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Abstract 

As an emerging means of transportation, shared e-bikes have gradually 

become one of the favorite ways for Chinese urban residents to get around. 

However, there are few studies on the operation of shared bikes. At present, the 

power supply of shared electric bikes mainly relies on mobile service vehicles 

sent by operators for battery replacement. The service vehicle will go to the 

parking place of the shared electric bike where the battery needs to be replaced, 

collect the battery with insufficient power, and finally return to the battery 

warehouse.  

The automobile industry is faced with the challenge of comprehensive electric 

transformation. Commercial vehicles are an essential source of carbon dioxide 

and air pollutants emission. And governments have put comprehensive electric 

transformation on the agenda. Currently, in China, the electrification of other 

commercial vehicles except buses is still in its initial stage. With the boost of 

relevant policies, the comprehensive electrification development of commercial 

vehicles will be accelerated. 

This thesis's research object is the battery replacement operation system for 

shared e-bikes. The research content of this thesis is to select the electric 

logistics vehicle as the service vehicle and study the routing planning of its 

battery replacement service for shared e-bikes. 

Firstly, after analyzing the actual situation and listing the assumptions, a linear 

programming model is established according to the constraints of transport 

cost, fast charging/battery-swapping cost, and service time cost. To solve the 

problem, genetic algorithm, particle swarm optimization, and chaotic particle 

swarm optimization are used to minimize the operating cost of replacing the 

shared electric bike battery. 

Secondly, this thesis uses the Solomon benchmark as the dataset to test the 

algorithm and analyze the results. Compare the performance of genetic 

algorithm, particle swarm optimization, and chaotic particle swarm 

optimization. The optimal path provided by the three algorithms is used to 

analyze carbon dioxide emissions.  

Finally, the sensitivity analysis is carried out to explore the factors that affect 

the experimental results, and the method of optimizing the decision scheme is 

proposed. According to the sensitivity analysis results, improved electric 

logistics load capacity, battery capacity, and reasonable arrangement of service 

vehicle fleet structure can improve the flexibility of vehicle operation in the 

system to a certain extent, reducing its total operating cost. 
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In the last part of this thesis, the work of this thesis is summarized step by step. 

The shortcomings of mobile replacement battery service are put forward, and 

the prospect is made. 

 

 

Keywords: shared e-bikes, soft time window, routing planning, genetic 

algorithm, particle swarm optimization, chaotic particle swarm optimization 
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Abstract in italiano 

Come mezzo di trasporto emergente, le e-bike condivise sono gradualmente 

diventate uno dei modi preferiti dai residenti urbani cinesi per spostarsi. 

Tuttavia, ci sono pochi studi sul funzionamento delle biciclette condivise. 

Attualmente, l'alimentazione delle bici elettriche condivise si basa 

principalmente sui veicoli di servizio mobili inviati dagli operatori per la 

sostituzione della batteria. Il veicolo di servizio si recherà al parcheggio della 

bici elettrica condivisa dove è necessario sostituire la batteria, ritirerà la batteria 

con potenza insufficiente e infine tornerà al magazzino batterie. 

L'industria automobilistica deve affrontare la sfida di una trasformazione 

elettrica completa. I veicoli commerciali sono una fonte essenziale di emissioni 

di anidride carbonica e inquinanti atmosferici. E i governi hanno messo 

all'ordine del giorno una trasformazione elettrica completa. Attualmente, in 

Cina, l'elettrificazione di altri veicoli commerciali ad eccezione degli autobus è 

ancora nella sua fase iniziale. Con la spinta delle politiche pertinenti, lo 

sviluppo completo dell'elettrificazione dei veicoli commerciali sarà accelerato. 

L'oggetto di ricerca di questa tesi è il sistema operativo di sostituzione della 

batteria per biciclette condivise. Il contenuto della ricerca di questa tesi è 

selezionare il veicolo logistico elettrico come veicolo di servizio e studiare la 

pianificazione del percorso del suo servizio di sostituzione della batteria per le 

e-bike condivise. 

In primo luogo, dopo aver analizzato la situazione reale ed elencato le ipotesi, 

viene stabilito un modello di programmazione lineare in base ai vincoli del 

costo del trasporto, del costo di ricarica rapida/cambio batteria e del costo del 

tempo di servizio. Per risolvere il problema, vengono utilizzati l'algoritmo 

genetico, l'ottimizzazione dello sciame di particelle e l'ottimizzazione dello 

sciame di particelle caotiche per ridurre al minimo il costo operativo della 

sostituzione della batteria della bicicletta elettrica condivisa. 

In secondo luogo, questa tesi utilizza il benchmark Solomon come set di dati 

per testare l'algoritmo e analizzare i risultati. Confronta le prestazioni 

dell'algoritmo genetico, dell'ottimizzazione dello sciame di particelle e 

dell'ottimizzazione dello sciame di particelle caotiche. Il percorso ottimale 

fornito dai tre algoritmi viene utilizzato per analizzare le emissioni di anidride 

carbonica 

Infine, viene effettuata l'analisi di sensitività per esplorare i fattori che 

influenzano i risultati sperimentali e viene proposto il metodo di 

ottimizzazione dello schema decisionale. Secondo i risultati dell'analisi di 
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sensibilità, una migliore capacità di carico della logistica elettrica, la capacità 

della batteria e una disposizione ragionevole della struttura della flotta di 

veicoli di servizio possono migliorare in una certa misura la flessibilità del 

funzionamento del veicolo nel sistema, riducendone il costo operativo totale. 

Nell'ultima parte di questa tesi, vengono esaminate le caratteristiche di diversi 

algoritmi e vengono riassunti i risultati della pianificazione del percorso. 

Vengono evidenziate le carenze del servizio di sostituzione della batteria 

mobile e viene fatta la prospettiva. 

 

 

Parole chiave: e-bike condivise, finestra temporale morbida, pianificazione del 

percorso, algoritmo genetico, ottimizzazione dello sciame di particelle, 

ottimizzazione dello sciame di particelle caotiche 
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1 General Overview 

Urban transport in China has experienced five stages of development: 

(1) The period of transportation based on foot, water transport and animal 

rickshaw before the founding of the People's Republic of China. 

(2) The period from the founding of the People's Republic of China to the 1980s 

when bicycles were an important means of transportation. 

(3) During the rapid development of motorization from the 1980s to 2000, 

public transportation developed rapidly, and cars gradually entered 

families. 

(4) During the rapid synchronous development of rail transit, bus and car from 

2000 to 2010, bicycle traffic gradually shrank. 

(5) After 2016, as the concept of shared bikes and electric vehicles began to 

emerge, non-motor vehicles showed their former vitality. Shared bikes and 

shared electric bikes have become important modes of transportation for 

urban residents. 

As a component of the urban slow travel system, shared cycling plays an 

important role in satisfying basic travel, serving bus connections, facilitating 

public commuting, and improving transportation resilience[1][2][3] In recent years, 

shared e-bikes, as an emerging green mode of travel, have provided users with 

diversified choices for short and medium trips under their convenience, 

economy and sharing characteristics. 

With China already committing to peak carbon dioxide emissions before 2030 

and achieve carbon neutrality before 2060, the Central Economic Work 

Conference urged quicker steps to come up with an action plan that enables the 

peaking of emissions. It called for accelerated efforts to better the industry and 

energy structures and enable the peaking of coal consumption early while 

bolstering the development of new energy. 

Currently, the shared electric bicycle system mainly adopts the operation 

method of manual battery replacement. The delivery vehicles carry electric 

bicycle batteries to provide battery replacement services for nodes in need in 

the urban road network. However, the delivery vehicles are mainly fuel 

vehicles. The increase in urban delivery will inevitably lead to an increase in 
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the number of delivery vehicles and delivery times, which will indirectly harm 

urban environmental quality. The emergence of electric vehicles as logistics 

distribution vehicles realizes the concept of "zero emission and zero pollution" 

in the distribution process to improve the environment. The selection of electric 

vehicles as servo vehicles in the shared electric bike system helps promote the 

sustainable development of shared electric bikes and the environment. 

This chapter will introduce the development of shared e-bikes in China, the 

advantages of shared e-bikes, the charging/changing strategy of shared e-bikes, 

and the development and advantages of electric logistics vehicles. 

1.1. Development of shared e-bikes 

1.1.1 Rapid growth 

The shared e-bike is a new means of transportation, mainly for the Chinese city 

travel market of 3-10 kilometres. Since 2016, shared bikes have developed 

rapidly, with companies led by Mobike and ofo completing their financing and 

releasing many shared bikes in various places within a year. At the same time, 

e-bike sharing is also quietly taking off. The bikes are very convenient to use. 

After completing the registration, deposit and identity verification procedures 

by scanning the QR code on the bikes, users can unlock the bikes and use them 

and are charged according to the time. 

Nanchang Hangkong University released its first batch of 40 e-bikes in mid-

December 2016, and the operator said it made a profit on the first day. Since 

January 2017, shared electric vehicles have been launched in Beijing, Shanghai, 

Nanjing and other cities, such as the No. 7 electric bike, Mebike, electric zebra 

and Lieba. 
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Figure 1. 1: Mebike 

1.1.2. Industry winter 

Due to the chaotic parking management of shared electric vehicles, the lack of 

supervision on the safety technology of electric vehicles, the lack of non-

motorized lanes in cities and other reasons, the development of shared electric 

vehicles soon fell into a bottleneck. At the beginning of 2017, the transport 

commissions of Beijing, Shanghai and other places issued relevant documents, 

which clearly stated that the development of shared e-bikes should not be 

developed, and the development of shared e-bikes should not be temporarily 

implemented. In August 2017, the Ministry of Transport and other ten 

departments jointly issued the "Guidance on Encouraging and Regulating the 

development of Internet rental bikes," which pointed out that rental electric 

bikes are not encouraged. Subsequently, local governments have repeatedly 

stated that they do not encourage the development of shared electric bikes. 

1.1.3. Rational development 

In May 2018, the new mandatory national standard "Technical Specification for 

Safety of Electric Bicycles" was released and officially implemented on April 15, 

2019. The new national standard will put safety first, from vehicle safety, 

electrical safety, speed, fire prevention tampering and other aspects of strict 

regulations. Implementing the new national standard has a mandatory 

normative effect on electric bicycle production, sale and use. 

The new national standard provides clear instructions on the use, management 

and follow-up treatment of e-bikes nationwide, which means there will be rules 
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to follow for the operation and management of shared e-bikes. At the same time, 

some local cities are gradually liberalizing the control of shared electric bikes, 

aiming to minimize the risk probability of civil electric bikes through sharing 

means. 

Affected by the policy, the shared bike industry also ushered in development 

opportunities. 2020 is the first year of shared e-bike to resume development 

with many bike platforms entering the market of shared e-bikes. As shown in 

the pie chart below, Meituan, Didi and Hallo put 800,000, 650,000 and 550,000 

e-bikes into the market in the first half year of 2020. Moreover, the annual put 

into the market is 2 million, 1.5 million and 1.3 million e-bikes, respectively. 

Hallo has 2.6 million e-bikes, Meituan has 2 million e-bikes, and Didi has 1.7 

million e-bikes. The total share of the three companies is over 70%, and they are 

in an oligopoly situation. As shown in Figure 1.3, the revenue scale of China's 

shared e-bikes is 9.36 billion yuan in 2021, and it is expected to exceed 10 billion 

yuan in 2022. With the continuous expansion of the scale of shared e-bikes and 

the increasing public awareness of shared travel, the daily use rate of shared e-

bikes will further improve, and the revenue scale of shared e-bikes is expected 

to exceed 20 billion yuan in 2025. In China, shared e-bikes, as an important 

supplement to two-wheeled transportation, still have great potential for 

development. 
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Figure 1. 2: Competition pattern of shared e-bike in 2020H1 
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As shown in Figure 1.3, the revenue scale of China's shared e-bikes is 9.36 

billion yuan in 2021, and it is expected to exceed 10 billion yuan in 2022. With 

the continuous expansion of the scale of shared e-bikes and the increasing 

public awareness of shared travel, the daily use rate of shared e-bikes will 

further improve, and the revenue scale of shared e-bikes is expected to exceed 

20 billion yuan in 2025. In China, shared e-bikes, as an important supplement 

to two-wheeled transportation, still have great potential for development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

62.4

93.6

121

138

159

200

108%

50%

29%

14% 15%

26%

0%

20%

40%

60%

80%

100%

120%

0

50

100

150

200

250

2019 2020 2021 2022E 2023E 2024E 2025E

Revenue scale (100 million Yuan) Growth rate

 

 

 

Figure 1. 3: The revenue scale of China's shared e-bikes 



6 

1.2.  Advantages of sharing electric bikes 

1.3. Charging/changing battery strategies for e-bikes 

1.3.1. Shared charging station 

Shared charging stations are usually found in urban neighbourhoods or 

convenience stores, where riders can recharge their bikes in their free time. 

According to the charging efficiency, shared charging stations can be divided 

into fast and slow charging stations. However, in the slow charging mode, it 

takes 4-6 hours to fill an e-bike, and few places in the urban road network can 

provide such charging equipment. Therefore, a large-scale shared electric bike 

system is not suitable for the situation of self-charging by users. In addition, the 

working voltage of fast charging equipment is relatively high, which also has 

high requirements for the charging facilities deployed. It is not easy to arrange 

large-scale in the shared e-bike network. 

  

 

Figure 1. 15: Shared charging station 

 

1.3.2. Shared battery changing cabinet 

Shared battery changing cabinet is a new shared economy equipment. It solves 

the problems of unsafe battery charging, inconvenient charging and short 
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battery life for users of e-bikes. Users need to scan the QR code, take out the 

fully charged battery, put the battery with insufficient power back into the 

changing cabinet, and finally put the new battery into the e-bikes, and then they 

can ride again. 

 

Figure 1. 16: Shared battery changing cabinet 

 

Currently, this mode is more popular with delivery riders, who need to refuel 

their bikes frequently. Instead, the battery recharge time after sharing the 

electric changing cabinet has changed from the original 4-6 hours to the current 

one minute to complete the battery changing. Shared battery changing cabinet 

not only saves the riders' time but also improves work efficiency. 

However, there are still great difficulties in promoting the shared battery 

changing cabinet at this stage. On the one hand, for ordinary users, direct 

participation in battery replacement will reduce users' experience, and users 

are not willing to use the shared battery changing cabinet. On the other hand, 

for operating enterprises, the density of power changing outlets is not high at 

the present stage, and a large number of shared batterry changing cabinets are 

still needed. However, due to the natural asset-heavy property of shared 

battery changing cabinets, operators also face various problems of high 

operating costs such as site rent and commercial electricity price. So the speed 

of network construction cannot effectively accelerate the service for ordinary 

users. 

1.3.3. Wireless charging 

The traditional wired charging method is used regardless of the shared 

charging station or shared battery changing cabinet. In addition to easy-to-
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produce electric spark and plug wear, it is also easy to be affected by moisture, 

heat dissipation, dust, and other environmental problems that have certain 

impacts on the charging. In the complex outdoor environment, to better and 

safer charge electric bicycles, new charging methods are needed to meet the 

needs of the public. Wireless charging technology makes up for the shortage of 

wired charging to some extent.[4][5] 

Wireless charging technology is mainly based on the magnetic field reaction, 

that is, inductive coupling. After the connected current passes through power 

factor correction (PFC) and high-frequency inverter power conversion, the 

high-frequency alternating current is generated to excite the transmitting coil 

to generate an alternating magnetic field. The receiving lock obtains energy in 

the alternating magnetic field to obtain an AC voltage, which is then provided 

to the battery load through the rectification link. 

Presently, e-bike wireless charging product has progressed in China, mainly 

aiming at achieving more convenient wireless charging. In 2017, the company 

Xiangqi introduced wireless charging piles for e-bikes for the first time, which 

can be charged wirelessly by parking specific e-bikes at designated locations. 

 

 

Figure 1. 17: Xiangqi wireless charging pile 

 

Although the prospect of wireless charging piles will be very extensive, there 

are still many problems restricting the popularization of this technology. The 

first is the efficiency problem. Wireless charging leads to a significant reduction 

in charging efficiency. The second point is the cost. The cost is relatively high 

through the coil energy coupling to achieve energy transfer because the 

composition and structure are more complex than wired charging. Currently, 

the number of wireless charging piles is small, and the construction cost is high, 

so wireless charging piles cannot be put into large-scale commercial use quickly. 
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Lastly, there are safety issues caused by foreign bodies, such as heat and fire 

safety issues. And electromagnetic radiation biosafety issues. 

1.3.4. Mobile services 

Battery management of shared e-bikes is the core operation of the entire e-bikes 

project. Because the number of shared e-bikes in cities is limited, batteries must 

be replaced or recharged frequently. To adapt to the electric characteristics of 

shared e-bikes, most e-bike operating companies currently use mobile service 

vehicles to replace the batteries of e-bikes. The electric power of the shared e-

bikes will be transmitted to the background server through the network, and 

the management personnel can determine the vehicle that needs to replace the 

battery according to the electric power displayed on the platform. The mobile 

battery replacement service is relatively simple, with the battery loading and 

unloading at the battery station and manual replacement at the e-bike parking 

station. 

 

 

Figure 1. 18: Mobile service scenario 

 

This thesis chooses mobile services to change the batteries for shared e-bikes. 

The research content is the path planning problem of replacing batteries of e-

bikes in urban shared e-bike systems by mobile vehicles. 

1.4. Development and advantages of electric vehicles 

for logistics distribution 

1.4.1. Development of electric logistics vehicles 
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Urban logistics vehicles have the characteristics of short daily mileage and fixed 

round-trip, which is an important direction for the promotion of new energy 

vehicles after buses. 

The development of new energy logistics vehicles cannot be achieved without 

the support of government policies. Since 2013, Beijing, Shanghai, Guangdong 

and other places have launched a series of new energy vehicle promotion plans, 

which have put forward the requirements of developing electric logistics 

vehicles to solve the urban end distribution. 

Currently, China's policies on new energy logistics vehicles mainly focus on 

subsidies and the right of way. On the one hand, subsidies for purchasing new 

energy vehicles have been declining yearly. However, the subsidies for new 

energy logistics vehicles have been changed to subsidize the construction of 

charging piles and other infrastructure. On the other hand, new energy logistics 

vehicles are parking fee exemptions. Moreover, they also can share the city bus 

lanes. 

The Figure 1.19 shows the changes in the number of new energy logistics 

vehicle sales over the period from 2018 to 2021. Affected by the decline in 

purchase subsidies and vehicle quality, China's sales volume of new energy 

logistics vehicles declined in 2019-2020. In 2021, with the release of the "carbon 

neutral" policy and the improvement of new energy battery technology, the 

sales volume of new energy logistics vehicles 2021 reached 132,000, with a year-

on-year growth of 79.5%. 

 

Figure 1. 19: New energy logistics vehicle sales in 2018-2021 

 

Under the combined market demand and policy promotion action, the overall 
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market of new energy vehicles will also perform well. It is expected that by 

2025, the total sales volume of logistics vehicles in China will reach 4.19 million, 

with an annual growth rate of 4.36%. The penetration rate of new energy 

logistics vehicles can reach 20% in the optimistic scenario and 6.3% in the 

pessimistic scenario. 

From the perspective of power sources, new energy logistics vehicles can be 

divided into three categories: pure electric, plug-in hybrid and hydrogen fuel 

cells. The following graph shows that 73,032 pure electric logistics vehicles 

were sold in 2020, accounting for 99.33% of the new energy logistics vehicles 

market. The second is plug-in hybrid, with the sales volume of 345 units, 

accounting for 0.47% of the market; 146 hydrogen fuel cell logistics vehicles 

were sold, accounting for 0.20% of the new energy logistics vehicles market. 

Overall, the market performance of plug-in hybrid models and hydrogen fuel 

cells is weak, and pure electric vehicles are the main component of new energy 

logistics vehicles. 

 

 

Figure 1. 20: New energy logistics vehicle segmentation sales 2017-2020 

 

1.4.2. Advantages of electric logistics vehicles 

Due to low power requirements, ideal low-speed torque characteristics, high 

braking regeneration ability, low noise, no pollution and other characteristics, 

the pure electric logistics vehicle is very suitable for urban driving. The 

application of electric logistics vehicles in logistics distribution helps alleviate 

air pollution, environmental noise and other problems.[6][7] 
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Electric logistics vehicles not only reduce the environmental impact but also 

bring more value to urban delivery: 

(1) Easy to manage. Applying pure electric logistics vehicles can significantly 

reduce the number of vehicle managers, and electricity consumption 

management is easier than oil management. 

(2) Oil and electricity price difference. The oil price is relatively stable, with 

little room for fluctuation. In contrast, electricity prices vary significantly in 

different regions and periods, so there is a large space for cost optimization. 

(3) Data collection. Electric logistics vehicles are generally equipped with a 

complete data acquisition system and are online in real-time. The data 

generated during their operation will be of great significance to optimizing 

enterprise efficiency and reducing operating costs in the future. 

(4) Right-of-way advantage. Because electric logistics vehicles do not produce 

air pollution in the place where they operate, they can obtain more 

advantages in the right-of-way and reduce costs for enterprises. 

In this thesis, electric logistics vehicle is selected as the service vehicle for 

battery replacement of shared e-bikes. In the network of the research content, 

electric logistics vehicles replace usable batteries for shared e-bikes at each node. 

When the number of onboard batteries is insufficient, they need to go to the 

battery station with a fixed location to load usable batteries. When serving new 

energy vehicles, the vehicle running in the road network needs to consider not 

only the load capacity but also its electricity. When its electricity is not enough 

to continue the service, it needs to go to the charging station to supplement the 

electricity. 

2 The basic theory 

The vehicle routing problem (VRP) and its variants have been extensively 

studied over the decades since Dantzig and Ramser (1959) [8]put it forward. The 

most representative VRP variants include VRP with time windows and 

capacitated vehicle routing problem. [9]Due to the increasingly severe 

environmental pollution, many people have begun to pay attention to the 

sustainable development of the logistics industry, which gradually derived all 

kinds of VRP variants. Nowadays, the research of green VRP has significantly 

been developed. 
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2.1. The basic theory of vehicle routing problem  

VRP can be described as the traditional delivery vehicle of a logistics enterprise 

carrying goods from a single distribution centre and successively visiting 

customer points with different goods needs. Distribution vehicles must deliver 

to all customer points and arrange distribution routes reasonably according to 

the location of customer points. Delivery vehicles must visit customer points 

one by one and return to the distribution center after completing all customer 

points in the path. The specific diagram of traditional vehicle path planning is 

shown in Figure 2.1. 

 

Figure 2. 1: Schematic diagram of traditional vehicle routing problem 

 

Vehicle routing problem has different variation problems. Different variants of 

the problems in the distribution process need to meet different constraints and 

the pursuit of goals and tasks of different. According to the research content of 

this thesis, the capacitated vehicle routing problem and VRP problem with time 

window will be mainly introduced. 

2.1.1. Capacitated vehicle routing problem 

Capacitated vehicle routing problem[10] is the most basic variant of VRP. It is 

described explicitly that each distribution vehicle of a logistics enterprise has a 
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specific capacity limit for loading goods. The distribution vehicles carry goods 

from the single distribution centre and visit customer points with different 

goods demands in turn. The sum of goods demands of all visiting customer 

points should not exceed the loading capacity of the distribution vehicles. 

Distribution routes should be reasonably arranged according to the locations 

of customer points. Delivery vehicles should visit customer points in order and 

return to the distribution center after completing the distribution tasks of all 

customer points in the path. The goal of the problem is to minimize the 

distribution cost. 

Before the model, the capacitated vehicle routing problem generally exists the 

following basic assumptions:  

(1) A single distribution centre distributes goods to multiple customers. 

(2) The fleet of delivery vehicles with uniform capacity. 

(3) All distribution vehicles start from the distribution centre and must 

return to the distribution centre after completing the task. Vehicles 

only deliver goods without receiving goods from customers. 

(4) The geographical location and demand of all customer points are 

known, and each customer point is only served once. 

(5) Stable traffic conditions and no extraordinary circumstances occur 

during the distribution of vehicles. 

(6) The demand of any customer point is less than the maximum load of 

the delivery vehicle. 

According to the capacitated vehicle routing problem description, there are a 

single distribution center 𝑂 and 𝑚 distribution vehicles with load capacity 𝑄. 

The set of distribution vehicles is 𝐾 = {𝑘1, 𝑘2 … 𝑘𝑚} , the delivery vehicle is 

responsible for delivering to n customer points, and the customer set is 𝐼 =

{𝐼1, 𝐼2 … 𝐼𝑛}, where the quality of goods demanded by each customer point 𝑖 is 

𝑞𝑖. 𝐶𝑖𝑗 represents the variable cost of the delivery vehicle from 𝑖 to point 𝑗, 

where 𝐶𝑖𝑗 = 𝑣𝑑𝑖𝑗, 𝑣 is the unit cost of vehicle travel,𝑑𝑖𝑗 is the distance from 𝑖 

to point 𝑗, and 𝑤 is the fixed cost of the vehicle. The set of all nodes in the 

model is 𝑉 = 𝐼 ∪ {𝐼0} ∪ {𝐼𝑛+1} . Optimising logistics resource allocation and 

minimising the total transportation cost under the premise of meeting the 

constraint of maximum vehicle capacity is the goal of this problem. 

Accordingly, a detailed CVRP model can be established as follows: 

𝑚𝑖𝑛𝑍 = ∑ ∑ ∑ 𝐶𝑖𝑗 ∙

𝑗∈𝑉𝑖∈𝑉𝑘∈𝐾

𝑥𝑖𝑗
𝑘 + ∑ ∑ 𝑤 ∙ 𝑥0𝑖

𝑘

𝑖∈𝑉𝑘∈𝐾

(2.1) 

subject to 



15 

∑ 𝑦𝑖
𝑘 = 1, 𝑖 ∈ 𝐼

𝑘∈𝐾

(2.2) 

∑ 𝑥𝑖𝑗
𝑘 = ∑ 𝑥𝑗𝑖

𝑘

𝑖,𝑗∈𝑉,𝑖≠𝑗𝑖,𝑗∈𝑉,𝑖≠𝑗

, 𝑘 ∈ 𝐾 (2.3) 

0 ≤ ∑ 𝑦𝑖
𝑘

𝑖∈𝐼

𝑞𝑖 ≤ 𝑄, 𝑘 ∈ 𝐾 (2.4) 

𝑥𝑖𝑗
𝑘 ∈ {0,1}, 𝑖. 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (2.5) 

𝑦𝑖
𝑘 ∈ {0,1}, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (2.6) 

The objective function (2.1) represents the minimization of logistics 

transportation costs, where the first term is the variable transportation cost of 

the vehicle, which depends on the length of the driving distance; The second is 

the fixed transport cost of the vehicle, depending on the number of delivery 

vehicles. Constraint (2.2) means that each customer 𝑖 must be served once by 

a delivery vehicle; Constraint (2.3) indicates that the number of vehicles 

arriving at and leaving any node is equal to ensure the continuity of the route. 

Constraint (2.4) means that the loading mass of the delivery vehicle shall not 

exceed its maximum capacity. Constraints (2.5) and (2.6) are binary decision 

variables. If 𝑥𝑖𝑗
𝑘 = 1 means delivery vehicle 𝑘 goes from node 𝑖  to node 𝑗. 

And if  𝑦𝑖
𝑘 = 1 means customer point 𝑖 is delivered by delivery vehicle 𝑘. 

2.1.2. Vehicle routing problem with time windows 

Vehicle routing problem with time windows (VRPTW) [11] is the extension of the 

CVRP. This problem is specifically described as that each distribution vehicle 

of a logistics enterprise has a specific capacity limit for loading goods. The 

distribution vehicle carries goods from a single distribution center and visits 

customer points with different cargo demands and time window demands in 

turn. The sum of goods demands of all visiting customer points should not 

exceed the loading capacity of the distribution vehicle. When planning the 

customer point distribution route, the first task is to arrive and deliver the 

goods within the time window of the customer point. If arriving at the 

customer point outside the time window, different degrees of penalty costs will 

be paid. This type of problem aims to maximize customer satisfaction and 

minimize transportation costs. Usually, the VRPTW occur in the following 

three situations when it is delivered to the customer: In the first case, the 

delivery vehicle has arrived before the specified customer delivery time 

window, and the unloading can not begin until the customer delivery time 

starts, so that the waiting cost will be paid. In the second case, the delivery 

vehicle arrives within the specified customer delivery time window, and the 
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unloading service can be carried out directly to the customer so that no cost 

will be paid. In the third case, the delivery vehicle arrives later than the 

specified customer delivery time window. At this point, if the customer refuses 

to accept the goods, is the vehicle routing problem with hard time windows

（VRPHTW). However, if the customer receives the goods, the price is to pay 

the penalty, which is the vehicle routing problem with soft time windows

（VRPSTW). Reducing the waiting and penalty costs and improving customer 

satisfaction are the goals of this optimization problem. In reality, the VRPSTW 

is more in line with the actual situation, which will be discussed clearly. 

Before the model, the vehicle routing problem with soft time windows 

generally exists the following basic assumptions: 

(1) A single distribution centre distributes goods to multiple customers. 

(2) The fleet of delivery vehicles with uniform capacity. 

(3) All distribution vehicles start from the distribution centre and must 

return to the distribution centre after completing the task. Vehicles 

only deliver goods without receiving goods from customers. And the 

departure time of delivery vehicles is 0. 

(4) The geographical location, demand of all customer points and time 

windows are known, and each customer point is only served once. 

(5) Stable traffic conditions and no extraordinary circumstances occur 

during the distribution of vehicles. 

(6) The demand of any customer point is less than the maximum load of 

the delivery vehicle. 

The goal of the vehicle routing problem with soft time windows is to minimize 

logistics transportation costs, including time window penalty costs. In addition 

to the above basic symbolic description of CVRP, there are the following 

symbolic descriptions: The time window satisfying customer point 𝑖 is[𝐸𝑖 , 𝐿𝑖]. 

Distribution center has hard time window [𝐸0, 𝐿0] ; Customer service time 

(unloading time) is 𝑠𝑖; The distance and time from 𝑖 to 𝑗 are 𝑑𝑖𝑗 and 𝑡𝑖𝑗; 𝜋1 

and 𝜋2 are penalty coefficients in advance and delay, respectively. 𝑆(𝑇𝑖
𝑘) is 

the service time cost function, 𝑇𝑖
𝑘  is the moment that the delivery vehicle 𝑘 

arrives at point 𝑖, 𝑇𝑖
′𝑘 is the moment that the delivery vehicle leaves at point 

𝑖, and 𝑊𝑇𝑖
𝑘 is the waiting time at point 𝑖. The function of service time cost is 

shown in Equation (2.7). 

𝑆(𝑇𝑖
𝑘) = {

𝜋1(𝐸𝑖 − 𝑇𝑖
𝑘),   𝑇𝑖

𝑘 < 𝐸𝑖

0, 𝐸𝑖 ≤ 𝑇𝑖
𝑘 ≤ 𝐿𝑖 , 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾

𝜋2(𝑇𝑖
𝑘 − 𝐸𝑖), 𝑇𝑖

𝑘 > 𝐿𝑖  

 (2.7) 
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Accordingly, a detailed VRPSTW model can be established as follows: 

𝑚𝑖𝑛𝑍 = ∑ ∑ ∑ 𝐶𝑖𝑗

𝑗∈𝑉𝑖∈𝑉𝑘∈𝐾

∙ 𝑥𝑖𝑗
𝑘 + ∑ ∑ 𝑤 ∙ 𝑥0𝑖

𝑘 + ∑ ∑ 𝑆(𝑇𝑖
 𝑘)

𝑖∈𝐼𝑘∈𝐾𝑖∈𝑉𝑘∈𝐾

(2.8) 

Subject to 

∑ 𝑦𝑖
𝑘

𝑘∈𝐾

= 1, 𝑖 ∈ 𝐼 (2.9) 

∑ 𝑥𝑖𝑗
𝑘 = ∑ 𝑥𝑗𝑖

,𝑘

𝑖,𝑗∈𝑉,𝑖≠𝑗

, 𝑘 ∈ 𝐾

𝑖,𝑗∈𝑉,𝑖≠𝑗

(2.10) 

0 ≤ ∑ 𝑦𝑖
𝑘

𝑖∈𝐼

𝑞𝑖 ≤ 𝑄, 𝑘 ∈ 𝐾 (2.11) 

𝑇𝑖
′𝑘 = 𝑇𝑖

𝑘 + 𝑊𝑇𝑖
𝑘 + 𝑠𝑖, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (2.12) 

𝑇𝑗
𝑘 = ∑ ∑ 𝑥𝑖𝑗

𝑘 (𝑇𝑖
′𝑘 + 𝑡𝑖𝑗), 𝑘 ∈ 𝐾

𝑗∈𝑉,𝑖≠𝑗𝑖∈𝑉

(2.13) 

𝑊𝑇𝑖
𝑘 = 𝑚𝑎𝑥[0, (𝐸𝑖 − 𝑇𝑖

𝑘)], 𝑖 ∈ 𝐼 (2.14) 

𝑥𝑖𝑗
𝑘 ∈ {0, 1}, 𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (2.15) 

The objective function (2.8) represents the minimum total logistics cost. The 

first two items are the variable and fixed transportation costs of vehicles, and 

the third is the service time cost. Constraint (2.9) indicates that each customer 

𝑖 must be delivered once by a delivery vehicle. Constraint (2.10) indicates that 

the number of vehicles arriving at and leaving any node is equal to ensure the 

continuity of the route. Constraint (2.11) means that the loading mass of the 

delivery vehicle must not exceed its maximum capacity. Constraint (2.12) 

indicates that the time leaving 𝑓 is the sum of the time arriving at f, waiting 

time, and service time. Constraint (2.13) represents the sum of the time to j from 

i and the travel time of arc (𝑗). Constraint (2.14) represents the wait time at 

customer point 𝑓.  The constraint (2.15) is expressed as a binary decision 

variable. 

2.2. Basic theory of electric vehicle routing problem 

Today, greenhouse gas emission has become a severe environmental problem.   

Significant emissions have been attributed in part to the transport sector across 

industries. Spurred by government policies, some logistics companies seek 

alternatives to traditional fuels.   With the development of battery technology, 
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electric vehicles have been developed as a promising alternative to 

conventional cars.    

The electric vehicle routing problem (EVRP) [12][13] is the expansion of the VRP, 

the VRP of distribution vehicles to the electric vehicle fleet. For EVRP, the 

logistics enterprises provide electric cars with specific loading cargo capacity 

limits and power limit constraints. The distribution vehicle starts from a single 

distribution center to carry goods and deliver goods to customers with different 

needs in turn. The total demand for goods at all customer points should not 

exceed the loading capacity of the delivery vehicle. On the way, if the electric 

vehicle’s power is not enough to support the next customer point, then select 

the nearest charging station to charge, and continue to serve the remaining 

customer points after charging until returning to the distribution center.   

 

Figure 2. 2: Schematic diagram of electric vehicle routing problem 

 

In the construction of the EVRP model, in addition to satisfying the basic 

assumptions of the traditional vehicle routing problem, the most important 

thing is to meet the constraints of electric vehicle batteries. During the delivery 

of electric vehicles, the following situations may occur: 

(1) The electric vehicle drives into the nearest charging station to charge 

before the power consumption is complete and then delivers to other 
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customers until it returns to the distribution center. 

(2) When the electric power consumption ends, it still does not reach the 

charging station or back to the distribution center, leading to the failure 

to complete the following distribution tasks, resulting in increased 

enterprise costs. 

(3) Electric cars have more charge but not enough to reach the nearest 

charging station. 

How to plan the distribution path of electric vehicles so that they can return to 

the distribution center smoothly after completing the proper distribution task 

is one of the critical problems to be solved in the route planning of electric 

vehicles. 

2.3. Basic theory of classic algorithms for electric 

vehicle routing problem 

EVRP is a typical NP-hard problem with two main difficulties in solving it. The 

first one is that sufficient time and exemplary configuration are needed to 

provide computing conditions due to the complexity and large amount of 

calculation. Secondly, the solution of various algorithms is more likely to fall 

into the optimal local solution, and the solution results of the algorithm need 

to be constantly optimized, so it is necessary to jump out of the optimal local 

solution and adopt the global search method. Currently, the solution methods 

applied to EVRP can be divided into precise and heuristic methods. 

When the problem size is small, the precise algorithm can obtain the optimal 

solution within an acceptable time. However, when the problem size is large, 

the time required by the exact algorithm to solve the optimal solution increases 

exponentially. At present, the methods used by most EV vehicle path 

optimization researchers are various heuristic-solving algorithms. The meta-

heuristic algorithm is the most mainstream intelligent optimization algorithm 

used to solve EVRP, including the genetic algorithm, ant colony algorithm, 

particle swarm optimization algorithm, simulated annealing algorithm, and 

tabu search algorithm. 

Genetic algorithm (GA)[14] is a kind of evolutionary algorithm. It uses natural 

biological selection and the natural genetic mechanism of the random search 

algorithm. Its basic principle is modeled on "natural selection, survival of the 

fittest" in nature. This algorithm is very suitable for dealing with complex and 

nonlinear problems that are challenging to solve by traditional heuristic 

algorithms. The problem's parameters are encoded in this algorithm, and the 

corresponding data is the chromosome. Then, a series of operations such as 
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selection, crossover, and mutation are used to carry out genetic iteration on the 

chromosome. After iteration, the chromosome is superior to the next generation, 

and the chromosome that meets the optimization goal is finally output. 

Ant colony algorithm (ACA) is a new emulated evolution algorithm. This 

algorithm is in the 1990 s by M. Dorigo [14] put forward according to the foraging 

behavior of ant colonies. The solution of the ant colony algorithm for the VRP 

is as follows: the path of each ant represents one of the feasible solutions of VRP, 

and the whole ant population is the feasible solution space. Ants on shorter 

paths release more pheromones and thus attract more ants. Finally, the ant 

population will find the optimal path under the positive feedback effect, which 

is the optimal feasible solution of the VRP. 

Particle swarm optimization (PSO) is a swarm intelligence optimization 

algorithm that Kennedy and Eberhart put forward in 1995. [16] The algorithm 

was also inspired by the behavior characteristics of the biological population 

(bird predation), and it is widely used to solve optimization problems. In this 

algorithm, each particle corresponds to a potential solution, which is 

determined by the fitness value calculated by the fitness function, and the 

particle's speed  

determines the particle's moving position. Each particle will dynamically 

adjust its position according to the position of other particles. The process is 

repeated and expected to move the swarm toward the best solutions. 

Simulated annealing (SA) [17]was designed by Metropolis based on the similarity 

between annealing processes of fixed substances in physics and general 

optimization problems. The physical annealing process is the heating process, 

isothermal process, and cooling process, which correspond to the set initial 

temperature of the algorithm, the Metropolis sampling process, and the 

decrease of control parameters, respectively. Setting the Metropolis criterion is 

the key to whether the algorithm can obtain the optimal global solution. This 

algorithm is gradually developed into an iterative adaptive heuristic 

probabilistic search algorithm.  

The above classical meta-heuristic algorithms have different advantages and 

disadvantages in obtaining feasible solutions for different optimization 

problems. Because the optimality of feasible solutions cannot be fully 

guaranteed, many scholars have begun to improve the meta-heuristic 

algorithm according to its advantages and disadvantages, forming a hybrid 

heuristic algorithm.  

In this thesis, the most classical and adaptable genetic algorithm is used to solve 

the problem. Because genetic algorithm has good global search ability and can 

search all the solutions in the solution space quickly, without falling into the 

trap of fast decline of the local optimal solution. And using its inherent 
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parallelism, it can be convenient to carry out distributed computing and speed 

up the solving speed. 

In addition, particle swarm optimization (PSO) is one of the most popular meta-

heuristic algorithms recent years. It has fast convergence speed, strong 

optimization searching ability, high quality of feasible solutions, and good 

solving effect when solving optimization group problems, so it is widely used 

in path planning. In this thesis, particle swarm optimization (PSO) is also used 

to study EVRP, and the random and ergodic characteristics of the chaotic search 

are used to improve the standard PSO. Moreover, the algorithm is applied to 

the path optimization solution of the electric vehicle changing the battery for e-

bikes.  

2.4. The summary of this chapter 

This chapter introduces the two variants of the vehicle routing problem and the 

characteristics, basic assumptions, and models.  

Then transits to the electric vehicle routing problem, which lays a solid 

foundation for the following path optimization model construction. Moreover, 

the related algorithm of EVRP is introduced for the subsequent design 

algorithm to provide a basis. 

3 Model building 

When the electric vehicle works for the mobile service, it must supplement the 

electric energy in time if the remaining power is insufficient to continue 

working. How to realize the optimal management of electric vehicles and the 

logistics distribution network under a series of constraints has become the 

biggest challenge, which is precisely the focus of the research on the routing 

problem of electric vehicles. 

This thesis is inspired by the growing popularity of fast charging and battery-

swapping stations and considers the importance of quality customer service. 

The introduction of fast charging stations, battery-swapping stations, and soft 

time windows expanded the electric vehicle routing problem (EVRP). 

Moreover, build the electric vehicle routing problem with the soft time window 

- fast charging/ battery-swapping (EVRPSTW -FC/BS). 
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EVRPSTW-FC/BS not only takes into account the overall logistics operation 

cost but also adds a penalty function considering the cost of customer waiting 

time according to the customer satisfaction demand of the shared e-bike 

parking point. 

3.1. Problem description  

EVRPSTW-FC /BS is described as fully charged electric vehicles that transport 

goods from an e-bike battery warehouse and access the shared e-bike parking 

points with different e-bike battery quantity requirements and time windows 

requirements in turn. If the electric vehicle arrives at the e-bike parking point 

before or after the time window, it will pay different penalty costs. Due to the 

limitation of battery capacity, if the residual electric power of the electric 

vehicle is not enough to support it to go to the following e-bike parking points, 

it must go to the charging station or battery-swapping station to supplement 

the electric power. After that, the electric vehicle continues along its designated 

route, completing the task of replacing the e-bike batteries until it returns to the 

e-bike battery warehouse. 

The goal is to plan each electric vehicle service path and makes the operation 

cost of mobile battery replacement minimum, the following hypothesis:  

(1) Single e-bike battery warehouse. There is only one e-bike battery 

warehouse, which provides fully charged batteries for all the shared e-bike 

parking points and receives the electric bike batteries that are low in charge. 

(2) The fleet of electric vehicles with uniform load and battery capacity. And 

the number of electric vehicle is limited. 

(3) Using fast charging stations and battery-swapping stations. Since the 

conventional charging mode usually takes a long time and is not suitable 

for the timeliness of logistics distribution, this thesis chooses the fast 

charging mode and the battery-swapping mode for electric vehicles. 

(4) Every fully charged electric vehicle starts from the e-bike battery 

warehouse. During driving, if the battery power is insufficient to serve 

following shared e-bike parking points, it must swap the fully charged 

battery at the battery-swapping station or enter the charging station for 

charging. When an electric car enters a charging station for charging, by 

default, it will be fully charged. 

(5) All electric vehicles only provide fully charged batteries for the shared 

bikes and recycle the low batteries. Electric vehicles do not take the fully 

charged battery away from the shared e-bike parking points.  

(6) The geographical location, battery demand, and time window of each 
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shared e-bike parking point are known, and the location of the e-bike 

battery warehouse is also known. Furthermore, the unified departure time 

of electric vehicles is 0. 

(7) Stable traffic conditions and no extraordinary circumstances occur during 

the distribution of vehicle. Moreover, electric vehicles in the process of 

mobile service speed are constant.  

According to the description of the problem and basic assumptions, the 

schematic diagram of EVRPSTW-FC /BS is shown in Figure 3.1. 

 

Figure 3. 1: Schematic diagram of EVRPSTW-FC /BS 

3.2. Mathematical model of EVRPTW-FC/BS 

3.2.1. Definition of variables and parameters 

According to the above problem description and basic assumptions, the routing 

network of EVRPTW-FC/BS contains four types of parameters: 

(1) E-bike battery warehouse is 𝐼0 , which is also the starting point of the 

electric vehicle, and the virtual endpoint is 𝐼𝑛+1. 

(2) 𝐼 is the set of shared e-bike parking points. 𝐼 = {𝐼1, 𝐼2, … 𝐼𝑛}, which includes 

𝑛 shared e-bike parking points. 
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(3) 𝐹  is the set of fast charging stations or battery-swapping stations. 𝐹 =

{𝑓1, 𝑓2, … 𝑓𝑢}, which includes 𝑢 fast charging stations or battery-swapping 

stations. 

(4) 𝐾  is the set of electric vehicles operating for mobile services. 𝐾 =

{𝑘1, 𝑘2, … 𝑘𝑚}, which includes m electric vehicles. 

EVRPTW-FC/BS can be defined on complete directed graph 𝐺 = (𝑉, 𝐻). 𝑉 =

𝐼 ∪ 𝐹 ∪ {𝐼0} ∪ {𝐼𝑛+1} is the set of above four type parameters. 𝐻 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈

𝑉, 𝑖 ≠ 𝑗} is arc set. Each shared e-bike parking point 𝑖 ∈ 𝑉 is associated with 

its time window [𝐸𝑖, 𝐿𝑖] and the service time 𝑠𝑖. Electric vehicles only serve 

each shared e-bike parking point once. In addition, each shared e-bike parking 

point has a demand 𝑞𝑖, and the total demand of all parking points on route 𝑞𝑖 

cannot exceed the maximum capacity 𝑄 of each vehicle. Transport costs are 

divided into variable costs 𝐶𝑖𝑗(𝐶𝑖𝑗 = 𝑣𝑑𝑖𝑗) and fixed costs 𝑤, where 𝑣 is the 

unit cost of running each electric vehicle. 

Table 3.1 summarizes all the symbols that need to be used. 

 

Table 3. 1: Variables and parameters in EVRPTW-FC/BS model 

parameter 

delimiter  

parameter definition 

𝑰𝟎, 𝑰𝒏+𝟏 shared e-bike battery warehouse (starting point), virtual end point 

𝑰 the set of shared e-bike parking points 

𝑭 the set of fast charging or battery-swapping stations 

𝑲 the set of electric vehicles 

𝑽 the set of above four type parameters 

𝑬𝒊 the earliest service time which e-bike parking point can accept 

𝑳𝒊 the latest service time which e-bike parking point can accept 

𝑺𝒊 the time for EV to replace the battery at e-bike parking point 𝑖 

𝑻𝒊
𝒌 the time of electric vehicle 𝑘 accesses to e-bike parking point 𝑖 

𝑻′𝒊
𝒌 the time of electric vehicle 𝑘 lefts from e-bike parking point 𝑖 
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𝑾𝑻𝒊
𝒌 the waiting time of electric vehicle 𝑘 at e-bike parking point 𝑖 

𝒒𝒊 the demand of battery of e-bike parking point 𝑖 

𝒕𝒊𝒋 the time from 𝑖 to 𝑗 for electric vehicles 

𝒅𝒊𝒋 The distance from 𝑖 to 𝑗 

𝒃𝒊
𝒌 SOC of electric vehicle 𝑘 at e-bike parking point 𝑖 

𝑪𝒊𝒋 the variable cost of electric vehicle 𝑘 from 𝑖 to 𝑗 

𝑸 the max loading capacity of each electric vehicle  

𝑨 the power consumption rate of electric vehicles 

𝑩 the max electric capacity of each electric vehicle 

𝒗 the unit transport cost 

𝒘 the fixed cost of each electric vehicle operating 

𝑷𝒇, 𝑷𝒔 the cost of fast charging and battery-swapping 

𝝅𝟏, 𝝅𝟐 the punishment cost coefficient 

𝒙𝒊𝒋
𝒌  the routing decision variable of electric vehicle 𝑘 from 𝑖 to 𝑗 

𝒚𝒊𝒋
𝒌  

the supplementary electricity decision variable of electric vehicle 𝑘 from 𝑖 to 

𝑗 

3.2.2. Objective function  

In order to solve the EVRPTW-FC/BC, the objective function Z can be 

established based on the total operating cost. The model aims to minimize the 

operating cost of battery replacement service for e-bikes. 

The objective function consists of three parts: transport cost of electric vehicles, 

cost of quick charging or power change and penalty or time cost for violating 

the customer's time window. 

The specific objective function is as follows: 

𝑍 = 𝑍1 + 𝑍2 + 𝑍3 (3.1) 
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(1) Transport cost of electric vehicles: Transport cost is the sum of the variable 

cost between two points of each electric vehicle and the fixed cost of starting 

the electric vehicle. The variable cost is related to the distance the vehicle travels. 

The longer the distance, the greater the variable cost; The fixed cost refers to the 

usage fee per electric vehicle, which is settled in days. Therefore, the total 

transport cost function is shown in Formula (3.2). 

𝑍1 ∑ ∑ ∑ 𝐶𝑖𝑗 ∙ 𝑥𝑖𝑗
𝑘 + ∑ ∑ 𝑤 ∙ 𝑥0𝑗

𝑘

𝑗∈𝑉𝑘∈𝐾𝑗∈𝑉𝑖∈𝑉𝑘∈𝐾

(3.2) 

(2) Cost of fast charging or battery swapping: The cost of charging or battery 

swapping is the sum of the cost of charging or battery swapping and the 

conversion cost of waiting time required for charging or battery swapping. 

When the electric vehicle runs low during the service, it needs to go to the 

nearest charging station or battery swapping station to replenish the electric 

power, so it needs to pay the cost of charging or battery-swapping. The time 

spent replenishing the power will affect the battery replacement service of the 

remaining shared e-bike parking point, thus affecting the routing change. So 

the time spent waiting for a charge or battery swapping needs to be factored 

into the operating costs. The charge or battery swapping cost function is shown 

in Formula (3.3). 

𝑍2 = ∑ ∑ ∑ 𝑡 ∙ 𝑦𝑖𝑗
𝑘 (𝑃 + 𝜋)

𝑗∈𝐹𝑖∈𝐼𝑘∈𝐾

(3.3) 

(3) Service time cost: Each shared e-bike parking point requires electric vehicles 

to provide service for a limited period by the mobile service. However, the 

operator cannot fully ensure that the mobile service is within the time window 

due to vehicle scheduling. This model sets a soft time window limit. Electric 

vehicles can reach the shared e-bike parking point outside the time window but 

at a specific cost. If an electric vehicle arrives before the time window, the 

operator must pay for the waiting time. If an electric vehicle arrives late to the 

time window, it needs to pay a specific penalty cost. If an electric vehicle arrives 

at the shared e-bike parking point within the time window of the shared e-bike 

parking point, there is no need to pay the service time cost. Therefore, the 

service time cost function is established as shown in Formula (3.4a) and (3.4b). 

𝑆(𝑇𝑖
𝑘) = {

𝜋1(𝐸𝑖 − 𝑇𝑖
𝑘), 𝑇𝑖

𝑘 < 𝐸𝑖

0, 𝐸𝑖 ≤ 𝑇𝑖
𝑘 ≤ 𝐿𝑖          𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾

𝜋2(𝑇𝑖
𝑘 − 𝐸𝑖), 𝑇𝑖

𝑘 > 𝐿𝑖

(3.4𝑎)  

𝑍3 = ∑ ∑ 𝑆(𝑇𝑖
𝑘)

𝑖∈𝐼𝑘∈𝐾

(3.4𝑏) 
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3.2.3. Constraints  

In this thesis, the model's constraints are divided into four categories: node 

access constraints, load capacity constraints of electric vehicles, soft time 

window constraints, and battery capacity constraints of electric vehicles. 

(1) The node access constraints 

Generally, node access constraints include unique node constraints, path 

selection constraints, and traffic balance constraints. Based on these original 

constraints, the following constraints are established according to the 

characteristics of EVRPSTW-FC/BS. Firstly, it is necessary to ensure the 

uniqueness of the service. Each shared e-bike parking point is only served by 

the electric vehicle once, as shown in Constraint (3.5). Secondly, when electric 

vehicles serve shared e-bikes, they do not have to access the charging or 

battery-swapping station, as shown in Constraint (3.6). Thirdly, it is necessary 

to ensure the balance of node flow. After arriving at a node, the electric vehicle 

will start from that node and return to the e-bike battery warehouse, as shown 

in Constraint (3.7). Fourth, ensure the non-repeatability of the fasting charging 

and battery-swapping stations. The electric vehicle is not allowed to pass 

through the fast charging or battery-swapping station for more than two 

consecutive times in the routing, as shown in Constraint (3.8). Finally, routing 

decision variables must be set to determine electric vehicle access to the node, 

as shown in Constraint (3.9) and (3.10). 

∑ ∑ 𝑥𝑖𝑗
𝑘 = 1,   𝑖 ∈ 𝐼

𝑗∈𝐼𝑛+1∪𝐼∪𝐹,𝑖≠𝑗𝑘∈𝐾

(3.5) 

∑ ∑ 𝑥𝑖𝑗
𝑘 ≤ 1,   𝑖 ∈ 𝐹

𝑗∈𝐼𝑛+1∪𝐼∪𝐹,𝑖≠𝑗𝑘∈𝐾

(3.6) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑖,𝑗∈𝑉,𝑖≠𝑗𝑘∈𝐾

= ∑ ∑ 𝑥𝑗𝑖
𝑘

𝑖,𝑗∈𝑉,𝑖≠𝑗𝑘∈𝐾

(3.7) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝐹𝑘∈𝐾

= 0 (3.8) 

𝑥𝑖𝑗
𝑘 {

1,     𝑇ℎ𝑒 𝑘 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑔𝑜𝑒𝑠 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗
0,                                   𝑒𝑙𝑠𝑒              

 𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (3.9) 

𝑦𝑖𝑗
𝑘 {

1, 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗 𝑓𝑜𝑟 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑜𝑟 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔
0,                                                                                         𝑒𝑙𝑠𝑒              

(3.10) 

(2) The vehicle capacity constraints  

Electric vehicles should meet load capacity constraints and vehicle number 

constraints. The maximum number of electric vehicles in this thesis is limited 
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to 8. Every electric vehicle has a maximum load limit, so the e-bike battery's 

weight should not exceed the maximum load when the electric vehicle is ready 

to depart from the e-bike battery warehouse. The capacity constraints of the 

electric vehicle are shown in Constraint (3.11). 

0 ≤ ∑ 𝑞𝑗

𝑗∈𝐼,𝑖≠𝑗

∑ 𝑥𝑖𝑗
𝑘 ≤ 𝑄, 𝑘 ∈ 𝐾

𝑖∈𝐼0∪𝐼∪𝐹

(3.11) 

(3) The time window constraints  

Time window constraints are divided into hard and soft time window 

constraints. Most of the existing EVRP studies with time windows focus on 

meeting the customer's hard time window constraints. However, due to the 

complexity of the transportation process, the hard time window lack 

practicability. Therefore, soft time window constraints are adopted in this 

thesis. When electric vehicles arrive earlier or later than the time window, 

waiting or penalty costs will be paid. Specific constraints include (3.12), (3.13), 

and (3.14). 

𝑇𝑖
′𝑘 = 𝑇𝑖

𝑘 + 𝑊𝑇𝑖
𝑘 + 𝑠𝑖, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (3.12) 

𝑇𝑗
𝑘 = ∑ ∑ 𝑥𝑖𝑗

𝑘 (𝑇𝑖
′𝑘 + 𝑡𝑖𝑗),

𝑗∈𝑉,𝑖≠𝑗

       𝑘 ∈ 𝐾

𝑖∈𝑉

(3.13) 

𝑊𝑇𝑖
𝑘 = 𝑚𝑎𝑥[0, (𝐸𝑖 − 𝑇𝑖

𝑘)], 𝑖 ∈ 𝐼 (3.14) 

(4) Electric vehicle electric capacity constraint  

By setting the electric capacity constraint, the electric vehicle can access the fast 

charging or battery-swapping station before the power is insufficient to 

complete the following mobile service. It should be noted that the residual 

power should be able to supply the electric vehicle to go the nearest fast 

charging or battery-swapping station. The specific constraints are (3.15) and 

(3.16). 

0 ≤ 𝑏𝑗
𝑘 ≤ 𝐵 − 𝐴 ∙ 𝑑𝑖𝑗 ∙ 𝑥𝑖𝑗

𝑘 , 𝑖 ∈ 𝐹 ∪ 𝐼0, 𝑗 ∈ 𝐼 ∪ 𝐼𝑛+1 ∪ 𝐹, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (3.15) 

0 ≤ 𝑏𝑗
𝑘 ≤ 𝑏𝑗

𝑘 − 𝐴 ∙ 𝑑𝑖𝑗 ∙ 𝑥𝑖𝑗
𝑘 + 𝐵(1 − 𝑥𝑖𝑗

𝑘 ), 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ∪ 𝐼𝑛+1 ∪ 𝐹, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (3.16) 

3.2.4. Mathematical model  

The most significant difference between the electric vehicle routing problem 

and the traditional vehicle routing problem is whether there is an electric 

quantity constraint. Schneider has studied the electric vehicle routing problem. 

He adopted the power constraint method based on the linear relationship 
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between the power consumed by the electric vehicle and the driving mileage. 

This thesis refers to the power consumption constraint and expands the model. 

Based on the above objective functions and constraints, the following mixed 

integer programming model is proposed: 

The objective function (3.17) represents the total cost of minimizing operations 

𝑚𝑖𝑛𝑍 (3.17) 

Subeject to 

Constraint (3.18) means that each shared e-bike parking point must be served 

by an electric vehicle once. 

∑ ∑ 𝑥𝑖𝑗
𝑘 = 1,

 𝑗∈𝐼∪𝐼𝑛+1∪𝐹,𝑖≠𝑗𝑘∈𝐾

  𝑖 ∈ 𝐼 (3.18) 

Constraint (3.19) means that electric vehicles may skip charging stations and 

battery-swapping stations. 

∑ ∑ 𝑥𝑖𝑗
𝑘 ≤ 1,

 𝑗∈𝐼∪𝐼𝑛+1∪𝐹,𝑖≠𝑗𝑘∈𝐾

  𝑖 ∈ 𝐹 (3.19) 

Constraint (3.20) represents the same number of vehicles arriving at and 

leaving any node. 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑖,𝑗∈𝑉,𝑖≠𝑗

= ∑ ∑ 𝑥𝑗𝑖
𝑘

𝑖,𝑗∈𝑉,𝑖≠𝑗𝑘∈𝐾𝑘∈𝐾

(3.20) 

Constraint (3.21) means that any electric vehicle is not allowed to pass two 

charging stations or battery-swapping stations in succession. 

∑ ∑ 𝑥𝑖𝑗
𝑘 = 0

𝑖,𝑗∈𝐹𝑘∈𝐾

(3.21) 

Constraint (3.22) means that the load of the electric vehicle shall not exceed its 

maximum capacity. 

0 ≤ ∑ 𝑞𝑗

𝑗∈𝐼,𝑖≠𝑗

∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝐼0∪𝐼∪𝐹

≤ 𝑄, 𝑘 ∈ 𝐾 (3.22) 

Constraint (3.23) means that the time leaving 𝑖 is the sum of the time arriving 

at 𝑖, waiting time at 𝑖, and service time at 𝑖. 

𝑇𝑖
′𝑘 = 𝑇𝑖

𝑘 + 𝑊𝑇𝑖
𝑘 + 𝑠𝑖, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (3.23) 

Constraint (3.24) is the sum of the departure time from 𝑖 and the travelling 
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time of arc (𝑖, 𝑗).  

𝑇𝑗
𝑘 ∑ ∑ 𝑥𝑖𝑗

𝑘

𝑗∈𝑉,𝑖≠𝑗

(𝑇𝑖
′𝑘 + 𝑡𝑖𝑗),

𝑖∈𝑉

    𝑘 ∈ 𝐾 (3.24) 

Constraint (3.25) represents the waiting time of electric vehicle at the shared e-

bike parking point. 

𝑊𝑇𝑖
𝑘 = 𝑚𝑎𝑥[0, (𝐸𝑖 − 𝑇𝑖

𝑘)], 𝑖 ∈ 𝐼 (3.25) 

Constraint (3.26) means electric energy constraints of the electric vehicle from 

charging and battery-swapping station 𝑖  or from the shared e-bike battery 

warehouse to reach 𝑗  

0 ≤ 𝑏𝑗
𝑘 ≤ 𝐵 − 𝐴 ∙ 𝑑𝑖𝑗 ∙ 𝑥𝑖𝑗

𝑘 , 𝑖 ∈ 𝐹 ∪ 𝐼0, 𝑗 ∈ 𝐼 ∪ 𝐼𝑛+1 ∪ 𝐹, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (3.26) 

Constraint (3.27) means electric energy constraint that from shared e-bike 

parking point 𝑖  to 𝑗  when the electric vehicle is not charged. And The 

constraints (3.26) and (3.27) ensure that SOC of electric vehicle will not fall 

below zero along the service routing 

0 ≤ 𝑏𝑗
𝑘 ≤ 𝑏𝑗

𝑘 − 𝐴 ∙ 𝑑𝑖𝑗 ∙ 𝑥𝑖𝑗
𝑘 + 𝐵(1 − 𝑥𝑖𝑗

𝑘 ), 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ∪ 𝐼𝑛+1 ∪ 𝐹, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (3.27) 

Constraints (3.28) and (3.29) are expressed as binary decision variables. 

𝑥𝑖𝑗
𝑘 ∈ {0, 1}, 𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (3.28) 

𝑦𝑖𝑗
𝑘 ∈ {0, 1},            𝑖 ∈ 𝐼, 𝑗 ∈ 𝐹, 𝑘 ∈ 𝐾 (3.29) 

3.3. Summary of this chapter  

This chapter aims to build the EVRPTW-FC/BS model, which mainly includes 

two parts. The first part describes the problem of EVRPTW-FC/BS, and puts 

forward the assumptions of the problem in turn; The second part sets up the 

final model from three aspects: the definition of variables and parameters, the 

objective function, and the constraint conditions. 
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4 Algorithm design of EVRPSTW-

FC/BS  

EVRPSTW-FC/BS is typical of the NP-hardness problem, which is highly 

nonlinear and discrete. This problem is challenging to be solved by classical 

precise programming algorithms, so this chapter adopts the genetic algorithm, 

particle swarm optimization, and chaotic particle swarm optimization to solve 

EVRPSTW-FC/BS. 

4.1. Genetic algorithm  

4.1.1. Principles of genetic algorithm  

Genetic algorithms refer to the survival of the fittest to find the best path results. 

The basic idea of the genetic algorithm is to randomly generate a set of variables 

as the initial solution and map it into a chromosome composed of several genes 

according to specific rules. Each initial chromosome is an individual, and 

several individuals comprise a population. The individual fitness of all 

individuals in the population is calculated respectively. Then the next 

generation population is obtained by genetic operations such as selection, 

crossover, and mutation according to the fitness. After several iterations, the 

fitness of individuals within the population becomes higher and higher, and 

the result is obtained when the convergence condition is finally reached. 

Genetic algorithms give a new role[20][21] to the technical terminology of genetics. 

The general summary of related genetic terms is shown in Table 4.1. 

 

Table 4. 1: Terminology of genetic algorithm 

terminology application of genetic algorithm 

chromosome 

the coding of solution  

common methods: binary coding, floating point 
coding and symbol coding 

individual the feasible solution 
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fitness 

the fitness function is transformed from the 
objective function 

common methods: linear scaling and exponential 
scaling 

population 
size 

by selecting a set of chromosomes according to the 
fitness function, which can be generally taken as 
20-100 

selection 

the individual is selected from the species with a 
certain probability to be the parent chromatids 
according to the principle of "best wins bad tide" 

common methods: roulette selection, random race 
selection and best retention selection 

crossover 

the new set of solutions is generated by crossing 
primitives 

common methods: single-point crossing,  

multi-point crossing and uniform crossing 

mutation 

the process by which a portion of a code changes, 

common methods: basic bit mutation, uniform 
mutation and boundary mutation 

 

4.1.2. Encoding and decoding methods  

According to the characteristics of EVRPSTW-FC/BS model, the genetic 

algorithm in this thesis adopts the way of natural number coding. The length 

of each chromosome in the population is m+n+k+1. The shared e-bike battery 

warehouse is number 0. There are charging and battery-swapping station with 

the quantity of 𝑚. There are electric vehicles with the quantity of 𝑘. And the 

electric vehicle offer battery replacement service for shared electric bike 

parking points 1,2,3 … , 𝑛 until the electric vehicle returns to the shared e-bike 

battery warehouse. The charging and battery-swapping stations are 

represented by 𝑛 + 1, 𝑛 + 2, … , 𝑛 + 𝑚. 

Assume that two electric vehicles provide battery replacement service for five 

shared e-bike parking points, whose numbers are (1, 2, 3, 4, 5). This area has 

two charging stations or battery-swapping stations, numbered (6,7) . The 

chromosome code (0, 1, 5, 0, 2, 3, 7, 4, 0)  indicates that two electric vehicles 

depart from the shared e-bike battery warehouse to provide replacement 
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battery service for the five shared e-bike parking points. The service route of 

electric vehicle 1 is 0 − 1 − 5 − 0, which means that electric vehicles start from 

shared e-bike battery warehouse and provide battery replacement service for 

shared e-bike parking points numbered 1 and 5. Finally, return to the shared e-

bike battery warehouse. The service route of electric vehicle 2 is 0 − 2 − 3 −

7 − 4 − 0, which means that electric vehicles start from shared e-bike battery 

warehouse and provide battery replacement service for shared e-bike parking 

points numbered 2 and 3 in turn. Then it enters the charging station numbered 

7 or battery-swapping station to supplement the electric energy and provides 

battery replacement service for the shared e-bike parking point numbered 4. 

Finally, electric vehicle 2 returns to the shared e-bike battery warehouse. 

4.2.2. Process of genetic algorithm  

The process of genetic algorithm is shown in Figure 4.1.  

 

The specific steps can be described as follows:  

Figure 4. 1: The process of genetic algorithm 
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𝑺𝒕𝒆𝒑 𝟏Before the search, it is necessary to encode the data into the chromosome 

according to specific rules through the problem analysis.  

𝑺𝒕𝒆𝒑 𝟐  Randomly generating M initial individuals according to the form of 

solving the question, and all individuals form a population. The population 

will be used as the beginning point of the genetic algorithm to start the 

evolutionary operation.  

𝑺𝒕𝒆𝒑 𝟑  Calculating the fitness of individuals in the species group and 

determine whether the fitness of individuals conforms to the optimization 

criteria according to the strategy. If it does, the best individuals and their 

optimal solutions are input, and the bundling iteration process is concluded. If 

not, go to the next step.  

𝑺𝒕𝒆𝒑 𝟒 The selection of parents' chromosomes is completed according to the 

fitness criteria. Individuals with higher fitness were more likely to be selected, 

while individuals with lower fitness are eliminated.  

𝑺𝒕𝒆𝒑 𝟓 Cross the chromosome of the parents according to a specific method to 

produce offspring. 

𝑺𝒕𝒆𝒑 𝟔 Mutating the chromosome of the offspring. 

𝑺𝒕𝒆𝒑 𝟕 A new population is generated by crossover and mutation, then going 

back to step 3  until the optimal solution is generated. 

4.2. Particle swarm optimization 

4.2.1. Principle of particle swarm optimization 

Particle swarm optimization is derived from the real-world behavior of birds 

flying in search of food. In particle swarm optimization, an individual in a 

crowd is regarded as a particle without mass and volume in a 

multidimensional space. Each particle with velocity and position represents a 

feasible solution to the problem. Particles are dynamically adjusted according 

to the flight experience of themselves and their companions. Each particle 

constantly corrects its position and speed by tracking its own optimal and 

group optimal and evaluates the merits and disadvantages of particles with the 

fitness function value corresponding to the particle position. 

Suppose a group of n particles searches the q-dimensional space (the number 

of dimensions per particle). Each particle is denoted as 𝑋𝑖 =

(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑄) and the velocity corresponding to each particle is denoted as 

𝑉𝑖 + (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑄) . The optimal position searched by the particle 𝑖  in 

iteration 𝑘 is 𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑑), which is the individual extremum 𝑝𝑏𝑒𝑠𝑡. 
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The optimal global position searched by the entire particle swarm is 𝑃𝑗 =

(𝑝𝑗1, 𝑝𝑗2, … , 𝑝𝑗𝑑), which is the global extremum 𝑔𝑏𝑒𝑠𝑡. The update formulas of 

the d-dimensional velocity 𝑣𝑖𝑑
𝑘+1  and position 𝑥𝑖𝑑

𝑘+1  of the particle 𝑖  in the 

iteration 𝑘 are Formula (4.1) and (4.2), respectively. 

𝑣𝑖𝑑
𝑘+1 = 𝑤𝑣𝑖𝑑

𝑘 + 𝑐1 ∙ 𝑐2(𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑑
𝑘 ) + 𝑐1 ∙ 𝑐2(𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑑

𝑘 ) (4.1) 

𝑥𝑖𝑑
𝑘+1 = 𝑥𝑖𝑑

𝑘 + 𝑣𝑖𝑑
𝑘+1 (4.2) 

𝑤 is the inertia weight, the coefficient that keeps the original velocity. 𝑐1 and 

 𝑐2  are acceleration factors which respectively expressed as the weight 

coefficient of the particle tracking its optimal historical value and the weight 

coefficient of the group's optimal value. Appropriate  𝑐1  and  𝑐2   can 

accelerate the convergence rate and avoid easily falling into the local optimal. 

Generally,  𝑐1  =  𝑐2 =  1.2 . 𝑟1  and 𝑟1  are independent random numbers in 

the interval [0, 1]. 

4.2.2. Encoding and decoding methods 

(1) Encoding method 

This section constructs a 2𝑛 -dimension space according to the number of 

shared e-bike parking points 𝑛 . The 2𝑛  -dimensional vector 𝑍 

corresponding to each shared e-bike parking point 𝑖 is composed of two 𝑛-

dimensional vectors, 𝑍𝑖𝑥  and 𝑍𝑖𝑦 . 𝑍𝑖𝑥  refers to the number of an electric 

vehicle that provides a replacement battery service for the shared e-bike 

parking point 𝑖. 𝑍𝑖𝑦 is the execution order of this electric vehicle in the service 

routing.[24][25] 

(2) Decoding method 

𝑺𝒕𝒆𝒑 𝟏 As for the code of the electric vehicle, integer int (𝑍𝑖𝑥) is taken for the 

vector 𝑍𝑖𝑥  of particle 𝑖 , and electric vehicle 𝑗  assigned to the shared e-bike 

parking point 𝑖 from the shared e-bike battery warehouse. 

𝑺𝒕𝒆𝒑 𝟐  The routing order of vehicle 𝑗   can be determined according to the 

size order of vector 𝑍𝑖𝑦 element. Firstly, find the shared e-bike parking point 

𝑖 of vehicle 𝑗 to complete the mobile service. Then, according to the size of 𝑍𝑖𝑦 

corresponding to 𝑖 , it is numbered in order from small to large, finally 

determining the path order of vehicle 𝑗. 

Assume that three electric vehicles provide battery replacement services for 

five shared e-bike parking points, whose numbers are (1, 2, 3, 4, 5). This area 

has two charging and battery-swapping stations, numbered (6,7). The vector 𝑍 

of particle 𝑖 is shown in Table 4.2. 
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Table 4. 2: The 2n vector of particle i before decoding 

 1 2 3 4 5 6 7 

𝒁𝒊𝒙 1.3 2.8 2.6 3.3 3.6 1.7 2.4 

𝒁𝒊𝒚 0.8 2.6 3.5 1.9 2.9 4.7 2.0 

 

After step 1, the situation of three electric vehicles at each location can be shown 

in Table 4.3 

 

Table 4. 3: The 2n vector of particle 𝑖 after decoding 

 1 2 3 4 5 6 7 

𝒊𝒏𝒕(𝒁𝒊𝒙) 1 2 2 3 3 1 2 

𝒁𝒊𝒚 0.8 2.6 3.5 1.9 2.9 4.7 2.0 

Then the routing of each vehicle corresponding to the particle is (0 represents 

shared e-bike battery warehouse) : 

1) Electric vehicle 1: 0 − 1 − 6 − 0 

2) Electric vehicle 2: 0 − 7 − 2 − 3 − 0 

3) Electric vehicle 3: 0 − 4 − 5 − 0 

4.2.3. The process of particle swarm optimization   

𝑺𝒕𝒆𝒑 𝟏 Randomly initialize the velocity and position of each particle and set 

corresponding parameters. 

𝑺𝒕𝒆𝒑 𝟐 Calculating the fitness value of each particle in the population to start 

the evolution of this generation.  

𝑺𝒕𝒆𝒑 𝟑  Evaluating the fitness value of each particle in the population and 

compare each particle's current generation fitness value with its historical 

optimal fitness value. If the current fitness value is better, update the particle's 

position. 

𝑺𝒕𝒆𝒑 𝟒  Comparing the fitness value of the current optimal position of each 

particle with that of the optimal global position. If the current fitness value of 

any particle is better, update it to the optimal global position of the population.  
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𝑺𝒕𝒆𝒑 𝟓  Using Formula (4.1) and Formula (4.2) to update the velocity and 

position of particles in the population; Step6 Determine whether the stop 

conditions are met. If not, go back to Step2. If yes, stop. The flow chart of 

particle swarm optimization is shown in Figure 4.2. 

   

 

 

 

 

 
Figure 4. 2: The flow chart of particle swarm optimization 
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4.3. Chaotic particle swarm optimization 

4.3.1. Principle of chaotic particle swarm optimization 

In particle swarm optimization, each particle updates its velocity and position 

by individual extremum 𝑝𝑏𝑒𝑠𝑡  and global extremum 𝑔𝑏𝑒𝑠𝑡 . If particle 

searches for an optimal local solution, all particles are attracted by the optimal 

solution and tend to gather around it quickly, resulting in premature 

convergence of the algorithm and falling into the optimal local solution. [22][23] 

Chaos is a common phenomenon in the nonlinear system. [26][27] Its behavior is 

complex and random. The basic idea of the chaos optimization algorithm is first 

to generate a set of chaotic variables with the same number of optimization 

variables, enlarge the ergodic range of chaotic motion to the value range of 

optimized variables, and then directly use the randomness and ergodic 

properties of chaotic variables to search. Because the chaotic search algorithm 

is sensitive to the initial conditions, it is easy to jump out of the local minimum, 

and the search speed is fast. The search technology based on chaos is superior 

to other searches.  

In order to overcome the precocious defects of the particle swarm optimization, 

the chaos idea is introduced into it. In each iteration, the chaotic disturbance of 

𝑔𝑏𝑒𝑠𝑡  is used as the updated particle position, which can avoid the particle 

position convergence to a certain extent and strengthen the local search around 

the current global optimal position. [28][29] 

The Logistic mapping expression in this section is expressed as shown Formula 

(4.3). 𝑍𝑛 is the chaos variable. 𝑍0 is the initial value of the chaos variable, and 

its slight difference will lead to the significant difference over a long time. 

Therefore, chaos can traverse all states of the search space according to its own 

laws without repeating. 

𝑍𝑛+1 = 4𝑍𝑛(1 − 𝑍𝑛), 0 ≤ 𝑍0 ≤ 1 (4.3) 

According to the principle of chaos, chaos disturbance can be added according 

to Formula (4.4). 𝑍 is the chaos vector corresponding to the perturbation. 𝑍𝑘 

is the chaotic vector with iteration 𝑘. 𝑍∗ is the chaotic vector formed after the 

current optimal solution is mapped to the interval (0,1) . For additional 

disturbance intensity, 𝛼 ∈ (0, 1). 

𝑍𝑘
′ = (1 − 𝛼)𝑍∗ + 𝛼𝑍𝑘 (4.4) 

Generally, at the initial stage of the search, a larger 𝛼 is selected to strengthen 

the perturbation of the solution vector. As the search goes deeper and 

approaches the optimal solution, a smaller 𝛼  should be selected for careful 

search in the region of the optimal solution. Generally, Formula (4.5) is used to 
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determine 𝛼. And 𝑛 is an integer which depends on the situation. 

𝛼(𝑘) = 1 − (
𝑘 − 1

𝑘
)

𝑛

(4.5) 

4.3.2. The process of chaotic particle swarm optimization 

The specific steps can be described as follows: 

𝑺𝒕𝒆𝒑 𝟏 Randomly initializing the velocity and position of population particles 

and setting corresponding parameters, namely inertia weight factor, learning 

factor, and the maximum number of iterations. 

𝑺𝒕𝒆𝒑 𝟐  Initializing the particle population. Randomly generating 𝐷  n-

dimensional vectors according to Formula (4.3). By taking advantage of the 

sensitivity of chaos to the initial value, the population containing n initial 

particles can be obtained by assigning 𝐷 initial values with slight differences. 

𝑺𝒕𝒆𝒑 𝟑  Inversely mapping chaos variable 𝑍𝑗 = (𝑍𝑗1, 𝑍𝑗2, … , 𝑍𝑗𝑛)  to the value 

interval of mobile service [1, 𝐾]. 

𝑺𝒕𝒆𝒑 𝟒  Decoding the particles to generate the service routing of electric 

vehicles and calculating the value of the fitness function of each particle, 

namely the total operating cost. 

𝑺𝒕𝒆𝒑 𝟓 Comparing the fitness value of the current generation of each particle 

with its historical optimal fitness value. If the current fitness value is better than 

the individual extreme value 𝑝𝑏𝑒𝑠𝑡, update the particle's position. 

𝑺𝒕𝒆𝒑 𝟔  Comparing the fitness value of the current optimal position of each 

particle with the fitness value of the optimal global position. If the current 

fitness value of any particle is better than the global extreme value 𝑔𝑏𝑒𝑠𝑡, it is 

updated to the optimal global position of the population 

𝑺𝒕𝒆𝒑 𝟕 Carrying out chaos optimization for 𝑔𝑏𝑒𝑠𝑡, the global optimal extreme 

value of particles. Firstly, the global optimal extreme value gbest is mapped to 

the definition domain of the equation [0,1], and then the series of n chaotic 

variables are iterated according to Formula (4.3). Finally, the series of these 

chaotic variables are returned to the value interval of the optimization variable 

[1, 𝐾] by inverse mapping, 𝑛 particles are obtained, and the fitness function 

value of each particle is calculated. The optimal solution 𝑔𝑏𝑒𝑠𝑡′ is obtained, 

and 𝑔𝑏𝑒𝑠𝑡′  is used to replace the position of the particles in the current 

population. 

𝑺𝒕𝒆𝒑 𝟖  Determining whether the particle swarm convergence is precocious. If 

the particle swarm convergence is precocious, chaos optimization is carried out 

for some better particles; otherwise, the particle swarm optimization algorithm 

is continued. There are two main signs of precocious convergence: one is the 
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severe aggregation of particle swarm; Secondly, the optimal particle has no 

change or little change after many iterations. 

𝑺𝒕𝒆𝒑 𝟗 Chaos optimization is carried out for the partial optimal particle swarm. 

The method is the same as selecting the global optimal extreme value 𝑔𝑏𝑒𝑠𝑡. 

Because some particles have higher fitness and are closer to the optimal global 

solution, it is easy to obtain the new optimal particles by conducting the chaotic 

search on them. 

𝑺𝒕𝒆𝒑 𝟏𝟎 Checking whether the stop condition is met. If not, go to 𝑺𝒕𝒆𝒑𝟒. If yes, 
stop. 

 

4.3. Summary of this chapter 

In this chapter, according to the characteristics of EVRPSTW-FC/BS, genetic 

algorithm and particle swarm optimization are applied to solve the problem. 

Moreover, chaos is introduced, and the chaotic particle swarm optimization is 

designed to solve the shortcomings of particle swarm optimization, which is 

easy to converge prematurely and fall into the optimal local solution. This 

chapter introduces the principles and processes of the three algorithms in detail, 

which provides the methodology for the subsequent research. 

5. Analysis of simulation instance 

5.1 Description of data sources 

Due to the short development time of shared electric bikes, there is very little 

research on the path planning of replacing the batteries of shared electric bikes. 

Many scholars have studied and used Solomon's VRPTW benchmark problems 

since Solomon put it forward in 1988.[30] Solomon benchmark is used as the test 

data in this paper, which is often used to study the vehicle routing problem 

with the time window. 

Solomon's VRPTW benchmark problems include 56 instances, which can be 

divided into 𝐶 1, 𝐶2, 𝑅1, 𝑅2, 𝑅𝐶1 and 𝑅𝐶2 according to the time window size 

and spatial distribution type.  

In general, Class  𝐶  is cluster data whose node distribution is clustered 
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according to geographical location.  

The demand nodes in class 𝑅 are randomly distributed.  

Class 𝑅𝐶 is a mixture of 𝐶 and 𝑅 characteristics. The geographic location of 

some customers in 𝑅𝐶 class is clustered, and the geographic location of some 

customers is random.  

Type 1  has a short scheduling range, with fewer customers served on each 

route.  

Type 2  has a long scheduling range, allowing the logistics vehicle to serve 

many customers.  

The six characteristics of the Solomon benchmark are shown in Table (5.1) with 

the maximum vehicle load, time base, service time of each customer point, 

characteristics of the distribution of nodes, and time window size. 

 

Table 5. 1: Characteristics of Solomon benchmark 

type 

quantity  

of 

instance 

maximum 

capacity 

timebase 

service 

time 

distribution 

time 

window 

size 

R1 12 200 230 10 random small 

R2 11 1000 1000 10 random big 

C1 9 200 1236 90 cluster small 

C2 8 700 3390 90 cluster big 

RC1 8 200 240 10 mixture small 

RC2 8 1000 960 10 mixture big 

The base hypothesis in the Solomon benchmark is as follows: 

(1) There are 100 customers in each instance, and each customer's information 

is included: customer number, customer X, Y coordinate position, customer 

demand, the earliest and latest service time acceptable to the customer, and 

service time. 

(2) All customers are distributed in the interzone plane coordinates of (0, 100). 

(3) There is only one distribution center to provide distribution services for 
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customers. 

(4) The vehicle's load capacity is finite and the same. 

(5) The distance of distribution is calculated by the Euclidean distance formula. 

Considering the characteristics of solid mobility, distribution of parking points, 

and high battery replacement frequency of shared electric bikes in cities, this 

chapter selects C101 of Solomon Class C as the data set to verify the model and 

algorithm of EVRPSTW-FC/BS. Part of the original data is shown in Table 5.2. 

 

Table 5. 2: First ten customer data of Salomon instance C101 

customer 

no. 

x 

coord. 

y 

coord. 

demand 

quantity 

ready 

time 

due  

time  

service 

time 

1 45 68 10 912 967 90 

2 42 66 10 65 146 90 

3 42 68 10 727 782 90 

4 42 65 10 15 67 90 

5 40 69 20 621 702 90 

6 38 68 20 255 324 90 

7 35 66 10 357 410 90 

8 35 69 10 448 505 90 

9 25 85 20 652 721 90 

10 22 75 30 30 92 90 

 

According to EVRPSTW-FC/BS, the usage of raw data C101 in this chapter is 

described as follows:  

(1) Take distribution center 0 as the e-bike battery warehouse.  

(2) The random formula of Excel is used to select 60, 8, and 4 points from 100 

customer points of C101 as e-bike parking points, fast charging and battery-

swapping stations for electric vehicles, respectively.  
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(3) Since electric vehicles replace batteries for shared electric bikes, unloading 

batteries with insufficient power in the e-bike battery warehouse and 

loading usable batteries in the e-bike battery warehouse are manual 

operations. Manual operations are affected by weather, time, and physical 

factors. There may be a decrease in operational efficiency, which will bring 

difficulties to the research process and increase the complexity of the model. 

In addition, this thesis focuses on the study of vehicle routing, so the 

manual operation process is somewhat simplified. The service time of the 

shared electric bike replacement, the time for unloading and loading the 

battery at the e-bike battery warehouse are set to constant. Considering that 

the average battery demand of 60 e-bike parking points is about 18, and the 

manual operation time for changing the battery of an e-bike is one to two 

minutes, the service time required for each e-bike parking point is revised 

to 30 minutes.  

(4) The raw data of C101 included 12 vehicles with the same load capacity. The 

number of vehicles needs to be adjusted for analysis purposes. Scaled 

equally according to the number of customer points, a fleet of 8 pure electric 

logistics vehicles is set up in this chapter. Moreover, the structure of the 

fleet is explained in more detail in the following sections. 

(5) Since the transportation distance is calculated by the Euclidean distance 

formula, the default unit of path distance in this chapter is km to facilitate 

cost calculation. 

The data of some modified e-bike parking points are shown in Table (5.3). 

 

Table 5. 3: First ten customer data for EVRPSTW-FC/BS 

node 

no. 

x 

coord. 

y 

coord. 

demand 

quantity 

ready 

time 

due  

time  

service 

time 

1 45 68 10 912 967 30 

2 42 66 10 65 146 30 

3 42 68 10 727 782 30 

4 42 65 10 15 67 30 

5 40 69 20 621 702 30 

6 38 68 20 255 324 30 
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7 35 66 10 357 410 30 

8 35 69 10 448 505 30 

9 25 85 20 652 721 30 

10 22 75 30 30 92 30 

 

The selected fast charging station information is shown in Table (5.4). 

 

Table 5. 4: The fast charging station information for EVRPSTW-FC/BS 

node 

no. 

x 

coord. 

y 

coord. 

demand 

quantity 

ready 

time 

due  

time  

service 

time 

62 45 70 0 0 1236 0 

63 20 80 0 0 1236 0 

64 15 75 0 0 1236 0 

65 15 80 0 0 1236 0 

66 20 50 0 0 1236 0 

67 10 35 0 0 1236 0 

68 30 30 0 0 1236 0 

69 50 35 0 0 1236 0 

 

The selected battery-swapping station information is shown in Table (5.5). 

 

Table 5. 5: The charging station information for EVRPSTW-FC/BS 

node 

no. 

x 

coord. 

y 

coord. 

demand 

quantity 

ready 

time 

due  

time  

service 

time 
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70 35 30 0 0 1236 0 

71 38 15 0 0 1236 0 

72 48 40 0 0 1236 0 

73 62 80 0 0 1236 0 

 

The distribution of nodes for EVRPSTW-FC/BS is shown in Figure (5.1). Green 

points represent shared e-bike parking points, red point represents e-bike 

battery warehouse, pink points represent charging stations, and blue points 

represent the battery-swapping stations. Shared e-bike parking points 

generated by C101 are distributed in clusters, and each cluster can be regarded 

as a commercial center, residential area, or public transport station. Within a 

cluster, different points can be regarded as shared e-bike parking points, fast 

charging and battery-swapping stations set by operators around a specific 

urban functional area. That fits well with shared electric bikes and electric 

logistics vehicles in real. 

 

 Figure 5. 1: The distribution of nodes for EVRPSTW-FC/BS 
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5.2. Explanation of relevant parameters 

5.2.1. Electric vehicle parameters 

Green development is one of China's essential development concepts. At 

present, driven by national economic growth and accelerated urbanization, 

China's logistics industry has got significant development. Electric logistics 

vehicles are entering the urban scenario at an unprecedented trend. 

The biggest problem in the practical application of electric logistics vehicles is 

their driving range. Although the driving range of electric logistics vehicles has 

increased significantly in recent years, the driving range of most electric 

logistics vehicles has increased from 100km in the past to more than 300km now. 

Nevertheless, this is only the range that vehicle manufacturers say it can reach, 

which can only be achieved under ideal conditions. 

The electric vehicle runs at a constant speed on a well-paved road with no load, 

which is difficult to achieve in the real world, where batteries are replaced for 

shared bikes. 

Since most EVRPSTW-FC/BS scenarios studied in this thesis are short-distance 

routes and relatively fixed, the mileage of logistics vehicles is set as 150km in 

this paper to better match the actual situation. 

According to Section 5.1, eight logistics vehicles provide replacement battery 

services for shared e-bikes with a maximum carrying capacity of 200 e-bike 

batteries. The electric vehicle starting from the e-bike battery warehouse is in 

full charge, excluding charging/ battery-swapping time and charging/ battery-

swapping fee. 

During the delivery process, the constant speed of the electric vehicle is 45km/h 

in the urban area, and it takes 0.5h (30 min) to replace the battery at each e-bike 

parking point. 

When it is low, the vehicle must go to the fast charging or battery-swapping 

station. The time of each charge is constant at 0.5 h (30 min), and the time of 

each battery change is constant at 0.1h (6 min). 

In this thesis, an electric vehicle's transport cost per kilometer (variable cost) is 

11 yuan. The variable cost is proportional to the transport distance of the 

electric vehicle, which can be regarded as the expense of road use. 

Operators must pay a fixed cost for each electric vehicle used, equivalent to 

depreciation expense. The fixed cost of electric vehicles with fast charging is 

200 yuan a day, and the fixed cost of electric vehicles with battery swapping 

mode is 400 yuan a day. 
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5.2.2 Cost of fast charging or battery-swapping 

At present, there are few commercial applications for battery swapping. There 

are two main charging modes for charging stations: fast charging and slow 

charging. Fast charging time is 0.5 h to 1 h, and slow charging time is 6 h to 8 h. 

Since timeliness is crucial for EVRPSTW-FC/BS, this thesis uses fast charging 

and battery-swapping mode to improve the efficiency of the mobile service. 

Battery capacity, electricity price, and charging efficiency are the main factors 

affecting electric logistics vehicles' electricity cost. 

The battery capacity of electric vehicles varies depending on the brand, origin, 

and other factors, generally ranging from 15 to 80kWh. For example, BYD T4 

pure electric logistics vehicle has a battery capacity of 63kWh and a driving 

range of 160km. 

The current electricity price is determined according to the type of user, the 

voltage level, the amount of electricity used, and the time of use in China. In 

general, the price of electricity per kilowatt-hour increases step by step with the 

increase in the amount of electricity consumed per capita. Setting electricity 

prices by time segment can realize differentiated pricing of market segments, 

improve electricity efficiency, and save energy. Voltage levels mainly 

determine industrial and commercial electricity prices. Electricity prices for 

citizens are generally between 0.4 and 0.6 yuan per kWh. State Grid DC 

charging stations are generally between 0.4 yuan and 0.9 yuan per kWh. And 

third-party AC charging stations is generally between 1.2 yuan and 1.8 yuan 

per kilowatt-hour. 

As for charging efficiency, the average AC charging station is 88% efficient, and 

DC is about 93% efficient. 

For the convenience of calculation in this section, the price of the fast charge is 

defined as 100 yuan an hour. According to Section 5.1., it can be seen that the 

time for the electric vehicle to complete a fast charging is 0.5h, so the fast charge 

cost of each electric vehicle is 50 yuan. The battery-swapping price is 1000 yuan 

per hour, according to Section 5.1. It can be seen that the time for an electric 

vehicle to complete one battery-swapping is 0.1h, so the cost of each electric 

vehicle is 100 yuan once at a time. 

In addition, electric vehicles must wait 30 minutes and 6 minutes, respectively, 

for fast charging and battery-swapping. The time taken by electric vehicles to 

supplement electric energy will have a specific impact on the subsequent 

distribution route and the choice of customer points. Therefore, this thesis sets 

the time cost of electric vehicles caused by supplementing electric energy as 0.5 

yuan per minute. 
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5.2.3 Cost of service time 

Due to the many users of shared e-bikes, timely replacement of batteries is 

necessary to ensure the smooth operation of the shared e-bike system. 

Considering the distribution characteristics and the actual situation in 

EVRPSTW-FC/BS, the time cost is set. The objective function of EVRPSTW-

FC/BS model is the minimum operating cost, and its unit is yuan, so the time 

cost needs to be quantified. 

Each e-bike parking point has a time window. Electric vehicles must arrive 

before the latest time required by the e-bike parking point. If they arrive late, 

they will have to pay the penalty cost of the customer waiting, which is set at 

20 yuan a minute. If the electric vehicle arrives before the earliest time required 

by the e-bike parking point, it needs to pay the cost of waiting for the e-bike 

parking point, which is set at 10 yuan a minute. 

5.2.4. Summary of the instance parameters 

Combined with the above basic data description and related parameters of 

electric vehicles, the model parameters of EVRPSTW-FC/BS are summarized in 

Table 5.6. 

 

Table 5. 6: Summary of the instance parameters 

parameter definition quantitative value 

𝑺𝒑𝒆𝒆𝒅 speed of electric vehicle 45km/h 

𝒔𝒊 

battery replacement time  

at e-bike parking point 

0.5 h 

𝑸 

maximum load capacity  

of electric vehicle 

200 

𝒗 variable cost 11 yuan/km 

𝒘𝟏 fixed cost of fast charging mode 200 yuan/day 

𝒘𝟐 fixed cost of battery swapping mode 400 yuan/day 
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𝝅 

The time cost of  

replenishing electricity 

0.5 yuan/min 

𝝅𝟏 the time cost of arriving early 10 yuan/min 

𝝅𝟐 the time cost of being late 20 yuan/min 

𝑷𝒇 the cost of fast charging 100 yuan/h 

𝒕𝒇 the time of fast charging 0.5 h 

𝑷𝒔 the cost of battery-swapping 1000 yuan/h 

𝒕𝒔 the cost of battery-swapping 0.1 h 

 

5.3. The analysis of the algorithm performance  

To evaluate the algorithm's effectiveness, a fleet of 8 electric vehicles with the 

same capacity is constructed that provide battery replacement services for 60 

e-bike parking points. Their numbering and replenishment modes are shown 

in Table (5.7). By loading data and parameter setting, the maximum number of 

iterations is set to 50. The objective function values are solved by genetic 

algorithm (GA), particle swarm optimization (PSO), and chaotic particle swarm 

optimization (CPSO), respectively. 

 

Table 5. 7: Structure of the electric vehicle fleet 

EV no. mode 

1 fast charging 

2 fast charging 

3 fast charging 

4 fast charging 

5 battery-swapping 
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6 battery-swapping 

7 battery-swapping 

8 battery-swapping 

 

The results are shown in Figure (5.2), where the horizontal axis represents the 

number of iterations, and the vertical axis represents the optimal objective 

function value, namely the lowest total operating cost. Chaotic particle swarm 

optimization has the lowest total operating cost. 

 

 
Figure 5. 2 The curve of iterative convergence 

 

As seen from Table (5.8), although the genetic algorithm is the earliest to 

achieve algorithm convergence, only 30 iterations are needed. However, from 

the optimization results, the solution obtained by chaotic particle swarm 

optimization is only 18212.2 yuan,  

The optimal value of chaotic particle swarm optimization is 262.7 yuan less 

than that of the genetic algorithm, and the algorithm performance is improved 

by 1.42%. Particle swarm optimization has the worst performance. Compared 

with chaotic particle swarm optimization, the optimal value of particle swarm 
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is more 831.8 yuan than CPSO, and its algorithm performance is reduced by 

4.36%. 

 

Table 5. 8: Recording of the optimal value of GA, PSO and CPSO 

Times GA PSO CPSO 

10 19934.1 19513.7 18474.9 

20 19893.5 19342 18474.9 

30 18474.9 19342 18474.9 

40 18474.9 19044 18212.2 

50 18474.9 19044 18212.2 

 

5.4. The analysis of the carbon emission 

After 50 iterations using genetic algorithm, as shown in Figure (5.3), each 

shared e-bike parking point can be served by only one electric logistics vehicle. 

The path of each electric logistics vehicle is shown in Table (5.9), and the driving 

range of all electric logistics vehicles is 762.41 km. The No. 3 electric logistics 

vehicle has the most extended driving range at 176.41 km. In order to complete 

the mobile service, it goes through the fast charging station 62 and 68 for fast 

charging. The No. 8 electric vehicle has a driving range of 0, which means it is 

not started, which means only seven electric vehicles are participating in the 

mobile battery replacement service. 

Under the same conditions, the optimal path planning results obtained by 

particle swarm optimization are shown in Figure (5.4) and Table (5.10). The 

range of all electric logistics vehicles is 757.77 km. 
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Figure 5. 3: The schematic diagram of optimal path of genetic algorithm 

 

 

Table 5. 9: The path of the optimal solution of genetic algorithm 

EV 

 no. 

mileage

(km) 

optimal path of GA 

1 141.20 0 40 38 53 52 49 46 43 45 47 48 69 0 

2 103.23 0 13 16 21 22 24 26 25 23 32 31 0 

3 176.41 0 10 6 7 8 12 11 9 5 3 1 62 30 68 0 

4 94.21 0 27 35 33 34 36 0 

5 126.58 0 4 2 60 58 57 55 56 59 50 51 54 0 

6 44.52 0 18 20 19 17 15 14 0 

7 76.26 0 28 29 44 37 39 41 42 0 

8 0 0 
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Figure 5. 4: The schematic diagram of optimal path of particle swarm optimization 

 

Table 5. 10: The path of the optimal solution of particle swarm optimization 

EV  

no. 

mileag

e(km) 

optimal path of PSO  

1 141.2 0 40 38 53 52 49 46 43 45 47 48 69 0 

2 94.21 0 27 35 33 34 36 0 

3 67.5 0 18 20 19 17 15 14 30 0 

4 0 0 

5 87.9 0 13 16 21 22 24 26 25 23 0 

6 126.58 0 4 2 60 58 57 55 56 59 50 51 54 0 

7 127.65 0 10 6 7 8 12 11 9 5 3 1 0 

8 112.73 0 28 29 44 37 39 41 32 31 42 0 
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The optimal path planning results obtained using chaotic particle swarm 

optimization are shown in Figure (5.5) and Table (5.11). The total driving 

distance of chaotic particle swarm optimization is the shortest among the three 

algorithms, which is 738.53 km. Similar to the results of genetic algorithm and 

particle swarm optimization, the optimal chaotic particle swarm optimization 

solution showed that seven electric logistics vehicles are started. This shows 

that the three algorithms demonstrate that seven electric logistics vehicles are 

the optimal solution. 

 

Figure 5. 5: The schematic diagram of optimal path of  

chaotic particle swarm optimization 

 

Table 5. 11: The path of the optimal solution of chaotic particle swarm optimization 

EV 

no. 

mileage

/km 

optimal path of CPSO 

1 87.9 0 13 16 21 22 24 26 25 23 0 

2 141.2 0 40 38 53 52 49 46 43 45 47 48 69 0 

3 176.41 0 10 6 7 8 12 11 9 5 3 1 62 30 68 0 

4 107.13 0 27 35 33 34 36 44 37 39 41 42 0 
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5 126.58 0 4 2 60 58 57 55 56 59 50 51 54 0 

6 44.52 0 18 20 19 17 15 14 0 

7 54.79 0 28 29 32 31 0 

8 0 0 

Electric logistics vehicles do not produce exhaust gas in the driving process, so 

the greenhouse gas emissions of electric logistics vehicles are mainly 

determined by upstream power generation. Calculating 𝐶𝑂2 emissions from 

electric logistics vehicles is usually a complex process. 

This thesis refers to Peng Mei-chun's [31]  calculation model of carbon emissions 

of the electric logistics vehicle and determines the carbon emissions per 

kilometer of electric vehicle in EVRPSTW-FC/BS as 34.55 kg.  

As shown in Figure (5.6), the optimal chaotic particle swarm optimization 

solution has the least carbon dioxide emission. The optimal solution of chaotic 

particle swarm optimization reduces greenhouse gas emissions by 3.13% 

compared with the optimal genetic algorithm solution. Meanwhile, it reduces 

greenhouse gas emissions by 2.53% compared with particle swarm 

optimization. 

 

 

Figure 5. 6: Carbon emission comparison of optimal solutions of GA, PSO and PSO 
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5.5. The sensitivity analysis 

In this section, sensitivity analysis is carried out from three aspects: the 

maximum load of the electric logistics vehicle, the battery capacity of the 

electric logistics vehicle, and the structure of the electric logistics fleet. 

5.5.1. Load capacity of electric logistics vehicle 

It is known maximum load of electric logistics vehicles is 200 e-bike batteries. 

In order to conduct sensitivity analysis, the maximum load of electric logistics 

vehicles is increased from 200 to 300 and then solved EVRPSTW-FC/BS. As seen 

from Figure (5.7), generally, within a specific range, the shared e-bike' battery 

replacement operation system is more inclined to choose a larger electric 

logistics vehicle load.  

However, the operating system has a different sensitivity to the maximum load 

under different algorithms. A larger electric logistics vehicle load for GA does 

not reduce operating costs. However, the optimal solutions of particle swarm 

optimization and chaotic particle swarm optimization show that increasing the 

maximum load of electric logistics vehicles within a specific range will reduce 

the operating cost. When the maximum load is 250, the optimal solution of 

particle swarm optimization reduces the operating cost by 3.49% compared to 

the maximum load of 200. At the same time, when the maximum load is 275-

300, the chaos particle swarm optimal solution reduces the operating cost by 

0.72%. 

 

 
Figure 5. 7: The sensitivity analysis for load capacity 
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5.4.2. Battery capacity of electric logistics vehicle 

It is known that the mileage of the electric logistics vehicle in this thesis is 150 

km. In order to conduct sensitivity analysis, the range of the electric logistics 

vehicle is increased from 150 km to 250 km and then solved EVRPSTW-FC/BS. 

As seen in Figure (5.8), generally, the battery replacement operation system of 

shared electric bicycles prefers the battery capacity of larger electric logistics 

vehicles within a specific range. 

When the range is 175 km, the optimal solutions of particle swarm optimization 

and chaotic particle swarm optimization reduce the operating cost by 2.64% 

and 1.06%, respectively, compared with the range of 150 km. When the range 

is between 225-250km, the optimal GA solution reduces the operating cost by 

1.99%. 

 

 

Figure 5. 8: The sensitivity analysis for battery capacity of electric logistics vehicle 

5.4.3. Structure of the fleet 

It is known that the fleet consists of four fast charging mode and four battery-

swapping mode electric logistics vehicles. The fleet structure is numbered as 

(𝐸𝑓 , 𝐸𝑠)  for sensitivity analysis and solved. 𝐸𝑓  represents the number of 

electric logistics vehicles in fast charging mode, and 𝐸𝑠 represents the number 

of electric logistics vehicles in battery-swapping mode. For example, (0,8) 

indicates eight battery-swapping mode EV logistics vehicles but no fast 

charging mode. 
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It can be seen from Figure (5.9) that the battery replacement operation system 

of shared e-bikes is more inclined to choose electric logistics vehicles with fast 

charging mode. Compared with the fleet structure (4,4), when the fleet 

structure is (7, 1), the optimal solutions of GA and PSO reduce the operating 

cost by 2.01% and 5%, respectively. When the fleet structure is (8, 0), the optimal 

chaotic particle swarm optimization solution reduces the operating cost by 

2.9%. 

 

 

Figure 5. 9: The sensitivity analysis for the structure of fleet 

5.4.4. The summary of sensitivity analysis 

As shown in Figure (5.10), The battery capacity and maximum load of electric 

logistics vehicles will have an impact on operating costs. And the battery 

replacement operating system of shared electric bicycles is the most sensitive 

to the structure of the fleet, and the operating system prefers electric logistics 

vehicles in fast charging mode. In other words, the mode of electric logistics 

vehicles supplementing electric energy is an important factor affecting the 

operation. 
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Figure 5. 10: The summary of sensitivity 
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6 Conclusion and outlook 

Conclusion 

Based on the electric logistics vehicle to replace the battery for shared e-bike, 

the routing optimization of the electric logistics vehicle is done by the following 

work:  

(1) Review the development and current situation of shared electric bikes and 

logistics vehicles in China. Describing the charging mode of the e-bike, thus 

entering the topic of mobile service routing planning. The characteristics of 

the routing optimization problem and corresponding algorithm are 

analyzed. Lay a foundation for the subsequent model building and 

algorithm design. 

(2) According to the characteristics of the operating system for battery 

replacement of shared e-bikes, this thesis established the Electric Vehicle 

Routing Problem with Soft Time Window-Fast Charging/Battery-Swapping 

(EVRPSTW-FC/BS). The model is designed to minimize operation costs, 

including transportation costs, fast charging/battery-swapping, and the cost 

of service time. A routing optimization strategy is proposed to solve this 

problem.  

(3)  Aiming at the characteristics of EVRPSTW-FC/BS for the logistics 

distribution of electric vehicles, this thesis applies genetic algorithm and 

particle swarm optimization to solve the problem. Considering the 

shortcomings of particle swarm optimization, which is easy to fall into sub-

optimal solutions, the concept of chaos is introduced, and the EVRPSTW-

FC/BS model is also solved by chaotic particle swarm optimization. 

(4)  There are few relevant studies on the battery replacement of shared electric 

bikes. Solomon C101 is selected as the data set for the simulation test, 

considering the distribution characteristics of shared electric bikes in cities. 

Screening 60, 1, 8, and 4 points in the raw data as shared e-bike parking 

points, e-bike battery warehouse, and fast charging stations/battery-

swapping stations for the electric logistics vehicle, respectively. Three 

algorithms, genetic algorithm, particle swarm optimization, and chaotic 

particle swarm optimization, are respectively used for 50 iterations to solve 

the optimal mobile service path. According to the calculation results, the 

genetic algorithm can find the feasible solution quickly, but the chaotic 

particle swarm optimization can minimize the operating cost and the 

carbon emission. The effect of particle swarm optimization is somewhere in 

between. 
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(5) According to the equal scale of Solomon's instance, a fleet consisting of eight 

electric logistics vehicles is built. After the demonstration of the above three 

algorithms, the optimal solution is seven electric logistics vehicles. Load 

capacity, battery capacity of electric logistics, and fleet structure are used to 

analyze the sensitivity of shared e-bikes' battery replacement operating 

system. Test data shows that structure of the fleet occupies the greatest 

sensitivity which means the mode of electric logistics vehicles 

supplementing electric energy is a critical factor affecting the operation. 

 

Outlook 

As a new means of transportation, shared e-bikes have become an important 

choice for urban residents. With the improvement of policies and supervision, 

shared e-bikes still have great potential for development in the future. 

However, electric logistics vehicles are still in the promotion stage, the layout 

of stations could be better in reality, and there are few quick charging stations 

and battery-swapping stations for industrial electricity. Therefore, the route 

optimization of electric logistics vehicles has broad application prospects. 

Therefore, this paper puts forward the following prospects: 

(1) A battery replacement operation network with great potential can be 

established for electric logistics vehicles combined with shared electric 

bikes. The friendly interaction between electric vehicles opens up endless 

possibilities for urban transportation. 

(2) To speed up the construction of fast charging and battery-swapping 

stations, the amount of infrastructure involved will affect the efficiency of 

performing tasks of electric logistics vehicles in the city. 

(3) The business models of fast charging and battery-swapping need to be 

developed. Reasonable pricing will help promote the application of electric 

logistics vehicles. 

(4) In the future, relying on the platform of big data and cloud computing, 

shared electric bikes and electric logistics vehicles will become essential in 

the construction of intelligent transportation and smart city. 
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