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1. Introduction

Precision agriculture is a farming management con-
cept based on observing, measuring, and respond-
ing to inter and intra-field variability in crops. The
goal of Precision Agriculture research is to define de-
cision support systems for whole-farm management
optimizing returns on inputs while preserving re-
sources. One important aspect of Precision Agri-
culture is weed destruction, indeed weeds must be
removed to achieve better crop yields. This is usu-
ally done by spraying chemicals uniformly all over the
field, which poses many environmental and economi-
cal concerns. The soil gets contaminated and farmers
have economical losses due to the waste of herbicides
since only some parts of the field are covered with
weeds and a great amount of herbicides gets wasted.
One way to implement weed removal is to use a robot
that sprays chemicals only in areas where the weed
is present. The first difficulty to be faced is the iden-
tification and distinction of weeds and crops. Weeds
can be detected by RGB cameras mounted on robot
platforms. Images are then analyzed by Machine
Learning algorithms to classify each pixel of the im-
age into the crop, weed, and background classes. The
most successful technique in recent years is the use of
Convolutional Neural Networks (CNN) which, thanks
to their ability to extract features without human
help, can classify images without the need for do-

main knowledge of the task they are dealing with.
To have a CNN system that can distinguish crop and
weed we need a series of image-mask pairs where the
mask represents the semantic value of each pixel. For
every pixel of an image we must know which class it
belongs to. During the training, our system learns to
associate the value defined by the mask to each pixel
of the image. Hopefully, with enough image-mask
pairs, our system will also be able to classify images
not seen during the training phase. These classifi-
cation systems typically achieve a great performance
when trained classifiers are deployed in the same or
at least similar field conditions. However, the per-
formance of a classifier, which has been trained on
a particular dataset, i.e., the Source domain, suffers
substantially when being deployed in new field envi-
ronments or under changing conditions, i.e., the Tar-
get domain. This gap in performance between Source
and Target domains is caused by a so called domain-
shift. The domain-shift is due to by a different visual
appearance, induced by different weed types, growth
stages of plants, soil conditions, and illuminations.
It is then required to retrain the system by labeling
the new data from the Target domain. However, we
are often faced with scenarios where we solely have
access to labeled images from the Source domain and
only unlabeled image data from the Target domain,
for example, when a robot enters a new field environ-



ment or is equipped with a new vision system. The
image labeling process is very expensive and it must
be done by experts. It is not feasible to expect to
have enough labeled images for each new field that
needs to be classified, with few labeled data we need
to be able to classify different fields.

2. Our Work

We collected all available online datasets suitable for
image segmentation for weed detection and we se-
lected a CNN network suitable for supervised seg-
mentation, i.e., where we have labeled images, that
performed well on each datasets. Then we segmented
images without having their respective labeling using
a network trained on a Source dataset with labeled
images to classify a Target dataset only with unla-
beled images. We tested different methods to trans-
fer the knowledge obtained from the Source dataset
to the Target dataset. First, we directly classified the
Target images without any modification, this is what
we call baseline, second, we use a system based on Cy-
cleGAN [10], with modification by [3] and novel addi-
tions inspired by [8]. Third we accomplished a style
transfer using the Fast Fourier Transform (FFT) [9].
At the time of writing, this is the first time that FFT
has been used in agriculture for the weed detection
problem. Lastly we also tested our CycleGAN ap-
proach’s performance between datasets taken in the
same field but two years apart and at different growth
stages.

2.1. Metrics

The main metric we use to measure our system per-
formance across different datasets is the Inter over
Union (IoU) metric.

TP
TP+ FP+ FN
We monitor the IoU obtained on the two classes, crop
and weed. IoU is typically used in segmentation ac-
tivities and essentially quantifies the percentage of
overlap between predicted and target segmentations.

IoU =

2.2. Segmentation system

Our approach to segmentation is a U-Net [6] in-
spired encoder-decoder architecture using VGG16 [7]
as the encoder backbone. This architecture deals
start-to-end with the segmentation problem by tak-
ing a 352x352x3 image as input, using the three RGB
channels, and outputs a 352x352x3 image where each
channel represents the probability that a pixel be-
longs to a certain class, in our case background, crop
and weed.

2.2.1 Loss Function

We implemented a Soft-IoU loss function. As sug-
gested by [3]|, the Soft-IoU Loss is more stable
with imbalanced class labels compared to categorical
crossentropy and thus well suited for our crop-weed
classification.
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pic is the prediction probability of a given pixel ¢ to
be of class ¢, p;, is the ground truth distribution, 1 if
the pixel ¢ belongs to class ¢ otherwise 0.

softloU =

2.2.2 Data Augmentations

We applied to each image at every epoch a flip over
the x axis with probability 0.5 and a flip over the
y axis with probability 0.5. Tiling: depending on
resolution and size of the images we applied tiling
creating HxW new images after resizing the original
images in 256 * H x 256 * W. H is the numbers of
time we divide through the y axis, W through the
x asix. We also applied padding in order to have
more information on the edges of the image and and
reach the predetermined size of 352 x 352. During
the evaluation phase only the pixel in the 256 x 256
region are kept, the ones in the padding region are
discarded.

2.3. CycleGAN

We exploit unpaired image sets from a dataset, that
we call Source domain X with labels, and another
dataset, that we call Target domain Y, with no la-
bels. Our DA approach is based on CycleGANs [10],
an implementation of CycleGAN for plants classifi-
cation [3| and on how the FFT maintain semantic
and style information in its Phase and Amplitude as
pointed out by [8], [9]. Our approach consists of two
domain-specific Fully Convolutional Neural Networks
(FCN) for semantic segmentation, two generator net-
works for domain adaptation, and two discriminator
networks. As an addition to the work of [3] we pro-
pose to also add a constraint that encourages the gen-
erators to maintain the same phase of the image be-
fore and after the transformation, thus maintaining
the semantics of the image.

2.4. Fast Fourier Transform Domain

Adaptation

We also evaluated an approach that does domain
adaptation without the need for deep learning train-
ing. It makes use of the FFT and of its inverse,
as proposed by [9], to transform pictures from the
Source Domain in the style of the Target Domain.



IoU ‘Mean Crop Weed
CWFID 0.81 0.78 0.83

Bonn 0.79 096 0.62
ON17 0.63 0.47 0.79
CA17 0.68 0.67 0.68
Rice 0.69 0.66 0.71

Roseau H 073 073 0.72
Roseau M 0.77 083 0.70
Pead H 0.69 0.75 0.62
Pead M 0.58 0.63 0.53
Bipbip H 0.79 081 0.77
Bipbip M 0.84 088 0.79
Weedelec H | 0.82 0.86 0.78
Weedelec M | 0.81 0.88 0.74

Table 1: Segmentation results on datasets, datasets
are taken from [4], |2], [1], [5] and from the Rose
Challenge. In the Rose Challenge four teams Roseau,
Pead, Bipbip and Weedelec collected images of both
Mais and Haricot plants

We compute the FFT of the Source image and of
the Target image, then we swap the amplitude of the
Source image with the amplitude of the Target image,
we compute the inverse FFT and as a result we get
an image with the same semantic of Source but with
the style of Target. At this point we can predict the
Target dataset using the FCN trained on Source after
having transformed the Target images into the style
of Source or we can train a new FCN on the Source
images, remembering that we have mask available for
them, after having transformed them into the style
of Target. We will be referring to the first method
as FFTtoTarget or FtoT and to the second as FFT-
toSource or FtoS.

3. Methods

First we evaluated all the datasets found online, with
the system described at Section 2.2. After we tested
the performance of a system trained on a dataset,
i.e., the Source domain, on another dataset, i.e., the
Target domain. The datasets we used were Weedelec
and Bipbip. Having for both Mais and Haricot plant,
the following 4 combinations have been evaluated:
Weedelec Mais on Bipbip Mais, Weedelec Haricot on
Bipbip Haricot, Bipbip Mais on Weedelec Mais, Bip-
bip Haricot on Weedelec Haricot. It is important to
remember that both datasets were taken on the same
field at the same moment, only the capture methods
were different. We will use W for Weedelec, B for Bip-
bip, H for Haricot and M for Mais. E.g., WH on BH
means that we use Weedelec Haricot as the Source
dataset and Bipbip Haricot as the Target dataset.

3.1. Comments on Segmentation results

From Table 1 our segmentation system is able to seg-
ment all the datasets in a satisfactory way from a
quantitative point of view. Even if the metric scores
fluctuate in different datasets it is more a problem
of how the data was labeled. Indeed, a better score
can be obtained with a more accurate labeling where
the exact plants’ outlines are represented instead of
approximate ones.

3.2. Baseline

We evaluated the basic performance directly using
the system trained only on the Source dataset. The
only changes made to the Target dataset will be the
type of tiling performed, to try to match the same
zoom effect of the two different cameras, and a 90° ro-
tation, as the images were taken vertically for Weed-
elec and horizontally for Bipbip.

3.3. CycleGAN

We investigated the effect of the Phase maintenance
constraint. The constraint is kept constant until the
8th epoch and then decreased by 0.01 each epoch.
The starting weight assigned to the constraint is 0.15.
The Phase approach turned out to be the same or
slighly better than not using it in all the four cases. In
Figure 1, we show the transformation learned by the
geneators during the CycleGAN process. The gen-
erators are able to maintain the semantic of the im-
age during the transformation and are able to change
the image from Source to Target style and vice versa.
Only in Bipbip on Weedelec Mais the generators tend
to generate false green in order to confuse the discrim-
inator. This has an impact on the scores, as can be
seen in Table 2, Bipbip on Weedelec Mais is the one
with the lowest IoU scores having high recall but low
precision.

3.4. Fast Fourier Transform

In Figures 2 you can see the effect of the Fast Fourier
Transform. The change of style takes place with the
maintenance of the semantics, but it does not happen
in a consistent way. It can be seen that the trans-
formation of Weedelec Mais in Bipbip style is the
one that looks the best and this is also reflected in
the scores of Table 2 where Weedelec Mais on Bip-
bip Mais FFTtoTarget is the one with the best IoU
score. It can be seen how, in most cases, training the
new system on Source images transformed into Tar-
get style performs better than using the same system
trained on Source images to make predictions on Tar-
get images transformed in Source style. It is really
important to note that we use only a single ampli-
tude, from a single image from the Target dataset, to
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loU |[BHC BHW |BMC BMW|WHC WHW|WMC WMW |
Supervised | 0.81  0.77 | 0.88 079 | 086 0.7 | 0.8 079 |
Baseline | 0.82 059 | 0.68 069 | 078 063 | 085  0.69
FtoTarget | 0.82  0.69 | 0.83 0.73 | 0.76 058 | 0.85  0.66
FtoSource | 0.80  0.63 | 0.78 067 | 076  0.62 | 082  0.64
CycleGAN | 0.83  0.70 | 0.81 066 | 0.83 067 | 0.5 0.5

Table 2: Comparison of Methods, C stand for Crop and W for Weed, the dataset in the table denotes the target
dataset, e.g. that means that for BH we evaluate on BH using labeled images of BH for the supervised approach,
and unlabeled images of BH and labeled images of WH for the domain adaptation techniques.

Figure 1: Images generated by CycleGAN, order from
letf to right is Source, Source to Target, Target, Tar-
get to Source. From top to bottom WH on BH, WM
on BM, BH on WH, BM on WM

change the whole Source dataset into Target style.

4.

From Table 2 Baseline is improved by CycleGAN on
3/4 of the combinations, the one in which it does not
improve is the one, as already mentioned in Section
3.3, where false green was created. In the 3 cases
where the baseline improves, it beats the FFT tech-
niques twice. FFT tecniques improves the baseline
only in the Weedelec on Bipbip combinations. In
the Mais one, where the change of style seems excel-
lent, FFTtoTarget outperforms CycleGAN. Overall
FFTtoTarget looks better than FFTtoSource.

From Figure 3 we can see that:

Weedelec on Bipbip Haricot: baseline prediction
generates several false positives on weeds, confusing
the soil and some parts of the robot. CycleCAN
and both FFT techniques seem to solve the prob-

Comparison of Methods

Figure 2: FF'T style transfer, from top to bottom BH
to WH style, WH to BH style, BM to WM style and
WM to BM style.

lem, FFTtoTarget as per usual performs better than
FFTtoSource.

Weedelec on Bipbip Mais: by changing plant we
notice the same problem of Haricot and in addition
also the black curtains of the robot generate confu-
sion on our baseline. All the three DA methods solve
the problem.

Bipbip on Weedelec Haricot: the baseline creates
small holes as well as confusing some weed leaves in
crop, both FFT methods does not seem to improve
the situation too much while CycleGAN fixes some of
the confusion and removes the holes from the plants,
this is reflected in the metric score.

Bipbip on Weedelec Mais: the only situation in
which none of the 3 methods of DA creates an im-
provement on the baseline, the recall is high but the



Figure 3: Order is img, truth mask, baseline, FFTtoTarget, FFTtoSource, CycleGAN. From top to bottom WH

on BH, WM on BM, BH on WH and BM on WM

problem is the various false positives created from the
ground that are marked as weed.

5. CycleGAN Between Fields Of

Different Year

We tested the performance of CycleGAN on datasets
taken by Weedelec and Bipbip on the same field,
again with Mais and Haricot plants, but after two
years and at different growth stages. Bipbip used
the same acquisition method while Weedelec did not.
We call these datasets Bipbip2021 and Weedelec2021.
We used as Source the Bipbip and Weedelec datasets
and as Target the Bipbip2021 and Weedelec2021
datasets. In all the combinations the generators, in
order to confuse the discriminators, created or re-
moved, green as the plants were at different levels of
growth and the distribution of green was different.
As can be expected, the baseline during the process
is worsened obtaining IoU scores close to zero. The
CycleGAN framework in these situations and with
these hyperparameters was not able to maintain the
semantics during the transformations.

6. Conclusions

In this thesis, we presented an approach consisting
of encoder-decoder FCN based on [6] to solve the su-
pervised segmentation problem on different datasets
with different acquisition methods and different types
of plants and weeds. Our segmentation system was
able to segment all the datasets in a satisfactory way
from a quantitative point of view. Even if the metric

scores fluctuate from different datasets it is more a
problem of how the data was labeled. Indeed, a bet-
ter score can be obtained with a more accurate label-
ing in which the exact plants’ outlines are represented
instead of approximate ones. The second approach
we presented consisted of two different methods in-
volving CycleGAN and FFT techniques to bridge the
gap of a domain-shift between Source and Target do-
main. The datasets used were Weedelec and Bipbip.
Having for both Mais and Haricot plant, the follow-
ing 4 combinations were evaluated: Weedelec Mais
on Bipbip Mais, Weedelec Haricot on Bipbip Haricot,
Bipbip Mais on Weedelec Mais and Bipbip Haricot on
Weedelec Haricot. At the time of writing, this is the
first time that FFT has been used in agriculture for
the weed detection problem. We also proposed, as
a new addition to the CycleGAN framework, a new
loss based on the the phase of the FFT which is held
constant for the first epochs and then relaxed until it
reaches zero. The need for this loss arose to make the
generators initialization more stable as CycleGAN,
with the addition of the two FCNs for segmentation,
did not always converge to an acceptable solution on
the first run. On our datasets, since we could not
directly compare with the results of [3] as we did
not have the same datasets available, the phase ap-
proach performed the same or better than the one
without it in all the four cases. We argue that the
addition of this constraint has the potential to im-
prove the initialization of the process and therefore
the possibility of obtaining better scores. During the
Source on Target domain evaluations, we obtained



decent results without using any DA technique but
only trying to match the same zoom level of the two
images. Later with the DA techniques we obtained
clear improvements in 3 of the 4 cases studied. It was
also important to analyze the qualitative results in
addition to the metric scores, often the scores were
penalized due to the difference in labeling between
Source and Target, a precise pixel perfect labeling
when evaluated on a less precise labeling would re-
sult in a very low recall score but high precision. We
also saw how the use of CycleGAN between fields of
different year and with different growth stages did
not get as good as a result as in cases where the dif-
ference between the datasets was only the acquisition
method. In these cases the CycleGAN framework is
not able to maintain the semantics during the trans-
formations, therefor the performance is not improved
but worsened.

CycleGAN proves to be a technique as powerful as it
is unstable and expensive, requiring the use of differ-
ent losses and 6 deep learning networks, the transfor-
mations generated really change the style of the im-
age while maintaining the semantics and it is difficult
to distinguish to which domain each image belongs
to. FFT demonstrates a much less powerful and ver-
satile method but also much less expensive, almost
free compared to the cost of CycleGAN, in situations
where the domain shift is minimal and the same use of
robot/camera and plant stage is ensured, FFT could
unveils to be an excellent but simple solution. In
the end, we argue that, when the task to be solved
is the same between the two domains, the DA tech-
niques used in the thesis are capable of satisfactorily
solving the domain gap between the domains. Our
results intrinsically represent this as in the datasets
that were taken on the same field at the same time
but with different methodology we were able to im-
prove the performance, however in the datasets with
different growth stages we were not able to improve
the performance.

References

[1] Petra Bosilj, Erchan Aptoula, Tom Duckett, and
Grzegorz Cielniak. Transfer learning between
crop types for semantic segmentation of crops
versus weeds in precision agriculture. Journal
of Field Robotics, to be determined (published
online), 2019.

[2] Nived Chebrolu, Philipp Lottes, Alexander
Schaefer, Wera Winterhalter, Wolfram Burgard,
and Cyrill Stachniss. Agricultural robot dataset
for plant classification, localization and mapping

3]

[4]

[5]

(6]

7]

8]

9]

[10]

on sugar beet fields. The International Journal
of Robotics Research, 2017.

Dario Gogoll, Philipp Lottes, Jan Weyler, Nik
Petrinic, and Cyrill Stachniss. Unsupervised do-
main adaptation for transferring plant classifi-
cation systems to new field environments, crops,
and robots. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS), pages 2636—2642. IEEE, 2020.

Sebastian Haug and Jorn Ostermann. A
crop/weed field image dataset for the evaluation
of computer vision based precision agriculture
tasks. In FEuropean conference on computer vi-
sion, pages 105-116. Springer, 2014.

Xu Ma, Xiangwu Deng, Long Qi, Yu Jiang,
Hongwei Li, Yuwei Wang, and Xupo Xing. Fully
convolutional network for rice seedling and weed
image segmentation at the seedling stage in
paddy fields. PloS one, 14(4):e0215676, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas
Brox.  U-net: Convolutional networks for
biomedical image segmentation.
tional Conference on Medical image computing
and computer-assisted intervention, pages 234—
241. Springer, 2015.

In Interna-

Karen Simonyan and Andrew Zisserman. Very
deep convolutional networks for large-scale im-
age recognition. arXiw preprint arXiw:1409.1556,
2014.

Yanchao Yang, Dong Lao, Ganesh Sun-
daramoorthi, and Stefano Soatto. Phase consis-
tent ecological domain adaptation. In Proceed-
ings of the IEEE/CVFE Conference on Computer
Vision and Pattern Recognition, pages 9011—
9020, 2020.

Yanchao Yang and Stefano Soatto. Fda: Fourier
domain adaptation for semantic segmentation.
In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition,
pages 4085-4095, 2020.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and
Alexei A Efros. Unpaired image-to-image trans-
lation using cycle-consistent adversarial net-
works. In Proceedings of the IEEE international
conference on computer vision, pages 2223-2232,
2017.



	Introduction
	Our Work
	Metrics
	Segmentation system
	Loss Function
	Data Augmentations

	CycleGAN
	Fast Fourier Transform Domain Adaptation

	Methods
	Comments on Segmentation results
	Baseline
	CycleGAN
	Fast Fourier Transform

	Comparison of Methods
	CycleGAN Between Fields Of Different Year
	Conclusions

