outperformed CDL. We can observe that, for shorter and
much more typical list lengths, even the simplest collaborative filtering ap-
proaches outperform CDL. The iALS method based on matrix factorization
for implicit feedback data was better with respect to CDL in all measure-
ments and cutoff lengths. Finally, the best results were achieved with the

1In the source code the authors provided it is reported that the original evaluation contained an error such that
the absolute values of the evaluation metrics was higher than the correct one, although the relative performance
ordering of the algorithms remained unaltered. Once this error is fixed we can reproduce their results.

55

Chapter 5. Detailed results for reproducible articles

pure content-based method that uses only item features to recommend sim-
ilar items (ItenKNN CBF).

In terms of computation time, CDL can generate a similar number of
recommendation lists per second with respect to the baselines, however,
it has a substantially longer training time requiring more than one hour
while all baselines train in less than 10 minutes or a few seconds for the
neighborhood-based models.

5.2 Collaborative Variational Autoencoder (CVAE)

The Collaborative Variational Autoencoder (CVAE) method was published
in [72] at KDD ’17. Like CDL, CVAE is a technique that leverages both
content and collaborative information to build a hybrid recommendation
model. CVAE learns a deep latent representations for content data in an un-
supervised manner and also considers implicit relationships between items
and users from both content and rating data. As opposed to previous works
with denoising criteria, CVAE learns a latent distribution for content in the
latent space instead of the observation space through an inference network.

5.2.1 Datasets and Evaluation

The evaluation in the original paper is based on two datasets:

CiteULike-a, CiteULike-t: The datasets have been collected in [117] and
[118]. CiteULike allows users to create their own collections of ar-
ticles, each of them has abstract, title, and tags. Both datasets are
relatively small (135k and 205k interactions, respectively).

The CVAE method is evaluated using the same experimental procedure
as CDL (see Section 5.1), i.e., the two datasets are used and different spar-
sity configurations are tested. Moreover, CVAE is evaluated using Recall at
a series of long list lengths. As an additional baseline, the authors include
the CDL [119] method described in the previous section. The hyperparam-
eters for all baseline methods are stated to have been optimized using a
validation set which is, however, not described.

5.2.2 Methodological considerations

From a methodological perspective, similar observation can be drawn for
CVAE and CDL (see Section 5.1). In summary, the recommendation list
length is uncommonly long and no motivation for this has been provided.

56

5.2. Collaborative Variational Autoencoder (CVAE)

Similarly, despite leveraging content features, no pure content-based base-
lines were reported. Lastly, it is not clear how the hyperparameters could
have been tuned for the sparse data scenario, i.e., P=1, since any further
split would result in cold users and that would not allow a meaningful op-
timization of the reported pure collaborative models, unless specific strate-
gies are put in place.

5.2.3 Results and Discussion

We could reproduce the results for CVAE.2 Table 5.1 shows the results of
our experiments for the CiteULike-a dataset with P=10, using the same
evaluation measures and protocol as used in the original paper. The table
reports the results for both CVAE and CDL (see Section 5.1).

Table 5.1: Experimental results for the CVAE method for the CiteULike-a with P=10.

Recall
@50 @100 @150 @200 @250 @300

TopPopular 0.0040 0.0078 0.0103 0.0204 0.0230 0.0258

UserKNN CF jaccard 0.0806 0.1207 0.1480 0.1705 0.1887 0.2034
ItemKNN CF cosine 0.0989 0.1441 0.1752 0.1982 0.2156 0.2300

P3α 0.0907 0.1341 0.1636 0.1865 0.2055 0.2206
RP3β3 0.0963 0.1408 0.1692 0.1908 0.2090 0.2239

EASER 0.0839 0.1253 0.1546 0.1797 0.1988 0.2128
SLIM BPR 0.0876 0.1308 0.1583 0.1821 0.2005 0.2165
SLIM ElasticNet 0.0869 0.1281 0.1561 0.1789 0.1970 0.2115
MF BPR 0.0680 0.1011 0.1225 0.1402 0.1542 0.1663
MF FunkSVD 0.0483 0.0866 0.1157 0.1412 0.1636 0.1816
PureSVD 0.0715 0.1079 0.1313 0.1491 0.1636 0.1759
NMF 0.0628 0.1013 0.1285 0.1505 0.1679 0.1843
iALS 0.0779 0.1388 0.1834 0.2186 0.2472 0.2706

ItemKNN CBF cosine 0.1989 0.2835 0.3402 0.3844 0.4193 0.4492
ItemKNN CFCBF cosine 0.1858 0.2816 0.3445 0.3930 0.4335 0.4642
CVAE 0.0805 0.1569 0.2232 0.2760 0.3250 0.3687
CDL 0.0580 0.1108 0.1546 0.1946 0.2314 0.2640

We can see that a simple pure CBF baseline outperforms the more com-
plex CVAE method on all measures, for this dataset, by a large margin.
However, if we compare CVAE with the previously published CDL, we
can see that there has been indeed an improvement from the very low rec-
ommendation quality of CDL. For the other dataset and sparsity configu-
rations, our results are similar to what was reported in the previous section

2In the source code the authors provided it is reported that the original evaluation contained an error such that
the absolute values of the evaluation metrics was higher than the correct one, although the relative performance
ordering of the algorithms remained unaltered. Once this error is fixed we can reproduce their results.

3We report RP3β [90] for completeness although the DL algorithm we evaluate here predates its publication.

57

Chapter 5. Detailed results for reproducible articles

on CDL, i.e., that CVAE is only better than any of the baselines in the very
sparse configuration with P=1 for the CiteULike-a dataset.

Overall, the authors of CVAE could show an advance with respect to
CDL, but our results indicate that CDL did not represent a strong baseline
method. We will observe the following phenomenon several times, when a
new neural method is proposed and claimed to improve on the state-of-the-
art subsequent works will only focus on outperforming that neural method,
without considering alternative baselines.

In terms of computation time statistics, by comparing CVAE with the
baselines we can see it can generate a similar number of recommendation
lists per second, however, it has a substantially longer training time requir-
ing more than one hour while all baselines train in less than 10 minutes or
a few seconds for the neighborhood-based models.

5.3 Neural Collaborative Filtering (NCF)

The Neural network-based Collaborative Filtering (NCF) framework was
proposed in [57] at WWW ’17. NCF rapidly gained significant popular-
ity becoming a highly cited paper and being used as a baseline for most
later neural recommendation approaches, as shown in Figure 7.1. The
NCF framework generalizes matrix factorization by replacing the com-
monly used inner product with a neural architecture which will be able to
model non-linearities in the embeddings. Different variants are considered
in the paper:

Generalized Matrix Factorization (GMF): Is used to demonstrate that NCF
can represent traditional matrix factorization models by applying a
fixed element-wise product of the user and item latent features.

Multi-Layer Perceptron (MLP): Applies hidden layers on the concate-
nated user and item latent vectors, using a standard MLP to learn the
interaction between latent features, being no longer constrained by the
linear GMF.

Neural Matrix Factorization (NeuMF): Combines the linear and non-linear
modes maintaining a great degree of flexibility, by allowing GMF and
MLP to learn separate embeddings, and combine the two models by
concatenating their last hidden layer. NeuMF is an ensemble of GMF
and MLP.

In our evaluation, we will only consider Neural Matrix Factorization be-
cause the original paper showed it to be the best performing one.

58

5.3. Neural Collaborative Filtering (NCF)

5.3.1 Datasets and Evaluation

The evaluation in the original paper is based on two datasets:

MovieLens1M: Is a widely used movie rating dataset. Each user in the
dataset has at least 20 ratings and each rating is binarized with a value
of 1.

Pinterest: The dataset is gathered from the well known social network in
which users may pin an image to their board [52]. Each interaction
denotes whether the user has pinned the image to his own board. In
the original paper it is stated that since the original dataset is big and
very sparse only users with at least 20 interactions were selected.

The authors use a leave-last-out procedure to evaluate their method, the
test data is built by selecting the last interaction of each user (according
to its timestamp)4. The resulting data splits used in the experiments are
publicly available. In order to evaluate the model performance, the positive
item is ranked with 100 randomly sampled negative items. This procedure
is justified stating that ranking all recommendable items is too time con-
suming, even though the datasets have modest sizes. Hit Rate and NDCG
at list length 10 are used as performance metrics.

The original paper includes the following personalized baselines: matrix
factorization with Bayesian Personalized Ranking (BPR matrix factoriza-
tion), the eALS method from 2016 and the ItemKNN method. The orig-
inal hyperparameter optimization is done on a validation set obtained by
randomly selecting one interaction per user. It should be noted here that
the validation set is sampled differently from the test set, the reason for
this is not provided. For the ItemKNN method, the paper states that the
only hyperparameter varied was the number of neighbors (i.e., no shrink
term or normalization). According to the reported experiments, the NCF
method, and in particular the NeuMF variant, outperformed all baselines
on all dataset on all performance measures.

5.3.2 Methodological considerations

The analysis of the provided source code shows that the number of training
epochs was chosen by maximizing the Hit Rate on the test data, which will
result in information leakage. Since the number of epochs is a parameter

4It should be noted, however, that in MovieLens the timestamp refers to the moment when the rating has
been added by the user, not when the user-item interaction occurred. Due to this, the ratings could be added at
any time, with any order, and their timestamps do not represent the interaction pattern adopted by the user. The
appropriateness of using said timestamps as a proxy for the user real interaction pattern is therefore doubtful.

59

Chapter 5. Detailed results for reproducible articles

like any other, it must be fixed before testing, e.g., through early stopping on
a validation set. In our experiments, we therefore report the performance
measure for the number of epochs that was considered optimal based on
the validation set applying early stopping. Furthermore, by looking at the
provided training-test-negative split, we could observe that for some users
the positive test interaction also appears among the negative items, 156 for
MovieLens1M and 559 for Pinterest. This is a minor methodological issue
that has a marginal impact on the evaluation. For those users the positive
item will be ranked with 99, and not 100, negative items resulting in a
marginally simpler recommendation problem.

5.3.3 Results and Discussion

We could reproduce the results reported in the original paper. Table 5.2 and
Table 5.3 report our results for both the MovieLens and Pinterest datasets.
In the original paper the results at list length from 1 to 10 are reported as a
plot, therefore in order to compare the results we report those at list length
1, 5 and 10.

On the well-known MovieLens dataset, see Table 5.2, NeuMF is com-
petitive against the simple neighborhood-based baselines, however is out-
performed by all but one non-neural machine learning methods. On the Pin-
terest dataset, see Table 5.3, NeuMF can only outperform PureSVD, which
is not optimized for implicit feedback datasets. Most non-neural machine
learning techniques are often either similar or better than NeuMF.5

If we compare the recommendation quality of non-neural machine learn-
ing methods to that of neighborhood-based techniques, on this experimental
setup, we can see that while on Pinterest the two are equivalent, on Movie-
Lens non-neural machine learning techniques show a clear advantage.

In terms of the computation cost, the time required by neighborhood-
based algorithms is relatively small in both datasets requiring few sec-
onds up to a minute, while non-neural machine learning algorithms require
longer training times which are mostly in the range of 5-20 minutes for

5After the publication of our first results in [46], we were contacted by the authors of NeuMF who provided
us with a new hyperparameter configuration for their method resulting in improved recommendation quality.
Such configuration however included new hyperparameter values taken from broader hyperparameter ranges,
and required other slight changes in the training procedure. While this new configuration indeed led to slightly
improved results for NeuMF, the results of our analysis were confirmed. We would like to clarify that better
configurations than those reported in the original papers may indeed exist for all neural methods investigated
here, finding them, e.g., in the form of better hyperparameter ranges or alternative network structures, is however
not the goal of our analysis. Instead, the goal of this analysis is to assess the reproducibility of existing works
and to assess how challenging the reported evaluation really was by comparing the neural algorithm against new
and optimized baselines.

6We report RP3β [90] for completeness although the DL algorithm we evaluate here predates its publication.

60

5.3. Neural Collaborative Filtering (NCF)

Table 5.2: Experimental results for NCF (MovieLens 1M)

@1 @5 @10
HR NDCG HR NDCG HR NDCG

TopPopular 0.1051 0.1051 0.3048 0.2064 0.4533 0.2542

UserKNN CF asymmetric 0.1921 0.1921 0.5070 0.3546 0.6768 0.4100
ItemKNN CF asymmetric 0.1843 0.1843 0.4906 0.3400 0.6627 0.3956

P3α 0.1791 0.1791 0.4846 0.3352 0.6460 0.3876
RP3β6 0.1836 0.1836 0.4935 0.3419 0.6758 0.4011

EASER 0.2225 0.2225 0.5629 0.3986 0.7192 0.4494
SLIM BPR 0.2013 0.2013 0.5320 0.3713 0.7002 0.4258
SLIM ElasticNet 0.2207 0.2207 0.5576 0.3953 0.7162 0.4468
MF BPR 0.1679 0.1679 0.4619 0.3186 0.6305 0.3730
MF FunkSVD 0.2008 0.2008 0.5202 0.3661 0.6844 0.4192
PureSVD 0.2132 0.2132 0.5339 0.3783 0.6937 0.4303
NMF 0.2056 0.2056 0.5171 0.3651 0.6844 0.4192
iALS 0.2106 0.2106 0.5505 0.3862 0.7109 0.4382

NCF (NeuMF variant) 0.2088 0.2088 0.5411 0.3803 0.7093 0.4349

Table 5.3: Experimental results for NCF (Pinterest)

@1 @5 @10
HR NDCG HR NDCG HR NDCG

TopPopular 0.0467 0.0467 0.1665 0.1064 0.2740 0.1409

UserKNN CF jaccard 0.2898 0.2898 0.7038 0.5056 0.8655 0.5583
ItemKNN CF asymmetric 0.2903 0.2903 0.7117 0.5096 0.8766 0.5633

P3α 0.2853 0.2853 0.7022 0.5024 0.8700 0.5571
RP3β6 0.2966 0.2966 0.7151 0.5149 0.8796 0.5685

EASER 0.2909 0.2909 0.7070 0.5077 0.8684 0.5604
SLIM BPR 0.2983 0.2983 0.7117 0.5138 0.8736 0.5666
SLIM ElasticNet 0.2913 0.2913 0.7059 0.5072 0.8679 0.5601
MF BPR 0.2655 0.2655 0.6858 0.4833 0.8651 0.5418
MF FunkSVD 0.2601 0.2601 0.6890 0.4820 0.8658 0.5398
PureSVD 0.2630 0.2630 0.6628 0.4706 0.8268 0.5241
NMF 0.2307 0.2307 0.6445 0.4434 0.8343 0.5052
iALS 0.2811 0.2811 0.7144 0.5061 0.8761 0.5590

NCF (NeuMF variant) 0.2801 0.2801 0.7101 0.5029 0.8777 0.5576

MovieLens and 15 minutes to 3 hours for Pinterest. In both cases we can
see that NeuMF, even though it is trained on a high-end GPU, exhibits sub-
stantially longer training times, 4 hours for MovieLens and almost 2 days
for Pinterest. Furthermore, the number of recommendation lists that can be
generated per second is between 7 and 18 times lower.

Overall, NeuMF achieves either lower or comparable recommendation
quality as other simpler or non-neural non-neural machine learning base-
lines, but at significantly greater computational cost. In principle, the archi-

61

Chapter 5. Detailed results for reproducible articles

tecture of NeuMF should make it more flexible than the dot-product based
matrix factorization baselines here reported. However, a scenario where
this is advantageous or translates to higher recommendation quality could
not, in our evaluation, be identified.

5.4 Deep Matrix Factorization (DMF)

Deep Matrix Factorization Models (DMF) were proposed in [125] at IJCAI
’17. As an input to their model, the authors first build a user-item matrix
from explicit ratings and implicit feedback, which is then used by a deep
structure learning architecture. One key aspect here is that a common low-
dimensional space for representing users and items is used. Furthermore,
the authors develop a new loss function based on cross entropy that consid-
ers both implicit feedback and explicit ratings. Using cross entropy as loss
function allows to represent recommendations with implicit feedback as a
binary classification problem. The proposed loss, referred to as normalized
cross entropy, allows to incorporate the explicit ratings as well.

5.4.1 Datasets and Evaluation

The evaluation in the original paper is based on four datasets:

Amazon Movie, Amazon Music: Datasets publicly available collected from
Amazon.com. As a preprocessing step only users with at least 20 in-
teractions and items with at least 5 interactions are retained. This
preprocessing step reduces the dataset sizes drastically. For Amazon
Movies 80% of the interactions are removed, resulting in a dataset
containing only 878k interactions for over 80k movies. For the Ama-
zon Music dataset the preprocessing step removes more than 94% of
the interactions, leaving the dataset with only 46k interactions for 18k
items. Both datasets are therefore very sparse.

MovieLens100k, MovieLens1M: Both datasets refer to movie recommen-
dations. Each user has at least 20 ratings.

All datasets contain explicit ratings in the range 1-5. The authors share
the Amazon Music dataset after the preprocessing step. After analysis,
however, we discovered the dataset could not be the result of the prepro-
cessing as described in the paper (further details are reported below). In or-
der to keep the results reported in this paper consistent across all datasets,
we apply the preprocessing step as described in the original paper on all
datasets, including Amazon Music. We do not report the results obtained

62

5.4. Deep Matrix Factorization (DMF)

with the pre-processed Amazon Music dataset provided by the authors, but
the results are consistent with our pre-processed version.

The training-test split is performed via leave-last-out, similarly to what
done for NCF (see Section 5.3). The test data for each user is created by
selecting the interaction with the latest timestamp. The positive interaction
is then ranked together with 99 randomly sampled items that received no
interactions from that user, i.e., negative items.7 The Hit Rate and NDCG
at list length 10 are used as metrics. The original training-test splits used
in the experiments were not shared by the authors, therefore we created the
data splits based on the publicly available datasets.

The original paper included NCF [57] (see Section 5.3), and the base-
lines reported in that article, i.e., eALS and ItemKNN. It should be noted
that, although DMF used explicit and implicit feedback, the article used
NCF with binarized feedback even though it can handle explicit ratings
seamlessly.

To tune the hyperparameters a validation set was built from the training
set by randomly sampling one interaction. The authors report that eALS
and NCF were tuned as in the original papers. No details about neighbor-
hood sizes or the used similarity functions are provided for the ItemKNN
method.

5.4.2 Methodological considerations

As previously mentioned the authors share the Amazon Music dataset after
the preprocessing step which, however, we discovered contains users with
less than 20 interactions and items with less than 5 ratings. If the authors
removed first the items with less than the desired number of interactions
and then the users, the user profiles should all meet the constraints while
the item profiles may not because removing users will reduce the number of
interactions some items have. The same would apply the other way round.
Furthermore, if the preprocessing step had been applied iteratively until
convergence, as one would expect, both should meet the constraint. Since
neither the users nor the items meet the minimal number of interactions
constraint, it remains unclear how exactly the filtering was done. Concern-
ing the methodological aspects, in the provided source code we found that
the best Hit Rate and NDCG are obtained by selecting the maximum values
those metrics reach, when evaluating the model on the test data, regardless
of the epoch. Furthermore, the provided code shows that the authors sam-
ple different negative items to be used for testing in each training epoch.

7The paper reports that 100 negative items are used, as described for NCF. However, the source code provided
by the authors uses 99 negative items. In our experiments we have used 99 negative items.

63

Chapter 5. Detailed results for reproducible articles

Table 5.4: Experimental results for DMF for the MovieLens1M (left) and MovieLens100k
(right) datasets.

HR@10 NDCG@10

TopPopular 0.4418 0.2475

UserKNN CF asymmetric 0.6324 0.3779
ItemKNN CF cosine 0.6347 0.3808

P3α 0.6097 0.3639
RP3β8 0.6304 0.3726

EASER 0.6693 0.4100
SLIM BPR 0.6719 0.4068
SLIM ElasticNet 0.6825 0.4209
MF BPR 0.6323 0.3729
MF FunkSVD 0.6499 0.3912
PureSVD 0.6570 0.4015
NMF 0.6422 0.3862
iALS 0.6947 0.4257

DMF NCE 0.6266 0.3768
DMF BCE 0.6731 0.4033

HR@10 NDCG@10

TopPopular 0.4145 0.2342

UserKNN CF asymmetric 0.5994 0.3492
ItemKNN CF tversky 0.6026 0.3506

P3α 0.5717 0.3421
RP3β9 0.5685 0.3270

EASER 0.6089 0.3571
SLIM BPR 0.6206 0.3578
SLIM ElasticNet 0.6238 0.3765
MF BPR 0.5951 0.3365
MF FunkSVD 0.5707 0.3354
PureSVD 0.5877 0.3555
NMF 0.5855 0.3515
iALS 0.6142 0.3691

DMF NCE 0.5930 0.3410
DMF BCE 0.6026 0.3623

This is questionable as any evaluation will be performed under a different
testing condition and would make the results non comparable.

In our evaluation we build a new data split following the information
in the paper and report the results that were obtained after determining a
suitable number of epochs on the validation set by applying eary-stopping
and we use the same negative item set for all evaluations.

Lastly, in the original paper DMF is compared to NCF which is only
trained with binarized data, even though this method can deal with explicit
rating data as well.

5.4.3 Results and Discussion

We reproduced the experiments reported by the authors. The source code
was not made available in the article but was provided to us upon request.
We report the results of DMF with both loss functions evaluated in the
paper, we could observe that, in our experiments, the normalized cross
entropy (NCE) does not usually lead to accuracy improvements over the
binary version (BCE).

In our evaluation, we could observe how DMF is not able to outper-
form the baselines in three out of four datasets. The results for MovieLens
datasets are reported in Table 5.4. DMF shows improved quality over tra-
ditional nearest-neighbor baselines on the MovieLens datasets, but slightly
worse than those obtained with the iALS and SLIM.

The detailed results for the Amazon Music and Movies datasets are
9We report RP3β [90] for completeness although the DL algorithm we evaluate here predates its publication.

64

5.4. Deep Matrix Factorization (DMF)

Table 5.5: Experimental results for DMF for the Amazon Music (left) and Amazon Movies
(right) datasets. EASER and SLIM BPR results are missing for the Amazon Movies
dataset because the code required too much memory.

HR@10 NDCG@10

TopPopular 0.5308 0.3037

UserKNN CF cosine 0.6694 0.4798
ItemKNN CF cosine 0.6647 0.4880

P3α 0.6588 0.4823
RP3β11 0.6754 0.4912

EASER 0.6600 0.4836
SLIM BPR 0.6694 0.4720
SLIM ElasticNet 0.6469 0.4744
MF BPR 0.5367 0.3689
MF FunkSVD 0.5474 0.3870
PureSVD 0.5912 0.4190
NMF 0.6540 0.4486
iALS 0.6600 0.4880

DMF NCE 0.4799 0.3371
DMF BCE 0.6659 0.4815

HR@10 NDCG@10

TopPopular 0.5794 0.3489

UserKNN CF cosine 0.7327 0.5132
ItemKNN CF asymmetric 0.6986 0.4914

P3α 0.6972 0.5028
RP3β12 0.7107 0.5078

EASER - -
SLIM BPR - -
SLIM ElasticNet 0.6981 0.5005
MF BPR 0.6422 0.4161
MF FunkSVD 0.5972 0.4091
PureSVD 0.6021 0.4156
NMF 0.6252 0.4217
iALS 0.7352 0.5230

DMF NCE 0.6832 0.4677
DMF BCE 0.7818 0.5417

shown in Table 5.5.10 While on MovieLens datasets machine learning algo-
rithms tend to provide better recommendation quality then neighborhood-
based models, for the Amazon Music dataset the opposite happens, since
the simple UserKNN and RP3β methods work better here than any non-
neural machine learning model. We can observe that for the Amazon Music
dataset DMF is not competitive against the baselines, while for the Amazon
Movies dataset DMF is actually much better than all other methods on both
measures. In particular the gains in terms of the Hit Rate are substantial
and much higher than the second best method iALS. The question of why
DMF seems to perform so well on Amazon Movies and not on the other
datasets is still open. We can observe however that Amazon Movies is a
very sparse dataset, which, after preprocessing, has an average of two in-
teractions per item. As discussed in Sections 5.1 and 5.2, both CDL and
CVAE methods worked similarly well on a sparse configuration with only
one training interaction per user.

The article argues that DMF combines implicit feedback and explicit
feedback. However, DMF mainly relies on the explicit ratings contained
in the dataset and fills all missing interactions with zeros, which are con-
sidered as implicit ratings. This constitutes a questionable interpretation of
implicit ratings. Under such interpretation, even PureSVD, which approxi-
mates the rating matrix by performing an SVD decomposition and therefore
treats all missing interactions as zeros, could be similarly defined a hybrid.

10The results for EASER are missing for the Amazon Movies dataset, as the author-provided Python imple-
mentation of the method needed too much memory.

65

Chapter 5. Detailed results for reproducible articles

A last significant observation that can be made regarding DMF is its
very high computation cost. For Amazon Music most baselines complete
their training in seconds or 2-3 minutes, while DMF requires up to 36 min-
utes. For MovieLens1M most baselines complete their training in seconds
or a few minutes, while DMF requires between 4 and 7 days. On both other
datasets the results are consistent, with DMF requiring up to 6 hours of
training for MovieLens100k and 20 hours on Amazon Movie. Remember
that training times for the baselines are computed on a CPU while those of
the deep learning models on a high-end GPU. The number of recommen-
dations that the algorithm can provide per second is also very small when
compared to all baselines.

5.5 Variational Autoencoders for Collaborative Filtering (Mult-
VAE)

Variational Autoencoders for Collaborative Filtering was proposed in [73]
at WWW ’18. Mult-VAE is a collaborative filtering algorithm based on im-
plicit feedback, which uses variational autoencoders. The paper introduces
a generative model with multinomial likelihood, a different regularization
parameter for the learning objective and uses Bayesian inference for pa-
rameter estimation. The authors furthermore show that there is an efficient
way to tune the parameter using annealing.

5.5.1 Datasets and Evaluation

The evaluation in the original paper is based on three datasets:

MovieLens20M: A common dataset for movie recommendations. The rat-
ings are binarized by keeping only ratings equal or greater than 4.
Users with less than 5 interactions are then removed.

Netflix Prize: This is the user-movie ratings data from the Netflix Prize.13

The ratings are binarized by keeping only ratings equal or greater than
4 and users with less than 5 interactions are removed.

Million Song Dataset: This is a dataset of user-song play counts released
as part of the Million Song Dataset [15]. The playcounts are binarized.
Users with less than 20 songs and songs that were listened by less than
200 users are removed.

13http://www.netflixprize.com/

66

http://www.netflixprize.com/

5.5. Variational Autoencoders for Collaborative Filtering (Mult-VAE)

After preprocessing, the datasets are still relatively large, having be-
tween 10 and almost 57 millions interactions. We only report the experi-
ments for the MovieLens and the Netflix Prize datasets, since the paper did
not contain sufficient information to guarantee we would use the Million
Song Dataset in the exact same way as the authors.

The original paper reports as baselines four machine learning models,
iALS, SLIM, NCF [57] (see Section 5.3) and the Collaborative Denoising
Autoencoder (CDAE) method proposed in [122] in 2016. The data is split
in training-validation-test by holding out a certain number of user profiles.
For example, for the MovieLens20M dataset (136k users overall), 10k users
are removed for validation and 10k users are removed for testing. For each
held out user profile, 80% of the interactions are used as user profile, and
the remaining 20% are used as ground truth to measure the performance
metrics. When evaluating the model, the held out user profiles are fed to
Mult-VAE which then builds a representation for those users, and only af-
terwards the recommendations are computed. The authors motivate this
procedure by stating it provides stronger generalizability.

The original article mentions all models are optimized for NDCG@100
on the validation set. Performance results for Recall@20 and Recall@50
are reported as well.

This evaluation methodology required a slight modification to the base-
lines we report. In order to use matrix factorization baselines on cold users
we built the cold users’ latent factors based upon both their user profile and
the latent factors of the warm items. In particular, we added a hyperparam-
eter to the matrix factorization models to select how those cold user’s latent
factors are estimated, either via an item based similarity or an item embed-
dings average, see [33]. In the first case an ItemKNN model is created by
defining the similarity matrix as the dot product of the items’ latent factor
matrix by its transpose. In the second case the latent factors of a user are
the product of the user profile and the items’ latent factors, resulting in the
average of the embeddings of the items the user interacted with. Usually,
generating an ItemKNN similarity matrix proved to be the most effective
solution.

5.5.2 Methodological considerations

The analysis of the article and the publicly provided materials did not yield
to the discovery of methodological issues for Mult-VAE. Nonetheless, in
the original paper NDCG@100, Recall@20 and Recall@50 are used, how-
ever no reason is provided on this unusual selection of different metrics at

67

Chapter 5. Detailed results for reproducible articles

different cutoffs and, for example, why Recall@100 or NDCG@20 were
not reported. To obtain a more comprehensive picture, we report additional
measurements at the corresponding but missing cutoff values: Recall@100,
NDCG@20 and NDCG@50. As a minor observation, a standard deviation
is mentioned in the results of the original paper, but the number of random
data splits is not described.

5.5.3 Results and Discussion

The source code, the data splits and information about the seed for the
random number generator are publicly available, based on those we could
reproduce the results reported in the paper. Table 5.6 shows our results for
the MovieLens20M dataset and Table 5.7 those for the Netflix Prize dataset.

Table 5.6: Results for Mult-VAE for the MovieLens20M dataset. UserKNN could not be
applied because of the evaluation protocol (hold-out of users).

@20 @50 @100
REC NDCG REC NDCG REC NDCG

TopPopular 0.1441 0.1201 0.2320 0.1569 0.3296 0.1901

UserKNN - - - - - -
ItemKNN CF asymmetric 0.2937 0.2444 0.4486 0.3087 0.5709 0.3527

P3α 0.2620 0.2168 0.4047 0.2742 0.5287 0.3182
RP3β 0.3006 0.2501 0.4540 0.3133 0.5797 0.3583

EASER 0.3530 0.3074 0.5147 0.3755 0.6353 0.4196
SLIM BPR 0.3206 0.2646 0.4783 0.3291 0.6030 0.3731
SLIM ElasticNet 0.3356 0.2920 0.4893 0.3576 0.6110 0.4017
MF BPR 0.2379 0.1888 0.3867 0.2481 0.5100 0.2908
MF FunkSVD 0.2765 0.2254 0.4243 0.2864 0.5576 0.3331
PureSVD 0.2935 0.2514 0.4371 0.3117 0.5544 0.3538
NMF 0.2269 0.1960 0.3533 0.2480 0.4664 0.2875
iALS 0.2968 0.2496 0.4406 0.3090 0.5631 0.3521

Mult-VAE 0.3541 0.2988 0.5222 0.3690 0.6517 0.4158

For the MovieLens dataset, we observed a positive result and could con-
firm the claims made by the original article of Mult-VAE. On all measure-
ments, both the original and the additional ones, Mult-VAE leads to better
performance results than all baseline methods available at the time of the
algorithm publication (therefore excluding EASER). SLIM is the second
best method in this evaluation, with performance results that are around
1% to 2% lower in terms of the NDCG.

For the Netflix Prize dataset, the claims of the original article could not
be confirmed to the full extent. In terms of NDCG, which is the optimiza-
tion criterion, SLIM outperforms Mult-VAE at all list lengths. Mult-VAE

68

5.5. Variational Autoencoders for Collaborative Filtering (Mult-VAE)

Table 5.7: Results for Mult-VAE for the Netflix Prize dataset. UserKNN could not be
applied because of the evaluation protocol (hold-out of users).

@20 @50 @100
REC NDCG REC NDCG REC NDCG

TopPopular 0.0786 0.0762 0.1643 0.1159 0.2717 0.1570

UserKNN - - - - - -
ItemKNN CF cosine 0.2091 0.1970 0.3387 0.2592 0.4598 0.3092

P3α 0.1960 0.1759 0.3325 0.2412 0.4633 0.2962
RP3β 0.2210 0.2053 0.3633 0.2739 0.4932 0.3281

EASER 0.2681 0.2591 0.4170 0.3334 0.5471 0.3890
SLIM BPR 0.2394 0.2219 0.3767 0.2886 0.5004 0.3403
SLIM ElasticNet 0.2555 0.2479 0.4002 0.3203 0.5299 0.3752
MF BPR 0.1572 0.1403 0.2748 0.1952 0.3952 0.2431
MF FunkSVD 0.2300 0.2130 0.3609 0.2758 0.4803 0.3250
PureSVD 0.2271 0.2184 0.3593 0.2840 0.4784 0.3342
NMF 0.1844 0.1802 0.3035 0.2385 0.4172 0.2856
iALS 0.1956 0.1839 0.3138 0.2410 0.4216 0.2862

Mult-VAE 0.2615 0.2423 0.4127 0.3167 0.5456 0.3730

is however better in terms of Recall.

Overall, with Mult-VAE a method was found which was easy to repro-
duce, thanks to all needed material being made by the authors publicly
available. Furthermore, as our results indicated, the method consistently
outperformed existing methods at least on one well-known and compara-
bly large dataset. We could also confirm that EASER leads to improvements
over Mult-VAE in most cases, supporting the claim that shallow models are
a competitive solution.

Considering the computation cost, we can observe that the training time
for Mult-VAE is comparable to that of several non-neural baselines on both
datasets. In particular, on the Netflix Prize dataset Mult-VAE is much faster
than the competitive SLIM. The number of recommendations per second is
also comparable. It should be noted that all deep learning algorithms we
analyze are trained and evaluated on a high-end GPU, while all baselines
on a CPU. This means that Mult-VAE achieves this timings on a higher
performance device with respect to the other baselines. Still, based on our
experiments, the low training time of Mult-VAE when compared to the best
performing baselines constitutes a very rare occurrence

69

Chapter 5. Detailed results for reproducible articles

5.6 NeuRec: On Nonlinear Transformation for Personalized
Ranking

NeuRec [133] was presented at IJCAI ’18. Its underlying idea is to learn
user-item relationships from implicit feedback and then combine latent fac-
tor models with neural networks in order to capture both linear and non-
linear dependencies in the data. A multi-layered network is used to map
user-item interactions into a low-dimensional space. Recommendations are
then generated by computing the inner product of item and user latent fac-
tors, as in a traditional matrix factorization algorithm. Two variants are
proposed: INeuRec (item-based) and UNeuRec (user-based).

5.6.1 Datasets and Evaluation

The evaluation in the original paper is based on four datasets:

MovieLens1M: Is a well know movie dataset collected by GroupLens,
each user has at least 20 ratings.

MovieLens Hetrec: Is an extension of MovieLens1M released in 2011
where ratings are linked with the corresponding IMDB information.

FilmTrust: Is a crawled dataset from a movie sharing and rating website14.

Frappe: Is an Android application recommendation dataset. In case of
multiple interactions for the same user-item, only the earliest is con-
sidered. The original dataset contains around 100k interactions which
are reduced to 20k after preprocessing.

For all datasets, the interactions or ratings are binarized and set to a
value of 1. The original data splits were not provided by the authors, but
could be reproduced based on the description provided in the paper.

The evaluation is performed using five random training-test splits (80%
- 20%) and reporting the average results and the standard deviation. As
performance metrics, the authors use Precision and Recall at list lengths 5
and 10, as well as MAP, MRR, and the NDCG, at list length 10.

Among the baselines, the authors consider SLIM, BPR matrix factoriza-
tion, NeuMF and the GMF model, which is part of NCF [57] (see Section
5.3). The original paper does not provide information regarding the hyper-
parameter tuning of the baselines, except for GMF and NeuMF, which are
said to use the default configuration that was used in that article.

14https://www.librec.net/datasets/filmtrust.zip

70

https://www.librec.net/datasets/filmtrust.zip

5.6. NeuRec: On Nonlinear Transformation for Personalized Ranking

5.6.2 Methodological considerations

The source code is publicly available but, despite this and the availability of
the detailed hyperparameter configurations, we could not obtain the results
reported in the original paper for the NeuRec method. We contacted the au-
thors on this issue but we were not able to define an experimental pipeline,
from data preprocessing to hyperparameter optimization, that allowed us to
obtain results comparable to what reported in the original paper. Therefore,
the reason for this discrepancy could not be clarified. However, for the non-
personalized TopPopular baseline we were able to obtain results consistent
with the original paper for all but one dataset, Frappe. This suggests the
data splitting is consistent to what done in the original paper and the is-
sue lies with the NeuRec model, either in the hyperparameter setting or the
epoch selection criteria.

Hyperparameters for NeuRec were determined through grid search for
each dataset and are reported in the paper in detail. This constitutes a good
experimental practice as it means the model has been optimized for each
dataset. In stark contrast to this good practice adopted to optimize NeuRec,
as previously mentioned, the paper states that for GMF and NeuMF the
hyperparameters reported in the original article have been used. This con-
stitutes a bad experimental practice since both the evaluation protocol and
most of the datasets used in this experiments are different from those that
had been used to tune GMF and NeuMF. The results reported for these
methods are therefore prone to be suboptimal and cannot be claimed to
represent the best performance those algorithms can reach.

As opposed to the other parameters, the number of training epochs and
the stopping criteria are not reported in the paper. According to an exchange
of emails with the authors, the training was done for a large number of
epochs and the best performance values on the test set were reported, which
appears to be a common practice even though it causes information leakage.
In our experiments, as previously described, we selected the number of
epochs via early stopping on a validation split.

5.6.3 Results and Discussion

The source code for NeuRec is publicly available and executable but, as
we previously mentioned, we could not reproduce the results obtained in
the original paper. The outcome of our evaluation is that NeuRec is out-
performed on any dataset and almost on any measure by at least one, but
usually several, of the baselines in our comparison.

Due to the number of datasets, cutoffs and metrics, the full results are

71

Chapter 5. Detailed results for reproducible articles

extensive. Since the conclusions are consistent for all datasets, in Table 5.8
we only provide the results for two datasets, MovieLens1M and FilmTrust
and for list lengths 5 and 10. All other results can again be found in Ap-
pendix C.

Looking at the results, we observe that on both datasets even the sim-
plest baselines are better than NeuRec. For MovieLens1M the performance
of the best baselines is better by a large margin while for FilmTrust the dif-
ference is less marked. For the HetRec dataset, which is not shown in
detail here, the result is the same. Finally, for the small and rarely used
Frappe dataset, NeuRec leads to the best results for Precision@5, but is
outperformed, e.g., by RP3β on all other measures. The Frappe dataset is
very small and tends to show very unstable results when split randomly. In
particular, compared to the results reported in the original paper, our Top-
Popular algorithm exhibits results that are four times higher; also NeuRec’s
values are two times higher. Due to this we do not consider Frappe as a re-
liable dataset on which to base our conclusions in this experimental setting.

Overall, for both datasets, NeuRec often achieves similar recommen-
dation quality as a TopPopular recommender. In order to assess whether
NeuRec was indeed able to personalize its recommendations, for this ex-
periment we also include beyond-accuracy metrics. From Table 5.9 we can
see that for both MovieLens and FilmTrust datasets UNeuRec and the non-
personalized TopPopular algorithm exhibit very similar diversity across all
measurements. In particular for Item Coverage, both are able to recommend
only less than 2%-3% of the available items. By looking at the low Mean
Inter-List Diversity (MIL) we can clearly see that the generated recom-
mendation lists for any two users will tend to have a significant number of
items in common. We can say therefore that UNeuRec behaves like a non-
personalized recommender algorithm, in this experimental scenario. The
item-based variant, INeuRec exhibits both better recommendation quality
and diversity than the user-based one. For the MovieLens dataset, INeuRec
has a comparable diversity to the other better performing baselines. For the
FilmTrust dataset however, INeuRec falls significantly behind with an Item
Coverage of only 7%, compared to 28% of the better performing RP3β.
Overall, NeuRec seems to be able to provide only limited personalization
when compared with our simple baselines.

In terms of computational cost, NeuRec has a higher training time than
all baselines. On FilmTrust, most baselines are able to complete their train-
ing in less than a minute, while NeuRec requires between 3 and 7 minutes.
The difference is more notable for MovieLens1M where, when all baselines
can be trained in less than 10 minutes, NeuRec requires between 16 and 19

72

5.6. NeuRec: On Nonlinear Transformation for Personalized Ranking

Table 5.8: Experimental results for the selected MovieLens1M and FilmTrust datasets.

MovieLens1M
@5 @10

PREC REC MAP NDCG MRR PREC REC MAP NDCG MRR

TopPopular 0.2105 0.0402 0.1531 0.0689 0.3621 0.1832 0.0685 0.1168 0.0939 0.3793

UserKNN CF asymmetric 0.4212 0.1065 0.3441 0.1674 0.6399 0.3617 0.1726 0.2774 0.2230 0.6509
ItemKNN CF asymmetric 0.3995 0.0984 0.3244 0.1563 0.6179 0.3452 0.1590 0.2618 0.2084 0.6293

P3α 0.4041 0.1007 0.3286 0.1596 0.6250 0.3456 0.1627 0.2627 0.2121 0.6362
RP3β 0.4080 0.1007 0.3325 0.1602 0.6260 0.3508 0.1639 0.2676 0.2137 0.6374

EASER 0.4488 0.1134 0.3717 0.1779 0.6620 0.3857 0.1820 0.3035 0.2364 0.6717
SLIM BPR 0.3964 0.1034 0.3161 0.1606 0.6222 0.3358 0.1663 0.2494 0.2128 0.6335
SLIM ElasticNet 0.4437 0.1106 0.3692 0.1749 0.6578 0.3813 0.1770 0.3003 0.2321 0.6679
MF BPR 0.3576 0.0830 0.2812 0.1340 0.5628 0.3073 0.1384 0.2217 0.1807 0.5768
MF FunkSVD 0.3936 0.0927 0.3154 0.1479 0.6000 0.3458 0.1555 0.2572 0.2014 0.6125
PureSVD 0.4123 0.0987 0.3371 0.1586 0.6266 0.3575 0.1624 0.2722 0.2132 0.6380
NMF 0.3811 0.0891 0.3017 0.1430 0.5817 0.3338 0.1499 0.2442 0.1948 0.5947
iALS 0.4164 0.1036 0.3373 0.1635 0.6327 0.3628 0.1702 0.2743 0.2200 0.6443

INeuRec 0.3280 0.0663 0.2554 0.1110 0.5003 0.2839 0.1094 0.2027 0.1500 0.5129
UNeuRec 0.2098 0.0395 0.1560 0.0684 0.3663 0.1856 0.0688 0.1199 0.0944 0.3852

FilmTrust
@5 @10

PREC REC MAP NDCG MRR PREC REC MAP NDCG MRR

TopPopular 0.4200 0.4126 0.4393 0.4203 0.6145 0.3471 0.6351 0.4597 0.5450 0.6273

UserKNN CF jaccard 0.4354 0.4400 0.4713 0.4510 0.6492 0.3560 0.6455 0.4907 0.5712 0.6579
ItemKNN CF asymmetric 0.4286 0.4238 0.4564 0.4360 0.6348 0.3490 0.6303 0.4734 0.5548 0.6447

P3α 0.4240 0.4199 0.4526 0.4321 0.6351 0.3500 0.6343 0.4719 0.5550 0.6467
RP3β 0.4373 0.4365 0.4709 0.4492 0.6537 0.3575 0.6436 0.4880 0.5701 0.6631

EASER EASER 0.4458 0.4498 0.4825 0.4604 0.6620 0.3597 0.6590 0.4990 0.5805 0.6717
SLIM BPR 0.4327 0.4351 0.4643 0.4455 0.6465 0.3522 0.6399 0.4825 0.5647 0.6549
SLIM ElasticNet 0.4418 0.4417 0.4803 0.4572 0.6600 0.3583 0.6566 0.4983 0.5796 0.6708
MF BPR 0.4115 0.4047 0.4309 0.4114 0.5979 0.3433 0.6156 0.4519 0.5330 0.6088
MF FunkSVD 0.4112 0.4004 0.4148 0.3972 0.5781 0.3452 0.6265 0.4378 0.5245 0.5917
PureSVD 0.4292 0.4255 0.4563 0.4366 0.6366 0.3478 0.6255 0.4724 0.5526 0.6453
NMF 0.2721 0.2407 0.2769 0.2584 0.4131 0.1983 0.3332 0.2443 0.3123 0.4234
iALS 0.4038 0.3855 0.4240 0.4028 0.6021 0.3342 0.5920 0.4400 0.5201 0.6137

INeuRec 0.4221 0.4089 0.4398 0.4196 0.6151 0.3466 0.6187 0.4577 0.5398 0.6261
UNeuRec 0.4174 0.4062 0.4384 0.4181 0.6157 0.3472 0.6291 0.4596 0.5436 0.6286

hours. Despite this significantly higher computational cost, NeuRec falls
significantly below all simple baselines on MovieLens. We can also see
that all algorithms, both baselines and deep learning ones, are able to gen-
erate the same number of recommendations per second. It should be noted
that NeuRec generates a latent factor representation of items and users and
the predictions are computed using the dot product of those embeddings.
Therefore, NeuRec is a matrix factorization algorithm and at the evaluation
phase it shares the same code used by all matrix factorization baselines,
explaining the similar number of recommendations per second.

73

Chapter 5. Detailed results for reproducible articles

Table 5.9: Experimental results for beyond-accuracy metrics for NeuRec on the selected
MovieLens1M and FilmTrust datasets at cutoff 10.

MovieLens1M
Div.
MIL

Div.
HHI

Cov.
Item

Div.
Gini

Div.
Shannon

TopPopular 0.4946 0.9495 0.0180 0.0050 4.5858

UserKNN CF asymmetric 0.9288 0.9929 0.2602 0.0511 7.9644
ItemKNN CF asymmetric 0.9283 0.9928 0.2664 0.0500 7.9312

P3α 0.9080 0.9908 0.1741 0.0371 7.5290
RP3β 0.9121 0.9912 0.1927 0.0426 7.6928

EASER 0.9398 0.9940 0.2486 0.0582 8.1688
SLIM BPR 0.8748 0.9875 0.1914 0.0313 7.2022
SLIM ElasticNet 0.9296 0.9929 0.2354 0.0508 7.9582
MF BPR 0.9148 0.9915 0.2589 0.0483 7.8170
MF FunkSVD 0.9596 0.9959 0.2259 0.0731 8.5521
PureSVD 0.9422 0.9942 0.1968 0.0523 8.0678
NMF 0.9589 0.9959 0.2607 0.0792 8.6403
iALS 0.9535 0.9953 0.2463 0.0682 8.4346

INeuRec 0.9377 0.9938 0.2414 0.0515 8.0217
UNeuRec 0.5048 0.9505 0.0185 0.0052 4.6377

FilmTrust
Div.
MIL

Div.
HHI

Cov.
Item

Div.
Gini

Div.
Shannon

TopPopular 0.6318 0.9631 0.0275 0.0129 5.0890

UserKNN CF jaccard 0.7332 0.9733 0.1318 0.0199 5.7041
ItemKNN CF asymmetric 0.6646 0.9664 0.0526 0.0147 5.2798

P3α 0.7020 0.9701 0.1241 0.0178 5.5226
RP3β 0.7148 0.9714 0.2849 0.0292 5.8254

EASER 0.7303 0.9730 0.0966 0.0184 5.6183
SLIM BPR 0.6962 0.9696 0.1053 0.0169 5.4571
SLIM ElasticNet 0.7418 0.9741 0.0980 0.0188 5.6488
MF BPR 0.6944 0.9694 0.1719 0.0192 5.5164
MF FunkSVD 0.6467 0.9646 0.0328 0.0139 5.1954
PureSVD 0.7665 0.9766 0.0502 0.0196 5.7145
NMF 0.9242 0.9923 0.4389 0.1234 8.1504
iALS 0.7856 0.9785 0.0478 0.0206 5.7426

INeuRec 0.6654 0.9665 0.0715 0.0149 5.3145
UNeuRec 0.6348 0.9634 0.0285 0.0131 5.1080

5.7 CoupledCF: Learning Explicit and Implicit User-item Cou-
plings

CoupledCF was proposed in [131] at IJCAI ’18. CoupledCF is a hybrid
content and collaborative filtering recommender which leverages side in-
formation, e.g., user demographics, item features. Its core observation is
that in real-world datasets users and items are not independent and identi-
cally distributed. The proposed method aims to learn implicit and explicit
couplings between users and items which should allow to leverage side in-
formation more effectively. This is achieved using a complex architecture

74

5.7. CoupledCF: Learning Explicit and Implicit User-item Couplings

composed by a CNN to learn the couplings based on the side information
and a deep CF model that considers explicit and implicit interactions be-
tween users and items.

The authors propose two variants of their model:

Deep Collaborative Filtering (DeepCF): This variant concatenates user
and item latent factors into a multi-layered fully-connected neural net-
work to learn the implicit user-item interactions.

Coupling learning for collaborative filtering (CoupledCF): This variant
uses a CNN to learn user-item couplings. It consists of two compo-
nents: a local CoupledCF (lCoupledCF) which models the explicit
user-item couplings using a CNN aimed at capturing local user-item
interaction, and a global CoupledCF (gCoupledCF) which combines
the local CoupledCF output with a global user-item embedding prod-
uct. The local and global model are combined in the final CoupledCF
model.

5.7.1 Datasets and Evaluation

The evaluation in the original paper is based on two datasets:

MovieLens1M: Is a well known movie rating dataset which contains user
side information (i.e., gender, occupation and age) and item side in-
formation (i.e., genre). Each user has at least 20 ratings. All ratings
are binarized and transformed to 1.

Tafeng: Is a dataset that contains grocery store transactions and side infor-
mation about items (i.e., asset code, price) and users (i.e., age, region).
This dataset has about 750k transactions (i.e., less than the Movie-
Lens1M dataset), but is much more sparse as it contains many more
users and items.

The original source code was not publicly available at the time this anal-
ysis was made. However, the authors provided us with the source code and
the training-test splits, including the sampled test negative items they had
used during the evaluation. The source code has been made publicly avail-
able by the original authors at the time of writing.15

The training-test split is performed via leave-one-out, creating the test
split by sampling for each user one random interaction. The recommen-
dation accuracy is computed by ranking the positive item against 99 items

15https://github.com/zhqgui/CoupledCF

75

https://github.com/zhqgui/CoupledCF

Chapter 5. Detailed results for reproducible articles

(negative) the user did not interact with. The 100 items are then ranked
by the algorithm and the Hit Rate and the NDCG are used to evaluate the
performance. Cutoff list lengths between 1 and 10 were considered.

The article mentions the hyperparameters of the proposed model were
systematically fine-tuned but no information regarding the hyperparameter
tuning for the baselines is provided. Among the reported baselines are NCF
[57] (see Section 5.3), and Google’s Wide&Deep method [22].

5.7.2 Methodological considerations

Since CoupledCF relies on side information, we have included item-based
and user-based content techniques among the baselines as well as the content-
collaborative hybrid KNN baselines. Although we have been provided with
the source code and the data split by the original authors, we could not
fully reproduce the results reported in the original paper for CoupledCF,
we could fully reproduce the results only for DeepCF.

By analyzing the provided data split we could observe there seems to be
an issue regarding how the data was split. For both Movielens and Tafeng
the negative item data contains duplicates leading to many users (72% for
Movielens, 28% for Tafeng) having less of the desired 99 negative items,
e.g., some have only 93. For the Tafeng dataset, cumulatively, almost 3,000
negative items (0.1% of the total number of negative items) also appeared as
training items or test items for that same user. If the number of unique neg-
ative items is not constant, different users will be evaluated under slightly
different conditions, in particular, the recommendation problem becomes
easier as the number of negatives decreases due to the reduction in the pool
of alternatives the recommender has to choose from.

We also found that 8% of the users in the Tafeng dataset have inconsis-
tent test data, being either associated to a test item but no negative items
or vice versa. If a user has no test data this means that the user will be
excluded from the evaluation as any model will always have zero success,
similarly, if a user has no negative items, any recommender will always be
able to suggest the only item available, which is the test item, and achieve
a perfect recommendation score.

This problem is present in the original data split and therefore all models
will be evaluated under the same conditions. However, if the users having
inconsistent test data have a different behavior with respect to the others,
then the relative ordering of the algorithms in terms of their recommen-
dation quality could change. This inconsistency of the training-test splits
with respect to what described in the article suggests an erroneous splitting

76

5.7. CoupledCF: Learning Explicit and Implicit User-item Couplings

procedure.
Looking at the methodological aspects, we could again observe that the

baselines were not properly optimized and default hyperparameters were
used. Furthermore, we could observe that the original source code reports
the maximum value each metric reaches, when evaluated on the test data,
regardless of the epoch. In our experiments, again, we report the values of
the metrics after the optimal number of epochs is chosen with early stop-
ping on the validation set.

Now, we consider the claims made in the article more broadly. The orig-
inal article states that using a CNN on the outer product of the embeddings,
the way CoupledCF does, allows to learn couplings between them. This
statement is justified by claiming that an outer product of embeddings is
analogous to an image and therefore the convolution operation can be ap-
plied. This, we argue is not sufficient, because it merely compares the shape
of these two rather than the properties the convolution operation leverages.
Furthermore, the article states that CoupledCF is able to effectively learn
the user-item couplings because it outperformed other methods which did
not use them. Again, this we argue is not sufficient since when comparing
models with very different architectures many factors, other than what is
claimed, could have had an impact on the results. We found other instances
of the convolution operation applied on the outer product of embeddings
without proper justification. We further discuss these claims and the weak-
nesses the evaluation protocol had in Chapter 6.

5.7.3 Results and Discussion

Although we have been provided with the source code and the data split by
the original authors, we could not fully reproduce the results reported in the
original paper, as mentioned above. We consider in our experiments both
versions of the model: DeepCF and CoupledCF.

The results are shown in Table 5.10 (MovieLens) and Table 5.11 (Tafeng).
For the MovieLens datasets CoupledCF is competitive against the sim-

ple neighborhood-based methods and the hybrids, except for very short
list lengths, confirming previous observations that machine learning mod-
els tend to perform well on MovieLens. However, other non-neural meth-
ods like iALS and EASER are consistently better than CoupledCF. Further-
more the difference between CoupledCF and DeepCF is rather small, this
is in contrast to the original article which reported CoupledCF was able to
achieve substantial improvements over DeepCF.

For the Tafeng dataset, all collaborative algorithms, both simple neighborhood-

77

Chapter 5. Detailed results for reproducible articles

Table 5.10: Experimental results for CoupledCF for the MovieLens1M dataset.

@1 @5 @10
HR NDCG HR NDCG HR NDCG

TopPopular 0.1593 0.1593 0.4217 0.2936 0.5813 0.3451

UserKNN CF asymmetric 0.3546 0.3546 0.6914 0.5343 0.8114 0.5735
ItemKNN CF cosine 0.3305 0.3305 0.6682 0.5080 0.7940 0.5488

P3α 0.3316 0.3316 0.6543 0.5031 0.7687 0.5402
RP3β 0.3464 0.3464 0.6743 0.5198 0.7959 0.5591

EASER 0.4003 0.4003 0.7258 0.5738 0.8343 0.6093
SLIM BPR 0.3515 0.3515 0.6843 0.5281 0.7983 0.5651
SLIM ElasticNet 0.3906 0.3906 0.7116 0.5625 0.8315 0.6014
MF BPR 0.3151 0.3151 0.6550 0.4945 0.7838 0.5365
MF FunkSVD 0.3646 0.3646 0.7017 0.5434 0.8151 0.5802
PureSVD 0.3735 0.3735 0.7088 0.5522 0.8132 0.5861
NMF 0.3508 0.3508 0.6879 0.5291 0.7995 0.5656
iALS 0.3816 0.3816 0.7121 0.5581 0.8200 0.5933

ItemKNN CBF asymmetric 0.0884 0.0884 0.2586 0.1752 0.3780 0.2137
UserKNN CBF tversky 0.1714 0.1714 0.4427 0.3108 0.6065 0.3636

ItemKNN CFCBF cosine 0.3328 0.3328 0.6694 0.5107 0.7985 0.5526
UserKNN CFCBF dice 0.3555 0.3555 0.6869 0.5328 0.8008 0.5698

DeepCF 0.3550 0.3550 0.7017 0.5388 0.8272 0.5794
CoupledCF 0.3522 0.3522 0.7018 0.5374 0.8247 0.5775

Table 5.11: Experimental results for CoupledCF for the Tafeng dataset.

@1 @5 @10
HR NDCG HR NDCG HR NDCG

TopPopular 0.2654 0.2654 0.5194 0.3965 0.6549 0.4402

UserKNN CF cosine 0.3215 0.3215 0.5412 0.4369 0.6415 0.4693
ItemKNN CF asymmetric 0.3322 0.3322 0.5445 0.4442 0.6356 0.4736

P3α 0.3245 0.3245 0.5503 0.4437 0.6404 0.4730
RP3β 0.3202 0.3202 0.5525 0.4424 0.6470 0.4732

EASER 0.3272 0.3272 0.5452 0.4417 0.6435 0.4736
SLIM BPR 0.3171 0.3171 0.5454 0.4368 0.6457 0.4693
SLIM ElasticNet 0.3233 0.3233 0.5438 0.4389 0.6476 0.4726
MF BPR 0.2556 0.2556 0.5017 0.3827 0.6315 0.4247
MF FunkSVD 0.2676 0.2676 0.5196 0.3980 0.6541 0.4414
PureSVD 0.2462 0.2462 0.4889 0.3714 0.6260 0.4156
NMF 0.2556 0.2556 0.4761 0.3706 0.5765 0.4031
iALS 0.2920 0.2920 0.5219 0.4126 0.6293 0.4473

ItemKNN CBF asymmetric 0.0589 0.0589 0.0958 0.0769 0.1467 0.0931
UserKNN CBF asymmetric 0.2464 0.2464 0.4654 0.3600 0.5798 0.3970

ItemKNN CFCBF asymmetric 0.3331 0.3331 0.5434 0.4442 0.6314 0.4727
UserKNN CFCBF asymmetric 0.3424 0.3424 0.5882 0.4713 0.6937 0.5055

DeepCF 0.2647 0.2647 0.5244 0.3995 0.6583 0.4428
CoupledCF 0.2641 0.2641 0.5175 0.3948 0.6499 0.4377

78

5.8. DELF: A Dual-Embedding based Deep Latent Factor Model for
Recommendation

based methods and non-neural machine learning models outperform Cou-
pledCF by a significant margin. Only the pure content-based baselines do
not reach the performance level of CoupledCF. On Tafeng we could observe
the recommendation quality of CoupledCF is at the level of the TopPopular
baseline. The simpler DeepCF method also leads to better accuracy results
than the CoupledCF variant.

For the Tafeng datasets, CoupledCF achieves similar recommendation
quality as a TopPopular recommender. In order to assess whether Cou-
pledCF was indeed able to personalize its recommendations, for this ex-
periment we also include beyond-accuracy metrics. As can be seen from
Table 5.12, CoupledCF exhibits better diversity than the non-personalized
TopPopular baseline. In particular, CoupledCF has a much better Item Cov-
erage and a higher Gini Diversity, meaning that the frequency at which each
item is recommended is more balanced than that of the TopPopular model,
indicating a lower popularity bias. Despite achieving similar recommen-
dation quality as the TopPopular baseline, in this experiment, CoupledCF
still exhibits better capability to differentiate the recommendation lists, al-
though without being able to provide a higher recommendation accuracy.
This is, to some extent, a positive finding if we consider that in another
case where the neural algorithm had similar recommendation quality as the
TopPopular baseline it also had the same low diversity, i.e., it was not able
to personalize (see Section 5.6).

In terms of computational cost, on MovieLens most neighborhood-based
baselines have a training time of a few seconds and non-neural machine
learning models of a few minutes, while CoupledCF requires almost 4
hours. For Tafeng the difference is less marked with nearest-neighbour
baselines requiring around 10-20 seconds, most non-neural machine learn-
ing models requiring 30 to 40 minutes and CoupledCF slightly more than 1
hour.

5.8 DELF: A Dual-Embedding based Deep Latent Factor Model
for Recommendation

The Dual-Embedding based Deep Latent Factor Model was presented in
[23] at IJCAI ’18. DELF was designed for top-k recommendation tasks
with implicit feedback data with the goal to generalize both N-Singular
Value Decomposition (NSVD) [89] and Neural Collaborative Filtering (NCF)
[57]. In NSVD a user embedding is determined using the embeddings of
all the items they interacted with. An issue with NSVD is that if two users
have interacted with the same set of items but provided completely differ-

79

Chapter 5. Detailed results for reproducible articles

Table 5.12: Experimental results for CoupledCF on beyond-accuracy metrics for the se-
lected Tafeng dataset at cutoff 5.

Tafeng
Div.
MIL

Div.
HHI

Cov.
Item

Div.
Gini

Div.
Shannon

TopPopular 0.9965 0.9992 0.1360 0.0535 10.6959

UserKNN CF cosine 0.9978 0.9995 0.5041 0.1268 11.8704
ItemKNN CF cosine 0.9981 0.9996 0.6799 0.1898 12.3269

P3α 0.9978 0.9995 0.5740 0.1369 11.9159
RP3β 0.9990 0.9998 0.9148 0.3974 13.4528

EASER 0.9982 0.9996 0.5924 0.1516 12.1238
SLIM BPR 0.9977 0.9995 0.5831 0.1374 11.8920
SLIM ElasticNet 0.9977 0.9995 0.4654 0.1116 11.7116
MF BPR 0.9970 0.9993 0.2171 0.0661 11.0286
MF FunkSVD 0.9965 0.9992 0.1392 0.0537 10.7046
PureSVD 0.9966 0.9993 0.1433 0.0539 10.7071
NMF 0.9982 0.9996 0.3697 0.1145 11.8346
iALS 0.9985 0.9997 0.3529 0.1401 12.1119

ItemKNN CBF asymmetric 0.9996 0.9999 0.9018 0.4758 13.8621
UserKNN CBF asymmetric 0.9977 0.9995 0.5346 0.1265 11.8308

ItemKNN CFCBF asymmetric 0.9982 0.9996 0.6811 0.2015 12.4229
UserKNN CFCBF asymmetric 0.9977 0.9995 0.4444 0.1161 11.7731

DeepCF 0.9971 0.9994 0.2314 0.0724 11.1734
CoupledCF 0.9969 0.9993 0.1859 0.0627 10.9586

ent ratings, the difference cannot be modeled and the users will be indis-
tinguishable. NCF is a widely used framework for collaborative filtering
(see Section 5.3) in which users and items are represented via embeddings
learned with a multi-layer perceptron (MLP)

DELF learns dual embeddings to capture interactions in the data. In
particular, instead of using the common user embedding, the authors pro-
pose to learn an additional item-based embedding to represent the users and
a user-based embedding to represent the items. The embeddings are then
combined to model non-linear interactions between users and items within
a deep learning architecture. Through this approach the authors generalize
ideas of NSVD and Neural Collaborative Filtering (NCF). Two variants of
the approach were investigated applying different fusion functions to merge
the embeddings representation:

DELF-MLP: Applies a Multi Layer Perceptron on the concatenation of
all embeddings representations.

DELF-EF: Applies an empirical approach that assigns different weights
to the different embeddings according to the number of interactions of

80

5.8. DELF: A Dual-Embedding based Deep Latent Factor Model for
Recommendation

the user and the item.

5.8.1 Datasets and Evaluation

The evaluation in the original paper is based on two datasets:

Amazon Music: Amazon dataset about Digital Music16, all users with less
than 20 interactions are removed. Through this preprocessing, 90% of
the interactions were removed, resulting in only 76k interactions for
41k items. Each item is associated, on average, to 1.8 interactions.
The users are 1.8k, each with an average of 40 interactions.

MovieLens1M: The well know movie dataset, each user has at least 20
ratings.

In both cases all explicit ratings were binarized and transformed to 1.
DELF was evaluated under a similar procedure as NFC (see Section

5.3). The test data was sampled via leave-last-out, by selecting for each
user the interaction with the latest timestamp. Given this training-test split
methodology, the training data for Amazon Music contains, on average,
1.7 interactions per item. The test item is then ranked together with 99
randomly sampled negative items, and the Hit Rate and the NDCG at a cut-
off length of 10 were used as performance measures. The original article
includes several baselines among which BPR matrix factorization, iALS,
DMF (see Section 5.4), and two variants of the NCF model [57] (see Sec-
tion 5.3).

The article states that hyperparameters for the proposed model were sys-
tematically optimized on a validation set built with the second most recent
interaction.

5.8.2 Methodological considerations

By analyzing the source code we found, like in other works discussed here,
the number of epochs was selected by optimizing the result on the test data,
which will cause information leakage. Furthermore, there is no mention in
the original article concerning the hyperparameter tuning of the baselines.

A particular issue we observed is in the Amazon Music dataset. As pre-
viously mentioned the preprocessing reduces substantially the size of the
dataset to fewer than 2k users, and to only fewer than 2 interactions per
item. Due to this, when the training-test split is performed according to the
timestamp, 52% of the items in the test data are cold (i.e., items that never

16http://jmcauley.ucsd.edu/data/amazon/

81

http://jmcauley.ucsd.edu/data/amazon/

Chapter 5. Detailed results for reproducible articles

Max pop Avg pop Gini Index Kendall Tau Shannon

Amazon Music

Full data 78.00 1.83 0.42 1.00 14.51
Training data 75.00 1.79 0.43 0.94 14.48
Test data 6.00 0.04 0.96 0.15 10.72

MovieLens1M

Full data 3428.00 257.10 0.65 1.00 10.81
Training data 3407.00 255.55 0.65 1.00 10.81
Test data 50.00 1.56 0.75 0.56 10.26

Table 5.13: The statistics compare the popularity bias of the two datasets used to evaluate
DELF, Amazon Music and MovieLens1M. Amazon Music has a test distribution very
different from the train distribution.

appear in the training data). This is particularly surprising considering that
DELF is a pure collaborative algorithm that will, therefore, not be able to
build a representation for any of those cold items. This means that the real
modeling capacity of both DELF and of all other collaborative baselines
will be evaluated, in practice, only for the 900 users whose test data con-
tains a warm item, i.e., an item that appeared at least once in the training
data.

Further statistics on the popularity bias of the two datasets used for the
evaluation are reported in Table 5.13. We can see that the Amazon Music
dataset has a test data with a very different distribution than the training
data. In particular, the Gini Index of the test data (0.96) shows a substan-
tially more pronounced popularity bias than in the training data (0.43). The
table also reports the Kendall Tau metric, which counts the number of pair-
wise agreements between two ranking lists, the lists are the item indices
ranked according to their popularity in the given data split (i.e., train, test).
Its result is the percentage of item pairs whose ordering is consistent be-
tween the two splits, i.e., one item is more popular than the other in both
training and test. We can see that the Kendall Tau of the training data when
compared to the full dataset is almost 1 and that of the test data is 0.15,
which means the popularity distribution of the items has been strongly al-
tered. If we consider the MovieLens1M dataset, we can still see a difference
in the statistics of the data between training and test, but to a much more
limited extent.

This suggests that the combination of preprocessing and splitting pro-
tocol adopted for Amazon Music is resulting in a drastically altered data
which likely does not represent the intended scenario.

82

5.8. DELF: A Dual-Embedding based Deep Latent Factor Model for
Recommendation

5.8.3 Results and Discussion

We were able to reproduce the results reported in the original paper. In
order to tune the baselines and perform early stopping we used a validation
set created in the same way as reported by the authors. NDCG@10 was
used as an optimization criterion.

According to our results, DELF for both the MovieLens1M dataset (see
Table 5.15) and the Amazon Music dataset (see Table 5.14) was never
the best-performing model in any measurement. On MovieLens, DELF
was consistently outperformed by most non-neural machine learning al-
gorithms, while not consistently by neighborhood-based algorithms. This
again confirms that on MovieLens machine learning algorithms tend to
perform better than neighborhood-based ones. On Amazon Music, on the
other hand, DELF was outperformed by both neighborhood-based and non-
neural machine learning algorithms.

Table 5.14: Experimental results for DELF for the Amazon Music dataset. EASER results
are missing because the code required too much memory on these datasets.

@5 @10 @20
HR NDCG HR NDCG HR NDCG

TopPopular 0.2474 0.1730 0.3041 0.1913 0.3738 0.2090

UserKNN CF cosine 0.3150 0.2495 0.3471 0.2600 0.3738 0.2668
ItemKNN CF asymmetric 0.3090 0.2506 0.3401 0.2609 0.3717 0.2689

P3α 0.3074 0.2465 0.3373 0.2564 0.3689 0.2644
RP3β 0.3046 0.2434 0.3379 0.2543 0.3651 0.2611

EASER - - - - - -
SLIM BPR 0.3008 0.2380 0.3390 0.2504 0.3673 0.2576
SLIM ElasticNet 0.3101 0.2526 0.3411 0.2625 0.3711 0.2701
MF BPR 0.2360 0.1888 0.2687 0.1995 0.3095 0.2099
MF FunkSVD 0.2545 0.2035 0.2899 0.2150 0.3292 0.2248
PureSVD 0.2627 0.2141 0.3084 0.2290 0.3542 0.2406
NMF 0.2910 0.2294 0.3482 0.2480 0.4038 0.2621
iALS 0.3319 0.2604 0.3706 0.2729 0.4109 0.2831

DELF MLP 0.2905 0.2239 0.3275 0.2361 0.3787 0.2489
DELF EF 0.2883 0.2224 0.3313 0.2364 0.3831 0.2496

In terms of computational cost, we can see that DELF requires signif-
icantly more training time than all other baselines. On Amazon Music
all baselines complete their training in few seconds for the neighborhood-
based models to 20 minutes for the non-neural machine learning ones,
while DELF requires more than 3 hours. Significantly, on this dataset,
the number of recommendation lists that can be generated per second is
remarkably lower than all be baselines, 3 against 500. For MovieLens the
observations that can be made are similar, except that the recommendation

83

Chapter 5. Detailed results for reproducible articles

Table 5.15: Experimental results for DELF on the MovieLens dataset.

@5 @10 @20
HR NDCG HR NDCG HR NDCG

TopPopular 0.3302 0.2229 0.4696 0.2674 0.6577 0.3148

UserKNN CF asymmetric 0.5205 0.3635 0.6852 0.4168 0.8329 0.4542
ItemKNN CF cosine 0.4936 0.3426 0.6677 0.3989 0.8243 0.4387

P3α 0.4945 0.3438 0.6574 0.3965 0.7952 0.4313
RP3β 0.5138 0.3559 0.6809 0.4102 0.8276 0.4475

EASER 0.5716 0.4064 0.7258 0.4566 0.8516 0.4887
SLIM BPR 0.5380 0.3742 0.7077 0.4292 0.8452 0.4640
SLIM ElasticNet 0.5706 0.4038 0.7306 0.4557 0.8586 0.4882
MF BPR 0.4844 0.3310 0.6595 0.3877 0.8152 0.4275
MF FunkSVD 0.5312 0.3708 0.6948 0.4239 0.8245 0.4569
PureSVD 0.5513 0.3891 0.7021 0.4382 0.8303 0.4708
NMF 0.5339 0.3746 0.6965 0.4272 0.8385 0.4635
iALS 0.5643 0.3975 0.7228 0.4489 0.8354 0.4776

DELF MLP 0.5168 0.3587 0.6809 0.4119 0.8342 0.4508
DELF EF 0.4805 0.3305 0.6504 0.3852 0.8043 0.4243

lists generated per second, although still much less than the baselines, ex-
hibit a lower difference, 11 against 500.

5.9 Outer Product-based Neural Collaborative Filtering (Con-
vNCF)

The Convolutional Neural Collaborative Filtering (ConvNCF) method was
presented in [56] at IJCAI ’18. Its purpose is to overcome a limitation of
several current recommendation models that combine user and item embed-
dings via a concatenation or a dot product, therefore assuming the embed-
ding dimensions are independent. ConvNCF attempts to explicitly model
the pairwise correlations between the embedding dimensions. This is done
in three steps. First a traditional matrix factorization BPR model is trained
on the data. Secondly, the pretrained embeddings are used to build an in-
teraction map, via an outer product. The interaction map is said to be more
expressive than the simple concatenation of embeddings or the element-
wise product. Lastly the interaction map, which is said to be analogous to
an image, is used to train a convolutional neural network whose purpose is
to learn to model the embeddings interactions.

5.9.1 Datasets and Evaluation

The evaluation in the original paper is based on two datasets:

84

5.9. Outer Product-based Neural Collaborative Filtering (ConvNCF)

Gowalla: Is a check-in dataset from Gowalla17, a location-based social net-
work. The data is filtered to remove all users with less than 2 inter-
actions and items with less than 10 interactions. The pre-processed
dataset contains 69k interactions.

Yelp: Is the Yelp Challenge18 dataset for user ratings on business, the au-
thors remove users and items with less than 10 interactions.

In both datasets all interactions are considered as implicit feedback with
value 1. Both datasets contain multiple interactions at different timestamps
for the same user-item pair. These interactions are merged by keeping
only the earliest for each user-item pair.19 Both filtered datasets with their
training-test splits have been provided by the authors.

The test data is split by a leave-last-out protocol, selecting for each user
the interaction with the latest timestamp. The positive item is then ranked
against 999 randomly selected negative items. The Hit Rate and the NDCG
at different list lengths are used as evaluation measures. The hyperparam-
eter optimization of both baselines and the proposed method is done via a
validation set sampled by holding out randomly one interaction per user, it
is therefore built differently from the test split.

5.9.2 Methodological considerations

The analysis of this article, as well as of the provided source code and data
split led to the discovery of several methodological issues.

By analyzing the source code we could see that the number of epochs
was chosen by optimizing the recommendation quality on the test data,
causing information leakage.

Furthermore, the article states the embedding size was set to the con-
stant value of 64 for all matrix factorization baselines. This procedure is
justified by claiming this allows for a “fair comparison”, however we argue
it achieves the opposite effects. The embedding size is a hyperparame-
ter of all matrix factorization models that should be tuned for each dataset
and for each algorithm. Different algorithms will have different objective
functions and training procedures that will likely require different values
for it. Constraining the hyperparameter space in this way will result in
the reported baselines to achieve suboptimal recommendation quality. Any
experimental evaluation performed based on their results will therefore be
meaningless.

17https://snap.stanford.edu/data/loc-gowalla.html
18https://github.com/hexiangnan/sigir16-eals/raw/master/data/yelp.rating
19For the Gowalla dataset the authors use the first interaction appearing in the file as the earlier interaction.

85

https://snap.stanford.edu/data/loc-gowalla.html
https://github.com/hexiangnan/sigir16-eals/raw/master/data/yelp.rating

Chapter 5. Detailed results for reproducible articles

We also observed an issue with the publicly available test data splits.
The set of negative test items contained duplicates and partially overlapped
with the training data. The number of unique negative items is different
across users, with the lowest being 961 for Yelp and 976 for Gowalla. This
results in different users being evaluated under slightly different conditions
and the recommendation problem becoming easier as the number of neg-
atives decreases. We also report that at the time of our experiments the
published version of the algorithm contained a bug that caused information
leakage from the test data. The only items that could be selected as neg-
atives were those unobserved in the training data that also did not appear
as test items. Items unobserved in the training data should all be potential
negative items to be sampled during training, regardless of the test data,
otherwise test items will be advantaged over other items. This bug was
later fixed on the public Github repository. In our experiments, during the
training we only relied upon training data and never used any information
from the test data to alter the training process.

The original article stated that using a CNN on the outer product of the
embedding, the way ConvNCF does, allows to model the interactions be-
tween embeddings. This statement is justified by claiming that an outer
product of embeddings is analogous to an image and therefore the convo-
lution operation can be applied. This we argue is not sufficient, because it
merely compares the shape of the two rather than the properties the con-
volution operation leverages. Furthermore, the article stats that ConvNCF
is able to effectively learn the user-item couplings because it outperforms
other methods which do not use them. Again, this we argue is not sufficient
since when comparing models with very different architectures many fac-
tors, other than what is claimed, could have had an impact on the results.
We found other instances of the convolution operation applied on the outer
product of embeddings without proper justification. We further discuss this
claims and the weaknesses the evaluation protocol had in Chapter 6.

5.9.3 Results and Discussion

The source code and the datasets are publicly available and we could re-
produce the results reported in the original paper. The results for the Yelp
dataset are shown in Table 5.16. Those for the larger Gowalla dataset are
given in Table 5.17.

For the Yelp dataset, ConvNCF is consistently outperformed by the tra-
ditional neighborhood-based methods, RP3β, and SLIM. The other base-
lines outperform ConvNCF as well in most cases. For the Gowalla case,

86

5.9. Outer Product-based Neural Collaborative Filtering (ConvNCF)

Table 5.16: Experimental results for ConvNCF for the Yelp dataset. SLIM BPR results are
missing because the code required too much memory on this dataset.

@5 @10 @20
HR NDCG HR NDCG HR NDCG

TopPopular 0.0817 0.0538 0.1200 0.0661 0.1751 0.0799

UserKNN CF asymmetric 0.2131 0.1400 0.3209 0.1747 0.4482 0.2068
ItemKNN CF cosine 0.2521 0.1686 0.3669 0.2056 0.4974 0.2385

P3α 0.2146 0.1395 0.3211 0.1737 0.4442 0.2049
RP3β 0.2202 0.1431 0.3323 0.1793 0.4667 0.2132

EASER 0.2349 0.1557 0.3419 0.1902 0.4617 0.2205
SLIM BPR - - - - - -
SLIM ElasticNet 0.2330 0.1535 0.3475 0.1904 0.4799 0.2238
MF BPR 0.1557 0.1024 0.2421 0.1302 0.3599 0.1598
MF FunkSVD 0.1728 0.1121 0.2621 0.1409 0.3727 0.1688
PureSVD 0.2011 0.1307 0.3002 0.1626 0.4238 0.1938
NMF 0.1817 0.1172 0.2824 0.1496 0.4090 0.1815
iALS 0.2048 0.1348 0.3080 0.1680 0.4319 0.1993

ConvNCF 0.1947 0.1250 0.3059 0.1608 0.4446 0.1957

Table 5.17: Experimental results for ConvNCF for the Gowalla dataset. EASER and SLIM
BPR results are missing because the code required too much memory on this dataset.

@5 @10 @20
HR NDCG HR NDCG HR NDCG

TopPopular 0.2188 0.1652 0.2910 0.1884 0.3803 0.2110

UserKNN CF cosine 0.7131 0.5879 0.7939 0.6142 0.8532 0.6293
ItemKNN CF tversky 0.7047 0.5864 0.7790 0.6105 0.8331 0.6244

P3α 0.6926 0.5703 0.7674 0.5948 0.8158 0.6071
RP3β 0.6836 0.5525 0.7723 0.5814 0.8361 0.5976

EASER - - - - - -
SLIM BPR - - - - - -
SLIM ElasticNet 0.6365 0.5284 0.7083 0.5517 0.7608 0.5651
MF BPR 0.6376 0.4996 0.7416 0.5334 0.8234 0.5542
MF FunkSVD 0.6029 0.4592 0.7216 0.4979 0.8082 0.5199
PureSVD 0.5653 0.4482 0.6627 0.4798 0.7393 0.4993
NMF 0.5856 0.4607 0.6842 0.4927 0.7674 0.5138
iALS 0.6460 0.5081 0.7554 0.5436 0.8356 0.5641

ConvNCF 0.6702 0.5233 0.7799 0.5590 0.8623 0.5799

ConvNCF is slightly more competitive. In all but one measurement, how-
ever, it is outperformed by the UserKNN method. Interestingly, on this
dataset the neighborhood-based baselines provide better recommendation
quality than the simple non-neural machine learning methods.

In terms of computational complexity, on Gowalla most neighborhood-
based baselines train in less than 1 minute and most non-neural machine

87

Chapter 5. Detailed results for reproducible articles

learning baselines train 1 hour with only one requiring 5 hours, while Con-
vNCF requires more than 12 hours. The number of recommendation lists
generated per second is lower than most methods but is higher than PureSVD
and NMF, this can be attributed to the very high number of latent factors
they have. On Yelp the slowest baseline requires 1 hour of training while
ConvNCF requires 3 hours and generates less recommendations per second
than other baselines.

5.10 Leveraging Meta-path based Context (MCRec)

Meta-path based Context for top-n recommendations was proposed in [60]
at KDD ’18. MCRec is a hybrid method that uses side information of the
items to build a heterogeneous information network (HIN). A HIN may
consist of multiple types of nodes and links, allowing great flexibility in
modeling the available auxiliary information, for this reason they have been
proposed as a general information modeling method. Meta-paths are fixed
sequences of node types used to guide random walks, and are widely used
to extract structural features that capture relevant semantics which can be
used in recommendations. MCRec also includes a priority-based sampling
technique to identify the more informative paths as well as and a novel
co-attention mechanism to improve the representations of meta-path based
context, users and items. Several variants of MCRec are reported:

MCRecrand: It employs the random meta-path guided sampling strategy
for path generation.

MCRecavg: It employs the naive context embedding strategy for meta-
paths.

MCRecmp: It only reserves the attention components for meta-paths and
removes the attention component for users and items.

MCRec: It is the complete MCRec model.

5.10.1 Datasets and Evaluation

The evaluation in the original paper is based on three datasets:

MovieLens100K: Is a widely used movie rating dataset, it includes side
information like the genre of the movie.

LastFM: Contains listening records of users, it includes as side informa-
tion the artists of the tracks.

88

5.10. Leveraging Meta-path based Context (MCRec)

YelpBusiness: The dataset is gathered from Yelp, a search service powered
by crowd-sourced reviews about local businesses, it includes as side
information the city and category of the business.

All datasets are transformed into implicit data by setting all interactions
values to 1.

MCRec is evaluated with a test data built by a random holdout of 20%
interactions, while the validation data contains 10%. For each positive
item in the test set, 50 negative test interactions are randomly selected, that
will be ranked together with the positive items. Precision, Recall, and the
NDCG are then used as evaluation measures at a cutoff length of 10 and the
averaged results of ten random splitting is reported.

As baselines, the authors use ItemKNN, two collaborative MF methods
(one based on BPR loss, the other based on cross entropy loss), two hybrid
MF methods, two methods designed for metadata networks, and a number
of variants of their own method. It is stated that for the MF and the NeuMF
method, hyperparameters and configuration are taken from the original pa-
pers. Other baselines are reported to be systematically optimized on the
validation set.

5.10.2 Methodological considerations

The first methodological issue we found is the lack of motivation for the
evaluation protocol used by MCRec, which is very uncommon in two ways.
First, ranking positive items with negative items is a rather common evalu-
ation procedure, but that is predominantly associated to a leave-one-out test
split, rather than a random holdout (see Section 7.2.1, Table 7.3). MCRec
is the only instance we could observe where the negative sampling is com-
bined with a random holdout. Secondly, the number of negative items is un-
commonly low, being 50, when compared to the usual 1000 or 100. While
the selection of a specifically crafted evaluation protocol is certainly not an
issue per-se, as we will discuss in Chapter 7 the lack of justification conveys
a sense of arbitrariness. Further in the original article, it is stated that the
results are the average of ten random splitting of the data, but no standard
deviation is reported, which is crucial to correctly interpret the results.

By analyzing the source code we could observe that the NDCG measure
was implemented in a non-standard way. The “ideal” NDCG was computed
not by using all test items, but rather only based on the successfully recom-
mended items. This means that the Ideal NDCG is lower than it should
and the values reported in the paper are much higher than the ones obtained
by us using a standard implementation of NDCG. Furthermore, we could

89

Chapter 5. Detailed results for reproducible articles

observe that the original source code reports the maximum value each met-
ric reaches, when evaluated on the test data, regardless of the epoch. In
our experiments, again, we report the values of the metrics after the opti-
mal number of epochs is chosen with early stopping on the validation set.
Lastly, for the MF and the NeuMF methods it is stated that hyperparameters
and configurations are taken from the original papers, which means those
baselines were used in a suboptimal configuration and the results obtained
cannot be considered a reliable representation of the baseline performance.

5.10.3 Results and Discussion

The publicly available source code is specifically tailored for the Movie-
Lens dataset because the meta-path information is hard-coded, therefore it
cannot be used for the other datasets and no specific implementation for
those is available. Furthermore, at the time of writing, the code for prepro-
cessing the Yelp and Last.fm was not available. Due to this we only per-
form our evaluation for the MovieLens dataset.20 The results are reported
in Table 5.18. We can see that MCRec is outperformed both by the tradi-
tional neighborhood-based methods, the more complex non-neural machine
learning methods and one of our simple hybrids. Our pure content-based
baseline led to generally weak results, lower than the non-personalized Top-
Popular, and was also outperformed by MCRec.

Table 5.18: Experimental results for MCRec for the MovieLens dataset.

PREC@10 REC@10 NDCG@10

TopPopular 0.1907 0.1180 0.1361

UserKNN CF dice 0.3442 0.2237 0.2692
ItemKNN CF asymmetric 0.3320 0.2171 0.2601

P3α 0.3305 0.2081 0.2554
RP3β 0.3435 0.2191 0.2588

EASER 0.3739 0.2430 0.2905
SLIM BPR 0.3127 0.2040 0.2460
SLIM ElasticNet 0.3770 0.2441 0.2957
MF BPR 0.2816 0.1860 0.2195
MF FunkSVD 0.3442 0.2203 0.2642
PureSVD 0.3545 0.2247 0.2719
NMF 0.3350 0.2139 0.2585
iALS 0.3596 0.2283 0.2759

ItemKNN CBF cosine 0.0455 0.0185 0.0254

ItemKNN CFCBF cosine 0.3398 0.2239 0.2646

MCRec 0.3110 0.2113 0.2466

20The preprocessing code for MovieLens was made available later by the authors on their GitHub repository.

90

5.11. Collaborative Memory Network for Recommendation System (CMN)

By analyzing the computational cost of MCRec we can observe it is
substantially slower than all baselines. All neighborhood-based baselines
are able to complete their training in fractions of a second, while non-neural
machine learning baselines require less than 3 minutes. MCRec instead
takes more than 2 hours. Furthermore MCRec is between 100 and 200
times slower in generating recommendation lists.

5.11 Collaborative Memory Network for Recommendation Sys-
tem (CMN)

Collaborative Memory Networks (CMN) was proposed in [42] at SIGIR
’18. CMN’s main idea is to unify two families of collaborative filtering
methods, latent factor models and neighborhood models, using a non-linear
architecture. The neighborhood component is built by fusing a memory
component and a neural attention mechanism, the associative addressing
scheme of the memory module acts as a nearest neighborhood model iden-
tifying similar users. The attention mechanism learns an adaptive nonlin-
ear weighting of the user’s neighborhood based on the specific user and
item. The output module exploits nonlinear interactions between the adap-
tive neighborhood state jointly with the user and item memories to derive
the recommendation. Stacking multiple memory modules together (hops)
allows to build deeper architectures capturing increasingly more complex
user-item relations. CMN is associated to different variants according to
the number of hops, from 1 to 3.

5.11.1 Datasets and Evaluation

The evaluation in the original paper is based on three datasets:

Epinions: Is an online service to share product feedback and reviews.

CiteULike-a: Is a dataset collected from CiteULike, which is an online
service providing users with a digital catalog to save and share aca-
demic papers.

Pinterest: Refers to the well known social network which allows users to
save or pin an image to their board.

All interactions are binarized and associated to the value of 1. The
training-test splits for CiteULike and Pinterest are provided by the authors.

The test data is built via leave-one-out, sampling a random interaction
per each user. If the user rated only one item, this interaction is kept in

91

Chapter 5. Detailed results for reproducible articles

the training set. To evaluate the algorithm, for each user 100 unobserved
(negative) items are sampled and ranked together with the positive item.
The Hit Rate and the NDCG at a cutoff length of 10 are used as evaluation
metrics.

As baselines, the authors include both simple, non-neural, and neu-
ral methods in their experiments: ItemKNN, BPR matrix factorization,
SVD++, two variants of NCF [57] (see Section 5.3), and the Collabora-
tive Denoising Auto Encoder. Hyperparameters are tuned on a validation
set.

5.11.2 Methodological considerations

It is possible to see from the original paper that details for the hyperparam-
eter optimization process are provided for the proposed model, but not for
the baselines. The number of training epochs is not mentioned in the paper
and in the source code it is set to a fixed value, therefore the epochs selec-
tion criteria adopted in the original experiments is not transparent. In our
evaluation, we applied early stopping as per the described methodology.

5.11.3 Results and Discussion

We could reproduce the results of the paper using the data splits provided
by the authors for two datasets, CiteULike and Pinterest. We created the
split for Epinions using the information provided in the paper. However,
in that case, we could not reproduce the original results. For the CMN
method, we report the results for the CMN-3 variant, which led to the best
results.

We report the results for Pinterest dataset in Table 5.19 and for the Epin-
ions dataset in Table 5.20.

For the Pinterest dataset is possible to observe that CMN leads to equiv-
alent results with respect to some baselines but is always slightly outper-
formed by both neighborhood-based and non-neural machine learning base-
lines. On the CiteULike dataset, the main observations are the same. On
this smaller dataset, however, the performance of CMN is often much lower
than the one achieved by neighborhood-based methods and non-neural ma-
chine learning techniques.

For the Epinions dataset, whose results are reported in Table 5.19, CMN
is indeed able to outperform all personalized baselines. However, the non
personalized TopPopular method consistently led to the best values across
all measurements by a huge margin. In order to explain this phenomena,
we compute the Gini Index (not the Gini Diversity) of the popularity of

92

5.11. Collaborative Memory Network for Recommendation System (CMN)

Table 5.19: Experimental results for CMN for the Pinterest dataset.

@5 @10
HR NDCG HR NDCG

TopPopular 0.1665 0.1064 0.2740 0.1409

UserKNN CF asymmetric 0.7005 0.5037 0.8630 0.5567
ItemKNN CF cosine 0.7132 0.5116 0.8781 0.5653

P3α 0.6990 0.5034 0.8596 0.5559
RP3β 0.7147 0.5150 0.8772 0.5680

EASER 0.7072 0.5129 0.8567 0.5617
SLIM BPR 0.7120 0.5151 0.8733 0.5678
SLIM ElasticNet 0.7084 0.5107 0.8683 0.5628
MF BPR 0.6924 0.4886 0.8694 0.5463
MF FunkSVD 0.7088 0.5037 0.8686 0.5559
PureSVD 0.6619 0.4721 0.8146 0.5219
NMF 0.6550 0.4618 0.8287 0.5183
iALS 0.7219 0.5175 0.8677 0.5652

CMN 0.7013 0.5005 0.8674 0.5547

each item in all datasets, the higher the Gini Index the more unbalanced
the distribution will be and therefore the higher the popularity bias. For
the CiteULike dataset the Gini Index is 0.37, for Pinterest is 0.45 and for
Epinions is 0.69. This means that the datasets have an item distribution
which is increasingly skewed to the extent that, for Epinions, personalized
recommendations are very difficult to make. It can be observed how the
competitiveness of CMN against the simple personalized baselines is posi-
tively correlated with the strength of the popularity bias of the dataset. On
the least unbalanced dataset, CiteULike, CMN performs poorly while on
the most unbalanced dataset, Epinions, CMN is able to outperform all per-
sonalized baselines. Considering diversity metrics, on Epinions CMN has
an item coverage of only 55%, compared with 78% of most personalized
baselines and 14% of the best performing non-personalized baseline, while
on CiteULike and Pinterest the Item Coverage of CMN is slightly higher
than most baselines, while the Gini Diversity is comparable. Overall, CMN
appears to be highly affected by the popularity bias of the dataset.

In terms of computation time on the Epinions dataset, we can see that
most neighborhood-based baselines have a training time in the range of a
few minutes, non-neural machine learning baselines require under 3 hours
while CMN requires 9 hours. SLIM BPR in this case is the slowest algo-
rithm, this is explained by the fact that the similarity matrix would have
been too big to fit into memory and therefore it was modeled as a sparse
data structure, which considerably slows the training process.

93

Chapter 5. Detailed results for reproducible articles

Table 5.20: Experimental results for CMN for the Epinions dataset. EASER results are
missing because the code required too much memory on these datasets.

Epinions
@5 @10

HR NDCG HR NDCG

TopPopular 0.5492 0.4204 0.6672 0.4587

UserKNN CF asymmetric 0.4294 0.3642 0.4767 0.3795
ItemKNN CF cosine 0.4309 0.3584 0.4854 0.3760

P3α 0.4008 0.3411 0.4389 0.3533
RP3β 0.3928 0.3329 0.4341 0.3462

EASER - - - -
SLIM BPR 0.3988 0.3393 0.4422 0.3533
SLIM ElasticNet 0.4133 0.3471 0.4667 0.3643
MF BPR 0.4668 0.3662 0.5594 0.3962
MF FunkSVD 0.5427 0.4196 0.6567 0.4566
PureSVD 0.4073 0.3069 0.5045 0.3384
NMF 0.4055 0.3218 0.4951 0.3508
iALS 0.0519 0.0316 0.1003 0.0470

CMN 0.4699 0.3781 0.5399 0.4008

5.12 Spectral Collaborative Filtering (SpectralCF)

Spectral Collaborative Filtering was proposed by [134] at RecSys ’18.
SpectralCF represents users and items as nodes in a bipartite graph. The
novelty of this method is a convolution approach which operates on the
spectral domain, this it is claimed allows to consider both proximity and
connectivity information in the graph, which is assumed to be particularly
helpful for cold-start problems. SpectralCF exploits the eigenvalues of the
laplacian matrix of the graph and stacks multiple convolution layers.

5.12.1 Datasets and Evaluation

The evaluation in the original paper is based on three datasets:

MovieLens1M: Is a widely used movie rating dataset with values in range
1-2 and all users have at least 20 interactions.

HetRec: The dataset has been released by the Second International Work-
shop on Information Heterogeneity and Fusion in Recommender Sys-
tems21. It is based upon MovieLens10M.

Amazon Instant Video: The dataset consist of ratings for the Amazon.com
video platform22.

21http://ir.ii.uam.es/hetrec2011/
22http://jmcauley.ucsd.edu/data/amazon/

94

http://ir.ii.uam.es/hetrec2011/
http://jmcauley.ucsd.edu/data/amazon/

5.12. Spectral Collaborative Filtering (SpectralCF)

As preprocessing all ratings lower than 5 are removed and the remaining
ones binarized with a value of 1, then users associated to less than 5 in-
teractions are removed. After preprocessing, the MovieLens1M dataset
is reduced to one fifth of the original size (226k interactions). The other
datasets are even smaller (71k and 22k interactions, respectively). The data
split for the MovieLens1M dataset is provided online by the authors.

In the original paper SpectralCF is evaluated under two different scenar-
ios: a regular one and a cold-start setup. For the main scenario the test data
is built by sampling randomly 20% of the interactions of each user. The
evaluation is performed 5 times and the average of the results as well as the
standard deviation are reported. Recall and MAP at different list lengths
are used as metrics for this scenario.

In the cold-start scenario, the training set is built with different degrees
of sparsity by varying the number P of interactions associated with each
user, where P is varied from one to five. The remaining items associated
with each users are used as test set. Recall@20 and MAP@20 are used in
this scenario for evaluation.

As baselines, the authors consider ItemKNN, BPR matrix factorization,
iALS, NCF [57] (see Section 5.3) and two graph-based methods, GNMF
and GCMC, originally designed for explicit feedback datasets. The hy-
perparameters are tuned on a validation set and the parameter ranges are
reported in the paper.

5.12.2 Methodological considerations

Looking at the original article we could observe some common issues, e.g.,
for NCF was used the configuration reported in the original paper, only one
set of hyperparameters for SpectralCF is reported rather than one for each
dataset.

By analyzing the provided data splits for MovieLens, we observed an-
other very significant problem. Our experiments show that SpectralCF has
very strong recommendation quality on the training-test split of MovieLens
provided by the authors, but has very weak performance on the HetRec and
Amazon Video datasets. This led us to further investigate the provided data
splits. While we confirmed that the 80/20 interaction quota was met, the
items in the test data had a very different popularity distribution with re-
spect to the training data. This led us to conclude the split provided by the
original authors was unlikely the result of the procedure described in the
paper.

In order to illustrate the data splitting problem, we compare the popular-

95

Chapter 5. Detailed results for reproducible articles

ity distribution of the items in the training and the test split in the provided
data, see Figure 5.1b. The figure plots the number of interactions each item
received (i.e., its popularity) in both training and test data, normalized by
setting to 1 the most popular item. The items are ranked in decreasing
popularity according to the training data.

A truly randomized split will preserve the distribution of the data and
therefore should produce a test popularity distribution that closely mirrors
the training distribution. However, the figure shows the split provided by
the authors exhibits a very different behavior with several items having low
popularity in the training data appearing surprisingly often in the test data,
while highly popular training items appear rarely present in the test data.
Figure 5.1b shows the popularity distributions of our random split, which
are almost identical between training and test sets.

Besides the visual analysis, we also computed numerical statistics on
the item popularity values computed in the various splits, i.e., Gini Index,
Shannon entropy and Kendall Tau, see Table 5.21. In a true random split,
the Gini Index should be close to the value obtained on the non-split data
(in this case 0.78) for both the training and test splits. However, the Gini
Index of the test split provided by the authors is much higher (0.92). This
indicates that the provided test split has a much higher popularity bias than
it should. A similar consideration applies for the Shannon entropy: the en-
tropy of the original dataset is close to 10 and is similar to the entropy of
our random training-test split. However, the provided test split has a lower
entropy (8.5). Lastly we report the Kendall Tau metric, which counts the
number of pairwise agreements between two ranking lists, the lists are the
item indices ranked according to their popularity in the given data split (i.e.,
train, test). Its result is the percentage of item pairs whose ordering is con-
sistent between the two splits, i.e., one item is more popular than the other
in both training and test. In our training-test split the Kendall Tau of the
training data when compared to the full dataset is almost 1 and that of the
test data is 0.85, while Kendall Tau of the publicly available test data is only
0.44 which means the majority of items have different relative rankings in
their popularity between training and test data. Overall, these metrics high-
light how inconsistent is the original test data with respect to the original
training data, strongly pointing to errors in the splitting procedure adopted
in the original article.

Due to the anomalous nature of the test data, we created a new data split
ourselves following the procedure described in the paper. Since we had to
create a new training-test split with different properties than what provided
by the authors, we could not use the hyperparameters provided by the orig-

96

5.12. Spectral Collaborative Filtering (SpectralCF)

Max pop Avg pop Gini Index Kendall Tau Shannon

MovieLens original split

Full data 1963.00 61.08 0.78 1.00 9.99
Training data 1936.00 48.37 0.79 0.87 9.89
Test data 1361.00 12.71 0.92 0.44 8.49

MovieLens our split

Full data 1963.00 58.08 0.79 1.00 9.99
Training data 1575.00 46.44 0.79 0.97 9.99
Test data 388.00 11.64 0.80 0.85 9.93

Table 5.21: Statistics for the popularity bias of the two splits of MovieLens1M, one gen-
erated by us according to what described in the paper and the other provided by the
authors. See Figure 5.1.

0 500 1000 1500 2000 2500 3000 3500
Item id

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
nu

m
be

r o
f i

nt
er

ac
tio

ns
 p

er
 it

em

Training data
Test data

(a) Training and test splits provided by the orig-
inal authors.

0 500 1000 1500 2000 2500 3000 3500 4000
Item id

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
nu

m
be

r o
f i

nt
er

ac
tio

ns
 p

er
 it

em

Training data
Test data

(b) Training and test splits generated by us fol-
lowing what reported in the original paper.

Figure 5.1: Normalized popularity distributions of the training and test splits for Spec-
tralCF, the value 1 corresponds to the most popular item in that split. For a random
split, as can be seen in Figure 5.1b, the normalized values of both splits are, on aver-
age, similar. In the split provided by the original authors, however, as can be seen in
Figure 5.1a, training and test data have quite different distributions.

97

Chapter 5. Detailed results for reproducible articles

inal paper for SpectralCF, therefore we ran a hyperparameter tuning step.
We applied the same tuning algorithm and protocol as per all baseline algo-
rithms, the hyperparameters we tuned are reported in Table 5.22. In order
to ensure the hyperparameter range and distribution we selected was ade-
quate, we compared the results of our optimization on the publicly available
data split, and we could obtain results slightly better than the ones reported
in the original article, as reported in Table 5.23. This result confirms that
our hyperparameter optimization strategy for SpectralCF is effective and
that we are not inadvertently penalizing the algorithm.

Table 5.22: Hyperparameter values for SpectralCF

Algorithm Hyperparameter Range Type Distribution

SpectralCF

batch size 128, 256, 512, 1024, 2048 Categorical
embedding size 4, 8, 16, 32 Categorical
k 1 - 6 Integer uniform
decay 10−5 - 10−1 Real log-uniform
learning rate 10−5 - 10−2 Real log-uniform

Another issue we discovered with SpectralCF concerns the computation
of the eigenvalues, which sometimes are complex. How complex eigen-
values should be handled is not discussed in the paper and by looking
at the source code we can see that the complex part is simply discarded
(which results in warnings from the mathematical software library). We ar-
gue that since complex eigenvalues can occur for the computations required
by SpectralCF, how to handle those cases should have been discussed and
motivated.

Lastly, during our experiments we noticed SpetralCF exhibits some nu-
merical instability, as sometimes the loss function gets to infinite or to not-
a-number, either at the very first epoch or during training. In those cases
the training of the model must be stopped and resumed from scratch.

5.12.3 Results and Discussion

The source code and the data split for MovieLens are available online. We
were able to reproduce the results obtained by the authors based on the
provided code and following the information in the paper. However, as
previously discussed, the data split provided by the authors is probably the
result of an erroneous splitting procedure.

The results obtained for the MovieLens1M dataset are shown in Table
5.23. The results show that SpectralCF is outperformed by all baselines
in our comparison often exhibiting a recommendation quality equal to the

98

5.12. Spectral Collaborative Filtering (SpectralCF)

TopPopular method. The observations for the other datasets are similar, the
full results are available Appendix C.

Table 5.23: Experimental results for SpectralCF for the MovieLens dataset. SpectralCF is
reported both using the hyperparameters as reported in the original article (original)
and the ones we found ourselves (ours) with a Bayesian Search as reported in Table
5.22.

@20 @40 @60 @80 @100
REC MAP REC MAP REC MAP REC MAP REC MAP

TopPopular 0.1892 0.0584 0.2788 0.0636 0.3356 0.0666 0.3834 0.0687 0.4226 0.0702

UserKNN CF jaccard 0.3001 0.1201 0.4134 0.1285 0.4901 0.1335 0.5457 0.1367 0.5884 0.1388
ItemKNN CF asymmetric 0.2876 0.1134 0.4000 0.1213 0.4768 0.1263 0.5367 0.1295 0.5820 0.1317

P3α 0.2939 0.1141 0.4150 0.1233 0.4900 0.1285 0.5463 0.1318 0.5903 0.1342
RP3β 0.2737 0.1044 0.3879 0.1124 0.4664 0.1173 0.5234 0.1206 0.5726 0.1230

EASER 0.2907 0.1215 0.3622 0.1243 0.3994 0.1251 0.4238 0.1255 0.4467 0.1258
SLIM BPR 0.2886 0.1086 0.4048 0.1170 0.4813 0.1219 0.5362 0.1249 0.5782 0.1269
SLIM ElasticNet 0.3069 0.1265 0.4246 0.1356 0.5010 0.1410 0.5564 0.1443 0.6001 0.1466
MF BPR 0.2616 0.0956 0.3662 0.1028 0.4377 0.1071 0.4890 0.1097 0.5307 0.1116
MF FunkSVD 0.2684 0.0875 0.3890 0.0963 0.4663 0.1015 0.5252 0.1049 0.5720 0.1072
PureSVD 0.2595 0.1008 0.3638 0.1083 0.4378 0.1131 0.4913 0.1161 0.5347 0.1182
NMF 0.2384 0.0908 0.3351 0.0972 0.4032 0.1014 0.4568 0.1041 0.4981 0.1060
iALS 0.3033 0.1183 0.4201 0.1273 0.4933 0.1326 0.5493 0.1360 0.5925 0.1383

SpectralCF (ours) 0.1813 0.0533 0.2643 0.0581 0.3274 0.0613 0.3823 0.0635 0.4261 0.0651
SpectralCF (original) 0.1785 0.0540 0.2590 0.0586 0.3232 0.0614 0.3689 0.0632 0.4101 0.0646

Table 5.24: Experimental results for beyond-accuracy metrics for SpectralCF on the se-
lected MovieLens1M dataset at cutoff 50.

MovieLens1M
Div.
MIL

Div.
HHI

Cov.
Item

Div.
Gini

Div.
Shannon

TopPopular 0.1855 0.9837 0.0322 0.0150 6.0329

UserKNN CF jaccard 0.6718 0.9934 0.3830 0.0484 7.9176
ItemKNN CF asymmetric 0.6214 0.9924 0.5621 0.0452 7.7170

P3α 0.6824 0.9936 0.3449 0.0476 7.9227
RP3β 0.6343 0.9927 0.6430 0.0492 7.7865

EASER 0.7258 0.9945 0.2777 0.0519 8.0749
SLIM BPR 0.6465 0.9929 0.3220 0.0424 7.7517
SLIM ElasticNet 0.7481 0.9950 0.3290 0.0599 8.2649
MF BPR 0.6152 0.9923 0.4088 0.0425 7.6973
MF FunkSVD 0.8022 0.9960 0.3006 0.0878 8.7693
PureSVD 0.7689 0.9954 0.1383 0.0520 8.0705
NMF 0.7306 0.9946 0.1069 0.0447 7.8312
iALS 0.8324 0.9966 0.2326 0.0772 8.6570

SpectralCF (ours) 0.2217 0.9844 0.0425 0.0155 6.1331

Since, based on our results, SpectralCF achieves similar recommen-
dation quality as a TopPopular recommender, we wanted assess whether
SpectralCF was at least able to personalize its recommendations (i.e., pro-
viding, to an extent, different recommendation lists to different users), for
this experiment we also include beyond-accuracy metrics. From Table 5.24

99

Chapter 5. Detailed results for reproducible articles

we can see how SpectralCF exhibits a diversity comparable with the non-
personalized TopPopular algorithm on all metrics. SpectralCF only ex-
plores 4% of the available items and, according to MIL, given any two users
most of their recommendation lists will be identical. The Gini Diversity of
SpectralCF is too equivalent to a TopPopular, meaning that the algorithm
recommends few items very frequently. Overall, in this experimental sce-
nario, it appears that SpectralCF simply behaves like a non-personalized
model.

In terms of computation time , the training time of all neighborhood-
based baselines is complete in slightly more than 3 seconds, while the non-
neural machine learning baselines require at most 6 minutes. SpectralCF,
on the other hand, requires more than 40 minutes. Furthermore the algo-
rithm has high memory requirements, the eigenvector matrix may easily
exceed 1GB for MovieLens1M.

100

CHAPTER6
The Claimed Value of Convolutions over

User-Item Embedding Maps

In the previous chapters the analyzed articles have been compared with sim-
ple but well optimized baselines, challenging their claimed state-of-the-art
performance. In this Chapter, we provide a different type analysis which in-
stead questions the assumption some of them rely upon. One specific idea,
recently put forward by several researchers, is to consider potential corre-
lations between the latent factors (embeddings) by applying convolutions
over the user-item interaction map. However, such interaction maps do
not share the properties of images where Convolutional Neural Networks
(CNNs) are particularly useful. In this Chapter, we show both through
analytical considerations and empirical evaluations that the claimed gains
reported in the recent literature cannot be attributed to the ability of CNNs
to model embedding correlations, as argued in the original papers. On a
more general level, we point to methodological issues in how claims are
demonstrated within the research field.

101

Chapter 6. The Claimed Value of Convolutions over User-Item Embedding
Maps

6.1 Background

As we could observe in our review of the current state-of-the-art of neural
recommender approaches, researchers often try to use certain architectural
components that were proven successful in other application areas of neural
networks and apply them to the recommendation problem. Examples are at-
tention layers, autoencoders and convolution layers [73,132]. In particular,
Convolutional Neural Networks (CNNs), have been successfully applied
to different recommendation-related tasks, including image or text feature
extraction for content-based models, sequential recommendations [109] or
collaborative filtering [132].

In some recent works, different proposals were put forward to combine
the proven power of low dimensional approximation models (e.g., latent
factor models) with CNNs. In particular, one underlying idea of the pro-
posals by [41, 56, 123, 131] is to use CNNs to model and leverage corre-
lations in the latent factors (embeddings) space. All these papers claim to
have obtained significant gains in accuracy by applying convolutions over
user-item interaction maps derived from the outer-product of user-item em-
beddings.

Some of these articles argue that the interaction maps can be viewed as
analogous to images, an application area in which CNNs are very effec-
tive. However, user-item interaction maps, as produced by common latent
space approaches, do not share the properties of images. For most common
latent space models, there is no natural order of the elements in the latent
vectors, the dimensions are independent, and the correlation between the
latent dimensions is not modeled. Therefore, it is more than surprising that
the above-mentioned CNNs approaches were able to benefit from detecting
correlations between the dimensions.

In this Chapter, we therefore critically examine the progress claimed in
these papers, based on both theoretical considerations and alternative ex-
perimental evaluations. This study is different to what previously done in
Chapter 5, in that we do not simply compare the neural approaches against
other baselines, but we critically examine whether the claims made in the
original paper were indeed supported. To this end, we also report the re-
sults of ablation studies that were not present in the original papers. These
results indicate that the proposed CNN-based models, besides not being
competitive against simple baselines, do not capture correlations between
the embedding dimensions as claimed in the original papers. Rather, they
merely act as a non-linear function of their element-wise product and the
removal of the embedding correlations leads to no significant effects.

102

6.2. Principles and Assumptions of CNNs

Furthermore, our work indicates that sometimes the experimental eval-
uations are not suited to demonstrate the articles’ claims regarding which
part of a complex architecture actually contributes to an observed perfor-
mance gain.

6.2 Principles and Assumptions of CNNs

As described in Chapter 2, a convolutional neural network is a multilayer
feed-forward neural network that was originally developed to address im-
age recognition problems [130]. Unlike other types of neural networks,
CNNs were therefore designed for certain types of inputs, i.e., images,
which have a specific topology. With data exhibiting these properties, lo-
cal features (e.g., lines, corners) emerge from their respective immediate
surroundings, regardless of their absolute position in the data.

Convolution is usually applied on a local area (i.e., the kernel size) of a
two-dimensional map of a certain size. Identifying the local area on which
to apply the convolution requires a definition of proximity between points.
Depending on the use case, different definitions of proximity may be used.
In case of images, the proximity is defined in spatial terms, i.e., pixels
that are close in the image will be perceived as close by an observer and
are therefore meaningful for the reconstruction of more complex patterns.
Other definitions of proximity have also been developed for non-Euclidean
data like social networks or knowledge graphs [37].

6.2.1 CNNs on Embedding correlations

As previously described in Chapter 2, a growing number of papers aim
to use CNNs for collaborative filtering tasks. In this study we will focus
on algorithms applying CNNs on embeddings and only using a user-item
rating matrix as an input.

If we compare images or graph data to embeddings, in the specific form
of latent factors derived from a user-item rating matrix, there is a key dif-
ference. For images or graphs, there is a “natural” way of defining the
local area, e.g., based on the distance in pixels or the number of hops in the
graph. The corresponding proximity measure has a strong relation with the
data semantics.

However, the papers we analyzed, i.e., [41, 56, 123, 131], do not clearly
provide a definition of locality for the embeddings, nor do they describe
the semantic topology of the input data. In the ConvNCF approach [56]
(see Section 5.9), for example, the input to the CNN is a user-item inter-
action map that is created by computing the outer product of embeddings

103

Chapter 6. The Claimed Value of Convolutions over User-Item Embedding
Maps

pretrained using matrix factorization. While the articles argue that this map
is analogous to an image and therefore the use of CNN is justified, it is not
demonstrated or discussed in detail what the resulting map topology should
represent and whether it possesses typical image properties (e.g., spatial lo-
cality and translation invariance). Technically, the interaction map created
by the outer product of the embeddings in the described approach contains
two components: (i) the main diagonal that represents the element-wise
product between two embedding vectors and (ii) the off-diagonal elements
that capture embeddings correlations. Unfortunately, none of the analyzed
papers measured and compared the contribution of the two components to
the proposed CNN model. In all papers it is claimed claim that the CNN
is able to model the correlations between embeddings based on the fact
that CNN models outperform other models that are not using convolutions.
This, we argue, is not sufficient. Comparing models with vastly different
structures means that a multitude of factors may have an impact on the
results. Moreover, as we have shown multiple times in Chapter 5, the base-
lines reported are very often weak or inadequately optimized, therefore the
evaluation protocol does not allow to draw meaningful conclusions. Ulti-
mately, it is not entirely clear from the provided experiments how much the
correlations between embeddings, as modeled by the CNN, actually con-
tributed to the observed performance gains.

6.3 Overview of Analyzed Approaches

In this Chapter we examine three recent neural approaches that use con-
volutions over embeddings derived from a user-item rating matrix. For all
approaches the source code was shared by the authors. We identified an
additional relevant work [64], which however did not have a reproducible
experimental setup as per our definition (see Section 3).

6.3.1 Convolutional Neural Collaborative Filtering

Convolutional Neural Collaborative Filtering (ConvNCF) was proposed in
[56] (see the analysis in Section 5.9). The ConvNCF model is trained in
two steps. First, a matrix factorization model is fitted on the data. Then,
for each user-item interaction, the outer product of their embedding is com-
puted, resulting in a two-dimensional interaction map on which the CNN
is applied.

Following the original notation, let u be a user and i an item, P ∈ RM×K

and Q ∈ RN×K the embedding matrix of users and items, respectively; K
the embedding size, M the number of users and N the number of items.

104

6.3. Overview of Analyzed Approaches

Lastly, let pu, qi ∈ RK be their respective embeddings. Based on these
embeddings, the interaction map E ∈ RK×K is obtained by computing
their outer product as follows:

E = pu ⊕ qi = puq
T
i

ex,y = pu,x · qi,y (6.1)

In the original paper, pretraining is performed with a MF BPR model
[96] and, a subsequent paper extends the pretraining to FISM and SVD++
[41]. As mentioned before, the interaction map is said to be analogous to
an image, but there is no deeper discussion of this claim, and the CNN is
said to model embedding correlations but no direct measurement of their
contribution is provided.

In our previous analysis (see Section 5.9) we could observe several
methodological issues in the evaluation and that ConvNCF is never com-
petitive against simple baselines when evaluated as in the original paper.

6.3.2 Convolutional Factorization Machines

Convolutional Factorization Machines (CFM) were proposed in [123] as
a context-aware model able to overcome the limited modeling capacity of
factorization machines [95], which are constrained by a linear representa-
tion of feature interactions. Similarly to ConvNCF, CFM applies a con-
volution operation on the outer product of the embeddings. In the CFM
approach, however, the embeddings are obtained from a Factorization Ma-
chine via a self-attention layer, which reduces the model’s dimensionality.
The outer product of the embeddings is computed independently for each
context and all interaction maps are stacked on top of each other, forming
an interaction cube, on which 3D convolution is applied. If C is the num-
ber of contextual features, the interaction maps in the memory cube will be
C(C − 1)/2.

Although the scenario of application is different from ConvNCF and
the embeddings are obtained from a different pretraining step, CFM has
the same theoretical problems as ConvNCF in that the outer product is
treated as if it were an image, without ever demonstrating that this assump-
tion holds. The ability of CFM to model embeddings interaction is again
claimed based on it outperforming baselines with quite different architec-
tures, including ConvNCF.

As opposed to ConvNCF and CoupledCF, we did not report the eval-
uation of CFM in Chapter 5. This is because the article proposing CFM
was published in 2019 and therefore does not meet the criteria for being in-

105

Chapter 6. The Claimed Value of Convolutions over User-Item Embedding
Maps

cluded in the previous evaluation study. Nonetheless, in Table 6.1 we report
the comparison of CFM against the same baselines we used and with the
same evaluation protocol in the other evaluations (see Chapter 4). Based
on these results, we can see that CFM is never competitive against simple
baselines, by a very large margin, exhibiting on average half of the rec-
ommendation quality of both neighborhood-based and non-neural machine
learning baseline algorithms. In the original article CFM was compared
against TopPopular, a Factorization Machine, NeuMF [57] (see Section
5.3) and a Deep Factorization Machine. In terms of computational time,
neighborhood-based baselines complete their training in less than 2 sec-
onds, non-neural machine learning algorithms in between 5 and 44 minutes
on a CPU, while CFM requires more than 14 hours on a high-end GPU.

Table 6.1: Experimental results for CFM for the Last.fm dataset.

Last.fm
@5 @10 @20

HR NDCG HR NDCG HR NDCG

TopPopular 0.0016 0.0009 0.0023 0.0011 0.0033 0.0014

UserKNN CF cosine 0.5964 0.4527 0.6715 0.4773 0.7032 0.4855
ItemKNN CF cosine 0.5975 0.4425 0.6776 0.4689 0.7070 0.4764

P3α 0.6327 0.4929 0.6744 0.5066 0.7014 0.5135
RP3β 0.5896 0.4458 0.6756 0.4739 0.7071 0.4821

EASER 0.6496 0.5057 0.6884 0.5183 0.7037 0.5223
SLIM BPR 0.6569 0.5260 0.6893 0.5365 0.7122 0.5424
SLIM ElasticNet 0.6674 0.5169 0.6972 0.5267 0.7102 0.5300
MF BPR 0.5972 0.4432 0.6690 0.4669 0.6974 0.4742
MF FunkSVD 0.6214 0.4702 0.6789 0.4891 0.7024 0.4950
PureSVD 0.4026 0.3117 0.4891 0.3397 0.5652 0.3590
NMF 0.2971 0.2425 0.3879 0.2716 0.5017 0.3005
iALS 0.6110 0.4811 0.6735 0.5017 0.7033 0.5093

CFM 0.2241 0.1485 0.3338 0.1839 0.4661 0.2173

6.3.3 Coupled Collaborative Filtering

Coupled Collaborative Filtering (CoupledCF) was proposed in [131] (see
the analysis in Section 5.7) as a method to learn implicit and explicit cou-
plings between users and items, taking advantage of them not being in-
dependent, to leverage side information more effectively (e.g., user demo-
graphics, item features). The model is composed by two cooperating archi-
tectures, one is a deep collaborative filtering model which only uses user-
item interactions, while the other is a CNN on user and item embeddings
whose aim is to learn the couplings.

106

6.4. Analysis

CoupledCF is different from the other two methods examined here in
that the embeddings are not pretrained but are parameters of the model to
be learned. The original article shows experimentally that the quality of the
model is improved by adding the CNN and this is claimed to demonstrate
that the model is effectively learning the couplings. Again, as previously
mentioned, the paper does not distinguish between the contribution of the
the embeddings correlation and the element-wise product.

In our previous analysis (see Section 5.7) we could observe several
methodological issues in the evaluation and that CoupledCF is never com-
petitive against simple baselines when evaluated as in the original paper.

0 2 4 6 8

0.5
0.0
0.5

Figure 6.1: Vector u

0 2 4 6 8

0.5
0.0
0.5

Figure 6.2: Vector v

0 2 4 6 8

0

2

4

6

8

Figure 6.3: Interaction map

0 2 4 6 8

0.5
0.0
0.5

Figure 6.4: Vector u

0 2 4 6 8

0.5
0.0
0.5

Figure 6.5: Vector v

0 2 4 6 8

0

2

4

6

8

Figure 6.6: Interaction map

Figure 6.7: Effects of permutating the columns of vectors u and v on their resulting outer
product (the interaction map). The same vectors under different permutations will
generate interaction maps with very different 2D structure.

6.4 Analysis

One fundamental assumption of the analyzed papers is that the interaction
map computed via an outer product is analogous to an image (i.e., exhibits
spatial locality and translation invariance). In this section, we demonstrate
why this is not the case. We will first discuss this aspect theoretically and

107

Chapter 6. The Claimed Value of Convolutions over User-Item Embedding
Maps

then present the results of two empirical studies. In the first study we show
that changing the input topology (i.e., the ordering of the latent factors) does
not have an impact on accuracy. If the interaction map had local features a
significant drop in accuracy would be expected. The second study consists
of two ablation analyses showing that the correlations between embeddings
do not provide a statistically significant contribution to the accuracy of the
CNN models.

6.4.1 Theoretical Considerations

As previously stated, CNNs were developed to model data that exhibits
feature locality and a strong topology. To assess whether CNNs are an
appropriate tool to be used on interaction maps, we first have to assess
which is the meaning of the topology in an interaction map and why two
points are within or outside each others’ local area.

NDCG HR

MF BPR 0.1576 ± 0.0000 0.2966 ± 0.0000
ConvNCF 0.1623 ± 0.0008 0.3052 ± 0.0019

FM 0.1230 ± 0.0000 0.2234 ± 0.0000
CFM 0.1730 ± 0.0398 0.3155 ± 0.0724

Table 6.2: Averaged performance results (and standard deviations) obtained for 20 per-
mutations of the interaction maps.

Consider three cells of an interaction map E, created via Equation 6.1,
with coordinates (x, y), (x, y + 1), (x, y + 4). If we consider point (x, y),
with a kernel size of 2, (x, y+1) will be in its local area while (x, y+4) will
not. But what is the relation between y, y+1 and y+4? If the embeddings
are created with a typical latent factor model (e.g, matrix factorization or
factorization machines), as done in two of the analyzed papers, the answer
is that the latent factors y and y + 1 are direct neighbors in the embedding
vector, while y and y + 4 are not.

The question now is whether the position of the latent factors has a spe-
cific meaning. If we look at typical matrix factorization algorithms, such as
MF BPR or iALS, we can see that a prediction is computed as follows [96].

r̂ui = pTu · qi =
K∑
k

pu,k · qi,k (6.2)

Here, r̂ui is the predicted relevance for user u on item i, pu and qi are the
user and item embedding vectors, and k is the latent factor index.

108

6.4. Analysis

From Equation 6.2, we see that the ordering of the latent factors has no
impact on the prediction, and the model only requires a biunivocal corre-
spondence between the columns of P and Q, regardless of their relative
ordering. Such a lack of a natural ordering of the latent factors is common
to many matrix factorization algorithms including MF BPR, AsySVD, and
iALS [61, 96]. Only for some techniques, like PureSVD [33], the latent
factors are ordered according to the decreasing singular value they are as-
sociated with. Due to this lack of a natural ordering, the specific arrange-
ment of the latent factors is mainly a contingent property and a multitude
of equivalent models can be learnt from the same data due to the stochas-
tic nature of the training process. Each permutation of the ordering of the
factors leads to an equivalent matrix factorization model but to a different
interaction map, which will exhibit different local features. Consider two
randomly created vectors u and v of length 10 (Figures 6.1 and 6.2) and two
permutations of the same vectors (Figures 6.4 and 6.5), where darker cells
indicate higher values. It can be easily seen that the interaction map of the
original vectors (Figures 6.3) and the one of the permuted vectors (Figures
6.6) do not have any identifiable pattern in common. This lack of a natu-
ral ordering provides evidence that the interaction map is not analogous to
an image because it does not exhibit spacial locality (i.e., meaningful local
features). This means that the main claim justifying the use of CNNs in the
original articles is unsound.

6.4.2 Experiment Configurations

In our two studies, we used the same experimental designs as in the original
papers. In particular, we used the original code, data, data splits, as well
as hyperparameters that were provided by the authors (see Chapter 4). To
determine the number of epochs, which is not usually reported, we apply
early stopping.

ConvNCF was evaluated on Yelp dataset. The algorithm code and the
data split for the Yelp data was published by the authors. MF BPR
was used to pretrain the latent factors.

CFM was tested on Last.fm dataset. The code and the preprocessed data
split for Last.fm were provided by the authors. The latent factors were
pretrained using a Factorization Machine.

CoupledCF was tested on the MovieLens1M dataset, which also contains
side information about users and items. CoupledCF, as stated above,
does not use pretrained models but learnable embeddings.

109

Chapter 6. The Claimed Value of Convolutions over User-Item Embedding
Maps

In all original papers the authors use a leave-one-out evaluation proce-
dure. In two cases a number of randomly sampled negative items (e.g., 99
for CoupledCF) were ranked with the true positive. The Hit Rate (HR) and
the NDCG are used as evaluation measures in all papers, using different
cutoff lengths. Due to the leave-one-out procedure, other metrics like Re-
call, Precision and F1 are linearly correlated to HR. In our evaluation we
applied, for each algorithm, its specific evaluation setting as described in
the original paper.

6.4.3 Varying the Input Topology

In our first experiment, we varied the topology of the inputs (i.e., the order
of the latent factors) which are fed to the CNN. Given our theoretical con-
siderations from Section 6.4.1, altering the topology should have virtually
no impact on the model quality because the topology of the interaction map
does not provide any relevant information. To empirically validate this con-
sideration, we designed the following experiment for the approaches that
use pretrained embeddings (ConvNCF and CFM).

First, we pre-train the embeddings as done in the original articles, i.e.
using either MF BPR or factorization machines. We then create 20 equiva-
lent pre-trained models by randomly permutating the positions of the latent
factors. Each permutation will lead to different interaction maps (see Fig-
ure 6.7). For each of these permutations, a convolution model is trained,
and the quality of each resulting model is evaluated based on the measures
used in the original papers (HR and NDCG) at cutoff 10.

The results of this experiments are reported in Table 6.2. We report both
(i) the results for the model without the CNN layer (MF BPR and factoriza-
tion machines) and (ii) the results for the full model (ConvNCF and CFM).
For each algorithm, we report the averaged accuracy and the standard devi-
ation resulting from the 20 permutations. The following observations can
be made.

• For the “plain” MF BPR and factorization machines models, the stan-
dard deviation is zero, as expected by definition from Equation 6.2.
However, also for the CNN-based models, the standard deviation is
almost zero. This confirms that changing the input topology has no
relevant impact on the results, indicating that the order of the latent
factors, as expected, does not matter and no local features can exist in
the interaction map. Note that statistical tests like the t-test cannot be
applied when the variance is zero.

110

6.4. Analysis

• The CNN models show improved accuracy over the pretraining mod-
els, when both are optimized as in the original paper. For the Con-
vNCF, the gains are tiny, i.e., we could not reproduce in our exper-
iments that the CNN adds much value. For the CFM model, which
applies a more complex preprocessing step, improvements over the
plain Factorization Machine model could be reproduced. These gains,
however, cannot be attributed to the fact that the interaction maps can
be considered as images (given the irrelevance of the ordering of the
“pixels”). To put these observed gains into perspective, we should
stress that, as demonstrated in Sections 5.9 and Table 6.1, even de-
spite this improvement, neither ConvNCF nor CFM are competitive
against simple baselines.

Algorithm Mode Study 1 Study 2
NDCG HR NDCG HR

ConvNCF full 0.1623 ± 0.0008 0.3052 ± 0.0019 0.1623 ± 0.0008 0.3052 ± 0.0019

ConvNCF element-wise 0.1622 ± 0.0008 0.3051 ± 0.0016 0.1632 ± 0.0012 0.3068 ± 0.0015
ConvNCF correlations 0.0193 ± 0.0076 0.0403 ± 0.0150 0.1522 ± 0.0013 0.2900 ± 0.0020

CFM full 0.1730 ± 0.0398 0.3155 ± 0.0724 0.1730 ± 0.0398 0.3155 ± 0.0724

CFM element-wise 0.1730 ± 0.0398 0.3155 ± 0.0724 0.1805 ± 0.0034 0.3292 ± 0.0062
CFM correlations 0.0015 ± 0.0003 0.0032 ± 0.0008 0.0011 ± 0.0001 0.0019 ± 0.0002

CoupledCF full 0.5272 ± 0.0491 0.7865 ± 0.0470 0.5272 ± 0.0491 0.7865 ± 0.0470

CoupledCF element-wise 0.5404 ± 0.0631 0.7744 ± 0.0994 0.5763 ± 0.0059 0.8243 ± 0.0071
CoupledCF correlations 0.5137 ± 0.0903 0.7822 ± 0.0659 0.5503 ± 0.0343 0.7978 ± 0.0391

Table 6.3: Results of Study 1, evaluating the contribution of each component of the inter-
action map to a model trained on the full map and Study 2, evaluating the contribution
of training on different parts of the interaction map. Significant improvements over the
full map are in bold.

6.4.4 Ablation Studies

The results shown in Table 6.2 indicate that, despite not being competitive
against several simple baselines, the CNN layer, at least in one of the cases,
has a positive effect on the overall performance. According to our theoreti-
cal considerations, these gains cannot stem from leveraging correlations in
the embeddings as claimed in the papers, but might be merely the result
of adding a neural network layer to the pretraining model, which acts as a
universal approximator.

111

Chapter 6. The Claimed Value of Convolutions over User-Item Embedding
Maps

Study 1 In order to measure how much the CNN model has learned to
represent the embeddings correlation, we designed a novel type of abla-
tion study, which was not part of the original papers. We started from the
models previously trained on the full interaction map, but we computed the
recommendations using only certain interaction map components.1

Remember that the correlations in the embeddings are represented by
the elements of the interaction map (Equation 6.1) that are not on the main
diagonal. The following configurations were tested:

• full : This corresponds to the original setting.

• element-wise: Only the element-wise products (i.e., main diagonal)
are considered.

ex,y =

{
pu,x · qi,y if x = y
0 otherwise.

• correlations: Only the embeddings correlations (i.e., off-diagonal) are
used.

ex,y =

{
pu,x · qi,y if x 6= y
0 otherwise.

The results of this ablation study are reported in Table 6.3. They show
that there is no statistical difference between the models evaluated by com-
puting the recommendations using the full interaction map and when only
using the element-wise product (diagonal elements). The statistical sig-
nificance of the difference between the observed results with α=0.05 was
verified using a paired t-test if the values were normally distributed; and a
Wilcoxon signed-rank test otherwise. To assess if the values of the met-
rics are normally distributed we used both Shapiro-Wilk and Kolmogorov-
Smirnov tests [94].

In other words, all models have learned that the off-diagonal correlation
elements are not contributing anything to the overall performance. Inter-
estingly, when the recommendations are computed using only the embed-
dings correlation, the observed results for ConvNCF and CFM are lower
by at least an order of magnitude. For CoupledCF, the accuracy obtained
with the embeddings correlation is similar to the full interaction map so, al-
though the model has learned to use the embeddings correlation, this does
not improve the model quality. Overall, the results clearly indicate that the
convolutional models are not learning to represent the embeddings corre-
lation when those are pre-trained (i.e., ConvNCF and CFM), and are not

1For CoupledCF, which does not use pretrained embeddings, we trained and evaluated the model on 20
random training-test splits.

112

6.4. Analysis

befitting from them even when they are learnable (CoupledCF), which is
in direct contradiction to what stated in the original articles. Furthermore,
it should be considered that since a similar ablation study was not present
in the original papers, the contribution of the embeddings correlation to the
convolution model was never directly measured.

Study 2 In Study 1, we observed that training the model on the full interac-
tion map resulted in the embeddings correlation not contributing to improve
performance over the simple element-wise product. The models either did
not benefit from the added parameters (CoupledCF) or actively learned to
ignore the correlations (ConvNCF and CFM).

While in Study 1 we trained the model on the full interaction map, in
Study 2, we isolate the different components of the interaction map at an
earlier stage, during the training phase, i.e., we do not train the network on
the full map as in Study 1.

In this new experiment, different models are therefore trained from scratch,
using only the interaction map component associated with a given config-
uration (i.e., full map, element-wise, correlations). As a result, a model
trained only on the element-wise product will never observe embeddings
correlation and vice versa. This should allow to have a clearer idea of how
much of each component the convolution algorithms can actually learn to
model when the other is not present.

The results of Study 2 are also reported in Table 6.3. Since the training
data (i.e., interaction map) fed to the CNN in Study 2 and Study 1 are differ-
ent, it is expected that the absolute values of the measurements are differ-
ent. However, we can again observe that the results obtained when training
the convolution model on the full interaction map and on the element-wise
product are not different to a statistically significant extent for ConvNCF
and CFM. The convolution operation is therefore not leveraging the embed-
ding correlations in any effective way. As a result, these correlations can be
discarded entirely during the training phase without degrading the model
performance. Remarkably, for CoupledCF we can observe that training
the model on the element-wise product alone results in significantly better
results then using the full map. It should be noted here that CoupledCF
does not use pretrained embeddings but learns them during the train pro-
cess. This makes CoupledCF complementary with respect to ConvNCF and
CFM. While the original CoupledCF paper stated that the model was able
to leverage the embeddings correlations, our results suggest that the addi-
tional parameter space introduces noise actively harming the model quality.

Interestingly for ConvNCF and CoupledCF, different from Study 1, we

113

Chapter 6. The Claimed Value of Convolutions over User-Item Embedding
Maps

can see that training the convolution on the embeddings correlation ele-
ments alone now yields results that are very close to those obtained when
using the full interaction map. This suggests that the pretrained embed-
dings in ConvNCF do indeed carry some information that can, to an extent,
be modeled. Similarly, CoupledCF can learn some correlations although
with a rather high standard deviation. However in none of those cases the
CNN models are, as previously demonstrated in Study 1, able to leverage
correlations to improve the accuracy obtained on the element-wise product
alone. There can be different reasons for this. First, it might be that the
convolution on the full map was only able to model information that was
redundant and already captured by the element-wise model. An alternative
explanation is that the CNN model did not succeed in hybridizing these two
pieces of information in a synergistic way, i.e., it only learned to select the
best-performing or the less noisy one.

6.5 Summary

In this Chapter, we have analyzed recently published proposals of using
CNNs on the interaction maps obtained from user and item embeddings.
We have argued that the original articles lacked a proper discussion on two
crucial claims they made: the analogy of embeddings and images, and the
ability of CNNs to model embeddings correlations. Our work has shown
both through theoretical considerations and through empirically studies that
embeddings do not share the topological properties of images. The use of
CNNs is therefore not well justified. We have also shown that CNNs, as op-
posed to what claimed in the original articles, are insensitive to the embed-
dings correlation and fail to improve over a model only using the element-
wise product. While we do not argue that convolution cannot be applied on
embeddings, we stress that a deeper understating and theoretical analyses
of the semantics that new approaches are claimed to leverage are essential
to obtain reliable progress in this field. Similarly, claims regarding the im-
proved modeling capacity of an algorithm cannot be based simply upon its
ability to outperform a set of baseline algorithms and datasets whose choice
is not well justified. Again, for all the CNN models we could find the orig-
inal comparison included only poorly optimized baselines. Instead, these
aspects should be directly verified via specifically designed experiments.

114

CHAPTER7
Result overview and discussion

In this Chapter we will provide an overview of the detailed results reported
in Chapter 5 as well as a discussion on their implications along three main
dimensions: reproducibility of published research, methodological aspects
of the evaluation protocol and scalability. Lastly we discuss some limi-
tations of this study. Overall the experimental evaluation reported in this
study required significant computational effort. Considering all baselines
and reproducible deep learning algorithms, due to the number of differ-
ent datasets and preprocessing procedures, we report the recommendation
quality of more than 900 models. When taking into account the hyperpa-
rameter tuning procedure, 41,000 models were fitted, corresponding to a
total computation time of 253 days for a specific Amazon AWS instance.1

7.1 Reproducibility

As was previously discussed in Chapter 3, only 50% of the relevant algo-
rithms could be reproduced according to our specific definition of repro-
ducibility. We will now provide a discussion along two main dimensions

1The computation time refers to the total instance time for one AWS instance p3.2xlarge, with 8 vCPU, 30GB
RAM, and one Tesla V100-SXM2-16GB GPU

115

Chapter 7. Result overview and discussion

which had a strong impact on this result: the availability of the original
implementation and the reachability of the original authors to answer ques-
tions.

7.1.1 Artifacts not available or not working

We will now provide a brief discussion on the availability of the artifacts
(i.e., source code and data) for the non reproducible articles. We can divide
them in three groups:

• Source code available: 1

• Source code available but not working: 4

• Source code not available: 7

Only one of the non reproducible articles has a publicly available and
executable source code, the data however is not available due to, as stated
by the authors, Copyright reasons.

For the algorithms where the source code was available but could not be
used, the main issues were: lack of documentation on how to compile it,
missing dependencies, missing training loop and no detail on the data struc-
tures required. We should mention here that those issues were such that we
could not find a way to address them ourselves without extensive reverse-
engineering of the available source code. In some cases the Github reposi-
tory listed issues similar to the ones that prevented us from using the source
code that went back even 3 years at the time of our analysis, but were left
unanswered. It is important here to mention that providing the source code
for a newly published method should be done in a way that allows other
researchers and practitioners to use it effectively even after a few years.
Sharing the code without any documentation on how to use it and precise
information on the dependencies, in a very short amount of time becomes
equivalent to not providing anything at all. This is in part due to the rapid
succession of versions for many commonly used deep learning frameworks
which are now being updated and replaced with incredible speed. Consider,
for example, Keras. The version 1.0.0 of Keras was released on April 2016.
Less than a year later, in March 2017, Keras 2.0.0 was released, including
several changes making it incompatible with Keras 1. Another year later
the version was 2.1.5. Each of these many updates runs the risk to alter the
behavior of the original source code, e.g., introducing slight functionality
changes, maybe the original code did not use the library as per specifica-
tions relying on deprecated functions and the new version removes them,

116

7.1. Reproducibility

or a newly introduced bug. As another example consider numpy, an om-
nipresent numerical library for Python. When version 1.16 was released
it included a slight change in the internal hierarchy of the classes, which
did not alter the interface and functionality. However, any numpy data (i.e.,
data split, recommender model) that was saved using the common pickle li-
brary, which serializes the entire python object, became unreadable because
the numpy class hierarchy was different. This is an issue we encountered
ourselves and caused significant disruption to our experimental activities
since due to the intricate dependencies several libraries have with numpy
it proved to be extremely difficult to obtain a consistent environment using
version 1.15. Even after a couple of years it may become very challeng-
ing to reconstruct a consistent and correct environment in which to execute
past algorithms, if the original documentation and dependencies were not
provided with sufficient detail. Remarkably we found instances where the
publicly available source code could not be executed because it contained
errors, missed functions or library dependencies that we could not resolve.
In all those cases the public repository was probably created by selecting
from another project (i.e., the one used for the original experiments) but
then was never tested. In all these cases we contacted the authors for assis-
tance but we only received one reply, where the authors stated they could
not share a more complete version of the source code at that time.

Lastly for a third of the relevant articles we could not find a publicly
available implementation and could not obtain one from the original au-
thors. In half of those cases the original authors did not reply to our request.
The algorithms in question were published one per year from 2015 to 2018.
In the other half of cases we received a reply from the authors stating the
code could not be shared. In two of those cased the authors did not pro-
vide any motivation for this, while in the other two the source could not
be shared due to a non-disclosure-agreement and the source code had been
deleted. These findings are similar to those of Stodden [107]. While we
can understand that 4 years after the publication of an article the original
materials may not be available anymore, this is much less understandable
for an algorithm published only one year prior, in 2018.

It is clear that providing a publicly available implementation of an algo-
rithm including at least minimal documentation requires extra work which,
due to the current incentive structure for publication, may not be perceived
as necessary, as was also pointed out by Collberg et. al [26]. Researchers
may be encouraged to provide a public implementation which may even
be a requirement during the review process (e.g., as in KDD), but seldom
would this code be actually tested and executed by the reviewers, much

117

Chapter 7. Result overview and discussion

less analyzed for issues or information leakage. Even if the reviewers did
indeed try to use the provided implementation, it is difficult to imagine a
reasonably well-written paper be rejected only because the reviewers were
not able to use the provided source code. It must be remembered that the
publicly provided implementation should be treated as a proof of concept
and not as a production-grade highly engineered solution. Therefore we
cannot ask researchers to spend the significant amount of time that would
be necessary to ensure their implementation works transparently across a
multitude of systems. However, as a way to mitigate this, the use of vir-
tualization could be helpful, allowing to create a controlled environment
everyone could use. This would also enable a reviewer to check the pro-
vided materials more easily, but probably only in terms of whether the
source code executes. Several obstacles would still be present, e.g., long
run times, need for specialized hardware or high end GPUs. Moreover,
some other problems will remain undiscovered as they would require an
in-depth analysis of the provided materials, e.g., errors in the data process-
ing, accidental information leakage, poorly optimized baseline algorithms.
It is probably unsustainable to ask reviewers for such analysis. Therefore,
addressing those further problems may be only possible if evaluation and
reproducibility studies like ours were to become more common in our re-
search community.

7.1.2 Difficulty to contact the authors

Another important dimension to consider in order to understand the low
number of reproducible papers is the reachability of the original authors to
answer questions.

We sent a number of emails to the authors of most of the articles which
are discussed in this paper. In Table 7.1 we report an overview of those
interactions along two dimensions: the columns refer to the reason for our
request and the rows to how successful the interaction was. The column
Reproducibility issue refers to issues preventing the article from being con-
sidered reproducible as per the definition we have adopted for this study
(i.e., missing or incomplete artifacts). The column Methodology question
refers instead to questions arising from the analysis of the materials pro-
vided by the authors (e.g., the data splits characteristics, epoch selection
criteria). Now we will discuss both those cases in detail.

Concerning the Reproducibility issue questions we sent 15 emails in to-
tal, while for the 9 remaining articles we could immediately reproduce the
results and did not require the original author’s assistance. In case the au-

118

7.1. Reproducibility

thors replied to our request and the issue could be solved the algorithm is
classified as reproducible. Those cases all concerned algorithms for which
the source code was not publicly available but was kindly provided to us
upon our request. The algorithms in question were published in 2017 and
2018.

In the second case, the authors did provide a reply but that did not allow
us to address the issue. In 4 of those cases we requested the source code
while in 1 of those we requested the private data. Lastly, in almost half of
the cases we received no reply, despite sending our email to all the authors
(often several) of the article. It should be noted that in two further cases
we received a reply several months later, only after the paper reporting our
results had been published or the preprint made publicly available. We did
not include these replies in the current analysis for three reasons. Firstly, it
violated our own methodology which sets a waiting time of 30 days. Sec-
ondly, while we believe in the importance of being flexible and understand-
able, we received those replies only after this study was already complete.
Lastly, the publication of the reproducibility study would of course change
the incentive the original authors have to engage in a conversation with us.

Concerning the Methodology questions we sent 8 emails, it is significant
to observe that we could not answer any of them (e.g., data splitting proce-
dure, epoch selection criteria). The only replies we received did not help us
in addressing the issue or clarifying our doubts. In some cases we were able
to engage in a constructive conversation with the authors while in others we
received short replies but we could not progress further. Remarkably, in 5
out of 8 cases we received no reply.

Reproducibility
issue

Methodology
question Total %

Reply received, issue addressed 3 0 3 13%

Reply received, issue not addressed 5 3 8 35%
Reply not received 7 5 12 52%

No email sent 9 4

Total 24 12 23 100%

Table 7.1: Overview of our attempts to contact the authors of the original articles for two
different types of requests, indicating whether we received a reply and, if so, whether
we were able to successfully address with the authors the subject of our request. In
summary we could address the issue in only 13% of cases and we received a reply at
all in only 48% of cases.

To summarize, we tried to contact the authors of 23 out of the 24 total
articles we analyze in this study. It is remarkable to observe that in only 11

119

Chapter 7. Result overview and discussion

(48%) cases we received a reply at all and that in as little as 3 (13%) cases
we could successfully address the question that was asked. These results are
comparable in terms of the number of replies received but actually far worse
in terms of their helpfulness then those reported by Collberg et. al [26] and
Raff [94]. In our experience therefore, asking the authors for clarification
was not a reliable and effective way to gather information mostly due to
the low tendency the authors have in replying to our emails. While in some
cases a few of the email addresses reported in the article were not active
anymore, all articles had at least one that was still active. Aside from that
we cannot know for certain which are the reasons for this lack of replies,
but we can imagine several phenomena may contribute. For example, the
implementation and experiments may have been done by a Ph.D. student,
which, by the time the article is published and becomes known, may have
graduated and concluded his/her academic career and have no interest in
replying. Moreover, the increasing pressure to publish may contribute to a
lack of interest in looking back to spend time discussing two or three years
old articles, which may not have received many citations or may not be an
active research topic anymore. Lastly, it is certainly possible that after a
few years the original source code and data may not be available anymore
if they were not archived properly and the memory of how certain things
were done, when they were not described in the paper, could fade.

It is of course not possible to improve the reply rate of other researchers,
but it is indeed possible, as a community, to take steps that will reduce
the need for such requests in the first place. This boils down again to the
improvement of the reproducibility of published research. As a way to
overcome the issue we can only encourage the authors to provide as much
relevant information as possible on the experimental protocol, possibly via
public repositories, to ensure that the relevant knowledge on their work is
not lost with time. It is especially in the interest of the research community
to preserve track of its efforts for the benefit of everyone.

7.2 Methodological Issues

In Chapter 5 we have provided a detailed analysis of the reproducible arti-
cles and listed both the evaluation protocol as well as the methodological
issues we found, see Table 7.2. In this section we will try to categorize
those issues an provide further discussion on them.

120

7.2. Methodological Issues

Methodological issue Paper

Stating the use of default hyperparameters for baselines [125] [133] [131] [60]
Provided data splits inconsistent with the description [57] [125] [131] [56] [134]
Number of epochs selected using test data [57] [133] [131] [23] [56] [60]
Epoch selection criteria not described [119] [72] [42]
Only one set of hyperparameters selected for multiple datasets [119] [72] [134]
Others [131] [56] [60]

Table 7.2: Summary of the methodological issues we found for the reproducible articles

7.2.1 Arbitrary experimental design

In our analysis we encountered a wide variety of experimental designs in
terms of datasets, preprocessing, training-test splits, evaluation metrics and
cutoffs. In this section we report a summary of the evaluation methodol-
ogy used in the reproducible papers. Table 7.3 reports for each paper the
datasets and training-test split used for the evaluation. It is possible to see
that most articles use unique evaluation protocols and there are never more
than two articles using the same one.

In terms of training-test split leave-one-out is used by 6 articles, of which
half select a random interaction and half the last interaction. Holdout is
used by 3 articles with the same 80/20 % split. The remaining papers use
less common splitting methodologies like keeping a fixed number of in-
teractions as training data or a cold user evaluation. We can also see that
7 articles rank the positive item with a certain number of negative items,
sometimes 99, 100, 999 or 50 per each positive. In terms of the datasets,
Table 7.4 lists all datasets with the papers using them. We can count 18
different datasets, with 10 of them being used only once and 6 of them be-
ing used only twice. On average, each dataset is therefore used by only 1.5
articles.

A further dimension to consider for the datasets is the preprocessing
applied. A common preprocessing step involves the removal of items or
users with less than a certain number of interactions: 2, 5, 10, 20. An-
other common preprocessing is binarizing explicit ratings, sometimes all
of them, otherwise only if they exceed a given threshold. In some cases
both preprocessings are combined resulting in a reduction of the size of
the dataset by more than 80% or even 90% (e.g., see Sections 5.4 and
5.8) altering significantly the used dataset to the extent that it may have
completely different characteristics. These aggressive preprocessings are
almost never motivated besides for generic statements regarding the data
being too sparse. The criteria used to decide whether a dataset is too sparse
is, however, never stated. Furthermore, as is discussed in Section 7.3, Table

121

Chapter 7. Result overview and discussion

7.7, it is easy to find other articles using datasets whose sparsity is orders of
magnitude higher. It certainly stands to question whether articles applying
such drastic alterations to the data could claim, as some do, to be evaluated
with real-world datasets.

It is worth here to refer again to the findings of Rendle et al. [97], where
it was observed the reported results for the baselines on a widely known
dataset were often suboptimal. If it was possible to report suboptimal base-
lines, without anyone noticing, for a widely known dataset, other evalua-
tions executed on less known or aggressively preprocessed datasets are even
more prone to unreliable results going undetected.

Paper Datasets Split

CMN Epinions, CiteULike-a, Pinterest leave-one-out, 100 negatives
SpectralCF MovieLens1M, HetRec, AmazonInstantVideo holdout 80/20
MCRec MovieLens100K, LastFM, Yelp holdout 80/20, 50 negative per positive
CVAE CiteULike-a, CiteULike-t train 1 or 10 interactions
CDL CiteULike-a, CiteULike-t, Netflix Prize train 1 or 10 interactions
NeuMF MovieLens1M, Pinterest leave-one-out, 100 negatives
Mult-VAE MovieLens20M, Netflix Prize, MSD cold user, holdout 80/20 profile
ConvNCF Gowalla, Yelp leave-last-out, 999 negatives
NeuRec MovieLens1M, MovieLens Hetrec, FilmTrust, Frappe holdout 80/20
DMF Amazon Music, Amazon Movie, MovieLens100K leave-last-out, 99 negatives
CoupledCF MovieLens1M, Tafeng leave-one-out, 99 negatives
DELF Amazon Music, MovieLens1M leave-last-out, 99 negatives

Table 7.3: Datasets and training-test split used by reproducible articles

Dataset Paper Dataset Paper

MovieLens1M [134] [57] [133] [131] [23] Amazon Movie [125]
CiteULike-a [42] [72] [119] Epinions [42]
Yelp [134] [60] [56] FilmTrust [133]
LastFM [134] [60] Frappe [133]
MovieLens100K [60] [125] Gowalla [56]
Netflix Prize [119] [73] MovieLens Hetrec [133]
Amazon Music [125] [23] MovieLens20M [73]
CiteULike-t [72] [119] MSD [73]
Pinterest [42] [57] Tafeng [131]

Table 7.4: Datasets used by reproducible papers sorted from the most frequent to the least
frequent

Table 7.5 lists the metrics and recommendation list length (cutoffs) used
for the evaluation. Again, as for datasets and data split, we can see nu-
merous variations. Overall 6 metrics are reported. The most used metric
is NDCG with 9 occurrences, then Recall and HR both at 6. In terms of
cutoffs, most articles use relatively short lists, between 1 and 20 elements,
two articles report up to a 100 elements and only two go beyond that.

This great heterogeneity of evaluation protocols is the product of the

122

7.2. Methodological Issues

great freedom researchers have. The only common theme appears to be
the comparison of the newly proposed model against a selection of base-
lines, datasets, data split protocols, metrics, cutoffs and, remarkably, the
absence of any justification for that choice. Furthermore, we can see that
some algorithms do exhibit a more unusual evaluation protocol than others,
for example by keeping only a fixed number of interactions in the training
data or by fusing a random holdout with the negative item evaluations and
selecting the number of negatives as a function of the number of test items.
Again, even in those cases, no detailed justification is provided for why that
specifically crafted evaluation protocol was adopted.

It is expected that different articles may focus on different scenarios and
therefore will rely on different evaluation protocols. The problem arises due
to the tendency of using different evaluation protocols even for algorithms
that are, according to the description reported in the article, competing in
the same scenario. In all those cases, no reason is provided on why the
evaluation protocol is changed. There is no clear explanation for this phe-
nomena, which may again be due to the contribution of several factors. It is
possible authors are simply relying on previously written evaluation code
which is then re-used for later articles. It could also be that the reported
evaluation protocol may be the one allowing to show the strongest results
for the newly proposed algorithm. Those are, in our view, not issues per-se.
Furthermore, it is expected that different algorithms may exhibit different
relative performance under different evaluation protocols.

The problem arises because most articles propose new algorithms claim-
ing their ability to outperform the state-of-the art in a very general sense
and, in what appears a contradiction, almost inevitably support this claim
evaluating the model in only a very specific condition. This not only relies
on extraordinary assumptions of generalizability for the reported evaluation
results, but also has the effect of creating a level of opacity on which is the
scenario of successful applicability of those new methods, an issue raised
by Christodoulou et. al [24]

As a way to overcome this issues, we can suggest two possible direc-
tions: justify the experimental protocol used and strengthen the generaliz-
ability claims by reporting results on multiple scenarios as well as negative
results.

For the first point, justifying the experimental protocol requires to clarify
the scenario the algorithm has been developed for. This begins with the
choice of the dataset, as different domains will exhibit different behaviors.
Then, the choice of recommendation list length and metrics. For example,
in a scenario requiring to provide a short list of recommendations which

123

Chapter 7. Result overview and discussion

must contain at least a relevant item, one would choose a short list length
and a metric like precision. In a scenario where we want to maximize
the number of retrieved relevant items the evaluation might require longer
recommendation lists and use recall as metric. If the scenario is such that
the user will tend to look and explore the whole recommendation list the
ranking of the items may have limited importance, in other cases instead the
users will tend to only look at the very first positions and therefore ranking
metrics like NDCG or MAP become important.

For the second point, in order to strengthen the generalizability claims,
the evaluation should be done in more varied conditions. This again begins
with the dataset, since one cannot claim a generalizable result if the evalua-
tion is only done on a specific domain like movie ratings (i.e., MovieLens,
Netflix) or with datasets which are just variations of the same data (i.e.,
CiteULike-a and CiteULike-t). Furthermore, the presence of negative re-
sults, i.e., scenarios where the newly proposed algorithm is not competitive
against the state-of-the-art, would be of significant interest. Negative re-
sults, associated with an analysis of how the successful and non-successful
scenarios are different would allow for a more in-depth understanding of
the characteristics of the new algorithm and its potential as well as limi-
tations. This would shed further light on the current state-of-the-art and
allow the community as a whole to have a clearer picture of which are the
scenarios where we are strongest and those where we are lagging behind
and may need further efforts.

Paper Metrics Cutoffs

[42] HR, NDCG 5, 10
[134] Recall, MAP 20 - 100, step 10
[60] Precision, Recall, NDCG 10
[72] Recall 50 - 300, step 50
[119] Recall 50 - 300, step 50
[57] HR, NDCG 1, 5, 10
[73] Recall, NDCG 20, 50, 100
[56] HR, NDCG 5, 10, 20
[133] Precision, Recall, MAP, NDCG, MRR 5, 10
[125] HR, NDCG 10
[131] HR, NDCG 1-10
[23] HR, NDCG 10

Table 7.5: Evaluation metrics and cutoffs used by reproducible articles

7.2.2 Selection and propagation of weak baselines

In our analysis we could observe two very important problems related to the
baselines the new algorithm is compared against: the choice of baseline al-

124

7.2. Methodological Issues

gorithms combined with a lack of optimization. These problems, although
may seem confined to the singe article, have also an impact in later research
papers as weak baselines tend to propagate.

Regarding the choice of baselines we could observe the disappearance
of simple neighborhood-based and non-neural machine learning baselines,
with them being replaced by much newer neural models. Simple baselines
do appear sometimes, in the form of an ItemKNN or BPR matrix factoriza-
tion, but usually their results as reported in the original paper are substan-
tially worse than the ones we could obtain in our experiments.

The lack of simple baselines is especially problematic because, as we
could observe, there is no clear winner between neighborhood-based, non-
neural machine learning and neural algorithms for all datasets. For exam-
ple we could observe that in some datasets neighborhood-based methods
work better than non-neural machine learning while in others the oppo-
site is true (see Section 5.3). This creates obvious problems if a neural
method is compared only against non-neural machine learning baselines
in a scenario where those are not competitive against neighborhood-based
algorithms. Further to this point, we could even observe one case where
the dataset exhibited such a high popularity bias that a non-personalized
baseline was better than all other algorithms (see Section 5.11).

Another critical finding is that, often, those baselines are not optimized
properly. In a number of cases, we could read that the hyperparameters
or many neural baselines were set as in the original article proposing it.
This was done despite the evaluation protocol and datasets used were dif-
ferent. Any algorithm which is not optimized for a specific experimental
configuration will not exhibit its best recommendation quality, of course,
and therefore any comparison made using that result is inconclusive. It is
not sufficient to pick an algorithm and use it, it is essential to optimize it
in order to obtain reliable results. Any comparison made without optimiz-
ing all baselines is meaningless. Similarly, any comparison made using a
model which is missing important parts is again meaningless, for example
using ItemKNN without shrinkage is to be considered as a bad practice.
Unfortunately very few papers provide details on how at least some of the
baseline algorithms have been optimized. While we can say for certainty
that the comparison is meaningless when the paper states that default hy-
perparameters have been used, we are left wondering about those who do
not state anything at all. The reasons why the baselines tend to be not op-
timized can be several. Fist, it can be complicated to acquire a working
implementation of new algorithms, as we have discovered ourselves. The
publicly available materials never include any code to perform the hyper-

125

Chapter 7. Result overview and discussion

parameter tuning and, therefore there is no indication of how it should be
done in terms of the range and sensitivity the algorithm exhibits with re-
spect to each hyperparameter. Finding suitable ranges and distributions as
we did for the baselines may require significant experimentation (i.e., if the
optimal value for a hyperparameter is at one end of the range, the range
should be extended and the tuning executed again). This is significantly
aggravated by the enormous computational cost most neural models have.
According to our experiments, systematic hyperparameter tuning for one
single neural baseline can take several days or even weeks, depending on
the dataset size, even when using modern GPUs.

The combination of those problems creates a cascade effect that propa-
gates further as new articles are published. In Figure 7.1 all reproducible
algorithms analyzed in this study are reported and connected whenever the
latter article uses a previous one as baseline. As we have previously men-
tioned, there is a tendency in the community to disregard simple methods in
favor of more complex ones. If the evaluation of older neural models is not
done properly, those non competitive models will appear to be state-of-the-
art and will be used as baselines in later articles. If those later articles do
not report and optimize properly simple baselines, weak complex baselines
will propagate and result in less challenging baselines for new algorithms to
outperform. In our study we found that CDL was not a strong algorithm in
many cases, but it nonetheless was used as baseline by CDAE which again
was not a strong baseline, that was used by both Mult-VAE and CMN.
The same applies for NeuMF, which is on par or slightly below the simple
baselines we report, and is then used as baseline by all articles published
in 2018. Any article using NeuMF in its default configuration would be
reporting an even lower recommendation quality, therefore much easier to
outperform.

As a way forward for these issues, several suggestions can be made. It
is indispensable to keep as baselines some simple neighborhood-based and
non-neural machine learning models, as well as at least a non-personalized
baseline. This is both because they provide, as we could demonstrate, very
good recommendation quality, and are therefore still state-of-the-art algo-
rithms, but also because they are much faster and easier to optimize than
complex methods. Due to this, they will always constitute a more practical
and reliable minimal set of baselines, on top of which more complex models
can certainly be added. Furthermore, both researchers and reviewers should
ensure all models are properly optimized for the given experimental sce-
nario, and that some details on how the hyperparameters have been tuned is
available in the paper. We stress again that, if the articles mentions default

126

7.2. Methodological Issues

Figure 7.1: Overview of Neural Methods, arrows indicate when a newer method used
another one as baseline in the experiments.

2015 2017 2018

SpectralCF

CDL

NeuMF

CMN

CVAE MultVAE

MCRec

ConvNCF

CoupledCF

DMF

NeuREC

DELF

hyperparameters have been used, that should constitute a strong warning
sign that the evaluation reported in the paper was not done properly. As
mentioned before, ensuring proper optimization of the neural baselines is
challenging both due to the lack of information on how to do that and due to
the high computational cost. As a way to mitigate this phenomena, having a
publicly available predefined training-test split for various datasets with as-
sociated baselines and results would avoid the need for every researcher to
run the optimization from scratch. Such public repository would be useful
to ensure full comparability between the results of newly proposed methods
and could be incremented by each new article published using it.

7.2.3 Errors and information leakage

As we have summarized in a subsection for each of the algorithms we an-
alyzed in Chapter 5, a multitude of bad experimental practices or errors in
the evaluation protocol were found.

Table 7.3 summarizes the methodological issues we discovered and that
are described in detail in each algorithm’s result section. As we have pre-
viously described, we can see that four articles explicitly state that they

127

Chapter 7. Result overview and discussion

use default hyperparameters for the baselines. Furthermore, three articles
adopt an uncommon evaluation protocol without sufficient justification and
discussion.

Specifically referring to errors in the evaluation procedure, we can see
that almost half of the articles, five, have made data splits publicly avail-
able that are inconsistent with the description provided in the paper. In
some cases, this inconsistency is found at the preprocessing stage, as the
data contains users and items with less than the minimum number of in-
teractions reported in the article. In other cases the inconsistency is found
in the training-test split. Rather frequently, the set of negative items to be
used in the evaluation contains duplicates or overlaps with the train or test
data, in such a way that the items there present are not real negative items.
Lastly, in a remarkable case, the distribution of the test data proved to be
different from the training data an likely the result of an erroneous splitting
procedure.

Another common issue we found is the lack of a proper way of selecting
the number of epochs the newly proposed algorithm will need to be trained
for. The cases we observed are tree:

• The source code contains the training loop in which the model is also
evaluated. The model is evaluated on the test set at each epoch and
that result is used to select the optimal number of epochs. This causes
information leakage from the test data obfuscating the real generalis-
ability of the original model and inflating its performance when com-
pared to other models whose training does not contain information
leakage.

• Similarly to the previous case, the model is evaluated on the test data
at each epoch. However, even more remarkably, the reported results
are not associated to a specific epoch. Rather, for each metric the
best value is reported. This not only means that there is information
leakage from the test data, but also that the results reported are incon-
sistent as each metric may reach its optimal value at a different stage
in the training process.

• Lastly, when none of the previous issues could be observed, in all but
few of the remaining articles we could not discern any criteria for the
selection of the number of epochs. In the few papers motivating the
choice of the number of epochs, a plot reporting the variation of the
training and validation loss was usually reported. In the other articles,
the number of epochs (ranging from 30 to 1000) was not motivated

128

7.2. Methodological Issues

or even mentioned if not for being present in the source code. This
too, we argue, is a bad practice for the following two reasons: first,
it is not a transparent stopping criteria and may hide the selection of
such fixed number of epochs using the test data as well as other is-
sues; second, it does not provide any information to other researchers
regarding the training behavior of the algorithm, like how quick its
convergence is and how variable its recommendation quality is during
training. Clearly different algorithms will exhibit different behaviors,
this is confirmed by the fact that the number of training epochs we
found in the source code ranges from 30 to 1000 depending on the
algorithm.

Another issue we encountered, although to a lesser extent, is the report-
ing of only one set of hyperparameters for the proposed neural model even
though the evaluation is reported on multiple datasets. As we have dis-
cussed previously when talking about baselines, any comparison in which
the algorithm has not been optimized for the specific dataset is mostly
meaningless. As an additional problem, none of those articles stated on
which datasets those hyperparameters were optimized so a reader and a re-
viewer would not know how were those values obtained and which of the
experiments reported in the article is unreliable. The only way to address
this issue is to make sure that all algorithms, both the baselines and the
newly proposed one, are optimized fairly and consistently for all experi-
ments.

In three cases the metrics implemented in the articles were incorrect and
the results reported in the original paper were therefore not correct. Only
one of such cases is present in Table 7.2, since in the other two the authors
later published a correct implementation and the corresponding results on
the public repository, showing that the relative performance of the models
was not changed.

The last issue we encountered is in the justification and proper demon-
stration of the claims made in the article. We refer to the use of CNNs to
learn embeddings correlations. In those cases, the appropriateness to use a
technique developed for other types of data was not unequivocally demon-
strated. Furthermore, the claim that CNN allows to learn embedding cor-
relations was not supported by a specifically designed evaluation protocol,
but rather by a simple comparison against other baselines. As previously
described and demonstrated, the comparison was meaningless as plenty of
other factors would have played a role in the results and, in the end, we
could demonstrate that the CNNs are not able to model the embeddings
correlations in interaction maps.

129

Chapter 7. Result overview and discussion

7.3 Scalability

In this section we provide an overview of the computation time of all the
algorithms we analyze, and compare it with the baseline models. As de-
scribed in Section 4.3.3, we report the training time of the model, the time
required to compute all the recommendation lists during the evaluation as
well as the throughput, i.e., the number of recommendation lists that can be
generated per second.

In order to read these results correctly, we first provide some further
details on the measurements and their limitations.

All measurements refer to a specific Amazon AWS instance.2 All neural
algorithms were executed on the GPU, with the only exception of CDL (see
Section 5.1), while all baseline algorithms were executed only on the CPU.

In terms of the training time, the implementations of the baseline algo-
rithms vary in terms of efficiency. Some use standard solvers (PureSVD,
NMF, SLIM ElasticNet), others are written in Cython3, i.e., in C, and com-
piled (KNNs, MF BPR, FunkSVD, SLIM BPR), others are written in plain
Python with vectorised operations (P3α, RP3β, iALS, EASER), some are
single core, others take advantage of multithreading. Furthermore, the mea-
surements will also be affected by the stochastic nature of the Bayesian
Search which could select different hyperparameters for the same algo-
rithm (e.g., number of latent factors or neighbors) and dataset or by the
preprocessing of the dataset altering its size significantly. Similarly the
deep learning models are implemented in Tensorflow or Keras and with
varying degrees of efficiency. Due to this heterogeneity the computational
time measurements should not be taken as exact measurements but rather
as a qualitative comparison.

Regarding the recommendation time and throughput, it should be noted
that the computation of the top-k recommendation list requires two steps,
first computing a score for each item and then ranking the items. The first
step, computing the scores of the items, is done for each algorithm inde-
pendently and mostly in different ways. The second step, ranking the items
given their score, is instead done by a specific function of our recommen-
dation framework (see Section 4.5), therefore this step will be common
to all algorithms. The computation cost of ranking the items is, on aver-
age, constant. Due to this it will dominate the total recommendation time
for algorithms generating the scores very quickly. This is the reason why,

2The computation time refers to the total instance time for one AWS instance p3.2xlarge, with 8 vCPU, 30GB
RAM, and one Tesla V100-SXM2-16GB GPU.

3https://cython.org/

130

https://cython.org/

7.3. Scalability

for example, the non-personalized TopPopular and the neighborhood-based
models often have very similar throughput. When comparing algorithms
from different papers, it should also be taken into account that, in some of
those, the algorithm computes the scores for all items, while in others, only
the scores of a subset of items (i.e., negatives and test items).

Table 7.6: Overview of train and recommendation time for the analyzed neural algorithms
compared with the best performing baseline method.

Dataset Algorithm Training time
Recommend.

Time
Throughput

[usr/s]

CMN Pinterest RP3β 9.23 [sec] 1.50 [min] 608
CMN 7.81 [hour] 5.90 [min] 156

SpectralCF MovieLens1M SLIM ElasticNet 1.15 [min] 34.91 [sec] 169
SpectralCF 37.40 [min] 21.55 [sec] 280

MCRec MovieLens100K SLIM ElasticNet 11.45 [sec] 1.09 [sec] 862
MCRec 2.36 [hour] 2.76 [min] 6

CVAE CiteULike-a
P=10

ItemKNN CBF 8.61 [sec] 14.66 [sec] 347
CVAE 1.27 [hour] 21.33 [sec] 241

CDL CiteULike-a
P=10

ItemKNN CBF 8.61 [sec] 14.66 [sec] 347
CDL 1.51 [hour] 15.26 [sec] 337

NeuMF Pinterest RP3β 17.95 [sec] 7.22 [min] 126
NeuMF 1.94 [day] 1.94 [hour] 8

Mult-VAE Netflix Prize SLIM ElasticNet 8.22 [hour] 1.16 [min] 580
Mult VAE 1.26 [hour] 1.36 [min] 491

ConvNCF Gowalla UserKNN CF 24.25 [sec] 2.68 [min] 322
ConvNCF 12.43 [hour] 3.90 [min] 232

NeuRec MovieLens
HetRec

SLIM ElasticNet 5.17 [min] 42.49 [sec] 49
INeuRec 13.93 [hour] 35.26 [sec] 60
UNeuRec 20.71 [hour] 39.53 [sec] 53

DMF MovieLens1M
SLIM ElasticNet 3.41 [min] 14.18 [sec] 425
DMF NCE 7.77 [day] 9.15 [min] 11
DMF BCE 4.07 [day] 8.05 [min] 12

CoupledCF MovieLens1M
SLIM ElasticNet 2.86 [min] 14.69 [sec] 402
DeepCF 1.08 [hour] 25.05 [sec] 241
CoupledCF 3.90 [hour] 34.18 [sec] 177

DELF MovieLens1M
SLIM ElasticNet 19.23 [min] 5.19 [sec] 354
DELF MLP 3.45 [hour] 9.22 [min] 11
DELF EF 6.69 [hour] 9.18 [min] 11

In Table 7.6 we compare the training time and throughput for all neural
algorithms with the best performing baseline on the dataset with the highest
number of interactions, the statistics of the dataset are reported in Table 7.7.
The baseline is selected as the one with the highest recommendation quality
on the most metrics-cutoff measurements on that dataset. In case of ties, the
faster baseline is selected. The complete measurements for all algorithms

131

Chapter 7. Result overview and discussion

Table 7.7: Overview of the size and density of the datasets reported in Table 7.6.

Algorithm Dataset Interactions Items Users Density

CMN Pinterest 1.5 M 9.9 K 55.1 K 2.7 · 10−3

SpectralCF MovieLens1M 226 K 3.7 K 6.0 K 1.0 · 10−2

MCRec MovieLens100K 100 K 1.6 K 0.9 K 6.3 · 10−2

CVAE CiteULike-a P=10 55.5 K 16.9 K 5.5 K 5.9 · 10−4

CDL CiteULike-a P=10 55.5 K 16.9 K 5.5 K 5.9 · 10−4

NeuMF Pinterest 1.5 M 9.9 K 55.1 K 2.7 · 10−3

Mult-VAE Netflix Prize 56.9 M 17 K 463 K 7.2 · 10−3

ConvNCF Gowalla 1.2 M 52.4 K 54.1 K 4.4 · 10−4

NeuRec MovieLens HetRec 855 K 10.1 K 2.1 K 4.0 · 10−2

DMF MovieLens1M 1 M 3.7 K 6.0 K 4.4 · 10−2

CoupledCF MovieLens1M 1 M 3.7 K 6.0 K 4.4 · 10−2

DELF MovieLens1M 1 M 3.7 K 6.0 K 4.4 · 10−2

and datasets are available in Appendix C.
From Table 7.6 we can see that a clear trend emerges. The training

time of the baseline algorithms is usually very short, in all but one case
can be measured in seconds or minutes, while the the training time of the
neural algorithms is substantially longer, measuring usually more than one
hour up to several days. In 7 cases the baseline algorithms have a training
time below 2 minutes, while the neural algorithms have a training time of
between 37 minutes and almost 2 days. We can see that 11 baselines have a
training time of less than 20 minutes while, in those same cases, the neural
algorithms have a training time which is frequently of several hours up to
an impressive 7 days.

The only case where the baseline is slower than the neural algorithm is
Mult-VAE (see Section 5.5), which is also the only algorithm we found to
be competitive against our baselines.

A similar trend, although less marked, can be observed for the Rec-
ommendation time and throughput, where in 6 out of 12 cases the neural
algorithm has a throughput of less than half that of the baseline algorithm.
In 4 further cases we can see that the neural model is able to generate only
around ten or less recommendation lists per second, being almost two or-
ders of magnitude slower than the baseline.

Another important dimension to consider in terms of scalability is the
size of the datasets used for the evaluation. In Table 7.7 we list the statistics
of the datasets given the specific preprocessing applied (i.e., MovieLens1M
may have less than 1 M interactions if ratings lower than a threshold are re-
moved). As we can see most datasets are rather small, in 5 cases the dataset
has less than 1 million interactions, in 6 cases between 1 and 1.5 millions of
interactions, only one dataset has more than 50 millions. It is remarkable to

132

7.3. Scalability

observe how more than ten years after the Netflix Prize with its dataset of
100 million interactions, the current research practice is still to use datasets
with less than 1% of that interactions. This is also despite the availability
of several other datasets of various sizes and characteristics [10]. In terms
of the number of items, most datasets only have a few thousands, with only
3 datasets having more than 15 thousand items. Similar observations can
be made for the number of users, in 8 cases equal or less than 6 thousands
and only in 4 cases higher than 50 thousands. Their density varies widely
from the 6.3 · 10−2 of MovieLens 100K to the 4.4 · 10−4 of Gowalla. Yet,
despite this rather (sometimes very) small datasets, the computation time
of complex models is still commonly measured in tens of hours up to days.

It is expected that more complex models will exhibit higher computa-
tion cost and that improvements on recommendation accuracy will follow
a law of diminishing returns, becoming harder and harder as the accuracy
improves. Still, the computation cost of some of the algorithms we analyze
is extremely high and, despite this, most of them are not able to compete
with baselines requiring only a fraction of that training time.

Limited scalability of a proposed model is not a methodological issue
per-se, however, it has important consequences. First, it will make deploy-
ing the proposed algorithm in a realistic environment extremely difficult,
as the cost could be prohibitive. A second, less obvious, but extremely im-
portant consequence is that the enormous costs for tuning the algorithms
can lead researchers to skip the optimization of the neural algorithms they
use as baselines. As reported in Section 7.2.2, there is a tendency to take
the hyperparameter settings from previous articles (i.e., the default hyperpa-
rameters), even when those were determined for different evaluation setups.
This contributes greatly to the frequent occurrence of weak or inadequately
optimized baselines.

While the computation cost of neural methods is often overlooked in the
recommender systems field, it is a topic of great importance with immedi-
ate repercussions on the practical usability of the research results. The high
economic cost of running the algorithms can be a hindrance limiting the
pool of researchers to only those who can afford the expensive computa-
tional infrastructure required. The potential for improvement is significant,
as an example a recent paper [20] demonstrated that, with certain optimiza-
tions, the computation time of a complex algorithm on a CPU could be
reduced by an order of magnitude.

133

Chapter 7. Result overview and discussion

7.4 Limitations

In this section we describe two possible limitations of the experimental
protocol adopted in this thesis.

Hyperparameters of the neural algorithms taken from the original
articles. The first limitation of this thesis is the use, for the analyzed neu-
ral algorithms, of the hyperparameters as reported in the original articles.
This step relies on the assumption that the neural algorithms were prop-
erly optimized by the original researchers. It does however not take into
account two possible scenarios. The first, that we have observed several
times, is that there were cases of information leakage in the original evalu-
ation protocol, in particular in the selection of the number of train epochs.
It is therefore possible that information leakage was also present during the
hyperparameter optimization of the analyzed algorithm. In those cases, the
recommendation quality of the neural method, when properly tuned on a
validation set, could be even lower than what we observed in this study. On
the other hand, it is also possible that the optimization of the neural model
was not done to its full extent because, due to the weak baselines reported
in the original articles, further optimization was not necessary to outper-
form them. If stronger baselines had been added in the original article, the
optimization of the neural model itself may have been more thorough and,
therefore, its end result more competitive.

The motivation of why such optimization was not done is due to a few
orders of reasons. The first is that the hyperparameters said to have been
optimized for the neural models are not consistent among articles. Probably
the most important example is the architecture itself which in some cases is
said to have been optimized, while in others no detail is provided. Defining
a fair optimization protocol for all algorithms (i.e., architecture, activation
function, regularization etc.) is not trivial. In our study a new optimization
of the hyperparameters was only done for SpectralCF (see Section 5.12)
due to an error in the originally provided training-test split. A second order
of reasons is due to limitations in the original source code, which rarely pro-
vides the required flexibility to optimize the neural method. In some cases
it can be seen that several architectural components are commented-out in
the source code, suggesting the architecture optimization process was, to
an extent, manual. Overcoming this would require significant implemen-
tation effort. The last, and probably most important, is that due to their
huge computation cost a hyperparameter optimization for all neural models
would be prohibitively long and resource intensive. Consider that the total
GPU time needed for the current experiments is composed by a first train-

134

7.4. Limitations

ing with early stopping then another on the union of training and validation
data for the selected number of epochs. Based on this, we estimate the total
GPU time required to optimize all neural algorithms, with the same proto-
col used for the baselines, would be in the range of 3 years, and could be as
high as 15 years if 5-fold cross validation for significance testing is used.

Hyperparameter optimization with a fixed number of evaluations
regardless of execution time. Another limitation of this thesis is that the
hyperparameter optimization was done on a fixed number of 50 functional
evaluations (i.e., model evaluations on the validation data), regardless of the
time it required. This means that, for some baselines and neural algorithms
the optimization could run for days, while for others it could be completed
in minutes. As we have argued in Section 7.3, the computation time is an
important dimension to be taken into account and has an important impact
on the applicability of that algorithm. In order to improve the scalability
fairness of the evaluation protocol, baselines as well as neural algorithms
could be optimized not for a fixed number of hyperparameter configurations
but rather for a fixed amount of time. This would give faster algorithms an
advantage as they would be able to explore a significantly higher number of
cases, and would impact negatively slower algorithms, which may be able
to explore only a limited set of hyperparameters. The results would there-
fore mirror more closely a scenario where only a limited time or resource
budget is available and allow to select the most cost-effective algorithm.

135

CHAPTER8
Conclusions

In recent years a substantial number of new neural approaches for the rec-
ommendation problem have been proposed. Despite the ever present claim
that those complex models are outperforming the state-of-the-art, evidence
exists that complex models do not necessarily achieve better recommenda-
tion quality when compared with simple baselines [127]. Furthermore, a
tendency to report weak or inadequately optimized baselines in the evalu-
ations has been observed for other information ranking tasks [74, 80, 97],
which could give the impression of continuous incremental improvement,
even though none may exist.

In this study, we have reported an analysis of the reproducibility of neu-
ral algorithms published in recent years at high level conferences as well as
a comparative evaluation of those new complex models against an ample
set of simple but well optimized baselines.

The results of our study reveal that, in the great majority of cases, neural
algorithms can be outperformed by baselines developed a decade or more
ago, i.e., neighborhood-based and non-neural machine learning algorithms.
Despite the vast number of new neural algorithms that are published for
the top-k recommendation task, virtually no progress appears to have been
made in the last years.

137

Chapter 8. Conclusions

This surprising result can be explained by several issues we could ob-
serve in how claims are demonstrated within the research community. We
could identify a tendency to rely on unique evaluation protocols which dif-
fer even between articles appearing to target the same scenario, making
comparisons opaque or impossible. We also found numerous errors in the
evaluation protocols themselves. It is common to report weak or inade-
quately optimized baselines, if those are tuned at all, or to use default hy-
perparameters, and comparing them with a much more optimized neural
method. This results in the false appearance of the proposed model outper-
forming the state of the art. Even using test data during the training of the
model to select the number of epochs, causing information leakage, appears
to be common practice.

These issues are however neither new nor specifically tied to the do-
main of recommender systems or to neural approaches in particular. Most
of those issues could be addressed with increased awareness of the com-
munity and improved reproducibility of published research. To this end,
independent evaluation and reproducibility studies published by different
research groups should be encouraged. This would put the recommender
systems research community on the same trajectory as the information re-
trieval research community, in part probably thanks to the surprising results
from [4, 74, 127].

There are however a few last observations that are, we believe, worthy
of attention. Not a single reproducible paper we analyzed reported an on-
line study, where the recommendations are shown to real users. This is yet
another important limitation of today’s research practice, which appears to
forget that, in the end, we are not building offline tools but rather algorithms
that will be used by a real person. Several research papers have already
questioned whether small accuracy gains really translate into greater user
satisfaction [7, 32, 51, 82, 99]. In this sense, the current focus on achieving
the best recommendation quality, sometimes needing to use statistical sig-
nificance tests to confirm a small improvement indeed exists, overshadows
several other important dimensions. Those dimensions are embedded in the
very nature of a recommender system, its deployment in a real case to be
used by a real person.

Among the feedback we received after the publication of our first eval-
uation study [46], one comment said that if our community is too strict on
how to conduct an evaluation, it will render us impermeable to new ideas
and techniques. It is certainly true that it is not reasonable to expect any
new and interesting idea to be immediately able to outperform other ones
that have been perfected over years or decades. But the answer cannot be

138

to lower our experimental standards in order to allow them to pass through,
hoping that they will become competitive in the future. As we have seen,
for the specific scenario we evaluate in this study, if the upward pressure
for growth lacks due to poor evaluation practices, so will the improvement
in the algorithms we develop. That observation regarding our openness to
new ideas instead raises indirectly a very important point. It is undeniable
the very strong focus on demonstrating accuracy improvements over the
state-of-the-art is currently (almost) a prerequisite for the acceptance of a
paper. Often when a model is proposed the very first claim made in the pa-
per is that it allows to outperform the state-of-the-art. Its other merits, e.g.,
greater explainability of recommendations, faster training time, robustness
to noise or missing data and so on, are subordinate. While papers specif-
ically targeted to those aspects can be found, they are certainly far less
frequent. This is also common practice in several other fields of machine
learning [84].

It is this over-reliance on accuracy alone when combined with inade-
quate evaluation procedures, we argue, that is hampering our ability to ex-
plore and adopt new techniques. Accuracy alone, as previously mentioned,
is a strong simplification of the problem we try to solve, and it is easy
to imagine use cases where less accurate algorithms can be acceptable if
they bring other advantages. One of them is the computational cost and
model complexity, which translates directly into greater engineering and
maintenance cost in a real world service, to the point where the increased
recommendation quality may not be worth it. A notable example comes
from the Netflix Prize, as the company never fully integrated the winning
algorithm in its systems partially due to the accuracy improvements be-
ing too small to justify the engineering effort and partially because, by the
time the challenge ended, the business model of Netflix itself had evolved1.
Another example of a desirable property could be the model being able
to maintain good quality despite the data drift i.e., the continuous change
in the available data, which is the natural environment when considering
an operational recommender system but is invisible in the traditional of-
fline experiments we rely upon. As a last example, we can cite the need
for compliance with privacy laws, which may require the company to be
able to remove at short notice the personal data of some of its users and
to ensure that data does not persist hidden in its trained models. The 2020
RecSys Challenge2, hosted by Twitter, updated the dataset daily to ensure

1https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-
part-1-55838468f429

2https://recsys-twitter.com/

139

https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://recsys-twitter.com/

Chapter 8. Conclusions

compliance with the European General Data Protection Regulation3.
In the end, all these problems: the inadequately optimized baselines

creating the illusion of progress, the arbitrary experimental protocol mak-
ing comparisons impossible, the errors in the evaluation itself and the re-
stricted focus of published research all seem to contribute to a certain level
of stagnation in the research field. Yet, as we have exemplified, there are
innumerable options and directions we can explore. All of them should,
nonetheless, be assessed with transparent, fair and thorough evaluation in
the appropriate scenarios, so that we can maintain trust in our own experi-
mental practices ensuring the progress is not only reliable, but also shared
by the community as a whole.

8.1 Future Works

In this thesis we have presented a reproducibility and evaluation study for
recent neural algorithms applied to the top-k recommendation problem. We
will now highlight possible future research directions.

Provide guidelines on the baseline algorithms a well as optimization
space. As stated in Chapter 7, the experiments required for this evaluation
study have been extensive and allowed us to collect the results of more than
900 models evaluated on different datasets on several metrics (see Section
4.3) as well as the results of 41,000 hyperparameter configurations. This
amount of data could be mined as done, for example, in [92], in order to
analyze how sensitive various algorithms are to certain hyperparameters
and provide guidelines for the relative range and distribution. The charac-
teristics of the datasets could be taken into account as well. This would
help to design a more efficient search space for the optimization phase.

Expanding the analysis to other recommendation problems and other
algorithmic techniques. In this study we have focused on a very specific
scenario, neural algorithms for top-k recommendations. As we have dis-
cussed several times (see Chapter 2) issues in the reproducibility of pub-
lished research and methodological problems have been observed widely.
Possible extensions of this study could go in the direction of other rec-
ommendation tasks (e.g., session-based, cross-domain) as well as on other
model types (e.g., non-neural algorithms)

3https://gdpr.eu/

140

https://gdpr.eu/

APPENDIXA
Hyperparameter range and distribution for

baseline algorithms

141

Appendix A. Hyperparameter range and distribution for baseline
algorithms

Table A.1: Hyperparameter values for our KNN and graph based baselines.

Algorithm Hyperparameter Range Type Distribution

UserKNN, ItemKNN
cosine

topK 5 - 1000 Integer uniform
shrink 0 - 1000 Integer uniform
similarity cosine Categorical
normalizea True, False Categorical
feature weighting none, TF-IDF, BM25 Categorical

UserKNN, ItemKNN
dice

topK 5 - 1000 Integer uniform
shrink 0 - 1000 Integer uniform
similarity dice Categorical
normalizea True, False Categorical

UserKNN, ItemKNN
jaccard

topK 5 - 1000 Integer uniform
shrink 0 - 1000 Integer uniform
similarity jaccard Categorical
normalizea True, False Categorical

UserKNN, ItemKNN
asymmetric

topK 5 - 1000 Integer uniform
shrink 0 - 1000 Integer uniform
similarity asymmetric Categorical
normalizea True Categorical
asymmetric alpha 0 - 2 Real uniform
feature weighting none, TF-IDF, BM25 Categorical

UserKNN, ItemKNN
tversky

topK 5 - 1000 Integer uniform
shrink 0 - 1000 Integer uniform
similarity tversky Categorical
normalizea True Categorical
tversky alpha 0 - 2 Real uniform
tversky beta 0 - 2 Real uniform

P3α
topK 5 - 1000 Integer uniform
alpha 0 - 2 Real uniform
normalize similarityb True, False Categorical

RP3β

topK 5 - 1000 Integer uniform
alpha 0 - 2 Real uniform
beta 0 - 2 Real uniform
normalize similarityb True, False Categorical

aThe normalize hyperparameter in KNNs refers to the use of the denominator when computing the similarity.
bThe normalize similarity hyperparameter in P3alpha and RP3beta refers to applying L1 regularization on the

rows of the similarity matrix

142

Table A.2: Hyperparameter values for our machine learning baselines.

Algorithm Hyperparameter Range Type Distribution

SLIM BPR

topK 5 - 1000 Integer uniform
epochs 1 - 1500 Integer early stopping
symmetric True, False Categorical
sgd mode sgd, adam, adagrad Categorical
lambda i 10−5 - 10−2 Real log-uniform
lambda j 10−5 - 10−2 Real log-uniform
learning rate 10−4 - 10−1 Real log-uniform

SLIM ElasticNet
topK 5 - 1000 Integer uniform
l1 ratio 10−5 - 100 Real log-uniform
alpha 10−3 - 100 Real uniform

MF BPR

num factors 1 - 200a Integer uniform
epochs 1 - 1500 Integer early stopping
sgd mode sgd, adam, adagrad Categorical
batch size 20 - 210 Integer log-uniform
positive reg 10−5 - 10−2 Real log-uniform
negative reg 10−5 - 10−2 Real log-uniform
learning rate 10−4 - 10−1 Real log-uniform

MF FunkSVD

num factors 1 - 200a Integer uniform
epochs 1 - 500b Integer early stopping
use bias True, False Categorical
sgd mode sgd, adam, adagrad Categorical
batch size 20 - 210 Integer log-uniform
item reg 10−5 - 10−2 Real log-uniform
user reg 10−5 - 10−2 Real log-uniform
learning rate 10−4 - 10−1 Real log-uniform
negative quotac 0.00 - 0.50 Real uniform

PureSVD num factors 1 - 350 Integer uniform

NMF

num factors 1 - 350 Integer uniform
solver mult. update, coord. descent Categorical
init type nndsvda, random Categorical
beta loss kullback-leibler, frobenius Categorical

iALS

num factors 1 - 200a Integer uniform
epochs 1 - 500b Integer early stopping
confidence scaling linear, log Categorical
alpha 10−3 - 5 · 10+1 d Real log-uniform
epsilon 10−3 - 10+1 d Real log-uniform
reg 10−5 - 10−2 Real log-uniform

EASER l2 norm 100 - 10+7 Real log-uniform

aThe number of factors is lower than PureSVD or NFM due to the algorithm being slower.
bThe number of epochs is lower than SLIM BPR or MF BPR due to the algorithm being slower.
cThe negative quota is the percentage of samples chosen among items unobserved by the user, having a target

rating of 0.
dThe maximum value of this hyperparameter had been suggested in the article proposing the algorithm.

143

APPENDIXB
Equivalence of Hamming distance and

Herfindahl index

In this Appendix we report a side result of this study considering the mean
inter list diversity metric (MIL), proposed by [135]. MIL represents the
average number of recommendations any pair of users has in common. We
first show that MIL is equivalent to the average Hamming diversity in a
set of strings having all equal length. Secondly, we demonstrate that both
can be computed based solely on the number of times each item appears
in any recommendation list (or string). Therefore both MIL and Hamming
diversity are aggregate diversity metrics. We then show both are equivalent
to another metric, the Herfindahl index. Lastly, we show how a reranking
strategy, previously demonstrated only at an empirical level, optimizes MIL
diversity.

B.1 Aggregate diversity metrics

B.1.1 Mathematical notation

We will adopt the following notation. The item set is I , the user set U and
the respective cardinality |I|, |U |. The length of the recommendation list,

145

Appendix B. Equivalence of Hamming distance and Herfindahl index

i.e. the cutoff, is c, while rec(i) represents the number of times item i has
been recommended across all users. The total number of recommendations
is rect =

∑
i∈I rec(i) = c · |U |.

B.1.2 Metrics

Among the most used aggregate diversity metrics are Item Coverage, Shan-
non Entropy, Gini Index and Herfindahl index [38,88,90,135] (see Section
4). These metrics are all functions of the global number of times each item
has been recommended.

Shannon = −
∑
i∈I

rec(i)

rect
· ln rec(i)

rect

Gini =
|I|∑
i=1

2i− |I| − 1

|I|
· rec(i)
rect

Herfindahl = 1− 1

rec2t

∑
i∈I

rec(i)2

It is possible to see that Shannon Entropy is logarithmic, Gini Index is
linear, given that the rec(i) data must be ordered beforehand, and Herfind-
ahl is quadratic. This means that all three metrics measure the same phe-
nomena, how recommendations are spread across items, but are are sen-
sitive to slightly different behaviors. An analogy could be drawn between
those aggregate diversity metrics and the prediction error measured by MSE
or RMSE, and MAE. While they all measure the same quantity, the predic-
tion error, MSE and RMSE will be much more sensitive to outliers and
error variance than MAE, due to their quadratic nature.

B.1.3 Mean inter-list diversity

Mean inter-list diversity (MIL) was presented by [135]1. It is among the
metrics which are computed on the actual recommendations received by
each user rather than on the global item count. This diversity considers
the uniqueness of different user’s recommendation lists and has a value
between 0 and 1. The less likely any two users have been recommended
the same items, hence the more diverse the recommendations are, the closer

1Note that MIL was originally called Personalization, however we will not use this name due to the fact that
the highest value for this metric (i.e., 1) is obtained by a non personalized Random recommender.

146

B.2. MIL as aggregate diversity

MIL will be to 1.

h(ua, ub) = 1− q(ua, ub)

c
(B.1)

Equation B.1 represents the inter-list distance for two users ua and ub,
where q(ua, ub) is the number of common items in their recommendation
lists. Equation B.2 shows how MIL is computed, as an average over all
inter-list distances, excluding the diagonal.

MIL =
1

|U |2 − |U |
∑

(ua,ub)∈U
ua6=ub

h(ua, ub) (B.2)

Computing MIL requires to compute function q(ua, ub) for all couples
of users, which is quadratic in their number therefore being very compu-
tationally expensive for all but the smallest datasets. Another issue with
the formulation of this metric is that it is not entirely clear its relation with
other diversity metrics. Clearly it is not an individual diversity metric, since
it does not measure the diversity as perceived by a single user. However, its
relation to aggregate diversity metrics is not apparent.

B.1.4 Hamming diversity

Hamming diversity is another metric defined between users [121], applied
by representing the user’s recommendation lists L as a one-hot encoding
LH of |I| elements. The Hamming distance is the number of positions
in which the two lists are different. Since the Hamming distance can be
computed from q(ua, ub) as H(ua, ub) = |I| − q(ua, ub) Hamming and
MIL diversity are equivalent.

B.2 MIL as aggregate diversity

We can now demonstrate that MIL, and therefore Hamming diversity, are
in fact aggregate diversity metrics and can be computed based solely on
the global item distribution. We assume, without loss of generality, that all
users will receive a recommendation list of the same length c. Equations
B.1 and B.2 can be re-written in order to isolate function q and highlight
how MIL only requires the global common item count, countg, rather than
the specific user-user common item count. See Equations B.3 and B.4.

countg =
∑

(ua,ub)∈U
ua6=ub

q(ua, ub) (B.3)

147

Appendix B. Equivalence of Hamming distance and Herfindahl index

MIL = 1− 1

|U |2 − |U |
· countg

c
(B.4)

Function q(·) can now be decomposed as a summation of other functions
qi(·), each associated to a specific item i, that will have value 1 if both users
have been recommended item i, 0 otherwise. See Equation B.5.

q(ua, ub) =
∑
i∈|I|

qi(ua, ub) (B.5)

countg =
∑
i∈|I|

∑
(ua,ub)∈U
ua6=ub

qi(ua, ub) (B.6)

The purpose of function qi(·) and of swapping the item and users sum-
mations, as done in Equation B.6, is to represent countg in terms of a com-
binatorial problem that can be easily solved. If we consider the set of all
users that received item i in their recommendation list, the summation of
qi(·) across all pairs of users will be equal to the number of non-ordered
pairs that can be defined from such set. Since the set contains rec(i) users,
the number of non-ordered pairs it allows is rec(i) · (rec(i)− 1).

The global common item count can be therefore represented in terms of
the global item distribution, in the following way:

countg =
∑
i∈|I|

rec(i) · (rec(i)− 1) = −|U | · c+
∑
i∈|I|

rec(i)2 (B.7)

Equation B.7 has a series of important consequences:

• MIL and Hamming diversity measure aggregate diversity, they do not
depend on the specific user recommendation lists but only on the final
item occurrence distribution. By using Equation B.7 and B.4 it is now
possible to compute MIL in negligible computational time.

• MIL, Hamming diversity and Herfindahl index (HHI) are equivalent,
being linear functions of the same quadratic summation of rec(i). Due
to their quadratic nature, they will have low sensitivity to items hav-
ing low number of occurrences and high sensitivity to items being
recommended often. This means that a change in the values of rec(i)
for infrequent items will cause much smaller variations in the metrics
value, than a change involving frequent items.

Moreover, MIL and Hamming diversity are not sensitive to local di-
versity variance. Just as all the other aggregate diversity metrics, MIL is

148

B.2. MIL as aggregate diversity

not able to distinguish between a recommender yielding to an almost even
diversity across all users and one exhibiting high variance for clusters of
users. Another useful consequence of what previously demonstrated is that
MIL and Hamming diversity of a RS can be steered at a system level. Due
to the fact that MIL is a aggregate metric, it is possible to control the diver-
sity of a RS by altering the average probability each item will appear in the
recommendation lists, for example via a reranking step.

Value range

Although equivalent, MIL and Herfindahl index have very different value
ranges. The RS with the minimal diversity is the one recommending to all
users the same items (i.e. a Top Popular). In this case a number of items
equal to the length of the recommendation list, c, will have rec(i) = |U |
while all the others 0, hence:

HHImin = 1− 1

c
MILmin = 0

While MIL has a minimum value of 0, HHI has a minimal value of 0.80
for recommendation lists of length 5 and of 0.95 for lists of length 20.

The RS exhibiting maximal diversity is the one able to best balance
recommendations across the whole item set, therefore a uniformly random
RS. Each item will have an equal value2 of rec(i) = |U |·c

|I| . The resulting
bounds are:

HHImax = 1− 1

|I| MILmax =
|U | (|I| − c)
|I| (|U | − 1)

As opposed to the very different minimal values, it is possible to empir-
ically show3 that maximum values for both metrics are between 0.99 and
1.00.

B.2.1 Diversity enhancing reranking

Amongst many techniques that can be applied to improve diversity in rec-
ommender systems, [90] proposes RP3β, an item-based collaborative rec-
ommendation algorithm which is based upon another algorithm, P3α. Both
are simple graph-based algorithms implementing a random walk between
users and items and, although being seldom used in literature, they pro-
vide very competitive recommendation quality even against the most re-

2Note that this is just an approximation not taking into account the fact that rec(i) ∈ N0+. If the number of
items is greater then |U | ·c the approximate average item count becomes a real value rec(i) ∈ (0, 1). In practice
a number of items equals to |U | · c would have rec(i) = 1 while the others rec(i) = 0. In this scenario no pair
of users sharing any item could exist, therefore countg−MAX = 0 and InterL = 1

3Computed on the following datasets: MovieLens 20M, BookCrossing, Epinions, NetflixPrize, Spotify Chal-
lenge 2018, 30Music, Xing Challenge 2016, Xing Challenge 2017

149

Appendix B. Equivalence of Hamming distance and Herfindahl index

cent neural models (see Chapter 5). The article proposing RP3β states it
was observed that P3α is very influenced by popularity and has low diver-
sity. Therefore, in order to improve its diversity, they propose a reranking
procedure which divides the score of the item as computed by P3α by its
popularity, in order to penalize very popular items. The experimental eval-
uation of RP3β shows a substantially higher MIL4 and Gini diversity than
P3α. The paper provides an intuitive justification of this reranking pro-
cedure but not a mathematical one. Based upon Equation B.7 we can now
state that their reranking approach is optimizing MIL diversity. Since P3α is
very sensitive to popularity, the item popularity constitutes a good approxi-
mation of the rec(i) function, because popular items will be recommended
often while unpopular ones much less frequently. A similar approach could
be applied to other recommendation models, although for algorithms less
prone to popularity bias the item popularity may not be a good approxima-
tion of the rec(i) function and using it as penalizing factor may steer the
reranking in the wrong direction.

B.3 Summary

In this appendix we have analyzed different aggregate diversity metrics.
Thanks to a different formulation we have shown that MIL and Hamming
diversity are equivalent to the Herfindahl index and therefore all are aggre-
gate diversity metrics. This uncovers their previously unknown relation-
ships and allows to compute them in negligible time, avoiding the compu-
tationally expensive step of calculating the common items between all pairs
of users.

4The article reports MIL as Pers.

150

APPENDIXC
Detailed results for all the analyzed

algorithms

The detailed results of all analyzed algorithms are available as an online
article in the same Github repository that contains the source code for our
experiments. The detailed results contain the full evaluation results for all
baselines and datasets, the selected hyperparameters for all algorithms as
well as the computation time and throughput. Both are accessible at the
following URLs:

• Github repository 1

• Document with the detailed results 2

1https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation
2https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation/blob/

master/DL_Evaluation_TOIS_Additional_material.pdf

151

https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation
https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation/blob/master/DL_Evaluation_TOIS_Additional_material.pdf
https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation/blob/master/DL_Evaluation_TOIS_Additional_material.pdf

Bibliography

[1] Gediminas Adomavicius and YoungOk Kwon. Improving aggregate recommendation diver-
sity using ranking-based techniques. IEEE Transactions on Knowledge and Data Engineer-
ing, 24(5):896–911, 2012.

[2] Fabio Aiolli. Efficient top-n recommendation for very large scale binary rated datasets. In
Proceedings of the ACM Conference on Recommender Systems (RecSys 2013), pages 273–
280. ACM, 2013.

[3] S. Antenucci, S. Boglio, E. Chioso, E. Dervishaj, Kang Shuwen, Tommaso Scarlatti, and
Maurizio Ferrari Dacrema. Artist-driven layering and user’s behaviour impact on recommen-
dations in a playlist continuation scenario. In Proceedings of the ACM Recommender Systems
Challenge 2018 (RecSys 2018), 2018. Source: https://github.com/MaurizioFD/
spotify-recsys-challenge.

[4] Timothy G. Armstrong, Alistair Moffat, William Webber, and Justin Zobel. Improvements
that don’t add up: Ad-hoc retrieval results since 1998. In Proceedings of the Conference on
Information and Knowledge Management (CIKM 2009), pages 601–610, 2009.

[5] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolu-
tional and recurrent networks for sequence modeling. arXiv:1803.01271, 2018.

[6] Krisztian Balog, Filip Radlinski, and Shushan Arakelyan. Transparent, scrutable and explain-
able user models for personalized recommendation. In Proceedings of the International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2019),
pages 265–274, New York, NY, USA, 2019. ACM.

[7] Jöran Beel and Stefan Langer. A comparison of offline evaluations, online evaluations, and
user studies in the context of research-paper recommender systems. In Proceedings of the
International Conference on Theory and Practice of Digital Libraries (TPDL 2015), pages
153–168, 2015.

[8] C Glenn Begley and Lee M Ellis. Raise standards for preclinical cancer research. Nature,
483(7391):531–533, 2012.

[9] Robert M Bell and Yehuda Koren. Improved neighborhood-based collaborative filtering. In
KDD Cup and Workshop at the ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD 2007), pages 7–14, 2007.

153

https://github.com/MaurizioFD/spotify-recsys-challenge
https://github.com/MaurizioFD/spotify-recsys-challenge

Bibliography

[10] Alejandro Bellogı́n and Alan Said. Offline and online evaluation of recommendations. In
Shlomo Berkovsky, Iván Cantador, and Domonkos Tikk, editors, Collaborative Recommen-
dations, chapter 9, pages 295–328. WORLD SCIENTIFIC, 2018.

[11] J. Bennett and S. Lanning. The Netflix Prize. In KDD Cup Workshop 2007, 2007.

[12] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Jour-
nal of machine learning research, 13(Feb):281–305, 2012.

[13] Cesare Bernardis, Maurizio Ferrari Dacrema, and Paolo Cremonesi. A novel graph-based
model for hybrid recommendations in cold-start scenarios. Proceedings of the Late-Breaking
Results of the ACM Conference on Recommender Systems (RecSys 2018), 2018.

[14] Cesare Bernardis, Maurizio Ferrari Dacrema, and Paolo Cremonesi. Estimating confidence
of individual user predictions in item-based recommender systems. In Proceedings of the
ACM Conference on User Modeling, Adaptation and Personalization (UMAP 2019), pages
149–156. ACM, 2019.

[15] Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman, and Paul Lamere. The million
song dataset. In Ismir, volume 2, page 10, 2011.

[16] Homanga Bharadhwaj, Homin Park, and Brian Y. Lim. Recgan: Recurrent generative ad-
versarial networks for recommendation systems. In Proceedings of the ACM Conference on
Recommender Systems (RecSys 2018), pages 372–376, New York, NY, USA, 2018. ACM.

[17] Daniel Billsus and Michael J. Pazzani. Learning collaborative information filters. In Pro-
ceedings of the International Conference on Machine Learning (ICML 1998), pages 46–54,
1998.

[18] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive algo-
rithms for collaborative filtering. In Proceedings of the Conference on Uncertainty in Artifi-
cial Intelligence (UAI 1998), pages 43–52, 1998.

[19] Karl Broman, Mine Cetinkaya-Rundel, Amy Nussbaum, Christopher Paciorek, Roger Peng,
Daniel Turek, and Hadley Wickham. Recommendations to funding agencies for supporting
reproducible research. In American Statistical Association, volume 2, 2017.

[20] Beidi Chen, Tharun Medini, James Farwell, Sameh Gobriel, Charlie Tai, and Anshumali
Shrivastava. Slide: In defense of smart algorithms over hardware acceleration for large-scale
deep learning systems. arXiv preprint arXiv:1903.03129, 2019.

[21] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-Seng Chua.
Attentive collaborative filtering: Multimedia recommendation with item-and component-
level attention. In Proceedings of the International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 2017), pages 335–344. ACM, 2017.

[22] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Arad-
hye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque,
Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for recom-
mender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender
Systems, DLRS 2016, page 7–10, New York, NY, USA, 2016. Association for Computing
Machinery.

[23] Weiyu Cheng, Yanyan Shen, Yanmin Zhu, and Linpeng Huang. Delf: A dual-embedding
based deep latent factor model for recommendation. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI 2018), pages 3329–3335, 2018.

[24] Evangelia Christodoulou, Jie Ma, Gary S Collins, Ewout W Steyerberg, Jan Y Verbakel, and
Ben Van Calster. A systematic review shows no performance benefit of machine learning over
logistic regression for clinical prediction models. Journal of clinical epidemiology, 2019.

154

Bibliography

[25] Andrzej Cichocki and Anh-Huy Phan. Fast local algorithms for large scale nonnegative ma-
trix and tensor factorizations. IEICE transactions on fundamentals of electronics, communi-
cations and computer sciences, 92(3):708–721, 2009.

[26] Christian Collberg and Todd A Proebsting. Repeatability in computer systems research. Com-
munications of the ACM, 59(3):62–69, 2016.

[27] Colin Cooper, Sang Hyuk Lee, Tomasz Radzik, and Yiannis Siantos. Random walks in rec-
ommender systems: exact computation and simulations. In Proceedings of the International
World Wide Web Conference (WWW 2014), pages 811–816, 2014.

[28] Luca Luciano Costanzo, Yashar Deldjoo, Maurizio Ferrari Dacrema, Markus Schedl, and
Paolo Cremonesi. Towards evaluating user profiling methods based on explicit ratings on
item features. Proceedings of Joint Workshop on Interfaces and Human Decision Making for
Recommender Systems (IntRS ’19) at the ACM Conference on Recommender Systems (RecSys
’19), 2019.

[29] Paul Covington, Jay Adams, and Emre Sargin. Deep Neural Networks for YouTube Rec-
ommendations. In Proceedings of the ACM Conference on Recommender systems (RecSys
2016), page 191–198, 2016.

[30] Paolo Cremonesi, Maurizio Ferrari Dacrema, Shlomo Berkovsky, Iván Cantador, and Ignacio
Fernández-Tobı́as. Cross-Domain Recommender Systems. Springer US, Boston, MA, 2015.

[31] Paolo Cremonesi, Franca Garzotto, and Maurizio Ferrari Dacrema. User preference sources:
explicit vs. implicit feedback. In Collaborative Recommendations: Algorithms, Practical
Challenges and Applications, pages 233–252. World Scientific Publishing Company, 2019.

[32] Paolo Cremonesi, Franca Garzotto, and Roberto Turrin. Investigating the persuasion potential
of recommender systems from a quality perspective: An empirical study. Transactions on
Interactive Intelligent Systems, 2(2):1–41, 2012.

[33] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recommender algo-
rithms on top-n recommendation tasks. In Proceedings of the ACM Conference on Recom-
mender Systems (RecSys 2010), pages 39–46, 2010.

[34] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989.

[35] Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, and Dietmar Jannach. A trou-
bling analysis of reproducibility and progress in recommender systems research. ACM Trans-
actions on Information Systems (TOIS), 2019.

[36] Edoardo D’Amico, Giovanni Gabbolini, Daniele Montesi, Matteo Moreschini, Federico Par-
roni, Federico Piccinini, Alberto Rossettini, Alessio Russo Introito, Cesare Bernardis, and
Maurizio Ferrari Dacrema. Leveraging laziness, browsing-pattern aware stacked models for
sequential accommodation learning to rank. In Proceedings of the ACM Recommender Sys-
tems Challenge 2019 (RecSys 2019), page 7. ACM, 2019.

[37] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural net-
works on graphs with fast localized spectral filtering. In Proceedings of Advances in Neural
Information Processing Systems (NIPS 2016), pages 3844–3852, 2016.

[38] Yashar Deldjoo, Maurizio Ferrari Dacrema, Mihai Gabriel Constantin, Hamid Eghbal-zadeh,
Stefano Cereda, Markus Schedl, Bogdan Ionescu, and Paolo Cremonesi. Movie genome:
alleviating new item cold start in movie recommendation. User Modeling and User-Adapted
Interaction, Feb 2019. Source: https://github.com/MaurizioFD/CFeCBF.

[39] Lee R. Dice. Measures of the amount of ecologic association between species. Ecology,
26(3):297–302, 1945.

155

https://github.com/MaurizioFD/CFeCBF

Bibliography

[40] David L Donoho, Arian Maleki, Inam Ur Rahman, Morteza Shahram, and Victoria Stod-
den. Reproducible research in computational harmonic analysis. Computing in Science &
Engineering, 11(1):8–18, 2008.

[41] Xiaoyu Du, Xiangnan He, Fajie Yuan, Jinhui Tang, Zhiguang Qin, and Tat-Seng Chua. Mod-
eling embedding dimension correlations via convolutional neural collaborative filtering. ACM
Transactions on Information Systems (TOIS), 2019.

[42] Travis Ebesu, Bin Shen, and Yi Fang. Collaborative memory network for recommendation
systems. Proceedings of the International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR 2018), 2018.

[43] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. A multi-view deep learning approach
for cross domain user modeling in recommendation systems. In Proceedings of the Interna-
tional World Wide Web Conference (WWW 2015), pages 278–288. International World Wide
Web Conferences Steering Committee, 2015.

[44] Nicolò Felicioni, Andrea Donati, Luca Conterio, Luca Bartoccioni, Davide Yi Xian Hu, Ce-
sare Bernardis, and Maurizio Ferrari Dacrema. Multi-objective blended ensemble for highly
imbalanced sequence aware tweet engagement prediction. In Proceedings of the ACM Rec-
ommender Systems Challenge 2020 (RecSys 2020), page 8. ACM, 2020.

[45] Maurizio Ferrari Dacrema and Paolo Cremonesi. Eigenvalue analogy for confidence estima-
tion in item-based recommender systems. Proceedings of the Late-Breaking Results of the
ACM Conference on Recommender Systems (RecSys 2018), 2018.

[46] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. Are we re-
ally making much progress? a worrying analysis of recent neural recommendation
approaches. Proceedings of the ACM Conference on Recommender Systems (Rec-
Sys 2019), 2019. Source: https://github.com/MaurizioFD/RecSys2019_
DeepLearning_Evaluation.

[47] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. Methodological issues
in recommender systems research. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI 2029). ijcai.org, 2020.

[48] Maurizio Ferrari Dacrema, Alberto Gasparin, and Paolo Cremonesi. Deriving item fea-
tures relevance from collaborative domain knowledge. Proceedings of the Workshop on
Knowledge-aware and Conversational Recommender Systems 2018 co-located with RecSys
2018, pages 1–4, 2018.

[49] Maurizio Ferrari Dacrema, Federico Parroni, Paolo Cremonesi, and Dietmar Jannach. Criti-
cally examining the claimed value of convolutions over user-item embedding maps for recom-
mender systems. In Proceedings of the 29th ACM International Conference on Information
and Knowledge Management (CIKM 2020), October 19–23, 2020, Virtual Event, Ireland,
2020.

[50] Antonino Freno, Martin Saveski, Rodolphe Jenatton, and Cédric Archambeau. One-pass
ranking models for low-latency product recommendations. In Proceedings of the ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2015), pages 1789–
1798, New York, NY, USA, 2015. ACM.

[51] Florent Garcin, Boi Faltings, Olivier Donatsch, Ayar Alazzawi, Christophe Bruttin, and Amr
Huber. Offline and online evaluation of news recommender systems at Swissinfo.Ch. In
Proceedings of the ACM Conference on Recommender Systems (RecSys 2014), pages 169–
176, 2014.

[52] Xue Geng, Hanwang Zhang, Jingwen Bian, and Tat-Seng Chua. Learning image and user
features for recommendation in social networks. In Proceedings of the IEEE International
Conference on Computer Vision, pages 4274–4282, 2015.

156

https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation
https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation

Bibliography

[53] Odd Erik Gundersen. Standing on the feet of giants—reproducibility in ai. AI Magazine,
40(4):9–23, 2019.

[54] Odd Erik Gundersen and Sigbjørn Kjensmo. State of the art: Reproducibility in artificial
intelligence. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI 2018),
2018.

[55] David J Hand. Classifier technology and the illusion of progress. Statistical science, pages
1–14, 2006.

[56] Xiangnan He, Xiaoyu Du, Xiang Wang, Feng Tian, Jinhui Tang, and Tat-Seng Chua. Outer
product-based neural collaborative filtering. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI 2018), pages 2227–2233, 2018.

[57] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neu-
ral collaborative filtering. In Proceedings of the International World Wide Web Conference
(WWW 2017), pages 173–182, 2017.

[58] José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive
entropy search for efficient global optimization of black-box functions. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Proceedings of Ad-
vances in Neural Information Processing Systems (NIPS 2014), pages 918–926. Curran As-
sociates, Inc., 2014.

[59] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural net-
works, 4(2):251–257, 1991.

[60] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu. Leveraging meta-path based
context for top-n recommendation with a neural co-attention model. In Proceedings of the
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2018), pages
1531–1540. ACM, 2018.

[61] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback
datasets. In Proceedings of the IEEE International Conference on Data Mining (ICDM 2008),
volume 8, pages 263–272. Citeseer, 2008.

[62] Matthew Hutson. Artificial intelligence faces reproducibility crisis. Science, 359(6377):725–
726, 2018.

[63] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

[64] Junyang Jiang, Deqing Yang, Yanghua Xiao, and Chenlu Shen. Convolutional gaussian em-
beddings for personalized recommendation with uncertainty. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2019), pages 2642–2648, 2019.

[65] Sadegh Kharazmi, Falk Scholer, David Vallet, and Mark Sanderson. Examining additivity
and weak baselines. ACM Transactions on Information Systems (TOIS), 34(4), June 2016.

[66] Yehuda Koren and Robert Bell. Advances in Collaborative Filtering, pages 145–186. 2011.

[67] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Proceedings of Advances in Neural Information Processing
Systems (NIPS 2012), pages 1097–1105, 2012.

[68] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, pages 2278–2324, 1998.

[69] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations. In Proceedings
of the International Conference on Machine Learning (ICML 2009), pages 609–616, 2009.

157

Bibliography

[70] Lukas Lerche and Dietmar Jannach. Using graded implicit feedback for bayesian personalized
ranking. In Proceedings of the ACM Conference on Recommender Systems (RecSys 2014),
pages 353–356, New York, NY, USA, 2014. ACM.

[71] Mark Levy and Kris Jack. Efficient top-n recommendation by linear regression. In RecSys
Large Scale Recommender Systems Workshop, 2013.

[72] Xiaopeng Li and James She. Collaborative variational autoencoder for recommender systems.
In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD 2017), pages 305–314. ACM, 2017.

[73] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. Variational au-
toencoders for collaborative filtering. In Proceedings of the International World Wide Web
Conference (WWW 2018), pages 689–698. International World Wide Web Conferences Steer-
ing Committee, 2018.

[74] Jimmy Lin. The neural hype and comparisons against weak baselines. SIGIR Forum,
52(2):40–51, January 2019.

[75] Jimmy Lin. The neural hype, justified! a recantation. SIGIR Forum, 53(2):88–93, 2019.

[76] G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item collaborative
filtering. IEEE Internet Computing, 7(1):76–80, 2003.

[77] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for se-
mantic segmentation. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR 2013), pages 3431–3440, 2015.

[78] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. Content-based recommender
systems: State of the art and trends. In Recommender systems handbook, pages 73–105.
Springer, 2011.

[79] Malte Ludewig and Dietmar Jannach. Evaluation of session-based recommendation algo-
rithms. User-Modeling and User-Adapted Interaction, 28(4–5):331–390, 2018.

[80] Malte Ludewig, Noemi Mauro, Sara Latifi, and Dietmar Jannach. Performance comparison
of neural and non-neural approaches to session-based recommendation. In Proceedings of the
ACM Conference on Recommender Systems (RecSys 2019), 2019.

[81] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. Statistical and ma-
chine learning forecasting methods: Concerns and ways forward. PloS one, 13(3), 2018.

[82] Andrii Maksai, Florent Garcin, and Boi Faltings. Predicting online performance of news rec-
ommender systems through richer evaluation metrics. In Proceedings of the ACM Conference
on Recommender Systems (RecSys 2015), pages 179–186, 2015.

[83] Jarana Manotumruksa, Craig Macdonald, and Iadh Ounis. A contextual attention recur-
rent architecture for context-aware venue recommendation. In Proceedings of the Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR
2018), pages 555–564. ACM, 2018.

[84] Sean M. McNee, John Riedl, and Joseph A. Konstan. Being accurate is not enough: How
accuracy metrics have hurt recommender systems. In Proceedings of the ACM Conference
on Human Factors in Computing Systems (CHI 2006), CHI EA ’06, pages 1097–1101, New
York, NY, USA, 2006. ACM.

[85] Bamshad Mobasher, Xin Jin, and Yanzan Zhou. Semantically enhanced collaborative filtering
on the web. In Bettina Berendt, Andreas Hotho, Dunja Mladenič, Maarten van Someren,
Myra Spiliopoulou, and Gerd Stumme, editors, Web Mining: From Web to Semantic Web,
pages 57–76, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

158

Bibliography

[86] ThaiBinh Nguyen and Atsuhiro Takasu. Npe: Neural personalized embedding for collabora-
tive filtering. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI 2018), pages 1583–1589. AAAI Press, 2018.

[87] Xia Ning and George Karypis. SLIM: Sparse linear methods for top-n recommender systems.
In Proceedings of the IEEE International Conference on Data Mining (ICDM 2011), pages
497–506, 2011.

[88] Umberto Panniello, Alexander Tuzhilin, and Michele Gorgoglione. Comparing context-aware
recommender systems in terms of accuracy and diversity. User Modeling and User-Adapted
Interaction, 24(1-2):35–65, 2014.

[89] Arkadiusz Paterek. Improving regularized singular value decomposition for collaborative
filtering. In Proceedings KDD Cup and Workshop, pages 39–42, 2007.

[90] Bibek Paudel, Fabian Christoffel, Chris Newell, and Abraham Bernstein. Updatable, accurate,
diverse, and scalable recommendations for interactive applications. ACM Transactions on
Interactive Intelligent Systems (TiiS), 7(1):1, 2017.

[91] Fernando Benjamı́n Pérez Maurera, Maurizio Ferrari Dacrema, Lorenzo Saule, Mario Scrimi-
naci, and Paolo Cremonesi. Contentwise impressions: An industrial dataset with impressions
included. In Proceedings of the 29th ACM International Conference on Information and
Knowledge Management (CIKM 2020), October 19–23, 2020, Virtual Event, Ireland, 2020.

[92] Philipp Probst, Anne-Laure Boulesteix, and Bernd Bischl. Tunability: Importance of hy-
perparameters of machine learning algorithms. Journal of Machine Learning Research,
20(53):1–32, 2019.

[93] Ali Mustafa Qamar, Éric Gaussier, Jean-Pierre Chevallet, and Joo-Hwee Lim. Similarity
learning for nearest neighbor classification. In Proceedings of the IEEE International Con-
ference on Data Mining (ICDM 2008), pages 983–988, 2008.

[94] Edward Raff. A step toward quantifying independently reproducible machine learning re-
search. In Proceedings of Advances in Neural Information Processing Systems (NIPS 2019),
pages 5486–5496, 2019.

[95] Steffen Rendle. Factorization machines. In Proceedings of the IEEE International Conference
on Data Mining (ICDM 2010), pages 995—-1000, 2010.

[96] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. BPR:
Bayesian personalized ranking from implicit feedback. In Proceedings of the Conference on
Uncertainty in Artificial Intelligence (UAI 2009), pages 452–461, 2009.

[97] Steffen Rendle, Li Zhang, and Yehuda Koren. On the difficulty of evaluating baselines: A
study on recommender systems. CoRR, abs/1905.01395, 2019.

[98] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. Grou-
plens: An open architecture for collaborative filtering of netnews. In Proceedings of the ACM
Conference on Computer-Supported Cooperative Work (CSCW 1994), pages 175–186, 1994.

[99] Marco Rossetti, Fabio Stella, and Markus Zanker. Contrasting offline and online results
when evaluating recommendation algorithms. In Proceedings of the ACM Conference on
Recommender Systems (RecSys 2016), pages 31–34, 2016.

[100] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules.
In Proceedings of Advances in Neural Information Processing Systems (NIPS 2017), pages
3856–3866, 2017.

[101] Noveen Sachdeva, Kartik Gupta, and Vikram Pudi. Attentive neural architecture incorpo-
rating song features for music recommendation. In Proceedings of the ACM Conference on
Recommender Systems (RecSys 2018), pages 417–421, New York, NY, USA, 2018. ACM.

159

Bibliography

[102] Alan Said and Alejandro Bellogı́n. Comparative recommender system evaluation: Bench-
marking recommendation frameworks. In Proceedings of the ACM Conference on Recom-
mender Systems (RecSys 2014), page 129–136, New York, NY, USA, 2014. Association for
Computing Machinery.

[103] Alan Said and Alejandro Bellogı́n. Rival: a toolkit to foster reproducibility in recommender
system evaluation. In Proceedings of the ACM Conference on Recommender Systems (RecSys
2014), pages 371–372, 2014.

[104] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the International World Wide Web
Conference (WWW 2001), pages 285–295, 2001.

[105] D Sculley, Jasper Snoek, Alex Wiltschko, and Ali Rahimi. Winner’s curse? on pace, progress,
and empirical rigor. 2018.

[106] Harald Steck. Embarrassingly shallow autoencoders for sparse data. In Proceedings of the
International World Wide Web Conference (WWW 2019), TheWebConf 2019, pages 3251–
3257, 2019.

[107] Victoria Stodden. The scientific method in practice: Reproducibility in the computational
sciences. 2010.

[108] Zhu Sun, Jie Yang, Jie Zhang, Alessandro Bozzon, Long-Kai Huang, and Chi Xu. Recur-
rent knowledge graph embedding for effective recommendation. In Proceedings of the ACM
Conference on Recommender Systems (RecSys 2018), pages 297–305, New York, NY, USA,
2018. ACM.

[109] Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional
sequence embedding. In Proceedings of the ACM International Conference on Web Search
and Data Mining (WSDM 2018), pages 565–573, 2018.

[110] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. Latent relational metric learning via memory-
based attention for collaborative ranking. In Proceedings of the International World Wide
Web Conference (WWW 2018), pages 729–739. International World Wide Web Conferences
Steering Committee, 2018.

[111] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. Multi-pointer co-attention networks for recom-
mendation. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD 2018), 2018.

[112] Srinivas C Turaga, Joseph F Murray, Viren Jain, Fabian Roth, Moritz Helmstaedter, Kevin
Briggman, Winfried Denk, and H Sebastian Seung. Convolutional networks can learn to
generate affinity graphs for image segmentation. Neural Computation, pages 511–538, 2010.

[113] Amos Tversky. Features of similarity. Psychological Review, 84(4):327–352, 1977.

[114] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-based music
recommendation. In Proceedings of Advances in Neural Information Processing Systems
(NIPS 2013), pages 2643–2651, 2013.

[115] Patrick Vandewalle, Jelena Kovacevic, and Martin Vetterli. Reproducible research in signal
processing. IEEE Signal Processing Magazine, 26(3):37–47, 2009.

[116] Flavian Vasile, Elena Smirnova, and Alexis Conneau. Meta-prod2vec: Product embeddings
using side-information for recommendation. In Proceedings of the ACM Conference on Rec-
ommender Systems (RecSys 2016), pages 225–232, New York, NY, USA, 2016. ACM.

[117] Chong Wang and David M Blei. Collaborative topic modeling for recommending scientific
articles. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD 2011), pages 448–456. ACM, 2011.

160

Bibliography

[118] Hao Wang, Binyi Chen, and Wu-Jun Li. Collaborative topic regression with social regular-
ization for tag recommendation. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI 2013), pages 2719–2725, 2013.

[119] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender
systems. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD 2015), pages 1235–1244, 2015.

[120] Jun Wang, Stephen Robertson, Arjen P de Vries, and Marcel JT Reinders. Probabilistic
relevance ranking for collaborative filtering. Information Retrieval, 11(6):477–497, 2008.

[121] Hao Wu, Xiaohui Cui, Jun He, Bo Li, and Yijian Pei. On improving aggregate recommen-
dation diversity and novelty in folksonomy-based social systems. Personal and Ubiquitous
Computing, 18(8):1855–1869, 2014.

[122] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. Collaborative denoising
auto-encoders for top-n recommender systems. In Proceedings of the ACM International
Conference on Web Search and Data Mining (WSDM 2016), pages 153–162. ACM, 2016.

[123] Xin Xin, Bo Chen, Xiangnan He, Dong Wang, Yue Ding, and Joemon Jose. Cfm: Convolu-
tional factorization machines for context-aware recommendation. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence (IJCAI 2019), pages 3926–3932, 2019.

[124] Zhenghua Xu, Thomas Lukasiewicz, Cheng Chen, Yishu Miao, and Xiangwu Meng. Tag-
aware personalized recommendation using a hybrid deep model. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2017), pages 3196–3202, 2017.

[125] Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen. Deep matrix
factorization models for recommender systems. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI 2018), pages 3203–3209, 2017.

[126] An Yan, Shuo Cheng, Wang-Cheng Kang, Mengting Wan, and Julian McAuley. Cosrec: 2d
convolutional neural networks for sequential recommendation. In Proceedings of the Confer-
ence on Information and Knowledge Management (CIKM 2019), pages 2173–2176, 2019.

[127] Wei Yang, Kuang Lu, Peilin Yang, and Jimmy Lin. Critically examining the neural hype:
Weak baselines and the additivity of effectiveness gains from neural ranking models. In
Proceedings of the International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2019), pages 1129–1132, 2019.

[128] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions.
CoRR, abs/1511.07122, 2015.

[129] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M. Jose, and Xiangnan He.
A simple convolutional generative network for next item recommendation. In Proceedings
of the ACM International Conference on Web Search and Data Mining (WSDM 2019), pages
582–590, 2019.

[130] Bangzuo Zhang, Haobo Zhang, Xiaoxin Sun, Guozhong Feng, and Chunguang He. Inte-
grating an attention mechanism and convolution collaborative filtering for document context-
aware rating prediction. IEEE Access, pages 3826–3835, 2018.

[131] Quangui Zhang, Longbing Cao, Chengzhang Zhu, Zhiqiang Li, and Jinguang Sun. Coupledcf:
Learning explicit and implicit user-item couplings in recommendation for deep collaborative
filtering. In Proceedings of the International Joint Conference on Artificial Intelligence (IJ-
CAI 2018), pages 3662–3668, 7 2018.

[132] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender system:
A survey and new perspectives. ACM Computing Surveys (CSUR), 52, 2019.

161

Bibliography

[133] Shuai Zhang, Lina Yao, Aixin Sun, Sen Wang, Guodong Long, and Manqing Dong. Neurec:
On nonlinear transformation for personalized ranking. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI 2018), pages 3669–3675, 2018.

[134] Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, and Philip S. Yu. Spectral collaborative
filtering. In Proceedings of the ACM Conference on Recommender Systems (RecSys 2018),
pages 311–319, 2018.

[135] Tao Zhou, Zoltán Kuscsik, Jian-Guo Liu, Matúš Medo, Joseph Rushton Wakeling, and Yi-
Cheng Zhang. Solving the apparent diversity-accuracy dilemma of recommender systems.
Proceedings of the National Academy of Sciences, 107(10):4511–4515, 2010.

162

	Introduction
	Motivation
	Research Contributions
	List of Publications
	Invited Conference Paper
	Journal Publication
	Book Chapter
	Conference Paper
	Workshop Paper

	Structure

	Preliminaries
	Neural Recommender Systems
	Multi-layer Perceptron
	Autoencoder
	Convolutional Neural Network

	Reproducibility Crisis

	Identifying relevant and reproducible articles
	Paper Selection Criteria
	Relevant and Reproducible Papers List

	Evaluation protocol and baseline algorithms
	Experimental Setup
	Baseline Algorithms
	Popularity-Based Ranking
	Nearest-Neighbor Methods
	Graph-based Methods
	Content-based and Hybrid Methods
	Non-Neural Machine Learning Item-based Approaches
	Non-Neural Machine Learning Matrix Factorization Approaches

	Evaluation metrics
	Accuracy Metrics
	Beyond-accuracy Metrics
	Computation Time Metrics

	Hyperparameter Tuning
	Early Stopping Approach

	Evaluation Framework

	Detailed results for reproducible articles
	Collaborative Deep Learning for Recommender Systems (CDL)
	Datasets and Evaluation
	Methodological considerations
	Results and Discussion

	Collaborative Variational Autoencoder (CVAE)
	Datasets and Evaluation
	Methodological considerations
	Results and Discussion

	Neural Collaborative Filtering (NCF)
	Datasets and Evaluation
	Methodological considerations
	Results and Discussion

	Deep Matrix Factorization (DMF)
	Datasets and Evaluation
	Methodological considerations
	Results and Discussion

	Variational Autoencoders for Collaborative Filtering (Mult-VAE)
	Datasets and Evaluation
	Methodological considerations
	Results and Discussion

	NeuRec: On Nonlinear Transformation for Personalized Ranking
	Datasets and Evaluation
	Methodological considerations
	Results and Discussion

	CoupledCF: Learning Explicit and Implicit User-item Couplings
	Datasets and Evaluation
	Methodological considerations
	Results and Discussion

	DELF: A Dual-Embedding based Deep Latent Factor Model for Recommendation
	Datasets and Evaluation
	Methodological considerations
	Results and Discussion

	Outer Product-based Neural Collaborative Filtering (ConvNCF)
	Datasets and Evaluation
	Methodological considerations
	Results and Discussion

	Leveraging Meta-path based Context (MCRec)
	Datasets and Evaluation
	Methodological considerations
	Results and Discussion

	Collaborative Memory Network for Recommendation System (CMN)
	Datasets and Evaluation
	Methodological considerations
	Results and Discussion

	Spectral Collaborative Filtering (SpectralCF)
	Datasets and Evaluation
	Methodological considerations
	Results and Discussion

	The Claimed Value of Convolutions over User-Item Embedding Maps
	Background
	Principles and Assumptions of CNNs
	CNNs on Embedding correlations

	Overview of Analyzed Approaches
	Convolutional Neural Collaborative Filtering
	Convolutional Factorization Machines
	Coupled Collaborative Filtering

	Analysis
	Theoretical Considerations
	Experiment Configurations
	Varying the Input Topology
	Ablation Studies

	Summary

	Result overview and discussion
	Reproducibility
	Artifacts not available or not working
	Difficulty to contact the authors

	Methodological Issues
	Arbitrary experimental design
	Selection and propagation of weak baselines
	Errors and information leakage

	Scalability
	Limitations

	Conclusions
	Future Works

	Hyperparameter range and distribution for baseline algorithms
	Equivalence of Hamming distance and Herfindahl index
	Aggregate diversity metrics
	Mathematical notation
	Metrics
	Mean inter-list diversity
	Hamming diversity

	MIL as aggregate diversity
	Diversity enhancing reranking

	Summary

	Detailed results for all the analyzed algorithms
	Bibliography

