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1. Introduction

In the last years, renewable energy has spread
more and more inside the grids of every coun-
try. Their huge increase is expected to miti-
gates many important problems of our society
like climate change, energy security and envi-
ronmental sustainability. While the increase in
the use of renewable energy contributes to reduc-
ing greenhouse gas emissions and thus mitigat-
ing climate change, the increasing penetration of
renewable energy in the national electric systems
has brought many challenges to be addressed in
the future as:

• Voltage Control

The RES can be installed only where the
natural resources, exploited for energy pro-
duction, are available. In this condition,
the main demanding centre could be far
from the renewable generating units and
this could lead to the inversion of the power
�ow in some lines of the distribution net-
work causing congestion and voltage control
issues.

• Flexibility of the plants

Most of the RES generation are character-
ized by uncertainty, unpredictability and
variability; therefore, the �exibility of the
plants becomes one of the most important

features of the modern power plants.
• System security

Any power imbalance in the grid involves
dangerous frequency excursion that, with-
out any security systems, could be catas-
trophic for the entire grid. Usually, the
power imbalances are damped by the iner-
tia of the rotary machines connected to the
grid, but it decreases when wind and photo-
voltaic generators are connected to the grid.
This is because RES are decoupled from the
grid by converters and do not provide di-
rectly rotational inertia.

The main aim of this work is focused on this last
problem related to the di�usion of the RES gen-
eration.
With a continuous monitoring of the inertia level
of the system, it is possible to understand when
the system is in a dangerous situation and to
start compensate it.
Nowadays, for the measurements of the sys-
tem we can exploit the Phasor Measurement
Unit (PMU). PMUs are devices able to acquire
measurements voltages and current phasors of
a three-phase network in a synchronized way
with a reporting maximum frequency of typi-
cally 30�60 samples per seconds [8]. About 10
years ago the commercial PMUs were very ex-
pensive (reported as costing $40000 to $180000
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in 2014, [7]) and this aspect was very limiting
for a real application, but the continuous de-
velopment of this technology has lead to a sen-
sible reduction of the PMUs's price. In the
last years, low-cost PMU are being developed
and the cost of developed prototypes is very low
about 110e[5].
The new features in real-time measurements of
the PMUs merged with the huge decrease in the
price of this technology open the possibility of a
true application of the methods exposed in this
work.

2. Power system stability

A power system is an electrical network whose
main function is to supply the loads through the
energy that is transmitted and distributed from
the generation units. Traditionally, the power
was produced by big thermal or hydraulic gen-
eration units and then was converted and carried
directly to the load sites. In this condition the
power �ow was unidirectional from the generator
to the load and the system was de�ned central-

ized. In the last 15 year, the massive increase of
the installed capacity of RES has modi�ed the
operation of the transmission and distribution
grid. In particular, the distribution system is
designed to distribute energy from upstream to
downstream. With the advent of the RES, the
distribution network reaches not only loads but
also generators, which means that power �ows in
this new scenario are bidirectional and no longer
unidirectional.
The bi-directionality of power �ows has changed
many of the logic initially used to operate the
distribution networks. This change is due not
only to the single big renewable generation units
but also to the overall e�ect of all small renew-
able generation units of individual users. This
new concept of the system is called distributed

system. The traditional power systems were
based on operating at synchronous speed. Any
time in the system there is a power imbalance
between the mechanical power of the generating
unit's shaft and the electrical power absorbed
by the loads the system experiences a perturba-
tion of the synchronous speed. The relationship
between the power imbalance and the changing
of the synchronous speed can described by the

equation of motion for a generator [6]

J
dωm

dt
= Ta = Tm − Te (N ·m) (1)

Another fundamental equation is the swing
equation. To obtain the swing equation we
have to start from the Equation 1. After some
computation is possible to reach the Equation
2 commonly referred to as the swing equation
because it represents swings in rotor angle δm
during disturbances.

2H

ωsm

dωm

dt
∼= (Pm − Pe −D(ωm − ωsm))

1

Anom
(W )

2H

ωs

dω

dt
∼= pm − pe −

D

Anom
(ω − ωs) (p.u.) (2)

The swing equation is the basic equation that
drives the motion of the rotor of a generator and
links its dynamic behaviour with the working
frequency of a synchronous machine.
Systems in which many generators and loads
are interconnected by tie-lines are called multi-

machine systems. In these systems, the Equa-
tion 2 can be used to describe the dynamic of
each one of the k machines of the system [1].
The general set of the k equation, neglecting the
damping for the sake of simplicity, appears as

2
ωs
H1Anom,1

dω1
dt

∼= P1,m − P1,e (W )
2
ωs
H2Anom,2

dω2
dt

∼= P2,m − P2,e (W )
...
2
ωs
HkAnom,k

dωk
dt

∼= Pk,m − Pk,e (W )

(3)

A common transformation used to study the
multi-machine dynamic models is the center-of-
inertia (COI) reference. The equivalent motion
equation of a multi-machine system expressed
with respect to its COI reference is given by

2HCOI

ωs

dωCOI

dt
∼= peq,m − peq,e (p.u.) (4)

3. Determination of the Power

System Inertia

3.1. Sparse identi�cation of nonlinear
dynamics (SINDy)

The sparse identi�cation of nonlinear dynamics
(SINDy) algorithm is a �exible method which is
used to discover linear and nonlinear dynamic
system models from data.
The increase of the available data, due to the
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lower cost of the sensor, together with the
increase of computation power and data storage
of our devices allow us to obtain a proper
environment for the application of the SINDy
algorithm.
The SINDy algorithm bypasses the intractable
combinatorial search through all possible model
structures, leveraging on the fact that many
dynamic systems have dynamics with only a few
active terms in the space of possible righthand
side functions [2].

3.2. Application of SINDy to a
generic nonlinear
dynamic system

If we consider a generic nonlinear dynamic sys-
tem [2]

d

dt
vT (t) = v̇T (t) = fT (v(t)) (5)

The column vector v(t) represents the n state
of the system at time t, and the nonlinear func-
tion f(v(t)) represents the dynamic constraints
that de�ne the equations of motion of the system
[3]. To determine the function f from data, we
collect a time-history of the state v(t) and we ei-
ther measure the derivative v̇(t) or approximate
it numerically from v(t). The data is sampled
at several times t1, t2, . . . , tm and arranged
into two large matrices V and V̇.
Starting from a vector of possible non lin-
ear functions θ(v(t))(m×c), where c de�nes the
number of columns of θ (v(t)) that cannot be
uniquely de�ned, since they depends by the dif-
ferent nonlinear functions inserted in the vector.
A matrixΘ(V)may be constructed, considering
the vector θ (v(t)) in each one of the m instants
of time:

Θ (V) =


θ(v(t1))
θ(v(t2))

.

.

.

θ(v(tm))


(m×c)

(6)

Each column of θ(v) represents a candidate
function for the right hand side of Equation 5.
Note that θ(v(t)) is a vector of non linear func-
tions of v(t), as opposed to Θ (V), which is a
data matrix.
The entries in the matrix of nonlinearities are
built with great freedom. Since only a few of
these nonlinearities are active in each row of f ,

it is possible to set up a sparse regression prob-
lem to de�ne the sparse vectors of the coe�cients
Ξ = [ξ1 ξ2 · · · ξn] that determine which non-
linearities are active.
The dynamic system in Equation 5 can now be
represented in terms of data matrices as:

V̇ = Θ(V)Ξ (7)

Each column ξk in Ξ is a vector of unknowns
determining the active terms in the k-th
equation of the Equation 5 and can be found
using a convex l1-regularized sparse regression
algorithm as:

ξk = argmin
ξ
′
k

∥V̇k −Θ(V)ξ
′

k∥2 + λ∥ξ
′

k∥1 ∀k (8)

where V̇k is the k-th column of V̇, and λ is
called sparsity-promoting knob.
A parsimonious model will provide an accurate
model �t in Equation 7 with as few terms as
possible in Ξ. The algorithm used in SINDy for
the estimation of the few active terms present
in the matrix Ξ is the Sequentially thresholded
least-squares algorithm (STLS) analyzed more
in depth in Subsection 3.3. Once Ξ has been
determined, a model of each of the governing
equations in the Equation 5 may be constructed
as follows:

v̇k = θ(vk)ξk (9)

The result of the SINDy regression is a parsi-
monious model that includes only the most im-
portant terms required to explain the observed
behaviour.

3.3. Sequentially thresholded least-
squares algorithm (STLS)

The STLS, given a parameter λ that speci�es
the minimum magnitude for a coe�cient in
Ξ, perform a least squares �t and then zero
out all coe�cients with magnitude below the
threshold. [4]
In particular, if we want to solve the Equation
7 with respect to Ξ, the result is an over�tted
matrix in which it is di�cult to identify the
true active terms for the reconstruction of
the dynamic behaviour of the system. For
this reason, we start a sequential method that
allows to increase the sparsity of the matrix Ξ
repeating the same procedure for k times.
In every repetition the terms of the matrix Ξ
that respect this relationship |ξk|<λ are set
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equal to zero.
The sparsi�cation knob allows to identify a
threshold under which the algorithm sets the
term ξk equal to zero.
Then, we exclude from the matrix Θ (V) the
term whose results is a term ξk considered
negligible and �xed equal to zero.
Finally, the matrix Ξ is recomputed with the
new matrix Θ (V).
This process of �tting and thresholding is
performed until convergence.
The convergence is reached when the sparsity
of the matrix doesn't change between two
consecutive iterations. Usually, ten iterations
are enough to achieve convergence.

3.4. Application of SINDy for the es-
timation of the power system in-
ertia

If we consider to have the possibility of measure
the value over time of system variables, we can
de�ne the matrices X(m×n),Y(m×n),Z(m×n) in
which each column is related to a machine of
the studied electric system.
Where:
• X = matrix of the electromagnetic power
in MW over the time t in each machine

• Y = matrix of the angular velocity of the
rotor in rad/s over the time t in each ma-
chine

• Z=matrix of the mechanical power inMW
over the time t in each machine

• n = number of variables measured for that
speci�c quantity

• m= number of measurement made for each
speci�c variables

The relationship between these three matrices
can be expressed using the Equation 2 and it
results as

2H

ωs
Anom

dY

dt
∼= Z−X−D(Y − ωs) (MW )

(10)

If we elaborate the Equation 10, in order to
obtain an equation with the same shape of

Equation 5, the result is

dY

dt
∼=

ωs

2H

1

Anom
(Z−X−D (Y − ωs)) (rad/s2)

∼=
ωs

2H

1

Anom
(Dωs −X−DY + Z) (rad/s2)

(11)

Where the matrix Ẏ is the matrix which holds
time derivative computed and obtained using
the fourth-order centered di�erence approxima-
tion.
Starting from the vector θ(t) of the functions
present in the Equation 2, a matrix Θ is built
considering the vector θ(t) in each one of the m
instants of time:

Θ(W) =


θ(t1)
θ(t2)

.

.

.

θ(tm)


(m×(3n+1))

= [1 X Y Z](m×(3n+1))

= [1 W](m×(3n+1))

(12)

where the symbol W de�nes the matrix of the
measurements.
In matrix Θ (W) the terms corresponding to
polynomial terms with order higher than one
and any other function is not considered, since
they do not appear in the Equation 11.
The Equation 11 can now be represented in
terms of data matrices as:

Ẏest = Θ (Y)Ξ (13)

The non-zero elements ξ of the matrix Ξ are
corresponding to the active terms of the right
side of the Equation 11.
Each column ξk in Ξ is a vector of coe�cients
determining the active terms in the k-th dif-
ferential equation in Equation 11 and can be
found using a a convex l1-regularized sparse
regression algorithm as:

ξk = argmin
ξ
′
k

∥Ẇk −Θ(Y)ξ
′
k∥2 + λ∥ξ′

k∥1 (14)

Ideally, once the sparse regression problem is
solved, the matrix Ξ becomes very sparse and
it can be expressed as

Ẏest = [1 X Y Z](m×(3n+1))Ξ(3n+1)×n (15)
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However, is very common obtain higher number
of non-zero terms in the Ξ, due to errors during
the sparse regression problem. Since the Equa-
tion 15 approximates the matrix Ẏ, the follow-
ing equality can be de�ned as

Ẏ ∼= Ẏest (16)

Then, if we only consider the terms related to
the 1-st machine for the sake of simplicity, the
Equation 16 becomes

ωs

2H1

1

Anom,1
[Dωs − x1(t)−Dy1(t)+z1(t)] ∼= Ẏ1,est

(17)

where the matrix Ẏ1,est appear as:

Ẏ1,est = [1 X Y Z]



ξ1,k
ξ1,x1

0
...
0

ξ1,y1

0
...
0

ξ1,z1
0
...
0


Then, it is possible to correlate the terms of the
matrix Ξ with the constant terms that multiply
the vectors x1(t), y1(t), z1(t) in the Equation
17

ξ1,k =
ωs

2H1

1

Anom,1
D ωs

ξ1,x1 = − ωs

2H1

1

Anom,1

ξ1,y1 = − ωs

2H1

1

Anom,1
D

ξ1,z1 =
ωs

2H1

1

Anom,1

(18)

(19)

(20)

(21)

The same procedure can be repeated for each
machine of the system.
The estimated inertia value can be extracted
from the active terms of the vector ξk through

these computations:

H1 =
ωsm

2ξ1,k

1

Anom,1
D ωsm

H1 = − ωsm

2ξ1,x1

1

Anom,1

H1 = − ωsm

2ξ1,y1

1

Anom,1
D

H1 =
ωsm

2ξ1,z1

1

Anom,1

(22)

(23)

(24)

(25)

3.5. Division of the machine
dynamics

From the Equation 11 and the Equation 12 pre-
viously de�ned in the Section 3.4 it is possible
to delineate a di�erent method in which the dy-
namic of a single machine is studied individually.
Considering in the vector θ(t) the functions re-
lated to a single machine, it is possible to solve
many smaller problems, instead of one large
problem.
The vector θj(t) of a generic j -th machine result
as

θj(t) = [1 xj(t) yj(t) zj(t)](1×4) (26)

In the same way done in previous sections, a
matrix Θ is built considering the vector θj(t) in
each one of the m instants of time:

Θj(w) =

 θj(t1)
θj(t2)

.

.

.

θj(tm)


(m×4)

= [1 xj(t) yj(t) zj(t)](m×4)

= [1 w](m×4) (27)

where the symbol w de�nes the matrix of the
measurements related to a single machine.
Instead, the time derivative vector of a generic
machine j-th can be represented considering the
j-th column of in matrix Ẏ. The dynamics of a
j-th machine can be represented in term of vector
product as

ẏj,est(t) = Θjξj (28)

The elements of the vector ξj are the active
terms corresponding to the terms of the right
side of the Equation 11 take into account only
the equation of the j-th machine .
In this case we know that each term of the vec-
tor ξj must be di�erent from zero, since all are
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present in the Equation 11 related to a generic
j-th machine.
The SINDy algorithm exploit a sequential sparse
regression and optimization process performing
the STLS.
This process is used to increase the sparsity of
the matrix Ξ providing a better estimation of
active terms related to the matrix Θ and �xing
to zero the elements not present in each one of
the equations studied.
Nevertheless, in this case is possible to reduce
the computation burden avoiding the use of a
sequential method, since we don't need to in-
crease the sparsity of the vector ξj .
Therefore, the elements of the vector ξj can be
computed using a simpler algorithm. In this
work we test some algorithm already provided
by the software MATLAB such as:
• mldivide:
• Moore-Penrose pseudoinverse
• Fit robust linear regression
• Singular value decomposition
• Least Absolute Shrinkage and Selection Op-
erator (LASSO)

Once the elements of the vector ξj are deter-
mined, taking into account that
Equation 28 approximates the j-th column of the
matrix Ẏ, the following equality can be de�ned

ẏj(t) ∼= ẏj,est(t) (29)

Then, the Equation 29 can be represented as

ωs

2Hj

1

Anom,j
[Dωs − xj(t)−Dyj(t)+zj(t)] ∼= ẏj,est(t)

(30)

Finally, it is possible to correlate the terms of the
vector ξj with the constant terms that multiply
the vectors xj(t), yj(t), zj(t) in right side of the
Equation 30

ξj,k =
ωs

2Hj

1

Anom,j
D ωsm

ξj,x = − ωs

2Hj

1

Anom,j

ξj,y = − ωs

2Hj

1

Anom,j
D

ξj,z =
ωs

2Hj

1

Anom,j

(31)

(32)

(33)

(34)

The estimated inertia value can be extracted
from the active terms of the vector ξj through

these computations:

Hj =
ωs

2ξj,k

1

Anom,j
D ωs

Hj = − ωs

2ξj,x

1

Anom,j

Hj = − ωs

2ξj,y

1

Anom,j
D

Hj =
ωs

2ξj,z

1

Anom,j

(35)

(36)

(37)

(38)

The same procedure can be repeated for each
machine of the system.

3.6. Moving window method for a
real time estimation

The application of this method requires the
measurements of electric power and frequency
and the computation of the frequency deriva-
tive. The following step is the identi�cation of
a time window that de�nes a small part of the
variable trends where to apply the algorithm
studied in Section 3.5 and Section 3.4. In this
work, each time windows is assumed to be of 5
s large.
Then, iterating this process moving the time
window one second ahead, is possible to obtain
the trend of the inertia in real-time estimated
every second. The obtained values of inertia
are assigned to the end of the time window
considered. For example, the inertia value
estimated using the time window 0 s - 5 s is
assigned to the instant 5 s.

4. Performed tests and

Numerical results

In this chapter are reported the application of
the method exposed in the previous chapters and
the numerical results obtained.
Theoretically, the value of inertia can be com-
puted starting form one of these variables: ξk,
ξx, ξz, ξz.
However, in every test of this chapter only the
variable ξx were used for the estimation. Due
to the fact that the computation using the vari-
able ξz is not feasible in a real application since
is impossible measure the mechanical power (z),
while the calculation using the variables ξk and
ξy are a�ected by the variable D.
The value of D is di�cult to be identi�ed in a
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precise way, therefore also the value of the vari-
ables ξk and ξy will not be precise.
The di�erent tests performed and the most sig-
ni�cant result obtained are listed below:
• Test 1: Application of SINDy
◦ Simulation 1:
SINDy algorithm is applied in an ideal con-
dition with a single time windows of 30 s to
estimate the inertia of each of machine of the
system.

◦ Simulation 2:
SINDy algorithm is applied for the inertia es-
timation in the moving window method to
estimate the equivalent inertia of two areas.
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Figure 1: Test 1 - Simulation 2 - Inertia trend
of Area 1 and Area 2

• Test 2: Removal of mechanical power
◦ Simulation 1:
Comparison of the application of the moving
window method considering or not the me-
chanical power variables in the inertia esti-
mation, during the opening of the
line 1.
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Figure 2: Test 2 - Simulation 1 - Inertia trend
of Area 1 and Area 2

◦ Simulation 2:
Comparison of the application of the moving

window method considering or not the me-
chanical power variables in the inertia esti-
mation, during the opening of the
line 8.

• Test 3: MATLAB algorithms comparison
◦ Simulation 1:
The algorithms listed in Section 3.5 are ap-
plied to estimate the inertia of each machine
of the system, considering an ideal condition
with a single time windows of 30 s.

◦ Simulation 2:
The algorithms listed in Section 3.5 are ap-
plied for the inertia estimation in the moving
window method to estimate the equivalent in-
ertia of two areas.

• Test 4: Opening of a line
◦ Simulation 1:
Moving window method to estimate the
inertia trend during the opening of the line 1
is applied.
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Figure 3: Test 4 - Simulation 1 - Inertia trend
of Area 1 and Area 2

◦ Simulation 2:
Moving window method to estimate the
inertia trend during the opening of the line 8
is applied.

• Test 5: Trig of a load
◦ Simulation 1:
Moving window method to estimate the
inertia trend during the trig and reclosure of
load 7 is applied.

◦ Simulation 2:
Moving window method to estimate the
inertia trend during the trig and reclosure of
load 9 is applied.

• Test 6: Short-circuit at a bus
◦ Simulation 1:
Moving window method to estimate the
inertia trend during a short-circuit at the bus
5 is applied.

◦ Simulation 2:
Moving window method to estimate the
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inertia trend during a short-circuit at the bus
10 is applied.

• Test 7: Increased sensitivity of the PMUs
◦ In this test, we perform a single simulation
in which the same computation of Test 4 are
performed increasing the sensitivity of the
PMUs.

0 5 10 15 20 25 30 35 40 45 50 55 60

time [s]

-80

-60

-40

-20

0

20

40

60

In
e

rt
ia

 [
s
]

Inertia Area 1

In
fi
n

it
e

 v
a

lu
e

s

True Value

0 5 10 15 20 25 30 35 40 45 50 55 60 65

time [s]

10

20

30

40

50

60

In
e

rt
ia

 [
s
]

Inertia Area 2

In
fi
n

it
e

 v
a

lu
e

s

True Value

Figure 4: Test 7 - Inertia trend of Area 1 and
Area 2

5. Conclusions and future

developments

This thesis proposed a moving windows method
exploiting di�erent algorithms to estimate the
inertia of the system, to increase system aware-
ness. The conclusion highlighted in these tests
is that is possible to identify the inertia of the
system immediately after a perturbation, for a
few times, before the estimation tends to in�-
nite. Moreover, we prove that a possibility to
increase the time in which the inertia converges
to the theoretical value is to increase the PMUs
sensitivity.
This thesis studies a possible solution of a small
part of the great goal to be able to estimate the
inertia of the system in every instant of time.
To reach this goal there are many aspects still
to study such as:
• Real measurement:
The measurements used for the application
of the exposed method are ideal. The real
measurement is characterized by measure-
ment errors and noise that can negatively
impact the estimation.

• Increase of the equivalent area consid-

ered:
The increase of the equivalent area consid-
ered could be problematic. Since, as the
dimension of the equivalent area increases
the frequency oscillation after a perturba-
tion decreases. When the oscillation of fre-
quency becomes less than the sensitivity of

the PMUs the changes in the system are not
detected by the PMUs.

• Synthetic inertia monitoring:
The estimating system should consider also
the presence of the synthetic inertia

• Better algorithm for the estimation:
The study around new data-driven algo-
rithms are several and many of these are
not been tested for the inertia estimation.
An algorithm more robust and with a less
computational burden always improves the
real-time estimation performance.

The reaching of all these goals opens a serious
possibility to permit the estimation of the inertia
of the system during every perturbation of the
system.
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