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Alla mia famiglia,

salda àncora nelle acque tumultuose della vita,

ma anche vento fecondo

pronto a spingermi verso nuovi e inesplorati lidi.





Abstract

Active debris removal and unmanned on-orbit servicing missions have gained

increasing interest in the last few years, as well as the possibility to perform

them through the use of autonomous chasing spacecrafts. In this work, new

resources are proposed to aid the design of such missions and the imple-

mentation of new control algorithms and autonomous guidance techniques

for satellites devoted to the inspection of non-cooperative targets before any

proximity operation is initiated. In particular, the use of state-of-the-art

Convolutional Neural Networks (CNNs) performing object detection and im-

age segmentation is proposed and its effectiveness in recognising features and

parts of the target satellite is evaluated. To this aim, such Machine Learn-

ing (ML) algorithms have to be trained on representative datasets, that is, in

this case, on a batch of carefully annotated images of tumbling satellites taken

from other spacecrafts in relative orbit around them. No reliable dataset of

this kind exists to date since something similar has only been achieved on

images taken from the Internet. Here lies the raison d’être of this paper:

to overcome this limitation a synthetic dataset has been created; i.e. CAD

models of several existing satellites have been loaded on a 3D animation

software and used to programmatically render images of the objects from

different point of views and in different lighting conditions, together with the

necessary ground truth labels and masks for each image. The results show

how a relatively low number of iterations is sufficient for a CNN trained on

such dataset to reach a mean Average Precision (mAP) value in line with the
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ones scored by the same algorithms on more common datasets, showing that

using only artificially generated images to train the model does not compro-

mise the learning process. A comparison between the performance obtained

when training the neural network on images of a single satellite and the one

obtained on a dataset containing pictures of several different spacecrafts is

provided. To conclude, the method is tested on images from a real on-orbit

servicing mission, namely the one targeted to the Intelsat 901 communication

satellite.
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Abstract (Italian version)

Le missioni per la rimozione attiva dei debris spaziali e quelle per il servic-

ing in orbita hanno guadagnato, insieme alla possibilità di essere operate da

satelliti a guida autonoma, crescente interesse negli ultimi anni. In questo

lavoro viene proposto un nuovo approccio per aiutare nella progettazione

di tale genere di missioni e l’implementazione di nuovi algoritmi di guida e

controllo per satelliti votati all’ispezione di obiettivi non cooperanti prima

dell’inizio delle manovre di prossimità. In particolare, si propone l’uso di

Convolutional Neural Networks (CNNs) che eseguano object detection and

image segmentation e se ne valuta l’efficacia nel riconoscere parti e carat-

teristiche del satellite obiettivo. A questo scopo, tali algoritmi di Machine

Learning (ML) devono essere addestrati su dataset sufficientemente rappre-

sentativi, ovvero, in questo caso, su una serie di immagini accuratamente

etichettate di satelliti alla deriva scattate da altri satelliti in orbita relativa

intorno ad essi. Ad oggi non esiste alcun dataset di questo tipo, qualcosa di

simile è stato fatto solo su immagini prese da Internet. Qui risiede la raison

d’être di questo lavoro: per superare questo problema, si sono creati dataset

artificiali; nello specifico, modelli CAD di satelliti (esistenti e non) sono stati

caricati su un programma di modellazione 3D e usati per la generazione pro-

grammatica di immagini del satellite obiettivo da differenti punti di vista e

in differenti condizioni di illuminazione, simultaneamente alle maschere che

definiscono la posizione delle parti in ogni immagine. I risultati mostrano

come un numero relativamente basso di iterazioni di addestramento sia suf-
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ficiente per raggiungere valori di mean Average Precision (mAP) in linea

con quelli ottenuti dagli stessi algoritmi su dataset più comuni, dimostrando

come l’uso di immagini artificiali per l’addestramento del modello non com-

prometta il processo. Si sono inoltre comparate le performance ottenute

addestrando la rete neurale su un singolo satellite con quelle ottenute su

dataset che includono immagini di più satelliti diversi. Infine, il metodo è

stato testato su immagini di una missione reale di on-orbit servicing, quella

che ha avuto come obiettivo il satellite Intelsat 901.
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Chapter 1

Introduction

Since the beginning of the space exploration era, the volume surrounding

our planet has gradually become more and more populated by man-made

Resident Space Objects (RSOs). Moreover, this trend has been exacerbated

since the establishment of commercial exploitation of space. Larger and

hence more dangerous RSOs include intermediate stages of launch vehicles,

remains of past missions or fragmentations and decommissioned satellites.

All-together these objects are known as space debris.

The incipient overcrowding of the most exploited orbits (think for example

of LEO or GEO orbits) due to the presence of these objects constitutes a

non-trivial challenge for the design of new missions, both manned and un-

manned. This has led to the development of several different ideas to monitor

the problem and possibly mitigate it, often based on the type of debris in

question. When the RSO is a satellite at the end of its operational life but

still preserving some control capabilities, the use of graveyard orbits or at-

mospheric reentry are the suggested strategies [1]. On the other hand when

dealing with non-cooperative objects, the possible solutions include advanced

on-Earth systems for accurate tracking of the objects [2], the implementa-

tion of models for the orbit propagation and the study and design of future

missions for the active removal or disposal of the space debris [3].
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INTRODUCTION

Figure 1.1: Representation of the space debris situation around our planet. Points

represent objects larger than 10 cm. Data is from the US Space Surveillance Catalogue.

Image credit: ESA

The latter, in particular, has increasingly gained the attention of the commu-

nity and has been drawing big efforts since it is the only long term solution

to the problem when atmospheric reentry disposal is not feasible. However,

a very precise knowledge of the conditions of the satellite to be removed is

needed to perform such missions. To this aim, missions specifically targeted

to the inspection of the objective spacecraft come to play, e.g. the e.Inspector

mission, which Politecnico di Milano has been recently entrusted by ESA.

This operations are carried out through a secondary satellite, the chaser,

whose orbit is defined based on the one of the target RSO. The keplerian

motion of the two bodies produces a relative orbit between target and chaser,

which thus has the chance to inspect the RSO from different points of view.

Many different types of relative orbits have been studied and their effective-

ness addressed [4]. Which one to choose depends on the requisites of the

mission.
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As for any other ordinary mission to date, the satellite relies on a constant

flow of information, back and forth from the spacecraft to the ground, in or-

der to determine the current dynamics of the target body. Usually, the data

transmitted from the space segment is elaborated on ground, and relevant

commands are transmitted back on orbit to be executed.

The problem with this kind of approach lies in the fact that relative orbits

for inspection missions have to be continuously modified based on whether

they are still effective or not. In fact, the chaser spacecraft, along its orbit,

will be able to observe only certain regions of the target, therefore it will

be required to change its relative motion in order to reach the full coverage

and gain more data about the RSO. It is clear how this increases a lot the

controlling effort for the mission analysts and, therefore, how it constitutes a

major limit for the state-of-the-art in inspection missions design. Moreover,

the presence of humans in the loop may lead to the selection of suboptimal

orbits and it is prone to possible errors.

Figure 1.2: Satellites in relative orbit around each other.

A possible solution comes from the opportunity to introduce a certain de-

gree of autonomy in the maintenance of this category of missions. Since the
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INTRODUCTION

main aim of the mission is the visual inspection of the target satellite, the

chaser is naturally equipped with one or more cameras which are used to

shoot pictures to be sent to Earth for the subsequent analysis. The idea

is to use the very same pictures in order to untie the GNC tasks from the

ground segment: in fact, these images could be fed to the on-board computer

and to machine learning algorithms devoted to object recognition, which are

nowadays becoming more and more effective, in order to detect the promi-

nent features of the target satellite. This kind of computer vision software

also provides a measure of the reliability of the results that can, therefore,

be used as a suggestion on which part of the target needs to be further ex-

amined. This score can be used as an input for another piece of software,

namely an autonomous guidance algorithm (e.g. [5]), to define a new flight

profile for the chaser, changing its relative orbit around the target so that it

offers better points of view on the most uncertain features of the inspected

RSO. Moreover, if properly tailored, also an autonomous navigation could

be achieved with such approach as demonstrated in [6]. This obviously has to

be repeated iteratively until full coverage of the target spacecraft is obtained

with the prescribed accuracy.

At this point, it should be clear that the implementation of recognition

algorithms and the assessment of their performances is of uttermost impor-

tance to enable the use of autonomous guidance and navigation algorithms

for future inspection and proximity missions [7]. This is what this thesis is

focused on.

Specific declinations of Region-based Convolutional Neural Networks

(R-CNNs) have been chosen as the tool to tackle the problem presented

in this work [8]. These algorithms, just like any other image recognition

algorithm, have to be trained on sets of pictures for which the category of

the objects depicted and their position on the pixel grid is provided. The

key innovation of this work lies in the approach used to train such neural
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networks or, more precisely, in the kind of images provided for the training.

Up to date, in fact, something similar has only been done on sets of man-

ually annotated images taken from the internet and on networks only able

to recognise solar panels [9]. This has two main disadvantages. The first

one deals with the scalability of the method, which is a relevant drawback

since the algorithms’ performance dramatically improves when trained on

larger datasets, as also shown in Section 5.2.1: in fact, the images have to be

manually labelled and there is no way to automate the process, which makes

it labour intensive for a human operator to provide a large enough dataset.

The second point is the inability to tailor the recognition on specific targets

in the case of those missions that will have to inspect a single, specific and

known a priori target.

The solution explored in this thesis is using 3D CAD models of various satel-

lites in order to programmatically generate images with different points of

view and lighting conditions. This has been achieved by means of an open-

source computer graphic software, called Blender, accurately scripted in order

to generate, together with the images, also the necessary information on the

objects depicted and their position in the picture, which hereafter will be

referred as ground truth. This approach proved to be an effective method for

the training of the neural networks, also solving the problems outlined for

the approaches previously used in the literature. Moreover, it granted good

results not only on simulated images, but also when tested on images from

a real mission, namely the Intelsat 901 life extension mission.

This work will be structured as follows. The working principles of the use

of neural networks for image recognition along with the various implementa-

tions taken into account and the architecture of the chosen one are explained

in Chapter 2, while in Chapter 3 an overview of relative orbital motion as

a whole and common relative trajectories is provided. Chapter 4 introduces

5
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INTRODUCTION

in more detail an original software, called JINS, which implements the algo-

rithms and general framework for the generation of the synthetic datasets for

the training and testing of the neural network. Various tests have been per-

formed exploiting the generated dataset presented in this chapter, and their

results are discussed in depth in Chapter 5. Also, the effectiveness of the

trained neural network on real-life low quality images from the rendezvous

of the life extension mission for the Intelsat 901 satellite is assessed. Finally,

the conclusions and some ideas for the further development of the approach

are drawn in Chapter 6.
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Chapter 2

Neural networks for image

recognition

2.1 Introduction to neural networks

In the last few decades, due to the exponential improvement of the computing

capabilities of microprocessors in accordance to Moore’s law [10] and, above-

all, to the exploitation of graphics card architecture, Machine Learning (ML)

has gained increasing popularity. ML is defined as the study of computer

algorithms that are able to automatically improve their performance on a

certain task without the need for someone to explicitly code their behaviour.

It has enabled the tackling of many different problems where conventional

algorithms were ineffective and it proved to be efficient in a variety of dif-

ferent fields, from robotics to data analysis, from computational statistics to

optimisation problems. For a more accurate definition and different exam-

ples the reader is encouraged to dive in the extensive literature on the topic

to have a glimpse of the variety and usefulness of this kind of methodology

[11].

Among the various approaches used in ML (e.g. genetic algorithms, decision
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NEURAL NETWORKS FOR IMAGE RECOGNITION

trees, bayesian algorithms, etc.) Artificial Neural Networks (ANNs) and, in

particular, CNNs have proved to be very effective in the field of computer

vision, which is the ability for the machine to identify objects represented in

a picture.

As the name suggests ANN are inspired by biological nervous systems: in-

put data are transformed in the desired output through intermediate layers

of nodes, containing semi-elaborated results, which are the analogous of the

neurons of the brain and are connected among them through problem-specific

relations. Actually, the numerical input of each one of these nodes is multi-

plied by a weight factor and added to a bias value. Weights and biases are

indeed what is changed and refined during the training process. The under-

lying idea is in fact not to build a new neural network for each problem we

want to solve, but rather using the same consolidated and high-performing

ones for different tasks, allowing the neural network to adapt to the problem

at hand by modifying the weights during the training. It is said, in fact, that

in the neural network there is an onward and a backward flow of data: the

onward one is simply the flow of the input data following the net through

successive nodes, layers and algebraic manipulation, whereas the backward

flow is represented by the modification of the weights based on the closeness

of the predicted result with the ground truth. Through this method, the

very same network can be used to identify objects of very different kinds,

provided the algorithm is trained on a relevant dataset.

Since numerical inputs have been mentioned, one could think of images

as an exotic entity to deal with. However, for a computer, an image is in fact

nothing more than a three dimensional array of numbers, where the first two

dimensions are the number of the pixels of the image and the third dimension

depends on the number of channels used to describe the colours. For an RGB

encoded image they are three, expressing the levels of red, green and blue

in each pixel, while it is just one for a grey scale image. Thus, images are
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2.1. INTRODUCTION TO NEURAL NETWORKS

naturally suitable to being fed to a ML algorithm. After a broad introduction

of the topic, a more in depth description of the machine learning techniques

exploited in this work is given in the next section.

Deep and Convolutional ANNs

The harder the task to be solved, the more complex the networks need to

be and the higher the number of layers of neurons necessary to manipulate

the raw input information to deliver the desired outcome. When the number

of intermediate layers is greater than one, we talk of Deep Neural Networks

(DNNs) (Fig. 2.1) and we define any layer between the input and output of

the network as an hidden layer. This is exactly what happens when dealing

Figure 2.1: A very simple representation of a deep neural network. Blue nodes represent

the input (the array of the image in the case of computer vision), the red one represent

the output (the class of the object, its bounding box or its mask, as we will see later)

and green nodes represent the hidden intermediate layers. The arrows represent the

flow of the data through the relations. Image credit

with computer vision: images can be quite an heavy input for the network

if they are high resolution and, although modern computers can easily deal

with such an amount of data, recognising the objects in the picture still

constitutes a very complex assignment. Furthermore, the machine needs to
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NEURAL NETWORKS FOR IMAGE RECOGNITION

be able to distinguish a certain object not only by its features, but also

independently on the dimensions or position it holds in the picture. One of

the first approaches that was used to tackle this necessity was to include in the

pipeline of the training algorithm some scripts that, starting from each of the

images, generate new images with the object in different positions (Fig. 2.2).

These practices are usually referred to as data augmentation techniques [12].

More data, however, makes the problem harder to solve and a bigger network

is needed to learn more complicated patterns. Hence the use of DNNs in this

field.

Figure 2.2: A possible representation of a technique to make the network able to recog-

nise the object in every circumstance. This is actually an example of data augmentation,

which will not be treated in depth in this work. Image credit

Although the idea has been around since the dawn of the artificial intelli-

gence studies, dealing with such large neural networks only became feasible in

the last decade, when the computing capabilities of graphics cards began to

be exploited. The data in the neural network is in fact always represented in

matrix form (both for the input and for the matrices containing the weights

and the bias) and GPUs’ architecture is explicitly designed to be efficient in

matrix operation.

While the DNNs as explained up to now are a viable option, this still does

not represent the state of the art in computer vision. They in fact require
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2.1. INTRODUCTION TO NEURAL NETWORKS

massive amount of training data and need to be very complex because they

still treat the very same object as a different one depending on the position

in the image and the background it is against, thus failing if some different

conditions are encountered in a picture. There is a smarter way to work the

problem out: Convolutional Neural Networks (CNNs). The basic CNN is

composed of five steps:

• Extracting smaller tiles from the image: using one of many possible

techniques, smaller images are extracted from the original one, having

care that the neighbouring ones overlap so that no information is lost

on the continuity of the image.

• Using a small ANN on each tile: each of the smaller images of the

previous step is fed to a small Neural Network, which is namely called

kernel. The same weights are used on each tile, so that the simple NN

highlights the more interesting ones, those where it is more probable

to find a match for the objects that are being searched. In this way

the number of weights to be trained is much less in CNNs than other

ANN.

• Saving the results in a new array : The results for each tile are arranged

to reproduce the same pattern the tiles have in the original image, so

that the track from where the information comes from is not lost. Since

the number of outputs of the small neural network is usually smaller

than the number of pixels in each tile, a smaller array than the input

image is obtained, which maps which part of the original image are the

most interesting. This ends the convolutional part of the network.

• Down-sampling or Pooling : At this point, the array is usually still

quite big, therefore various techniques can be used to reduce its size,

for example max pooling. While those will not be explained in detail in

this work, the important thing to mention for the explanation of this

work is that all of them combine the outputs of a cluster of neurons of
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the previous layer in a single neuron in the new layer, trying to preserve

the most important bits of information from the original array.

• Prediction: The pooled array is then naturally fed to another neural

network. At this point, an ANN like the ones previously discussed can

be used. Those are called fully-connected ANN, since every neuron is

connected to all the other ones in the next layer, to distinguish them

from the convolutional ones and can finally infer if the image is a match

or not.

As already mentioned, this is only the basic structure of a convolutional neu-

ral network that could be used to efficiently solve, avoiding the bottlenecks

explained before, the simplest task in computer vision, i.e. checking whether

or not an image belongs to the category against which it is being tested. A

visual representation is available in Fig. 2.3. In reality, much more complex

networks are used to solve a variety of problems, usually involving many con-

volutional and pooling layers in different combinations or up-sampling layers

too. Some of these architectures are also preceded by other networks with

very specific tasks, such as Region Proposal Networks (RPNs), as it is shown

in the next section.

Figure 2.3: Basic scheme of a Convolutional Neural Network. Image credit
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2.2 State of the art and proposed algorithms

Before going over the different algorithms that were considered for this work,

it is appropriate to introduce the most common tasks they are asked to

perform in computer vision. They are listed hereafter and shown in Fig. 2.4:

• Image classification: it is the task that has been used as an example

up to now. An image classification algorithm just identifies which kind

of object, if any, is primarily depicted in the image among the ones the

network has been trained to identify.

• Object detection: the algorithm is capable to distinguish various objects

in each image, drawing for each of them a bounding box.

• Semantic segmentation: rather than finding the envelope of each object

as in the previous case, the algorithm is able to tell exactly which pixels

belong to the object. However, this category of networks is not able to

distinguish between objects of the same type, thus considering them as

a single instance.

• Instance segmentation: it is an hybrid of object detection and semantic

segmentation. It is, in fact, able to find the area of the picture covered

by a certain object and distinguish among different instances of the

same type.

It is important to notice that, although image classification may seem trivial,

less versatile and therefore the less used of the introduced algorithms, it is

of uttermost importance since it is the building block for all the other more

complex tasks. In fact, this is not only true on a conceptual level, but also

from a practical standpoint: the classification sub-networks, or classifiers,

that will be mentioned later when illustrating the main algorithms that were

taken into account for the present work, are often older, high performing

networks designed at the dawn of the computer vision era with the specific

and only purpose of image classification.

13
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(a) Image classification just says there is

a balloon in the image.

(b) Semantic segmentation identifies all

of the pixels belonging to the balloon class.

(c) Object detection identifies different in-

stances of objects of the same class.

(d) Instance segmentation puts together

the information of semantic segmentation

and object detection.

Figure 2.4: A graphical representation of the main kinds of approaches used in computer

vision. Image credits
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After the algorithm has been trained, it can be used to recognise the

objects contained in the training dataset. To assess the performance of the

algorithm, it is executed on sets of images which have not been used for the

training. These sets are called test datasets and feature the very same kinds

of entities (usually referred to as classes of objects) which are found in the

training dataset.

Just like the training dataset, a testing dataset is also provided with a ground

truth but in this case, rather than being used to monitor how the training

is advancing and varying the weights accordingly, it is used to assess how

close the prediction provided by the trained neural network is to the ground

truth. What this last sentence actually means depends on the kind of pre-

diction made: for image classification it just means checking if the object

has been correctly identified or confused with some other category; in the

case of objects detection, besides checking the class prediction, the evalua-

tion accounts for how close the match of the predicted bounding box to the

real one is; something similar is done in semantic or instance segmentation,

with the obvious difference that the masks of the pixels recognised as part

of the object are evaluated instead of the bounding boxes. What has just

been conveyed in a qualitatively fashion, is quantitatively expressed as the

Intersection over Union (IoU), which is the ratio between then intersection

area of the predicted mask/box and the one highlighted in the ground truth

over the union of the same two entities. This value is usually included, to-

gether with the class hypothesis, in the mathematical formulation (different

for each algorithm) of the confidence on the prediction made. Among the

many evaluation metrics used in machine learning, the most common and the

ones which will be used in this work to compare the results are the Average

Precision (AP) and the mAP. To understand them let us introduce some
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other definitions first [13]:

Precision : p =
TP

TP + FP

Recall : r =
TP

TP + FN

where TP stands for true positives and refers to the number of objects cor-

rectly identified, while FP are the false positives, i.e. instances identified as

something they are not, and FN are the false negatives, which is the number

of objects which are not identified. These quantities can be computed for

each class of objects and lead to the definition of

Average Precision : AP =

∫ 1

0

p(r) dr

for each class. The definition is actually a little more complex than this and

it involves the IoU and marking multiple thresholds on it, but this simplified

explanation shall suffice for the aim of this work, for additional details see

[13, 14]. The mean Average Precision (mAP) is then simply the average of

the AP over the classes.

Once the general architecture of a CNN and the evaluation metrics have

been introduced, it is possible to have a closer look at some specific algo-

rithms. Object detection methods can be roughly subdivided in two macro

categories: the ones based on region proposal, such as fast and faster R-CNN,

and the ones based on a regression method, such as YOLO and SSD. In the

next section, some of the most relevant examples of the two categories are

analysed.

R-CNN, fast R-CNN and faster R-CNN

In 2014, Girshick et al. proposed an object detection algorithm that greatly

improved the performances on the PASCAL VOC dataset (a dataset used as

standard in the computer vision research field to assess the capabilities of new

algorithms) while still being simpler than the best ones that were available at
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the time [8]. Being a combination of region proposal and CNNs, the method

was called R-CNN and marked a revolution in the field, outperforming the

algorithms that were mostly based on the sliding window technique [15]. The

algorithm is based on three steps: first, selective search is used to identify

the possible locations of the object in the image, then each of the candidate

region is scaled to a fixed size and fed to a CNN which extracts the so-called

feature map or activation map, the matrix that locates hidden features and

patterns in the image. Finally, a Linear Support Vector Machine (SVM) is

used to classify the windows and refine the bounding box to better match

the real one.

While bringing to the table a remarkable improvement, R-CNN suffers a

problem that cannot be overlooked, being the final objective building an al-

gorithm capable of real-time detection: the selective search algorithm used

for the region proposal is in fact really ineffective in using computing and

storage resources, since it ends up repeating the same calculation multiple

times [16]. Moreover, the classification algorithm is run on each of the pro-

posed regions without taking care of sharing computation when dealing with

overlapping regions.

This led to the development of the Fast R-CNN [17] algorithm, which can

still be divided into three main steps: the image is first fed to a CNN to

obtain a convolution feature map, then candidate regions are extracted by

selective search and a second activation map is produced; finally, this latter

activation map is passed through a single fully connected layer that classifies

the object and corrects the bounding box. The improvement in terms of

speed over the first R-CNN implementation lies in the fact that the selective

search is not run over the whole image.

Nonetheless, the extraction of candidate regions still constituted a perfor-

mance bottleneck since it accounted for the most part of the detection time,

hence the Faster R-CNN algorithm [18] was proposed in 2016. Here, a fully
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convolutional Region Proposal Network (RPN) was first introduced making

it possible to share it with the detecting network itself. In other words, the

network is made up of two parts: the convolutional RPN, that generates re-

gion candidates, and the detector that was already used in the Fast R-CNN

network, which classifies the object and performs border regression. Since the

two parts share the convolutional layers, they could be considered as a single

unified network and the region proposal is nearly cost-free. This greatly im-

proves performances, reaching a detection rate of 5 frames per second without

sacrificing accuracy. A simple visual representation of the network is shown

in Fig. 2.5, please refer to the bibliography for a more precise explanation of

the architecture layer by layer.

Figure 2.5: Scheme of the Faster R-CNN, a single, unified network for object detection.

Notice how the convolutional layers are shared by both the Region Proposal Network

and the classifier. [Image from the original paper]
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You Only Look Once (YOLO)

Differently from the two-stages detection in the faster R-CNN algorithm,

which, although being simpler than the previous implementation is still a

quite complex network, YOLO features a one-stage detection algorithm. Said

approach uses the whole graph as input to the network directly returning the

position of the bounding boxes and the category of the objects without the

need to first extract the Region of Interests (RoIs). Due to this peculiarity,

it is obviously much faster than the solutions previously illustrated, since it

was shown that the bottleneck in performance was caused by region proposal.

Nonetheless, YOLO also retains high results in terms of accuracy [19].

The algorithm was first proposed by Redmon et al. in 2015 [20] and, just like

what happened with R-CNN, it went through various revisions. The first

iteration resizes the image to a fixed dimension, then subdivides it in a num-

ber of cells and feeds it to a single convolutional network, which understands

if the centre of an object falls within a certain cell of the grid and computes

the class-specific confidence on the object prediction for each box. Finally,

the results are filtered, rejecting those with a lower confidence and adjusting

the bounding box through regression.

While being really fast, the first version of YOLO, was not as accurate as the

counterparts exploiting region proposal techniques. Nonetheless, by looking

at the image as a whole, YOLO predicted way less false positives and was

less prone to mistaking background patches as objects. Anyway, in order to

improve overall accuracy, YOLOv2 [21] was published: the main differences

that were introduced are multi-scale training (see Fig. 2.6), since the archi-

tecture of the network allowed to change the dimension of the input while

training, the use of anchor boxes with direct location prediction and batch

normalisation. While explaining the reasoning behind these decision and why

they were possible would require a detailed explanation of the architecture

of the network, which is out of the scope of the present work, the noticeable
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result is that YOLOv2 was able to reach the precision of the opponents and

being one of the best performing detection algorithm while still being the

fastest and capable of real-time detection to a certain degree. Despite the

many improvements, just like the first version, this struggled in recognising

smaller objects.

However, with the release of SSD (see below) in 2016, it was outperformed

in terms of accuracy, which led to the implementation of YOLOv3 [19]. This

last iteration features a more complex underlying structure, thus trading

off part of the speed of its predecessor for an improvement in accuracy. It

anyhow still reaches 30 fps inference on images. This was obtained mostly

using a better classifier and multi-scale prediction that is, just like what had

already been done with the training, scaling the images to three different

sizes throughout the pipeline at inference time. This approach proved useful

in improving the detection of small objects too. The architecture for the

network is shown in Fig. 2.6.

Single Shot Multibox Detector (SSD)

As already mentioned, the Single Shot Multibox Detector (SSD) is another

single network object detection algorithm that established a big improvement

in the image recognition scene when it was first proposed by Liu et al. in 2016

[22]. The algorithm, just like what happened with YOLO, is much simpler

than the ones based on region proposal: the image and ground truth is fed

to the network which extracts several feature maps of different dimensions;

for each location in each activation map, a set of standard bounding boxes is

proposed with different scales and aspect ratios (see Fig. 2.7) and, for each

of them, both the offset from the ground truth box and the confidence on

each object category is computed, producing adjustments to better mach the

object shape.

This approach is retained at inference time, when the trained model is used
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Figure 2.6: Architecture for the YOLOv3 algorithm. Notice how the image is scaled

to three different dimensions throughout the pipeline due to the multi-scale training

introduced in YOLOv2. Image credit

Figure 2.7: SSD is trained evaluating the deviation of default boxes proposed on dif-

ferently sized feature maps from the ones expressed in the ground truth. [Image from

the original paper]
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to analyse new images: the network combines predictions from multiple fea-

ture maps with different resolutions to better handle objects of various sizes.

Again, being a single ANN, SSD is really fast, making it a viable option

for real-time video detection. Furthermore, as already mentioned, it outper-

formed the other algorithms of the same family in terms of accuracy at the

time of publication, reaching performances similar to those of Faster R-CNN.

Region-based Fully Convolutional Networks (R-FCN)

As we have seen up to now, the main difference between region-proposal

based algorithms and single-stage ones is that the first analyse the image

on a per-region base, applying a subnetwork on each RoI without sharing

computation, while the latter use a shared fully convolutional architecture

independent on RoIs. The middle ground was explored by Dai et al., who

proposed the R-FCN algorithm in 2016 [23].

It stems from some previous works proposing new and very efficient fully con-

volutional image classification networks: the idea was therefore to use them

as classifiers of a fully convolutional object detection system too. However,

this resulted in poor results, leading to a detection accuracy much worse

than the classification one. The problem was partially solved by adding the

RoI pooling layer from faster R-CNN in the middle of the detector. This

highlighted that the problem was due to the need to increase translation

invariance for image classification while respecting translation variance for

object detection.

To obtain this result, Dai et al. implemented a set of position-sensitive score

maps using a number of specialised convolutional layers. Conceptually it is

like subdividing the image in a grid and inferring the position of the object

by recognising his parts (e.g. a human face can be identified if an eye is

found in a grid cell and the mouth in another one). The important thing

that leads to better results in terms of speed with respect to Faster R-CNN
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is that this maps are shared by the whole image and applied to the various

RoIs proposed by the RCN, as shown in Fig. 2.8.

Figure 2.8: Overall basic scheme for the R-FCN algorithm. Each feature map, in

different colours in the image, is specific to a certain region of the image. [Image from

the original paper]

Mask R-CNN

All of the algorithms that have been shown up to now perform object de-

tection. Indeed, instance segmentation could be a desirable feature in the

field of On-Orbit Servicing (OOS) since it gives information on where the ma-

terial actually is. In 2018, He et al., from the Facebook AI Research (FAIR)

group, published Mask R-CNN [24], an instance segmentation algorithm that

outperformed every other architecture devoted to the same task and that still

represents the state-of-the-art in the field. Mask R-CNN is based on Faster

R-CNN, just adding a branch for predicting an high-quality segmentation

mask in parallel with the already existing pipeline for the bounding box

recognition. This is different from what had been previously made in other

works, such as DeepMask [25] and its evolution SharpMask [26] or Instance-
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sensitive FCNs [27], where the segmentation precedes the recognition. In

this way, the computation overhead of Mask R-CNN with respect to Faster

R-CNN is small and inference can be run at 5 fps, which is comparable to

the speed of Faster R-CNN1.

Comparison

When it comes to deciding which of the proposed algorithm has to be cho-

sen, it obviously depends on which is best suited for the problem at hand

and, if one or more options are suitable, the less demanding in terms of com-

putational resources has to be preferred. In fact, on-board computers on

space platforms usually have really limited computational power and stor-

age. Obviously, concerning object detection, there is no point in taking into

account the original implementation of R-CNN and Fast R-CNN since they

do not provide any benefit over Faster R-CNN. The choice is then between

Faster R-CNN on one hand and YOLO/SSD on the other. As it was shown,

Faster R-CNN grants higher accuracy at the cost of a lower inference speed

(although, using VGG-16 as the pretrained model for region proposal, the al-

gorithm is only six times slower than YOLO, rather than hundreds of times),

while YOLO and SSD are much faster since they are a single network and do

not have the RPN to act as a bottleneck, but they are also less accurate. For

the actual OOS of functioning satellites, real-time detection could be manda-

tory and therefore SSD or YOLO should be preferred. This work, however,

is focused on the preliminary inspection of non cooperative objects, before

any proximity action or manoeuvre is performed, therefore there is no need

for real time interpretation of the images. Observation legs could indeed last

for hours [5] and, therefore, higher accuracy is preferred over speed.

1Indeed, as it will be shown in Chapter 5, the code is still being actively developed

and, in the present work, it was able to run at a speed doubled with respect to the one of

the original paper.
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This could imply choosing Faster R-CNN, but there are some other factors

that are worth taking into account. Using instance segmentation with an

algorithm such as Mask R-CNN, in fact, could be a desirable option since, as

already mentioned, it gives an information on where the material actually is

in the picture and this could be useful for the following approaching phase.

In addition, with some previous knowledge of the object under study, this

could be used to determine the mass distribution of the object even if it was

damaged and it is therefore no more in its nominal configuration, and this is

obviously useful for the determination of the attitude dynamic of the target

satellite. All of this information can be retrieved at almost no additional

computational cost implementing Mask R-CNN instead of Faster R-CNN, as

already shown. Therefore, this is the network that has been chosen for the

present work. In addition, Mask R-CNN has the advantage that it can be

easily generalised to perform other tasks, if provided with suitable training

datasets. Among these, pose estimation would be very useful for dynamics

determination.

A more in-depth review of the Mask R-CNN algorithm is provided in the

next section.

2.3 Mask R-CNN

As already explained, Mark R-CNN is based on Faster R-CNN, adding an ex-

tra branch to the algorithm architecture to pixel wise segment each instance

of the objects the network is trained to recognise, extracting them without

any background.

Just like its predecessor, it is a two stage algorithm: the first stage is respon-

sible for generating object proposals, while the second one classifies proposals

to generate bounding boxes and masks. What is innovative with respect to

other segmentation algorithms is that the three tasks of detection, classifica-
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tion and segmentation are conducted in parallel, that is that the classification

to a particular class does not depend on the mask predictions (like it hap-

pened in other solutions [25, 26]).

In addition to adding the third branch to generate object masks, other two

fundamental differences are introduced with respect to faster R-CNN: the

use of Feature Pyramid Networks (FPNs) and the replacement of ROIPool

with ROIAlign.

FPN is the network used for the generation of the feature maps that are

then exploited by the RPN to propose RoIs (remember that, differently from

the original R-CNN, Faster R-CNN does not run the RPN on the whole raw

image but rather on the feature maps). In Faster R-CNN RoIPooling is the

layer which is responsible of generating a uniform square matrix for each of

the extracted RoIs (which in theory could be differently shaped).

In the following subsection, a description of the fundamental features of Mask

R-CNN is given.

Image pre-processing The input to the network is a w × h × 3 matrix,

where w and h are the the dimension of the image (i.e. the number of pixels

per side) and 3 is the number of colour channels for red, green and blue.

Before being sent to the network, the image is:

1. transformed in a ‘zero-mean’ array by subtracting the 3×1 mean vector,

that is the mean of pixel values across all images for each channel;

2. re-scaled, keeping the original aspect-ratio, so that either the shorter

size is equal to a chosen parameter called target size or the longer one

is equal to another parameter called maximum size;

3. padded with blank pixels so that both sides of the image are multiples of

32 (this is needed when using FPNs). The pixels are added only to the

right and bottom side of the image so that the image does not change
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position in the reference system which has its origin in the upper-left

corner.

Figure 2.9: FPN feature maps extraction. Image credit

Feature Pyramid Network (FPN) backbone FPNs have shown to be

effective backbones and to improve accuracy in many object detection al-

gorithms [28]. In Mask R-CNN they are used to extract the different sized

feature maps from which RPN extracts the Region of Interests.

27

https://medium.com/@fractaldle/mask-r-cnn-unmasked-c029aa2f1296


NEURAL NETWORKS FOR IMAGE RECOGNITION

As it can be seen in Fig. 2.9, after some convolutional and pooling layers,

the input image goes through four layers, each doubling the number of in-

termediate feature maps channels (the third dimension) while halving their

width and height up to the point they are 1
32

of the original size, that is why

the padding is needed in the pre-processing. Each of the feature maps then

goes through a 1× 1 convolution (that means that the first two dimensions

are not changed) which brings the number of channels down to 256. In this

way, a process called top-bottom pathway can be applied: starting from the

smaller activation map, it is up-scaled to match the size of the map from

the previous layer and added element-wise to it; all of the outputs from this

process are subjected to a 3 × 3 convolution to create the final four maps

(P2 through P5), while the last map P6 is obtained from P5 by max pooling

(that is, for each group of four pixels of the original map, only the highest

value is retained).

Region Proposal Networks (RPNs) Each of the maps obtained from

the FPN, is passed through an activation layer, in particular a Rectified

Linear Unit (ReLU), which is the most popular type of activation function

since it enables a better training of deeper neural networks [29]. It is indeed

a very simple function, shown in Fig. 2.10.

The output is then processed through a 3× 3 convolutional layer and fed

to two different branches, one dealing with classification score and the other

with the bounding box regressor. At this point, a certain number (chosen

a priori) of possible regions of interests with different aspect ratios is taken

into account and evaluated. The important thing is that these do not have

to be scaled on different sizes since the feature maps obtained with FPN

are already suited to take care for objects of different sizes. Therefore, the

number of channels is quite limited: it is just one times the number of aspect

ratios (3 by default) for the classification and four times the number of aspect
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f(x) = x+ = max(0, x)

Figure 2.10: Rectifier function, in blue, and its variant Softplus (in green). Image credit

ratios for the bounding box regression (since the bounding boxes are defined

by width, height and the two coordinates of the anchor point). Then the

removal of invalid boxes and consolidation of the RoIs to be passed to the

second stage of the algorithm proceeds just like in Faster R-CNN. Please

refer to the relevant paper for more details [24].

Classification and bounding box regression The second stage of the

algorithm is nearly identical to the original in Faster R-CNN. The only notice-

able difference, as already mentioned, is the substitution of the RoI Pooling

layer in favour of the new RoI Align. RoIPool is a standard operation in the

field of deep neural networks which was first introduced in Fast R-CNN [17].

This operation has the objective of extracting a small square feature map for

each RoI (which have in general different sizes) from the original activation

map on which the FPN has been run, uniforming in this way the output so

that the following part of the pipeline can be standardised.

The problem with RoIPooling is that it involves several quantization steps

and numerical rounding in the evaluation of the values of the new map from

those of the original one, introducing misalignment between the RoI and
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the extracted features: while this is efficient and does not pose any problem

when dealing with object detection since the classification and bounding box

regression are robust to small translations, it is a major problem in instance

segmentation where pixel to pixel correspondence is of uttermost importance

in order to have good results.

RoIAlign avoids quantization and rounding and uses bilinear interpolation

to compute the value of the new map in a certain point starting from the

four closest points in the original activation map.

Masking In the bounding box prediction, after the FPN-RoI mapping, a

reshape is performed followed by two fully connected layers. This is bypassed

in mask identification since it would lose the spatial information needed for

the mask generation. The extracted features are passed through the predic-

tor, which involves a deconvolution operation giving an output with number

of channels equal to the one of the classes. In fact, since the mask prediction

is completely independent form the classification task, a mask for each class

and each feature is proposed. Only at this point, there is the conjunction

between the two branches and the prediction made in the box branch is used

to select the correct channel in the mask head for each proposal. The mask

itself is defined through a threshold parameter which can be tuned (default

0.5): if the value for the pixels is higher than the threshold, the object is

assumed to be present in that pixel, else, absent.

A post-processing phase follows: the mask tensors are padded to avoid

boundary effects in the up-sampling operation, the mask is resized according

to the input image dimension and the bounding box coordinates are re-scaled

according to the new mask and converted to the nearest integer in order to

be correctly mapped into the pixel grid.

A complete overview of the architecture and the data flowing in it is provided

in Fig. 2.11.
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Figure 2.11: Simplified representation of the Mask R-CNN architecture. Image credit
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Chapter 3

Relative orbital motion for

inspection missions

Formulating the kinematics and dynamics of a spacecraft with respect to

a point other than the main attractor is useful for a variety of space ap-

plications, for example rendezvous and docking, formation flying and even

inspection missions, which are the focus of the present work.

In the latter case, in particular, a class of relative orbits is of interest, which

are the ones governed by relative motion equations for which a closed form

analytical solution exists. The peculiarity of these desired orbits is that the

satellites are again in the same relative position after one orbital period of

the target.

In this chapter, the theory behind relative motion and repeating relative

orbits, which are the closed form solutions of the linearized formulation, is

introduced, outlining the derivation process for the simplified case of a circu-

lar target orbit and small distance between the two satellites when compared

to the radius of the orbits. Then, some of the most typical orbits of this type

are briefly illustrated.
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3.1 Repeating Relative Motion theory

While the relative motion equations are quite complex and do not have,

in general, a closed form solution, it is interesting to quickly illustrate the

general framework that is useful to introduce the repeating orbits and the

derivation process.

The objective, taking as an example a simple system composed only by two

spacecrafts, is to express the relative motion of the chaser with respect to

the target. This formulation has two main advantages: it is very intuitive,

since it decouples the relative motion from the orbit around the planet1,

and explicitly involves quantities that are of primary importance in a OOS

mission, such as the distance between the spacecrafts.

Let us first introduce the reference frame used to describe the relative

equations of motion. Among the various options that could be used, this

work will follow the formulation proposed by H. Schaub [30], which uses the

Hill coordinates frame [31].

Its origin is at the target satellite position2 and its orientation is given by the

vector triad {êr, êθ, êh} shown in Fig. 3.1. The vector êr is in the direction

of the position vector of the target spacecraft, while the êh is parallel to

the orbit momentum vector, i.e. perpendicular to the orbital plane. The êθ

vector completes the right-hand system.

Mathematically, the definition of the O frame is as follow

êr =
rt
rt

êθ = êh × êr

êh =
h

h

(3.1)

1The motion of the chaser in the inertial frame will in fact be the sum of the one of the

target and the relative motion.
2Notice however that it is not necessary that the target position is occupied by a

physical satellite, it can be simply an orbiting reference.
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Figure 3.1: Hill’s (LVLH) reference frame.

where rt is the position vector of the target spacecraft and h = rt× ṙt is the

angular momentum vector of the target spacecraft. Notice how, in the case of

circular target orbit, the êr unit vector is in the direction of the radius of the

orbit and the êθ unit vector is parallel to the velocity of the spacecraft. This

frame is also often referred to as the Local-Vertical Local-Horizontal (LVLH)

frame.

The relative position vector pointing from the target spacecraft (origin of

the reference frame) to the chasing satellite can be expressed as

ρ = {x, y, z}T

ρ = xêr + yêθ + zêh
(3.2)

As already mentioned, the advantage of using Hill frame coordinates is that

the physical relative orbit dimensions are immediately apparent from these

coordinates. The (x, y) coordinates define the relative orbit motion in the

target orbit plane. The z coordinate defines any motion out of the target

orbit plane.
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3.1.1 Clohessy–Wiltshire Equations

Let us now briefly outline the derivation process of the equations describ-

ing the chaser motion in such a reference system, which are known as Clo-

hessy–Wiltshire equations [32].

The inertial position of the chasing spacecraft, rc, can be expressed as

rc = rt + ρ = (rt + x) êr + yêθ + zêh (3.3)

where rt is the inertial position of the target RSO, and the angular velocity

of the rotating frame O relative to the inertial frame N as

ωO/N = ḟ êh (3.4)

where f is the true anomaly of the target spacecraft, that is the one of the

rotating frame.

Making the only assumption of Keplerian motion, i.e. neglecting the dis-

turbing and external forces, being h constant, deriving two times the chaser

position and using the orbit equation of motion

r̈t = − µ
r3t

rt (3.5)

the equations describing the relative motion are found in the form

ẍ− 2ḟ

(
ẏ − y ṙt

rt

)
− xḟ 2 − µ

r2t
= − µ

r3c
(rt + x)

ÿ + 2ḟ

(
ẋ− xṙt

rt

)
− yḟ 2 = − µ

r3c
y

z̈ = − µ
r3c
z

(3.6)

Being the Keplerian motion the only assumption introduced up to now, the

equations in Eq. (3.6) hold true for arbitrarily large relative orbits and for

any value of the eccentricity of the target satellite orbit.

Assuming, instead, that x, y and z are small compared to the target orbit

radius rt, some components can be neglected during the derivation process;
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furthermore, assuming that the target orbit is circular, the rate of change of

the true anomaly ḟ becomes constant and equal to the mean angular motion.

The equations simplify to the form known as Clohessy–Wiltshire equations

[32]:

ẍ = 2nẏ + 3n2x

ÿ = −2nẋ

z̈ = −n2z

(3.7)

where

n =

√
µ

a3t

is the mean angular motion of the target spacecraft (being at the semi-major

axis of the target satellite orbit). Notice how the out-of-plane component of

the relative motion behaves as a simple mass-spring system.

Under these assumptions, in fact, the equations actually have a closed

form solution [32]:

x(t) = (4− 3 cos(nt))x0 +
sin(nt)

n
ẋ0 +

2

n
(1− cos(nt)) ẏ0

y(t) = 6 (sin(nt)− nt)x0 + y0 −
2

n
(1− cos(nt)) ẋ0 +

4 sin(nt)− 3nt

n
ẏ0

z(t) = z0 cos(nt) +
ż0
n

sin(nt)

(3.8)

where the quantities marked by the 0 subscript are the initial conditions on

the position and velocity vector of the chasing spacecraft in the LVLH frame.

The system can also be rewritten asδr(t)

δv(t)

 =

M(t) N(t)

S(t) T(t)


︸ ︷︷ ︸

Φ (t)

δr0
δv0

 (3.9)

where the matrix labelled as Φ (t) is time-varying and is referred to as the

state transition matrix for the CW equations.
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Let us now discuss the assumptions made. While neglecting the disturb-

ing forces is something which has to be carefully taken care of during the tra-

jectory modelling, assuming that no external controlling forces are applied to

the spacecraft is actually not a restrictive hypothesis: in many applications,

having the inspector’s relative motion to naturally repeat is a desirable fea-

ture in order to minimise fuel consumption. The derived equations still hold

true if the spacecraft state at the end of the impulsive manoeuvre operated

to put it in the relative orbit is used as initial condition for the propagation

of the relative orbit. Instead, the equations are not suitable for manoeuvres

performed with continuous low thrust3.

Finally, assuming that the distance between the spacecrafts is much smaller

than the radius of the orbit of the target satellite is a reasonable assumption

for an inspection mission, therefore the CW equations are naturally suited

for the analysis of such scenarios.

3.1.2 Repeating relative orbits

A single fly-by near the target object is usually not enough to gather all of

the needed information when dealing with the kind of inspection missions

that is being used as a reference for this work. Moreover, it is completely

useless when also having to perform rendezvous and docking or any other

proximity operation. It is therefore necessary for the relative motion to be

bounded.

As it can be seen in Eq. (3.8), the out-of-plane component z(t) and the radial

component x(t) already satisfy this requirement for any initial condition. The

same is not true for the along-track component y(t) which includes a secular

term

ysec = −3tẏ0 − 6ntx0 (3.10)

3A different formulation of the equations, valid for continuous thrust, is actually pos-

sible. However, it does not have a simple analytical solution for any manoeuvre.
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which will grow indefinitely as time passes. Therefore, in order to have a

bounded relative motion and a repeating relative orbit, the condition

ysec = 0

has to be imposed.

Substituting ẏ0 = −2nx0 into Eq. (3.8), the equations governing the relative

unperturbed bounded motion of a chasing spacecraft around a close target

moving on a circular orbit are

x(t) = cos(nt)x0 +
sin(nt)

n
ẋ0

y(t) = −2 sin(nt)x0 + y0 −
2

n
(1− cos(nt)) ẋ0

z(t) = z0 cos(nt) +
ż0
n

sin(nt)

(3.11)

From a practical standpoint, as it can be intuitively understood, the

condition that grants repeating relative motion is that of matching orbital

periods between the two spacecrafts. But the orbital period, P, is function

of the semi-major axis, a, of the orbit as

P = 2π

√
a3

µ

However, the semi-major axis also defines the energy of the orbit

ε = − µ

2a
=
v2

2
− µ

r
(3.12)

Therefore any two spacecrafts that have the same orbital energy are in

a periodic relative motion around each other. Furthermore, any orbital ma-

noeuvre that either changes the shape of the orbit or its plane without chang-

ing its energy causes the chaser to be on a repeating orbit around the target.

Moreover, looking at the second identity in Eq. (3.12) another observation

can be made. Consider the case in which the target and chaser spacecraft

have the same velocity magnitude and radial distance from the planet, such
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as for example if they are on the same circular orbit: any manoeuvre that

changes the velocity direction without affecting its magnitude (at least as a

first approximation) puts the chasing spacecraft in a repeating relative orbit

around the target. This can be considered true, for example, when providing

a ∆v in the out-of-plane or radial direction since, for an inspection mission,

it is usually 3 orders of magnitude smaller than the typical spacecraft veloc-

ity in Low Earth Orbit (LEO). Therefore, the change in magnitude of the

velocity vector is negligible with respect to the change in direction. This is

not true when the thruster firing happens in the along-track direction.

3.2 Overview of possible relative trajectories

For the problem discussed in this work, high performance on the trajectory

control such as the ones that can be obtained using continuous thrust would

probably be useless and therefore trajectories exploiting the natural relative

motion can be preferred. Among them are the football and oscillating orbits.

The following sections briefly illustrate their characteristics and how they

can be obtained. All other periodic natural relative motion patterns are a

combination of these two.

3.2.1 Football orbits

Assume again, for simplicity, that the target and chaser spacecrafts are on

the same circular orbit. As already mentioned, if a thruster is fired proving a

∆v variation in the radial direction, it can be assumed that the energy of the

orbit (and hence the semi-major axis) does not change, but the shape of the

orbit changes, becoming slightly elliptic. This results in a relative motion of

elliptic shape as shown in Fig. 3.2.

Before moving to the analysis of the equations, the motion can be intu-
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3.2. OVERVIEW OF POSSIBLE RELATIVE TRAJECTORIES

Figure 3.2: Football orbit representation in the LVLH reference frame. Values are in

meters and just representative: obtained with 50 m initial along-track offset on a 700

km altitude target orbit, 1 m/s impulse in the radial direction.

itively understood by looking at the vis-viva equation

v2 = µ

(
2

r
− 1

a

)
(3.13)

that is derived from Eq. (3.12). Assume that the chaser spacecraft precedes

the target along the orbit and that the ∆v firing is along the positive direction

of the êr axis. The thruster burn that was just mentioned would cause the

chaser spacecraft to increase its altitude, that means increasing r. This in

turn would cause the satellite to decrease its velocity as shown in Eq. (3.13)

and in the LVLH frame the chaser seems to rise upward and slowly drift

back towards the target. Once the target reaches its apogee, however, it has

a greater speed than the target satellite and therefore it gets closer to it again

moving underneath it.

From a mathematical point of view, assuming that at the initial time the

chaser spacecraft is some distance y0 in front of the target in the along-track

direction means that the initial relative altitude is x0 = 0. Furthermore,
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assuming that the impulse manoeuvre does not have any along-track com-

ponent means ẏ0. Substituting these initial conditions in Eq. (3.11) yields

x(t) =
sin(nt)

n
ẋ0

y(t) = y0 +
2

n
(cos(nt)− 1) ẋ0

(3.14)

which is, as expected, the sum of a cyclic motion in the radial direction and

an oscillatory motion along the tangential direction with an offset equal to

the initial condition y0, which results in the football-shaped relative motion

shown in Fig. 3.2. Assuming that the initial orbit is the same for both the

target and the chaser and that no ∆v component is provided in the off-track

direction (ż0 = 0), it is also found that z(t) = 0 for any time, which means

that the relative orbit belongs to the same plane of the spacecrafts orbits.

It can be demonstrated that the major and minor axis of the relative orbit

ellipse are directly related to the magnitude of the velocity change and they

are always one twice the other.

3.2.2 Oscillating orbits

The oscillating orbit is another fundamental type of relative orbital motion

which results in an oscillatory trajectory of the chasing spacecraft along the

direction perpendicular to the orbital plane of the target, while the other two

components of the target-chaser vector remain constant, as shown in Fig. 3.3.

It results from a pure orbital plane change of the chaser, without mod-

ifying the shape of the orbit, obtained by a ∆v in the cross-track direction

z. Consider, as an example, the same situation illustrated for the football

orbit where the chasing spacecraft is initially somewhere in front of the tar-

get satellite. This, again, translates in the initial conditions x0 = z0 = 0

and y0 6= 0. An impulse manoeuvre in the cross-track direction results in

ẋ0 = ẏ0 = 0 and ż0 = ∆v.
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Substituting these initial conditions in Eq. (3.11), it is found that

x(t) = 0

y(t) = y0

z(t) =
∆v

n
sin(nt)

(3.15)

which is exactly the mathematical representation of the motion described

above. The maximum distance covered in the z direction is obviously

∆z =
∆v

n

from which, if the mission requirements are expressed as a maximum distance

to be travelled in the cross-track direction, the condition on the impulse

magnitude ∆v = n∆z is found.

Figure 3.3: Oscillating orbit representation in the LVLH reference frame. Values are in

meters and just representative: obtained with 50 m initial along-track offset on a 700

km altitude target orbit, 1 m/s impulse in the off-track direction.

43



RELATIVE ORBITAL MOTION FOR INSPECTION MISSIONS

3.2.3 Other relative orbits

As already mentioned, other types of relative repeating orbits can be obtained

combining football and oscillating orbits. A typical example is the one of the

inclined football orbits. These are obtained, starting from the same initial

scenario already introduced in the previous sections, imposing an impulsive

manoeuvre with ∆v components both in the radial and off-track direction.

The only difference with the initial condition for a football orbit like the one

explained in Section 3.2.1 is that ż0 6= 0 in this case. This result in the

following set of equations

x(t) =
sin(nt)

n
ẋ0

y(t) = y0 −
2

n
(1− cos(nt)) ẋ0

z(t) =
ż0
n

sin(nt)

(3.16)

which, as it can be seen in Fig. 3.4, exhibits an oscillatory motion in the z

direction too. Differently from what was showed in Section 3.2.1, the overall

relative motion is no more co-planar to the the target inertial orbit in this

case.

Figure 3.4: Inclined football orbit representation in the LVLH reference frame. Values

are in meters and just representative: obtained with 50 m initial along-track offset on a

700 km altitude target orbit, 1 m/s impulse in both the radial and off-track direction.
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While many other types of relative orbits are possible, this shall suffice

as an example. It is important to notice, however, how such kind of relative

repeating trajectories are often employed to design passively safe inspection

orbits as in [33].
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Chapter 4

JINS: a synthetic images

generator

Before introducing the working principles of the Jins Is Not a Simulator

(JINS) software, it is worth understanding why providing a large training

dataset to a computer vision algorithm is so important. As it was shown

in Chapter 2, even if, when referring to CNNs, we are talking about one of

the branches of Artificial Intelligence (AI), other than the scientists writing

the algorithm themselves, there is really nothing smart about what an ANN

does: it simply takes an image as input, that is a 3D array of brightness val-

ues, and blindly manipulates those numbers through a series of operations

that are dictated by the developer and that often do not have any physical

meaning. The only thing that the network is instructed to do is to modify

some parameters (the weights) so that the output at the end of the pipeline

gets closer and closer to what the user states to be true. Therefore, the only

way to make the network capable of correctly detecting the object with the

highest possible confidence is giving it the chance to train on the widest range

of conditions possible, hence the necessity of big training datasets. Further-

more, some conditions can constitute major challenges for the recognition
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and it is worth taking care of including them in the dataset. Among them,

some are shown in Fig. 4.1, and here reported as defined in [34]:

• viewpoint variation: a single instance of an object can be oriented in

many ways with respect to the camera;

• scale variation: visual classes often exhibit variation in their size (size

in the real world, not only in terms of their extent in the image);

• deformation: many objects of interest are not rigid bodies and can be

deformed in extreme ways;

• occlusion: the objects of interest can be occluded. Sometimes only a

small portion of an object (as little as few pixels) could be visible;

• illumination conditions : the effects of illumination are drastic on the

pixel level;

• background clutter : the objects of interest may blend into their envi-

ronment, making them hard to identify;

• intra-class variation: the classes of interest can often be relatively

broad, such as ‘chair’ or, in our case, ‘solar panels’ and ‘antenna’.

There are many different types of these objects, each with their own

appearance.

Due to the complexity of the problem, it is therefore quite evident how

extensive datasets are needed in order to build effective recognition systems.

As already stated in the introduction, the objective of this work, in particular,

is recognising the main elements of a non-cooperative artificial RSO. So, the

question is: does such a kind of training dataset already exist? The short

answer is no. Actually, Xu et al. built a similar dataset scraping the web

for various types of satellites images (even unrealistic ones) and manually

labelling each of the solar panels that appeared in the images [9]. Although
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Figure 4.1: A visual representation of some of the most common challenges in computer

vision. Image credit

fitting the requirement for their work, such a kind of approach is suboptimal if

the objective is to build a system that is actually useful in real life operations

for a number of reasons:

• it is not easily scalable: the labelling effort increases linearly with the

complexity of the problem at hand and, as we have seen, the problem

can get much more complex quite easily, e.g. having to deal with objects

that are more elaborate and varied than solar panels would probably

require a larger training dataset or dealing with more classes would

require labelling more objects for each image;

• it is imprecise for instance segmentation: while labelling an object for

object detection only requires the user to draw a bounding box, instance

segmentation requires the drawing of polygon that is much more time

consuming and prone to little offset errors that could overall cause a

slight reduction in the performance;

• it is difficult to be tailored on a per mission basis: in the case of a

mission towards a known target it offers no real advantage, since the

dataset would have to be built in the exact same way, labelling images

of the target satellite shot before the launch (if they are available, which
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may easily not be the case).

Ideally, an optimal solution to the problem would be the one that is flexible

and requires no additional effort by the user independently of the dimension

and complexity of the dataset to be built.

The idea proposed in the current work is to use CAD models of satellites and

a 3D modelling program, such as the ones used by 3D artists in computer

graphics, to recursively generate both images from different viewpoints, in

different lighting conditions, with occlusion, etc. and the relative labelling

at no extra cost or effort.

4.1 Blender scripting for images and masks gen-

eration

Blender1 is a free and open-source2 3D computer graphics software toolset

used for creating animated films, visual effects, art, 3D printed models, mo-

tion graphics, interactive 3D applications, and computer games. Blender’s

features include 3D modeling, UV unwrapping, texturing, raster graphics

editing, rigging and skinning, fluid and smoke simulation, particle simula-

tion, soft body simulation, sculpting, animating, match moving, rendering,

motion graphics, video editing, and compositing.

Among these, for the current work, we are particularly interested in the pos-

sibility to import CAD models (.stl files) in the software, in the modelling

capabilities in order to bring slight modification to the imported model for

the upcoming operations, the possibility to apply textures for more realis-

tic results, raster graphics and compositing for the production of the object

masks, animation and, finally, the rendering ability itself to translate the

1Blender official site: https://www.blender.org/
2Blender is released under the GNU General Public License (GPL, or “free software”).
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image created in the software into an actual image.

Nonetheless, these are quite common features among this kind of software:

the real reason why Blender was preferred to other solutions is its ability

to be scripted using the Python™ language. In fact, being the Blender in-

terface itself controlled via Python™, the software provides to the user an

extensive API through which almost any of the operations that can be done

via the point-and-click interface can also be done via a Python™ command.

This may be useless when creating a single scene for a digital art project,

but it is extremely useful when dealing with repetitive tasks as it gives the

option to automate them. As it will be clear when illustrating the pipeline

implemented in JINS, this is exactly where this approach resulted to be very

convenient.

Process outline Before going deeper in the various steps involved in the

generation of the dataset, it is useful for the reader to have a little overview

of the process in order for him to be easier to follow along. Three main steps

can be identified:

1. Pre-processing phase. Before being fed to the section of the software

that actually takes care of rendering the images, the spacecraft model

needs to be adjusted in order to be compliant with the requisites of

the successive piece of software. This basically means appropriately

subdividing the model into smaller parts corresponding to the features

of interest and providing an empty entity3 for the camera to point to.

2. Images and masks generation. The code that is responsible of the

images generation is then run over the suitably adapted model. In

short, it generates a user-defined number of light objects in the scene

3In Blender, an Empty is an object which is not rendered, i.e. an object that can be

used for modelling purposes but that doesn’t appear in the image when it is generated.

In this case, a simple set of Cartesian axes has been used.
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and activates them one at a time in a for-loop; then, for each of them,

it generates a number of cameras and renders the image from each of

these points of view, then moving to the next illumination conditions.

It also takes care of generating the masks that specify which is the area

of the image that is occupied by each of the objects. A conceptual

scheme of the procedure is provided in Fig. 4.3.

3. Images annotation. Finally, a second script uses the generated images

and masks to create, through the COCO API 4, an annotation file in

COCO format. This is basically a .json file that encodes, together

with some metadata for the dataset, an identification number for the

images and each of the objects instances it infers from the masks, spec-

ifying the class of the object and the vertices of the polygon that en-

closes it. This is the file that the neural network uses to compare its

prediction against the ground truth and then modify the weights (if in

training mode) or evaluate performances (if in testing mode).

4.1.1 Scene creation and pre-processing

As already explained, variety in the dataset is a key feature in order to have a

good performing algorithm, therefore a set of CAD models of satellites (both

real and fictitious ones) was chosen. Due to the lack of time, there was not

the possibility to build a larger models database and their number was then

4COCO (Common Objects in COntext) is one of the most common benchmarking

datasets for new algorithms in the field of computer vision (it also sponsors an annual

worldwide competition) and has, therefore, become one of the standards for the annotation

of the images since many CNNs accept it as a ground truth description. The standard

dataset and the API providing the tools for the annotation of custom dataset is provided

on GitHub.
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limited to six.5 Nonetheless, this was enough to obtain good results and to

highlight how increasing the number of examples leads to better results (see

Section 5.2.1).

In this phase, the Blender program is used through its graphical interface

as any other program meant to be used for digital art. Other than directly

using it for the creation of the model or importing the work done in some

other 3D computer graphics software, Blender gives the user the ability to

load an external file in .stl format or any other of the most used output

formats from Computer Aided Design programs. This is a relevant advantage

since this kind of files are always produced during the design process of the

satellite and could therefore be used by the manufacturer or provided to the

end-of-life responsible company for the study of a tailored OOS or disposal

mission. Once the CAD model is loaded and translated to a Blender one,

the main interface of the program appears as in Fig. 4.2.

The model is then adapted to fulfil the requirements on which the following

part of the pipeline relies. These are one time only edits.

The tools provided by Blender are used to subdivide the various parts of the

object in case they are not distinct already: in other words, each occurrence of

the objects which are among the classes we are looking to train the algorithm

onto must be interpreted by the software as a distinct standalone object (as

shown in the list in the upper right corner of Fig. 4.2).

Then, a custom property has to be specified for each of the parts we’re

interested in: this has to be identified by the ‘label’ keyword and its value

has to be set to a string corresponding to the class. This step can both be

5The resources used in the current work can be found at the following links:

https://free3d.com/3d-model/small-satellite-308237.html

https://sketchfab.com/3d-models/satellite-f8bd72434281441db77e85ce830f89c1

https://nasa3d.arc.nasa.gov/models

and https://www.cgtrader.com/3d-models/space/spaceship/low-poly-satellite-

parts (last accessed: 03 June 2020)
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done manually or using a custom written plug-in6.

Lastly, as already mentioned, a Cartesian coordinate system is added to

the scene. This is positioned in a random point close to the satellite but not

necessarily coincident with any notable physical or geometrical property such

as the centre of mass. This arbitrariness serves a very specific purpose: the

cameras through which the scene will be rendered are generated by the main

script and are made to point to the origin of the axes; this means that this

point will always be exactly in the middle of the image. Being the satellite

offset with respect to the coordinate system origin, it will appear slightly

moved from the centre of the image and this is a desirable feature since it

adds diversity to the dataset and forces the algorithm to learn to recognise

the objects independently of their position in the image. An example can

be seen in Fig. 4.2, where the object highlighted in orange is the target axes

6Such as the one available at https://github.com/csun/syntrain/tree/master/

blender_scripts. Being the Blender interface managed in Python™, the program can be

easily extended in functionalities and a large user community has grown around it.

Figure 4.2: Interface of the Blender software.
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system just described.

4.1.2 Image generation pipeline

Once the Blender scene is set up, the actual images can be encoded. This

could be manually done (it would just require setting the illumination condi-

tions for the scene, a camera object and starting the rendering of the image),

but it would be extremely time consuming and inefficient. The dimension of

a training dataset for an algorithm, in fact, depends on the complexity of the

problem to be solved, the kind of objects that need to be identified and the

number of classes, but it usually features at least some thousands of images.

Needless to say, this would be an overwhelming work for a single person or

even a group of people.

This is where the automation capabilities of Blender really helped and it is

probably one of the most complex parts of JINS. A pipeline was generated to

automate the rendering of the images and taking care that those are actually

relevant, which means, for example, avoiding images that are mostly dark

and in which the satellite is not clearly identifiable, since those would make

the training process harder for the algorithm.

The overall conceptual scheme of the pipeline is reproduced in Fig. 4.3.

The file parameters.py lists all of the user-defined parameters so that

they can be easily changed before running the main script and starting the

renderings. Among them, the most important are:

• the image dimensions, i.e. its resolution, in pixels;

• the focal length of the camera and other parameters linked to that, like

the minimum and maximum distance from the target and the maxi-

mum angle of the point of view from the lighting direction (Sun); those

actually determine how big the satellite appears in the image;

• the list of the object categories to be detected;
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Figure 4.3: Scheme of the image generation pipeline in JINS as implemented in the

batch_render.py script. The text in monospace font close to the blocks indicates

the function devoted to that particular operation.

56



4.1. BLENDER SCRIPTING FOR IMAGES AND MASKS
GENERATION

• the number of different lighting directions to be used and the number

of different point of views (that is camera positions) for each of them.

These determine the total number of images generated for the dataset:

number of images = number of lights × number of cameras

• whether or not the Earth should be included in the background.

The file is structured so that these values can differ based on the fact that

the generated images are used for the training or the testing dataset.

Other parameters that can easily be set from this file, rather than being

hardcoded in the rest of the code, are the directory paths where the images

should be saved based on which is the dataset they are part of and the prefixes

to prepend to the image filename to distinguish them based on which of the

satellite models is depicted in it.

These parameters are loaded by the batch_render.py file, which is

the main script file and is run over the Blender instance with the desired

model. Using auxiliary functions, it creates the different lighting sources in

the scene, goes over them in a for-loop, activates them one at a time (so

that the satellite is illuminated from a single direction) and for each of them

generates the specified number of cameras in the scene. Then a nested for-

loop cycles through the cameras, sets the compositor scheme to take care

of the mask generation (more information below) and renders the image,

moving then to the next light-camera couple and starting over. The process

also takes care of creating an info.json file that gathers the information

on the direction of the lighting source and the position and orientation of

the camera for each of the images created, so that the single picture can be

manually reproduced if needed.

Lighting conditions The function generate_lights creates the lights

in the scene. Various types of light sources are available in Blender, like point
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sources or diffusing surfaces. The one of interest for this work is obviously

the one that mimics the lighting from the Sun, which illuminates the scene

with rays that are all parallel to a specified direction. The function generates

a random unit 1 × 3 vector, spawns a Sun lighting object in the scene and

then applies a quaternion rotation so that its direction matches the one of

the vector just created. The light is then deactivated (just like switching off

the source in the scene) by default. The process is repeated until a number

of lighting sources equal to the one specified in the parameters file is present

in the scene. Those are activated one at a time in the main loop, as already

explained.

Camera generation In the nested for-loop, the direction of the currently

active light is given as an input to the generate_cameras function. This

unit vector is multiplied by a random number between the limits specified

in the parameters file and rotated in a random direction of a random angle

whose maximum value is specified in the same file too. Then, the new vector

is added to the position vector of the target Cartesian axes, identifying a new

point in the three dimensional volume of the Blender workspace. Using the

built-in functions of the program, a new camera is added to the scene in that

position and it is pointed towards the target Cartesian coordinate system.

This may seem a uselessly complicated procedure, but it actually grants some

details whose importance was already mentioned: keeping the camera within

a solid cone centered around the direction of the Sun and with a reasonable

semi-aperture (a maximum angle of 35◦ was used) assures that the lighting

conditions in the image are always reasonable (in fact, in a real application,

there would be no reason to take pictures of the target satellite when it

is not properly lit); limiting the range on the distance of the camera from

the target, instead, grants that the satellite is clearly visible in the image,

without being too small for its parts to be distinguishable or so large that
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one of its components occupies the whole image.

Masks generation Blender also features an instrument called compositor.

It can be used to apply various changes to the scene, modify parameters,

filters and alike, manage and possibly completely alter the rendering process

and therefore the output. In particular, this has been used in order to output,

together with the rendered image, binary images specifying the area covered

by a certain part of the spacecraft in the image, like the ones shown in Fig. 4.5.

The Blender compositor is used creating a graph like the one shown in Fig. 4.4

and this can be built using Python™ too. This is what the setup_nodes

function does. It firstly assigns a unique ID number to each of the parts

that the spacecraft was previously subdivided into. The Cycles rendering

engine7 can be made aware of this unique information through an option

called “object index pass” and it can therefore associate an index to each pixel

of the image based on the one of the object that was first hit by the sampling

rays in that pixel. A node called “ID mask” can then produce a mask image

where all of the pixels that have a certain ID number are coloured in white

while all of the others are black. The setup_nodes function creates one of

these nodes for each of the IDs, i.e. one for each object, and an “output node”

consequently saves both the coloured image and a series of binary images,

each one showing only the visible part of a certain object, taking care of

7By default, Blender provides two different rendering engines, Eevee and Cycles. While

the first is faster in the image elaboration, the second is slower but gives more accurate

results since it uses path-tracing, that means it works by sending a number of light rays

that act as photons from the camera out into the scene. If these rays hit an object, they will

bounce based on the angle of impact, and continue bouncing until a light source is reached

or until a maximum number of bounces defined by the user. Multiple rays are calculated

and averaged out for each individual pixel. Furthermore, Cycles is the only rendering

engine supporting index pass, which is a fundamental property in order to produce object

masks. It is therefore the engine chosen for this work.
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including the name of the object class in the filename (as it can be seen in

Figs. 4.4 and 4.5), using the “label” custom property that was specified in

the pre-processing phase.

The script is also able to generate compositor nodes so that body-mounted

panels are identified both as solar panels and as part of the body.

Figure 4.4: Example of a compositor graph generated by the setup_nodes function.

4.1.3 Earth background

As already mentioned, the JINS software is also capable of drawing the Earth

in the background of the image. Unfortunately, due to limitations of the

Earth model that was available and the rendering engine, the planet model

could not be directly added to the scene to be automatically included in the

rendering. Therefore a workaround was implemented: a series of pictures of

the Earth in different light conditions and from different points of view were

manually rendered; then, if it is specified to do so in the parameters.py

file, the setup_nodes function is capable of randomly selecting one of
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trisat_0066.png trisat_0066_1_antenna.png

trisat_0066_2_body.png trisat_0066_4_solarPanel.png

trisat_0066_5_solarPanel.png trisat_0066_6_solarPanel.png

Figure 4.5: Example of a rendered image and the related masks identifying the different

components. Notice how the class of the object is specified in the filename.
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those pictures and using it as a background when rendering the model of the

spacecraft.

This is obviously a non-optimal solution as it could lead to images that are

not physically accurate since the lighting direction of the background could

be slightly different from the one of the satellite, but it is not an issue for

the aim of this study. The reason why it is worth having such kind of images

is that it makes the object segmentation task more difficult for the CNN

(due to boundary effects) and therefore it is better to train the algorithm on

them. In fact, as it will be shown in Section 5.3, performance issues arise

when the algorithm is trained exclusively on images without the Earth in the

background and tested instead on pictures where the Earth is present.

4.2 Dataset labelling in COCO format

Once the model tuning and pre-processing is done and the images and masks

are generated, the satellites_to_COCO function takes care of the en-

coding of the .json file stating the class and the polygon that encloses each

object.

It first identifies, based on the name of the image, all of the masks that are

related to it. Then, using the API from COCO, it is able to identify the white

polygon in each mask and, from that, also the bounding box. The class of the

object is instead inferred from the filename of the mask image since it was

determined by the label assigned to the object in the pre-processing phase.

Through the API other properties can be inferred too, such as the measure

of the area of the mask, which is useful in order to neglect objects that are

too small in the image.

The output file counts three main dictionaries:

• the first lists the object classes on which the algorithm has to be trained

on and assigns an ID number to each of them;
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• the second one lists all the images in the dataset and assigns an ID

number to them;

• the third is the list of the annotations, that means the list of all the

instances that were found. Together with the vertices of the polygon,

it reports the ID of the image where that instance is located and the

ID of the kind of object it is. Other properties such as the bounding

box of the mask and its area are specified here too.

This is the file that the algorithm uses to compare its predictions against

the ground truth and its the only one that must be provided to the neural

network other than the training and testing pictures. The network does not

look at the mask images directly, but rather reads the information from the

annotation file.

Finally, the function check_BB allows the user to visually verify that every-

thing went fine in the image and annotation generation, drawing the polygon

and bounding box as read from the annotation file over the original image,

like in Fig. 4.6.
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Figure 4.6: Final result of the dataset generation: the check_BB function

shows the image and the ground truth masks as they were identified by the

satellites_to_COCO function.
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Chapter 5

Results

Let us start the chapter introducing some of the parameters that were used to

perform all of the simulations, whose results are illustrated in the following

sections, and some background information in order to understand them

when needed.

As already explained in Chapter 2, the CNN algorithm on which the choice

has fallen is the Mask R-CNN. Among the various implementations of the

algorithm that are available online, the one from the original authors of the

Mask R-CNN paper [24] has been preferred: Detectron2 [35] from the

Facebook AI Research (FAIR) group, of which the original authors are part

of, is the last iteration of the code. Other than instance segmentation, it

has been extended to perform other kinds of visual recognition tasks1 and

also provides the backbone implementation of the Faster R-CNN algorithm.

By choosing Detectron2, it was therefore possible to test the effectiveness of

the synthetic image generation approach both on the object detection task,

through Faster R-CNN, and the instance segmentation task, through Mask

R-CNN.

1For example it can perform pose estimation and panoptic segmentation depending on

the base model the user specifies. More information on the project page https://github.

com/facebookresearch/detectron2.
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Among the different base models provided by Detectron2, the one that was

chosen is the R50-FPN-3x, which uses a ResNet backbone architecture with

50 layers and a FPN for the regions proposal. It has been chosen because,

as shown in the results on Model Zoo [36], although being one of the least

resources intensive options both in terms of training time and memory usage,

it still performs really well (although not has much as the equivalent with a

deeper 101-layers ResNet backbone).

The number of classes the neural network was trained to recognise is four:

antenna, main body, solar panels, engines. The ‘thruster’ class was initially

taken into account too, but it always occurred that its instances were too

little in the image to be even recognised by a person and had to be rejected

when inferring the ground truth from the masks. Therefore, the ‘thruster’

class has been dropped, closer images would be needed in order to recognise

its instances.

Two different couples of training and testing datasets were produced for

each satellite model: one with the Earth in background and one without it.

In either case the number of images is 800 for the training set (80 different

lighting conditions and 10 different rendering points of view for each of them)

and 200 for the testing set (20 lighting directions and 10 cameras each). These

are fairly low numbers when compared to the ones usually found in the field

and increasing them would certainly give better results, but rendering the

images is a very time consuming task2 and the available time for this study

was not enough to build larger datasets. Nonetheless, being the number of

classes quite small, the number of images that have been used is still enough

to have good results, as shown hereinafter. Detectron2 suggests image

dimensions between 600 and 800 pixels to optimise training performances

2It can be done in a much faster way by rendering the image using the GPU instead

of the CPU, which unfortunately was not possible in this work.
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and timing. Square images with a 700 px size have been used to build the

datasets used for this work. The models were trained using the Detectron2

API on Google Colaboratory, also known as Colab, a free cloud computing

Google service specifically thought to ease the research in the ML field, since

it gives the user the ability to train the models using powerful GPUs which,

as explained in Chapter 2 greatly reduce the training time. For the current

study, each of the model has been trained for 2500 iterations, which showed

to be a good compromise between training time and performances. The

training takes from 30 to 50 minutes, based on the capabilities of the GPU

that Colab randomly assigns to the user at runtime.

The inference runs at around 10 FPS for each of the evaluated datasets.

Learning rate As already explained, at the end of each training iteration

(or epoch as some algorithms prefer to measure the training progress), an

ANN computes the loss function3, which expresses how far the predictions

are from the ground truth. Therefore, the training task is basically a min-

imisation problem in which the right set of weights has to be chosen in order

to find the loss minimum.

The capability of the algorithm to solve the problem is greatly influenced by

a number of user-defined parameters, called hyper-parameters, among which

the learning rate is particularly important. It defines how the weights are

modified from one iteration to the next following the relation

ϑ′n = ϑn − α
∂

∂ϑn
J(ϑn)

where ϑ′n is the new weight, ϑn is the old one and α is the learning rate

which multiplies the gradient of the loss function. As shown in Fig. 5.1, if

the learning rate is to small, the gradient descent can be very slow, while, if

3Various different loss functions have established themselves as the standard in the field

over the years, but it is also possible to define a custom one. Going deeper in the topic is

out of the scope of the present work.
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it is too large, gradient descent can overshoot the minimum of the function

and the algorithm may not converge or even diverge.

Figure 5.1: Effect of various learning rates on convergence. Image credit

Even if other possibilities exist, choosing a good learning rate is mostly

a trial and error procedure since it is heavily dependent on the problem and

its complexity. For the current work, a learning rate of 0.0025 showed to be

a good compromise between training time and performance, in good synergy

with the maximum number of iterations. Actually, this is just a starting

value, since the algorithm is then capable to slightly adapt it to various

needs as the training goes on.

As a final remark before the results are introduced, Fig. 5.2 shows the

six models together with the names that will be used hereafter to refer to

them. This is useful since some of the results find their reason to be in the

geometry of the spacecraft itself.

5.1 Training on single model

The method used to identify the usefulness of the JINS approach was to

subject it to increasingly difficult tasks, developing and tuning them based
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model A model B

model C model D

model E model F

Figure 5.2: Representative images of the spacecraft models used in the present work.

The names that will be used to refer to them are here reported.
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on the results of the previous tests.

The first task was therefore testing the capabilities of the algorithm when

trained and tested on a single model images without the Earth in background.

As it can be seen from the results obtained on models A and B, reported in

Tables 5.1 and 5.2, they are in line with the ones in the literature [18, 24],

both considering the class specific average precision and the mean one. The

same happens on the other models too, so it is redundant to report them.

Table 5.1: Results on a dataset including a single model (model A). The first line

shows the metrics on the object detection task, while the second reports the one on

the instance segmentation task. The metrics are the ones explained in Chapter 2.

AP AP-antenna AP-body AP-solarPanel mAP

bbox 87.86 89.73 88.37 85.47 89.99

mask 89.28 88.53 89.10 90.22 86.39

Table 5.2: Results on a dataset including a single model (model B).

AP AP-antenna AP-body AP-solarPanel mAP

bbox 89.35 89.35 88.95 89.73 89.34

mask 85.16 88.26 85.88 81.34 83.23

While it may seem a very trivial task to perform and therefore a useless

result, it not only validates the idea of using image recognition with bodies

like satellites, but also demonstrates how this can be useful in a real scenario.

Think for example of an OOS mission towards a specific and known satellite:

the technical documentation of the target spacecraft or pictures of the object

shot before the launch could be used and the algorithm trained to recognise

that RSO specifically, even on its most peculiar features if proper classes of
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Figure 5.3: Results from the inference on the single satellite datasets.

objects were added besides the generic and more common ones that are being

exploited in this study.

Figure 5.3 gives some examples of the results of the inference on images

from the test sets (which, recall, are not included in the training set and,

therefore, have never been seen before by the algorithm). It can been seen

how the coloured masks overlap almost perfectly the actual objects, giving a

visual proof of the high quality results previously shown in the tables.

5.2 Testing on ‘unknown’ satellites

The next step was trying to verify how the algorithm behaves if it is trained

on a certain number of satellites and then tested on another satellite which is

not part of the training set and therefore has never been seen by the neural

network at the time of the inference. A training dataset was built with the

images from models B and C and the test dataset only featured images of

the satellite model A. The results are the one reported in Table 5.3:

The drop in performance is clearly visible when compared to the previous

results. It is interesting to notice how the overall metrics of AP and mAP are
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Table 5.3: Results obtained when training on models B and C and testing on model A.

AP AP-antenna AP-body AP-solarPanel mAP

bbox 34.04 23.27 6.65 72.19 29.63

mask 34.56 22.34 2.48 78.79 27.27

anyway not very far from the analogous results reported in [24], even if they

are greatly impaired by the very poor performance on the recognition of the

body and the antenna. Looking at Fig. 5.2, this is clearly to be attributed to

the geometry of the spacecraft model A, which has a cylindrical body that

can be easily mistaken for the antenna from some points of view, in particular

when seen from behind. Fig. 5.4 demonstrates this.

Figure 5.4: Example of the results when training on models B and C and testing on

model A.

The reason why, while being both very low, the metrics on the body

recognition is much more affected than the one of the antenna has to be found
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in the similarities between the test model and the training ones. Since the

dataset used is still very small, it does not offer the variety whose importance

was highlighted in Chapter 4 and therefore the algorithm is not robust to

intra-class variations. The antenna is better recognised simply because the

antenna of model A is more similar to the ones of models B and C than the

body of model A is to the ones of the other two spaceraft.

The same reason justifies the great results on solar panels recognition, which

are closer to the ones obtained when training on the same satellite. The

solar panels have a pretty typical configuration in both colours and shapes;

therefore the one of model A is quite similar to the one of the other two

spacecraft and it cannot be easily mistaken for anything else in the picture.

5.2.1 Increasing the number of models

Once the cause at the origin of the problem with the results shown in the

previous section is identified, the most reasonable way to try to improve the

performance of the algorithm is extending the training dataset to make it

more diverse. Therefore, the images from models D, E and F were added

to the training dataset already containing model B and C, while still testing

only on the spacecraft model A. The results are shown in Table 5.4. The

results in the first column are the ones already presented in Table 5.3 and,

compared with the ones of the extended training dataset, the difference is

remarkable: while the results on the solar panels remain almost the same, a

big improvement on the antenna and body recognition leads to an improve-

ment on the general metrics AP and mAP ranging between 7% and 11%.

This is a really appreciable result, which corroborates the hypothesis on the

reason why poor results are obtained in Section 5.2 on the antenna and body

recognition.

Moreover, it suggests that further increasing the size of the dataset and the

variety of models included would lead to even better results. Unfortunately,
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this is something that could not be verified in this work due to the limited

resources.

Table 5.4: Results of the inference on a single model when training on all the other

five. Dataset 1 reports the results in Table 5.3 for comparison;

Dataset 2 is tested on model A and trained on the other five models;

Dataset 3 is tested on model D and trained on the other five models.

Dataset 1 Dataset 2 Dataset 3

Object Detection

AP 34.04 42.95 61.43

AP-antenna 23.27 38.91 72.30

AP-body 6.65 15.92 62.61

AP-engine -a - 42.06

AP-solarPanel 72.19 74.02 68.72

mAP 29.63 36.86 63.84

Instance segmentation

AP 34.56 45.41 55.90

AP-antenna 22.34 45.83 61.47

AP-body 2.48 9.01 58.16

AP-engine - - 43.26

AP-solarPanel 78.79 81.38 60.74

mAP 27.27 37.27 55.33

aThe missing numbers are just because no engine is present in model A

However, to further validate the idea, another dataset was created, using

as a testing set the model D and training the algorithms on the other five

satellites. The results are shown in the third column of Table 5.4. They

substantially improve with respect to the inference on model A and the reason
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it to be found in the geometry of the models: looking at Fig. 5.2, in fact,

it is clearly visible how model D is more similar to the other satellites, in

particular models E and F, than model A is; thus, being better represented

in the training dataset, its parts are easier to be recognised by the algorithm.

As a side note, it is interesting to notice (and the same can be done also in

the following sections in every result obtained when testing on model D) how

the results on solar panel recognition actually worsen. This is due to the fact

that model D also features some engines, whose geometry is very simple and

can be sometimes mistaken for a part of the solar panels, thus decreasing the

class performance. This is anyway a case-specific facet completely negligible

with respect to the giant leap in performance on the antenna and body

detection and segmentation.

5.3 Influence of the Earth in background

The results explained up to now were all obtained on datasets in which the

images of the spacecrafts did not show the Earth in the background; it is

therefore interesting to verify how the performance changes when the planet

is present in the image.

Table 5.5 shows the results when the algorithm is run on a dataset with the

same single satellite in both the training and test dataset when the images

feature the planet in the background. The values for the same datasets but

without the Earth (already shown in Section 5.1) are reported again for an

easier comparison4.

As it can be clearly seen looking at the first two columns, there is no

4Notice that these are two completely different dataset having different images ren-

dered from scratch. The images of the second dataset are not just the ones of the first

superimposed to pictures of the earth. The same consideration is valid for similar datasets

that will be introduced later.
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Table 5.5: Results when training and testing on a single model with and without the

earth in background.

model A
no Earth

model A
w/ Earth

model B
no Earth

model B
w/ Earth

Object Detection

AP 87.86 89.32 89.35 72.58

AP-antenna 89.72 90.29 89.35 88.29

AP-body 88.37 90.48 88.96 87.81

AP-solarPanel 85.47 87.20 89.73 87.37

mAP 89.99 89.15 89.34 87.38

Instance segmentation

AP 89.28 89.34 85.16 70.58

AP-antenna 88.53 89.68 88.26 86.56

AP-body 89.10 88.36 85.88 86.50

AP-solarPanel 90.22 89.97 81.34 80.44

mAP 86.39 87.53 83.23 82.58

appreciable difference between the results obtained on model A when the

Earth appears in the picture and when it does not.

The same could be said about the results on model B, but for the AP value

which instead shows a noticeable decrease. However, this is not due to the

presence of the Earth in the background, but rather to the fact that some

instances of objects of the type “thruster” are present in the dataset. They are

however in a very small number and not significant enough for the algorithm

to be able to properly train on them. This poses a false dilemma since

it is somehow an ill-posed problem and the per-class thruster AP scores a

bad result, which is reflected in the overall AP value. It is worth repeating,

however, that this is not due to the presence of the earth in the images, as the
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results on the other classes of objects and mAP demonstrate. It is therefore

safe to conclude that the results on a single satellite are not influenced by

the presence of the Earth in background.

It is interesting to verify if the same conclusion applies when dealing with

datasets in which the testing is performed on a satellite model different from

the other five used for the training. Therefore, a version of the datasets used

in Table 5.4 has been made with the Earth in background. The results are

shown in Table 5.6.

As it can be seen, differently from what happened with the single-model

datasets, the difference on the performance of the algorithm based on the

presence of the planet in the background is small but appreciable when test-

ing the network on a spacecraft model which was not included. This is

expected because the presence of the Earth makes the border of the objects

more difficult to be recognised with respect to when they are against a black

background, having some masks cover pieces of other parts of the spacecraft

too (see Fig. 5.5). The variation is in any case modest: in particular, when

testing on model D, the highest difference is registered on the engine recog-

nition, which suffers, even if to a smaller extent, of the same problem of the

thrusters since only half of the satellites models have clearly visible engines

and they are obviously not always in view in the image; nothing similar hap-

pens on Dataset 1 (the one testing on model A), where the results are much

closer to the case without the Earth, thus validating the reason here reported

for the mismatch in Dataset 2.

Finally, another test was made to assess the algorithm behaviour when

it is trained on a dataset without the Earth in background and tested on

a set with the planet, or viceversa. The results are shown in Table 5.7.

As expected, when training including the Earth and testing without it, the

results are almost in line with the ones obtained when training and testing
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Table 5.6: Results of the inference on a single model when training on all the other

five, with and without the Earth in background.

Dataset 1 is tested on model A and trained on the other five models;

Dataset 2 is tested on model D and trained on the other five models.

Dataset 1
no BG

Dataset 1
w/ BG

Dataset 2
no BG

Dataset 2
w/ BG

Object Detection

AP 42.95 41.68 61.43 57.86

AP-antenna 38.91 35.64 72.30 67.24

AP-body 15.92 14.29 62.61 65.40

AP-engine - - 42.06 32.55

AP-solarPanel 74.02 75.11 68.72 66.23

mAP 36.86 36.23 63.84 58.32

Instance segmentation

AP 45.41 44.03 55.90 48.86

AP-antenna 45.83 43.63 61.47 55.95

AP-body 9.01 7.21 58.16 51.11

AP-engine - - 43.26 30.86

AP-solarPanel 81.38 81.25 60.74 57.53

mAP 37.27 36.45 55.33 45.53
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Table 5.7: Results obtained when including the Earth in the training dataset and not

in the testing set, or vice versa.

Dataset 1 is tested on model A and trained on the other five models;

Dataset 2 is tested on model D and trained on the other five models.

Train with BG
Test without BG

Train without BG
Test with BG

Dataset 1 Dataset 2 Dataset 1 Dataset 2

Object Detection

AP 34.96 53.50 32.08 34.00

AP-antenna 17.35 66.76 34.54 47.42

AP-body 13.37 51.44 24.07 37.21

AP-engine - 31.47 - 13.33

AP-solarPanel 74.16 64.33 37.64 38.04

mAP 31.91 55.18 30.14 41.15

Instance segmentation

AP 36.89 48.82 35.51 27.79

AP-antenna 24.79 56.23 44.67 39.65

AP-body 8.96 47.11 16.85 28.75

AP-engine - 35.89 - 3.55

AP-solarPanel 76.93 56.06 45.00 29.22

mAP 31.24 45.93 28.28 30.79
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Figure 5.5: Images showing how the presence of the Earth in the background makes

instance segmentation less precise.

including the planet. The same is not true when training without the Earth

background and testing the network on images that include the planet. This

is clearly to be expected and it is simply due to the fact that the algorithm

has been tested on a dataset which is more complex than the one it has been

trained on.

Finally, Table 5.8 reports the results obtained when training and testing

on all the six satellites models and with the Earth in the background, con-

Table 5.8: Results obtained when training and testing on all the six models and with

the Earth in the background.

AP AP-antenna AP-body AP-engine AP-solarPanel mAP

bbox 59.16 73.83 80.42 60.18 81.53 74.36

mask 56.58 71.12 70.08 58.35 77.37 70.93

firming once again when compared to the results in Section 5.1 that, even if
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5.4. REAL LIFE APPLICATION

a small decrease in the performance is noticeable, the addition of the Earth

in the background does not represent a major challenge for the algorithm,

not in object detection nor in instance segmentation. Its effect is secondary

to the one due to the low number of engine instances present in the datasets.

5.4 Real life application

As it was highlighted from the very beginning, this work is targeted towards

a practical standpoint. Therefore, once it is verified that it performs well

even if it is not immune to the typical weak spots of a ANN, it is interesting

to check how it would perform in a number of real life situations.

5.4.1 Video and conditions dependence

A short video was produced recreating in Blender a trajectory for the cam-

era around the target that has the shape of a football orbit like the ones

introduced in Chapter 3. The video was then fed to the trained algorithm

to simulate a real-time recognition. Some of the frames from the video are

shown in Fig. 5.6 and show how, even if recognition is sometime uncertain,

there’s always a leg on the orbit for each object during which, being the

lighting conditions favourable, the object is recognised. While this may not

be enough for a proximity operation, it would be a sufficient requirement for

any preliminary inspection mission. This also give a suggestion for a follow-

up research which is illustrated in Chapter 6.

Furthermore, quantitative results are reported in Table 5.9. It can be seen

how these values are very high and this means that, although not being per-

fect, the prediction accuracy in the frames in which the satellite is not well

illuminated is appreciable, even if the algorithm was trained only on well lit

images. This is due to the fact that, thanks to the feature map extraction,

the CNN is able to recognise patterns which are less prominent to the human
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RESULTS

Figure 5.6: Frames from a video simulating a football orbit around the target spacecraft.

While recognition is not always possible, like for example when the spacecraft is in

shadow, there’s always at least a leg of the orbit when it performs well. In the sequence

it is clearly visible how inference results gradually improve as the chaser spacecraft

approaches a better point of view.
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mind.

Table 5.9: Results obtained when testing the algorithm on a video simulating a football

orbit around the target spacecraft.

AP AP-antenna AP-body AP-solarPanel mAP

bbox 83.25 93.44 75.00 81.30 84.91

mask 81.01 91.23 76.17 75.63 82.19

5.4.2 Gray scale images and pre-processing

In practice, most of the spacecrafts performing OOS would probably be

equipped with cameras, maybe IR cameras for example, only able to ac-

quire gray scale images. Trying to understand the feasibility of the JINS

approach when dealing with such kind of images is therefore relevant to the

current study.

An auxiliary script named rgb2GS.py was created: it uses the pillow

Python™ package to create grayscale copies of the datasets given as input.

Examples taken from the modified datasets are provided in Fig. 5.7.

When compared to the results in Table 5.6, the results in Table 5.10 demon-

strate how the algorithm is robust to the change of color encoding. This

validates further the possibility of using the approach in a real scenario.

Of even more interest are the results shown in Table 5.11. They are obtained

training the neural network on colored images of model A, B, C, E and F and

testing on grayscale images of model D. As it can be seen, there is no signif-

icant difference with the results reported in Table 5.10 for the full grayscale

version of the same dataset. This is due to the intrinsic working principles of

the CNNs, since the feature maps highlight patterns that are not the same

which a human typically cares about such as colors.
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Figure 5.7: Examples of the output from the rgb2GS.py script, which creates

grayscale versions (on the right) of the images provided as input (on the left).
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5.4. REAL LIFE APPLICATION

Table 5.10: Results obtained when training and testing the algorithm on grayscale

images.

Dataset 1 is tested on model A and trained on the other five models;

Dataset 2 is tested on model D and trained on the other five models.

Dataset 1 Dataset 2

Object Detection

AP 43.60 57.19

AP-antenna 23.83 70.23

AP-body 30.45 57.22

AP-engine - 34.97

AP-solarPanel 76.52 66.35

mAP 39.23 58.94

Instance segmentation

AP 48.36 53.12

AP-antenna 34.78 65.04

AP-body 27.56 53.53

AP-engine - 37.36

AP-solarPanel 82.74 56.78

mAP 39.11 53.41

Table 5.11: Results obtained when testing the algorithm on grayscale images of model

D and training on coloured images of the other five models.

AP AP-antenna AP-body AP-engine AP-solarPanel mAP

bbox 59.50 70.60 56.92 41.53 68.97 59.89

mask 54.30 65.19 51.18 42.78 58.05 54.16
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5.4.3 Real images: Intelsat 901

As a last validation step, the algorithm trained on synthetically generated

images datasets has been tested on images of a real world mission to verify if

it is actually useful. A test dataset was created taking real images from the

Intelsat 901 mission.

IS-901 is a telecommunication satellite launched in 2001 which was approach-

ing its end of life due to the fuel consumption. In February 2020 another

spacecraft, the Mission Extension Vehicle-1 (MEV-1) rendezvoused and docked

with the Intelsat-901 to extend its operational lifespan by performing station-

keeping for the aging satellite. This was the first mission of this kind and the

chaser spacecraft took some photos while approaching the target. These are

shown in Fig. 5.8 and were used to test the efficiency of the JINS approach

and how the choice of the training dataset may impact the performance (since

the images are very low quality, they actually present some shades and rings

in the regions where they seem to be black). 5

Since it was shown that good results are obtained on grayscale images

even if the network is trained on coloured images, the training dataset in-

volving all of the six satellites and the Earth background was first used eval-

uated. The results in Fig. 5.9 demonstrate an optimal performance since, in

spite of the low quality of the images, the network is capable of recognising

almost perfectly every part of the spacecraft.

The same has been done training the algorithm on a grayscale dataset

without the Earth background. The results, shown in the left column of

Fig. 5.10, are very poor and this is both because of the artefacts of the original

image (halos, rings, shades, etc.) - which the grayscale training is not robust

to since those are spurious variations in the gray scale themselves and cause

border effects - and because the Earth closely resembles the antennas and

5The images were manually annotated using the COCO Annotator software [37].

86



5.4. REAL LIFE APPLICATION

Figure 5.8: Images from the Intelsat-901 rendezvous.
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Figure 5.9: Results of the inference on the images from the Intelsat-901 rendezvous

when the algorithm is trained on coloured images of all the satellites model with the

Earth in background.
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5.4. REAL LIFE APPLICATION

can easily be mistaken for one of them if the algorithm is not trained to

recognise it.

Being highly probable that the problem was indeed the one just mentioned,

the idea has been trying to improve the quality of the original pictures before

the inference. The threshold function of the cv2 Python™ package was

used to get rid of the strange halos and shades. It can be used with an option

that, setting a threshold for the grayscale value, leaves unaltered the pixels

with an higher value than the threshold and sets to 0 (completely black) the

value of the pixels below the threshold. In this way, the light gray shades

that were present in the original images are substituted by completely black

patches and this greatly increases the performance of the algorithm since it

limits the boundary effects at the borders of the objects. However, the Earth

is still mistaken for something else and not accurately rejected like it happens

when it is included in the training dataset.

So, it has been shown that the synthetic dataset generation approach

exploited in JINS is perfectly capable of being applied in real world scenarios,

provided that a relevant dataset is used or that raw images are pre-processed

to overcome potential difficulties.

89



RESULTS

Figure 5.10: Results of the inference on the images from the Intelsat-901 rendezvous

when the algorithm is trained on grayscale images of all the satellites model without

the Earth in background. On the left, the results when the inference is run on the

original images, on the right the ones after the threshold operation.
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Chapter 6

Conclusions and further studies

How Convolutional Neural Networks and instance segmentation can be used

to perform satellite features recognition in the framework of an inspection

mission around a non-cooperative RSO has been demonstrated in the present

work. In particular, after introducing some theoretical concepts about Arti-

ficial Neural Network and naturally repeating relative orbits, the possibility

of generating artificial datasets to be used for the training of such algorithms

has been evaluated together with its performance in real life applications.

To this aim, a new software, called Jins Is Not a Simulator (JINS), has been

developed, which takes care of generating an arbitrary amount of suitable

training and testing images with minimum intervention by the user.

To author’s knowledge, nothing similar has been done to-date in the field

and the current study is proposed as a new research branch aimed at com-

plementing the works on autonomous satellite navigation: for example, the

recognition of typical satellite features, such as solar panels, could be ex-

ploited to improve the performance of autonomous navigation algorithms,

providing a new instrument for the determination of the attitude of the tar-

get object or data useful for the planning of the ensuing manoeuvres.

Results have shown how performances are on par with those reported in

the literature and, moreover, instance segmentation algorithms trained on
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such synthetic datasets have also shown to be effective in recognising objects

in images from the real mission Intelsat 901.

The convenience of the proposed approach lies in the ability to automate

the dataset generation and the possibility to tailor the learning process on a

specific satellite in case the mission is specifically targeted on it. The only

limitations of the method have shown to be those intrinsic to the machine

learning algorithms used (which are anyway being constantly improved in

their baseline performances) and those linked to the necessity of choosing

a proper training dataset or adequately pre-processing the real images if

necessary in order to have good results on a real mission.

Finally, being such a new take on the subject, many possible advance-

ments come to mind. Among them:

• improving the results by performing a better refinement of the training

process (change learning rate, optimise hyperparameters etc);

• using data augmentation and including real images in the train dataset

in order to improve performances;

• turning JINS in a full fledged simulator: using a better model for the

Earth, implementing the ability to recreate the real dynamics of the

spacecraft motion based on initial conditions and ephemerides, giving

the option to create an image based on an input date, etc;

• using Recurrent Neural Networks (RNNs) instead of Convolutional

Neural Networks (CNNs) when applying the method in real missions.

During the mission, the images taken in sequence will reveal the evo-

lution of the target position due to the relative motion of the chasing

spacecraft and the tumbling attitude of the object. Therefore, an im-

provement in performance is expected by using a RNN since this kind

of algorithms is capable of analysing the temporal sequence of images
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rather than the single frame one by one, thus exploiting information

and results from multiple previous images to refine the inference on the

latest one;

• verifying if “bones” in Blender can be used to create ground truth that

could be used for pose estimation;

• implementing the inferring algorithm on a Raspberry Pi board in order

to demonstrate its low computational footprint.
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