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1. Introduction and Prelimi-
naries

The thesis faces the problem of characterizing
and analyzing non-stationary functional spatial
random fields. By functional random field we
mean a set of random variables

{Xs,∈ D ⊆ Rd} (1)

taking values in a separable Hilbert space H, in-
dexed by a spatial location s varying in a contin-
uous domain D ⊆ Rd (in our case d = 2). Such
processes can be employed to model complex
spatially distributed data objects, for instance
curves, surfaces or images. Many spatial pre-
diction methods have been developed so far to
deal with complex spatial data (Menafoglio and
Secchi [2017] for a structured review). However,
most of them often lay their theoretical founda-
tions upon global covariance models to capture
variability and spatial dependence. The most
common assumption regards the stationarity of
the process generating the data: in this simpli-
fied setting, the covariance structure of the pro-
cess only depends on the vector difference be-
tween locations, and its mean is spatially con-
stant. While this assumption enormously sim-
plifies the problems of parameter estimation and
spatial prediction, it limits modeling capabilities

and flexibility. Non-stationary covariance func-
tions, on the other hand, allow to model pro-
cesses whose variability properties change with
location: this is critical, for instance, in applica-
tions as atmospherical and climatological stud-
ies.

1.1. Geostatistics for Hilbert data
In this work, we assume that process (1) is non-
stationary, and that we can represent its ele-
ments Xs, at a generic location s ∈ D, as the
sum of its mean ms : D → H, called drift, and
a stochastic zero-mean residual δs, i.e.,

Xs = ms + δs.

The complete autocorrelation structure of the
stochastic residual of process (1) is described by
the family of cross-covariance operators, defined
as

Cs,τ = {Cs,τ : H → H, s.t. Cs,τx =

E [⟨Xs −ms, x⟩(Xτ −mτ )] , s, τ ∈ D}.

By introducing an orthonormal basis {ek}k∈N for
H, we can obtain a discretized K×K matrix ver-
sion of the family of cross-covariance operators
as

CK
s,τ = (⟨Cs,τ ei, ej⟩)i,j=1,...,K ,
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by only considering the first K components
of such basis. This discretized version of the
cross-covariance operator corresponds to, and
needs to fulfill the same properties of, the cross-
covariance matrix function for multivariate data.
An alternative is the global covariance view-
point, corresponding to the classical scalar co-
variogram approach: it can be defined through
the trace-covariogram function C : D×D → R,
such that

C(s, τ ) = Cov(Xs,Xτ ) = E[⟨Xs−ms,Xτ−mτ ⟩].

While the complete structure is used for (dis-
cretized) operatorial kriging, the global view-
point is sufficient for kriging with scalar weights
(Menafoglio and Secchi [2017]). There exists an
evident correspondence of the trace-covariogram
function and the cross-covariance operator with,
respectively, the covariogram for scalar data and
the cross-covariance matrix function for multi-
variate data; this analogy makes it possible to
tackle the problem of modeling and analysing
non-stationary functional random fields by ex-
tending models and methods already present in
the literature for simpler data, briefly reviewed
in next Section.

1.2. Non-stationary scalar and multi-
variate fields: state-of-the-art

Several approaches already exist to handle non-
stationary data in scalar and multivariate fields.
In particular, Paciorek and Schervish [2006] in-
troduced a very well-known family of univari-
ate non-stationary Matérn correlation functions
that allow for spatially varying anisotropy.
Theorem 1.1. (Paciorek and Schervish [2006])
If an isotropic stationary correlation function
RS(·) is positive definite in Rd for every d =
1, 2, ..., then the function RNS : D × D →
[−1,+1] defined by

RNS(si, sj) =
2

d
2 |Σsi |

1
4 |Σsj |

1
4

|Σsi +Σsj |
1
2

RS

(√
Qij

)
(2)

is positive definite in Rd for d = 1, 2, ..., and is
a non-stationary correlation function.
For any s ∈ D, Σs Is a real-valued symmet-
ric positive definite d-dimensional square matrix
that can represent local geometric anisotropy.

Indeed, for each si, sj ∈ D

Qij = hT

(
Σsi +Σsj

2

)−1

h, h = si − sj , (3)

is the quadratic form that we use to take into
account geometric anisotropy by rotating and
stretching the plane according to the eigenval-
ues and eigenvectors of the anisotropy matrices.
Thus, the non-stationary covariogram function
C for scalar data can effortlessly be obtained
from (2), for each si, sj ∈ D, as:

C(si, sj) = σ(si)σ(sj)RNS (si, sj) , (4)

where σ : D → R+ indicates the standard devi-
ation of the process in s. Fouedjio et al. [2016]
developed a computational method that allows
one to produce local estimates of the parameters
in (4) and eventually smooth them out to obtain
a spatial map of mean, anisotropy and variance.
Fouedjio et al. [2018] later extended the covari-
ance model of Paciorek and Schervish [2006]
and the estimation method of Fouedjio et al.
[2016] for multivariate data by considering a
linear model of coregionalization where core-
gionalization matrices are spatially varying. If
1 ≤ r ≤ p is an integer and u = 1, ..., r, Ru

NS

are valid one-dimensional non-stationary corre-
lation functions as defined in (2) and Au(s) are
p × p spatially varying coregionalization matri-
ces, the cross-covariance matrix function takes
the following form

Cs,τ =
r∑

u=1

Au(s)Au(τ )TRu
NS(s, τ ), ∀ s, τ ∈ D

and i, j = 1, ..., p.
Our aim is to develop a consistent theoretical
framework for modeling non-stationary covari-
ance structures for Hilbert data as an infinite-
dimensional analogue of the work in Paciorek
and Schervish [2006] and Fouedjio et al. [2018],
respectively, for the trace-covariogram and the
family of cross-covariance operators. We pro-
pose a fully non-stationary functional linear
model of coregionalization (FNF-LMC) and esti-
mate its spatially varying parameters by extend-
ing the methods of Fouedjio et al. [2016, 2018]
to the functional context.
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2. Fully Non-Stationary Func-
tional Linear Model of Core-
gionalization (FNF-LMC)

We here propose an original extension of the
LMC to the infinite-dimensional case, which al-
lows to retrieve a closed form for any of the
variability measures of the modeled process and
to use estimation methods analogue to those in
Fouedjio et al. [2016, 2018] due to the similar-
ity of the novel model to its finite dimensional
counterparts.
Let {ek}k∈N be an orthonormal basis for the sep-
arable Hilbert space H. We propose the follow-
ing fully non-stationary functional linear model
of coregionalization (FNF-LMC):

Xs = ms +
r∑

u=1

Au(s)wu
s , (5)

where each Au : D → B(H) is a spatially vary-
ing bounded linear operator in D, and each wu

s

is a zero-mean and square-integrable H-valued
spatial random process, whose covariance model
is further specified below. The idea of this
model is to start from an infinite sequence of
scalar non-stationary processes as defined in (2),
each one with the same distribution, and to
construct a functional random field by treat-
ing each scalar process as the projection of the
functional process on a component of the cho-
sen orthonormal basis. The non-stationarity of
the global variance and cross-covariance comes
from the fact that the linear bounded opera-
tors Au(·) are allowed to vary in space. We
also impose on all the scalar projections the
non-stationary anisotropic correlation of model
(2), i.e. R(wu

s,k, w
u
τ ,k) = Ru

NS(s, τ ), where,
from now on, wu

s,k = ⟨wu
s , ek⟩. The resulting

functional random field is fully non-stationary,
since the mean ms is not spatially constant, the
non-stationarity for anisotropy comes from the
form of the non-stationary autocorrelation func-
tions of the projections of the processes wu

s , k,
and we reasonably expect that, since Au(·) are
functions of the space variable, the family of
cross-covariance operators would also be non-
stationary with respect to space. The residual of
process (5) δs =

∑r
u=1A

u(s)wu
s , is modelled as

a sum of r independent terms in order to capture
different layers of local anisotropy or variability.
We can now obtain the full correlation structure

of process (5), in what is our main contribution.
Theorem 2.1. For any s ∈ D, let Ω2

s

be the covariance operator in H s.t.
⟨Ω2en, em⟩ = E(ws,nws,m) for any n,m ∈ N,
where {ek}k∈N is the orthonormal basis with
respect to which process (5) is defined. The
following hold:

• The operator Ω2
s is spatially constant in D

and it is trace-class, i.e. Ω2
s = Ω2 ∈ B1(H),

for any s ∈ D. Consequently, the square-
root of Ω2

s is Hilbert-Schmidt, i.e. Ω =√
Ω2 ∈ B2(H).

• The family of cross-covariance operators for
the model (5) can be identified, for each
s, τ ∈ D, as

Cs,τ =

r∑
u=0

Au(τ )Ω2Au(s)∗Ru
NS(s, τ ), (6)

which represents a valid model.
Based on Theorem 2.1, we can now model func-
tional processes of arbitrary complexity start-
ing from scalar correlation functions. Moreover,
since we know the full variability structure, we
can easily retrieve the explicit expression for the
trace-covariogram, directly extending the model
of Paciorek and Schervish [2006].
Proposition 2.1. The global covariance and
trace-covariogram functions for the model (5),
when r=1, can be computed as follows:

C(s, τ ) = σ(s)σ(τ )R∗
NS(s, τ ) (7)

with
σ2(s) = ∥ΩA∗(s)∥2HS , (8)

and

R∗
NS(s, τ ) =

⟨ΩA∗(s),ΩA∗(τ )⟩HS

∥ΩA∗(s)∥HS∥ΩA∗(τ )∥HS
RNS(s, τ )

(9)

In expression (9), ⟨A,B⟩HS := Tr(A∗B)
with A,B Hilbert-Schmidt operators is
the Hilbert-Schmidt inner product, and
∥A∥HS :=

√
⟨A,A⟩HS is the Hilbert-Schmidt

norm.
In particular, R∗

NS(s, τ ) is a valid non-
stationary correlation function.
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We finally introduce an assumption yielding
a simplified version of model (5), specifically
needed to deal with the trace-covariogram es-
timation and functional kriging.
Assumption 2.1. There exists a spatial scalar
function α(·) : D → R and a linear bounded op-
erator A ∈ B(H) such that A(s) = α(s)A, ∀s ∈
D.
This can be interpreted as a proportionality as-
sumption; the operators A(s) are still allowed to
vary spatially, so the global variance (8) function
is non-stationary as well. Note that Assumption
2.1 is crucial to avoid the explicit dependence
of the trace-covariogram on the coregionaliza-
tion matrices, as it is equivalent to require that

⟨ΩA∗(s),ΩA∗(τ )⟩HS

∥ΩA∗(s)∥HS∥ΩA∗(τ )∥HS
= 1, ∀s, τ ∈ D. Under As-

sumption 2.1 the trace-covariogram becomes:

C(s, τ ) = Cov(Xs,Xτ ) = σ(s)σ(τ )RNS(s, τ )

(10)
which is the exact functional equivalent of (4).
Having established a consistent theoretical
framework for non-stationary functional random
processes, we shall now focus on the develop-
ment of suited estimation procedures.

3. Covariance estimation and
spatial prediction

The FNF-LMC (5) allows us to develop two in-
dependent non-stationary covariance estimation
methods, Op-NS for the estimation of the family
of cross-covariance operators (6) and Trace-NS
for the estimation of the trace-covariogram
function (10). The former method can be
used to perform spatial prediction by means of
discretized operatorial kriging, while the latter
through trace-kriging with scalar weights. The
estimation methods are a direct adaptation of
the work in Fouedjio et al. [2016, 2018]. In
these works, estimations are carried out in the
framework of local stationarity, which assumes
stationarity to be a viable assumption locally
but not globally. For a functional process
local stationarity can be interpreted as a slow
spatial variability of its mean and of the spatial
parameters of the family of cross-covariance op-
erators. In particular, the complete correlation
structure of process (5) can be characterized
by the spatial family of vectors of parameters
θs0 := {A(s0)

u, λu
1 s0

, λu
2 s0

, ϕu
s0}

r
u=1 at any

location s0 ∈ D, where each λ1s0 , λ2s0 , ϕs0

stand for the eigenvalues of the anisotropy
matrix Σu

s0 of model (2) and the corresponding
azimuth angle. For both Op-NS and Trace-NS
the idea of the methods is to perform a set of
local analyses in a pre-defined grid of locations,
called anchor points, to obtain a discrete set of
vectors of parameters in such locations; these
are eventually smoothed to obtain a continuous
map of spatially varying parameters and, conse-
quently, a complete model of (cross-)covariance.
So, the method involves, in the following order:
(i) a local stationary trace-variogram and
cross-variogram kernel estimator, (ii) a local
weighted least squares parametric fitting of
valid stationary models and (iii) a spatial kernel
smoothing of the local estimates. The local
stationarity assumption allows us to estimate
the covariance and the mean separately, because
in each local analysis we restrict the considered
pairs to spatially close locations so they have
approximately the same mean msi ≈ msj and
we can resort to a slight variation of the usual
stationary trace-variogram and cross-variogram
estimators while reasonably considering
them unbiased (e.g. for the trace-variogram
E[∥Xsi −Xsj∥2] = 2γ(si − sj) + ∥msi −msj∥2).
In each anchor point, the empirical (cross-
)variogram is different because, coherently with
the local stationarity assumption, we weigh the
importance of each pair of locations through
a spatial kernel, in a way that pairs that are
closer to the anchor points are more relevant to
its estimate.
The mean is estimated in each anchor point sl
by the best linear unbiased estimator (BLUE)
through ordinary kriging only considering
points in a locally stationary neighbourhood
of sl. The full drift ms is retrieved by kernel
smoothing of the local anchor estimates in the
whole spatial domain D as it is done for any
other parameter in θs.
Eventually, spatial prediction can be performed
through simple kriging, by approximating the
actual mean of process (5) as the estimated
smoothed mean. For Op-NS we estimate
the coregionalization matrices and can use
the discretized version of (6) for operatorial
kriging. On the other hand, the structure
of the method Trace-NS does not allow to
estimate coregionalization matrices but only
the global spatial standard deviation computed
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as σs =
√
tr(AK

s AKT
s ). Because of this reason,

when using Trace-NS, we do not have the
possibility to compute the exact expression for
the non-stationary trace-covariogram (7), so we
always need to resort to the approximation (10)
under Assumption 2.1, even when this could
not be reasonable.

4. Results and conclusions
We explored the strengths and potential
drawbacks of the novel methodologies through
an extensive Monte Carlo study on simu-
lated data. In particular, coherently with
theoretical results, we found out that, under
a spatial proportionality assumption about
cross-covariances, the simplicity of the method
Trace-NS makes it preferable to Cross-NS.
However, when this assumption is not viable,
Trace-NS is not flexible enough to retrieve a
correct covariance structure, so Cross-NS proves
to be a better choice for spatial prediction.
Note that, even when parameters are correctly
estimated for Trace-NS, if Assumption 2.1 is not
viable, the global trace-covariogram model (7)
should not be used. Indeed, simulations showed
that spatially varying anisotropy was always
adequately estimated by Trace-NS, even in
non-proportional scenarios; so, if the estimation
of local anisotropy is the specific goal of the
analysis, we believe Trace-NS would be a better
option compared with Op-NS. In completely
stationary contexts, the novel non-stationary
methods proved themselves robust enough to,
at least, be a first exploratory approach in most
contexts. If the estimated covariance structures
clearly do not show non-stationarities, classic
scalar and operatorial methods can still be a
better option. Nevertheless, we recognize that,
in contexts where Trace-NS is not sufficient
to characterize the full variability structure
of a spatial process, the numerical solution of
the optimization problem associated with a
complex cross-covariance operator can quickly
become a bottleneck for the performance of the
method.

We finally used the introduced methods to anal-
yse rainfall data in the continental USA in order
to identify areas where the probability of natu-
ral hazards would be highest. Conveniently with

the specific aim of the problem, we model the
process through probability density functions in
the Bayes Hilbert space. Trace-NS delivered the
best cross-validation performance and was em-
ployed to locate critical regions in the conclusive
outcomes.
In conclusion, we think that the most significant
contribution of this work is the interpretabil-
ity and descriptive potential of the introduced
non-stationary covariance structures. Even in
contexts where the numerosity of data makes it
computationally prohibitive to perform kriging,
we can still estimate non-stationarities (e.g. lo-
cal anisotropy, spatial variations in autocorrela-
tion) to gain a deeper comprehension of the sta-
tistical properties of processes generating data.

5. Implementation
The methods in Fouedjio et al. [2016, 2018] and
the novel methods for functional data (Trace-
NS, Op-NS) were implemented in LocallySta-
tionaryModels an R package entirely based on
C++ code (De Carlo et al. [2022]).
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