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Abstract

Nanographenes are promising nanostructure that can be engineered and design to tailor
their properties for a specific use. The confinement of graphene within a few nanometers
has led to the creation of a finite band gap in its electronic structure. This develop-
ment opened for nanographenes a variety of applications with promising results [1]. This
Thesis focuses on Dibenzo[hi,st]ovalene molecule functionalized with two mesityl groups
and two chlorine atoms (DBOVMes-Cl). The study focuses on its optoelectronic prop-
erties and on the interplay between electronic photo-excitation and vibrational degree of
freedom. Such analysis was made possible by advance ultrafast spectroscopy techniques.
Two-dimensional electron spectroscopy (2DES) emerges as a powerful time-resolved spec-
troscopical tool, offering high temporal and frequency resolution. The modeling of the
experiment and its simulation were contextually developed allowing conjectures about the
origin and role of molecular excited and ground state vibrations. The Brownian oscillator
model and the displaced oscillator model were merged and applied to a two levels system
to simulate a full 2DES dataset. The simulation were able to predict the lineshape evo-
lution and the signal dynamics so that the defining physical quantities could be inferred
from the model parameters. Additionally the presented evidences argue for a greater in-
volvement of the excited state to the vibrational mode in the respect to the ground state.
This can have profound implications in processes like energy and charges transfer within
the molecule
Keywords: nanographenes, two dimensional electronic spectroscopy, vibronic coupling,
Brownian oscillators, displaced oscillators





Abstract in lingua italiana

I nanografeni sono promettenti nanostrutture che possono essere progettate e ingegneriz-
zate per adattare le loro proprietà a un uso specifico. Il confinamento del grafene entro
pochi nanometri ha portato alla creazione di salti energetici finiti nella sua struttura elet-
tronica. Questo sviluppo ha aperto per i nanografeni numerose applicazioni con risultati
promettenti [1]. Questa tesi si concentra sulla molecola di Dibenzo[hi,st]ovalene funzion-
alizzata con due gruppi mesitili e due atomi di cloro (DBOVMes-Cl). Lo studio si concen-
tra sulle sue proprietà optoelettroniche e sull’interazione tra foto-eccitazione elettronica
e gradi di libertà vibrazionali. Tale analisi è stata resa possibile da tecniche avanzate
di spettroscopia ultra-rapida. La spettroscopia elettronica bidimensionale (2DES) emerge
come un potente strumento spettroscopico a tempo risolto, offrendo un’elevata risoluzione
temporale e frequenziale. La modellizzazione dell’esperimento e la sua simulazione sono
state sviluppate contestualmente, consentendo congetture sull’origine e sul ruolo delle vi-
brazioni molecolari negli stati eccitati e fondamentali. Il modello a oscillatori browniano e
il modello a displaced oscillators sono stati applicati contemporaneamente a un sistema a
due livelli per simulare un set di dati 2DES. Le simulazioni sono state in grado di predire
l’evoluzione dello spettro 2D e la dinamica del segnale in modo che le quantità fisiche ril-
evanti potessero essere dedotte dai parametri del modello. Inoltre, le evidenze presentate
sostengono un maggiore coinvolgimento nei modi vibrazionali dello stato eccitato rispetto
rispetto allo stato fondamentale. Ciò può avere profonde implicazioni in processi come il
trasferimento di energia e cariche all’interno della molecola.

Parole chiave: nanografeni, spettroscopia electronica bi-dimensionale, accoppiamento
vibronico, modello ad oscillatori Browniani
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1

Introduction

Material science at the nano and molecular scale has witnessed significant advancements in
the last decades, offering a myriad of opportunities to tail nanostructures for diverse appli-
cations. Nanographenes comes from the confinement of graphene within a few nanometers
causing the electronic structure to have a finite band gap. The technological breakthrough
is therefore related to the extraordinary optoelectronics properties, this master’s thesis
focuses on a particularly promising nanographene structure with optoelectronic proper-
ties suitable for lasing [1]. Nanographene derivatives have a strong vibrational-electronic
(vibronic) coupling. Vibrational modes coupled to electronic states have been suggested
to drive ultrafast radiationless decays in biological as well as synthetic molecular systems,
so that understanding the nuclear and electronic degrees of freedom interplay is cru-
cial to describe the photophysical properties of the molecule. Two-dimensional electron
spectroscopy (2DES) emerges as a powerful time-resolved spectroscopical tool, offering
high temporal and frequency resolution, which allows to provide real time tracking of
energy/charge transfer processes real time, and to unveil the origin and role of molecular
excited and ground state vibrations. An experimental data set of such complexity does
need an interpretive model, and not only that: by simulating a replica of such a data set,
the effectiveness of such interpretive model can be directly assessed comparing the two
results. Despite the physics underneath the experiment being well accepted, reproducing
the data-set through a model still presents unknowns, arbitrary choices and discoveries.
A plethora of interpretative models have been developed, this thesis will be focus on two
of them, namely the Brownian oscillator model, and the displaced oscillator model. De-
spite dealing with vibronic coupling, the models are both fully adiabatic and they will
be presented in their most simplified version of a two or three levels system. The use of
both model combined allowed a full simulation of real 2DES experiment contributing to
extract new and insightful knowledge of the sample. The modeling and simulation have
been therefore addressed contextually with the experiments. The 2D spectroscopy exper-
iments presented have been performed during my training at the Politecnico di Milano
ultrafast optics laboratories in the spring of 2023 by Phd. Mattia Russo and Phd. Rafael
Muñoz-Mármol.
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1| Theoretical modeling tools:

Light-matter interaction studies represent one of the most successful and yet still innova-
tive field of physics. In centuries all kind of models and formalism have been developed
to describe quantitatively such interaction. This thesis resigns from any means of a com-
prehensive presentation, only the theoretical tools used in the following chapters, and
relative to the 2DES experiments, are here presented as a compendium of several deeper
and beautiful general treatments. To describe properties and temporal evolution of phys-
ical systems, a very general label that could apply at same time to atoms, electrons as to
macroscopic experimental sample and to the electromagnetic field, needs first a mathe-
matical representation of the systems. The physics of the systems is then hidden in the
assumptions that lead to the formulation of equations. The success and validity of such
description is then a matter of the use and experimental verification obtained by. To
this extend different representation could be equivalent or, as in the following case, con-
sidered more favourable since more conveniently generalized to include different aspects.
An example of it,the density operator description will be later favored in respect to the
wave-functions. This new representation formalism works greatly also for the exact op-
posite case: which corresponds to find physical quantity’s analytical expressions through
a less general treatment of the problem where previously acquired knowledge can be thus
conveyed. The interaction picture is a perfect example of it.

The system adopted in this thesis can be assumed as a single molecule that interacts with
and electric magnetic field. The molecules form an ensemble where quantum coherences
and classical uncertainty coexist and need to be addressed. The magnetic part of the E.
M. field interaction is associated to a negligible energy and the remaining electric filed
has low enough frequency and high enough intensity so that it is treated classically.
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1.1. Classical mixture description: the density oper-

ator and Liouville Von Neumann equation

By considering a state |Ψ⟩, the state is said to be a pure quantum state if its description
presents no uncertainty beside the intrinsic quantum uncertainty. In this case, from |Ψ⟩
a density operator, ρ, is defined as

ρ = |Ψ⟩ ⟨Ψ| (1.1)

The definition can be generalized to describe an ensemble of states in which an additional
classical statistically distributed uncertainty is present. In the case of the molecular
ensemble, the light-interaction could bring a single molecule in coherent superposition of
ground and excited state, this condition represents a coherence state and it is the source
of quantum uncertainty. (There nothing special about it, every quantum state describes
a coherent super position of states in respect to some basis.) Actually not every molecule
interacts with the field, some statistical reasoning can be brought to define a certain
portion of molecules that did interact with the field whereas the remaining part did not.
This bring the system in a classical, incoherent, superposition of states. ρ definition, eq.
1.1, can be thus generalized to comprehend such reality. In this case:

ρ =
∑
k

Pk |Ψk⟩ ⟨Ψk| (1.2)

where |Ψk⟩ expresses the different pure quantum states in the mixture and Pk is the
classical probability for the system of being in it. The wavefunction formalism can not
describe such classical mixture, therefore to study the time-evolution of the system a dif-
ferent formulation of the Schrodinger equation is needed. [2] The Liouville-Von Neumann
equation addresses this need relating the time derivative of ρ to the Hamiltonian, H, of
the system.

∂

∂t
ρ = − i

ℏ
(Hρ−Hρ) = − i

ℏ
[H, ρ] (1.3)

For an unperturbed Hamiltonian, this equation predict for each of the density matrix
element a constant amplitude. However the coherence states are usually very short lived
and rapidly decay (10− 100fs) to a population state; the population states are described
by the diagonal elements of ρ. A relaxation towards more stable states can be experi-
mentally acknowledged to happen from excited states to the ground state.[3] The easiest
way to account for this phenomena is adjusting equation 1.3 to include such behaviour,
called dephasing for coherence states and relaxation for population states. The Liouville
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representation let expressing it in a very compact way:

∂

∂t
ρ = − i

ℏ
Lρ− Γρ (1.4)

where L stands for the operation [H, ...] and Γ accounts for the exponential decay of coher-
ence and excited states. Te Liouville equation 1.4 equation fully describes our system, the
unperturbed case expression are trivially obtained and reflects phenomenological descrip-
tion. The next sections will focus on evaluate the time dependent Hamiltonian treatment
to consider the interaction with an E.M. field.

1.2. Perturbed system: time dependent Hamiltonian

Including the radiation field inside the problem gives rise to a much greater complexity and
thus a choice to face. The first option would mean to include the field’s degree of freedom
along the matter’s one. This lead to a time-independent Hamiltonian with a much bigger
phase space. Looking for solutions of the problem in such a large phase space turns out to
be a too hard challenge. The second choice is to describe the radiation field as an external
force, keeping only the matter’s degree of freedom. Whereas time-dependent Hamiltonian
follows as consequence of this second choice, new paths for advantageous simplification
opens up, foremost the classical approximation of the field.

It is convenient to introduce here the ubiquitous tool of a time evolution operator, the
following is a general definition of it:

|Ψ(t)⟩ ≡ U(t, t0) |Ψ(t0)⟩ (1.5)

This operator allows to describe the time evolution in general, without the need of spec-
ify initial conditions. Without the use of the time evolution operator, the Schrodinger
equation is to be solved any time the initial conditions are varied. With this said, time-
dependent Hamiltonian are still a fair threat to treat exactly and the truncation of the
consequently series expansion leads to very short holding approximations. The time evo-
lution operator for the case of a time dependent Hamiltonian is given by following the
time ordered expansion:

U(t, t0) = 1 +
∞∑
n=1

(
− i

ℏ

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1· · ·
∫ τ2

t0

dτ1H(τ1)H(τ2) . . . H(τn) (1.6)
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Figure 1.1: Time variables of the time ordered expansion (Eq.1.6)

A change of system representation comes handy once more, the Interaction picture gives
in fact a way to re-express the wave functions and their operators under a different point
of view. The Hamiltonian is arbitrarily split in H0, a simpler Hamiltonian which results in
a time evolution operator that can be calculated exactly, and in H ′(t) more complicated
that will be treated perturbatively. The partition choice has in principle no boundaries
and choosing H0 to be equal to zero, so that H ′ = H, the Schrodinger picture is ob-
tained, whereas if the opposite choice is made the description of the system will follow
the Heisenberg picture. Of course no measurable results is affected by the choice.

The Interaction picture offers very convenient solutions when the overall time dependent
Hamiltonian can be partitioned in a greater and time independent H0, describing the
molecules’ degree of freedom, and in a much weaker H ′(t) to include the interaction with
the impinging electric field. In this case the time evolution operator of the non interacting
system is simply given by:

U0(t, t0) = e−
i
ℏH0(t−t0 (1.7)

whereas the weak perturbation in the interaction picture is given by:

H ′
I(t) = U †

0(t, t0)H
′(t)U0(t, t0) = U †

0(t, t0)(E(t) · µ)U0(t, t0) (1.8)

with E(t) being the impinging radiation field, and µ the dipole operator in the Schrodinger
picture, once the dipole approximation is made. Switching from the Schrodinger to the
Interaction picture through U0(t, t0) does not eliminate the need for a series expansion
to express operators. Despite that, the expansion is performed only to treat a weak
perturbation and not the entire Hamiltonian. This makes the series expansion a powerful
tool since truncating it at the n-th order gives a much more meaningful approximation.
In this sense, the evolution of the density matrix ρ(t) is written in series as:

ρ(t) = 1 +
∞∑
n=1

(
− i

ℏ

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1· · ·
∫ τ2

t0

dτ1E(τn) . . . E(τ1)

× U0(t, t0) · [µI(τn)[µI(τn−1) . . . [µI(τ1), ρ(−∞)]] . . . ] · U †
0(t, t0)

(1.9)

Knowing to express the matrix density of a system is nothing less to what is required to
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express the evolution of any physical observable. For a multi-dimensional spectroscopy
experiment the objective observable is the non-linear macroscopic polarization.

The macroscopic polarization, P is defined as a classical optics quantity to describe the
matter’s response to an incident electric field. Without loosing generality, one can intro-
duce a infinite set of susceptibilities tensor so that the polarization is often expressed as
a power series of the electric field:

P = ϵ0(χ
(1) · E + χ(2) · E · E + χ(3) · E · E · E + . . . (1.10)

As a quantum quantity the macroscopic polarization is defined as the expectation value of
the dipole operator µ. Bringing together the matrix density formalism and the Interaction
formalism, one gets:

P (t) = E[µ] = Tr(µρ(t)) ≡ ⟨µρ(t)⟩ (1.11)

Some conventions are here introduced to uniform the notation with the rest of the work.
When no radiation field is present, and right before it is, the system is assumed to be
at equilibrium so t0 can be brought back to −∞, in this way one can set τ1 = 0 as an
arbitrary and convenient choice for the time-zero point. Once the frame of reference is set,
the time variables τn denote absolute time instants and new variables tn are introduced
to indicate the time intervals so that:

tn = τn+1 − τn (1.12)

With some properties in mind, trace operator ⟨. . . ⟩ is invariant to cyclic permutation and
time evolution operator is unitary the n-th order Polarization is given by the use of ρ(t)
expansion (Eq.1.9) inside P (t) definition (Eq.1.11):

P (n)(t) =

∫ ∞

0

dtn

∫ ∞

0

dtn−1· · ·
∫ ∞

0

dt1E(t− tn)E(t− tn − tn−1) . . .

. . . E(t− tn − · · · − t1) · S(n)(tn, tn−1, . . . , t1)

(1.13)

with S being the n-th order non linear response function of the system, defined as:

S(n)(tn, . . . , t1) =

(
− i

ℏ

)n

⟨µI(tn + · · ·+ t1)

[µI(tn−1 + · · ·+ t1)) . . . [µI(0), ρ(−∞)] . . . ]⟩
(1.14)

The response function, defined only for positive times tn describes how the material be-
haves while interacting with an electric field. As it can be noticed only the first n dipole
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operators are in the commutators while the last is not. As a matter of fact, n interac-
tions with the field are present and they are represented by µI evaluated at the first n
time instants τ1 . . . τn, those interactions generate a non-equilibrium matrix ρ(n), whose
off-diagonal elements at time τn+tn emit a light field. The full derivation of the equations
and more insights are present in literature and in particular in the works at [4] and [2].

1.3. Third-order response function:

To fully characterize the n-th order response function of a system, n interactions with the
field are to be accounted for. In this case, explicitly writing the nested commutators in
Eq.1.14, one obtains 2n terms, each of them in pair with its conjugate complex for a total
of 2n−1 independent terms. The number of terms increases even more when considering
the multiplication with the electric field terms in the polarization expression, Eq.1.13). 2D
spectroscopy, like most of the non-linear spectroscopy techniques, focuses on the third-
order polarization term. Additionally, in media with spatial inversion symmetry even-
order polarization terms vanish, therefore for most media the third-order term represents
the lowest order non linearity. The third order overall response function, S(t3, t2, t1), is
thus obtained by a combination of 4 independent terms:

S(3)(t3, t2, t1) =

(
− i

ℏ

)3 4∑
i=1

[Ri(t3, t2, t1)−R∗
i (t3, t2, t1)] (1.15)

where:
R1(t3, t2, t1) = ⟨µI(t1)µI(t1 + t2)µI(t1 + t2 + t3)µI(0)ρ(−∞)⟩ (1.16)

R2(t3, t2, t1) = ⟨µI(0)µI(t1 + t2)µI(t1 + t2 + t3)µI(t1)ρ(−∞)⟩ (1.17)

R3(t3, t2, t1) = ⟨µI(0)µI(t1)µI(t1 + t2 + t3)µI(t1 + t2)ρ(−∞)⟩ (1.18)

R4(t3, t2, t1) = ⟨µI(t1 + t2 + t3)µI(t1 + t2)µI(t1)µI(0)ρ(−∞)⟩ (1.19)

The different terms can be seen as pathways of interaction and Liouville pathways and
double-sided Feynman diagrams help to visualize and count all the possible interaction
pathways. In this work only the Feynman diagrams will be showed but a more formal
and complete treatment of both techniques is present at [5]. For the third order response
the four independent terms are then expressed as the following diagrams:
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Figure 1.2: Double sided Feynman diagrams for the third order response function ([6])

From S(3), the third order macroscopic polarization field can be calculated accounting for
the impinging electric field terms. In a 2D spectroscopy experiment, the electric field is
composed by three pulses, this dramatically increases the number of terms but further
approximations could reduce considerably the number of terms. Those approximations
are here listed:

• Time Ordering

• Rotating Wave Approximation (RWA)

• Phase Matching

Straight forward experimental argumentation justify both RWA and the phase matching
condition. The Time Ordering hypothesis need a more advance characterization and
different experimental regimes can be found to not respect time ordering. As an example in
a pump-probe experiment the first interactions are said to come from the same pump pulse
breaking the time ordering symmetry. Nevertheless throughout all the simulations Time
Ordering hypothesis holds as true for every t1, t2, t3. To enforce so, the semi-impulsive
limit is applied and the total electric field is written as:

E(t) = [E1δ(t) + E2δ(t− τ) + E3δ(t− τ − T )][eiωt−k·r + e−iωt+k·r]fort, τ, T ≥ 0 (1.20)

The macroscopic polarization is then simply given by:

P (3)(t) = S(3)(t, τ, T ) (1.21)

The discussion can be then fully translate to the characterization of the response functions
Ri.
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1.4. Semi-classical simulation and response function

equations:

Finding analytical expression to be able to simulate the response functions of a complex
systems can be tricky and even impossible. Equations from 1.16 to 1.19 are still implicit,
and thus general, expressions, and they are not yet useful for simulations. The system
should be then characterized as number of involved levels, coupling terms in the Hamilto-
nian and phenomenological parameters. The most simple cases are the two or three energy
level systems non interacting and with pure phenomenological parameters to characterize
the response function from the experimental data. Such equations will be presented in the
third chapter while discussing a specific simulation model. In this section, two different
Hamiltonian models for a two level system are presented in order to address from more
first principle considerations, the complexity of the experimental response function. As
it will be shown in the third chapter, not only changing the Hamiltonian could help for
a deeper data analysis, but it let the simulated response function to predict and quantify
data phenomena, otherwise only describable subsequently the experiment. Out of all the
possible features that a 2D spectroscopy data set can show, the following Hamiltonian
model addresses two main phenomena: the lineshape evolution along t2, in terms of spec-
tral diffusion and the stokes shift, and the oscillation dynamics that S(t1, t2, t3) sometimes
show again along the t2 axis. Both models comes from a fully adiabatic treatment and
the Condon principle is used to simplify the overall problem.

1.4.1. The Brownian oscillator model: a microscopic theory of
dephasing

Stochastic processes are commonly used in the modeling of complicated system’s response
function. A stochastic model, in this case, allows to derive an overall response function
that, accounting for the dephasing of the electronic coherence and for a common and
random environment interaction, predicts the response function to evolve showing the
spectral diffusion and the stokes shift. The molecule is, in fact, assumed to be in a bath
that exerting random forces on the molecule makes the electronic energy gap a stochastic
process itself. This makes the matter’s Hamiltonian, now referred as Hs, time-dependent
too. To account for it, one can introduce the energy gap operator, Ω, defined as:

Ω ≡ H1 −H0 − (ϵ1 − ϵ0) (1.22)
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Where H1 = ⟨1|Hs |1⟩, H0 ⟨0|Hs |0⟩ are the eigenvalues of the two level electronic problem
in the bath and ϵ1, ϵ0 are their relative in the isolated, thus deterministic, case. Then the
off-diagonals dipole operator matrix element are expressed as:

µ01(t) = µe−
i
ℏ (ϵ1−ϵ0)texp+(−

i

ℏ

∫ t

0

Ω(τ)dτ) (1.23)

µ10(t) = µe−
i
ℏ (ϵ1−ϵ0)texp−(

i

ℏ

∫ t

0

Ω(τ)dτ) (1.24)

where exp+ and exp− compactly express the time order expansion as in the equation 1.6.
Once put in the general expression of the response functions (eq. 1.16 to 1.19) a cumulant
expansion to the second order of the stochastic process described by Ω(t) can be done to
obtain the expression of the lineshape function g(t):

g(t) =
1

ℏ2

∫ t

0

dτ

∫ τ

0

dτ ′⟨Ω(τ)Ω(τ ′)ρ(−∞)⟩ with τ ≥ τ ′ (1.25)

Expanding a distribution up to its second cumulant is of common use to simplify expected
values computation of complicated expression. It is indeed a powerful tool, especially if
Ω(t) is a Gaussian process in that case the expansion would be formally exact. To g(t) is
possible to refer the explicit response functions equations:

R1(t1, t2, t3) = (
i

ℏ
)3µ4e−

i
ℏ (ϵ1−ϵ0)(t1+t3)exp(−g(t1)− g∗(t3)− f+(t1, t2, t3)) (1.26)

R2(t1, t2, t3) = (
i

ℏ
)3µ4e−

i
ℏ (ϵ1−ϵ0)(t1−t3)exp(−g∗(t1)− g∗(t3) + f ∗

+(t1, t2, t3)) (1.27)

R3(t1, t2, t3) = (
i

ℏ
)3µ4e−

i
ℏ (ϵ1−ϵ0)(t1−t3)exp(−g∗(t1)− g(t3) + f ∗

−(t1, t2, t3)) (1.28)

R4(t1, t2, t3) = (
i

ℏ
)3µ4e−

i
ℏ (ϵ1−ϵ0)(t1+t3)exp(−g(t1)− g(t3)− f−(t1, t2, t3)) (1.29)

where : f−(t1, t2, t3) = g(t2)− g(t1 + t2)− g(t2 + t3) + g(t1 + t2 + t3)

f+(t1, t2, t3) = g∗(t2)− g(t1 + t2)− g∗(t2 + t3) + g(t1 + t2 + t3)
(1.30)

The line shape function g(t) is in general a complex function, therefore R1, R4 and R2, R3

are no longer equal. The Brownian oscillator is thus able to distinguish from excited state
responses, R2 and R4, and ground state ones, the remaining R1 and R3 . This distinction
can be crucial to characterize sample’s behavior in respect to determined phenomena.
Before getting a full explicit response functions, some characterizations are needed on
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g(t), the time ordered integral of the correlation function:

C(t) =
1

ℏ2
⟨Ω(τ)Ω(τ ′)ρ(−∞)⟩ (1.31)

As a correlation function of Hermitian operators, C(t) complies with many symmetry
properties both in the time domain and in its frequency representation. In the fre-
quency domain, an important result of such properties is represented by the very general
fluctuation-dissipation theorem:

Re[C̃(ω)] = coth(βℏω/2)Im[C̃(ω)] (1.32)

Leaving the full derivation to the reference at [7], for the case of a continuous distribution
overdamped Brownian oscillators in the high temperature limit, g(t) assumes the form
given by:

g(t) =
2λkBTτ

2
C

ℏ
[exp(−t/τC) + t/τC − 1]

− iλτC [exp(−t/τC) + t/τC − 1] kBT >> ℏΛ
(1.33)

A deep characterization of each parameter is shown later in the first part of the third
chapter. For now, new emphasis is given to the physics behind the model. The expression
of g(t) is in deed fairly general and it could see disparate kinds of application. Here it is
used to described the coupling of the molecule with a phonon bath made of a continuum
of Brownian oscillators, so with an inherited stochastic nature. In this sense the optical
response can be characterized in many ways and the original phenomenological dephasing
case is retrieved as limiting case of such expression.
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Figure 1.3: A pictorial visualization of the Brownian oscillator model, the physical mean-
ing of the g(t) parameters τC and λ is qualitatively explained

In addition to the literature of reference [8], a weak generalization to a three level system
has been developed in order describe a third kind of optical signal typical of a 2D spectra.
Even though in a two level system only two kind of contributions, and both positive, are
possible, for more articulated systems 2D spectroscopy signals could show a negative, and
generally spread, contributions. Two new response functions are then derived:

R5(t1, t2, t3) =− (
i

ℏ
)2µ4e−

i
ℏ ((ϵ2−ϵ1)t3−(ϵ1−ϵ0)t1)

exp(−g∗(t1)− g(t3) + f−(t1, t2, t3))
(1.34)

R6(t1, t2, t3) =− (
i

ℏ
)2µ4e−

i
ℏ ((ϵ2−ϵ1)t3+(ϵ1−ϵ0)t1)

exp(−g(t1)− g(t3)− f ∗
−(t1, t2, t3))

(1.35)

where f− and f+ are given at equation 1.30. For simplicity all the parameters of the
third level, but the energy gap, were kept equal to the ones describing the first two. In
total six independent response functions have been defined so far, R1, R2, R3, R4, R5, R6.
R2 and R1 give, respectively, the rephasing and the non rephasing stimulated emission
contribution. R3 and R4, the rephasing and the non rephasing ground state bleaching (or
photo bleaching) contribution. R5 and R6, the rephasing and the non rephasing excited
state (or photo induced absorption). Here a pictorial image of the three kinds of 2D
spectroscopy signal:
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Figure 1.4: Three contributions can be found. Here they are explained in the most simple,
but comprehensive model. SE stands for stimulated emission, PB for photo bleaching and
PA for photo induced absorption

1.4.2. Vibrational dynamics and the displaced oscillator model

The presentation of the next model works as a theoretical introduction for a more deep
discussion, strong of the simulation results, present in the second half of the third chapter.
The objective of introducing such model is to describe vibrational dynamics that multi
dimensional experiments show in the transient absorption (or transmission) spectra. The
model is again fully adiabatic, thus it does not include non adiabatic effects as coherent
mixing of electronic and vibrational degrees of freedom. The model is presented as in the
following figure in its simplest formulation, namely the one of a two level system with a
single vibrational mode and at the zero-temperature limit.
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Figure 1.5: Pictorial representation of the displaced harmonic oscillator model. The q-axis
represent the quadrature X = 1

2
⟨a†+a⟩. The parameters energies ϵ and the displacement

z are the one entering the Hamiltonian in eq. 1.36

The model exploits the coherent states formalism to treat the vibrational degree of freedom
with simplicity without any loss of generality. The Hamiltonian’s model reads:

H = |0⟩ ⟨0| (ϵ0 + ϵv(a
†a)

+ |1⟩ ⟨1| (ϵ1 + ϵv(a
† + z)(a+ z)

(1.36)

The vibrational part of Hamiltonian depends in fact on the electronic eigenstates, but
only on the displacement parameter z. This keeps the two kind of variables separated
so that each Ri response function can be written as a product of the electronic response
function and of the vibrational one:

∀i = 1, .., 4 Ri = R
(e)
i R

(v)
i (1.37)

The full derivation of the the third order response functions can be found in the article
at reference [9]. In the following the consequently derived vibrational response function
are listed:

R
(v)
1 =exp[z2(−2 + e−iΛ111 + eiΛ010 + eiΛ001

+ e−iΛ100 − eiΛ011 − e−iΛ110)]
(1.38)
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R
(v)
2 =exp[z2(−2 + eiΛ110 + e−iΛ011 + eiΛ001

− e−iΛ010 + eiΛ100 − eiΛ111)]
(1.39)

R
(v)
3 =exp[z2(−2 + eiΛ100 + e−iΛ001 − eiΛ010

+ eiΛ011 + eiΛ110 − eiΛ111)]
(1.40)

R
(v)
4 =exp[z2(−2 + e−iΛ100 + e−iΛ001 + e−iΛ010

− e−iΛ011 − e−iΛ110 + e−iΛ111)]
(1.41)

where:

Λp1,p2,p3 ≡
ϵv
ℏ
(p1t1 + p2t2 + p3t3) (1.42)

Despite many kind of generalization can be proposed from these results, two are crucial to
simulate such vibrating system: 1-Finite temperature case, 2-Vibrational relaxation. The
most simple to obtain is the finite temperature case. In the zero-temperature case the
system was always initialized in the ground state of the undisplaced oscillator, whereas
the presence of a finite temperature imposes the initial state to an arbitrary ⟨α0| state.
Forming the coherent states a complete basis of the phase space, such state can always
be expressed as combination of coherent states. In this way, deriving the effect of such
initialization leads to really the same response functions only multiplied by a scalar factor
equal, in the high temperature limit, 2kBT

ϵv
. The second generalization aims to include the

experimental evidence of a vibrational dump in the oscillating dynamics of the response
functions. Despite being conceptually simpler than the finite temperature arbitrary ini-
tialization, its implementation requires quite tedious calculation that are fully reported
on a article by F.Troiani and colleagues [9]. The crucial change is summarized by the
next relation:

ϵv− > ϵv + i
ℏ
τv

(1.43)

The once real parameter ϵv become a complex affecting the Λp1,p2,p3 operator and intro-
ducing a prefactor given by:

f(t, α) = exp[−|α + zk|2

2
(1− e−t/τv)] (1.44)

The new parameter τv is then introduced in the simulation model and in the third chapter
the resulting response functions are then fully characterized by each individual parameter.
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methods:

"What we cannot learn with 2D spectroscopy we will not be able to learn with any
other third order spectroscopy" Peter Hamm in his "Principles of Nonlinear Optical Spec-
troscopy: A Practical Approach"[10]

Third order non linear spectroscopy is a fertile and vital experimental physics field. Many
different examples of experiment and application can be made. In this chapter the two-
dimensional electronic spectroscopy (2DES) is presented in its experimental implementa-
tion. 2DES is a powerful ultrafast spectroscopy technique that provides detailed infor-
mation about the electronic energy states and dynamics of molecules in condensed-phase
systems. The investigated spectrum region is thus the visible spectrum. 2DES set up
employs a sequence of three ultrashort laser pulses to excite and probe the sample. The
first two pulses that interact with the sample act as a pump and they are responsible of
initiating the excitation process and causing an out of equilibrium condition in the sys-
tem density matrix. The third pulse, instead, is called probe and it used to monitoring,
or ’probing’, the system relaxation back to an equilibrium condition. The three pulses
define two time intervals, namely t1 and t2. The latter is also called "waiting time" or
"population time". This chapter focuses on the description of the experimental appara-
tus adopted in this thesis and the simulation architecture to extract information from the
measurements.

2.1. Experimental setup:

2D spectroscopy combines high temporal and spectral resolution by providing a perfect
tool to study ultra fast dynamics in complex system. This is possible thanks to the multi-
ple and time ordered interaction that the sample experience with the electromagnetic field.
In fact, other transient spectroscopy experiment faces a restrictive compromise between
temporal and resolution, given by the duration of the pulses, and a frequency resolution,
given by the bandwidth of the pulse. In a Pump-probe experiment for example, one of
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the most common third-order spectroscopy experiment, the pump frequency resolution in
the excitation spectrum is simply given by the width of the pump pulse spectrum [11].
In two pulses experiment the two resolutions form a duality: if the pump pulse lasts few
optical cycles, giving high temporal resolution, its spectrum will be very broad with no
information on the excitation frequency; the opposite is true for long, and thus narrow
band, pulse. The use of a third pulse in a 2D spectroscopy set up disentangles such du-
ality. The frequency resolution it is in fact related to the temporal resolution and the
tunability of the delay, namely t1, between the two pump pulses. The probe pulse then
interferes with the out of equilibrium sample and it is delayed with respect the second
pump pulse by the delay t2. The emitted signal is then scattered in different directions
each given in compliance with the phase-matching condition. A detector is then generally
placed along the direction where the signal under investigation is expected to propagate.
Such preferred direction depends on geometry of the pulses and on the kind of signal
to be analyzed [12]. The sample response propagates along the time interval called t3

and typically interacts with a fourth pulse that works as ’local oscillator’ and gives the
interferometric measure as a function of t1, t2, t3. The signal is then visualized, by means
of the Fourier transform, as function of ω1, ω3, the excitation frequency and detection
frequency respectively, and t2. Therefore the signal gives a correlation map between exci-
tation and detection frequency recorded for several t2 instants, potentially elucidating the
mechanisms of ultra fast energy and charge transfer in systems like photosynthetic light-
harvesting complexes, molecular crystals, and semiconductors. Out of the possible signals
visible in a 2D map, two family can be distinguished: the diagonal peaks, that correspond
to the linear spectrum and whose shape gives information on the homo/inhomogeneous
broadening and on all the characteristics derived from the broadening; the cross peaks out
of the diagonal which instead show couplings between the excitation states electronic and
vibrational [13]. The excitation signal can be thus characterized by frequencies, intensity,
shape and time evolution allowing a quantification of excited states couplings and real
time description pathways of energy/charge flow from one state to the other [13, 14].

All of these possibilities and resolution power come with technical difficulties and experi-
mental challenges. Those challenges depend of the spectrum region of the employed light,
in the 2DES case the explored spectrum region overlaps with the visible spectrum of light.
Higher or lower energy 2D spectroscopy experiments are possible and they all present some
similar and yet unique challenges. 2DIR, a 2D spectra measurement in the infrared region,
is a well explored technique to probe and characterized molecular vibrational states, their
coupling and energy transfer processes [15]. To be able to collect meaningful 2D signal, an
interferometric stability between pairs of excitation pulses is required to be below fraction
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of their carrier wavelengths. To this extent the control of the pump pulses relative phase
stability is an easier challenge at lower energy, like the 2DIR case. Nevertheless there are
different experimental techniques that offer the required phase stability.

In the ultrafast laboratory of Politecnico di Milano, where the presented work has been
developed, the interferometric stability is reached by employing a translating wedge based
identical pulses encoding system (TWINS) [16, 17] that allows to control the delay be-
tween the first and the second pulse with very high precision. The experimental apparatus
adopted in the laboratory used the so called pump probe geometry configuration. This
geometry configuration is also called "Collinear self-heterodyne 2D spectroscopy" [12],
namely the pump pulses run in a collinear configuration and the detector is placed along
the probe direction to comply with the phase matching condition. Here, ω3 spectrum is
retrieved directly from the emitted field thanks to a spectrometer. As mention before,
different choices are still viable solutions having for each solution advantages and conse-
quences in terms of stability, power of resolving different signals and acquisition time for
a measure. A collinear geometry for the pump makes indistinguishable the rephasing and
the non rephasing parts of the response function, as matter in fact in this case complying
the phase matching condition locks both contribution along one direction, parallel to the
probe wave vector. Therefore this configuration reduces considerably the complexity of
the detecting apparatus and possibly halving down the acquisition time. In this way the
measured signal corresponds to the, so called, Pure Absorptive spectra allowing a direct
physical interpretation of the experimental results. This technique, despite the advan-
tages, does not allow for background signals to get inside the detector, since it is placed
along the probe propagating direction and needed artificially taken care either before or
after the signal acquisition.

The generation of ultra short pulses with some frequency tunability represents the next
challenge to face in order to accomplish a working 2DES experiment set up. To address
a lower complexity in the set up, the three pulses are identical and the steps described in
this paragraph to generate, tune and compress the pulses are shared among the three. It
follows a brief explanation of the pulse generation segment. The setup uses a Ti:Sapphire
laser in mode locking regime that emits 150 fs laser pulses whose spectrum is centered
at λ = 800nm and with 1 kHz repetition rate. Those pulses are then used to pump a
non collinear optical parametric amplifier (NOPA) [18] to generate visible laser pulses
with, in our case, a spectrum spanning from 550nm to 750nm. The pulse envelope is then
temporally compressed with a pair of chirped mirrors through which the beam computes
7 bounces to reach a temporal duration below 20 fs [19]. The pump and the probe laser
pulses for the 2DES experiment are then retrieved by separating the main beam by a non
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symmetric beams splitter.

Acquiring 2DES data is not a straightforward activity, once having aligned and having
put at work the setup, two main steps have to be checked before start. The first stadium
combines the calibration of the pump pulses through an additional photo-diode giving
the pump auto-correlation function along the t1 axis. With this information is possible
to retrieve empirically the best fit for the linear transformation between the "Pseudo
Frequency" axis to the pump "Optical Frequency" axis. The psedudo-frequency axis is
given by the Fourier transform of the t1 axis sampled with mechanical steps of the delay
stage, while the latter serves as excitation axis for the 2D spectra data [15, 20]. The
second preliminary activity aim to asses the temporal duration of the pump and thus
the experiment temporal and excitation frequency resolution. Temporal characterization
of the pulses, whose duration is more than ten order of magnitudes shorter the camera
and the electronics reading time, could be perform with different techniques. For this
experimental set up, a "Polarization Gating Frequency-Resolved Optical Gating" (PG-
FROG) measurement was implemented. The measure exploits a non-linear crystal whose
refractive index depends on the intensity of the impinging beam. To ensure a meaningful
result the crystal employed should be chosen upon the characteristics of the experiment’s
sample, in particular in respect to the length of beam’s path inside the materials. For
a sample in solution, like the case presented here, this requirement applies the the path
length of the cuvette [11, 20].

Once the preliminary characterization have been terminated the setup could be use to
acquire sample’s data. As good practice for the first measurement is to scan the pumps-
probe t2 delay with t1 = 0. Such measures coincides with the integration along the
excitation axis of the 2D spectra and so to a broad band Pump-probe measure with
only two pulses. Comparing a previously acquired 1D transient spectrum with the one
obtained indicates a reliable sign of the validity of the next 2DES experiment, furthermore
it gives a very high temporal resolution (< 20fs) pump probe measurement. The actual
2D spectroscopy proceeds scanning along the t1 axis, in this case between −30fs and
250fs, for a fixed t2 delay. Fourier transform can be then applied along the acquisition
axis and the 2D spectra map is acquired. The next t2 delay can be investigated, and so
on iteratively to eventually obtain the full signal S(ω1, t2, ω3).

2.2. Simulation methodology compendium:

The simulation environment simplifies much of such complexity, but it still presents some
challenges. The code, running the simulation, has been developed from scratch in python
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programming language within the free-licensed "Spyder IDE" [21]. The simulation being
fully deterministic, no random draws are present in the scripts, gives consistent results so
that a modularity approach could be implemented. The program has been indeed divided
in two parts: the first part generates the data whereas the second part implements the data
analysis and visualization. The generation of the 2D data relies on the explicit expression
of the response functions presented in the first chapter. The signal is thus generated in
its time-domain to be later being transformed, via an FFT algorithm, to a frequency
representation in respect of t1 and t3 axis. Beside choosing the model to be simulated and
its relative system parameters, the user defines here some quantities to effectively run the
simulation. Because of the Fourier transformation applied between the signals definition
and their final representation it is crucial to carefully chose the time axis parameters.
In particular for every time axis its span and the number of samples are to be defined
considering the frequency span to be described and the frequency resolution that it is to
achieved. This matches up the experimental restriction on time and frequency resolution,
and likewise the simulation time grows when high number of points are taken. For every
simulations and run model the same time axis have been defined. As a convention times
are gonna be expressed in femtoseconds, where 1fs = 10−15s, and the its Fourier dual
axis expressed in energy units of electron Volt (eV). For the t1 and t3 axis the simulation
have been running up to 1ps with 1024 sampling points. In this way signals are resolved
up to 2.11338eV with intrinsic spacing of 0.00413eV . For t2 axis the same span of 1ps
has been chosen while a smaller number points were acquired, namely 512 points. Along
the transformed t2 axis, components with energies up to 1.005457eV are resolved with
a spacing of 0.00412eV between points. This limits are well above the t2 experimental
energy resolution as it will be show in the fourth chapter.

The second part of the simulating program has been written on a different file and it
could be run independently. Lasting the generation of data much more than the analysis,
this turned to be crucial so that a great amount of data could be generated night long
and the analysis could be performed at will of the scientist with a much quicker results.
Different visualization protocols have been implemented within this algorithm, the most
common two are: the 2D spectra for fixed t2 referred as 2D map and the t2 dynamics plot
where ω1 and ω3 where fixed, usually on the signal peaks. A third way to visualize the
full spectrum is referred in the text as pump-probe like representation. In this case the
signal S(ω1, t2, ω3) is integrated along ω1 and the obtained two variables function can be
plot all in one scatter plot resembling a 1D pump probe map.
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(a) (b)

(c) (d)

Figure 2.1: (a)Rephasing real part (b)Non rephasing real part (c)Rephasing imaginary
part (d)Non rephasing imaginary part. Rephasing and non rephasing contributions can
be individually generated in the simulation. Due to the pump-probe geometry, this is not
possible experimentally.
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2.2.1. From rephasing and non rephasing contributions to the

pure absorptive spectrum:

As introduced in the first chapter one can partition the response functions in rephasing
and non rephasing contributions. This division, despite coming purely from the density
matrix formalism, hides a profound physical meaning. Two pulse photon echo effect can
be experimentally shown and 2D spectroscopy experiments can be designed to acquires
only one of the two kind of contribution. From the last section, the simulation is acknowl-
edged to generate data individually from each response function Ri, how are they then
combined to give an unique transient 2D spectra comparable to the one coming out from
an experiment?

As an example of the difference of the two kind of contributions in figure 2.1 are shown
the real and the complex part of the two kind of signals. For each map a deep character-
ization can be addressed, and this can be done also experimentally with 2D spectroscopy
set up in a box geometry. In such geometry configuration of the pulses where the phase
matching condition lets divide spatially the contribution. Nevertheless in the simulation
only the pure absorptive signal is conserved and further analyzed. This follows a common
convention to visualize in one 2D spectroscopy map both contribution [6] and it is con-
sistent with the kind of data acquired by the experimental set up [16]. In the following
equation the definition of the pure absorptive signal is given:

Rabs = ℜ[Rrephasing +Rnonrephasing] (2.1)

The purely absorptive spectrum preserves the sign of each contribution and sacrifices infor-
mation on the dispersive contributions to a more compact and intelligible representation.
Differently from other configurations, like box-car geometry, the pump probe configura-
tion used in experimental set up combines with a special phase matching condition the two
contributions so that spectrometer measures in single shot the pure absorptive spectrum.
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3.1. System modeling and static description:

(a) (b)

Figure 3.1: (a)Homogeneous case, the isotropic Lorentzian broadening is dominant in the
lineshape. (b)Inhomogeneous case, a Gaussian broadening along the diagonal dominates
the lineshape

The simplest model for the simulations presented in this chapter is an isolated two level
system. It often works as an initial benchmark to understand multi-dimensional spec-
troscopy data but it works finely when studying optical transitions in isolated monomer
[12]. Therefore a unique parameter characterizes the model: eV01 (eV). The value of it co-
incides with the energy gap within the levels. The impulse response function of this simple
system would be an impulse itself, this is nonphysical and the model should be already
modified. To reproduce any measured spectrum, one has to introduce an uncertainty
factor or broadening parameter. Being a multi interactions spectrum, such uncertainty
should be modeled to account the excitation and the detection energy. The nature of
such broadening can be various, an utmost fundamental reason can be retrieved to the
quantum nature of the physical system and of it the energy states. Having the interaction
a finite duration in time, the Heisenberg principle implies that some uncertainty in the
energy has to expected and it cannot be lowered arbitrarily. For a 1 picosecond lasting
experiment, with only the Heisenberg picture theory predicts an energy uncertainty of
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(a) (b)

Figure 3.2: An intuitive way to understand the building of a lineshape is thinking it
as sum of Lorentzian distributions all characterized by a unique γ, each representing a
molecule, whose centers is distributed as ∼ N(E01, σ). When the molecules are many, but
still independent, the result diagonal profile resembles ∼ N(E01, σ) and the anti diagonal
profile a Lorentzian ∼ L(E01, γ). (In the figure γ = 0.01eV, σ = 0.04)

roughly 10−23 Joules or 10−4 electron Volts. A commonly measured broadening exceeds
such uncertainty by orders of magnitudes, therefore others and more empirical reasoning
have to be introduced. As a general knowledge a light interacting molecule undergoes
different dynamics and stochastic process can be adopted to account for the broadening
of its absorption and emission spectrum. As a first approximation two families of broad-
ening can be distinguished. A stochastic process of the first kind contributes to the so
called homogeneous broadening and in frequency it generally follows a Lorentzian dis-
tribution shape. One of the second group causes a so called inhomogeneous broadening
contributing to a more Gaussian distribution lineshape. Both of these processes can be
described by a characteristic correlation timescale. When those are well separated, the
ratio of the timescales is either big or close to zero, an independent treatment is formally
correct and a simple convolution of the two distribution reproduces the results. Assuming
so can very useful for all kinds of systems, but sometimes those timescales are indeed
comparable. The stochastic processes can not be treated independently and all sorts of
phenomena show up, introducing the need of a more complex formalism. For now, the
discussion will only regard the first scenario: both kind of processes are present but the
correlation timescales are uncoupled and so the resultant spectrum profile is given by a
convolution of both contributions. The new lineshape would then follows what is said to
be the Voigt distribution. To introduce a physical meaning to the discussion two physical
assumptions of the model are to be introduced:

• Every molecule has a characteristic dephasing time constant after which the correla-
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tion between the eigenstates is loss so that the non linear polarization signal would
also fade to zero. Such time constant is equal for every molecule of the sample
and it doesn’t depend on the environment. It in fact accounts for the homogeneous
Lorentzian-like broadening.

• The energy gap between the molecule’s excited states depends on the many inter-
actions with a non deterministic evolving environment. For simplicity, and strong
of the Central Limit theorem, the resultant interaction it assumed to follow the
Normal distribution centered in zero and described by the standard deviationσ.

Strong of these assumptions, several interesting aspects of system can be simulated and
in the appropriate representation framework the simulation reproduces an experimental
2D spectral map. In the time domain out of the four response functions introduced in
equations from 1.16 to 1.19 in their general expression the following two can be found:

R3 = R2 = RnonRephasing(t1, t3) = A0NRe
−iω01(t3+t1)e−γ(t3+t1)e−σ2(t3+t1)2/2 (3.1)

R1 = R4 = RRephasing(t1, t3) = A0Re
−iω01(t3−t1)e−γ(t3+t1)e−σ2(t3−t1)2/2 (3.2)

As can be seen no distinction can be done between photo bleaching and stimulated emis-
sion signals. Following the assumptions, the newly introduced equations have introduced
two new parameters to characterize the model:

• γ, the electronic states dephasing time constant, controlling the Lorentzian distri-
bution width.

• σ, the standard deviation of molecule-environment interaction process.

In Figure 3.1 two different examples of map simulated in this way are given. Figure
3.1a shows the 2D map of a system with a lineshape dominated by its homogeneous
broadening, as in figure 3.1b the opposite holds. The inhomogeneous gives the strongest
contribution, but the changes in the lineshape are more dramatic than only the difference
that insists between a Lorentzian distribution and a Gaussian curve. As it resembles
in the second case, the lineshape is more elliptical, with a clear preferred direction in
elongation along the diagonal x = y. Cutting the map along the main diagonal direction
and its perpendicular, one could extract two different broadening profiles. Such profiles
resemble the two bell shapes as distinguished as they were in the model assumptions.
The reason why those directions are so special and whether the extracted distribution are
respectively Gaussian and Lorentzian curves it will be here phenomenological explained.
The non-trivial interpretation applied here is that the x and y axis represent the detection,
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or emission, energy axis and the excitation energy axis. 3.1a shows the case of an isolated
oscillator that strictly follows assumption 1 having the characteristic star-like shape [15].
It tells us that the two cut profiles are simple Lorentzian distribution centered in the energy
gap of the states, eV01, and with a "full width at half maximum" (FWHM) controlled
by the γ parameter. Such oscillator is now let to interact with a bath that randomly
modifies its resonant frequency, form assumption 2, and this process independently to the
thousands of sample’s molecule in the solution and so it is replicated many many times
in the simulation to model the sample the solution. The interacting light is now absorbed
and emitted at each oscillator central frequencies while these are normally distributed
along x = y. This results in a convolution of this two broadening factor the homogeneous
one which is isotropic in respect to these two directions and the inhomogeneous one that
only affects direction x = y. If σ »γ the result of this convolution changes from being a
mixture of a Lorentzian profile and a Gaussian one to resembles to the original Gaussian
distribution that causes the inhomogeneous uncertainty. Figure 3.2 graphically shows the
reality of such interpretation. The sum of many many N Lorentzian bells with normally
distributed centers tends to a much broader convoluted lineshape that resembles, for large
σ, the Normal distribution from which the means of the Lorentzian bell were distributed.
In the end, the two cuts in most case let the scientist retrieves the γ factor, related to the
dephasing time, from the anti diagonal cut and from the main diagonal cut the σ factor
to quantize the coupling with a bath interactions.

Letting t2 to grow and studying at each 2D spectrum map the lineshape experimentally
evolves to resemble a circle with the diagonal cut that shrinks and the anti diagonal
broadens [20]. This effect is called Spectral Diffusion and it can explained considering
that during t2 the value of the molecule-bath interaction becomes less and less correlated
to the one present at the absorption process. Those two values are eventually completely
uncorrelated and the uncertainty looses its anisotropic character. Namely the broadening
along x=y is as probable as along any other direction. The system uncertainty is then well
approximated to a different pure Lorentzian. The simulation of the presented model does
not show any of these evolution, there is no in fact any t2 dependence. To quantitatively
describe the Spectral Diffusion, the uncoupled broadening model by itself is not enough.
Theory and algorithms have been then developed to find quantitative parameters to de-
scribe the spectral diffusion dynamics without changing the functional of the response
functions. The Central Line Slope algorithm is an example of it, it has been specifically
developed for 2D spectroscopy measurements and it is able to extract a time constant of
the process even applied on quite complicated maps[22], [23]. A more general approach
let to simulate those systems looking for more general response functions formulation not
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only to extract an empirical quantity. The new equations come firstly with uplifting the
hypothesis of uncoupled timescales for the two broadening processes and secondly devel-
oping a theory for a comprehensive lineshape function that might predict an evolution
for t2. The new model does limit to describing spectral diffusion but in certain condition
and only for the excited state signals it also comprehend Stokes shift effect. In the end,
the two distributions introduced above are retrieved as limiting cases of the generalized
lineshape model.

The equations of next section will directly include also the response functions describing
photo-induced absorption process. Albeit being described in the Theory’s chapter, such
interactions need a three level system model to happens. The model thus ought to include
a second excited level to bring the total number of states to three. The second excited
level can be introduced in the system Hamiltonian in many ways, here the most simple one
is taken. A new parameter describing the energy gap between the first and the second
excited states is introduced. But as unphysical as it can be, all the other parameters,
formerly describing only the first excited state, are just exploit also to describe the newly
introduced state. Photo-induced absorption signals can be then introduced bringing a
negative contribution to the overall response function. For long in the following discussion,
the third level really only stands as a proof of a certain scalability of the simulation
towards more complex physical systems. In the last section, the second excited state
comes strongly in to play to introduce vibronic coupling between excited states.

3.2. Implementing the brown oscillator model and

analysis of results

This section aims to investigate the effectiveness and the physical meanings of the sim-
ulation based on the continuous Brown oscillator model. The analysis will focus on
the parameters dependence and the model’s capability to simulate newly introduced t2

dynamics processes. At first a qualitative description of the simulated maps will be pre-
sented, then more quantitative measured are tempted to describe the Stokes shift effect,
the spectral diffusion and the overall peak evolution from the perspective of t2 time axis.

Response functions are computed upon the equations from 1.26 to 1.35. The lineshape
function is, as presented and discussed in the first chapter, given by the Equation 1.33.
From the simulation point of view, the only restriction to be taken care is the high
temperature limit adopted during the formal derivation. A focus it will be instead given
to the model’s parameters, their physical meaning. Their role in the simulation results
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(a) (b)

(c) (d)

Figure 3.3: Examples of simulated maps of the Brownian oscillator model for three level
system (3LS). (a)t2 = 0fs(b)t2 = 50fs(c)t2 = 100fs(d)t2 = 500fs For all maps the model
parameter were set as: E01 = 1.8eV E12 = 1.65λ = 0.05eV τC = 500fsT = 300K
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(a) (b)

(c) (d)

Figure 3.4: The model incorporates Stokes shift and Spectral diffusion: (a)(b)for the
stimulated emission the Stokes shift is regulated by λ, in this case λ = 0.1eV ; (c)(d)for
the photobleaching the Spectral diffusion comes from a combination of the parameters,
in this case: λ = 0.3eV, τC = 100fsT = 300K
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will be in fact emphasized within the discussion. Looking at the lineshape function g(t),
equation 1.33, three parameters can be recognized. Here they are listed in the formulation
and unit of measure used in the simulation, trivial manipulation and unit conversion are
then to be adopted:

• T, for Temperature [K]

• λ, giving the amplitude of the fluctuations [eV]

• τC, giving the coherence time related to the nuclear dynamics [fs]

Figure 3.3 shows in once an example of the lineshape evolution and the coexistence of the
three modeled signals. The maps are now much more complex to characterize in respect
to Figure 3.1, nevertheless they look more close to represent an experimentally measured
spectrum where for example the lineshape keeps evolving during t2 . As anticipated, the
description will start from more qualitative aspect, approaching more technical and quan-
titative analysis later in this chapter. Figure 3.3 contains maps from the same simulation
stopped at different t2 time instants. Starting at t2 = 0fs, figure 3.3a, two different peaks
can be noticed, the one on the main diagonal of positive amplitude and the other having
negative amplitude. The two peaks represents three signals contribution, here as in other
sections of this work, the three signal are referred for brevity as PB, photo bleaching and
SE respectively for the stimulated emission, for the ground state photo bleaching and
for the excited state photo induced absorption. Photo bleaching and stimulated emission
gives positive signals and there are both centered around the 01 transition energy on both
axis. The PA is detected at the 12 transition energy for a system excited at 01 transition
energy, PA is in figure 3.3a responsible for the out of diagonal peak. The model then pre-
dicts a certain evolution of the the lineshape, that is in general expected and completely
new compared to the previously presented model. The maps in figures from 3.3a to 3.3d
evolve with the population time t2 making possible to characterize experimental data with
a single running model. As foreshadowed with theoretical arguments, the evolution along
t2 makes the lineshape more round and a dynamic shift can be seen looking at the diago-
nal peak projection on the detection energy axis. This shift it is called Stokes shift and it
can be measured in almost every spectroscopy experiment of molecular sample [24]. With
an experimental point of view, the presence of a noticeable Stokes shift makes possible
to individually analyse stimulated emission and photo bleaching, that were previously
completely overlapped. Figure 3.4 shows as such theoretical arguments find confirmation
in the simulation. Figure 3.4a and Figure 3.4b contains different prospective of the same
stimulated emission signal. The stokes shift can there easily spotted and eventually quan-
tified in terms of the model parameters. Figure 3.4c and Figure 3.4d instead show how
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well the spectral diffusion can be characterized from the two different cuts on the single
photo bleaching contribution. As a matter of fact the lineshape rounding evolution, that
the 2D maps showed, comes from an opposite tendency of change insisting on the two
diagonal cuts.

In the following paragraphs, quantitative investigation exploiting these visualization tech-
niques are performed. Simulations are run with each free parameter at a time changed
against a fixed set of the others. Every parameter has been varied within a log-spaced
interval. The boundaries of such interval are fixed to comply with the high tempera-
ture limits and the processes’ time-scales overlap as presented in the theory. In addition,
physical meaning has also been considered while fixing the boundaries.

3.2.1. Spectral diffusion modeling:

In this section spectral diffusion is described exploiting the parameter dependency analysis
to deep the understanding of the phenomenon. From a phenomenological point of view the
diagonal FWHM shrinks while its perpendicular counterpart grows. The investigation will
be focused on the amplitude of the two FWHM and the time constant of their evolution.
For simplicity the calculations are performed only on the photo bleaching signal. The
main reason is that photo bleaching peaks close to the diagonal crossing with negligible
shift for different t2 nor other parameters. That makes easy to extract the FWHMs and
it gives a stationary frame of reference to compare the intensities. For each parameters
a set of figures has been chosen to guide discussion and as an evidence of the simulation
results.

The reorganization energy, λ, is the first parameter to be singularly analyzed. The first
two maps of Figure 3.5 give an insights of it, being the second line-shape noticeably wider
along both direction. As Figure 3.5e shows at t2 = 0, the main diagonal profile is much
more broader than the anti-diagonal ones and the difference increases with λ. This reflects
the predominance of inhomogeneous broadening for small t2. At the opposite end, after
long t2, the two quantity are being equal and grow as much when increasing λ, Figure
3.5f. Looking at the Spectral Diffusion time evolution, the correlation between the time
constant and λ seems close to zero. In the model in fact the time dependent part of the
line-shape function does not depend on λ. For all those reason, it can be inferred that λ

positively contributes only on the strength of the energy gap fluctuations: for bigger λ,
the energy gap uncertainty increases both at the short and long time limit.

The same analysis applied for λ has been performed forτC , with quite different results.
At first glance, from the t2 = 0fs map, Figures 3.5a and 3.5b, can be inferred that
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Changing λ has a striking effect on the lineshape. (a)(b)Simulated maps of
photobleaching at t2 = 0fs for respectively λ = 0.05eV and λ = 0.20eV . (c)(d)Diagonal
and antidiagonal profiles evolve differently depending on λ, while the first shrinks the latter
broadens to a unique regime value. (e) In the short time limit, t2 = 0, the simple Gaussian
inhomogeneous description is retrieved, while in the long time limit (f), t2 = 500fs,
diagonal and antidiagonal profile are as broad retrieving the pure Lorentzian broadening.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: τC has a subtle influence on the lineshape. (a)(b)Simulated maps of photo-
bleaching at t2 = 0fs for respectively τC = 100fs and τC = 1000fs. (c)(d)Diagonal and
antidiagonal profiles evolves with a different time constant, set by τC . (e) In the short
time limit, t2 = 0, for bigger τC it grows the inhomogeneous character of the lineshape,
while in the long time limit (f), t2 = 500fs, τC has no influence on the lineshape, this
happens when the bath interaction is no more auto-correlated
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: As it concerns to the spectral diffusion, temperature, T, has the same effect
of λ. (a)(b)Simulated maps of photobleaching at t2 = 0fs for respectively T = 150K

and T = 400K. (c)(d)Diagonal and antidiagonal profiles depends on T as they do on
λ, only their regime value is affects while the time constant is not (e) In the short time
limit, t2 = 0, for bigger T the lineshape broadens inhomogeneously, while in the long time
limit (f), t2 = 500fs, the homogeneous case it is retrieved with T affecting the electron
dephasing time.
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τC positively contributes to the narrowing of the peaks towards a pure in-homogeneous
case. This is quantified by the second row graphs: the effect thus is negligible since
the difference calculated on y-axis is very close to the energy resolution of the simulation.
With that in mind,τC seems to affect the two profiles differently. The diagonal is generally
increased whenτC grows while its counterpart slightly decreases if it does not just stay
constant. The last row helps retrieving the role ofτC in the simulation. τC alone controls
the time dependent part of g(t), 1.25 and the graphs confirms that the time constant of
the spectral diffusion process is positively influenced by a growing τC . Therefore τC gives
an information on the time instant when the correlation of the energy gap values is loss.
In others words, τC tells the scientist when the bath interaction at excitation retains no
influence on the interaction energy at the detection. When no influence is retained the
line-shape is circular.

As for the Temperature dependence the result of the analysis are compliant with the ones
for λ. The correlation is as well positive even though not as strong. Such behavior it
is completely justified by theory but by any means it implies that keeping independent
Temperature and λ is redundant within the model. Temperature has very clear and
defined physical sense, but from the simulation point of view its individual role shows up
when analyzing the stoke shift effect.

3.2.2. Stokes shift modeling:

Stokes shift effect is a common feature of molecules in solvent. The difference in energy of
the absorption peak versus the fluorescence one gives the values of the Stokes shift, and
studies have been brought up to relate such value to the solvent reorganization energy
affected by, among others, the solvent polarity and its influence on the energy landscape
of the molecule. In this paragraph λ will be interpreted as the reorganization energy and
its role together with the other parameter will be investigated. Analysis will be performed
isolating the stimulated emission signal and measuring the evolution of difference along
the detection energy axis of the peak at t2 = 0 and at long t2 limit.

The Stokes shift intensity heavily depends on λ at each time instant. As expected, Figure
3.8 shows the detection energy relative to the Stimulated emission peak shifting with time
toward lower values. After a time interval, seemingly independent from λ 3.8a, a regime
value, namely the Stokes shift energy. To check the linearity of the relation between the
Stokes shift value and the reorganization energy that caused it, the two variables have
been plotted in Figure 3.8d. Theory predicts the Stokes Shift being the double of the
reorganization energy: the simulation works along such prediction with a negative offset
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(a) (b)

(c) (d)

(e)

Figure 3.8: The three parameters τC , λ, T have a different impact on the Stokes shift. The
stimulated emission peak’s detection energy evolution is taken as quantitative measure.λ
regulates the shift’s amplitude (a) ,τC the evolution time constant (b) and T does not
influence the Stokes shift which is an inherent chemical property of the sample.
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of roughly 0.02 eV. Such fit has been tried also for τC with opposite results. Indeed λ

alone completely controls the of the stokes shift value of the model.

ChangingτC , one can discover different effects in respect to λ. While the Stokes shift
values all end up very close to each other, the system reaches the regime value only after
an exponential dynamics that clearly depends on τC . Again this is only a confirmation
of the predictions inferred from model’s equation, but also it points out that, in the long
time limit, the complex part of lineshape g(t), responsible of the Stokes shift, depends
only on λ.

The temperature turns to have no visible effect for the Stokes shift, neither on its value
nor on the dynamics that regulates it. This comes straight forward from model’s equation
and it confirms that the Stokes shift value only depends on the solvent-solute properties
interaction and not on the energy available from the thermal bath.

3.2.3. Signal peak’s amplitude decay:

The last analysis performed for Brownian Oscillator model is the decay of the signal.
To do so at first the max value of the map at each time instant is taken as the control
variable to follow the evolution of the peak even when its energy coordinate changes. This
makes possible to compare the photo-bleaching decay to the stimulated emission one: the
result is a complete match of the decay dynamics. Same works with opposite sign for the
photo induced absorption. Following the structure used so far, the parameters influence
is singularly explained with the aid of Figure 3.9.

Despite being less significant in terms of experimental evidence, studying the decay of the
signal due to bath interaction uncorrelation proves to be necessary for a deeper understand
of the model. For the sake of the signal decay discussion, what is inferred to λ is to be
inferred to the temperature as well. As Fig. 3.9a and Fig. 3.9b show, the reorganization
energy λ does not affect the dynamics of the decay, but only the initial and final value. This
can be visualized better when the signals for different λ are plot without first normalizing
to their maximum value, as in Fig. 3.9a. Once more the initial and the final signal
intensity are negatively correlated to λ, this is easily explained by the normalization of
the response function. To a broader response always correspond a smaller maximum
amplitude so that as a probability distribution density its volume stays normalized.

Furthermore, re-normalizing every signal to its maximum really makes easy to verify that
the time constant of the decay process is positively correlated with τC as in Fig. 3.9d.
Time constant it is fact given by τC/(2 ∗ π). Regarding the different signal drop for
different values of τC , the same arguments of the broadening of the overall signal are to
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(a) (b)

(c) (d)

Figure 3.9: All of those figures show the dynamics of the maximum signal intensity,
regardless its position in the map. The photo bleaching signal in (a) decays equally
to the simulated emission signal in (b), regardless a change in λ. Re-normalizing the
photobleaching dynamics allows new perspective. The signal drop, in proportion, grows
with λ, (c), while once again τC defines the time constant.
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(a) (b)

Figure 3.10: The ’pump probe like’ map offers a mean to visualize signal decay and Stokes
shift. For (a) λ = 0.1eV, τC = 100fs, (b)λ = 0.1eV, τC = 1000fs. The time constant
evolution of both processes depends only on τC = 1000fs, in fact τC does not tell anything
about the specific process, but it acts as re-scaling factor for the t2 time axis for the full
response.

be apply. As it was found in the spectral diffusion paragraphs, τC , although smaller, has
an impact on the broadening. Beside the diffusion process no other decay effect along
t2 have been modeled, so every signal after the decorrelation process lives beyond the
studied timescale, this can be verified for all the subplots of Fig.3.9. Another aspect the
model fails to introduce, it is differentiating on how the bath interaction affects the ground
state or an excited state. The stimulated emission peak in Fig.3.9b evolves exactly like
the photobleaching one. This is no false in general, but in most cases experiments tell
differently.

Those paragraphs have explained how the three presented parameters plays a role in the
simulation results. The data obtained succeeded reflecting the math behind the model,
the analysis pointed out the various phenomena the model is capable to predict and they
explained the physical meaning of the various degree of freedom the model presents. As
an example, parameterτC is found to regulate the time dynamics of different aspect of the
simulation data. As counter intuitive as it could be, all the phenomena presented follow
from the sample with its dephasing time being coupled to a stochastic evolving bath.
Such reality is shown all together in Fig.3.10. These pump-probe like maps let visualize
signal decay and the stokes shift within one plot, clarifying how coherence timeτC seems
to regulate the time constant of both effects. Keeping the same λ and T, both the stokes
shift dynamics and the signal overall decay are made slower, just as time axis has been
re-scaled. For the sake of completeness, not all parameters have been investigated. For
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each response function there is multiplying scalar that has been for the mean of the
simulation set to 1. Changing the re-phasing and non re-phasing amplitudes can modify
the line-shape to better fit some experimental data, in general changing those scalars has
not influence on the functional behavior of the signal.

3.3. Implementing vibrational degree of freedom, vi-

bronic coupling and relaxation

3.3.1. Pure vibrational model implementation and analysis

Nuclear vibrations and electronic coherent oscillation are well known physical realities and
theories of many kind have no problem to predict and explain them. A precise description
of the dynamical interplay between electronic and vibrational degrees of freedom plays an
crucial role for understanding many photo-physical processes[9]. Multidimensional spec-
troscopy represents a powerful investigation tool to characterize dynamical light-matter
interaction and different theoretical models can guide for a better understand of such
complex interconnection. Vibronic couplings, an-harmonic terms in the Hamiltonian and
different curvatures of the energy levels are only few examples of how the different de-
grees of freedom can be reciprocally affected. In this context, following the work of F.E.
Quintela Rodriguez and F. Troiani[9], the displaced oscillator model will be analyzed.
Often times the dominant contribution of electron-vibrational coupling can be explained
in terms of such model. From a simulation point of view this model keeps the electronic
Hamiltonian and the vibrational one separated in terms of variable so the resulting re-
sponse functions would be a product of the two. For a more meaningful discussion in this
work the non-vibrational response function will be the one modeled in the last section.
This choice could raises issues with the coherency of the two model. In developing both
models, assumptions have been made and result might not be of a meaning at all. A
striking example is the temperature limit. The theory developed for the stochastic brown
oscillators model is supported by the high temperature limit, while the theory underneath
the displaced oscillator model is developed at T= 0 K. To reconcile the two models a gen-
eralization of the displaced oscillator model has to be done. Such generalization though
leads only to add a scalar term, temperature dependent, in front of each response function
simply re normalizing the whole signal. More complex, and yet to fully understand, is
the description of the electronic states in terms of nuclear coordinates, on one side the
displacement is parameterized with the reorganization energy λ and the harmonic oscilla-
tors form a continuous of infinite modes. On the second side the oscillators are displaced
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Simulated maps for the vibrational model, parameters: E01 = 1.8eV λ =

0.05eV τC = 500fsT = 300Kz = 0.7ων = 0.17eV τV = 1000fs. t2 = 0 for (a)(c)(e)
t2 = 500fs for (b)(d)(f). Maps (a)(b) contains only the ground state contribution, (c)(d)
the excited state contribution, (e)(f) the sum of it as it would be measured experimentally.
The partition give a means of understanding the cross peaks nature based on their position
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Vibronic interplay coincides with an oscillating response function along t2. (a)
shows the Stimulated emission peak dynamics for z = 0.7ων = 0.08eV τV = 1000fs. The
oscillating modulation can be seen also for the pump probe like map in (b), a non trivial
phase relation is to noticed within the wave front.(c)(d) contain the Fourier transform
in amplitude and phase of the stimulated emission signal. (e)(f) contain the Fourier
transform in amplitude and phase of the photobleaching signal. While the mode energy
depends on ων , for the photobleaching the contribution of the overtones increases with ’z’
while for the stimulated emission it stays negligible
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(a) (b)

(c) (d)

(e) (f)

Figure 3.13: As for the Brownian oscillator model, three parameters: the displacement
z, the quantum of vibrational energy ων and the vibrational relaxation time constant
τV =. Their impact has been investigated for the photobleaching in (a)(c)(e) and for the
stimulated emission in (b)(d)(f). ’z’ shows a non intuitive dependence and its role will be
further analyzed.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: for a fixed couple of ων = 0.1eV τV = 1000fs, z = 1.5 for (a)(c)(e) and
z = 0.87 for (b)(d)(f). As it seems from the simulation they both are high value for ’z’
but only on the first case the effect of the dynamics it is quite dramatic. The first overtones
contributes almost as much (c) and phase becomes very noisy (e). These combined explain
the unexpected dynamics in (a).
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(a) (b)

(c) (d)

Figure 3.15: As it can be notices from the pump probe like maps, (a) for the simulated
emission and (c) for the photobleaching, the wave front it is plane. That is to say that
the dynamics of points taken across the main peak show a non trivial phase relation, in
fact they are in general counter phased. Such relation will be investigated also on the
experimental data set
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by the factor z and vibrations come from a discrete single mode. All of this is justified
from a phenomenological point of view, the features introduced by the two models can be
considered independently. Secondly, Brown oscillators model the interaction of the sam-
ple molecule with the environment, from here the continuous mode hypothesis and the
stochastic description, while the displaced oscillators provide a source of inter-molecule
nuclear-electronic interaction and the vibrational mode considers the sample molecule
nuclear coordinate. A qualitative analysis of the correlation of the vibrational dynamics
with λ has been performed and it will be shown later in this section. As a final modifi-
cation of the implemented model, the vibrational mode has been also characterized by a
decay rate to model the pure nuclear relaxation that the system might undergo and to
reproduce more realistic results.

The 2D maps of the simulation of both model very much resemble the maps of the previous
chapter, all the main features are maintained: the peak’s line-shape evolves as modeled
with spectral diffusion and stokes shift that can still be quantitatively characterized. The
cross peaks are though a consequence of newly introduced vibrational Hamiltonian. They
are in fact a part from the main peak of roughly the vibrational quantum of energy (e.g.
ων = 0.23eV). The model considers an infinite amount of higher tones replica and those
would have been seen if the energy spectrum spam were broader. Most of experimental
setups measures the sum of all response functions along the detection direction, maps like
the ones of Fig. 3.11e and Fig. 3.11f are then obtained. The simulation makes separating
the stimulated emission signal from the photo-bleaching very simple. As it was in the
last chapter, the analysis here proposed exploit this possibility to distinguish from excited
states signals, namely the stimulated emission, and the ground state signals, namely the
photo-bleaching. This distinction is based on the kind of state in which the system stays
during the delay t2. As an evidence Fig.3.11c and Fig.3.11d shows the Stimulated Emission
signal, while Fig. 3.11a and Fig. 3.11b the photobleaching. The maps suggest only the
peaks at detection energy equal 1.8eV are shared between the signals: the ones above such
energy comes from a photobleaching; the ones below comes from a stimulated emission.
The cross peaks can be exploited to investigate ground or excited state signals individually
also in the experimental set up. Several and dimmer cross peaks are seen on the maps
of Fig. 3.11, as transition involving vibrational overtones they are characterized by lower
Frank-Condon factor so they vanish for longer t2. Those and all the replicas undergo the
same line-shape evolution of the main peak, this suggests that the Brown oscillator model
contribution to the response functions works as a modulation of the entire map, including
the signals that purely comes by the introduction of the displaced oscillator model. This
result strengthens the choice of adding the two Hamiltonian contributions independently.
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This all comes from the assumption that the stochastic interaction does not depend on
the excitation level of the system, considering both the electronic and vibrational excited
levels.

The 2D maps give only a hint of the vibrations taking place along t2. Only the main
peak will be analysed and excited state’s signals will be individually studied from ground
state’s one. The division will be of crucial interest when investigating an unexpected result
of the simulation. Integrating over the excitation energy axis a pump probe like map is
computed Fig. 3.12b, upon the already the stokes shift dynamics an oscillating modulation
can be spot. At first glance the modulation can be characterized by three parameters: the
oscillating period, a time constant to quantify the fading process of the coherent vibration
and a non trivial phase relation along the Detection energy axis. The first two aspects are
easily related to two of the simulation’s parameters. The oscillating period is proportional
to the inverse of the quantum of energy of the only vibrational mode present in the
model. While the fading of the modulation is controlled by the pure vibrational decay
rate specifically introduced in the model. Such dependence would be further investigated
by a specific dependence analysis. The non trivial phase relation along the perpendicular
to the propagation direction requires less straight forward arguments. The vertical axis
stands in fact as the detection energy axis but it firstly represents the system evolution
along t3 in the frequency representation. Therefore while the system properly vibrates
only in respect of t2 , since only during t2 its state reaches a population state either
ground of excited, it retains a phase factor dependence from the evolution along the other
two time intervals, namely t1 and t3 . More on this aspect will be analyzed at the end
of this section and an experimental evidence of it is also presented. Sticking to the t2

dynamics representation, Fig. 3.12a, the stimulated emission signal at the coordinate
of stokes shifted peak. The raising dynamics comes from the shifting, and thanks to
this representation the vibrational modulation can be also by its amplitude. No trivial
dependence has been found for it, looking at the equations of the response function 1.38-
1.41 suggest that the displacement ’z’ controls the oscillation amplitude but this has no
simple feedback on the simulation results. The same negative correlation is suggested by
considering the oscillation amplitude as a function of a transition dipole between two states
coming from different electronic curves, this dipole would be than proportional to the
overlap of the two wave-function projected on the reaction nuclear coordinate. From this
argument, increasing z should reduce such overlap thus reducing the transition probability
amplitude. To further characterizes the dynamics, an additional Fourier transform can be
applied on the t2 axis. To best visualize the Fourier transform amplitude, an High Pass
filter is applied to the signals with a cutoff frequency of 0.04eV . The non filtered spectrum
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presents in fact the greatest peak at the zero frequency component, the peak accounts
for the raise and decay dynamical contribution than it is thus neglected. The remaining
peaks should account for the excited vibrational modes. Even being quite noisy, due to
the numerical approximation, each peaks can be found at the expected energy, namely
the harmonic tones of the fixed mode. As it often happens, this can seen even more
clearly looking at the transform’s phase. The modulus of the transform though gives
an insight of the oscillation amplitude, the higher is the peak the higher is the intensity
(amplitude) related to that mode. Fig.3.12e and Fig.3.12c show how changing the energy
of the quantum of the mode changes the position of the spectrum peaks, but changing
z does not really influence the amplitude corresponding to that mode. Comparing the
two figures the difference between ground state bleaching and excited state emission is
evident and it can be investigated. First thing to notice is the fact that, keeping the same
overall signal intensity, the vibrational peaks of the photo bleaching are halved compared
to the stimulated emission ones. This will be further proven by looking at the dynamics
in the time representation. In respect to the phase diagrams, the same evidence can
be found comparing the peaks’ intensity at the vibrational tones. The functional shape
though looks different, at high frequency, negative or positive, the stimulated emission
signal shows a phase factor close to π while the photo bleaching signal phase is close to
zero. Besides this, both approaches the center of the diagrams in a similar way.

As presented for the line-shape section, a parameter by parameter analysis is shown
here. The objective of such analysis is dual. First goal is to fully asses the model capa-
bility of simulate different signals and features that might come out from experimental
data. Secondly and more deep goal is to relate the different dynamical characteristics to
a controllable parameter deducing from such relation some physical meaning and more
knowledge. The most simple parameter to start is the energy of the quantum of excitation
of the vibrational mode, we refer to that parameter as ων . In Fig.3.13a for photobleaching
and Fig.3.13b for stimulated emission, signals for different ων are shown. Starting with
the Stimulated emission, the amplitude of the non vibrating response Function does not
noticeably change. What dramatically changes is the oscillation frequency, this follows
Plank’s relation and it is very much expected from the simulation. Looking at the Photo-
bleaching, beside the frequency dependence, a change in the response amplitude in the
long time limit can be measured. The physical meaning behind this phenomena is yet to
be fully explained but it could be retrace to a different normalization factor of the response
function. This same argument is more easily applied to the z dependence study. Changing
z, great changes are measured both in the overall response function amplitude and in the
amplitude of the oscillations. While the first can be explained by a decreasing overlap



3| Model analysis: 51

factor of the wave-functions, the amplitude of the oscillations follows a more complex rule.
As suggested by the transform’s amplitude diagrams no clear relation with z can be re-
trieved. In the Stimulated emission graph the oscillation reaches a maximum in amplitude
around z = 0.7 to become for higher z narrower and more noisy. The same can not be
state for the photo bleaching signal. Oscillations seem to grow in amplitude for increasing
z, together with the amplitude of the oscillation a not expected noise or interference figure
seem to increase, while for the Stimulated emission signal such interference appears only
for high z. This effect can be caused by a non trivial phase relation between the overtones,
this thesis is supported by the complexity of the phase diagrams and by the fact the in
respect to the plot referring to the stimulated emission signal, the photobleaching has a
more clear interference figure and higher overtones peaks in the transform graphs. Being
do a simple overtones interference implies that the frequency of the figures is an integer
times of the main tone frequency and that the interference pattern evolves to a simpler
oscillation of the single main tone, which it has an higher specific amplitude thus it fades
becoming negligible after longer interval. The overtones interference explanation has not
explained why it affects more the ground state signal than the excited state one. This
aspect will be further investigated on stimulated emission response dynamics at higher z.
The last single parameter comparison regards the role of the decay rate of the vibrational
tones, as referred as τV . The dependence on both signal is quite straight forward, the
vibration gets dimmer modulated by a negative exponential function with a time constant
that depends on τV . An unexpected characteristic of such effect that in respect to the
assumed constant non oscillating carrier function, such decay only affects the upper side
of the oscillation or, in more physical terms, τV affects also the non oscillating carrier’s
dynamics that would be more intuitively only dependent on τC , the coherency time con-
stant of the Brownian oscillator previously discussed. This effect turns out to be more
evident considering the photo bleaching signal’s dynamics. Figure 3.13d in fact shows the
existence of a positive contribution from both the parameters, namely τV and τC , to an
overall effective time constant of the non oscillating part. This can physical defended,
considering that in a non vibrating simulated model τC expressed the time interval during
which the energy gap value it is well auto correlated, such correlation fades with time
due stochastic changes of the environment and thus of the interaction strength. In the
current model the energy gap does oscillate regardless the environment interaction, thus
it introduces a non trivial correlation the process. When both effects are considered, the
whole stochastic process shows a smaller correlation arguing for the possibility to define
an effective coherence time instead of the previously usedτC .

In the next two paragraphs, two less intuitive and therefore worth of explanation results
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will be discussed. The first topic the discussion will focus on is the interference pattern
that it visible at the beginning of the ground state photo bleaching signal and it shows its
self in the excited state one when z is increased. The analysis focuses on this latter aspect
and it investigates the relation insisting with the displacement of the oscillators. Two
cases, one with high z and one with higher z, of stimulated emission signals are taken as
an example. There will be presented different explanation hypothesis, but no strong result
can in be in fact shown or inferred. A first, intuitive, explanation would be to relate it
to an error due to the numerical, thus discrete, nature of the simulation. The simulation
used in fact a sampled representation of the response function but the sampling time
interval is lower by at least an order of magnitude than the time scale of the interference
pattern. Additionally as shown before the interference pattern has the same frequency of
the vibrational mode, controlled by the parameter ων , and ων has nothing to do with the
sampling time interval chosen. The time scale grows and shrinks following the oscillation
period and not the sampling time, which it is kept constant for every simulation. The
existence of an unavoidable error as a direct consequences of a numerical treatment is of
course not under discussion. At the same time there are methods to asses the order of
magnitude of such error and a good practice is to ensure that the order of magnitude of
the simulated data at each step of the process never approaches such limit. Graphing the
dynamics along t2 of a response function it, computing cost wise, a very simple operation.
The response function is directly defined along that variable axis and it does not undergo
any transformation. For such operation the numerical error is given by the machine
precision and to the representational power of the floating representation of number in
use. As a first hand proof, the two dynamics stay well within the [-0.2, 0.2] interval and the
variations investigated are at their minimum of the order of 0.001. With this undoubtedly
rough and scholastic argumentation, explaining with representational error what it can be
considered a noisy oscillation is excluded. The same trust should not be employed while
extracting information from the graphs of the Fourier transform. This is due to the high
number and the complexity of the manipulation needed to compute such results. This is
the reason why the phase relation among the tones is messy and complicated could be
in principle only accounted to the ’fast Fourier transform’ algorithm used to extract it.
Having, for the moment, excluded a numerical reason does not bring any closer to find
an explanation, some open questions remain: what does it have to do with z? Why does
it affect more the photo bleaching signal? What should one look for during a physical
experiment to have an evidence of such overtones interference? Not satisfying explanation
has been found throughout this work, a reasoning based on the physics of the model is here
attempt. As the figure suggests the interference is caused by non coherent contributions of
overtones. The complexity of the phase relation between overtones, as Fig. 3.14e and Fig.
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3.14f show, increases with z. This is not related to a bigger number of overtones involved
but it might be caused to a more spread amplitude within the excited overtones. In the
Fig.3.14c and Fig.3.14d one can verify that increasing z reduces the overall amplitude
of the signal but not the number of overtone non negligibly contributing. At the same
time the amplitude ratio of the main tone and the first overtone seems to increase for a
bigger z, in the extreme case of z = 1.50 the first overtone contributes more than the main
tone. Coherently exciting overtones does not lead to such wave shape but the stochasticity,
introduced to model the lineshape evolution, can be accounted for the finite phase relation
between the main and first harmonic tones. A non zero phase difference leads in fact to
such oscillating dynamics. Regarding the difference found for the photo bleaching case,
the evidence of long lasting excited overtones it is supported by a comparison between the
2D maps in Fig.3.11b and Fig.3.11d. In fact at t2 = 0fs the two maps are comparable
in terms of excited overtones. In the long time limit instead, the overtones seem to
contribute to the overall signal dynamics more for the photo bleaching signal than for the
stimulated emission signal. A 2D map gives not information on the dynamics along t2

axis, but along t1 and t3 instead. Such information can be still considered of value when
evaluating properties strictly related to a population state of the molecule. Being at an
overall lower energy is generally a condition for a state to be more populated and even if
the vibrational model does not include any consideration on thermal energy distribution
in the system, the Brownian oscillator model does.

One last aspect is discussed, namely the counter phase relation between two oscillating
dynamics of points taken across the main peak along the detection energy. A non zero
phase relation along the detection energy axis has been foreshadowed looking, at the
beginning of this section, at a pump probe like map. This aspect will be reprised while
considering experimental data that clearly show the same feature. A simple way to detect
on pump probe like map a non trivial phase relation along eV3 is to analyse the wavefront
along that direction of the wave propagating along t2 . If the phase were not depending on
the detection energy the wavefront would look like as a vertical straight line as in the case
of pure plain waves. This might seem at first glance to be the case of the photo bleaching
signal, it will be shown later on that in fact the same counter phase and thus not trivial,
relation insists equally to the stimulated emission signal and to the photo bleaching one.
Looking it terms of Bode phase diagram of the response function of a simple dynamical
system, this result is no surprise. Considering a system with one simple pole or two
complex ones, moving across its resonant frequency the impulse response function gains
a phase factor equal to π. This comes simply from mathematical arguments with no need
of any special physical phenomena involved. With this is mind, the response function of
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the modeled system has in fact two conjugated complex pole at the energy gap frequency,
more over the dynamical model is simple enough so that the overall phase relation is just
that one, and simply sampling the response function across the poles gives two oscillating
dynamics with a clear phase difference of exactly π. In the figures two values on the
detection energy axis are chosen to close to symmetrical from the resonant energy, so
that the amplitudes are similar, and far enough that the phase transition is completed.
This interval is in general related to the dumping of the oscillating mode as the stronger
the dumping strength the slower is the phase the change. In the simulation the dumping
parameter is regulated by τV and the phase transition is fast enough so that the counter
phase oscillation can be recognized also at energy close to resonant. For example if τV
was smaller enough, meaning the vibrations are very short living, the energy interval from
which boundaries the points are taken might be too wide and no oscillation of any phase
can be recognized. The complexity of the natural systems and the short living vibrational
mode are very much present reason for why this effect is not so common to be measured
on a multi dimensional experiment setup.

3.3.2. Phenomenological model for a non adiabatic coupling:

(a)

Figure 3.16: To test the non adiabatic vibronic model the inter exciton coherence time
τ12 has been varied an the resulting stimulated emission residuals were recorded. In the
bottom left corner the coupling strength, ϵ, is plot τ12. For high enough τ12, a beating
figure on the dynamics appears, therefore to be able to experimentally see the beating
figure the experiment design has to focus on erasing any incoherent interference so that
the coherent state between exciton could last longer.
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(a)

Figure 3.17: Similarly to Fig. 3.16, the E12 energy gap has been varied to measure the
impact of the quasi resonance condition on the residual dynamics and on ϵ

(a)

Figure 3.18: At last, the vibronic coupling Huang-Rhys factor S1 was varied to measure
the impact of the coupling strength upon the long lived oscillation. Indeed the oscillating
character vanishes very soon if a weaker coupling is in place.
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(a) (b)

Figure 3.19: As a didactic exercise the experimental data presented in the article [25]
has been successfully replicated. Parameters were set as following: E01 = 1.8eV E12 =

0.09eV ων = 0.08eV S1 = 0.0006τ12 = 417fsϵ2 = 0.02. The residual dynamics of the
stimulated emission signal in (a) and the Fourier transform amplitude in (b).

Pure nuclear vibrational modes are not the only possible way for a molecule to show oscil-
lation in the response function. Electronic coherences and Rabi’s oscillation are examples
of pure electronic vibration processes that have nothing to do with a mechanical oscilla-
tion of the nuclei, they are in fact pure quantum phenomena. In very much controlled
and isolated systems, namely coherent systems, those oscillation can be experimentally
measured. Being at ambient temperature condition and within weakly interacting envi-
ronment is usually enough so that coherency is quickly lost making pure coherent oscil-
lation hard to detect. The existence of electronic coherences has though different way
to affect experimental results, therefore its modeling has been proven to be successful
in explaining oscillating 2DES signals of complex system at environmental temperature
condition[25]. First motif of the following paragraphs are the results contained on "Vi-
bronic origin of long-lived coherence in an artificial molecular light harvester", an article
published in 2015 on Nature Communications by J. Hauer and colleagues [25]. The claim
of this work is to relate measured long-lived oscillation to a vibrational-electronic coher-
ent coupling. This kind of interaction is often called Vibronic to highlight the interplay
of both electronic and nuclear states and the mixture nature of the eigenstates of the
resulting Hamiltonian. The interplay comes from a quasi-resonant condition of a vibra-
tional replica of an electronic excited state with an higher energy electronic state. The
resonance opens the possibility of an interaction of the two involved states, leading in
certain condition to vibronic and vibrational coherences that can be measured, according
to the above cited article, as long-lived beating signals in 2D spectra. In the documen-
tation of the article theoretical supporting arguments are presented, and the simulation
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presented in this current work incorporates the response function’s proposed equations
to replicate the experimental result. The article includes the analysis for different signals
coming out of a "macroscopically aligned tubular system in a polarization-controlled 2D
spectroscopy" [25] experimental set up. Differently, the following paragraphs neglect the
light-polarization dependence bringing focuses only on a diagonal peak, referred as N11
in the cited article. Even though, coming from an experimental side makes very hard to
perform the analysis separating between stimulated emission signals and photo bleach-
ing one, the individual contribution it is crucial since only the excited state vibronic
coherence can enhance exciton transport [25](jurgen, 37). Further and more complex
simulation could in fact separate this signal guiding the distinction on experimental data.
Differently from the approach used until now, the dynamics generated and shown are not
coming from a whole-spectrum simulation. The spectra along detection and excitation
axis are thus not computed and the response function signals that will be shown are for
now only variables of t2 . This makes the simulation incomparably more quick but also it
prevents unexpected interplay between each of Hamiltonian contribution independently
add to the model. In the end, a more general analysis is brought to attention in order to
again explore the model capabilities and to show possible new phenomena introduced by
the model.

In this paragraph a replica of the experimental signal presented in ”Vibronic origin of
long-lived coherence in an artificial molecular light harvester” is shown. Starting from
the article equations and the parameters value are set accordingly to the article, and
approximations are introduced based on the same experimental evidence. The parameters
involved are then:

• the frequency of the pure vibrational mode, expressed by ων [eV]

• the pure 1-2 exciton decay rate, expressed by τ12 [fs]

• the Huang-Rhys factor of the coherence in the exciton base, also referred as effective
Huang-Rhys factor, expressed by S1 [ ]

• the energy gap of the first and the second excited states, expressed by E12 [eV]

Firstly the energy splitting introduce by the coupling is set to zero and so the coupling
introduced difference in the pure vibrational decay rate is neglected. This first two simpli-
fication are supported by a weak coupling hypothesis, in fact for a coupling factor epsilon
defined as:

ϵ = iων

√
S1(i(ων − E12)− 2π

τ12
)−1 (3.3)
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ϵ is supposed much smaller than 1, theoretical estimation of this two quantities are of the
order of 0.0001eV that it is below the experimental energy resolution of 0.005eV. In the
simulation such resolution is lowered by taking a longer time evolution span, but the same
approximations have been introduced with the aim of better reflect the same dynamics
of the signal. An additional simplification, supported by the same argument, is that pure
vibrational decay rate itself is set to zero. The estimated value for this time constant is
bigger the 1 ps, a time interval longer even of the one employed in simulation environment.
The simplified response function for a fixed pair of detection and excitation energy, it is
given by:

R(t2) ∝ exp(iE12− 2π

τ12
)t2 + ϵ2 exp(iωνt2) (3.4)

Setting the remaining parameter as the one experimentally measured taken from the
source article, the same dynamics with its relative transform amplitude are shown in
Fig.3.19b. As can be noticed, the vibrational dynamics in Fig.3.19a does not look like
the one shown in the past section. The oscillation starts intense but after a short time
related to τ12, such intense contribution fades out leaving a long lived smaller vibration
that the article refers to as a beating signal. The beating nature of the signal becomes
clear focusing the attention around the time interval during which the system changes
oscillation regime. Around the 200 fs mark in the map in fact a distinguishable beating
figure is in fact present. Further simulations, that will be later presented, shows such
beating to be dominant for bigger exciton coherence time constant. This complies with
theoretical arguments and predictions, but it also clarifies why such beating is so hard to
detect experimentally. The transform plot at side shows a neat spectrum where the quasi-
resonance condition is met. The weak-coupling hypothesis, epsilon squared being around
0.02, makes those peak of unbalanced intensity. In fact the exciton peak, at slightly higher
energy, is much wider and intense, but as seen in the dynamics plot also very short-lived
compared to the pure vibrational mode.

Beside replicating the article’s plotted dynamics, holding as true the same assumptions
of the previous discussion, three parameters are being varied in order to discuss differ-
ent system’s scenarios and to characterize the relation between parameters and dynamics
changes. The three selected parameters are the Huang-Rhys factor S1, the exciton coher-
ence decay time constant τ12 and the central energy of the 1-2 exciton, E12. Even though
the previously introduced parameters might still play a role, their impact has not been
investigated because as stated the simulations developer for the vibronic description were
not comprehensive of all the previous models. No 2D spectral map has been produced,
so no lineshape dynamics has been characterized in terms the newly added parameters.
Adding a vibronic coupling term to the comprehensive model Hamiltonian would also give
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an overall response function that has been not derived and that it would be different from
just a product of the previous. The first parameter to be discussed is the Huang-Rhys
factor, Fig.3.18. S1 sets the strength of the coupling as it enters ϵ ’s definition. In the
simulation, the only appreciable effect concerns the amplitude of the long lived vibrations.
ϵ2 is in fact shown to be linear dependent in S1 and the long time limit of the Response
Function in Eq.3.4 also suggests a simple linear dependence of the oscillation amplitude
in respect to epsilon squared.

The second parameter analysis results are shown in Fig.3.16. Increasing τ12, physically
means increasing the coherency life span and thus the coupling with the nuclear vibrations.
Moreover in Fig.3.16 a non trivial relation between τ12 and epsilon it is noticed. What it
is mostly noticeable it though the beating effect that grows with τ12. The explanation for
this is related both to the an enhanced coherence life time and an empowered coupling
strength, but the consequences are much more dramatic that the effect of S1, which
was as well increasing epsilon. Best way to understand such consequences is looking
at the equation of the response function as a weighted sum of two the quasi-resonant
sinusoidal. Only if the weights are comparable the beating show itself as a low frequency
modulation on the top of the original frequency. Pure vibrational sinusoidal is weighted
by the constant epsilon, the pure exciton coherence sinusoidal is at opposite weighted by
a decreasing monotonic time dependent function. A t close to zero exciton oscillations are
dominant, whereas after long time that same oscillation has been long expired. For every
choice of the parameters there is time interval where the two amplitudes have roughly the
same value. During that time interval the beating is noticeable and a bigger τ12 enlarges
in fact that interval reducing the decreasing rate of the exciton oscillation’s amplitude.
Not all physical system shows such long coherence life time, thus measuring such clear
beating is very complicated and probably out of discussion for organic molecule at room
temperature.

The last parameter to be individually analysed is the energy gap between the first two
excited states. The value controls directly the off-resonance detuning, but in respect of
the vibrational tone energy it only affects the resonance condition. E12 enters epsilon’s
definition only once, compared to ων that does it twice. The most straight forward effect,
to be noticed and explained, is the change in frequency in the short time limit oscillation.
Within the short time limit coherence exciton oscillations dominate the signal’s overall
dynamics and this the frequency change reflects it. As a matter of fact, the same cannot be
said in the long time limit. The frequency does not change while the amplitude reaches
its maximum when the system meet the resonant condition and becomes dimmer for
higher or lower energy gap values. Epsilon squared, that regulates the long time limit



60 3| Model analysis:

amplitude of the oscillations, shows in fact the same parametric dependence in respect to
E12. Therefore oscillations at long time do comes from the vibrational mode but, within
a vibronic coupling framework, such mode contribution survives only close to resonance.

This analysis concludes the pure simulation results of this work. In the next chapter,
the developed tool and the knowledge acquired will be validated applying them to an
experimental data set. In this way it will be possible to evaluate the applicability and the
usefulness of the simulated models and design further implementations to best replicate
all kinds of experimental signals.
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results:

In this chapter a brief discussion of the DBOV 2DES experimental result will be given.
The experimental evidences work in fact as the basis on which the simulation is built.
The comparison between the real and the simulated data shows a good match of the two,
so that the experiment conclusions could be strengthen by the simulation analysis.

4.1. Sample introduction: Nano graphenes and DBOV

Nanographenes (NGs) and graphene nanoribbons (GNRs) are carbon compound with a
quasi zero dimensional electron confinement. The structure of such material can be com-
pletely engineered in term of length, width and edge structures with excellent results in
terms consistency and regularity of the synthesis product [26]. While nanographenes used
be obtained as cut-outs from a full graphene sheets, new advanced bottom-up synthesis
technique have been proposed in recent years with promising success in atomic precision
functionalization. Out of this broad class of molecules, Dibenzo[hi, st]ovalene (DBOV)
shows excellent properties including strong fluorescence and high ambient stability [27].
Moreover DBOV has been proposed as gain medium for lasing and as active material to
achieve strong exciton-photon coupling in micro cavity [1][28]. The optoelectronic proper-
ties of this particular type of nanograhene structure, have been investigated to characterize
the role of the molecule dimension, internal doping and peripheral substituent. The ex-
periment presented here is only one of many characterization of the chemical and photo
physical properties of DBOV with different substituents.

This paragraph will give only a compendium of the published results presented in literature
of such characterization. The first kind of tunability of nano graphene optical properties
comes from the shape factor of the molecule and the Zigzag edge[29]. The referenced
article investigated such effect in different shaped [n,m]peri-acenoacene. In that case a
longer zigzag edge is measured to cause a red shift in the stimulated emission signal and a
sensitive diminution of the lasing threshold. This tendency is maintained up to a certain
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edge length after which the stimulated emission splits and seems to be quenched by an
overcoming photo induced absorption contribution. A blue shift is instead obtained doping
a DBOV with hetero atoms. In the particular the case of 1,2-Oxaborine doping shows a
shift towards smaller wavelengths when an atom of oxygen and one atom of Borine are
added inside the nano graphene cyclic structure[30]. Other kinds of properties modulation
can be shown as peripheral substituents are added the the DBOV molecule. A change in
lasing capabilities [1], organic solvent solubility [1] and within the pump-probe lineshape
inhomogeneous broadening[30] has been found for various DBOV derivatives obtained by
different substitution patterns.

Figure 4.1: DBOV-Mes-Cl, Mes substituent to control the solubility in organic solvent
whereas Cl modifies the optoelectronic properties

This streak of experiments helped to investigate the DBOV application capabilities, in the
same time a better understanding of nano graphene was reached and new curiosity raises
especially about the possibility of combining different functionalized DBOV derivatives. In
this sense the nano graphene used in this experiment, namely the DBOV-Mes-Cl in figure
4.1, was chosen upon its high organic solvent solubility given by the -Mes substituent in R1
position and the new characterization possibility given by Chlorine atoms in R3 positions.
As a matter of fact in the above cited experiments, the peripheral functionalization was
added only in R2 position, the so called bay position. For such molecule, 2DES experiment
represents a great tool for the molecule characterization. In fact, as it will be shown,
DBOV-Mes-Cl shows an oscillatory dynamics with a period of about 150fs, therefore
the sub 20fs temporal resolution represents the only viable way to measure such signal.
Additionally, as it was argued in the second chapter, 2DES spectra let distinguish between
excitation state mode and ground state one.
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4.2. Experimental results:

The experimental characterization of the sample lays on the combination of different
experiments, some of them previously performed in the same ultrafast laboratory at Po-
litecnico di Milano by PhD Rafael Muñoz-Mármol. For all the experiments DBOV, being
highly soluble, is mixed in liquid-phase solution of Toluene (C6H5CH3), a colorless organic
solvent commonly used for this purpose.

Figure 4.2: DBOV linear absorbance spectrum

To first characterize the sample and guide the further investigation, the linear absorption
spectrum was first measured, as in Fig.4.2, for different concentration. Focusing in the vis-
ible region (540nm-660nm) the spectrum shows one main peak around 628nm (1.975eV).
From the peak profile, vibrational replicas can be spot at different energy intervals. The
Pump-Probe dynamics at Fig.4.3, three vibrational modes could be measured. The most
energetic causes the dimmer replicas in Fig. 4.3a, and the other two are noticed when
taking the Fourier transform of the t2 dynamics as in Fig. 4.3b. The coexistence of the
two most energetic modes has direct evidence in the 2DES experiment results, in Fig. 4.4
and 4.5, more thoroughly discussed in next paragraphs.

First column of Fig. 4.4 shows the evolution of the experimental 2D spectra of DBOV. The
cross peaks are in fact proof of an interplay between an energetic vibrational mode and
the electronic transition. As a matter of fact, if the vibrational modes were there but no
vibronic coupling was, pumping the sample in the visible spectrum would not be effective
in probing the vibrational states. Lineshape of the main peak is quite steady and this
suggest a very short correlation time but also the presence of a very much spread negative
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contribution, caused photoinduced absorption, that quenches all the weaker feature the
map might have shown. A photoinduced absorption process seems of taking place for
a combination of excitation energy equal to 1.85eV and a detection energy equal to 2
eV. A particular result of such experiment is presented in Fig.4.5. The oscillation in the
dynamics are in general so clean that an almost perfect counter phase relation is noticed
between dynamics of points taken across the peaks. This effect is particularly clear for
the peaks at eVprobe = 2.01eV , but including in the discussion the peak above and below
such energy , respectively Fig.4.5d and Fig.4.5e, highlight another aspect. As it has been
point out in the last chapter, cross peaks have a dominant character that is either of
ground state as the one in Fig.4.5d or of excited state Fig.4.5e. The figures differ strongly
in the amplitude of the oscillation shown, this is a clear argument for a stronger coupling
between the excited state and the vibrational mode responsible for the oscillation visible
in the figure. Simulation results will further investigate about such statement, clearing if
this diversity in coupling could be explained by the adiabatic displaced oscillator model
or not.

(a) (b)

Figure 4.3: Two pulses pump-probe data offers the starting benchmark for designing a
2DES experiment. With the due conversion from wavelength and energy, main peak
position and vibronic replicas can be extract from the pump probe map (a). As for the
dynamics and the Fourier transform amplitude in (b), they were useful for the modeling
as the relative amplitude of the vibrational modes appears clear.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Experimental and simulated maps in a matching comparison. (a),(c)(e) are the
DBOV experimental maps at different time instants, while (b)(d)(f) the fully simulated
ones. For the simulation the parameters were set as: E01 = 2.01eV τC = 80fsλ =

0.05eV z1 = z2 = z3 = 1τV = 10psων1 = 0.18eV ων2 = 0.04eV ων3 = 0.01eV Ampν1 =

1.7Ampν2 = 0.8Ampν3 = 0.3. The result shows some matching characteristic as the cross
peaks position and the overall broadening. The photo-induced absorption experimentally
measured is out of the model capabilities since all the simulation were base on a two level
system.
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(a)

(b) (c)

(d) (e)

Figure 4.5: The counter phase relation across peaks have been studied with success for
the DBOV experimental data. (b) contains dynamics taken across the diagonal peak, (c)
the ones taken across the cross peak at higher excitation energy, (d) the ones taken across
the cross peak at higher detection energy, therefore of ground state character, and (e)
the ones taken across the cross peak at lower detection energy, therefore of ground state
character
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4.3. From experiment to simulation:

This section aims to derive from the experimental knowledge, a choice for the model to
be use, and the parameter for the simulation to replicate the data. In this way, more
insights could be revealed and optoelectronic properties could be better quantitatively
characterized. The oscillating dynamics of the signal along the population time strongly
suggest the introduction of vibrational modes within energy levels involved in the inter-
action. The model will thus involve both electronic and vibrational states. In addition, in
the system Hamiltonian, a vibronic coupling should be probably introduce. Even though
the oscillations do not show any clear beating nature, a possible involvement of non adi-
abatic term is not to be excluded and it is supported by the long living nature of such
oscillations. As it has been shown at the end of the former chapter even for short lasting
electronic coherence, the quasi resonance condition between higher electronic energy gap
and the vibrational mode is sufficient, in a coupled system, to support a long lasting
oscillating signal. Nevertheless to ensure the possibility to simulate the whole 2D spectra
and its evolution, the experimental data will be simulated through only pure electronic
vibrational terms. Combined with the lineshape evolution description, the aim of the sim-
ulation is to replicate the 2D maps at different time instants and the dynamics along t2 of
determined coordinates that show in pairs a counter phase relation. As the experimental
plots at figure 4.5 show, the simulated oscillating dynamics of a pair of points having the
same excitation energy and detection energies taken across the main peak are expected
to show a phase factor of π in respect to the other.

The lineshape model and parameter are retrieved from the experimental condition and the
2D spectra. At first, temperature must be set at laboratory ambient condition of 298K.
Secondly the evolution of the lineshape suggest the use of the Brown oscillator model,
thus the remaining parameter to set are the reorganization energy, λ, and the correlation
time, τc. The analysis shown in the former chapter guides the parameter derivation from
the 2D maps. Starting with the correlation time, it has been shown how τc regulates the
time constant of the evolution of the lineshape. The maps at figure 4.4 show a quickly
resolved lineshape evolution: both the spectral diffusion and the stokes shift reach their
long time limit after about 100fs, no clear change in the main peak can be after such
delay inferred. τc is then fixed, below the 100fs threshold, at 80fs. Fixing the correlation
time constant, the reorganization energy λ has to be chosen to comply with two condition,
the stokes shift value and the amplitude of the lineshape broadening. The most straight
forward way to correlate the value of λ is the relation with the stokes shift measured in
the maps. For the DBOV-Cl maps, the only evidence that one can use to retrieve a value
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for the stokes shift is the larger broadening toward lower detection energy of the main
peak. Such asymmetry can be quantified from the experimental maps to be about 10
nm around the peak detection wavelength of 615 nm, this interval translated in energy
corresponds to about 0.05eV. Such value has been in fact used as first supported guess for
the parameter λ. There is in fact a third condition that has the combination of λ and τc

has to comply with. The overall uncertainty on the transition energy gap value depends
in fact from both parameters and it shows its self on the 2D experimental spectra with
a broader or tinier lineshape area. The effectiveness of the model can be then assessed
noticing that the overall lineshape area are in fact comparable between experimental and
simulated 2D spectra. For the comparison quantitative parameter like the main diagonal
full width half maximum value an be used. Looking at figure 4.7, the diagonal’s cut
FWHM value is about 0.1 eV centered at main peak energy at about 1.95eV. The peak
of simulated map is than red shift of about 0.05eV, nevertheless the width of the cut is
compatible with broadening within the experimental maps. Once the parameter of the
lineshape function have been fixed, the modeling could then proceed to its vibrational
part where vibrational modes and their reciprocal amplitude will be discussed.

Starting with the experimental evidence, the frequency analysis of the pump probe data
along the t2 axis, figure 4.3a , highlights the existence of two main vibrational modes.
The less energetic mode is found to have an energy corresponding to 140cm−1 while a
more energetic one is found at 350cm−1. The Fourier transform of the peak’s t2 dynamics,
figure 4.3a, gives information on the reciprocal intensity of the modes, it is in fact shown
the latter mode having almost three times the amplitude of the former. Those two modes
are then added to the model, fixing to 0.017 eV and to 0.043 eV their respective quantum
of vibrational energy. Two arbitrary amplitudes are then fixed so the ratio is about
one third, for this case parameters Ampν2 = 0.8Ampν3 = 0.3 are set. With this two
modes, one should expect looking at the 2D spectra cross peaks for each vibrational
replica. In the experimental maps, the cross peaks are indeed visible but the energy
shift from the main peak is totally incompatible with either of the two modes. As the
analysis of previous chapter has shown, the cross peak’s energy difference corresponds
exactly to the value in energy of the quantum of excitation of the vibrational mode.
In the experimental maps such energy difference corresponds to 0.18 eV. This energy
value is quite beyond the experimental frequency resolution power. The complexity of
the measure puts a constraint to the number of maps, namely the number of t2 instants
sampled, and thus the maximum frequency resolved along t2 is smaller than the one
for the t1 and t3 axis. The simulation environment overcomes this complexity and the
frequency resolution power has been brought up to 4236.1 cm-1 (0.525 eV) making the



4| Experimental and modeling results: 69

(a)

(b) (c)

Figure 4.6: Beside the maps, the model simulated also the t2 dynamics and their relative
Fourier transform. (a) shows dynamics of main diagonal peak, because of the much
higher frequency resolution power the simulated signal had to be filtered through a low
pass to resemble the experimental restraint. The effect of the filter is presented in (b)
and (c) comparing the amplitude spectrum of the two signals. The lower energy modes
are nonetheless present with an amplitude ratio compliant with the experiment



70 4| Experimental and modeling results:

Figure 4.7: Diagonal cut of the simulated 2D spectra t2 time instants

(a) (b)

Figure 4.8: The simulation allows to distinguish the photobleaching cross peaks (a) from
stimulated emission ones (b). Despite being overlapped for diagonal peak, the same could
be said about cross peaks at different detection energy. Photobleaching cross peaks look
also much more ordered and static, a dimmer oscillation of the photobleaching could be
in fact highlighted also for the t2 dynamics.
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(a)

(b) (c)

(d) (e)

Figure 4.9: The counter phase relation, found within the experiment, was much harder
to find between the simulated dynamics. (b)(c) contain the comparison for the points at
main peak detection energy. They are therefore mixed nature cross peaks and for them
the counter phase relation shows itself clearly. (d) contains the dynamics taken in the
interval across the photobleaching cross peak. As it is clear almost no phase factor is
retained crossing the overtone pole. The same happens for the stimulated emission cross
peak (e). One noticeable difference stands in oscillating amplitude: the mode responsible
for the oscillation, ων2 = 0.04eV , has a dominant excited state nature.
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vibrational mode at 0.15 eV well resolvable. In this case a third and much more energetic
mode is introduced in the model, introducing contextually the cross peaks in the position
suggested by the experimental maps. Theoretically, cross peaks can be justified by many
different processes and interactions, electron delocalization and exciton coupling are only
two example of them [31]. In the simulation presented, the vibrational cause is the only
investigated path, but no strong counter evidence has been found.

Having introduced the three vibrational modes with their respective amplitude adjusted,
the model was made running to simulate the data. Fig.4.4 contains both the real and the
simulated maps. The claim resemblance is based on the lineshape evolution and foremost
in position of the peaks, the main diagonal one as well as the cross peaks. The cross
peaks correspond in fact to the energetically viable transitions between the two electronic
states while at different vibrational excited states. Therefore matching the cross peaks
characterizes the molecule quite well.

Further investigation are then brought ahead selecting the main peak as an example
over which plotting the t2 dynamics and its Fourier transform. Figure 4.6a contains
the representative graphs. Having introduced the high energy mode, unresolved by the
laboratory set up, makes the extracted raw dynamics very different from its experimental
reciprocal. This explanation is also supported by the Fourier transform amplitude graph
of the unfiltered signal 4.6b. Differently from the graph at 4.3b, the simulated signal
shows a major contribution from the component at 0.15eV . A low pass filter with a
energy cut of 0.1eV is thus added to the simulation algorithm, this replicates the lower
sampling rate of the experimental set up, compared to the one used for the simulation.
Doing so, the filtered signal’s transform amplitude much more resembles the experimental
one and the two lower energy modes and their over tones can be recognized. Such a closer
resemblance can be recognized subsequently also looking at the time representation of the
filtered signal dynamics, in figure 4.6a.

From the single dynamics comparison, one interesting aspect is last to be verified. The
experimental data, thoroughly described in the previous section, manifests an peculiar
aspect in the phase relation between dynamics of 2D spectra points across the resonance
peak. The model employed it has been demonstrated, in the simulation analysis chapter,
to be fully comprehensive of such phenomenon. The aim is to replicate the results in the
DBOV simulated spectra. As discussed above, the evidence of such natural phase relation
could be easily ruined by the complexity of the system response function. Highlighting
the same phase relation of the experimental dynamics graph has indeed been much more
complex that the simpler previous chapter case. The results are conveyed in figure 4.9 and
nevertheless the paired dynamics in Fig. 4.9b and Fig.4.9c do exhibit the expected phase
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relation. To be able to find these results, the dynamics have been simplified with the use of
the same low pass filter discussed before, but as it can be retrieved from the map at figure
4.9a the points have been taken more far apart than the experimental case. For the other
two couple of points in Fig. 4.9e and Fig.4.9d the counter phase relation could be inferred,
in fact scanning for different points across the cross peaks no phase shift can be noticed.
In this work no satisfying reasoning could be formulated for this. A confirmation of the
experimental results comes instead from the comparison of the oscillating amplitudes.
The model employed reflects indeed a difference in coupling between the excited state
and the ground state. Fig. 4.9b and Fig.4.9c confirm the subsistence of the counter phase
relation despite the complexity of the transform phase function, additionally one could
verify that the same phase shift happens across the excitation axis resonance point. This
can be first hand proven comparing the same color coded signals of Fig.4.9b and Fig.4.9c.
The phase change across the resonance is indeed a very general property of oscillating
dynamical systems.

Ending this chapter, a renovated emphasis to the effectiveness of modeling and simulation
is due. With the use of a fairly simple adiabatic model, rich and complicated experimental
results have been predicted and simulated. Such an approach helps to disentangle the
density of information underneath every 2DES experiment. When any models’ conflicting
hypothesis have been taken care of, a modular architecture can be adopted so that the
molecular description follows one simple and yet composed set of rules and interactions.
In this sense the implemented model should be generalized for three level systems and
including more interaction Hamiltonian terms.
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The results of this Thesis stands on the nanographenes research field and in the scien-
tific modeling and simulation area. A nanographene DBOV derivative was characterised
by use of a detailed 2DES analysis. Such analysis contributes to advancing the under-
standing of vibronic interactions and their potential role played for designing materials
with tailored functional properties. By studying the transient 2D spectra, not only the
capabilities of 2DES were shown, but also DBOV electronic and vibrational structure has
been characterized with a focus on the interplay of the two kinds of degree of freedom.
The study argued for a greater involvement of the excited state to the vibrational mode
in the respect to the ground state. This can have profound implications in processes like
energy and charges transfer within the molecule. Supporting arguments for a different
involvement came from the experimental data and from the comparison with simulated
data. Such different involvement it is claimed to be caused by the relative displacement
of the electronic states in respect to the nuclear coordinates. Such a displacement it is
responsible for the oscillation of the response function in respect to all of three time axis
and thus for interplay between electronic and vibrational excitation. The simulation of
the spectral diffusion of the signal and the Stokes shift were possible adopting a stochastic
approach to account the interaction within the sample and the environment. Doing so it
was possible to conclude that for the DBOV-toluene solution system such interaction has
a short lived auto correlation function and that the amplitude of fluctuations occurred
were of orders of magnitude less that the electronic energy gap. This is coherent with
the apolarity nature of such a solution. A non adiabatic approach was attempted during
modeling but the model was not developed enough so that it could be tested or be of use
for the simulation.

Eventually different DBOV substituent atoms and geometry could be studied to best
engineer the molecule and to understand the effects and interaction behind some properties
of interest. Furthermore the high photoluminenscence shown suggests the possibility to
achieve the strong coupling regime when the molecule is placed in a microcavity. The
possible implications of it demand a further investigation on the topic. Regarding the
model and simulation, various additional implementation approaches are possible. The
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first logical step is to generalize the vibrational model to a multiple level system. A three
level system model was implemented within the Brownian oscillator model, but it was
then rejected for being to computational costly when the displaced oscillator model was
introduce. Such a choice prevented the simulation to predict the photoinduced absorption
signal present in the sample. A further step would be then introducing a non-adiabatic
term in the Hamiltonian to derive more general response functions and a more capable
simulation environment.
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