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Abstract

This thesis focuses on the following question: is it possible to influence
the behavior of self-interested agents through the strategic provision of in-
formation? This ‘sweet talk’ is ubiquitous among all sorts of economics
and non-economics activities. In this thesis, we model these multi-agent
systems as games between an informed sender and one or multiple re-
ceivers. We study the computational problem faced by an informed sender
that wants to use his information advantage to influence rational receivers
with the partial disclosure of information. In particular, the sender faces an
information structure design problem that amounts to deciding ’who gets
to know what’.

Bayesian persuasion provides a formal framework to model these set-
tings as asymmetric-information games. In recent years, much attention has
been given to Bayesian persuasion in the economics and artificial intelli-
gence communities due also to the applicability of this framework to a large
class of scenarios like online advertising, voting, traffic routing, recommen-
dation systems, security, and product marketing. However, there is still a
large gap between the theoretical study of information in games and its ap-
plications in real-world scenarios. This thesis contributes to close this gap
along two directions. First, we study the persuasion problem in real-world
scenarios, focusing on voting, routing, and auctions. While the Bayesian
persuasion framework can be applied to all these settings, the algorithmic
problem of designing optimal information disclose polices introduces com-
putational challenges related to the specific problem under study. Our goal
is to settle the complexity of computing optimal sender’s strategies, show-
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ing when an optimal strategy can be implemented efficiently. Then, we
relax stringent assumptions that limit the applicability of the Bayesian per-
suasion framework in practice. In particular, the classical model assumes
that the sender has perfect knowledge of the receiver’s utility. We remove
this assumption initiating the study of an online version of the persuasion
problem. This is the first step in designing adaptive information disclosure
policies that deal with the uncertainty intrinsic in all real-world applica-
tions.
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CHAPTER1
Introduction

This thesis considers the following question: is it possible to influence the
behavior of self-interested agents through the strategic provision of infor-
mation? This ‘sweet talk’ is ubiquitous among all sorts of economic activi-
ties, and it was famously attributed to 30 per cent of the GDP in the United
States (Antioch et al., 2013). Moreover, information is the foundation of
any democratic election, as it allows voters for better choices. In many
settings, uninformed voters have to rely on inquiries of third party entities
to make their decision. With the advent of modern media environments,
malicious actors have unprecedented opportunities to garble this informa-
tion and influence the outcome of the election via misinformation and fake
news (Allcott and Gentzkow, 2017). Reaching voters with targeted mes-
sages has never been easier. As another example, consider a multi-agent
routing problem in which agents seek to minimize their own costs selfishly.
In real-world problems, the state of the network may be uncertain, and not
known to its users (e.g., drivers may not be aware of road works and ac-
cidents in a road network). A central authority or a navigation app may
mitigate inefficiencies and reduce the social cost providing players with
partial information about the state of the network.

Bayesian persuasion (Kamenica and Gentzkow, 2011) provides a frame-
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Chapter 1. Introduction

work to model the problem faced by an informed sender trying to influence
the behavior of self-interested receivers. In particular, the sender faces an
information structure design problem which amounts to deciding ’who gets
to know what’ about some exogenous parameters collectively termed state
of nature. Since the seminal work of Kamenica and Gentzkow (2011),
a large attention is been given to the Bayesian persuasion framework in
the economics and artificial intelligence community due also to the appli-
cability of this framework to a large class of scenarios like online adver-
tising (Bro Miltersen and Sheffet, 2012; Emek et al., 2014; Badanidiyuru
et al., 2018), voting (Alonso and Câmara, 2016; Cheng et al., 2015), traf-
fic routing (Vasserman et al., 2015; Bhaskar et al., 2016), recommendation
systems (Mansour et al., 2016), security (Rabinovich et al., 2015; Xu et al.,
2016b), and product marketing (Babichenko and Barman, 2017; Cando-
gan, 2019). However, there is a still large gap between the theoretical study
of information in games and its applications in real-world scenarios. This
thesis contributes to close this gap along two directions. First, we study
the Bayesian persuasion framework in real-world scenarios, focusing on
voting, routing, and auctions. While the Bayesian persuasion framework
can be applied to all these settings, the algorithmic problem of designing
optimal information disclose polices introduces computational challenges
related to the specific problem under study. Then, we relax stringent as-
sumptions that limit the applicability of the classical bayesian persuasion
framework in practice. In particular, one of the most limiting assumption
is, arguably, that the sender is required to know the receiver’s utility func-
tion to compute an optimal signaling scheme. We remove this assumption
by studying a repeated Bayesian persuasion problem in an online learning
framework where, at each round, the receiver’s type is adversarially cho-
sen from a finite set of types. This is the first step in designing adaptive
information disclosure policies that deals with the uncertainty intrinsic in
all real-world applications.

1.1 The Bayesian Persuasion Framework

Bayesian persuasion (Kamenica and Gentzkow, 2011) studies the problem
faced by an informed agent (the sender) trying to influence the behavior
of other self-interested agents (the receivers) via the partial disclosure of
payoff-relevant information. Agents’ payoffs are determined by the actions
played by the receivers and by an exogenous parameter represented as a
state of nature, which is drawn by a known prior probability distribution
and observed by the sender only. The sender commits to a public random-
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1.2. Original Contributions

ized information-disclosure policy, which is customarily called signaling
scheme. In particular, it defines how the sender should send signals to the
receivers. Depending on the application various types of signaling schemes
have been introduced to represent the possible communication constraints
between the sender and the receivers. In a private signaling scheme, the
sender can use a private communication channel per receiver, in a public
signaling scheme the sender can use a single communication channel for
all the receivers, while in Chapter 6 we introduce semi-public signaling
schemes in which the sender can use a single communication channel for a
subset of the receivers.

Arguably, one of the most severe obstacle to the application of the classi-
cal bayesian persuasion model by Kamenica and Gentzkow (2011) to real-
world scenarios is that the sender must know exactly the receiver’s utility
function to compute an optimal signaling scheme. This assumption is un-
reasonable in practice. However, only recently some works tries to relax
this assumption. In particular, Babichenko et al. (2021) study a game with a
single receiver and binary-actions in which the sender does not know the re-
ceiver utility, focusing on the problem of designing a signaling scheme that
perform well for each possible receiver’s utility. Zu et al. (2021) relax the
perfect knowledge assumption, assuming that the sender and the receiver
do not know the prior distribution over the states of nature. They study
the problem of computing a sequence of persuasive signaling schemes that
achieve small regret with respect to the optimal signaling scheme with the
knowledge of the prior distribution. In this thesis, we follow a different ap-
proach and we deal with uncertainty about the receiver’s utility by framing
the Bayesian persuasion problem in an online learning framework.

1.2 Original Contributions

The goal of this thesis is to advance the state of the art on algorithmic
Bayesian persuasion along two directions. First, we study Bayesian per-
suasion in games with structure, focusing on voting, routing, and auctions.
Then, we initiate the study of Bayesian persuasion with payoff uncertainly.
In the remaining of this section, we survey the original contributions of this
thesis.

1.2.1 Exploiting the Problem Structure

In the first part of the thesis, we study persuasion in games with structure
with a particular focus on voting scenarios. Information is the foundation
of any democratic election, as it allows voters for better choices. In many
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settings, uninformed voters have to rely on inquiries of third party entities
to make their decision. For example, in most trials, jurors are not given
the possibility of choosing which tests to perform during the investigation
or which questions are asked to witnesses. They have to rely on the pros-
ecutor’s investigation and questions. The same happens in elections, in
which voters gather information from third-party sources. Hence, we pose
the question: can a malicious actor influence the outcome of a voting pro-
cess only by the provision of information to voters who update their beliefs
rationally? We study majority voting, plurality voting and district-based
elections, showing a sharp contrast in term of efficiency in manipulating
elections and computational tractability between the case in which private
signals are allowed and the more restrictive setting in which only public
signals are allowed. In particular, we show that it is possible to compute
an optimal private signaling scheme in polynomial time in all the elections
that we considered, while the problem of approximating the optimal pub-
lic signaling scheme is NP-hard even for majority voting. Moreover, we
show that, assuming the Exponential Time Hypothesis (ETH), the problem
of approximating the optimal public signaling scheme in majority voting
requires quasi-polynomial time even relaxing persuasiveness. In doing so,
we provide some insights on the complexity of general persuasion prob-
lems, such as the characterization of bi-criteria approximations in public
signaling problems.

Then, we explore how information can be used to reduce the social cost
in multi-agents systems, focusing on routing games. In particular, we study
Bayesian games with atomic players, where network vagaries are modeled
via a (random) state of nature which determines the costs incurred by the
players. We focus on the problem of computing optimal ex-ante persua-
sive signaling schemes, showing that symmetry is a crucial property for
its solution. Indeed, we show that an optimal ex-ante persuasive signaling
scheme can be computed in polynomial time when players are symmetric
and have affine cost functions. Moreover, the problem becomes NP-hard
when players are asymmetric, even in non-Bayesian settings.

Finally, we study persuasion in posted price auctions in which the seller
tries to sell an item by proposing take-it-or-leave-it prices to buyers arriv-
ing sequentially. Each buyer has to choose between declining the offer—
without having the possibility of coming back—or accepting it, thus ending
the auction. We study Bayesian posted price auctions, where the buyers val-
uations for the item depend on a random state of nature, which is known
to the seller only. Thus, the seller does not only have to decide price pro-
posals for the buyers, but also how to partially disclose information about
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the state so as to maximize revenue. Our model finds application in several
real-world scenarios. For instance, in an e-commerce platform, the state of
nature may reflect the condition (or quality) of the item being sold and/or
some of its features. These are known to the seller only since the buyers
cannot see the item given that the auction is carried out on the web. As
a first negative result, we prove that, in both public and private signaling,
the problem of computing an optimal seller’s strategy does not admit an
FPTAS unless P = NP. Indeed, the result holds for basic instances with a
single buyer. Then, we provide tight positive results by designing a PTAS
for each setting.

1.2.2 Facing the Uncertainty

In the second part of the thesis, we initiate the study of Bayesian persua-
sion with payoff uncertainty. First, we consider the setting with a single
receiver and we deal with uncertainty about the receiver’s type by fram-
ing the Bayesian persuasion problem in an online learning framework. We
study a repeated Bayesian persuasion problem where, at each round, the
receiver’s type is adversarially chosen from a finite set of types. Our goal
is the design of an online algorithm that recommends a signaling scheme
at each round, guaranteeing an expected utility for the sender close to that
of the best-in-hindsight signaling scheme. We study this problem under
two models of feedback: in the full information model, the sender selects a
signaling scheme and later observes the type of the receiver; in the partial
information model, the sender only observes the actions taken by the re-
ceiver. We rule out the possibility of designing a no-regret algorithm with
polynomial per-round running time. Then, we provide two no-regret algo-
rithms for the full and partial information model which require exponential
per-round running time. Finally, we show that, relaxing the persuasiveness
constraints, we can design polynomial-time algorithms with small regret.

Then, we extend the online Bayesian persuasion framework to include
multiple receivers. We focus on the case with no-externalities and binary
actions. Moreover, to focus only on the receivers’ coordination problem,
we overcome the intractability of the single-receiver problem assuming that
each receiver has a constant number of types. First, we prove a negative re-
sult: for any 0 < α ≤ 1, there is no polynomial-time no-α-regret algorithm
when the sender’s utility function is supermodular or anonymous. Then, we
focus on the case of submodular sender’s utility functions and we show that,
in this case, it is possible to design a polynomial-time no-(1 − 1/e)-regret
algorithm, which is tight.
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Both for the setting with a single and multiple receivers, we show that
the design of polynomial-time no-regret algorithms is impossible due to
the NP-Hardness of the underline offline problems in which the distribu-
tion over the types is known. Hence, the design of efficient algorithms
for the offline problem is the bottleneck to the design of efficient online
learning algorithms. In the last part of the thesis, we circumvent this issue
by leveraging ideas from mechanism design. In particular, we introduce a
type reporting step in which the receiver is asked to report her type to the
sender, after the latter has committed to a menu defining a signaling scheme
for each possible receiver’s type. Surprisingly, we prove that, with a single
receiver, the addition of this type reporting stage makes the sender’s com-
putational problem tractable. Then, we extend our Bayesian persuasion
framework with type reporting to settings with multiple receivers, focus-
ing on the widely-studied case of no-externalities and binary actions. In
such setting, we show that it is possible to find a sender-optimal solution
in polynomial-time for supermodular and anonymous sender’s utility func-
tions. As for the case of submodular sender’s utility functions, we provide
a (1− 1/e)-approximation to the problem, which is tight.

1.3 Structure of the Work

In this section, we describe the structure of the thesis. In Chapter 2, we
introduce the fundamental concepts related to algorithmic game theory. In
particular, we provide a formal definition of game and we introduce some
equilibrium concepts. Moreover, we described the online learning frame-
work and other preliminaries results that are relevant for the rest of the dis-
sertation. Chapter 3 formally defines the Bayesian persuasion framework,
providing a definition of the persuasion problem with a single and multiple
receivers. Moreover, it surveys the state of the art on Bayesian persuasion.

The first part of the thesis focuses on games with a structure. In particu-
lar, we study different games characterizing the computational complexity
of the persuasion problem in various scenarios. Our contributions are orga-
nized as follows:

• Chapter 4 provides our results on persuasion with simple voting rules,
including majority voting and plurality voting. The results in this
chapter appeared in (Castiglioni et al., 2020a).

• Chapter 5 characterizes the computational complexity of bi-approximations
with public signals, i.e., that provides almost optimal and almost per-
suasive solutions in polynomial time, focusing on the general persua-
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sion problem and k-voting (a generalization of majority voting). The
results in this chapter appeared in (Castiglioni et al., 2020b).

• Chapter 6 extends the analysis of persuasion in voting scenarios to
district-based elections. The results in this chapter appeared in (Cas-
tiglioni and Gatti, 2021)

• Chapter 7 focuses on the computation of ex-ante persuasive signal-
ing schemes in routing games. The results in this chapter appeared
in (Castiglioni et al., 2021a)

• Chapter 8 studies persuasion in posted price auctions. The results in
this chapter appeared in (Castiglioni et al., 2022b).

In the second part of the thesis we relax the assumption that the sender
perfectly knows the receivers payoffs. The contributions are organized as
follows:

• In Chapter 9, we study online Bayesian persuasion with a single re-
ceiver. The results in this chapter appeared in (Castiglioni et al.,
2020c).

• In Chapter 10, we study online Bayesian persuasion with multiple
receiver. The results in this chapter appeared in (Castiglioni et al.,
2021b).

• In Chapter 11, we extend the Bayesian persuasion framework with a
type reporting step. The results in this chapter appeared in (Castiglioni
et al., 2022a).

Finally Chapter 12 concludes the thesis with some possible directions
for future research.
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CHAPTER2
Preliminaries

In this chapter, we provide an introduction to game theory, presenting some
classes of games and equilibrium concepts. Moreover, we introduce the on-
line learning framework and some concepts that we will use in the disser-
tation. Section 2.1 introduces the classical representation of finite games,
i.e., Normal-Form games and defines some of the classical solution con-
cepts. Then, in Section 2.2, we introduce the online learning framework. In
Section 2.3, we present a two-provers game that we will use in the disserta-
tion. In Section 2.4, we define matroids and some classes of set functions.
In Section 2.5, we introduce a result on error-correcting codes.

2.1 Games and Equilibria

Games provide a mathematical representation of the strategic interactions
among rational agents. A game is defined by a set of players, a set of
strategies for each player and the utilities of the players for each possible
outcome. Formally, we can define a Normal-Form game as follows.

Definition 2.1 (Normal-Form game). A Normal-Form Game is a tuple
(N,A, U) such that:

9



Chapter 2. Preliminaries

• N := {1, . . . , n̄} is a set of players;

• A :=×p∈N Ap is the set of action profiles, where Ap denotes the set
of actions available to player p and %p := |Ap| denotes the number of
actions available to player p;

• U := {U1, . . . , Un̄} is a set of matrices with Up ∈ Q%1×...%n̄ , where Up
represents the utility of player p and Ua1,...,an̄

p correspond to the utility
of player p when the players play action profile (a1, . . . , an̄) ∈ A.

Given an action profile a, we will denote with a−p∈A−p :=×p′∈N\{p}Ap′
the actions of all the players except p. We can represent player p mixed
strategies as xp ∈ ∆Ap := {xp ∈ [0, 1]%p :

∑
a∈Ap xp,a = 1}, where

xp,a denotes the probability that player p plays action a. 1 When a player
chooses an action deterministically, he is said to play in pure strategies,
and, if he randomizes among actions, he is said to play in mixed strate-
gies. We denote with x = (x1, . . . ,xn) a mixed strategy profile that spec-
ifies a mixed strategy xp ∈ ∆Ap for each player p ∈ N . We define
up(x) :=

∑
a∈A U

a
p

∏
p∈N xp,ap the expected utility of player p ∈ N .

2.1.1 Solution Concepts

We assume that the players are rational and want to maximize their utilities.
While in single agent problems, it is clear that the best solution is to opti-
mize the objective (the player’s utility), in games there are multiple agents
with different objectives. In game theory can be defined various solution
concepts. Usually, they represent an equilibrium, i.e., a stable solution in
which the players has no incentive to leave. The Nash Equilibrium (NE)
introduced by Nash (1950) is the most famous and used solution concept.
NE is based on a very simple idea: a strategy profile is a NE if no player
has an incentive to deviate from his strategy. Formally:

Definition 2.2. A mixed strategy profile x = (x1, ...,xn) ∈×p∈N ∆Ap is
a Nash Equilibrium of a Normal-Form game (N,A, U) if for every player
p ∈ N and strategy x′p ∈ ∆Ap:

up(x) ≥ up(x
′
p,x−p)

If players are allowed to play mixed strategies, then any Normal-Form
game admits at least a Nash Equilibrium.

Theorem 2.1 ((Nash, 1950)). Every Normal-Form game admits at least
one Nash Equilibrium.

1Vector are denoted by bold symbols. For any vector x, the value of its i-th component is denoted by xi
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2.2. Online Learning Framework

It is possible that the players can use some form of coordination dur-
ing the game. This situation are usually model by the notion of Correlated
Equilibrium (CE), introduced by Aumann (1974). In CEs there is an exter-
nal mediator that can privately communicate to the agents which actions to
play. Let ∆A := {x ∈ [0, 1]|A| :

∑
a∈A xa = 1} be the set of correlated

distributions. Formally, a CE is defined as follows:

Definition 2.3. Given a Normal-Form game (N,A, U), a correlated distri-
bution x ∈ ∆A is a correlated equilibrium if for every player p and pair of
actions a, a′ ∈ Ap ∑

a−p∈A−p

xa,a−p(U
a,a−p
p − Ua′,a−p

p ) ≥ 0

A Coarse Correlated Equilibria (CCE) relaxes the equilibrium constraints
incentivizing the agents to follow the recommendations a priori, i.e. before
receiving the recommendation (Moulin and Vial, 1978).

Definition 2.4. Given a Normal-Form game (N,A, U), a correlated distri-
bution x ∈ ∆A is a coarse correlated equilibrium if for every player p and
action a′ ∈ Ap it holds: ∑

a∈A

xa(U
a
p − Ua′,a−p

p ) ≥ 0

2.2 Online Learning Framework

We consider the following online setting. An agent plays a repeated game
in which, at each round t ∈ [T ], she/he plays an action y ∈ Y while the
environment selects an utility function u. 2 At each round t ∈ [T ], after
selecting the action yt, the agent observes an utility ut(yt), where ut : Y →
[0, 1].

We are interested in algorithms computing yt at each round t. The per-
formance of such algorithms is measured using the regret computed with
respect to the best fixed action in hindsight. Formally:

RT := max
y∈Y

T∑
t=1

ut(y)− E

[
T∑
t=1

ut(yt)

]
,

where the expectation is on the randomness of the online algorithm and T
is the number of rounds. Ideally, we would like to find an algorithm that

2The set {1, . . . , x} is denoted by [x].
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generates a sequence {yt}t∈[T ] such that the regret is sublinear in T . An
algorithm satisfying this property is usually called a no-regret algorithm. In
the case in which requiring no-regret is too limiting, we use the following
relaxed notion of regrets. Given an α ∈ [0, 1], the α-multiplicative-regret
of an algorithm is defined as follows:

RT
M,α := αmax

y∈Y

T∑
t=1

ut(y)− E

[
T∑
t=1

ut(yt)

]
,

while the α-additive-regret of an algorithm is defined as follows:

RT
A,α := max

y∈Y

T∑
t=1

ut(y)− α− E

[
T∑
t=1

ut(yt)

]
.

We call an algorithm that has α-multiplicative-regret or α-additive-regret
sublinear in T a no-α-multiplicative-regret or no-α-additive-regret algo-
rithm, respectively. The idea of no-α-regret is that the algorithm has no-
regret with respect to an approximation of the optimal fixed action.

2.3 Two-provers Games

In this section, we summarize some key results on a class of two-provers
games. In particular, we describe some of the results on two-prover games
by Babichenko et al. (2015) and Deligkas et al. (2016).

A two-prover game G is a cooperative game played by two players
(Merlin1 and Merlin2, respectively), and an adjudicator (verifier) called
Arthur. At the beginning of the game, Arthur draws a pair of questions
(x, y) ∈ X × Y according to a probability distribution D over the joint set
of questions (i.e., D ∈ ∆X×Y). Merlin1 (resp., Merlin2) observes x (resp.,
y) and chooses an answer p1 (resp., p2) from her finite set of answers P1

(resp., P2). Then, Arthur declares the Merlins to have won with a proba-
bility equal to the value of a verification function V(x, y, p1, p2). A strategy
for Merlin1 is a function η1 : X → P1 mapping each possible question to
an answer. Analogously, η2 : Y → P2 is a strategy of Merlin2. Before
the beginning of the game, Merlin1 and Merlin2 can agree on their pair of
(possibly mixed) strategies (η1, η2), but no communication is allowed dur-
ing the games. The payoff of a game G to the Merlins under (η1, η2) is
defined as: u(G, η1, η2) := E(x,y)∼D[V(x, y, η1(x), η2(y))]. The value of a
two-prover game G, denoted by ω(G), is the maximum expected payoff to
the Merlins when they play optimally: ω(G) := maxη1 maxη2 u(G, η1, η2).
The size of the game is |G| = |X × Y × P1 × P2|.
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A two-prover game is called a free game if D is a uniform probability
distribution over X × Y . This implies that there is no correlation between
the questions sent to Merlin1 and Merlin2. It is possible to build a family of
free games mapping to 3SAT formulas arising from Dinur’s PCP theorem.
We say that the size n of a formula ϕ is the number of variables plus the
number of clauses in the formula. Moreover, SAT(ϕ)∈ [0, 1] is the maxi-
mum fraction of clauses that can be satisfied in ϕ. With this notation, the
Dinur’s PCP Theorem reads as follows:

Theorem 2.2 (Dinur’s PCP Theorem (Dinur, 2007)). Given any 3SAT in-
stance ϕ of size n, and a constant ρ ∈ (0, 1

8
), we can produce in polynomial

time a 3SAT instance ϕ′ such that:

1. the size of ϕ′ is n polylog(n);

2. each clause of ϕ′ contains exactly 3 variables, and every variable is
contained in at most d = O(1) clauses;

3. if SAT(ϕ) = 1, then SAT(ϕ′) = 1;

4. if SAT(ϕ) < 1, then SAT(ϕ′) < 1− ρ.

A 3SAT formula can be seen as a bipartite graph in which the left ver-
tices are the variables, the right vertices are the clauses, and there is an
edge between a variable and a clause whenever that variable appears in that
clause. Then, a such bipartite graph has constant degree since each vertex
has constant degree. This holds because each clause has at most 3 vari-
ables and each variable is contained in at most d clauses. A useful result on
bipartite graphs is the following.

Lemma 2.1 (Lemma 1 of (Deligkas et al., 2016)). Let (V,E) be a bipartite
graph with |V | = n, and U and W be the two disjoints and independent
sets such that V = U ∪W , and where each vertex has a degree of at most
ν. Suppose that U and W both have a constant fraction of the vertices,
i.e., |U | = c n and |W | = (1 − c)n for some c ∈ [0, 1]. Then, we can
efficiently find a partition {Si}

√
n

i=1 of U , and a partition {Tj}
√
n

j=1 of W ,
such that each set has a size of at most 2

√
n, and for all i and j we have

|(Si × Tj) ∩ E| ≤ 2 ν2.

Lemma 2.1 can be used to build the following free game.

Definition 2.5 (Definition 2 of (Deligkas et al., 2016)). Given a 3SAT for-
mula ϕ of size n, we define a free game Fϕ as follows:

1. Arthur applies Theorem 2.2 to obtain formula ϕ′ of size n polylog(n);

13
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2. let m =
√
n polylog(n). Arthur applies Lemma 2.1 to partition the

variables of ϕ′ in sets {Si}mi=1, and the clauses in sets {Tj}mj=1;

3. Arthur draws an index i uniformly at random from [m], and indepen-
dently an index j uniformly at random from [m]. Then, he sends Si to
Merlin1 and Tj to Merlin2;

4. Merlin1 responds by choosing a truth assignment for each variable
in Si, and Merlin2 responds by choosing a truth assignment to every
variable that is involved with a clause in Tj;

5. Arthur awards the Merlins payoff 1 if and only if the following condi-
tions are both satisfied:

• Merlin2’s assignment satisfies all clauses in Tj;

• the two Merlins’ assignments are compatible, i.e., for each vari-
able v appearing in Si and each clause in Tj that contains v,
Merlin1’s assignment to v agrees with Merlin2’s assignment to v;

Arthur awards payoff 0 otherwise.

When computing the Merlins’ awards, the second condition is always
satisfied when Si and Tj share no variables. Moreover, when Merlin1’s and
Merlin2’s assignments are not compatible, we say that they are in conflict.

The following lemma shows that, if ϕ is unsatisfiable, then the value of
the corresponding free game Fϕ is bounded away from 1.

Lemma 2.2 (Lemma 2 by (Deligkas et al., 2016)). Given a 3SAT formula
ϕ, the following holds:

• if ϕ is satisfiable then ω(Fϕ) = 1;

• if ϕ is unsatisfiable then ω(Fϕ) ≤ 1− ρ/2ν.

We define FREEGAMEδ as a specific problem within the class of promise
problems (see, e.g., (Even et al., 1984), (Goldreich, 2006)).

Definition 2.6 (FREEGAMEδ). A FREEGAMEδ problem is defined as:

• INPUT: a free game Fϕ and a constant δ ∈ (0, 1).

• OUTPUT: YES-instances: ω(Fϕ) = 1; NO-instances: ω(Fϕ) ≤ 1−δ.

Finally, we will need to assume the Exponential Time Hypothesis (ETH),
which conjectures that any deterministic algorithm solving 3SAT requires
2Ω(n) time.
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Theorem 2.3. (Theorem 2 by (Deligkas et al., 2016)) Assuming ETH, there
exists a constant δ = ρ/2ν such that FREEGAMEδ requires time nΩ̃(logn). 3

2.4 Set Functions and Matroids

In this section we introduce some classes of set functions and matroids. Let
G be a finite set and f : 2G → [0, 1] be a function. We say that f is submod-
ular, respectively supermodular, if for I, I ′ ⊆ G: f(I ∩ I ′) + f(I ∪ I ′) ≤
f(I) + f(I ′), respectively f(I ∩ I ′) + f(I ∪ I ′) ≥ f(I) + f(I ′). The
function f is anonymous if f(I) = f(I ′) for all I, I ′ ⊆ G : |I| = |I ′|. A
matroidM := (G, I) is defined by a finite ground set G and a collection I
of independent sets, i.e., subsets of G satisfying some characterizing prop-
erties (see (Schrijver, 2003) for a detailed formal definition). We denote by
B(M) the set of the bases ofM, which are the maximal sets in I.

2.5 Error-Correcting Codes

In this section, we introduce error-correcting codes and some of their basic
properties (see (Richardson and Urbanke, 2008) for further details). A mes-
sage of length k ∈ N+ is encoded as a block of length n ∈ N+, with n ≥ k.
A code is a mapping e : {0, 1}k → {0, 1}n. Moreover, let dist(e(x), e(y))
be the relative Hamming distance between e(x) and e(y), which is defined
as the Hamming distance weighted by 1/n. The rate of a code is defined
as R = k

n
. Finally, the relative distance dist(e) of a code e is the maximum

value dREL such that dist(e(x), e(y)) ≥ dREL for each x, y ∈ {0, 1}k.
In the following, we will need an infinite sequence of codes E := {ek :

{0, 1}k → {0, 1}n(k)}k∈N+ containing one code ek for each possible mes-
sage length k. The following result, due to Gilbert (1952), can be used to
construct an infinite sequence of codes with constant rate and distance.

Theorem 2.4 (Gilbert-Varshamov Bound). For every k ∈ N+, 0 ≤ dREL <
1
2

and n ≥ k
1−H2(dREL)

, there exists a code e : {0, 1}k → {0, 1}n with
dist(e) = dREL, where

H2(dREL) := dREL log2

(
1

dREL

)
+ (1− dREL) log2

(
1

1− dREL

)
.

Moreover, such a code can be computed in time 2O(n).

3Ω̃ hides polylogarithmic factors.
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CHAPTER3
Bayesian Persuasion Framework

This chapter introduce the framework of Bayesian persuasion. Section 3.1
defines the Bayesian persuasion game with a single receiver. Section 3.2
extends the framework to consider multiple receivers. Finally, Section 3.3
surveys the state of the art on Bayesian persuasion.

3.1 Bayesian Persuasion with a Single Receiver

Bayesian persuasion studies the problem faced by an informed sender try-
ing to influence the behavior of a self-interested receiver via the strategic
provision of payoff-relevant information. The receiver has a finite set of %
actionsA := {ai}%i=1. The receiver’s payoff function is ur : A×Θ→ [0, 1],
where Θ := {θi}di=1 is a finite set of d states of nature. For notational con-
venience, we denote by urθ(a) ∈ [0, 1] the utility observed by the receiver
when the realized state of nature is θ ∈ Θ and she/he plays action a ∈ A.
The sender’s utility when the state of nature is θ ∈ Θ is described by the
function fθ : A → [0, 1]. As it is customary in Bayesian persuasion, we
assume that the state of nature is drawn from a common prior distribution
µ ∈ ∆Θ, which is explicitly known to both the sender and the receiver.
Moreover, the sender can commit to a signaling scheme φ, which is a ran-
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domized mapping from states of nature to signals for the receiver. Formally
φ : Θ→ ∆S , where S is a finite set of signals. We denote by φθ the proba-
bility distribution employed by the sender when the state of nature is θ ∈ Θ,
with φθ(s) being the probability of sending signal s ∈ S.

The interaction between the sender and the receiver goes on as follows:

(i) the sender commits to a publicly known signaling scheme φ and the
receiver observes the commitment;

(ii) the sender observes the realized state of nature θ ∼ µ;

(iii) the sender draws a signal s ∼ φθ and communicates it to the receiver;

(iv) the receiver observes s and rationally updates her/his prior beliefs over
Θ according to the Bayes rule;

(v) the receiver selects an action maximizing her/his expected utility.

Let Ξ := ∆Θ be the set of receiver’s posterior beliefs over the states of
nature. In step (iv), after observing s ∈ S, the receiver performs a Bayesian
update and infers a posterior belief ξ ∈ Ξ over the states of nature such that
the component of ξ corresponding to state of nature θ ∈ Θ is:

ξθ :=
µθ φθ(s)∑

θ′∈Θ µθ′ φθ′(s)
. (3.1)

After computing ξ, the receiver solves a decision problem to find an action
maximizing her/his expected utility given the current posterior. When the
receiver is indifferent among multiple actions, we assume that the receiver
breaks ties in favor of the sender. Letting a ∈ A be the receiver’s choice,
the receiver observes payoff urθ(a), while the sender observes payoff fθ(a).

A revelation-style argument shows that there always exists an optimal
signaling scheme that is direct and persuasive (Kamenica and Gentzkow,
2011). A signaling scheme is direct if S = A, i.e., signals can be inter-
preted as action recommendations and it is persuasive if the receiver has a
incentive to follow the recommendations. The optimal direct and persua-
sive signaling scheme can be computed with the following LP.

max
φ

∑
θ∈Θ,a∈A

µθ φθ(a) fθ(a) (3.2a)

s.t.
∑
θ∈Θ

µθ φθ(a)
(
urθ(a)− urθ(a′)

)
≥ 0 ∀a, a′ ∈ A (3.2b)
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∑
a∈A

φθ(a) = 1 ∀θ ∈ Θ (3.2c)

φθ(a) ≥ 0 ∀θ ∈ Θ, ∀a ∈ A (3.2d)

where (3.2a) is the sender’s utility, constraints (3.2b) force the signaling
scheme to be persuasive, and constraints (3.2c) and (3.2d) force the signal-
ing scheme to be feasible.

3.1.1 Working in the Space of Posterior Distributions

It is oftentimes useful to represent signaling schemes as convex combina-
tions of posterior beliefs they can induce. First, we describe such inter-
pretation (see (Kamenica, 2019) for further details). Then, we define the
receiver’s best response given an arbitrary posterior belief.

Given a signaling scheme φ, each signal realization s ∈ S leads to a
posterior belief ξs ∈ Ξ, whose components are defined as in Equation (3.1).
Accordingly, each signaling scheme leads to a distribution over posterior
beliefs. We denote a distribution over posteriors by γ ∈ ∆Ξ. We say that
a signaling scheme φ : Θ → ∆S induces γ ∈ ∆Ξ if, for every ξ ∈ Ξ, the
component of γ corresponding to ξ is defined as follows:

γξ :=
∑

s∈S:ξs=ξ

∑
θ∈Θ

µθ φθ(s). (3.3)

Intuitively, if φ induces γ, then γξ represents the probability that φ induces
the posterior ξ ∈ Ξ. We let supp(γ) := {ξ ∈ Ξ | γξ > 0} be the set of pos-
teriors induced with strictly positive probability. We say that a distribution
over posteriors γ ∈ ∆Ξ is consistent (i.e., intuitively, there exists a valid
signaling scheme φ inducing γ) if the following hods:∑

ξ∈supp(γ)

γξ ξθ = µθ, for all θ ∈ Θ. (3.4)

We let Γ ⊆ ∆Ξ be the set of distributions over posteriors that are consis-
tent according to Equation (3.4). In the remainder of the dissertation, we
equivalently employ φ or γ to denote an arbitrary signaling scheme.

After observing a signal s ∈ S that induces a posterior ξ ∈ Ξ, the re-
ceiver best responds by choosing an action that maximizes her/his expected
utility (step (v)). The set of actions maximizing the receiver’s expected
utility given posterior ξ is defined as follows:
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Definition 3.1 (BR-set). Given a posterior ξ ∈ Ξ, the best-response set
(BR-set) is:

Bξ := arg maxa∈A
∑
θ∈Θ

ξθ u
r
θ(a).

We denote by bξ the action belonging to the BR-set Bξ played by the
receiver. When the receiver is indifferent among multiple actions for a
given posterior ξ, we assume that the receiver breaks ties in favor of the
sender, i.e., she/he chooses an action bξ ∈ arg maxa∈Bξ

∑
θ ξθ fθ(a). 1

Given an ε > 0, a receiver plays an ε-best response when the selected ac-
tion provides her an expected utility which is at most ε less than the optimal
value. The set of ε-best responses is defined as follows.

Definition 3.2 (ε-BR-set). Given a posterior ξ ∈ Ξ, the ε-best-response set
(ε-BR-set) is the set Bε,ξ of all the actions a ∈ A such that:∑

θ∈Θ

ξθu
r
θ(a) ≥

∑
θ∈Θ

ξθu
r
θ(a
′)− ε ∀a′ ∈ A.

We denote by bε,ξ the action in Bε,ξ played by the receiver. When the
receiver has multiple ε-best-response actions for a given posterior ξ, we
assume she breaks ties in favor of the sender, i.e., she chooses an action
bε,ξ ∈ arg maxa∈Bε,ξ

∑
θ ξθfθ(a).

Sometimes we will restrict attention to the subset of posteriors defined
as follows.

Definition 3.3 (q-uniform posteriors). A posterior ξ ∈ Ξ is q-uniform if
and only if it is the average of a multiset of q basis vectors in an |Θ|-
dimensional space.

Equivalently, each entry ξθ of a q-uniform posterior has to be a multiple
of 1/q. We denote with Ξq ⊂ Ξ the set of q-uniform posteriors.

3.2 Bayesian Persuasion with Multiple Receivers

In this section, we introduce the Bayesian persuasion problem with mul-
tiple receivers. We denote with R := {ri}n̄i=1 the set of receivers. Simi-
larly to the single receiver case, the sender can publicly commit to a sig-
naling scheme which maps the realized state of nature to a signal for each
player. Each receiver has a set of action Ar := {ar,i}%ri=1. We denote with

1This assumption is customary in settings involving commitments, such as Stackelberg games (Conitzer and
Korzhyk, 2011; Conitzer and Sandholm, 2006; Paruchuri et al., 2008).
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A :=×r∈RAr the set of action profiles. The utility of receiver r ∈ R is de-
fined by an utility function ur : Θ×A → [0, 1], where we denote with urθ(a)
the utility of receiver r when the state is θ ∈ Θ and the action profile of the
receivers is a ∈ A. The sender’s utility in a state θ depends on the actions
played by all the receivers, and it is defined by fθ : A → [0, 1]. Sometimes,
we restrict to games with binary actions, i.e., such that Ar := {a0, a1} for
each r ∈ R. In this case, for the ease of presentation, we introduce the
function fθ : 2R → [0, 1] such that fθ(R) represents the sender’s utility
when the state of nature is θ and all the receivers in R ⊆ R play action
a1, while the others play a0. The sender can publicly commit to a signal-
ing scheme φ which maps states of nature to signals for the receivers. A
generic signal for receiver r is denoted by sr, while the set of signals to
each receiver r is denoted by Sr. Moreover, S :=×r∈R Sr denotes the
set of signal profiles. In general, the sender can send different signals to
each player through private communication channels. In this setting, a sim-
ple revelation-principle-style argument shows that it is enough to employ
players’ actions as signals (Arieli and Babichenko, 2019; Kamenica and
Gentzkow, 2011). We call the signaling schemes that employ only action
recommendations direct. Therefore, a private signaling scheme is a func-
tion φ : Θ → ∆A which maps any state of nature to a probability distribu-
tion over action profiles (signals). For the ease of notation, the probability
of recommending an action profile a ∈ A given the state of nature θ ∈ Θ
is denoted by φθ(a). Then, it has to hold

∑
a∈A φθ(a) = 1, for each θ ∈ Θ.

After observing the state of nature θ ∈ Θ, the sender draws an action profile
a ∈ A according to φθ and recommends action ar to each player r ∈ R. A
signaling scheme is persuasive if following recommendations is an equilib-
rium of the underlying Bayesian game (Bergemann and Morris, 2016a,b).

Definition 3.4. A signaling scheme φ : Θ → ∆A is persuasive if, for each
r ∈ R and a, a′ ∈ Ar, it holds:∑

θ∈Θ

µθ
∑

a∈A:ar=a

φθ(a)
(
urθ(a)− urθ(a′r, a−r)

)
≥ 0.

Notice that in the case in which there is only a state of nature a persua-
sive signaling scheme can be seen as a correlated equilibrium. Similarly,
we say that a signaling scheme is ε-persuasive if the receivers have a small
incentive ε not to follow the recommendations.

Definition 3.5. For any ε > 0, a signaling scheme φ : Θ → ∆A is ε-
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persuasive if, for each r ∈ R and a, a′ ∈ Ar, it holds:∑
θ∈Θ

µθ
∑

a∈A:ar=a

φθ(a)
(
urθ(a)− urθ(a′, a−r)

)
≥ −ε.

A weaker solution concept is represented by ex-ante persuasiveness as
defined by Xu (2020) and Celli et al. (2020).

Definition 3.6. A signaling scheme φ : Θ → ∆A is ex ante persuasive if,
for each r ∈ R and a ∈ Ar, it holds:∑

θ∈Θ

µθ
∑
a∈A

φθ(a)
(
urθ(a)− urθ(a, a−r)

)
≥ 0.

Then, a coarse correlated equilibrium (Moulin and Vial, 1978) may be
seen as an ex ante persuasive signaling scheme in a game in which there is
only a state of nature.

3.2.1 Bayesian Persuasion with No Externalities

In most of this dissertation, we assume that there are no inter-agent exter-
nalities among the receivers. Each receiver’s payoff depends only on the
action she takes and on a (random) state of nature θ ∈ Θ. In particular,
with a slight abuse of notation, receiver r’s utility is given by the function
ur : Θ × Ar → [0, 1]. We denote by urθ(a) ∈ [0, 1] the utility observed by
receiver r when the state of nature is θ ∈ Θ and she plays a ∈ Ar.

The interaction between the sender and the receivers goes as follows:

(i) the sender commits to a publicly known signaling scheme φ and the
receivers observe the commitment;

(ii) the sender observes the realized state of nature θ ∼ µ;

(iii) the sender draws a signal profile s = (sr)
n̄
r=1 ∈ S for each receiver

according to the signaling scheme φθ, and communicates to each re-
ceiver r the signal sr;

(iv) each receiver r observes sr and updates her prior beliefs over Θ fol-
lowing Bayes rule.

(v) each receiver selects an action maximizing her expected reward in the
posterior ξsr .

Differently to the inter-agent-externalities setting, in step (v) each agent
decision is not influenced by the actions played by the other receivers.
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time
Sender⇒

Receiver r ⇒

chooses
φ

observes
θ ∼ µ

draws s ac-
cording to φθ fθ(a)

observes
φ

observes
sr

compute
ξsr

play action ar
maximizing utility in ξsr

urθ(ar)

Figure 3.1: Interaction between the sender and a receiver with no externalities.

Given a signaling scheme φ, we denote with φr the marginal signaling
scheme of receiver r ∈ R. It is defined as φr,θ(sr) :=

∑
s′∈S:sr=s′r

φθ(s
′) for

each θ ∈ Θ and sr ∈ Sr, i.e., φr,θ(sr) represents the marginal probabilities
that sr is sent to r when the state of nature is θ. A receiver r ∈ R receiving
a signal sr ∈ Sr infers a posterior belief over states which we denote by
ξsr ∈ Ξ, with ξsrθ being the posterior probability of state θ ∈ Θ. Formally,

ξsrθ :=
µθφr,θ(sr)∑

θ′∈Θ µθ′φr,θ′(sr)
. (3.5)

3.2.2 Private Signaling Schemes with No Externalities

In general, each receiver can observe a different signal. We call this type
of signaling schemes private. A simple revelation-principle style argument
shows that there always exist an optimal signaling scheme that is direct
and persuasive. We can encode the sender optimization problem using the
following linear program of exponential size.

max
φ

∑
θ∈Θ,a∈A

µθ φθ(a) fθ(a) (3.6a)

s.t.
∑
θ∈Θ

µθ
∑

a∈A:ar=a

φθ(a)
(
urθ(a)− urθ(a′)

)
≥ 0 ∀r ∈ R, a, a′ ∈ Ar (3.6b)∑

a∈A

φθ(a) = 1 ∀θ ∈ Θ (3.6c)

φθ(a) ≥ 0 ∀θ ∈ Θ, ∀a ∈ A (3.6d)

where, we recall, a := (ar)
n̄
r=1. The sender’s goal is computing the signal-

ing scheme maximizing her expected utility (Objective Function (3.6a)).
Constraints (3.6b) force the private signaling scheme to be persuasive.

3.2.3 Public Signaling Schemes with No Externalities

Public signaling schemes are a class of constrained signaling schemes in
which the sender is constrained to send the same signal to all the receivers.
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Formally, a signaling scheme φ is public if for any θ and s ∼ φθ, it holds
sr = sr′ for each pair of receivers r, r′ ∈ R. With an overload of notation
we write s ∈ S to denote the public signal received by all receivers. A
public signaling scheme is direct when signals can be mapped to actions of
the receivers, and interpreted as action recommendations, i.e., S = A. No-
tice that each receiver is sent the same signal a ∈ A specifying a (possibly
different) action for each receiver. We write φθ(a) to denote the probability
with which the sender selects the action profile a when the realized state
of nature is θ. A public signaling scheme is persuasive if when a receiver
r receives a direct signal a ∈ A following the recommendation ar is an
equilibrium of the underling game. Also in this setting, a simple revelation-
principle style argument shows that there always exist an optimal signaling
scheme that is direct and persuasive. Since the prior is common knowl-
edge and all receivers observe the same signal, they all perform the same
Bayesian update and have the same posterior belief regarding the realized
state of nature.

The problem of determining an optimal public signaling scheme which
is direct and persuasive can be formulated with the following (exponentially
sized) LP:

max
φ

∑
θ∈Θ,a∈A

µθ φθ(a) fθ(a) (3.7a)

s.t.
∑
θ∈Θ

µθ φθ(a)
(
urθ(ar)− urθ(a′)

)
≥ 0 ∀r ∈ R,∀a ∈ A, a′ ∈ Ar (3.7b)∑

a∈A

φθ(a) = 1 ∀θ ∈ Θ (3.7c)

φθ(a) ≥ 0 ∀θ ∈ Θ, ∀a ∈ A (3.7d)

where, we recall, a := (ar)
n̄
r=1. The sender’s goal is computing the signal-

ing scheme maximizing her expected utility (Objective Function (3.7a)).
Constraints (3.7b) force the public signaling scheme to be persuasive.

3.3 Previous Results on Bayesian Persuasion

Kamenica and Gentzkow (2011) introduce the model of Bayesian persua-
sion with a single sender and a single receiver. From a computational per-
spective, the single-receiver problem can be solved by a simple linear pro-
gram of polynomial size. For this reason, most of the works focus on the
multi-receiver problem. A notable exception is the work of Dughmi and
Xu (2016) that study a class of succinctly represented games. Some works
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consider games with multiple receivers and inter-agent-externalities. The
works of Bhaskar et al. (2016) and Rubinstein (2015) focus on the complex-
ity of computing public signaling schemes. Bhaskar et al. (2016) and Ru-
binstein (2015) study public signaling problems in which two receivers play
a zero-sum game. Bhaskar et al. (2016) rule out an additive PTAS assum-
ing the planted-clique hardness. Moreover, Rubinstein (2015) proves that
the problem of computing an ε-optimal signaling scheme requires at least
quasi-polynomial time assuming the Exponential Time Hypothesis (ETH).
This result is tight due to the quasi-polynomial approximation scheme de-
signed by Cheng et al. (2015).

Some works simplify the problem assuming no inter-agent externali-
ties. This assumption allows one to focus on the key problem of coordi-
nating the receivers’ behavior, without the additional complexity arising
from externalities which have been shown to make the problem largely in-
tractable (Bhaskar et al., 2016; Rubinstein, 2015). Arieli and Babichenko
(2019) introduce the model of persuasion with multiple receivers and with-
out inter-agent externalities, with a focus on private Bayesian persuasion. In
particular, they study the setting with a binary action space for the receivers
and a binary space of states of nature. They provide a characterization
of the optimal signaling scheme in the case of supermodular, anonymous
submodular, and supermajority sender’s utility functions. Babichenko and
Barman (2017) extend the work by Arieli and Babichenko (2019) providing
a polynomial-time algorithm that computes a (1 − 1/e)-approximate sig-
naling scheme for monotone submodular sender’s utilities, which is tight.
Moreover, they show that an optimal private signaling scheme for anony-
mous utility functions can be found efficiently. Dughmi and Xu (2017)
generalize the previous model to settings with an arbitrary number of states
of nature.

Other works focus on the public signaling problem with no inter-agent
externalities. In particular, Dughmi and Xu (2017) rule out the existence of
a PTAS even when receivers have binary action spaces and objectives are
linear, unless P = NP. Xu (2020) studies public persuasion with binary
action spaces and an arbitrary number of states of nature, and he shows
that no bi-criteria FPTAS is possible unless P = NP. Furthermore, the au-
thor proposes a bi-criteria PTAS for monotone submodular sender’s utility
functions and shows that, when the number of states of nature is fixed and
a non-degeneracy assumption holds, an optimal signaling scheme can be
computed in polynomial time.

A recent line of work relaxes the assumption that the sender perfectly
knows the receiver utility. Babichenko et al. (2021) study a game with
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a single receiver and binary actions in which the sender does not know
the receiver’s utility, focusing on the problem of designing a signaling
scheme that performs well for each possible receiver’s utility. Zu et al.
(2021) relax the perfect knowledge assumption, assuming that the sender
and the receiver do not know the prior distribution over the states of nature.
They study the problem of computing a sequence of persuasive signaling
schemes that achieve small regret with respect to the optimal persuasive
signaling scheme with the knowledge of the prior distribution. Finally, Xu
et al. (2016a); Gan et al. (2019) study a signaling problem in Bayesian
Stackelberg games in which the receiver and the sender’s have private in-
formation, i.e., a type.

3.3.1 Previous Results on Games with Structure

Some works focus on problems with specific structures. Cheng et al. (2015)
provide a polynomial-time tri-criteria approximation algorithm for the op-
timal public signaling scheme for k-voting. Arieli and Babichenko (2019)
study a voting setting in which there are two state of nature and two possible
candidates. They provide a characterization of the optimal private signaling
scheme for majority voting.

Other works study congestion games. Bhaskar et al. (2016) study the in-
approximability of finding optimal ex interim persuasive signaling schemes
in non-atomic games. Liu and Whinston (2019) focus on atomic games
with costs uncertainties and study ex-interim persuasion by placing strin-
gent constraints on the network structure. Nachbar and Xu (2020) study
how much the information designer can improve her objective using differ-
ent types of signaling schemes. Zhou et al. (2021) study singleton conges-
tion games, showing that for both the private and public signaling problem,
the optimal signaling scheme can be computed in polynomial time when
the number of resources is constant.

Finally, some works study signaling in auctions. These works are mainly
relative to second-price auctions. Emek et al. (2014) study second-price
auctions focusing on the known-valuation setting in which the sender knows
the buyers’ valuations. They provide a linear program to compute the op-
timal public signaling scheme. Moreover, they show that it is NP-hard to
compute the optimal signaling scheme in the Bayesian valuation setting.
Cheng et al. (2015) provide a PTAS for the Bayesian model. Badanidiyuru
et al. (2018) focus on the design of algorithms with running time indepen-
dent from the number of states of nature. Moreover they initiate the study
of private signaling scheme showing that in second-price auctions private
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signaling schemes introduce non-trivial equilibrium selection problems.
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CHAPTER4
Persuading Voters in Simple Elections

In this chapter, we focus on the computation of public and private signaling
schemes with some simple voting rules, i.e, k-voting and plurality voting.
In Section 4.1, we introduce the model. In Section 4.2 we compare the
efficiency of public and private signaling schemes. In Section 4.3, we pro-
vide a polynomial-time algorithm for computing optimal private signaling
schemes with k-voting. Section 4.4 presents a necessary and sufficient con-
dition for the polynomial-time computation of private signaling schemes
under a general class of sender’s objective function (beyond voting). Sec-
tion 4.5 provides some positive results on the computation of private sig-
naling schemes. Among them, it shows that the optimal private signaling
scheme can be computed in polynomial time for the plurality voting rule.
Finally, in Section 4.6 we show that computing a public signaling scheme
is NP-hard even for simple voting functions, e.g., majority voting.

4.1 Model of Bayesian Persuasion in Elections

Our model comprises a sender and a finite set R := (ri)
n̄
i=1 of receivers

(voters) that must choose one alternative from a set C := {c0, . . . , c%} of
candidates (i.e., C is the set of voters’ available actions). Each voter must
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choose a candidate from C. Each voter’s utility depends only on her own
action and the (random) state of nature, but not on the actions of other vot-
ers. In particular, we write ur : Θ × C → [0, 1], where Θ := {θi}di=1 is
the finite space of states of nature. The value of urθ(c) is a measure of voter
r’s appreciation of candidate c when the state of nature is θ. A profile of
votes (i.e., one candidate for each voter) is denoted by c ∈ C := ×r∈RC.
In general settings, beyond voting, we denote the sender’s utility when the
state of nature is θ with fθ : ×r∈RC → [0, 1] (here C may be an arbitrary
space of actions). Furthermore, we say that f is anonymous if its value de-
pends only on θ and on the number of players selecting each action. In the
specific context of voting, the sender’s objective is maximizing the winning
probability of c0 (according to some voting rules). In this setting, instead of
using f , we denote the sender’s utility function by W : ×r∈RC → {0, 1},
where W (·) = 1 if c0 wins, and W (·) = 0 otherwise. The state of nature
influences the receivers’ preferences but it does not affect the sender’s pay-
off, which only depends on the final votes. 1 When the sender’s signaling
scheme φ is direct and persuasive we write W (φ) to denote the sender’s ex-
pected utility. Finally, function δ : C × C → N is s.t. δ(c, c) is the number
of voters that are recommended c by c.

We consider two commonly adopted voting rules: k-voting rule and plu-
rality voting rule (see, e.g., (Brandt et al., 2016)). In an election with a k-
voting rule each voter chooses a candidate after observing the sender’s sig-
nal. Candidate ci is elected if it receives at least k votes, where k ∈ [n̄] is the
established electoral rule. The problem of designing the optimal sender’s
persuasive signaling scheme under a k-voting rule is denoted by K-V. In
an election with plurality voting rule the winner is determined as the can-
didate with a plurality (greatest number) of votes. The problem of finding
an optimal persuasive signaling scheme for the sender with plurality voting
is denoted by PL-V. In both settings, we focus on maximizing the winning
probability of the sender. The problem can be written as the optimization
problem: maxφ

∑
θ∈Θ,c∈C µθφθ(c)W (c), subject to φ being persuasive for

each voter.
To further clarify the election scenario, we provide the following simple

example.

Example 4.1. There are three votersR = {r1, r2, r3} who must select one
between two candidates {c0, c1}. The sender (e.g., a politician or a lob-
byist) observes the realized state of nature, drawn from the uniform proba-
bility distribution (1/3, 1/3, 1/3) over Θ = {θA, θB, θC}, and exploits this

1The sender’s utility function is state-independent in many settings, e.g., voting (Alonso and Câmara, 2016),
and marketing (Candogan, 2019; Babichenko and Barman, 2017).
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information to support the election of c0. The state of nature describes the
position of c0 on a matter of particular interest to the voters. Moreover, all
the voters have a slightly negative opinion of candidate c1, independently of
the state of nature, while the opinion on candidate c0 can be better or worse
than the opinion on c1 depending the state of nature. Table 4.1 describes
the utility of the three voters.

State θA State θB State θC
c0 c1 c0 c1 c0 c1

Vo
te

rs 1 1 3/8 0 3/8 0 3/8
2 0 3/8 1 3/8 0 3/8
3 0 3/8 0 3/8 1 3/8

Table 4.1: Payoffs from voting different candidates in Example 4.1.

We consider a k-voting rule with k = 2. Without any form of signaling,
all the voters would vote for c1 because it provides an expected utility of
3/8, against 1/3, and the sender would get a utility of 0. If the sender
discloses all the information regarding the state of nature (i.e., with a fully
informative signal), he would still get a utility of 0, since two out of three
receivers would pick c1 in each of the possible states. However, the sender
can design a public signaling scheme guaranteeing herself a utility of 1 for
each state of nature. Table 4.2 describes one such scheme with arbitrary
signals. Suppose the observed state is θA, and that the signal sent by the
sender is not B. Then, the posterior distribution over the states of nature is
(1/2, 0, 1/2). Therefore, receiver 1 and receiver 3 would vote for a0 since
their expected utility would be 1/2 against 3/8. Similarly, for any other
signal, two receivers vote for a0. Then, the sender’s expected payoff is 1.
We can recover an equivalent direct signaling scheme by sending a tuple
with a candidates’ suggestion for each voter. For example, not A would
become (c1, c0, c0), and each voter would observe the recommendations
given to the others.

Signals
not A not B not C

St
at

es A 0 1/2 1/2
B 1/2 0 1/2
C 1/2 1/2 0

Table 4.2: Optimal public signaling scheme in Example 4.1.
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4.2 Inefficiency of Public Persuasion

In this section, we provide an example of a majority voting election. This
example show that restricting from private to public signaling can decrease
the sender’s utility by an arbitrarily large factor.

Example 4.2. Consider a majority-voting election with seven voters R =
{r1, r2, r3, r4, r5, r6, r7} and two candidates C = {c0, c1}. The objective of
the sender is to maximize the probability with which candidate c0 is elected.
Therefore, he needs to persuade at least half of the voters (i.e., d|R|/2e =
4) to make candidate c0 be the winner. There are three states of nature,
namely, Θ = {θA, θB, θC}, and each state is equally probable. Tab. 4.3
provides the parameters urθ of the voters, defined as urθ = urθ(c0) − urθ(c1)
and capturing the net payoff of voter r from having candidate c0 elected, in
state of nature θ.

State θA State θB State θC

Vo
te

rs

r1,r2 +1/2 −1 −1

r3,r4 −1 +1/2 −1

r5,r6 −1 −1 +1/2

r7 +1/2 +1/2 +1/2

Table 4.3: Payoffs of the voters in Example 4.2.

The sender can design a direct and persuasive private signaling scheme
such that at least four voters prefer candidate c0 over c1 for every signal
profile s. Hence, this scheme ensures that candidate c0 is elected with a
probability of 1. Specifically, in each state θ the scheme recommends can-
didate c0 to every voter r with utility urθ ≥ 0 and to one voter among those
with urθ < 0 chosen randomly with uniform probability. It is easy to see that
this private signaling scheme satisfies the incentive constraints. Consider,
for example, voter r1. The marginal probabilities with which he is rec-
ommended to vote for candidate c0 are: φr1,θA(c0) = 1, φr1,θB(c0) = 1/4
and φr1,θC (c0) = 1/4. Therefore, when he receives the recommendation to
vote for c0, he has a posterior distribution ξ with ξθA =

µθA ·φr1,θA (c0)∑
θ∈Θ

µθ ·φr1,θ(c0)
=

1/3
1/3+1/3·1/4+1/3·1/4 = 2/3 and ξθB = ξθC = 1/6. Thus, the voter has ex-
pected utility ur1θAξθA +ur1θBξθB +ur1θCξθC = 0 and will follow the recommen-
dation. Similarly, we can show that the incentive constraints associated
with the other voters are satisfied.

We switch to public signals and we show that we cannot design a public
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signaling scheme that guarantees candidate c0 to be elected with positive
probability. Any public signaling scheme making candidate c0 win the elec-
tion with positive probability must assign a strictly positive probability to at
least one signal that makes at least four voters prefer candidate c0 over c1.
We show that we cannot design such a public signal. In particular, we show
that there is no posterior ξ ∈ Ξ that provides an expected utility larger than
or equal to zero to at least four voters.2 Since receiver r7 prefers candidate
c0 in every state of nature, he votes for c0 independently from the posterior
induced by the signal. Therefore, it is sufficient to persuade three voters
among the first six. Suppose that voters r1 and r2 vote for c0. This implies
that ξθA/2− ξθB − ξθC = ξθA/2− (1− ξθA) ≥ 0 and ξθA ≥ 2/3. Suppose,
by contradiction, that also voters r3 and r4 vote for c0. This requires that
−ξθA + ξθB/2 − ξθC ≥ 0 and ξθB ≥ 2/3, reaching a contradiction with
ξ ∈ Ξ. It is easy to see that, by the symmetry of the instance, all the other
sets of four voters cannot vote for c0 at the same time.

From the previous example, we can state the following:

Proposition 4.1. There is an instance of majority-voting election in which
the optimal private signaling scheme guarantees that candidate c0 wins the
election with a probability of 1, while the optimal public signaling scheme
cannot guarantee a winning probability strictly larger than 0.

4.3 Private Signaling with k-Voting Rules

In this section, we show that a solution to K-V (i.e., finding an optimal per-
suasive signaling scheme under a k-voting rule) can be found in polynomial
time when the sender can employ a private signaling scheme.

First, we show that the sender can restrict the choice of a signaling
scheme to the set of the schemes φ whose marginal signaling schemes are
Pareto efficient on the set {φr,θ(c0)}θ∈Θ,r∈R (Lemma 4.1), and recommend
with positive probability either c0 or the candidate giving r the best utility
under θ (Lemma 4.2).

Lemma 4.1. Given a signaling scheme φ′ and a set of persuasive marginal
signaling schemes {φr}r∈R, if φr,θ(c0) ≥ φ′r,θ(c0) for each r ∈ R and θ ∈
Θ, there exists a persuasive signaling scheme φ such that W (φ) ≥ W (φ′).

Proof. Given a signaling scheme φ′, let {φr}r∈R be a set of persuasive
marginal signaling schemes s.t. φr,θ(c0) ≥ φ′r,θ(c0) for each r ∈ R, θ ∈ Θ.

2Recall that in a public signaling scheme, all the receivers observe the same signal, perform the same update
of the belief, and have the same posterior belief.
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Intuitively, we show that it is possible to move probability mass to c0 while
guaranteeing persuasiveness with the following iterative procedure.

Let φ0 = φ′. Then, we iterate over r ∈ [n̄], and update the signaling
scheme with the following procedure. Let Ar be an arbitrary mapping from
[|C−r|] to C−r, which serves as an arbitrary ordering of elements in C−r (i.e.,
Ar(i) returns the i-th element of C−r in such ordering). Moreover, for each
θ ∈ Θ, we define ∆0

r(θ) = φr,θ(c0) − φ′r,θ(c0). For each r, we iterate over
i ∈ [|C−r|], and perform the following updates: c−r = Ar(i),

φrθ(c0, c−r) = min

{
φr−1
θ (c0, c−r)) + ∆i−1

r (θ),∑
c∈C

φr−1
θ (c0, c−r)

}
, (4.1)

and

∆i
r(θ) = ∆i−1

r (θ)− φrθ(c0, c−r) + φr−1
θ (c0, c−r),

where φrθ(c, c−r) is the probability of recommending c to r and c−r to the
other receivers, under θ (at iteration r). Finally, for each c−r, and c 6= c0,
set:

φrθ(c, c−r) =

φr,θ(c)

(∑
c′∈C φ

r−1
θ (c′, c−r)− φrθ(c0, c−r)

)
∑

c′∈C\{c0} φr,θ(c
′)

,

the numerator is well-defined because of the minimization in Equation (4.1).
After having enumerated all the receivers, we obtain φn̄. We show that φ =
φn̄ is precisely the desired signaling scheme. First, we show that, at each it-
eration r, φr is well formed. For each iteration r, and pair (θ, c−r), we show
that

∑
c∈C φ

r
θ(c, c−r) =

∑
c∈C φ

r−1
θ (c, c−r). We have:

∑
c∈C φ

r
θ(c, c−r) =

φrθ(c0, c−r) +
∑

c∈C\{c0} φ
r
θ(c, c−r). Then, by expanding φrθ(c, c−r)) via the

update rule, we obtain:∑
c∈C

φrθ(c, c−r) = φrθ(c0, c−r) +
∑
c∈C

φr−1
θ (c, c−r)− φrθ(c0, c−r),

which is precisely
∑

c∈C φ
r−1
θ (c, c−r)). This implies that

∑
c∈C φ

r
θ(c) = 1,

and that receiver r’s marginal probabilities are modified only at iteration
r. Now, we show that receiver r’s marginals are updated correctly. We
distinguish the following two cases.
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i) It is easy to see that, for candidate c0,∑
c−r∈C−r

φrθ(c0, c−r) =

= ∆0
r(θ) +

∑
c−r∈C−r

φr−1
θ (c0, c−r) = φr,θ(c0).

ii) For each candidate c 6= c0, we have:∑
c−r∈C−r

φrθ(c, c−r) =

=
∑

c−r∈C−r

φr,θ(c)

(∑
c′∈C

φr−1
θ (c, c−r)− φrθ, (c0, c−r)

)
∑

c′∈C\{c0}

φr,θ(c
′)

=

=

φr,θ(c)

(∑
c∈S

φr−1
θ (c)−

∑
c−r∈S−r

φrθ(c0, c−r)
)

∑
c′∈C\{c0}

φr,θ(c
′)

=

=
φr,θ(c)(1− φr,θ(c0))∑
c′∈C\{c0}

φr,θ(c
′)

= φr,θ(c).

Since {φr}r∈R are persuasive, also the new signaling scheme φ is persua-
sive. Finally, we show that the new signaling scheme does not decrease
sender’s expected utility. Let C∗ = {c ∈ C|δ(c, c0) ≥ k} be the set of joint
signals recommending c0 to more than k voters (under a k-voting rule).
Then, W (φ) =

∑
θ∈Θ µθ

∑
c∈C∗ φθ(c). It is enough to show that, for each

iteration r, for each θ ∈ Θ, and, for each c−r ∈ C−r, it holds∑
c∈C

(
φrθ(c, c−r)− φr−1

θ (c, c−r)
)
I[(c, c−r) ∈ C∗] ≥ 0,

where I is the indicator function. We distinguish three cases:

• when δ(c−r, c0) < k − 1, a change in r’s marginal probabilities does
not affect the sender’s winning probability, term I[(c, c−r) ∈ C∗] being
always 0;

• when δ(c−r, c0) = k − 1, I[(c, c−r) ∈ C∗] = 1 only if c = c0, and
φrθ(c0, c−r) ≥ φr−1

θ (c0, c−r);
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• when δ(c−r, c0) > k − 1, I[(c, c−r) ∈ C∗] is always 1, and we already
know that

∑
c∈C
(
φrθ(c, c−r)− φr−1

θ (c, c−r)
)

= 0.

This concludes the proof.

We now state the next lemma.

Lemma 4.2. There always exists a solution to K-V in which, for all r ∈ R
and θ ∈ Θ, φr,θ(c) > 0 if and only if one of the following two conditions is
satisfied:
• c = c0,
• c ∈ arg maxc′∈Curθ(c′).

Proof. Given a persuasive signaling scheme φ′, we show that it is possible
to build a collection {φr}r∈R with the property above, such that φr,θ(c0) ≥
φ′r,θ(c0) for each r ∈ R, θ ∈ Θ. This, together with Lemma 4.1, proves our
result. We build φ iteratively. For each pair (θ, r), select a candidate c∗ ∈
arg maxc∈Cu

r
θ(c), and set φr,θ(c∗) = 1 − φ′r,θ(c0), φr,θ(c0) = φ′r,θ(c0), and

φr,θ(c) = 0 for each other c ∈ C \ {c0, c
∗}. It is immediate to see that, for

each θ and r,
∑

c∈C φr,θ(c) = 1. Next, we show that each φr is persuasive,
i.e.,

∑
θ∈Θ µθφr,θ(c) (urθ(c)− urθ(c′)) ≥ 0 for each r ∈ R, and c, c′ ∈ C. If

c = c0, we have φr,θ(c0) > φ′r,θ(c0) only if c0 ∈ arg maxc∈Curθ(c), which
means (urθ(c0)− urθ(c′)) ≥ 0, in the remaining cases we have φr,θ(c0) =
φ′r,θ(c0). If c 6= c0, c ∈ arg maxc′∈Curθ(c′) for each θ ∈ Θ with φr,θ(c) > 0,
which makes the incentive constraint satisfied.

By exploiting Lemma 4.2, we show that an optimal persuasive signaling
scheme under a k-voting rule can be computed in polynomial time via the
following linear program (LP). Let βθ ∈ R be the probability with which k
voters vote for c0 with state θ. Then, we can compute an optimal solution
to K-V as follows (the proof is provided below):

max
β∈[0,1]d,z∈Rd×k×n̄−
t∈Rd×k,q∈Rd×k
φ·,·(c0)∈[0,1]n̄×d

∑
θ∈Θ

µθβθ (4.2a)

s.t.
∑
θ∈Θ

µθφr,θ(c0) (urθ(c0)− urθ(c)) ≥ 0 (4.2b)

∀r ∈ R,∀c ∈ C \ {c0}

βθ ≤
1

k −m
qθ,m∀θ ∈ Θ,∀m ∈ {0, . . . , k − 1} (4.2c)

qθ,m ≤ (n̄−m)tθ,m +
∑
r∈R

zθ,r,m (4.2d)
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∀θ ∈ Θ,∀m ∈ {0, . . . , k − 1}
φr,θ(c0) ≥ tθ,m + zθ,m,r (4.2e)

∀r ∈ R, ∀θ ∈ Θ,∀m ∈ {0, . . . , k − 1}.

This formulation allows us to state the following:

Theorem 4.1. It is possible to compute an optimal persuasive private sig-
naling scheme for K-V in poly(d, %, n̄) time.

Proof. Formulation 6.8 has a polynomial number of variables and con-
straints. Then, proving Theorem 4.1 amounts to show that a solution to
Formulation 6.8 is also a solution to K-V.

Let c∗θ,r = arg maxc∈Cu
r
θ(c), for each θ and r. First, by Lemma 4.2,

the space of available signals can be restricted to those in which, for each
r and θ, only φr,θ(c0) and φr,θ(c∗θ,r) are > 0, and φr,θ(c∗θ,r) = 1 − φr,θ(c0).
Constraints (4.2b) are the incentive constraints for action c0. For any c 6= c0,
the incentive constraints are satisfied by construction. Objective (4.2a) is
given by the sum over all θ ∈ Θ of the prior of state θ, multiplied by the
probability of having at least k vote for c0 given θ. We need to show the
correctness of βθ. For each state of nature the maximum probability with
which at least k receivers play c0 is given by:

βθ = min

{
min

m∈{0,...,k−1}

1

k −m
qθ,m, 1

}
,

where qθ,m is the sum of the lowest n̄−m elements in the set {φr,θ(c0)}r∈R;
for further details, see Lemma 3 of (Arieli and Babichenko, 2019). This is
enforced via Constraints (4.2c). Constraints (4.2d) and (4.2e) ensure qθ,m’s
consistency, and are derived from the dual of a simple LP of this kind:
miny∈Rn x>y s.t. 1>y = w and 0 ≤ y ≤ 1 (where x ∈ Rn is the vector
from which we want to extract the sum of the smallest w entries). This
concludes the proof.

4.4 A Condition for Efficient Private Signaling

In the following, we provide a necessary and sufficient condition for the
poly-time computation of persuasive private signaling schemes under a
general class of sender’s objective functions. In the next section, this re-
sult will be exploited when dealing with anonymous utility functions and
plurality voting. We allow for general sender’s utility functions of type
fθ : ×r∈RC → [0, 1], which generalizes previous results by Dughmi and
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Chapter 4. Persuading Voters in Simple Elections

Xu (2017) where the receivers’ action space has to be binary. Given a col-
lection of set functions F , P (F) denotes the class of persuasion instances
in which, for each θ ∈ Θ, fθ ∈ F . We can state the following.

Theorem 4.2. Let F be any collection of set functions including f0(·) = 0.
Given any instance in P (F), there exists a polynomial-time algorithm for
computing an optimal persuasive private signaling scheme if and only if
there is a polynomial-time algorithm that computes

max
c∈×r∈RC

f(c) +
∑
r∈R

wr(cr), (4.3)

for any f ∈ F , and any weights wr(cr) ∈ R, where cr is the action chosen
by r in c.

Proof. Given a set {fθ}θ∈Θ, the persuasion problem can be formulated with
the following LP:

max
x∈[0,1]|Θ×C|

∑
θ∈Θ,c∈C

xθ,cfθ(c) (4.4a)∑
θ∈Θ,

c:cr=c

xθ,c (urθ(c)− urθ(c′)) ≥ 0 ∀r ∈ R,∀c, c′ ∈ C (4.4b)

∑
c∈C

xθ,c = µθ ∀θ ∈ Θ (4.4c)

Note that Constraints (4.4b) force the signaling scheme to be persuasive,
while Constraints (4.4c) force the signaling scheme to be feasible.

(=⇒). Let y ∈ R|R×C×C|− be the dual variables relative to primal Con-
straints (4.4b) and q ∈ R|Θ| be the dual variables of Constraints (4.4c). The
dual of LP 4.4 has a polynomial number of variables and an exponential
number of constraints, one for each pair (θ, c) ∈ Θ× C, of type:

O(θ, c) =

−∑
r∈R,
c∈C

yr,cr,c (urθ(cr)− urθ(c))

 − qθ + fθ(c) ≤ 0.

We show that, given a vector of dual variables z̄ = (ȳ, q̄), the problem
of either finding a hyperplane separating z̄ from the set of feasible solu-
tions to the dual or proving that no such hyperplane exists can be solved
in polynomial time. The separation problem of finding an inequality of
the dual which is maximally violated at z̄ reads: max(θ,c)∈Θ×S O(θ, c). A
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pair (θ, c) yielding a violated inequality exists if and only if the separation
problem admits an optimal solution of value > 0. One such pair (if any)
can by found in polynomial time by enumerating over states in Θ. For each
θ, the problem reduces to maxc

∑
r∈R vr(θ, cr) + fθ(c), where vr(θ, cr) =

−
∑

c∈C ȳr.cr,c (urθ(cr)− urθ(c)). It is enough to take wr(c) = vr(θ, c) to
complete the if part of the proof.

(⇐=). Given a polynomial-time algorithm to determine an optimal sig-
naling scheme for any instance of P (F), we want to show that maxc∈C f(c)−∑

r∈Rwr(cr) can be solved efficiently for any {wr(c)}r,c, and f ∈ F .
To reduce this problem to a signaling problem we employ a duality-

based analysis introduced in (Dughmi and Xu, 2017), and later improved
by Xu (2020). Our generalization to non-binary action spaces requires a
more involved proof, as we will highlight in the following. Moreover, our
proof completely diverges from Dughmi and Xu (2017)’s and Xu (2020)’s
in the final construction of the mapping to a private signaling problem.

Given a set of weights {w̄r(c)}r,c, and f ∈ F , we are interested in the
maximization of f̄(c) = f(c) +

∑
r∈R w̄r(cr) over S. First, we slightly

modify weights by setting, for each r ∈ R, w̄r(c)← w̄r(c)−maxc′ w̄r(c
′),

for each c ∈ C. This modification preserves the set of optimal solutions of
the maximization problem. After that, for each receiver r, it holds w̄r ≤ 0,
and there exists ĉr ∈ C s.t. w̄r(ĉr) = 0. Let, for each r ∈ R, Cr = C \{ĉr}
(ĉr can be selected arbitrarily from the actions s.t. w̄r(c) = 0). We show
that maxc∈C f̄(c) can be reduced to solving the following LP, for all possible
linear coefficients α, {`r(c)}r∈R,c∈Cr :

min
z∈R|R×Cr |

v∈R

∑
r∈R,c∈Cr

`r(c)zr,c + αv (4.5a)

s.t.
∑
r∈R
cr 6=ĉr

zr,cr + v ≥ f(c) ∀c ∈ C (4.5b)

zr,c ≥ 0 ∀r ∈ R, c ∈ Cr. (4.5c)

To show this, we first argue that the maximization problem can be re-
duced to the separation problem for the feasible region of LP 4.5. Take
z̄r,c = −w̄r(c) for all r and c ∈ Cr. Constraints of family (4.5c) are
satisfied by construction. Then, a pair ({z̄, v) is feasible if and only if
v ≥ maxc f(c) +

∑
r,cr 6=ĉr w̄r(cr). As a result, the optimal value v∗ (which

is the exact optimal objective of f̄(c)) can be determined via binary search
in O(B) steps, where B is the bit complexity of the f(c)’s and w’s. Then,
by setting v̄ = v∗−2−B, we obtain an infeasible pair (z̄, v̄). If the separation
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oracle is given in input (z̄, v̄), it returns a separating hyperplane correspond-
ing to the optimal solution of the maximization problem. The equivalence
between optimization and separation implies that the maximization prob-
lem reduces to solving LP 4.5 for any linear coefficients {`r(c)}r∈R,c∈Cr
and α (Khachiyan, 1980; Grötschel et al., 1981).

A crucial difference between LP 4.5 and Xu (2020)’s analogous LP is
that we modify the initial weights w̄ to make them ≤ 0 (simplifying the
LP’s structure), and, for each r, there is at least one w̄r(c) equal to 0. This
reduces the number of variables in LP 4.5, as variables zr(ĉr) are not in-
cluded. This is fundamental for the last step of the proof.

The next step is showing that LP 4.5 can be solved directly for some
parameters’ values. Specifically:
• If α < 0 the solution is unbounded (i.e., the objective function tends

to −∞ as v →∞).

• If α = 0 and there exists (r̄, c̄) s.t. `r̄(c̄) < 0, then a feasible solution
is obtained by setting: zr̄,c̄ = v, and zr,c = 0 for all (r, c) 6= (r̄, c̄).
Again, for v →∞ the objective tends to −∞.

• If α = 0 and `r(c) ≥ 0 for all (r, c), then the objective is ≥ 0 for
any feasible solution. By selecting a sufficiently large v we obtain a
feasible and optimal solution with objective value 0.

Therefore, when α ≤ 0 the problem can be solved in polynomial time.
We focus on the case in which α > 0. Since α > 0, we can re-scale

all coefficients of LP 4.5 by a factor 1/α without affecting its optimal so-
lutions, and obtain an equivalent LP with α = 1. The dual of LP 4.5 with
α = 1 is:

max
p∈R|C|+

∑
c∈C

pcf(c) (4.6a)

s.t.
∑

c:cr=c

p(c) ≤ `r(c) ∀r ∈ R, c ∈ Cr (4.6b)∑
c∈C

pc = 1 (4.6c)

Finally, we show that finding an optimal solution to LP 4.6 reduces to find-
ing an optimal signaling scheme in an instance of private persuasion with
|Θ| = |C| states of nature, and µθ = 1

|C| for each θ. First, for each r we
define an arbitrary one-to-one correspondence between elements of Cr, and
elements of Θ \ {θ0}. Let cθ (θc) be the action (state) associated with θ (c).
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Receiver r’s utility function reads:

urθ(c) =


1 if θ = θ0 and c = ĉr

0 if θ = θ0 and c 6= ĉr

`r(c) if θ 6= θ0 and c = cθ

0 if θ 6= θ0 and c 6= cθ

.

Let sender’s utility be such that fθ = f0, for each θ 6= θ0, and fθ0 =
f . We have that fθ(c) = 0 for each θ ∈ Θ \ {θ0} and c ∈ C. Then,
there exists an optimal signaling scheme such that, in each state θ 6= θ0,
φθ(cθ) = 1, where cθ is a signal recommending cθ to each receiver (from
an argument analogous to Lemma 4.2). Now, an optimal signaling scheme
can be computed by focusing on θ0 (i.e., we employ the aforementioned
signaling scheme for any θ 6= θ0) via the following LP:

max
φθ0 (·)∈[0,1]|C|

µθ
∑
c∈C

φθ0(c)fθ0(c) (4.7a)

s.t.
∑
θ∈Θ

∑
c:cr=c

µ(θ)φθ(c)(urθ(c)− urθ(c′)) ≥ 0

∀r ∈ R,∀c, c′ ∈ C (4.7b)∑
c∈C

φθ0(c) = 1. (4.7c)

The incentive Constraints (4.7b) are trivially satisfied when c = ĉr. More-
over, for each c 6= ĉr, the incentive Constraints (4.7b) can be rewritten as
follows: first, notice that it is enough to consider c′ = ĉr. Then, for each
r ∈ R and c ∈ Cr, we obtain:∑

c:cr=c

φθ0(c)(urθ0(c)− urθ0(ĉr)) ≥ urθc(ĉ
r)− urθc(c),

which can be rewritten as
∑

c:cr=c
φθ0(c) ≤ `r(c). The equivalence between

LP 4.6 and LP 4.7 easily follows.

The crucial difference with the result by Dughmi and Xu (2017) is that
they consider set functions depending only on the set of players choosing
the target action, between the two available. Theorem 4.2 generalizes this
setting as it allows for functions taking as input any action profile c. This
is crucial in settings like plurality voting, where the sender is not only in-
terested in votes favorable to c0, but also in the distribution of the other
preferences. Dughmi and Xu (2017)’s result cannot be applied to such set-
tings.
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4.5 Further Positive Results for Private Signaling

Despite Theorem 4.2, in the case of general utility functions the problem of
determining an optimal persuasive private signaling scheme is still largely
intractable. An intuition behind that is that there may be an exponential (in
|C|) number of values of f (e.g., in the case of anonymous utility functions,
there are

(|R|+|C|−1
|R|

)
values of f ). In order to identify tractable classes of

the problem, we need to make some further assumptions on F .
Anonymous Utility Functions. A reasonable (in the context of voting)

restriction is to anonymous utility functions (see (Arieli and Babichenko,
2019)). Previous results on the computational complexity of private signal-
ing with anonymous utility functions focus on the case of binary actions,
which is shown to be tractable (Babichenko and Barman, 2017; Arieli and
Babichenko, 2019; Dughmi and Xu, 2017). We generalize these results to a
generic number of states of nature and receiver’s actions with the following
result.

Theorem 4.3. Private Bayesian persuasion with anonymous sender’s util-
ity functions is fixed-parameter tractable in the number of receivers’ ac-
tions.

Proof. It is enough to provide an algorithm for the maximization problem
in Theorem 4.2. We need to solve maxc∈C f(c) +

∑
r∈Rwr(cr). Since

f is anonymous, for any persuasive signal c, f ’s value is determined by
the vector p = (δ(c, c0), . . . , δ(c, c|C|)). Let P = {p = (k0, . . . , k|C|) ∈
N|C|0 |

∑|C|
i=0 ki = |R|}, and notice that |P | =

(|R|+|C|−1
|R|

)
, which is polyno-

mial in the input size once the |C| has been fixed (see (Stanley, 2011)). In
order to solve the maximization problem, we enumerate over all p ∈ P .
Once p has been fixed, we are left with the following maximization prob-
lem: maxc∈C

∑
r∈Rwr(cr), where c has to be such that δ(c, ci) = ki for

each i ∈ {0, . . . , |C|}. Specifically, the optimal assignment of receivers to
actions can be found with the following LP:

max
χ∈R|R×C|+

∑
(r,c)∈R×C

χr,cwr(c)

s.t.
∑
r∈R

χr,ci = ki ∀i ∈ {0, . . . , |C|}∑
c∈C

χr,c = 1 ∀r ∈ R.

We look for an integer solution of the problem, which always exists and
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can be found in polynomial time (see, e.g., (Orlin, 1997)). This is because
the formulation is an instance of the maximum cost flow problem, which is,
in its turn, a variation of the minimum cost flow problem. Once an integer
solution has been found, an optimal solution of the original maximization
problem is the signal obtained by assigning to each r the action c s.t. χr,c =
1.

Theorem 4.3 implies that, for any anonymous voting rule, the private
Bayesian persuasion problem is fixed-parameter tractable in the number of
candidates.

Plurality Voting. By further restricting our attention to specific voting
rules, we can see the consequences of Theorem 4.2 to an even better extent.
A simple and widespread voting rule is plurality voting. 3 In this setting
W (c) = 1 if and only if δ(c, c0) > δ(c, c) for any c 6= c0, and W (c) = 0
otherwise. We can state the following:

Theorem 4.4. PL-V with private signaling can be solved in poly(d, %, n̄)
time.

Proof. We exploit Theorem 4.2, and show that the maximization Prob-
lem 4.3 can be solved efficiently. With an overload of notation, generic ac-
tions profiles are represented via signals. Then, the maximization problem
reads: maxc∈CW (c) +

∑
r∈Rwr(cr). We split the maximization problem

in two steps. First, we consider the maximization over non-winning action
profiles, i.e., signals in the set C̄ = {c ∈ C|∃c 6= c0 s.t. δ(c, c) > δ(c, c0)}.
An upper bound to the optimal value of the maximization problem re-
stricted to C̄ is given by maxc∈C

∑
r wr(cr). The latter problem can be

solved independently for each receiver r, by choosing c maximizing wr(c).
Once the relaxed problem has been solved, the objective function of the
separation problem is adjusted by checking whether c is winning or not.
The resulting value is then compared with the value from the following
step.

We consider the maximization over winning action profiles, i.e., signals
in C∗ = C \ C̄. For any c ∈ C∗, W (c) = 1. Then, we have to maximize
the same objective of the previous case with the following additional con-
straints: δ(c, c0) > δ(c, c), for all c 6= c0. To determine an optimal solution
to this problem, we enumerate over k ∈ {d |R|−1

|C| e + 1, . . . , |R|}, i.e., the
number of votes that make c0 a potential winner of the election. Then, for
each value of k, we consider action profiles such that δ(c, c0) = k, and

3See, e.g., its (discussed) adoption in direct presidential elections in a number of states (Blais et al., 1997).
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δ(c, c) < k, for all c 6= c0 (i.e., winning signals where c0 receives exactly k
votes). An optimal solution for a fixed k can be determined with this LP:

max
χ∈R|R×C|+

∑
(r,c)∈R×C

χr,cwr(c)

s.t.
∑
r∈R

χr,c0 = k∑
r∈R

χr,c ≤ k − 1 ∀c ∈ C \ {c0}∑
c∈C

χr,c = 1 ∀r ∈ R.

We look for an integer solution of the problem, which always exists and
can be found in polynomial time (see, e.g., (Orlin, 1997)). This is because
the formulation is an instance of the maximum cost flow problem, which is,
in its turn, a variation of the minimum cost flow problem. Once an integer
solution has been found, an optimal action profile of the original maximiza-
tion problem is the one obtained by recommending to each r the candidate
c s.t. χr,c = 1.

4.6 Public Signaling

In contrast with the results for private signaling problems, we show that
public persuasion in the context of voting is largely intractable.

We reduce from MAXIMUM k-SUBSET INTERSECTION (MSI) (Clif-
ford and Popa, 2011).

Definition 4.1 (MSI). An instance of MAXIMUM k-SUBSET INTERSEC-
TION is a tuple (E , A1, . . . , Am, k, q), where E = {e1, . . . , en} is a finite
set of elements, each Ai, i ∈ [m], is a subset of E , and k, q are positive in-
tegers. It is a “yes”-instance if there exist exactly k sets Ai1 , . . . , Aik such
that | ∩j∈[k] Aij | ≥ q, and a “no”-instance otherwise.

MSI has been recently shown to be NP-hard (Xavier, 2012; Elkind et al.,
2015). Now, we prove the following negative result:

Theorem 4.5. K-V with public signaling, even with two candidates, cannot
be approximated in polynomial time to within any factor, unless P=NP.

Proof. Given an instance of MSI, we build a public signaling problem with
the following features.
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Mapping. It has a voter ri for each Ai, i ∈ [m], and m voters re,j ,
j ∈ [m], for each e ∈ E . There is a state of nature θe for each e ∈ E , and
µθe = 1/n for each θe. Finally, C = {c0, c1}. Receivers have the following
utility functions: for each ri, i ∈ [m],

uriθe(c) =


1 if e ∈ Ai, c = c0

−n2 if e /∈ Ai, c = c0

0 if c = c1

,

for each re,j , e ∈ E , and j ∈ [m],

u
re,j
θe′

(c) =


1 if e = e′, c = c0

− 1
q−1

if e 6= e′, c = c0

0 if c = c1

.

The sender needs at least k +mq votes (for c0) in order to win the election
(i.e., we are considering a (k+mq)-voting rule). We prove our theorem by
showing that c0 has a strictly positive probability of winning the election if
and only if the corresponding MSI instance is satisfiable.

If. Suppose there exists a set A∗ = {Ai1 , . . . , Aik} satisfying the MSI
instance, and let I = ∩j∈[k]Aij . Define a signaling scheme φ with two
signals (s0 and s1) such that, for each e ∈ I , φθe(s0) = 1, and, for each
e /∈ I , φθe(s1) = 1, and it is equal to 0 otherwise. We show that such a
signaling scheme guarantees a strictly positive winning probability for the
sender. First, we show that, when the realized state of nature θe is such that
e ∈ I (i.e., the sender recommends s0), at least k + mq receivers vote for
c0. Each receiver ri such that Ai ∈ A∗ will choose c0 when recommended
s0. Specifically,

∑
θe

1
n
φθe(s0)uriθe(c0) = q

n
, while

∑
θe

1
n
φθe(s0)uriθe(c1) =

0. Receivers re,j with e ∈ I will vote for c0 after observing s0. This is
because, for each e ∈ I and j ∈ [m], re,j has expected utility 1

n
φθe(s0) −∑

θ′e:e
′ 6=e

1
n

1
q−1

φθe′ (c0) = 0 for voting c0, and expected utility 0 for voting
c1. Then, when the realized state of nature is θe with e ∈ I , there are at least
k+mq receivers voting for c0. Therefore, the sender’s winning probability
is at least k

n
(i.e., the probability of observing θe with e ∈ I under a uniform

prior).
Only if. Suppose, by contradiction, that MSI is not satisfiable, and

that the sender’s winning probability under the optimal signaling scheme
is not null. This implies the existence of a signal s0 such that, when rec-
ommended, a set of receivers R∗ votes for c0, and |R∗| ≥ k + mq. Then,
there exist at least q states θe in which all voters re,j , j ∈ [m], vote for
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c0. Each receiver re,j , having observed s0, votes for c0 only if φθe(s0) −
1
q−1

∑
θe′ :e

′ 6=e φθe′ (s0) ≥ 0. This implies that φθe(s0) −
∑

θe′
φθe′ (s0) +

φθe(s0) ≥ 0 and φθe(s0) ≥
∑

θe′∈Θ φθe′ (s0)/q. Then, there are exactly q
states θe in which s0 is played with probability

∑
θe′∈Θ φθe′ (s0)/q, while

s0 is never played in the remaining states. As a consequence, R∗ includes
exactly mq voters re,j , and at least k voters ri.

Each voter ri ∈ R∗, after observing s0, choose candidate c0. Therefore,∑
θe∈Θ µθeφθe(s0)(uriθe(c0) − uriθe(c1)) ≥ 0. We obtain

∑
e∈Ai φθe(s0) −

n2
∑

e/∈Ai φθe(s0) ≥ 0. Then,∑
e∈Ai

φθe(s0)− n2
∑
e∈E

φθe(s0) + n2
∑
e∈Ai

φθe(s0) ≥ 0.

Moreover, we have∑
e∈Ai

φθe(s0) ≥ n2

n2 + 1

∑
e∈E

φθe(s0) (4.10)

for each i ∈ [m] such that ri ∈ R∗.
Let E∗ be the set of elements e such that re,j ∈ R∗, for all j ∈ [m]. In

this case, since MSI is not satisfiable, there exists a pair (rî, e) ∈ R × E∗
such that rî ∈ R∗ and e /∈ Aî (otherwise {Ai}i:ri∈R∗ would be a feasible so-
lution with intersection E∗). We observed that, in each θe with e ∈ E∗, s0 is
recommended with probability

∑
e∈E φθe(s0)/q. Then,

∑
e∈Aî

φθe(s0) =∑
e∈Aî

φθe(s0) ≤ q−1
q

∑
e∈E φθe(s0). This leads to a contradiction with

(4.10) since
q − 1

q

∑
e∈E

φθe(s0) ≥ n2

n2 + 1

∑
e∈E

φθe(s0)

has no solutions (since q and n are positive integers and q ≤ n). This
concludes our proof.

Theorem 4.5 implies that the public signaling problem is intractable
even with more general sender’s utility functions. It is immediate to see
that the same negative result holds for anonymous utility functions (a k-
voting rule induces a sender’s anonymous utility function), and we prove
that the same hardness result also holds for plurality voting with two can-
didates and hence majority voting.

Corollary 4.1. PL-V with public signaling, even with two candidates, can-
not be approximated in polynomial time to within any factor, unless P=NP.
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Proof. PL-V with two candidates is equivalent to K-V with k∗ = b |R|
2
c+ 1.

We show that K-V with arbitrary k reduces to K-V with k = k∗. Theo-
rem 4.5 concludes the proof.

We distinguish two cases: i) Suppose k > k∗. We add 2k − |R| − 1
voters that prefer c1 in any state. There are |R∗| = 2k − 1 voters and
candidate c0 has k = b |R

∗|
2
c + 1 votes only if k of the initial receivers vote

for c0. ii) Suppose k < k∗. We add |R| + 1 − 2k voters that prefer c0 in
any state. There are |R∗| = 2|R| + 1 − 2k voters and candidate c0 has
b |R

∗|
2
c + 1 = |R| − k + 1 votes only if k of the initial receivers vote for

c0.

49





CHAPTER5
Bi-criteria Approximations in Public

Bayesian Persuasion: Voting and Beyond

In this chapter, we characterize the complexity of bi-approximation with
public signals. Even if the chapter focuses on a general bayesian persua-
sion problem, we take advantage of the simplicity of voting functions. In
particular, our main result shows that computing bi-criteria approximation
for public signaling in k-voting elections requires quasi-polynomial time
assuming ETH, strengthening the result in Section 4.6. In Section 5.1,
we define a bicriteria approximation for the Bayesian persuasion problem.
In Section 5.2, we define an approximate problem related to finding the
largest feasible subset of linear inequalities and characterize its computa-
tional complexity. In Section 5.3, we show that computing a bi-criteria ap-
proximation in k-voting elections requires at least quasi-polynomial time
assuming ETH. Finally, in Section 5.4 we design a quasi-polynomial time
algorithm that provides a bi-criteria approximation for general Bayesian
persuasion problems, complementing the result in Section 5.3.
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Chapter 5. Bi-criteria Approximations in Public Bayesian Persuasion:
Voting and Beyond

5.1 Approximations

We recall that a direct public signaling scheme is ε-persuasive if the fol-
lowing holds for any r ∈ R, a ∈ A, and a′ ∈ Ar:∑

θ∈Θ

µθ φθ(a)
(
urθ(ar)− urθ(a′)

)
≥ −ε. (5.1)

Throughout the chapter, we focus on the computation of approximately
optimal signaling schemes. Let OPT be the optimal value of LP 3.7, i.e., the
best sender’s expected revenue under public persuasion constraints. Since,
for each state of nature θ, fθ is a non-negative function, we have that OPT ≥
0. When a signaling scheme yields an expected sender utility of at least
αOPT, with α ∈ (0, 1], we say that the signaling scheme is α-approximate
(that is, approximate in multiplicative sense). When a signaling scheme
yields an expected sender utility of at least OPT − α, with α ∈ [0, 1), we
say that the scheme is α-optimal (that is, approximate in additive sense).

Finally, we consider approximations which relax both the optimality
and the persuasiveness constraints. When a signaling scheme is both ε-
persuasive and α-approximate (or α-optimal), we say it is a bi-criteria ap-
proximation. We say that one such signaling scheme is (α, ε)-persuasive.

5.2 Maximum ε-Feasible Subsystem of Linear Inequalities

As a first step, we prove the following auxiliary result on the two-prover
game introduced in section 2.3.

Lemma 5.1. Given a 3SAT formula ϕ, if ϕ is unsatisfiable, then for each
(possibly randomized) Merlin2’s strategy η2 there exists a set Si such that
each Merlin1’s assignment to variables in Si is in conflict with Merlin2’s
assignment with a probability of at least ρ/2ν.

Proof. Let ω(Fϕ, η2|Si) be the probability with which Arthur accepts Mer-
lin’s answers when Merlin1 receives Si, and Merlin2 follows strategy η2.
Formally:

ω(Fϕ, η2|Si) := max
η1

ETi [V(Si, Ti, η1, η2)].

By definition of the value of a free game, we have:

ω(Fϕ) =
1

m
max
η2

∑
Si

ω(Fϕ, η2|Si) ≥ max
η2

min
Si

ω(Fϕ, η2|Si).
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Then, by Lemma 2.2, this results in:

max
η2

min
Si

ω(Fϕ, η2|Si) ≤ 1− ρ

2ν
,

which proves the statement of the lemma.

Now, we introduce the maximum ε-feasible subsystem of linear inequal-
ities problem. Given a system of linear inequalities Ax ≥ 0 with A ∈
[−1, 1]nrow×ncol and x ∈ ∆ncol , we study the problem of finding the largest
subsystem of linear inequalities that violate the constraints of at most ε. As
we will show in Section 5.3, this problem presents some deep analogies
with the problem of determining good posteriors in persuasion problems.
Let I denote the indicator function. Then, the problem of finding the maxi-
mum feasible subsystem of linear inequalities reads as follows.

Definition 5.1 (MFS). Given a matrix A ∈ [−1, 1]nrow×ncol , the problem of
finding the maximum feasible subsystem of linear inequalities (MFS) reads
as follows:

max
x∗∈∆ncol

∑
i∈[nrow]

I[w∗i ≥ 0] s.t. w∗ = Ax∗.

We are interested in the problem of finding a vector x which results at
least in the same number of feasible inequalities of MFS under a relaxation
of the constraints with respect to Definition 5.1.

Definition 5.2 (ε-MFS). Given a matrix A ∈ [−1, 1]nrow×ncol , let

k := max
x∗∈∆ncol

∑
i∈[nrow]

I[w∗i ≥ 0] s.t. w∗ = Ax∗.

Then, the problem of finding the maximum ε-feasible subsystem of linear
inequalities (ε-MFS) amounts to finding a probability vector x ∈ ∆ncol such
that, by letting w = Ax, it holds:

∑
i∈[nrow] I[wi ≥ −ε] ≥ k.

This problem is previously studied by Cheng et al. (2015). They design
a PTAS for the ε-MFS problem guaranteeing the satisfaction of at least k−
ε nrow inequalities. This results in a bi-criteria PTAS for the MFS problem.

Initially, we show that ε-MFS can be exactly solved in nO(logn) steps for
every fixed ε > 0.

Theorem 5.1. ε-MFS can be solved in nO(logn) steps.
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Proof. Denote by x∗ the optimal solution of ε-MFS. Let x̃ ∈ ∆ncol be the
empirical distribution of q i.i.d. samples drawn from probability distribution
x∗. Moreover, let w∗ := Ax∗ and w̃ := A x̃. By Hoeffding’s inequality
we have

Pr(w∗i − w̃i ≥ ε) ≤ e−2qε2

for each i ∈ [nrow]. Then, by the union bound, we get

Pr(∃i s.t. w∗i − w̃i ≥ ε) ≤ nrow e
−2qε2 .

Finally, we can write

Pr(w∗i − w̃i ≤ ε ∀i ∈ [nrow]) ≥ 1− nrow e
−2qε2 .

Thus, setting q = log nrow/ε
2 ensures the existence of a vector x̃ guarantee-

ing that, if w∗i ≥ 0, then w̃i ≥ −ε. Since x̃ is q-uniform by construction,
we can find it by enumerating over all the O((ncol)

q) q-uniform probabil-
ity vectors where q = log nrow/ε

2. Trivially, this task can be performed in
nlognrow/ε2 steps and, therefore, in nO(logn) steps.

Now we show that ε-MFS requires at least nΩ̃(logn) steps. 1 In doing so,
we close the gap with the upper bound stated by Theorem 5.1 except for
polylogarithmic factors of log n in the exponent.

Theorem 5.2. Assuming ETH, there exists a constant ε > 0 such that solv-
ing ε-MFS requires time nΩ̃(logn).

Proof. OVERVIEW. We provide a polynomial-time reduction from the prob-
lem FREEGAMEδ (Def. 2.6) to ε-MFS, where ε = δ

26
= ρ

52ν
(see Section 2.3

for the definition of parameters δ, ρ, ν). We show that, given a free game
Fϕ instance, it is possible to build a matrix A s.t., for a certain value k, the
following holds:

(i) if ω(Fϕ) = 1, then there exists a vector x s.t.∑
i∈[nrow]

I[wi ≥ 0] = k, (5.2)

where w = Ax;

(ii) if ω(Fϕ) ≤ 1− δ, then all vectors x are s.t.∑
i∈[nrow]

I[wi ≥ −ε] < k, (5.3)

where w = Ax;
1Ω̃ hides polylogarithmic factors.

54



5.2. Maximum ε-Feasible Subsystem of Linear Inequalities

CONSTRUCTION. In the free game Fϕ, Arthur sends a set of variables
Si to Merlin1 and a set of clauses Tj to Merlin2, where i, j ∈ [m], m =√
n polylog(n) (see Definition 2.5 for the definition of n). Then, Merlin1’s

(resp., Merlin2’s) answer is denoted by p1 ∈ P1 (resp., p2 ∈ P2). The
system of linear inequalities used in the reduction has a vector of variables
x structured as follows.

1. Variables corresponding to Merlin2’s answers. There is a variable
xTj ,p2 for each j ∈ [m] and, due to Lemma 2.1 and assuming |Tj| =
2m, it holds p2 ∈ P2 = {0, 1}6m (if |Tj| < 2m, we extend p2 with
extra bits).

2. Variables corresponding to Merlin1’s answers. We need to introduce
some further machinery to augment the dimensionality of P1 via a
viable mapping. Let e : {0, 1}2m → {0, 1}8m be the code stated
in Theorem 2.4 with rate 1/4 and relative distance dist(e) ≥ 1/5.
We can safely assume that |Si| = 2m and p1 ∈ P1 = {0, 1}2m (if
|Si| < 2m, we extend p1 with extra bits). Then, e(p1) is the 8m-
dimensional encoding of answer p1 via code e. Let e(p1)j be the j-th
bit of vector e(p1). We have a variable xi,` for each index i ∈ [8m]
and ` := {`j}j∈[m] ∈ {0, 1}m. These xi,` variables can be interpreted
as follows. Suppose to have an encoding of an answer for each of the
possible set Sj . There are m such encodings, each of them having 8m
bits. Then, it holds xi,` > 0 if and only if the i-th bit of the encoding
corresponding to Sj is `j .

There is a total of m 2m (25m + 8) variables. Matrix A has a number of
columns equal to the number of variables. We denote with A·,(Tj ,p2) the
entry in row · and column corresponding to variable xTj ,p2 . Analogously,
A·,(i,`) is the entry in row · and column corresponding to variable xi,`. Rows
are grouped in four types, denoted by {ti}4

i=1. We write Ati,· when refer-
ring to an entry of any row of type ti. Further arguments may be added as
a subscript to identify specific entries of A. Rows are structured as follows.

1. Rows of type t1: there are β (the value of β is specified later in the
proof) rows of type t1 s.t. At1,(Tj ,p2) = 1 for each j ∈ [m], p2 ∈ P2,
and −1 otherwise.

2. Rows of type t2: there are β rows for each subset T ⊆ {Tj}j∈[m] with
cardinalitym/2 (i.e., there is a total of β

(
m
m/2

)
rows of type t2). Then,
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the following holds for each T :

A(t2,T ),(Tj ,p2) =

{
−1 if Tj ∈ T , p2 ∈ P2

−1 if Tj /∈ T , p2 ∈ P2

and

A(t2,T ),(i,`) = 0 for each i ∈ [8m], ` ∈ {0, 1}m.

3. Rows of type t3: there are β rows of type t3 for each subset of 4m
indices I drawn from [8m], for a total of β

(
8m
4m

)
rows. For each subset

of indices I we have:

A(t3,I),(Tj ,p2) = 0 for each Tj, p2 and

A(t3,I),(i,`) =

{
−1 if i ∈ I, ` ∈ {0, 1}m

−1 if i /∈ I, ` ∈ {0, 1}m
.

4. Rows of type t4: there is a row of type t4 for each Si and p1. Each of
these rows is such that:

A(t4,Si,p1),(Tj ,p2) =

{
−1/2 if V(Si, Tj, p1, p2) = 1

−1 otherwise
and

A(t4,Si,p1),(j,`) =

{
−1/2 if e(p1)j = `i
−1 otherwise

.

Finally, we set k =
(

1 +
(
m
m/2

)
+
(

8m
4m

))
β + m and β � m (e.g., β =

210m). We say that row i satisfies ε-MFS condition for a certain x if wi ≥
−ε, where w = Ax (in the following, we will also consider wi ≥ 0 as
an alternative condition). We require at least k rows to satisfy the ε-MFS
condition. Then, all rows of types t1, t2, t3 and at least m rows of type t4

must be s.t. wi satisfies the ε-MFS condition.
COMPLETENESS. Given a satisfiable assignment of variables ζ to ϕ,

we build vector x as follows. Let ζTj be the partial assignment obtained
by restricting ζ to the variables in the clauses of Tj (if |Tj| < 2m we
pad ζTj with bits 0 until ζTj has length 6m). Then, we set xTj ,ζTj =

1/2m. Moreover, for each i ∈ [8m] and `i = (e(ζS1)i, . . . , e(ζSm)i), we
set xi,`i = 1/16m. We show that x is s.t. there are at least k rows i with
wi ≥ 0 (Condition (5.2)). First, each row i of type t1 is s.t. wi = 0 since∑

Tj ,p2
xTj ,p2 =

∑
i,` xi,` = 1/2. For each Tj ,

∑
p2
xTj ,p2 = 1/2m. Then,

for each subset T of {Tj}j∈[m], we have
∑

p2,Tj∈T xTj ,p2 = 1/4. This im-
plies that each row i of type t2 is s.t. wi = 0. A similar argument holds
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for rows of type t3. Finally, we show that for each Si there is at least
a row i of type t4 s.t. wi ≥ 0. Take the row corresponding to (Si, ζSi).
For each xb,` > 0 where b ∈ [8m] and ` ∈ {0, 1}m, it holds e(ζSi)b = `i.
Then, there are 8m columns played with probability 1/16mwith value 1/2,
i.e.,

∑
b,`A(t4,Si,ζSi ),(b,`)

xb,` = 1/4. Moreover, for each (Tj, ζTj), it holds
V(Si, Tj, ζSi , ζTj) = 1. Then,

∑
Tj ,p2

A(t4,Si,ζSi ),(Tj ,ζTj ) xTj ,p2 = −1/4. This
concludes the proof of completeness.

SOUNDNESS. We show that, if ω(Fϕ) ≤ 1 − δ, there is not any proba-
bility distribution x s.t. ∑

i∈nrow

I[wi ≥ −ε] ≥ k, (5.4)

with w = Ax. Assume, by contradiction, that one such vector x exists.
For the sake of clarity, we summarize the structure of the proof. (i) We
show that the probability assigned by x to columns with index (Tj, p2) has
to be close to 1/2, and the same has to hold for columns of type (i, `). (ii)
We show that x has to assign probability almost uniformly among Tjs and
indices i of the encoding of P1 (resp., Lemma 5.3 and Lemma 5.4 below).
Intuitively, this resembles the fact that, in Fϕ, Arthur draws questions Tj
according to a uniform probability distribution. (iii) For each Si, there is at
most one row (t4, Si, p1) s.t. w(t4,Si,p1) ≥ −ε (Lemma 5.5). This implies,
together with the hypothesis that at least m rows of type t4 satisfy the ε-
MFS condition, that there exists exactly one such row for each Si. (iv)
Finally, we show that the above construction leads to a contradiction with
Lemma 5.1 for a suitable free game.

Before providing the details of the four above steps, we introduce the
following result, due to Babichenko et al. (2015).

Lemma 5.2 (Lemma 2 of Babichenko et al. (2015)). Let v ∈ ∆n be a
probability vector, and u be the n-dimensional uniform probability vector.
If ||v − u||1 > c, then there exists a subset of indices I ⊆ [n] such that
|I| = n/2 and

∑
i∈I vi >

1
2

+ c
4
.

Then, we proceed with the following steps:

1. Equation 5.4 requires all rows i of type t1, t2, t3 to be s.t. wi ≥ −ε.
This implies that, for rows of type t1, it holds∑

Tj ,p2

xTj ,p2 ≥
1

2

(
1− ε

)
. (5.5)
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If, by contradiction, this inequality did not hold, each row i of type t1

would be s.t. wi < 1/2−ε/2−(1/2+ε/2) = −ε, thus violating Equa-
tion 5.4. Moreover, Equation 5.4 implies that at least a row (t4, Si, p1)
has w(t4,Si,p1) ≥ −ε. Therefore, it holds

∑
i,` xi,` ≥ 1/2 − ε. Indeed,

if, by contradiction, this condition did not hold, all rows of type t4

would have wi < 1/2 (1/2− ε)− 1/2 (1/2 + ε) = −ε.

2. Let v1 ∈ ∆m be the probability vector defined as

v1,j :=

∑
p2
xTj ,p2∑

j,p2
xTj ,p2

,

and ṽ be a uniform probability vector of suitable dimension. The fol-
lowing result shows that having a bounded element-wise difference
between v1 and ṽ is a necessary condition for Equation 5.4 to be sat-
isfied.

Lemma 5.3. If ||v1 − ṽ||1 > 16ε, there exists a row i of type t2 s.t.
wi < −ε.

Proof. Lemma 5.2 implies that, if ||v1 − ṽ||1 > 16ε, there exists a
subset T ⊆ {Tj}j∈[m] such that∑

Tj∈T

∑
p2

xTj ,p2 > (1/2 + 4ε)
∑
j,p2

xTj ,p2 > 1/4 + ε.

It follows that∑
Tj /∈T

∑
p2

xTj ,p2 < 1/2 + ε− 1/4− ε = 1/4,

which implies that row (t2, T ) is s.t.

wt2,T < −1/4− ε+ 1/4 < −ε.

Let v2 ∈ ∆[8m] be the probability vector defined as

v2,i :=

∑
` xi,`∑
i,` xi,`

,

and ṽ be a suitable uniform probability vector. Moreover, the follow-
ing holds.
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Lemma 5.4. If ||v2 − ṽ||1 > 16ε, there exists a row i of type t3 s.t.
wi < −ε.

Proof. Lemma 5.2 implies that, if ||v2 − ṽ||1 > 16ε, there exists a set
I ⊆ [8m] such that∑

i∈I

∑
`

xi,` > (1/2 + 4ε)
∑
i,`

xi,` > 1/4 + ε.

Then, ∑
i/∈I

∑
`

xi,` < 1/2 + ε/2− 1/4− ε = 1/4− ε/2.

It follows that there exists a row (t3, I) such that

wt3,I < −1/4− ε+ 1/4− ε/2 < −ε.

In order to satisfy Equation (5.4), all rows i of type t2 and t3 have to
be s.t. wi ≥ −ε. Then, by Lemmas 5.3 and 5.4, it holds that ||v1 −
ṽ||1 ≤ 16 ε and ||v2 − ṽ||1 ≤ 16 ε.

3. We show that, for each Si, there exists at most one row (t4, Si, p1) for
which w(t4,Si,p1) ≥ −ε.
Lemma 5.5. For each Si, i ∈ [m], there exists at most one row
(t4, Si, p1) such that w(t4,Si,p1) ≥ −ε.

Proof. Let f(x, p1) :=
∑

j:`i=e(p1)j
xj,`. Assume, by contradiction,

that for a given Si there exist two assignments p′1 and p′′1 such that
w(t4,Si,p1) ≥ −ε for each p1 ∈ {p′1, p′′1}. Then, f(x, p1) ≥ 1/2− ε, for
each p1 ∈ {p′1, p′′1}. Otherwise, we would get w(t4,Si,p1) < 1/2(1/2−
ε) − 1/2(1/2 + ε) = −ε for at least one p1 ∈ {p′1, p′′1}. Let x′ be the
vector such that x′i,` :=

xi,`∑
i,` xi,`

. Then, f(x′, p1) ≥ 1/2−ε
1/2+ε

≥ 1− 4ε, for
p1 ∈ {p′1, p′′1}. By Lemmas 5.2 and 5.4, we have that ||v2−ṽ||1 ≤ 16ε.
Therefore, we can obtain a uniform vector x̃ by moving at most 16ε
probability from x′. This results in a decrease of f of at most 16ε, that
is f(x̃, p1) ≥ 1− 20ε for each p1 ∈ {p′1, p′′1}.
By construction dist(e) = 1/5, which implies dist(e(p′1), e(p′′1)) ≥
1/5. Then, there exists a set of indices I, with |I| ≥ 8m/5, such
that e(p′1)j 6= e(p′′1)j for each j ∈ I. Therefore, f(x̃, p′1) + f(x̃, p′′1) ≤∑

j∈I 1/8m +
∑

j /∈I 2/8m ≤ 2 − 1/5. This leads to a contradiction
with f(x̃, p′1) + f(x̃, p′′1) ≥ 2− 40ε.
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Then, there are at least m rows (t4, Si, p1) s.t. w(t4,Si,p1) ≥ −ε and, by
Lemma 5.5, we get that there exists exactly one such row for each Si,
i ∈ [m]. Therefore, for each Si, there exists pi1 ∈ P1 such that∑

(Tj ,p2):V(Si,Tj ,pi1,p2)=1

x(Tj ,p2) ≥
1

2
− 4 ε.

Notice that, if this condition did not hold, by Step (i) we would obtain

wt4,Si,pi1
< −1

2

(
1

2
− 4 ε

)
− 7

2
ε+

1

2

(
1

2
+
ε

2

)
= −ε,

which would go against the satisfiability of Equation (5.4).

4. Finally, let F∗ϕ be a free game in which Arthur (i.e., the verifier)
chooses question Tj with probability v1,j as defined in Step (ii), and
Merlin2 (i.e., the second prover) answers p2 with probability xTj ,p2/v1,j .
In this setting (i.e., F∗ϕ), given question Si to Merlin1, the two provers
will provide compatible answers with probability

Pr
(
V∗(Si, Tj, pi1, p2

)
= 1 | Si) =

1/2− 4 ε∑
j,p2

xTj ,p2

≥ 1/2− 4 ε

1/2 + ε
≥ 1−10 ε,

where the first inequality holds for Equation 5.5 at Step (i). In a canon-
ical (i.e., as in Definition 2.5) free game Fϕ, Arthur picks questions
according to a uniform probability distribution. Therefore, the main
difference betweenFϕ andF∗ϕ is that, in the latter, Arthur draws ques-
tions for Merlin2 from v1 which may not be a uniform probability dis-
tribution. However, we know that differences between v1 and a uni-
form probability vector must be limited. Specifically, by Lemma 5.3,
we have ||v1−ṽ||1 ≤ 16 ε. Then, if Merlin1 and Merlin2 applied inFϕ
the strategies we described for F∗ϕ, their answers would be compatible
with probability at least Pr(V(Si, Tj, p

i
1, p2) = 1 | Si) ≥ 1− 26 ε, for

each Si. Finally, by picking ε = ρ/52 ν, we reach a contradiction with
Lemma 5.1. This concludes the proof.

5.3 Hardness of (α, ε)-persuasion

We show that a public signaling scheme approximating the value of the op-
timal one cannot be computed in polynomial time even if we allow it to
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be ε-persuasive (see Equation (5.1)). Specifically, assuming ETH, comput-
ing an (α, ε)-persuasive signaling scheme requires at least nΩ̃(logn), where
the dimension of the instance is n = O(n̄ d). We prove this result for
the specific case of the k-voting problem with two candidates, as defined
in Section 4.1. Besides its practical applicability, this problem is particu-
larly instructive in highlighting the strong connection between the problem
of finding suitable posteriors and the ε-MFS problem, as discussed in the
following lemma.

Let σ : ∆Θ → N+
0 be a function returning, for a given posterior distribu-

tion ξ ∈ ∆Θ, the number of receivers such that
∑

θ ξθ (urθ(a0)− urθ(a1)) ≥
0, i.e., the number of voters that will vote for a0 with a persuasive sig-
naling scheme. Analogously, σε(ξ) is the number of receivers for which∑

θ ξθ (urθ(a0)− urθ(a1)) ≥ −ε, i.e., the number of voters that will vote for
a0 with an ε-persuasive signaling scheme. Then, we can prove the follow-
ing.

Lemma 5.6. Given a k-voting instance, the problem of finding a posterior
ξ ∈ ∆Θ such that σε(ξ) ≥ k is equivalent to finding an ε-feasible subsystem
of k linear inequalities over the simplex when A ∈ [−1, 1]n̄×d is such that:

Ar,θ = urθ(a0)− urθ(a1) for each r ∈ R, θ ∈ Θ. (5.6)

Proof. By setting x = ξ, it directly follows that
∑

i∈[n̄] I[Ai x ≥ −ε] ≥ k

iff σε(ξ) ≥ k.

The above lemma shows that deciding if there exists a posterior ξ such
that σ(ξ) ≥ k or if all the posteriors have σε(ξ) < k (i.e., deciding if
the utility of the sender can be greater than zero) is as hard as solving the
ε-MFS problem. More precisely, if an ε-MFS instance does not admit
any solution, then there does not exist any posterior guaranteeing a strictly
positive winning probability for the sender’s preferred candidate. On the
other hand, if an ε-MFS instance admits a solution, there exists a signaling
scheme where at least one of the induced posteriors guarantees strictly pos-
itive winning probability for the sender’s preferred candidate. However, the
above connection between the ε-MFS problem and the k-voting problem is
not sufficient to prove the inapproximability of the k-voting problem, as the
probability whereby this posterior is reached may be arbitrarily small.

Luckily enough, the next theorem shows that it is possible to strengthen
the inapproximability result by constructing an instance in which, when
3SAT is satisfiable, there is a signaling scheme such that all the induced
posteriors satisfy σ(ξ) ≥ k (i.e., the sender’s preferred candidate wins with
a probability of 1).
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Theorem 5.3. Given a k-voting instance and assuming ETH, there exists
a constant ε∗ > 0 such that, for any ε ≤ ε∗, finding an (α, ε)-persuasive
signaling scheme requires nΩ̃(logn) steps for any multiplicative or additive
factor α.

Proof. OVERVIEW. By following the proof of Theorem 5.1, we can provide
a polynomial-time reduction from FREEGAMEδ to the problem of finding
an ε-persuasive signaling scheme in k-voting, with ε = δ/780 = ρ/1560ν.
Specifically, if ω(Fϕ) = 1, there exists a signaling scheme guaranteeing
the sender an expected value of 1. Otherwise, if ω(Fϕ) ≤ 1 − δ, then all
posteriors are such that σε(ξ) < k (i.e., the sender cannot obtain more than
0).

CONSTRUCTION. The k-voting instance has the following possible
states of nature.

1. θ(Tj ,p2) for each set of clauses Tj , j ∈ [m], and answer p2 ∈ P2 =
{0, 1}6m.

2. Let e : {0, 1}2m → {0, 1}8m be an encoding function with R = 1/4
and dist(e) ≥ 1/5 (as in the proof of Theorem 5.1). We have a state
θ(i,`) for each i ∈ [8m], and ` = (`1, . . . , `m) ∈ {0, 1}m.

3. There is a state θd for each d ∈ {0, 1}7m. It is useful to see vector d
as the union of the subvector dS ∈ {0, 1}m and the subvector dT ∈
{0, 1}6m.

The common prior µ is such that:

µθ(Tj,p2)
=

1

m 22+6m
for each θ(Tj ,p2),

µθ(i,`) =
1

m 25+m
for each θ(i,`),

µθd =
1

21+7m
for each θd.

To simplify the notation, in the remaining of the proof, let urθ := urθ(a0) −
urθ(a1). The k-voting instance comprises the following receivers.

1. Receivers of type t1: there are β (the value of β is specified later in
the proof) receivers of type t1, which are such that ut1

θ(Tj,p2)
= 1 for

each (Tj, p2), and −1/3 otherwise.

2. Receivers of type t2: there are β receivers of type t2 such that ut2
θ(i,`)

=

1 for each (i, `), and −1/3 otherwise.
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3. Receivers of type t3: there are β receivers of type t3 for each subset
T ⊆ {Tj}j∈[m] of cardinality m/2. Each receiver corresponding to
the subset T is such that:

u
(t3,T )
θ(Tj,p2)

=

{
−1 if Tj ∈ T , p2 ∈ P2

−1 if Tj /∈ T , p2 ∈ P2

and
u

(t3,T )
θ = 0 for every other θ.

4. Receivers of type t4: we have β receivers of type t4 for each subset
I of 4m indices selected from [8m]. Each receiver corresponding to
subset I is such that:

u
(t4,I)
θ(i,`)

=

{
−1 if i ∈ I, ` ∈ {0, 1}m

−1 if i /∈ I, ` ∈ {0, 1}m

and
u

(t4,I)
θ = 0 for every other θ.

5. Receivers of type t5: there is a receiver of type t5 for each Si, p1 ∈ P1

and d ∈ {0, 1}7m. Let⊕ be the XOR operator. Then, for each receiver
of type t5 the following holds:

u
(t5,Si,p1,d)
θ =


−1/2 if θ = θ(Tj ,p2) and V(Si, Tj, p1, p2 ⊕ dT ) = 1

−1/2 if θ = θ(i′,`) and e(p1)i′ = [`⊕ dS]i
−1/2 if θ = θd
−1 otherwise

Finally, we set k =
(

2 +
(
m
m/2

)
+
(

8m
4m

))
β + m. By setting β � m (e.g.,

β = 210m), candidate a0 can get at least k votes only if all receivers of type
t1, t2, t3, t4 vote for her.

COMPLETENESS. Given a satisfiable assignment ζ to the variables in
ϕ, let [ζ]Tj ∈ {0, 1}6m be the vector specifying the variables assignment
of each clause in Tj , and [ζ]Si ∈ {0, 1}2m be the vector specifying the
assignment of each variable belonging to Si. The sender has a signal for
each d ∈ {0, 1}7m. The set of signals is denoted by S, where |S| = 27m,
and a signal is denoted by sd ∈ S. We define a signaling scheme φ as
follows. First, we set φθd(sd) = 1 for each θd. If |Tj| < 2m for some
j ∈ [m], we pad [ζ]Tj with bits 0 util |[ζ]Tj | = 6m. Then, for each Tj ,
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φθ(Tj,[ζ]Tj⊕dT )
(sd) = 1/2m. For each i ∈ [8m], set φθ(i,`⊕dS)

= 1/26m, where

` = (e([ζ]S1)i, . . . , e([ζ]Sm)i). First, we prove that the signaling scheme is
well-formed. For each state θ(Tj ,p2), it holds that∑

sd∈S

φθ(Tj,p2)
(sd) =

1

2m
|{d : [ζ]Tj ⊕ dT = p2}| = 1,

and, for each θ(i,`), the following holds:∑
sd∈S

φθ(i,`)(sd) =
1

26m
|{d : (e([ζ]S1)i, . . . , e([ζ]Sm)i ⊕ dS = `}| = 1.

Now, we show that there exist at least k voters that will choose a0. Let
ξ ∈ ∆Θ be the posterior induced by a signal sd. All receivers of type t1

choose a0 since it holds:∑
(Tj ,p2)

ξθ(Tj,p2)
=

∑
(Tj ,p2) µθ(Tj,p2)

φθ(Tj,p2)
(sd)∑

θ∈Θ µθφθ(sd)

=
1

22+7m

(
1

21+7m
+

1

22+7m
+

1

22+7m

)−1

=
1

4
.

Analogously, all receivers of type t2 select a0. Furthermore, for each Tj ,
it holds

∑
p2
ξθ(Tj,p2)

= 1/4m. Then, for each subset T ⊆ {Tj}j∈[m] of
cardinality m/2, it holds

∑
Tj∈T ,p2

ξθ(Tj,p2)
= m/2 1/4 m = 1/8. There-

fore, each receiver of type t3 chooses a0. An analogous argument holds for
receivers of type t4.

Finally, we show that, for each Si, the receiver (t5, Si, [ζ]Si ,d) chooses
a0. In particular, receiver (t5, Si, [ζ]Si ,d) has the following expected util-
ity:

1

2
ξθd −

1

2

∑
(Tj ,p2)

ξθ(Tj,p2)
− 1

2

∑
(i′,`)

ξθ(i′,`) = 0

since, for each ξθ(Tj,p2)
> 0, the following holds p2⊕dT = [ζ]Tj⊕dT⊕dT =

[ζ]Tj and V(Si, Tj, [ζ]Si , p2 ⊕ dT ) = V(Si, Tj, [ζ]Si , [ζ]Tj) = 1 for each Tj .
Moreover, for each ξθ(i′,l) > 0, it holds [l⊕ dS]i = e([ζ]Si)i′ ⊕ dS,i ⊕ dS,i =

e([ζ]Si)i′ . This concludes the proof of completeness. 2

2 For the sake of presentation, in the proof, we employ indirect signals of type sd. However, it is possible
to construct an equivalent direct signaling scheme. Let ξsd ∈ ∆Θ be the posterior induced by sd. Then, it is
enough to substitute each sd with a direct signal recommending a0 to all receivers such that

∑
θ ξ
sd
θ urθ ≥ 0,

and a1 to all the others.
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SOUNDNESS. We prove that, if ω(Fϕ) ≤ 1 − δ, there is no pos-
terior in which a0 is chosen by at least k receivers, thus implying that
the sender’s utility is equal to 0. Now, suppose, towards a contradiction,
that there exists a posterior ξ such that at least k receivers select a0. Let
λ :=

∑
(Tj ,p2) ξθ(Tj,p2)

+
∑

(i,`) ξθ(i,`) . Since all voters of types t1 and t2

vote for a0, it holds that
∑

(Tj ,p2) ξθ(Tj,p2)
≥ 1

4
− ε and

∑
(i,`) ξθ(i,`) ≥

1
4
− ε.

Moreover, since at least a receiver (t5, Si, p1,d) must play a0, there ex-
ists a d ∈ {0, 1}7m and a state θd with ξθd ≥ 1

2
− ε. This implies that

1
2
− 2ε ≤ λ ≤ 1

2
+ ε.

Consider the reduction to ε′-MFS, with ε′ = ρ/52ν (Theorem 5.2). Let
x(Tj ,p2) = ξθ(Tj,p2⊕dT )

/λ, x(i,`) = ξθ(i,`⊕dS)
/λ, and ε = ε′/30. All rows of

type t1 of ε′-MFS are such that

wt1 =
1

λ

 ∑
(Tj ,p2)

ξθ(Tj,p2)
−
∑
(i,`)

ξθ(i,`)

 ≥ −3ε

λ
≥ −9ε ≥ −ε′.

All voters of type t3 choose a0. Then, for all T ⊆ {Tj}j∈[m] of cardinality
m/2, it holds: ∑

(Tj ,p2):Tj∈T

ξθ(Tj,p2)
−

∑
(Tj ,p2):Tj /∈T

ξθ(Tj,p2)
≥ −ε.

Then, all rows of type t2 of ε′-MFS are such that:

w(t2,T ) =
1

λ

 ∑
(Tj ,p2):Tj∈T

ξθ(Tj,p2)
−

∑
(Tj ,p2):Tj /∈T

ξθ(Tj,p2)


≥ − ε

λ
≥ −3ε ≥ −ε′.

A similar argument proves that all rows of type t3 of the instance of ε′-
MFS have w(t3,I) ≥ −ε′.

To conclude the proof, we prove that, for each voter (t5, Si, p1,d) that
votes for a0, the corresponding row (t4, Si, p1) of the instance ε′-MFS is
such that w(t4,Si,p1) ≥ −ε′. Let λ′ :=

∑
(Tj ,p2):V(Si,Tj ,p1,p2)=1 x(Tj ,p2) and

λ′′ :=
∑

(i′,`):e(p1)i′=`i
x(i′,`). First, we have that λ′ ≥ 1/4 − 7ε. If this did

not hold, we would have∑
θ

ξθu
(t5,Si,p1,d)
θ < −1

2

(
1

4
− ε
)
− 1

2

(
1

4
− 7ε

)
− 6ε+

1

2

(
1

2
+ 2ε

)
= ε.
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Similarly, it holds λ′′ ≥ 1/4− 7ε. Hence

w(t4,Si,p1) = −1

2
λ′ +

1

2
λ′′ − (1− λ′ − λ′′)

=
1

2λ

 ∑
(Tj ,p2):V(Si,Tj ,p1,p2)=1

ξθ(Tj,p2⊕dT )
+ 3

∑
(i′,`):e(p1)i′=`i

ξθ(i′,`⊕dS)

− 1

≥ 2(1/4− 7ε)

1/2 + ε
− 1 ≥ −30 ε = −ε′.

Thus, there exists a probability vector x for the instance of ε′-MFS in which
at least k rows satisfy the ε′-MFS condition (Equation 5.3), which is in
contradiction with ω(Fϕ) ≤ 1− δ. This concludes the proof.

Theorem 5.3 shows that, assuming ETH, computing an (α, ε)-persuasive
signaling schemes requires at least a quasi-polynomial number of steps in
the specific scenario of a k-voting instance. Therefore, the same holds in the
general setting of arbitrary public persuasion problems with binary action
spaces.

5.4 A Quasi-polynomial time algorithm for (α, ε)-persuasion

In this section, we prove that our hardness result (Theorem 5.3) is tight
by devising a bi-criteria approximation algorithm. Our result extends the
results by Cheng et al. (2015) and Xu (2020) for signaling problems with
binary action spaces and state-independent sender’s utility functions. In-
deed, it encompasses scenarios with an arbitrary number of actions and
state-dependent sender’s utility functions.

In order to prove our result, we need some further machinery. Let
Zr := 2Ar be the power set of Ar. Then, Z := ×r∈RZr is the set of
tuples specifying a subset of Ar for each receiver r. For a given probabil-
ity distribution over the states of nature, we are interested in determining
the set of best responses of each receiver r, i.e., the subset of Ar maximiz-
ing her expected utility. Formally, we have the following generalization of
Definition 3.1 to multiple receivers.

Definition 5.3 (BR-set). Given ξ ∈ ∆Θ, the best-response set (BR-set)
Mξ := (Z1, . . . , Zn̄) ∈ Z is such that

Zr = arg maxa∈Ar
∑
θ∈Θ

ξθ u
r
θ(a) for each r ∈ R.
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Similarly, we define a notion of ε-BR-set which comprises ε-approximate
best responses to a given distribution over the states of nature.

Definition 5.4 (ε-BR-set). Given ξ ∈ ∆Θ, the ε-best-response set (ε-BR-
set) Mε,ξ := (Z1, . . . , Zn̄) ∈ Z is such that, for each r ∈ R, action a
belongs to Zr if and only if∑

θ∈Θ

ξθ u
r
θ(a) ≥

∑
θ∈Θ

ξθ u
r
θ(a
′)− ε for each a′ ∈ Ar.

We introduce a suitable notion of approximability of the sender’s objec-
tive function. Our notion of α-approximable function is a generalization
of (Xu, 2020, Definition 4.5) to the setting of arbitrary action spaces and
state-dependent sender’s utility functions.

Definition 5.5 (α-Approximability). Let f := {fθ}θ∈Θ be a set of functions
fθ : A → [0, 1]. We say that f is α-approximable if there exists a function
g : ∆Θ×Z → A computable in polynomial time such that, for all ξ ∈ ∆Θ

and Z ∈ Z , it holds: a = g(ξ, Z), a ∈ Z and∑
θ∈Θ

ξθ fθ(a) ≥ αmax
a∗∈Z

∑
θ∈Θ

ξθ fθ(a∗).

The k-voting sender’s utility function is 1-approximable, while, e.g.,
when the action space is binary a non-monotone submodular function is
1/2-approximable. The α-approximability assumption is a natural require-
ment since, otherwise, even evaluating the sender’s objective value in a
given posterior would result in an intractable problem. When f is an α-
approximable function, it is possible to find an approximation of the op-
timal receivers’ actions profile when they are constrained to select actions
profiles in Z.

We now provide an algorithm which computes in quasi-polynomial time,
for any α-approximable f , a bi-criteria approximation of the optimal solu-
tion with an approximation on the objective value arbitrarily close to α.
When f is 1-approximable our result yields a bi-criteria QPTAS for the
problem. The key idea is showing that an optimal signaling scheme can
be approximated by a convex combination of suitable q-uniform posteriors.
As in previous works (Cheng et al., 2015; Xu, 2020), the key part of the
proof is a decomposition lemma that proves that all the posteriors can be
decomposed in a convex combination of q-uniform posteriors with a small
loss in utility. However, the assumption of state-dependent sender’s utility
functions makes previous approaches ineffective in our setting. Therefore,
we develop a completely new probabilistic analysis of the decomposition
lemma. Our main positive result reads as follows.
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Theorem 5.4. Let the sender utility function f be α-approximate. Then,
there exists a poly

(
n

log(n/δ)

ε2

)
algorithm that outputs an α(1−δ)-approximate

ε-persuasive public signaling scheme.

Proof. Let % := maxr∈R %r, n̄ := |R|, and d := |Θ|. We show that there
exists a poly

(
d

log(n̄%/δ)

ε2

)
algorithm that computes the given approximation.

Let q := 32 log(4n̄%/δ)
ε2

and Ξq ⊂ ∆Θ be the set of q-uniform distributions over
Θ (Def. 3.3). We prove that all posteriors ξ∗ ∈ ∆Θ can be decomposed as a
convex combination of q-uniform posteriors without lowering too much the
sender’s expected utility. Formally, each posterior ξ∗ ∈ ∆Θ can be written
as ξ∗ =

∑
ξ∈Ξq γξ ξ, with γ ∈ ∆Ξq such that∑

ξ∈Ξq

γξ
∑
θ∈Θ

ξθ fθ(g(p,Mε,ξ)) ≥ α (1− δ) max
a∗∈Mξ∗

∑
θ∈Θ

ξ∗θ fθ(a∗).

Let ξ̃ ∈ Ξq be the empirical distribution of q i.i.d. samples from ξ∗, where
each θ has probability ξ∗θ of being sampled. Therefore, the vector ξ̃ is a
random variable supported on q-uniform posteriors with expectation ξ∗.
Moreover, let γ ∈ ∆Ξq be a probability distribution such as, for each ξ ∈
Ξq, γξ := Pr(ξ̃ = ξ). For each γ ∈ ∆Ξq and ξ ∈ Ξq, we denote by γ(θ,i)

ξ

the conditional probability of having observed posterior ξ, given that the
posterior must assign probability i/q to state θ. Formally, for each ξ ∈ Ξq,
if ξθ = i/q, we have

γ
(θ,i)
ξ =

γξ∑
ξ′:ξ′θ=i/q

γξ′
,

and γ(θ,i)
ξ = 0 otherwise. The random variable ξ̃(θ,i) ∈ Ξq is such that, for

each ξ ∈ Ξq, Pr(ξ̃(θ,i) = ξ) = γ
(θ,i)
ξ . Finally, let Ξ̃q ⊆ Ξq be the set of

posteriors such that ξ ∈ Ξ̃q if and only if |
∑

θ ξθu
r
θ(a)−

∑
θ ξ
∗
θu

r
θ(a)| ≤ ε

2
for each r ∈ R and a ∈ A− r.

We state the following intermediate result.

Lemma 5.7. Given ξ∗ ∈ ∆Θ, for each θ ∈ Θ and for each i ∈ [q] s.t.
|i/q − ξ∗θ | ≤ ε/4, it holds:∑

ξ∈Ξ̃q :ξθ=i/q

γξ ≥
(

1− δ

2

) ∑
ξ∈Ξq :ξθ=i/q

γξ,

where γ is the distribution of q i.i.d. samples from ξ∗.
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Proof. Fix θ̄ ∈ Θ and i ∈ [q] with |i/q − ξ∗
θ̄
| ≤ ε/4. Then, for each r ∈ R

and a ∈ Ar, let t̃ra :=
∑

θ ξ̃
(θ̄,i)
θ urθ(a) and tra :=

∑
θ ξ
∗
θu

r
θ(a). First, we show

that |E[t̃ra] − tra| ≤ ε/4. Equivalently, |
∑

θ u
r
θ(a)

(
E[ξ̃

(θ̄,i)
θ ]− ξ∗θ

)
| ≤ ε/4.

Assume i/q ≥ ξ∗
θ̄
. Then,

∑
θ

|E[ξ̃
(θ̄,i)
θ ]− ξ∗θ | =

i

q
− ξ∗θ̄ +

∑
θ 6=θ̄

(
ξ∗θ −

ξ∗θ∑
θ′ 6=θ̄ ξ

∗
θ′
·
(

1− i

q

))
(5.7a)

≤ ε
4

+ 1− ξ∗θ̄ − 1 +
i

q
≤ ε

2
. (5.7b)

Analogously, if i/q ≤ ξ∗
θ̄
, we get that

∑
θ |E[ξ̃

(θ̄,i)
θ ] − ξ∗θ | ≤ ε/2. Further-

more, let M1 :=
{
θ ∈ Θ | E[ξ̃

(θ̄,i)
θ ]− ξ∗θ ≥ 0

}
, and M2 := Θ \M1. Then,

∑
θ∈M1

(
E[ξ̃

(θ̄,i)
θ ]− ξ∗θ

)
= −

∑
θ∈M2

(
E[ξ̃

(θ̄,i)
θ ]− ξ∗θ

)
≤ ε

4
, (5.8a)

where the equality comes from
∑

θ E[ξ̃
(θ̄,i)
θ ] =

∑
θ ξ
∗
θ = 1 and the in-

equality follows from Eq. 5.7. Then,∑
θ

urθ(a)
(
E[ξ̃

(θ̄,i)
θ ]− ξ∗θ

)
=
∑
θ∈M1

urθ(a)
(
E[ξ̃

(θ̄,i)
θ ]− ξ∗θ

)
+
∑
θ∈M2

urθ(a)
(
E[ξ̃

(θ̄,i)
θ ]− ξ∗θ

)
≤ ε

4
,

where we use both ∑
θ∈M2

urθ(a)
(
E
[
ξ̃

(θ̄,i)
θ

]
− ξ∗θ

)
≤ 0

and ∑
θ∈M1

urθ(a)
(
E
[
ξ̃

(θ̄,i)
θ

]
− ξ∗θ

)
≤ ε

4

by Equation (5.8). Analogously, it is possible to show that∑
θ

urθ(a)
(
E
[
ξ̃

(θ̄,i)
θ

]
− ξ∗θ

)
≥ − ε

4
.
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Then, Pr(|tra − t̃ra| ≥ ε/2) ≤ Pr(|t̃ra − E[t̃ra]| ≥ ε/4). Moreover, by the
Hoeffding’s inequality, we have that, for each r ∈ R and a ∈ Ar, it holds:

Pr(|t̃ra −E[t̃ra]| ≥ ε/4) ≤ 2e−2q( ε
4

)2

= 2e
−4ε2 log(4n̄%/δ)

ε2 = 2

(
δ

4n̄%

)4

≤ δ

2n̄%
.

The union bound yields the following:

Pr

( ⋂
r∈R,a∈Ar

|t̃ra − tra| ≤
ε

2

)
≥1−

∑
r,a

Pr
(
|t̃ra − tra| ≥

ε

2

)
≥1−

∑
r,a

Pr
(
|t̃ra − E[t̃ra]| ≥

ε

4

)
=1− δ

2
.

By the definition of Ξ̃q, this implies that Pr(ξ̃(θ̄,i) ∈ Ξ̃q) ≥ 1−δ/2. Finally,∑
ξ∈Ξ̃q :ξθ̄=i/q

γξ Pr

(
ξ̃θ̄ =

i

q

)
Pr

(
ξ̃ ∈ Ξ̃q | ξ̃θ̄ =

i

q

)

= Pr

(
ξ̃θ̄ =

i

q

)
Pr
(
ξ̃(θ̄,i) ∈ Ξ̃q

)
≥
(

1− δ

2

)
Pr

(
ξ̃θ̄ =

i

q

)
=

(
1− δ

2

) ∑
ξ∈Ξq :ξθ̄=i/q

γξ.

This concludes the proof.

Then, we state the following auxiliary lemma:

Lemma 5.8. Given ξ∗ ∈ ∆Θ, for each θ ∈ Θ, it holds:∑
i:|i/q−ξ∗θ |≥ε/4

∑
ξ∈Ξq :ξθ=i/q

γξ ≤
δ

2
ξ∗θ ,

where γ is the distribution of q i.i.d. samples from ξ∗.

Proof. The random variable ξ̃θ is drawn from a binomial distribution. We
consider three possible cases. If ξ∗θ ≥ 1/8, then, by Hoeffding’s inequality,
it holds

Pr
(
|ξ̃θ − ξ∗θ | ≥

ε

4

)
≤ 2e−2q(ε/4)2
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= 2e−4 log(4n̄%/δ)

≤ δ/16

≤ δ

2
ξ∗θ

If ξ∗θ ≤ 1/8, then, by Chernoff’s bound, it holds

Pr
(
ξ̃θ − ξ∗θ ≥

ε

4

)
≤ e

−q(ε/4)2 1
1−2ξ∗

θ
log(

1−ξ∗θ
ξ∗
θ

)
(5.9a)

≤ e
−2 log(4n̄%/δ) log( 7

8ξ∗
θ

)
(5.9b)

≤
(

8

7
ξ∗θ

)2 log(4/δ)

= (5.9c)

=

(
1

e

8

7
e ξ∗θ

)2 log(4/δ)

(5.9d)

≤ (e)−2 log(4/δ) 8

7
e ξ∗θ (5.9e)

≤ δ

16

8

7
e ξ∗θ (5.9f)

≤ δ

4
ξ∗θ (5.9g)

where, to get from (5.9d) to (5.9e), we use 8
7
e ξ∗θ ≤ 1 and 2 log(4/δ) ≥ 1.

Moreover

Pr
(
ξ̃θ − ξ∗θ ≤ −

ε

4

)
≤ e

−q(ε/4)2 1
2(1−ξ∗

θ
)ξ∗
θ (5.10a)

≤ e
− log(4n̄%/δ)

ξ∗
θ =

(
e

1
ξ∗
θ

)log( δ4)
(5.10b)

≤
(

1

ξ∗θ
e

)log( δ4)
(5.10c)

≤
(

1

ξ∗θ

)−1

elog( δ4) (5.10d)

=
δ

4
ξ∗θ . (5.10e)

where in (5.10c) we use ex ≥ ex and in (5.10d) that log(δ/4) < −1. Then,∑
i:|i/q−ξ∗θ |≥ε/4

∑
ξ∈Ξq :pθ=i/q

γξ = Pr
(
|ξ̃θ − ξ∗θ | ≥

ε

4

)
≤ δ

2
ξ∗θ ,
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which concludes the proof of the lemma.

Now we can prove that, given a ξ∗ ∈ ∆Θ,
∑
ξ∈Ξ̃q γξ ξθ ≥ (1− δ) ξ∗θ for

each θ.

Lemma 5.9. Given a ξ∗ ∈ ∆Θ, for each θ ∈ Θ, it holds:∑
ξ∈Ξ̃q

γξ ξθ ≥ (1− δ) ξ∗θ ,

where γ is the distribution of q i.i.d. samples from ξ∗.

Proof. We show the following:∑
ξ∈Ξ̃q

γξξθ ≥
∑

i:|i/q−ξ∗θ |≤ε/4

i

q

∑
ξ∈Ξ̃q :ξθ=i/q

γξ (5.11a)

≥
∑

i:|i/q−ξ∗θ |≤ε/4

i

q

∑
ξ∈Ξq :ξθ=i/q

(
1− δ

2

)
γξ (5.11b)

=

(
1− δ

2

) ∑
i:|i/q−ξ∗θ |≤ε/4

i

q

∑
ξ∈Ξq :ξθ=i/q

γξ (5.11c)

≥
(

1− δ

2

)ξ∗θ − ∑
i:|i/q−ξ∗θ |≥ε/4

i

q

∑
ξ∈Ξq :ξθ=i/q

γξ

 (5.11d)

≥
(

1− δ

2

)ξ∗θ − ∑
i:|i/q−ξ∗θ |≥ε/4

∑
ξ∈Ξq :ξθ=i/q

γξ

 (5.11e)

≥
(

1− δ

2

)2

ξ∗θ (5.11f)

≥(1− δ) ξ∗θ . (5.11g)

Equation (5.11a) holds since we are restricting the set of posteriors; Equa-
tion (5.11b) holds by Lemma 5.7; Equation (5.11e) holds since i/q ≤ 1;
and Equation (5.11f) holds by Lemma 5.8. This concludes the proof of the
lemma.

We need to prove that all the posteriors in Ξ̃q guarantee to the sender at
least the same expected utility of ξ∗. Formally, we prove that the ε-BR-set
of each ξ ∈ Ξ̃q contains the BR-set of ξ∗. This is shown via the following
lemma.
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Lemma 5.10. Given ξ∗ ∈ ∆Θ, for each ξ ∈ Ξ̃q, it holds:Mξ∗ ⊆Mε,ξ.

Proof. Let Z1 = Mε,ξ and Z2 = Mξ∗ . Suppose a ∈ Z2
r . Then, for all

a′ ∈ Ar,∑
θ

ξθ u
r
θ(a) ≥

∑
θ

p∗θ u
r
θ(a)− ε

2
≥
∑
θ

ξ∗θ u
r
θ(a
′)− ε

2
≥
∑
θ

ξθ u
r
θ(a
′)− ε.

Thus, a ∈ Z1
r , which proves the lemma.

Finally, we prove that we can represent each posterior ξ∗ as a convex
combination of q-uniform posteriors with a small loss in the sender’s ex-
pected utility. For ξ ∈ Ξq and Z ∈ Z , let g∗ : ∆Θ × Z → [0, 1] be a
function such that g∗(ξ, Z) := maxa∈Z

∑
θ ξθfθ(a). Given ξ∗ ∈ ∆Θ, we

are interested in bounding the difference in the sender’s expected utility
when ξ∗ is approximated as a convex combination γ of q-uniform posteri-
ors, the sender exploits an α-approximation of f , and she allows receivers
for ε-persuasive best-responses. Formally,

Lemma 5.11. Given a ξ∗ ∈ ∆Θ, it holds:∑
ξ∈Ξq

γξ
∑
θ

ξθ fθ(g(ξ,Mε,ξ)) ≥ α(1− δ)fθ(g∗(ξ∗,Mξ∗)),

where γ is the distribution of q i.i.d. samples from ξ∗.

Proof. We prove the following:∑
ξ∈Ξq

γξ
∑
θ

ξθ fθ(g(ξ,Mε,ξ)) (5.12a)

≥ α
∑
ξ∈Ξq

γξ
∑
θ

ξθ fθ(g
∗(ξ,Mε,ξ)) (5.12b)

≥ α
∑
ξ∈Ξ̃q

γξ
∑
θ

ξθ fθ(g
∗(ξ,Mε,ξ)) (5.12c)

≥ α
∑
ξ∈Ξ̃q

γξ
∑
θ

ξθ fθ(g
∗(ξ∗,Mε,ξ)) (5.12d)

≥ α
∑
ξ∈Ξ̃q

γξ
∑
θ

ξθ fθ(g
∗(ξ∗,Mξ∗)) (5.12e)

≥ α (1− δ)
∑
θ

ξ∗θ fθ(g
∗(ξ∗,Mξ∗)). (5.12f)
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Equation (5.12a) is the relaxed sender’s expected utility; Equation (5.12b)
holds by Definition 5.5; Equation (5.12c) holds by restricting the set of
posteriors; Equation (5.12d) holds by the optimality of g∗; Equation (5.12e)
holds by Lemma 5.10; and Equation (5.12c) holds by Lemma 5.9. This
concludes the proof.

Therefore, we can safely restrict to posteriors in Ξq. Since there are
|Ξq| = poly

(
d

log(n̄%/ε)

ε2

)
posteriors, the following linear program (LP 5.13)

has O(|Ξq|) variables and constraints and finds an α(1− δ)-approximation
of the optimal signaling scheme.

max
γ∈∆Ξq

∑
ξ∈Ξq

γξ
∑
θ∈Θ

ξθ fθ(g(ξ,Mε(ξ))) (5.13a)

s.t.
∑
ξ∈Ξq

γξ ξθ = µθ ∀θ ∈ Θ (5.13b)

Given the distribution on the q-uniform posteriors γ, we can construct a
direct signaling scheme φ by setting:

φθ(a) =
∑

ξ∈Ξq :a=g(ξ,Mε(ξ))

γξξθ, for each θ ∈ Θ and a ∈ A.

This shows that such a φ is α(1− δ)-approximate and ε-persuasive, which
are precisely our desiderata, thus concluding the proof.
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CHAPTER6
Persuading Voters in District-based

Elections

In this chapter, we study Bayesian persuasion in district-based elections.
Section 6.1 introduces district-based elections and semi-public signaling
schemes. Section 6.2 provides a polynomial-time algorithm to compute an
optimal private signaling scheme. In Section 6.3, we employ some relax-
ations of the voting functions to provide two bi-criteria approximations for
public and semi-public signaling.

6.1 Model of Bayesian Persuasion in District-based Elections

In this section, we introduce district-based elections. Moreover, we intro-
duce semi-public signaling schemes. In a district-bases election, there is a
set of candidates C := {c0, c1} and a set of voters R divided in a set D of
districts. The set of voters of district d ∈ D is denoted withRd. Each voter
casts a vote for one of the two candidates. Once the voters expressed their
preferences, the election process proceeds in two steps. For the sake of sim-
plicity, we study the basic case in which both steps follow a majority-voting
rule. The election works as follows.
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1. For each d ∈ D, the votes expressed by all r ∈ Rd are locally aggre-
gated, and the candidate with the majority of the votes is elected as
the winner of the district.

2. The outcomes of all the districts are aggregated, and the candidate that
is the winner in the majority of the districts is chosen as the winner of
the district-based election.

We assume that the manipulator prefers c0 to be the winner of the elec-
tion. Let c ∈ C be a tuple composed by the votes of all the voters, where
C := C |R|. Similarly, cd is the tuple of the votes of the voters in district d.
The manipulator’s utilityW : C → {0, 1} is defined as the composition of
a collection of functions W d : C |R

d| → C, each representing the majority
voting run in district d, and the function W : C |D| → {0, 1}, representing
the majority voting that aggregates the outcomes of all the districts. We de-
fine KD := d|D|/2e and, for each district d, Kd := d|Rd|/2e. Then,W is
defined as W(c) := W (W 1(c1), . . . ,W |D|(c|D|)), where W d(cd) assumes
value c0 if at least Kd of the voters in district d vote for candidate c0, and
W assumes value 1 if and only if c0 wins in at least KD districts.

We introduce some relaxations for the majority-voting rules W d and W .
In the first relaxation, we allow the number of votes that the target candi-
date c0 needs to win in each district d to be smaller than Kd. We denote
with W d

δ the resulting majority voting rule. Formally, W d
δ : C |R

d| → C as-
sumes value c0 if at least d(1− δ)Kde voters in district d vote for c0 and c1

otherwise. The manipulator’s utility function of this first relaxed problem,
denoted withWδ, is defined asWδ := W (W 1

δ (c1), . . . ,W
|D|
δ (c|D|)). In the

second stronger relaxation, we also allow the number of districts that the
target candidate c0 needs to control to win the election to be smaller than
KD. We denote with W δ the resulting majority voting rule aggregating the
outcomes of the districts. Formally, W δ : C |D| → {0, 1} assumes value
1 when c0 wins in at least d(1 − δ)KDe districts. The manipulator’s util-
ity function of this second relaxed problem, denoted with Wδδ, is defined
asWδδ(c) := W δ(W

1
δ (c1), . . . ,W

|D|
δ (c|D|)). Finally, we introduce a novel

form of communication that suits our election model, where the sender has
a communication channel toward each district d, and all the receivers in the
same district receive the same signal, i.e., sr = s′r for all r, r′ ∈ Rd. We
call these signaling schemes semi-public.

As in the previus chapters, we assume no inter-agent externalities and
we denote with urθ(c) the utility of receiver r in state θ when voting for
candidate c. Moreover, let urθ := urθ(c0) − urθ(c1). A revelation-principle
style argument shows that there always exists a signaling scheme that is
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direct and persuasive. In particular, the incentive constraints of a direct
signaling scheme associated with a receiver r in a district d are:

•
∑

θ,c∈C:cr=c φθ(c)(urθ(c)− urθ(c′)) ≥ 0 ∀c, c′ ∈ C (private signaling);

•
∑

θ φθ(c)(urθ(cr)− urθ(c′)) ≥ 0 ∀c ∈ C, c′ ∈ C (public signaling);

•
∑

θ,c∈C:cd=c̄ φθ(c)(urθ(c̄r) − urθ(c
′)) ≥ 0 ∀c̄ ∈ C |R

d|, c′ ∈ C (semi-
public signaling).

Similarly, a direct signaling scheme is ε-persuasive if the incentive con-
straints are violated by at most ε.

Finally, we state the optimization problems we study in this chapter.
PRIVATE-DBE is the problem of designing a private signaling scheme
maximizing the probability of having candidate c0 elected in district-based
elections. PUBLIC-DBE and SEMIPUBLIC-DBE refer to the same prob-
lem with public and semi-public signaling, respectively.

6.2 Private Persuasion in District-based Elections

In this section, we show that an optimal private signaling scheme for district-
based elections can be found in polynomial time. Our result is built upon
the results in Chapter 4 on k-voting. Let σd,θ be the probability with which
Kd voters vote for c0 in district d when the state of nature is θ. Similarly, let
αθ be the probability that c0 wins in at leastKD districts with state of nature
θ. Finally, recall that given a direct private signaling scheme φ, we denote
with φr,θ(c) =

∑
c:cr=c

φθ(c) the marginal probabilities of φ whereby c is
recommended to r with state of nature θ. We can compute an optimal pri-
vate signaling scheme by LP 6.1.

Theorem 6.1. LP 6.1 computes an optimal solution of PRIVATE-DBE in
polynomial time.

Proof. LP 6.1 has a polynomial number of variables and constraints and,
therefore, it can be solved in polynomial time. Thus, we just need to
prove that LP 6.1 actually computes an optimal solution to PRIVATE-DBE.
First, we remark that all the marginal probabilities φr,θ(c0) of the signaling
scheme φ must satisfy the incentive Constraints (6.1b). σd,θ represents the
probability of having at least Kd votes in district d, given state of nature
θ. We need to show σd,θ is computed correctly given the other variables of
LP 6.1. In particular, for every state of nature θ, the maximum probability
with which at least Kd of the receivers in Rd vote for c0 given marginals
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probabilities φr,θ(c0) is:

σd,θ = min

{
min

m∈{0,...,Kd−1}

1

Kd −m
vθ,m; 1

}
,

where vθ,m is the sum of the lowest |Rd|−m elements in the set {φr,θ(c0)}r∈Rd;
further details are provided by Arieli and Babichenko (2019). This defini-
tion is encoded by Constraints (6.1f). Constraints (6.1g) and (6.1h) ensure
the values vθ,m are well defined and derived from the dual of a simple LP
of this kind:

min
y∈Rn

x>y

1>y = w

0 ≤ y ≤ 1

where x ∈ Rn is the vector from which we want to extract the sum of
the smallest w entries. Finally, we prove that αθ is computed correctly.
The computation of the maximum probability αθ with which at least KD

districts elect c0 given probabilities σd,θ is similar to the computation of
σd,θ given φr,θ(c0). For a similar argument as above, Constraints (6.1c),
(6.1d), and (6.1e) correctly compute αθ aggregating the marginal probabil-
ities {σd,θ}d∈D,θ∈Θ. Objective (6.1a) is given by the sum over all θ ∈ Θ
of the prior of state θ, multiplied by αθ. Thus, by definition of αθ, we are
maximizing the probability of having c0 locally elected in more than KD

districts.
Finally, we prove how to construct a signaling scheme φ′ with the same

objective function of LP 6.1. In particular, we find marginal signaling
schemes φ′r such that the incentive constraints relative to c0 and c1 are sat-
isfied and φ′r,θ(c0) ≥ φr,θ(c0) for all r and θ. Since we do not introduce
the incentive constraint relative to action c1, they could not be satisfied by
φ. However, from the optimal marginal probabilities φr,θ(c0), it is straight-
forward to compute the marginal probabilities {φ′r,θ(c0), φ′r,θ(c1) }r∈R,θ∈Θ.
For each state of nature θ, let φ′r,θ(c0) = 1 if urθ ≥ 0 and φ′r,θ(c0) = φr,θ(c0)
otherwise. Then, φ′r,θ(c1) = 1−φ′r,θ(c0). The marginal signaling scheme φ′r
is persuasive as c1 is recommended only when it is the optimal action, while
φ′r,θ(c0) ≥ φr,θ(c0) if and only if urθ ≥ 0. Formally,

∑
θ∈Θ µθ φ

′
r,θ(c0)urθ ≥∑

θ∈Θ µθ φr,θ(c0)urθ ≥ 0 by constraints (6.1b). Finally, we can aggregate
the marginal probabilities of the signaling scheme by using the same ap-
proach proposed by Arieli and Babichenko (2019).
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max
α∈[0,1]|Θ|, σ∈[0,1]|D|×|Θ|

i,l∈R|Θ|×KD ,o∈R|D|×|Θ|×KD
td,θ,m, vd,θ,m∈R ∀d∈D,θ∈Θ,m∈{1,...,Kd}
zd,θ,r,m∈R ∀d∈D,θ∈Θ,r∈R,m∈{1,...,Kd}

φr,·(c0)∈[0,1]|Θ| ∀r∈R

∑
θ∈Θ

µθ αθ (6.1a)

s.t.
∑
θ∈Θ

µθ φr,θ(c0)ur(θ) ≥ 0 ∀r ∈ R (6.1b)

αθ ≤
1

KD −m
iθ,m (6.1c)

∀θ ∈ Θ,∀m ∈ {0, . . . , KD − 1}

iθ,m ≤ (|D| −m)lθ,m +
∑
d∈D

od,θ,m (6.1d)

∀θ ∈ Θ,∀m ∈ {0, . . . , KD − 1}
σd,θ ≥ lθ,m + od,θ,m (6.1e)

∀d ∈ D, ∀θ ∈ Θ,∀m ∈ {0, . . . , KD − 1}

σd,θ ≤
1

Kd −m
vd,θ,m (6.1f)

∀d ∈ D, ∀θ ∈ Θ,∀m ∈ {0, . . . , Kd − 1}

vd,θ,m ≤ (|Rd| −m)td,θ,m +
∑
r∈Rd

zd,θ,r,m (6.1g)

∀d ∈ D, ∀θ ∈ Θ,∀m ∈ {0, . . . , Kd − 1}
φr,θ(c0) ≥ td,θ,m + zd,θ,r,m (6.1h)

∀d ∈ D, ∀r ∈ Rd,∀θ ∈ Θ, ∀m ∈ {0, . . . , Kd − 1}

6.3 Public and Semi-public Persuasion in District-based Elec-
tions

We turn our attention to the design of optimal public and semi-public sig-
naling schemes. There is a sharp distinction between the nature of these
problems and that one of private signaling. Indeed, in addition to being
inefficient w.r.t. private signals (see Proposition 4.1), optimal (semi-)public
signaling schemes are also inapproximable. The hardness follows from the
results in Chapter 4. Specifically, we proved that it is NP-hard to approx-
imate the optimal public signaling scheme within any factor in elections
with majority voting. The extension of this hardness result to public and
semi-public signaling in district-base elections is direct as a district-based
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election reduces to majority voting when there is only a single district.
Thus, we focus on possible relaxations that make the problem computa-
tionally tractable.

Motivated by the fact that voters are somewhat biased to follow the
sender’s recommendations, several works relax the incentive constraints
allowing the receivers to vote for the target candidate even if other can-
didates give them a slightly better expected utility (ε-persuasiveness). In
Chapter 5, we prove that even allowing this relaxation the problem of de-
signing an approximate public signaling scheme remains intractable with
majority voting. Therefore, we focus on other different relaxations. In
particular, Cheng et al. (2015) employ two forms of relaxation, adopting
ε-persuasiveness and lowering the number of votes needed to win the elec-
tion by an arbitrary small constant factor. With these two relaxations, they
prove that an approximate public signaling scheme with majority voting can
be computed efficiently. We prove that, adapting these two relaxations to
our settings, both PUBLIC-DBE and SEMIPUBLIC-DBE admit a multi-
criteria PTAS. As a preliminary step, we prove some results on the relation
between the notion of stability and the design of approximately optimal sig-
naling schemes that are of general interest in Bayesian persuasion beyond
elections.

6.3.1 Comparative Stability and Public Signaling Schemes

We refer to the notion of stability of a function introduced by Xu (2020).
In particular, a function is said stable if, for every action profile, the intro-
duction of small perturbations leads to small changes in the value of the
function. Here, we extend the notion of stability to pairs of functions, and
we call it comparative. Our extension is such that comparative stability
corresponds to (simple) stability in the degenerate case in which the two
functions of the pair are the same. Furthermore, if function g satisfies the
comparative stability property w.r.t. function h, we also say that g is β-
stable compared with h. Initially, we introduce the notion of perturbation
by the concept of α-noisy distribution.

Definition 6.1. Let c ∈ C be an action profile and y be a probability dis-
tribution supported on ∆C . For any α ∈ (0, 1], we say that y is an α-noisy
distribution around c if for all i ∈ {1, . . . , |R|} : Prỹ∼y[ỹi 6= ci] ≤ α.

Hence, an α-noisy distribution bounds the marginal probability of any
single element of {1, . . . , n̄} to be corrupted. However, no assumption is
made on how the corruptions of the elements correlate with each other.
Now, we define our notion of comparative stability.
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Definition 6.2. Given two functions g, h : C → [0, 1] and a real number
β ≥ 0, we say that g is β-stable compared with h if and only if the following
holds for all action profiles c ∈ C, α ∈ (0, 1], and α-noisy distributions y
around c:

E
ỹ∼y

[g(ỹ)] ≥ h(c)(1− αβ).

Intuitively, if g satisfies the comparative stability property w.r.t. h, then,
for every action profile, the value of h in that action profile is close to the
value of g in the corresponding perturbed action profile.

We exploit the notion of comparative stability to design an efficient al-
gorithm that computes approximate public signaling schemes. More pre-
cisely, we study a generic multi-agent Bayesian persuasion problem, where
the sender faces a set of receivers R, and each receiver needs to choose an
action between a couple of alternatives. Let g, h be two sets of arbitrary
functions depending on the state of nature θ and denoted with gθ : C →
[0, 1] and hθ : C → [0, 1], respectively. According to Definition 6.2, we say
that g is β-stable compared with h if gθ is β-stable with respect to hθ for all
the states of nature θ ∈ Θ.

For the sake of clarity, in the following, we use indirect signaling schemes,
and we express a signaling scheme as a weighted set of posteriors to which
the receivers respond at best. Now, we describe the optimal behavior of the
receivers. This is a extension to multiple receivers of Definition 3.1 when
the receivers have only two actions.

Definition 6.3 (Receivers’ behavior with persuasiveness). Given a set of
functions {fθ}θ∈Θ such that fθ : C → [0, 1], the receivers’ optimal behavior
bξ ∈ C with persuasiveness given posterior ξ ∈ Ξ is as follows. Let:

• A = {r ∈ R :
∑

θ ξθ u
r
θ > 0} the set of receivers whose unique best

response is action c0,

• B = {r ∈ R :
∑

θ ξθ u
r
θ < 0} the set of receivers whose unique best

response is action c1,

• E = {r ∈ R :
∑

θ ξθ u
r
θ = 0} the set of receivers who are indifferent

between action c0 and c1.

Then, we have:

bξ = arg maxc∈C:cr=c0∀r∈A, cr=c1∀r∈B
∑
θ

pθ fθ(c).

Notice that the previous definition is a characterization of the vector of
best responses for the specific voting setting.
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Similarly, we define the notion of ε-best response.

Definition 6.4 (Receivers’ behavior with ε-persuasiveness). Given a set of
functions {fθ}θ∈Θ such that fθ : C → [0, 1], the receivers’ optimal behavior
bε,ξ ∈ C with ε-persuasiveness given posterior ξ ∈ Ξ is as follows. Let:

• Aε = {r ∈ R :
∑

θ ξθ u
r
θ > ε} the set of receivers whose unique best

response is action c0,

• Bε = {r ∈ R :
∑

θ ξθ u
r
θ < −ε} the set of receivers whose unique best

response is action c1,

• Eε = {r ∈ R :
∑

θ ξθ u
r
θ ∈ [−ε, ε]} the set of receivers who are indif-

ferent between action c0 and c1.

Then, we have:

bε,ξ = arg maxc∈C:cr=c0∀r∈Aε cr=c1∀r∈Bε

∑
θ

ξθ fθ(c).

Now, we show that computing a direct public signaling scheme is equiv-
alent to derive a Bayes plausible distribution of posteriors γ ∈ ∆Ξ that
maximizes the sender’s utility. Let supp(γ) denote the set of posteriors in-
duced with strictly positive probability. Similarly, let supp(φ) denote the
set of posteriors induced by φ with strictly positive probability. Finding
a public signaling scheme is equivalent to finding a probability distribu-
tion γ ∈ ∆Ξ on the set of posteriors Ξ such that

∑
ξ∈supp(γ) γξ ξθ = µθ

for every θ ∈ Θ. Given a well-defined distribution over posteriors γ, we
can recover a direct signaling schemes φ that induces such a probability
distribution by setting φθ(c) =

∑
ξ∈supp(γ):c=bξ

γξ ξθ. For this reason, in
the following, we represent signaling schemes as probability distributions
on the posteriors. We introduce some further notation. For every ξ ∈ Ξ
and set of functions f = {fθ}θ∈Θ, we define the sender’s expected utility
with persuasiveness as f(ξ) =

∑
θ ξθ fθ(bξ), and with ε-persuasiveness as

fε(ξ) =
∑

θ ξθ fθ(bε,ξ).
Our first result shows that we can decompose each posterior in a convex

combination γ ∈ ∆Ξq of q-uniform posteriors (with q constant), such that∑
ξ∈Ξq γp gε(ξ) closely approximates h(ξ∗). This is a generalization of the

result by Xu (2020) to state-dependent utility functions (and couples of
functions), and it is crucial to prove the following results.

Lemma 6.1. Let β, ε > 0, η ∈ (0, 1] and set q = 32 log
(

4
ηmin{1; 1/β}

)
/ε2.

Then, given a posterior ξ∗ ∈ Ξ and two sets of functions g, h with g β-
stable compared with h, there exists a γ ∈ ∆Ξq with

∑
p∈Ξq γξ ξ = ξ∗
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and ∑
p∈Ξq

γξ
∑
θ

ξθ gθ(bε,ξ) ≥ (1− η)
∑
θ

ξ∗θ hθ(bξ∗). (6.2)

Proof. Let ξ̃ ∈ Ξq be the empirical distribution of q i.i.d. samples drawn
from ξ∗, where each θ has probability ξ∗θ of being sampled. Therefore,
the vector ξ̃ is a random variable supported on q-uniform posteriors with
expectation ξ∗. Moreover, let γ ∈ ∆Ξq be a probability distribution such
as, for every ξ ∈ Ξq, it holds γξ = Pr(ξ̃ = ξ). It is easy to see that
ξ∗ =

∑
ξ∈Ξq γξξ. We need to prove that Equation (6.2) holds. For every

ξ ∈ Ξq, we define with γ(θ,i)
ξ the conditional probability of having observed

posterior ξ given that the posterior assigns a probability of i/q to state θ.
Formally, for every ξ ∈ Ξq, we have:

γ
(θ,i)
ξ =


γξ∑

ξ′∈Ξq :p′θ=i/q

γξ′
if ξθ = i/q

0 otherwise

.

Then, the random variable ξ̃(θ,i) ∈ Ξq is such that, for every ξ ∈ Ξq, it holds
Pr(ξ̃(θ,i) = ξ) = γ

(θ,i)
ξ . For each r ∈ R, we define Pr ⊆ Ξq as the set of

posteriors that do not change the expected utility of r by more than ε with
respect to ξ∗. Formally, ξ ∈ Pr if and only if |

∑
θ ξθ u

r
θ −

∑
θ ξ
∗
θu

r
θ| ≤ ε.

Finally, let α = η min{1; 1/β}.
To complete the proof, we introduce the following three lemmas. First,

given a probability distribution ξ∗ and a state of nature θ ∈ Θ, the following
lemma bounds the maximum probability mass that γ assigns to posteriors
ξ ∈ Ξq in which the probability assigned to state of nature θ deviates from
the one prescribed by ξ∗ by at least ε/4.

Lemma 6.2. Given ξ∗ ∈ Ξ, for each θ ∈ Θ, it holds:∑
i:|i/q−ξ∗θ |≥ε/4

∑
ξ∈Ξq :ξθ=i/q

γξ ≤
α

2
ξ∗θ ,

where γ is the probability distribution of q i.i.d samples drawn from ξ∗.

Proof. We observe that the random variable ξ̃θ is drawn from a binomial
probability distribution. We consider two possible cases. If ξ∗θ ≥ 1/8, then
by Hoeffding’s inequality we can write the following:

Pr
(
|ξ̃θ − ξ∗θ | ≥

ε

4

)
≤ 2 e−2 q (ε/4)2

= (6.3a)
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= 2 e−4 log(4/α) ≤ (6.3b)

≤ α/16 ≤ α

2
ξ∗θ . (6.3c)

Instead, if ξ∗θ ≤ 1/8, then by Chernoff’s bound we can write the follow-
ing:

Pr
(
ξ̃θ − ξ∗θ ≥

ε

4

)
≤ e

−q(ε/4)2 1
1−2p∗

θ
log(

1−ξ∗θ
ξ∗
θ

) ≤ (6.4a)

≤ e
−2 log(4/α) log( 7

8ξ∗
θ

)
= (6.4b)

= (
8

7
ξ∗θ)

2 log(4/α) = (6.4c)

=

(
1

e

8

7
e ξ∗θ

)2 log(4/α)

≤ (6.4d)

≤ (e)−2 log(4/α) 8

7
e ξ∗θ ≤ (6.4e)

≤ α

16

8

7
e ξ∗θ ≤ (6.4f)

≤ α

4
ξ∗θ , (6.4g)

Moreover, we can write:

Pr
(
ξ̃θ − ξ∗θ ≤ −

ε

4

)
≤ e

−q(ε/4)2 1
2(1−ξ∗

θ
)ξ∗
θ = (6.5a)

= e
− log(4/α)

ξ∗
θ = (6.5b)

=

(
e

1
ξ∗
θ

)log(α4 )
≤ (6.5c)

≤
(

1

ξ∗θ
e

)log(α4 )
≤ (6.5d)

≤
(

1

ξ∗θ

)−1

elog(α4 ) = (6.5e)

=
α

4
ξ∗θ , (6.5f)

where in Equations (6.5d) and (6.5e) we use that ex ≥ e x and log(α/4) <
−1 as α ∈ (0, 1]. Hence, we obtain the following inequality:∑

i:|i/q−ξ∗θ |>ε/4

∑
ξ∈Ξq :ξθ=i/q

γξ = Pr
(
|ξ̃θ − ξ∗θ | >

ε

4

)
≤ α

2
ξ∗θ ,
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which concludes the proof.

The second lemma we introduce proves that, when ξθ is close to ξ∗θ , then
the utility of every receiver is close to the utility in ξ∗ with high probability.

Lemma 6.3. Given ξ∗ ∈ Ξ, for each receiver r ∈ R, each state θ ∈ Θ and
each i : |i/q − ξ∗θ | ≤ ε/4, it holds:∑

ξ∈Pr:ξθ=i/q

γξ ≥
(

1− α

2

) ∑
ξ∈Ξq :ξθ=i/q

γξ,

where γ is the distribution of q i.i.d samples from ξ∗.

Proof. Fix θ̄ ∈ Θ, r ∈ R and i with |i/q − ξ∗
θ̄
| ≤ ε/4. Then, let t̃ =∑

θ ξ̃
(θ̄,i)
θ urθ and t =

∑
θ p
∗
θu

r
θ, where the notation ξ̃(θ̄,i)

θ is employed to de-
note the value of ξθ given that the random variable ξ̃(θ̄,i) ∈ Ξq assumes
value ξ. First, we show that |E[ t̃ ] − t | ≤ ε/2. This is equivalent to prove
the following:

|
∑
θ

urθ

(
E[ξ̃

(θ̄,i)
θ ]− ξ∗θ

)
| ≤

∑
θ

|E[ξ̃
(θ̄,i)
θ ]− ξ∗θ | ≤ ε/2.

Assume i/q ≥ ξ∗
θ̄
, then,∑

θ

|E[ ξ̃
(θ̄,i)
θ ]− ξ∗θ | =

=
i

q
− ξ∗θ̄ +

∑
θ 6=θ̄

(
ξ∗θ −

ξ∗θ∑
θ′ 6=θ̄ ξ

∗
θ′

(
1− i

q

))
≤

≤ ε

4
+ 1− ξ∗θ̄ − 1 +

i

q
≤ ε

2
.

Analogously, if i/q ≤ ξ∗
θ̄
, we get that

∑
θ |E[ ξ̃

(θ̄,i)
θ ] − ξ∗θ | ≤ ε

2
. Now, we

can exploit the fact that |E[ t̃ ] − t | ≤ ε/2 to show that: Pr(| t − t̃ | ≥
ε) ≤ Pr( | t̃ − E[ t̃ ] | ≥ ε/2) by the triangular inequality. Then, we use the
Hoeffding’s inequality to bound the last term:

Pr( | t̃− E[ t̃ ] | ≥ ε/2) ≤ 2e−
2q
4

( ε
2

)2 ≤ 2e− log(4/α) =
α

2

By definition of Pr, this implies that Pr(ξ̃(θ̄,i) ∈ Pr) ≥ 1− α/2. Finally,∑
ξ∈Pr:ξθ̄=i/q

γξ = Pr

(
ξ̃θ̄ =

i

q

)
Pr

(
ξ̃ ∈ Pr | ξ̃θ̄ =

i

q

)
=
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= Pr

(
ξ̃θ̄ =

i

q

)
Pr
(
ξ̃(θ̄,i) ∈ Pr

)
≥

≥
(

1− α

2

)
Pr

(
ξ̃θ̄ =

i

q

)
=

=
(

1− α

2

) ∑
ξ∈Ξq :ξθ̄=i/q

γξ.

Before introducing the last lemma, we need some further notation. Fol-
lowing Definition 6.3, given a posterior, we partition the receivers in three
sets, depending on their possible best-responses. We define the partition on
the set of receivers induced by ξ∗ ∈ Ξ as follows:

• A = {r ∈ R :
∑

θ ξ
∗
θ u

r
θ > 0},

• B = {r ∈ R :
∑

θ ξ
∗
θ u

r
θ < 0},

• E = {r ∈ R :
∑

θ ξ
∗
θ u

r
θ = 0}.

Similarly, any q-uniform posterior ξ ∈ Ξq induces the following partition
to the set of receivers when ε-persuasiveness is adopted:

• Aε = {r ∈ R :
∑

θ ξθ u
r
θ > ε},

• Bε = {r ∈ R :
∑

θ ξθ u
r
θ < −ε},

• Eε = {r ∈ R :
∑

θ ξθ u
r
θ ∈ [−ε, ε]}.

Then, we define an auxiliary variable yξ ∈ C as follows:

• For every r ∈ A, yξr =

{
c0 if r ∈ Aε ∪ Eε
c1 otherwise .

• For every r ∈ B, yξr =

{
c1 if r ∈ Bε ∪ Eε
c0 otherwise .

• For every r ∈ E, yξr =

 cr where c = bξ∗ if r ∈ Eε
c0 if r ∈ Aε
c1 if r ∈ Bε

.

Note that, by construction, yξ is a valid action profile under ε-persuasiveness.
Moreover, by the optimality of the ε-persuasive best-response, the follow-
ing holds for every posterior ξ:∑

θ

ξθ gθ(bε,ξ) ≥
∑
θ

ξθ gθ(yξ). (6.6)
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Finally, let ỹ(θ,i) ∈ C be the random variable such that:

Pr( ỹ(θ,i) = c ) =

∑
ξ∈Ξq ,ξθ=i/q,yξ=c γξ∑
ξ′∈Ξq :ξ′θ=i/q γξ′

.

Now, we introduce the last lemma we use to complete the proof. This
lemma proves that ỹθ,i are α

2
-noisy probability distributions around bξ∗ .

Lemma 6.4. Given ξ∗ ∈ Ξq, for each θ ∈ Θ and i : |i/q − ξ∗θ | ≤ ε/4,
ỹ(θ,i) ∈ C is a α

2
-noisy probability distribution around bξ∗ .

Proof. We need to prove that for every receiver r, it holds Pr(ỹ
(θ,i)
r = c∗r) ≥

1− α/2, where c∗r is the action of receiver r in action profile bξ∗ . It holds:

Pr(ỹ(θ,i)
r =c∗r) =

∑
ξ∈Ξq :pθ=i/q,yξr=c∗r

γξ∑
ξ′∈Ξq :ξ′θ=i/q γξ′

≥

≥
∑

ξ∈Pr:ξθ=i/q

γξ∑
ξ′∈Ξq :ξ′θ=i/q γξ′

≥

≥
(

1− α

2

) ∑
ξ∈Ξq :ξθ=i/q

γξ∑
ξ′∈Ξq :ξ′θ=i/q γξ′

=

=
(

1− α

2

)
.

This concludes the proof.

Now, we are ready to prove Equation (8.2).∑
θ

∑
ξ∈Ξq

γξ ξθ gθ(bε,ξ) ≥ (6.7a)

(By restricting the set of posteriors.)

≥
∑
θ

∑
i:|i/q−ξ∗θ |≤ε/4

i/q
∑

ξ:ξθ=i/q

γξ gθ(bε,ξ) = (6.7b)

=
∑
θ

∑
i:|i/q−ξ∗θ |≤ε/4

i/q

 ∑
ξ:ξθ=i/q

γξ

 (6.7c)

∑
ξ:ξθ=i/q

γξ∑
ξ′:ξ′θ=i/q γξ′

gθ(bε,ξ) ≥

(By Inequality (6.6).)
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≥
∑
θ

∑
i:|i/q−ξ∗θ |≤ε/4

i/q

 ∑
ξ:ξθ=i/q

γξ

 (6.7d)

∑
ξ:ξθ=i/q

γξ∑
ξ′:ξ′θ=i/q γξ′

gθ(yξ) ≥

(By stability of g compared to h and Lemma 6.4.)

≥
∑
θ

∑
i:|i/q−ξ∗θ |≤ε/4

i/q

 ∑
ξ:ξθ=i/q

γξ

 (6.7e)

(
1− α

2
β
)
hθ(bξ∗) =

=
(

1− α

2
β
)∑

θ

hθ(bξ∗) (6.7f)∑
i:|i/q−ξ∗θ |≤ε/4

i/q
∑

ξ:ξθ=i/q

γξ ≥

≥
(

1− α

2
β
)∑

θ

hθ(bξ∗) (6.7g)ξ∗θ − ∑
i:|i/q−ξ∗θ |≥ε/4

∑
ξ:ξθ=i/q

γξ

 ≥
(By Lemma 6.2.)

≥
(

1− α

2
β
)∑

θ

hθ(bξ∗)
(

1− α

2

)
ξ∗θ = (6.7h)

=
(

1− α

2
β
) (

1− α

2

)∑
θ

ξ∗θ hθ(bξ∗) ≥ (6.7i)

(By α = η min{1, 1/β}.)

≥ (1− η)
∑
θ

ξ∗θ hθ(bξ∗). (6.7j)

This concludes the proof.

Now, we can prove the main result of this section. Consider a couple
of sets of functions g, h where g is β-stable compared with h. With abuse
of notation, we define g(φ) and h(φ) as the functions which evaluate the
expected sender’s utility of a public signaling scheme φ with h and g, re-
spectively. We can resort to Lemma 6.1 to state the following result. The
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proof is based on solving a linear program that works only with q-uniform
posteriors.

Theorem 6.2. Let β, ε > 0 and η ∈ (0, 1]. Consider two arbitrary state-
dependent sets of functions g, h such that gθ : C → [0, 1] is β-stable
compared with hθ : C → [0, 1] for all θ ∈ Θ. Then, there exists an al-
gorithm with running time poly

(
|R| |Θ|log( 1

η min{1;1/β} )/ε2
)

that returns an
ε-persuasive public signaling scheme φε such that:

g(φε) ≥ (1− η) max
φ∈Φ

h(φ),

where Φ is the set of persuasive signaling schemes.

Proof. For every constant β, ε > 0, η ∈ (0, 1], by Theorem 6.1, we know
that any posterior ξ∗ ∈ Ξ guaranteeing a value h(ξ∗) can be expressed as
a convex combination of q-uniform posteriors such that

∑
ξ∈Ξq γξ gε(ξ) ≥

(1 − η)h(ξ∗). Therefore, given the optimal persuasive public signaling
scheme φ∗ optimizing h, we can decompose each posterior probability
distribution ξ ∈ supp(φ∗) into a convex combination of q-uniform pos-
teriors and obtain an ε-persuasive public signaling scheme φε maximiz-
ing g that satisfies the inequalities stated in the theorem. Let take q :=

32 log
(

4
η min{1; 1/β}

)
/ε2. Since, for a fixed number of samples q, the num-

ber of q-uniform probability distributions is at most |Θ|q, we can search
for the ε-persuasive public signaling scheme maximizing g over probability
distributions ξ ∈ Ξq, by solving the following Linear Program composed
of O(|Ξq|) variables and constraints:

max
γ∈∆Ξq

∑
ξ∈Ξq

γξ
∑
θ∈Θ

ξθ gθ(bε,ξ)

s.t.
∑
ξ∈Ξq

γξ ξθ = µθ ∀θ ∈ Θ

Finally, given the probability distribution on the q-uniform posteriors γ ∈
∆Ξq , it is easy to derive the corresponding public signaling scheme φε by
setting the following for every θ ∈ Θ and c ∈ C:

φεθ(c) =
∑

ξ∈Ξq :bε,ξ=c

γξ ξθ.

By setting h = g, we obtain a generalization of the result by Xu (2020)
to state-dependent functions.
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6.3.2 Comparative Stability of Voting Functions

We apply this novel concept of stability to voting problems. Our first re-
sult proves that the two relaxed majority-voting functions previously in-
troduced satisfy the comparative stability property. This result is similar
to that by Cheng et al. (2015). However, we use multiplicative factors (in
place of additive factors) and prove a slightly stronger result than stability.
In particular, we prove that the decrease in utility is small even if only the
perturbations from action c0 to c1 are bounded. Recall that W represents
the majority voting function and Wδ its relaxation. Then, we can prove the
following.

Lemma 6.5. Wδ is 1/δ-stable compared with W . Moreover, for all c ∈ C,
α ∈ (0, 1], and y ∈ ∆C such that Pry ( ỹr = c1 ∧ cr = c0 ) ≤ α for each
r ∈ R, it holds:

Eỹ∼y [Wδ(ỹ)] ≥ W (c)
(

1− α

δ

)
.

Proof. To prove the first part of the lemma, we need to show that for every
voting profile c̄ ∈ C and α-noisy probability distribution y around c̄ with
α ∈ (0, 1], the following inequality holds:

Eỹ∼y [Wδ(ỹ)] =
∑
c∈C

yc Wδ(c) ≥ W (c̄)
(

1− α

δ

)
. (6.9)

Given that W and Wδ assume values exclusively in {0, 1}, Inequality (6.9)
is satisfied, independently from the chosen distribution y, for all the voting
profiles c̄ such thatW (c̄) = 0. Therefore, we can restrict our attention to the
set of voting profiles such that W (c̄) = 1. Let Vc0(c) = {r ∈ R : cr = c0}
and C− = {c : |Vc0(c)| ≤ d(1 − δ)|R|/2e − 1}. Then, for every y, the
following holds

α|Vc0(c̄)| ≥

≥
∑

r∈Vc0 (c̄)

∑
c∈C:cr=c1

yc ≥

≥
∑
c∈C−

∑
r∈Vc0 (c̄):cr=c1

yc ≥

≥ [|Vc0(c̄)| − d(1− δ)|R|/2e − 1]
∑
c∈C−

yc ≥

≥ [|Vc0(c̄)| − (1− δ)|R|/2]
∑
c∈C−

yc =
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= [|Vc0(c̄)| − d(1− δ)|R|/2e](1− Eỹ∼y [Wδ(ỹ)]).

This implies that

Eỹ∼y [Wδ(ỹ)] ≥ 1− α|Vc0(c̄)|
|Vc0(c̄)| − (1− δ)|R|/2

=

= 1− α

1− (1− δ) |R|/2|Vc0 (c̄)|

≥

≥ (1− α

δ
)W (c̄),

where the last inequality follows from

|R|/2
|Vc0(c̄)|

≤ |R|/2
d|R|/2e

≤ 1

and from W (c̄) = 1 by assumption.
Finally, to prove the second part of the lemma, we can employ Algo-

rithm 6.1 to show that for all c̄ ∈ C and for all probability distributions
y around c̄ such that Prỹ∼y[ỹr = c1 ∧ c̄r = c0] ≤ α, there is an α-noisy
probability distribution y′ guaranteeing

Eỹ∼y [Wδ(ỹ)] ≥ Eỹ∼y′ [Wδ(ỹ)] ≥ W (c̄)
(

1− α

δ

)
.

It is easy to see that y′ is α-noise: y′ has null probability on all the voting
profiles c with a r ∈ R such that cr = c0 ∧ c̄r = c1, i.e., Vc0(c) ( Vc0(c̄),
while, Prỹ∼y′ [ỹr = c1∧c̄r = c0] = Prỹ∼y[ỹr = c1∧c̄r = c0] ≤ α. Moreover,
since Algorithm 6.1 moves probability mass from an action profile c to an
action profile c′ with Vc0(c′) ⊆ Vc0(c), it does not increase the expected
value of Wδ. This concludes the proof.

Algorithm 6.1
1: input: distribution y
2: for c ∈ C s.t Vc0(c) ( Vc0(c̄) do
3: Take c′ : Vc0(c′) = Vc0(c) ∩ Vc0(c̄)
4: y′c′ ← yc′ + yc
5: y′c ← 0
6: end for
7: return y′

We can use the result above to prove that Wδδ satisfies the property of
comparative stability with respect toW . Intuitively, the result follows from
the observation thatW is the composition of two majority-voting steps.
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Lemma 6.6. Wδδ is 1
δ2 -stable with respect toW .

Proof. We need to prove that the following inequality holds for all c ∈ C
and α-noisy distribution y around c with α ∈ (0, 1].

Eỹ∼y [Wδδ(ỹ)] ≥ W(c)
(

1− α

δ2

)
.

The value of functionWδδ depends on the values of all the district functions
W d
δ . Indeed, given a voting profile c ∈ C, the functionWδδ assumes value
Wδδ(c) = W̄δ(W

1
δ ( c1), . . . ,W

|D|
δ (c|D|) ). Therefore, when it is perturbed

by an α-noisy probability distribution y, its expected value can be expressed
as:

Eỹ∼y [Wδδ(ỹ)] = Eỹ∼y

[
W̄δ(W

1
δ (ỹ1), . . . ,W

|D|
δ (ỹ|D|) )

]
.

Lemma 6.5 can be applied to all the couples of functions W d,W d
δ , deriving

the following inequality for every d ∈ D, c ∈ C, α ∈ (0, 1]:

Pr
ỹ∼y

(
W d
δ (ỹd) = c1 ∧W d(cd) = c0

)
≤ α/δ.

If W d(cd) = c1, the above inequality is trivially satisfied, whereas, if
W d(cd) = c0, we can write

Pr
ỹ∼y

(
W d
δ (ỹd) = c1 ∧W d(cd) = c0

)
=

= Pr
ỹ∼y

(
W d
δ (ỹd) = c1

)
= 1− Eỹ∼y

[
Wδ(ỹd)

]
≤

≤ 1−
(

1− α

δ

)
W (cd) = α/δ.

We can use the above inequality and the fact that W̄ is a majority-voting
function to apply Lemma 6.5 to the couple of functions W̄ and W̄δ, thus
showing the following:

Eỹ∼y

[
W̄δ

(
W 1
δ (ỹ1), . . . ,W

|D|
δ (ỹ|D|)

)]
≥

≥ W̄
(
W 1(c1), . . . ,W |D|(c|D|)

) (
1− α

δ2

)
.

This implies thatWδδ is 1/δ2 stable compared toW .

Finally, we derive a stronger decomposition lemma for majority-voting.
Specifically, Lemma 6.1 shows that the decrease in the expected sender’s
utility when decomposing a posterior in q-uniform posteriors can be bounded.
However, in generic settings, the sender’s expected utility in a given state of
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nature can change arbitrarily. This is not the case in majority voting, where,
instead, this decrease is bounded. In particular, we can show the following,
that is crucial when addressing the SEMIPUBLIC-DBE problem.

Lemma 6.7. Let ε > 0, η ∈ (0, 1] and set q = 32 log
(

4
ηδ

)
/ε2. Then, given

a posterior ξ∗ ∈ Ξ, there exists a γ ∈ ∆Ξq with
∑
ξ∈Ξq γξ ξ = ξ∗ and∑

ξ∈Ξq

γξ ξθWδ(bε,ξ) ≥ (1− η) ξ∗θ W (bξ∗) ∀θ ∈ Θ.

Proof. The proof follows the same steps of the proof of Lemma 6.1. In
the following, we just highlight the differences between the two proofs. In
the steps from Equation (6.7a) to Equation (6.7j), we remove the summa-
tion over the states of nature. All the other steps hold, except for Equa-
tion (6.7d). Indeed, since ε-best response is computed maximizing the ex-
pected utility of the sender, there are no guarantees that for each state of
nature θ it holds gθ(bε,ξ) ≥ gθ(yξ). However, sinceWδ is state-independent
and monotone non-decreasing in the number of receivers that vote for c0,
the best response bε,ξ is given by c0 for all the voters with utility urθ ≥ −ε.
Thus, we are guaranteed that it holds Wδ(yξ) ≤ Wδ(bε,ξ) independently
from the state of nature θ. Taking into account Lemma 6.5, the derivation
is straightforward.

6.3.3 Computing Public and Semi-public Signaling Schemes in District-
based Elections

We present two multi-criteria PTASs for the PUBLIC-DBE problem and
the SEMIPUBLIC-DBE problem, respectively, when our relaxations are
adopted. First, we focus on the problem of designing public signaling
schemes. We assume ε-persuasive signaling schemes, and we replace func-
tion W with Wδδ (this corresponds to relaxing the majority voting within
every single district and the majority voting aggregating the outcomes of
all the districts). LetW(φ) andWδδ(φ) denote the functions returning the
sender’s expected utility provided by a public signaling scheme φ with vot-
ing rulesW andWδδ, respectively. We show that it is possible to compute
efficiently an ε-persuasive public signaling scheme φε that approximates
the optimal persuasive signaling scheme with an approximation factor ar-
bitrarily close to 1. Since the relaxed functionWδδ is 1/δ2-stable compared
to the non-relaxed function W by Lemma 6.6, we can immediately apply
Theorem 6.2 to these functions and then derive the following.
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Corollary 6.1. Let ε > 0, δ ∈ (0, 1) and η ∈ (0, 1], then there exists

a poly

(
|R| |Θ|log

(
1
η δ2

)
/ε2
)

time algorithm that returns an ε-persuasive

public signaling scheme φε such that:

Wδδ(φ
ε) ≥ (1− η) max

φ∈Φ
W(φ), (6.14)

where Φ is the set of persuasive signaling schemes.

Then, we focus on the SEMIPUBLIC-DBE problem. As highlighted
above, to overcome the intractability result, also in this setting, it is nec-
essary to relax the problem. Specifically, we use ε-persuasive signaling
schemes and we replace functionW withWδ (this corresponds to relaxing
the majority voting aggregating the outcomes of all the districts). We show
that it is possible to compute efficiently an ε-persuasive semi-public signal-
ing scheme φε that approximates the optimal persuasive signaling scheme
with an approximation factor arbitrarily close to 1. Computing a semi-
public signaling scheme φ amounts to determining a collection {φd}d∈D
of |D| public signaling schemes, one for each district, and correlate them.
The crucial point concerns the computation of good marginal probabilities
of the signaling scheme. Indeed, their aggregation is equivalent to comput-
ing a private signaling scheme in majority-voting elections, and this can be
done efficiently (see LP 6.1 and Theorem 6.1). The main idea of our proof
is that there are approximately optimal marginal probabilities of the signal-
ing scheme that use only q-uniform posteriors (with q constant). Let αθ be
the probability that c0 wins in at least KD districts with state of nature θ,
σδd,θ be the probability that candidate c0 receives at least d(1− δ)Kde votes
in district d with state of nature θ, and γd be a probability distribution over
posteriors for the receivers in district d. Finally, let I[E ] denote the indica-
tor function for the event E . Then, the following formulation computes an
approximately optimal signaling scheme in polynomial time.

max
α∈[0,1]|Θ|, σδ∈[0,1]|D|×|Θ|

i,l∈R|Θ|×KD ,o∈R|D|×|Θ|×KD
γd∈∆Ξq∀d∈D

∑
θ∈Θ

µθαθ (6.15a)

s.t. αθ ≤
1

KD −m
iθ,m (6.15b)

∀θ ∈ Θ, ∀m ∈ {0, . . . , KD − 1}

iθ,m ≤ (|D| −m)lθ,m +
∑
d∈D

od,θ,m (6.15c)
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∀θ ∈ Θ,∀m ∈ {0, . . . , KD − 1}
σδd,θ ≥ lθ,m + od,θ,m (6.15d)

∀d ∈ D, ∀θ ∈ Θ,∀m ∈ {0, . . . , KD − 1}

σδd,θ ≤
∑
ξ∈Ξq

γdξ ξθ

µθ
I
[
W d
δ (bε,ξ) = c0

]
(6.15e)

∀d ∈ D, ∀θ ∈ Θ∑
ξ∈Ξq

γdξ ξθ = µθ ∀d ∈ D, ∀θ ∈ Θ (6.15f)

Theorem 6.3. Let ε > 0, δ ∈ (0, 1) and η ∈ (0, 1], then there exists a
poly

(
|R| |Θ|log( 1

η δ )/ε2
)

time algorithm that outputs an ε-persuasive semi-
public signaling scheme φε such that:

Wδ(φ
ε) ≥ (1− η) max

φ∈Φ
W(φ), (6.16)

where Φ is the set of persuasive signaling schemes.

Proof. Let q = 32 log
(

4
η δ

)
/ε2 and Ξq ⊂ ∆Θ be the set of q-uniform

probability distributions on Θ. We show that, given the optimal semi-public
signaling scheme φ∗, there is a solution φε to LP 6.15 withWδ(φ

ε) ≥ (1−
η)W(φ∗). Given the signaling scheme φ∗, let:

• σ∗d,θ be the probability that c0 wins in district d when the state of nature
is θ and

• α∗θ be the probability that c0 wins in at least Kd when the state of
nature is θ.

Then, as showed in Theorem 6.1, the probability such that c0 wins in at
least KD districts with state of nature θ is:

α∗θ = min

{
min

m∈{0,...,KD−1}

1

KD −m
vθ,m; 1

}
, (6.17)

where vθ,m is the sum of the lowest |Rd|−m elements in the set {σ∗d,θ}d∈D.
We show that there is a solution to LP 6.15 with σδd,θ ≥ (1 − η)σ∗d,θ for
every d and θ. Since the value of each σd,θ is reduced by a multiplicative
factor (1−η), Equation (6.17) implies that αθ ≥ (1−η)α∗θ and

∑
θ µθαθ ≥

(1− η)
∑

θ µθα
∗
θ.

1

1See Theorem 6.1 for details on how LP 6.15 computes αθ from σδ .
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Hence, we conclude the proof showing that σδd,θ ≥ (1− η)σ∗d,θ for every
d and θ. Let:

• φ∗d be the marginal probabilities of the signaling scheme φ restricted
to the receivers in district d,

• γ∗ ∈ ∆Ξ be the probability distribution on posteriors induced by φ∗d,

• γξ ∈ ∆Ξ be the probability distribution on q-uniform posteriors ob-
tained decomposing a posterior ξ as prescribed by Lemma 6.7, and

• γd ∈ ∆Ξq be the distribution on q-uniform posteriors obtained by
decomposing each posterior induced by φ∗d as in Lemma 6.7, i.e., γdξ =∑
ξ′∈supp(φ∗) γ

∗
ξ′ γ

ξ′

ξ for every ξ.

We conclude proving that γd is a q-uniform distribution that induces a
σδd,θ ≥ (1− η)σ∗d,θ for every θ.

(1− η)σ∗d,θ =

= (1− η)
∑

ξ∈supp(φ∗d )

γ∗ξ ξθ

µθ
I
[
W d(bξ) = c0

]
≤

(by Lemma 6.7)

≤
∑

ξ∈supp(φ∗d )

γ∗ξ
µθ

∑
ξ′∈Ξq

γξξ′ξ
′
θI [Wδ(bε,ξ′) = c0] =

=
∑
ξ′∈Ξq

ξ′θ
µθ

I [Wδ(bε,ξ′) = c0]
∑

ξ∈supp(φ∗d )

γ∗ξγ
ξ
ξ′ =

=
∑
ξ∈Ξq

γdξξθ

µθ
I [Wδ(bε,ξ) = c0] =

= σδd,θ.

This concludes the proof.
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CHAPTER7
Persuading in Network Congestion Games

In this chapter, we study atomic network congestion games where edge
costs depend on a stochastic state of nature. In Section 7.1 we introduce
Bayesian network congestion games (BNCGs) and the signaling problem.
In Section 7.2, we design a polynomial-time algorithm to compute an opti-
mal ex ante persuasive signaling scheme in symmetric BNCGs with affine
cost functions. Finally, in Section 7.3, we show that the signaling problem
is intractable for asymmetric network congestion games

7.1 Persuasion in Bayesian Network Congestion Games

In this section, we introduce the main elements of our model.

7.1.1 Network Congestion Games

A network congestion game (Fabrikant et al., 2004) is defined as a tuple
(N,G, {ce}e∈E, {(sp, tp)}p∈N), where:

• N := {1, . . . , n̄} denotes the set of players;

• G := (V,E) is the directed graph underlying the game, with V being
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its set of nodes and each e = (v, v′) ∈ E representing a directed edge
from v to v′;

• {ce}e∈E are the edge costs, with each ce : N → R+ defining the cost
of edge e ∈ E as a function of the number of players traveling through
e;

• {(sp, tp)}p∈N , with sp, tp ∈ V , denote the source-destination pairs for
all the players.

In an NCG, the set Ap of actions available to a player p ∈ N is implicitly
defined by the graph G, the source sp, and the destination tp. Formally,
Ap is the set of all directed paths from sp to tp in the graph G. In this
chapter, we use ap ∈ Ap to denote a player p’s path and we write e ∈ ap
whenever the path contains the edge e ∈ E. An action profile a ∈ A, where
A :=×p∈N Ap, is a tuple of sp to tp directed paths ap ∈ Ap, one per player
p ∈ N . For the ease of notation, given an action profile a ∈ A, we let f a

e

be the congestion of edge e ∈ E in a, i.e., the number of players selecting
a path passing thorough e in a; formally, f a

e := |{p ∈ N | e ∈ ap}|. Thus,
ce(f

a
e ) denotes the cost of edge e in a. Finally, the cost incurred by player

p ∈ N in an action profile a ∈ A is denoted by cp(a) :=
∑

e∈ap ce(f
a
e ).

7.1.2 Bayesian Network Congestion Games

We define a Bayesian network congestion game (BNCG) as a tuple
(N,G,Θ,µ, {ce,θ}e∈E,θ∈Θ, {(sp, tp)}p∈N), where, differently from the ba-
sic setting, the edge cost functions ce,θ : N→ R+ also depend on a state of
nature θ drawn from a finite set of states Θ. Moreover, µ encodes the prior
beliefs that the players have over the states of nature, i.e., µ ∈ ∆Θ is a prob-
ability distribution over the set Θ. All the other components are defined as
in non-Bayesian NCGs. Notice that, in BNCGs, the cost experienced by
player p ∈ N in an action profile a ∈ A also depends on the state of nature
θ ∈ Θ, and, thus, it is defined as cp,θ(a) :=

∑
e∈ap ce,θ(f

a
e ). A BNCG is

symmetric if all the players share the same (sp, tp) pair, i.e., whenever they
all have the same set of actions (paths). For the ease of notation, in such set-
tings we let s, t ∈ V be the common source and destination. Moreover, we
focus on BNCGs with affine costs, i.e., for all e ∈ E and θ ∈ Θ, there exist
constants αe,θ, βe,θ ∈ R+ such that the edge cost function can be expressed
as ce,θ(f a

e ) := αe,θf
a
e + βe,θ. 1

1We focus on affine costs since: (i) the assumption is reasonable in many applications (Vasserman et al.,
2015), and (ii) the problem is trivially NP-hard when generic costs are allowed (see Section 7.3).
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7.1.3 Signaling in BNCGs

Suppose that a BNCG is employed to model a road network subject to
vagaries. It is reasonable to assume that third-party entities (e.g., the road
management company) may have access to the realized state of nature. We
call one such entity the sender. We focus on the following natural question:
is it possible for an informed sender to mitigate the overall costs through
the strategic provision of information to players who update their beliefs
rationally? The sender can publicly commit to a signaling scheme which
maps the realized state of nature to a signal for each player. The sender can
exploit general private signaling schemes, sending different signals to each
player through private communication channels. We focus on the notion
of ex ante persuasiveness as defined by Xu (2020) and Celli et al. (2020)
(see Definition 3.6). Notice that a coarse correlated equilibrium (CCE)
(see Definition 2.4) may be seen as an ex ante persuasive signaling scheme
in non-Bayesian NCGs in which there are no states of nature, i.e., when
|Θ| = 1. Finally, a sender’s optimal ex ante persuasive signaling scheme
φ∗ is such that it minimizes the expected social cost of the solution, i.e.:

φ∗ ∈ arg minφ
∑
θ∈Θ

µθ
∑
a∈A

φθ(a)
∑
p∈N

cp,θ(a).

The following example illustrates the interaction flow between the sender
and the players (receivers).

s t

αA = 30 βA = 0

αB,θ0=1 βB,θ0=0
αB,θ1=0 βB,θ1=100

Signals(
B,B,B

) (
A,A,B

) (
A,B,A

) (
B,A,A

)
θ0 1 0 0 0
θ1 0 1/3 1/3 1/3

Figure 7.1: Left: BNCG for Example 7.1. Right: An ex ante persuasive signaling scheme
for the case with n̄ = 3. The table displays only those a ∈ A such that φθ(a) > 0 for
some state of nature θ ∈ Θ = {θ0, θ1}.

Example 7.1. Figure 7.1 (Left) describes a simple BNCG modeling the
road network between the JFK International Airport (node s), and Man-
hattan (node t). It is late at night and three lone researchers have to reach
the AAAI venue. They are following navigation instructions from the same
application, whose provider (the sender) has access to the current state of
the roads (called A and B, respectively). Roads costs (i.e., travel times)
are depicted in Figure 7.1 (Left). In normal conditions (state θ0), road B is
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extremely fast (αB = 1 and βB = 0). However, it requires frequent road
works for maintenance (state θ1), which increase the travel time. Moreover,
it holds µθ0 = µθ1 = 1/2. The interaction between the sender and the
three players goes as follows: (i) the sender commits to a signaling scheme
φ; (ii) the players observe φ and decide whether to adhere to the naviga-
tion system or not; (iii) the sender observes the realized state of nature and
exploits this knowledge to compute recommendations. Figure 7.1 (Right)
describes an ex ante persuasive signaling scheme. In this case, when the
state of nature is θ1, one of the players is randomly selected to take road
B, even if it is undergoing maintenance. In expectation, following sender’s
recommendations is strictly better than congesting road A.

A simple variation of Example 7.1 is enough to show that the introduc-
tion of signaling allows the sender to reach solutions with arbitrarily better
expected social cost than what can be achieved via the optimal Bayes-Nash
equilibrium in absence of signaling. Specifically, consider the BNCG in
Figure 7.1 (Left) with the following modifications: n̄ = 1, β coefficients
always equal to zero, αA,θ0 = ∞, αA,θ1 = 0, αB,θ0 = 0, and αB,θ1 = ∞.
Without signaling, the optimal choice yields an expected social cost of∞.
However, a perfectly informative signal (i.e., one revealing the realized
state of nature) allows the player to avoid any cost.

7.2 The Power of Symmetry

We design a polynomial-time algorithm to compute an optimal ex ante per-
suasive signaling scheme in symmetric BNCGs with affine cost functions.
Our algorithm exploits the ellipsoid method. We first formulate the prob-
lem as an LP (Problem 7.1) with polynomially many constraints and ex-
ponentially many variables. Then, we show how to find an optimal solu-
tion to the LP in polynomial time by applying the ellipsoid algorithm to its
dual (Problem 7.2), which features polynomially many variables and ex-
ponentially many constraints. This calls for a polynomial-time separation
oracle for Problem 7.2, which is not readily available since the problem
has an exponential number of constraints. We prove that, in our setting,
a polynomial-time separation oracle can be implemented by solving a suit-
ably defined min-cost flow problem. The proof of this result crucially relies
on the symmetric nature of the problem and the assumption that the costs
are affine functions of the edge congestion.

The following lemma shows how to formulate the problem as an LP. 2

2LPs analogous to Problem 7.1 and Problem 7.2 can also be derived for the asymmetric setting. However, the
separation problem for the dual is solvable in polynomial time only in the symmetric case.
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For the ease of presentation, we use I[e /∈ ap] to denote the indicator func-
tion for the event e /∈ ap, i.e., it holds I[e /∈ ap] = 1 if e /∈ ap, while
I[e /∈ ap] = 0 otherwise.

Lemma 7.1. Given a symmetric BNCG, an optimal ex ante persuasive sig-
naling scheme φ can be found with the LP:

min
φ≥0,x

∑
θ∈Θ

µθ
∑
a∈A

φθ(a)
∑
p∈N

cp,θ(a) s.t. (7.1a)∑
θ∈Θ

µθ
∑
a∈A

cp,θ(a)φθ(a) ≤ xp,s ∀p ∈ N (7.1b)

xp,v ≤
∑
θ∈Θ

µθ
∑
a∈A

ce,θ (f a
e + I[e /∈ ap])φθ(a) + xp,v′

∀p ∈ N,∀e = (v, v′) ∈ E (7.1c)
xp,t = 0 ∀p ∈ N (7.1d)∑
a∈A

φθ(a) = 1 ∀θ ∈ Θ (7.1e)

Proof. Clearly, Objective (7.1a) is equivalent to minimizing the social cost,
while Constraints (7.1e) imply that φ is well formed. Constraints (7.1b)
enforce ex ante persuasiveness for every player p ∈ N : the expression on
the left-hand side represents player p’s expected cost, while xp,s is the cost
of her best deviation (i.e., a cost-minimizing path given µ and φ). This is
ensured by Constraints (7.1c) and (7.1d). In particular, for every player p ∈
N and node v ∈ V \{t}, the former guarantee that xp,v is the minimum cost
of a path from v to t. This is shown by noticing that (given that xp,t = 0)
such cost can be inductively defined as follows:

min
v′∈V :

e=(v,v′)∈E

{∑
θ∈Θ

µθ
∑
a∈A

ce,θ (f a
e + I[e /∈ ap])φθ,a + xp,v′

}
,

where f a
e + I[e /∈ ap] accounts for the fact that the congestion of edge e

must be incremented by one if player p does not select a path containing e
in the action profile a.

Lemma 7.2. The dual of Problem 7.1 reads as follows:

max
y

∑
θ∈Θ

yθ s.t. (7.2a)

µθ

(∑
p∈N

cp,θ(a)yp −
∑
p∈N

∑
e∈E

ce,θ (f a
e + I[e /∈ ap]) yp,e

)
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+ yθ ≤ µθ
∑
p∈N

cp,θ(a) ∀θ ∈ Θ,∀a ∈ A (7.2b)∑
v′∈V :e=(v,v′)∈E

yp,e −
∑

v′∈V :e=(v′,v)∈E

yp,e = 0

∀p ∈ N,∀v ∈ V \ {s, t} (7.2c)∑
v∈V :e=(s,v)∈E

yp,e − yp = 0 ∀p ∈ N (7.2d)

yp,t −
∑

v∈V :e=(v,t)∈E

yp,e = 0 ∀p ∈ N (7.2e)

yp ≤ 0 ∀p ∈ N (7.2f)
yp,e ≤ 0 ∀p ∈ N,∀e ∈ E (7.2g)

Proof. It directly follows from LP duality, by letting yp (for p ∈ N ), yp,e
(for p ∈ N and e ∈ E), yp,t (for p ∈ N ), and yθ (for θ ∈ Θ) be the dual vari-
ables associated to, respectively, Constraints (7.1b), (7.1c), (7.1d), and (7.1e).

Since |A| is exponential in the size of the game, Problem 7.1 features ex-
ponentially many variables, while its number of constraints is polynomial.
Conversely, Problem 7.2 has polynomially many variables and exponen-
tially many constraints, which enables the use of the ellipsoid algorithm to
find an optimal solution to Problem 7.2 in polynomial time. This requires
a polynomial-time separation oracle for Problem 7.2, i.e., a procedure that,
given a vector y of dual variables, it either establishes that y is feasible for
Problem 7.2 or, if not, it outputs a hyperplane separating y from the fea-
sible region. In the following, we focus on a particular type of separation
oracles: those generating violated constraints of Problem 7.2.

Given that Problem 7.2 has an exponential number of constraints, a
polynomial-time separation oracle is not readily available. It turns out that,
in our setting, we can design one by leveraging the symmetry of the players
and the fact that the cost functions are affine, as described in the following.

First, we prove that Problem 7.2 always admits an optimal player-symmetric
solution, i.e., a vector y such that, for each pair of players p, q ∈ N , it holds
that yp = yq, yp,e = yq,e for all e ∈ E, and yp,t = yq,t. This result allows us
to restrict the attention to player-symmetric vectors y.

Lemma 7.3. Problem 7.2 always admits an optimal player-symmetric so-
lution.
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Proof. Given any optimal solution y to Problem 7.2, we can always recover,
in polynomial time, a player-symmetric optimal solution ỹ. Specifically,
for every p ∈ N , let ỹp =

∑
p∈N yp

n
, ỹp,e =

∑
p∈N yp,e

n
for all e ∈ E, and

ỹp,t =
∑
p∈N yp,t

n
, while ỹθ = yθ for every θ ∈ Θ. Let us remark that ỹ

is player-symmetric since: (i) for every e ∈ E, it holds ỹp,e = ỹq,e for
each pair of players p, q ∈ N ; and (ii) ỹp = ỹq and ỹp,t = ỹq,t for each
p, q ∈ N . First, notice that y and ỹ provide the same objective value, as
ỹθ = yθ for all θ ∈ Θ. Thus, we only need to prove that ỹ satisfies all the
constraints of Problem 7.2. For a ∈ A and i ∈ [n], let us denote with πi(a)
an action profile a′ ∈ A such that a′p = a((p+i) mod n), i.e., a permutation of
a in which each player p ∈ N takes on the role of player (p + i) mod n.
Moreover, let π(a) :=

⋃
i∈[n] πi(a). Constraints (7.2b) are satisfied by ỹ,

since, for every θ ∈ Θ and a ∈ A, it holds:

µθ

(∑
p∈N

cp,θ(a)ỹp −
∑
p∈N

∑
e∈E

ce,θ (f a
e + I[e /∈ ap]) ỹp,e

)
+ ỹθ

=
1

n

∑
a′∈π(a)

µθ

(∑
p∈N

cp,θ(a′)yp

−
∑
p∈N

∑
e∈E

ce,θ

(
f a′
e + I[e /∈ a′p]

)
yp,e

)
+ yθ

≤ 1

n

∑
a′∈π(a)

µθ
∑
p∈N

cp,θ(a′) = µθ
∑
p∈N

cp,θ(a).

Similar arguments show that ỹ satisfies all the other constraints, concluding
the proof.

Notice that any polynomial-time separation oracle for Problem 7.2 can
explicitly check whether each member of the polynomially many Con-
straints (7.2c), (7.2d), and (7.2e) is satisfied for the given y. Thus, we
focus on the separation problem restricted to the exponentially many Con-
straints (7.2b), which, using Lemma 7.3, can be formulated as stated in the
following lemma.

Lemma 7.4. Given a player-symmetric y, solving the separation problem
for Constraints (7.2b) amounts to finding θ ∈ Θ and a ∈ A that are optimal
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for the following problem:

min
θ∈Θ,a∈A

µθ

(
(1− ȳ)

∑
p∈N

cp,θ(a)−

−
∑
p∈N

∑
e∈E

ce,θ (f a
e + I[e /∈ ap]) ȳe

)
− yθ, (7.3)

where we let ȳ = y1 and ȳe = y1,e for all e ∈ E.

Next, we show how Problem 7.3 can be equivalently formulated avoid-
ing the minimization over the exponentially-sized set A. Intuitively, we
rely on the fact that, for a fixed θ ∈ Θ, we can exploit the symmetry of the
players to equivalently represent action profiles a ∈ A as integer vectors q
of edge congestions qe ∈ [n], for all e ∈ E.

Lemma 7.5. Problem 7.3 can be formulated as minθ∈Θ χ(θ), where χ(θ)
is the optimal value of the following problem:

min
q∈Z|E|+

(1− ȳ)
∑
e∈E

αe,θq
2
e + βe,θqe

−
∑
e∈E

ȳe

(
n̄αe,θqe + (n̄− qe)αe,θ + n̄βe,θ

)
(7.4a)

s.t.
∑

v∈V :e=(s,v)∈E

qe = n̄ (7.4b)

∑
v∈V :e=(v,t)∈E

qe = n̄ (7.4c)

∑
v′∈V :

e=(v′,v)∈E

qe =
∑
v′∈V :

e=(v,v′)∈E

qe ∀v ∈ V \ {s, t} (7.4d)

Proof. First, given a state θ ∈ Θ, Problem 7.3 reduces to computing χ(θ) :=
mina∈A(1− ȳ)

∑
p∈N cp,θ(a)−

∑
p∈N

∑
e∈E ce,θ (f a

e + I[e /∈ ap]) ȳe, where
the function to be minimized only depends on the number of players se-
lecting each edge e ∈ E in a, rather than the identity of the players who
are choosing e (since they are symmetric). Letting qe ∈ [n̄] be the conges-
tion level of edge e ∈ E and using ce,θ = αe,θqe + βe,θ (affine costs),
it holds

∑
p∈N cp,θ(a) =

∑
e∈E αe,θq

2
e + βe,θqe, and, for every e ∈ E,∑

p∈N ce,θ (fae + I[e /∈ ap]) = n̄αe,θqe + (n̄ − qe)αe,θ + n̄βe,θ. This gives
Objective (7.4a). Moreover, Constraints (7.4b), (7.4c), and (7.4d) ensure
that q is well defined.
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Let us remark that computing an optimal integer solution to Problem 7.4
is necessary in order to (possibly) find a violated constraint for a given y;
otherwise, we would not be able to easily recover an action profile a ∈ A
from q.

Now, we show that an optimal integer solution to Problem 7.4 can be
found in polynomial time by reducing it to an instance of integer min-cost
flow problem. Intuitively, it is sufficient to consider a modified version of
the original graph G in which each edge e ∈ E is replaced with n̄ parallel
edges with unit capacity and increasing unit costs. This is possible given
that the Objective (7.4a) is a convex function of q, which is guaranteed by
the fact that costs are affine.

Lemma 7.6. An optimal integer solution to Problem 7.4 can be found in
polynomial time by solving a suitably defined instance of integer min-cost
flow problem.

Proof. First, notice that Objective (7.4a) is a sum edge costs, in which the
cost of each edge e ∈ E is a convex function of the edge congestion qe, as
the only quadratic term is (1 − ȳ)ae,θq

2
e , where the multiplying coefficient

is always positive, given ȳ ≤ 0 and αe,θ ≥ 0. This allows us to formulate
Problem 7.4 as an instance of integer min-cost flow problem. We build a
new graph where each e ∈ E is replaced with n̄ parallel edges, say ei for i ∈
[n̄]. For e ∈ E and i ∈ [n̄], let us define g(e, i) := (1− ȳ) (αe,θi

2 + βei)−
ȳe (n̄αe,θi+ (n̄− i)αe,θ + n̄βe,θ). Each (new) edge ei has unit capacity and
a per-unit cost equal to δ(ei) := g(e, i) − g(e, i − 1). Clearly, finding an
integer min-cost flow is equivalent to minimizing Objective (7.4a). Notice
that, since the original edge costs are convex, it holds δ(ei) ≥ δ(ej) for all
j < i ∈ [n]. Thus, an edge ei is used (i.e., it carries a unit of flow) only if all
the edges ej , for j < i ∈ [n̄], are already used. This allows us to recover an
integer vector q from a solution to the min-cost flow problem. Finally, let
us recall that we can find an optimal solution to the integer min-cost flow
problem in polynomial time by solving its LP relaxation.

The last lemma allows us to prove our main result:

Theorem 7.1. Given a symmetric BNCG, an optimal ex ante persuasive
signaling scheme can be computed in poly-time.

Proof. The algorithm applies the ellipsoid algorithm to Problem 7.2. At
each iteration, we require that the vector of dual variables y given to the
separation oracle be player-symmetric, which can be easily obtained by ap-
plying the symmetrization technique introduced in the proof of Lemma 7.3.
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The separation oracle needs to solve an instance of integer min-cost flow
problem for every θ ∈ Θ (see Lemmas 7.4, 7.5, and 7.6). Notice that an
integer solution is required in order to be able to identify a violated con-
straint. Finally, the polynomially many violated constraints generated by
the ellipsoid algorithm can be used to compute an optimal φ.

7.3 The Curse of Asymmetry

In this section, we provide our hardness result on asymmetric BNCGs. Our
proof is split into two intermediate steps: (i) we prove a hardness result
for a simple class of asymmetric non-Bayesian congestion games in which
each player selects only one resource (Lemma 7.7); and (ii) we show that
such games can be represented as NCGs with only a polynomial blow-up
in the representation size (Lemma 7.8). Our main result reads as follows:

Theorem 7.2. The problem of computing an optimal ex ante persuasive
signaling scheme in BNCGs with asymmetric players is NP-hard, even with
affine costs. 3

The proof of Theorem 7.2 is based on a reduction that maps an instance
of 3SAT (a well-known NP-hard problem, see (Garey and Johnson, 1979))
to a game in the class of singleton congestion games (SCGs) (Ieong et al.,
2005), where each player can select only one resource at a time. A (non-
Bayesian) SCG is described by a tuple (N,R, {Ap}p∈N , {cr}r∈R), where
R is a finite set of resources, each player p ∈ N selects a single resource
from the set Ap ⊆ R of available resources, and resource r ∈ R has a
cost cr : N → R+. Another way of interpreting SCGs is as games played
on parallel-link graphs, where each player can select only a subset of the
edges.

First, let us provide the following definition and notation.

Definition 7.1 (3SAT). Given a finite set C of three-literal clauses defined
over a finite set V of variables, is there a truth assignment to the variables
satisfying all the clauses?

We denote with l ∈ ϕ a literal (i.e., a variable or its negation) appearing
in a clause ϕ ∈ C. Moreover, we let m and s be, respectively, the number
of clauses and variables, i.e., m := |C| and s := |V |. W.l.o.g., we assume
that m ≥ s.

3Without affine costs, computing an optimal ex ante persuasive signaling scheme is trivially NP-hard even
in symmetric BNCGs. This directly follows from (Meyers and Schulz, 2012), which shows that even finding an
optimal action profile (that is also an optimal Nash equilibrium) is NP-hard in symmetric (non-Bayesian) NCGs.
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Lemma 7.7 introduces our main reduction, proving that finding a social-
cost-minimizing CCE is NP-hard in SCGs with asymmetric players, i.e.,
whenever the resource sets Ap are different among each other. 4 Notice
that the games used in the reduction are not Bayesian; this shows that the
hardness fundamentally resides in the asymmetry of the players.

Lemma 7.7. The problem of computing a social-cost-minimizing CCE in
SCGs with asymmetric players is NP-hard, even with affine costs.

Proof. Our 3SAT reduction shows that the existence of a polynomial-time
algorithm for computing a social-cost-minimizing CCE in SCGs would al-
low us to solve any 3SAT instance in polynomial time. Given (C, V ), let
z := m40, u := m12, and ε := 1

m4 . We build an SCG Γ(C, V ) admitting a
CCE with social cost smaller than or equal to γ := z2 +(4us+s+3m)(z−
u) + 3z

m9 iff (C, V ) is satisfiable.
Mapping. Γ(C, V ) is defined as follows (for every r ∈ R, the cost cr is

an affine function with coefficients αr and βr).

• N = {pv | v ∈ V } ∪ {pϕ,q | ϕ ∈ C, q ∈ [3]} ∪ {pv,j, pv̄,j | v ∈ V, j ∈
[2u]} ∪ {pi | i ∈ [z]};

• R = {rt} ∪ {rv, rv̄, rv,1, rv,2, rv̄,1, rv̄,2 | v ∈ V };

• Apv = {rv, rv̄, rt} ∀v ∈ V ;

• Apϕ,q = {rl | l ∈ ϕ} ∀ ϕ ∈ C, ∀q ∈ [3];

• Apv,j = {rv, rv,1, rv,2} ∀v ∈ V, ∀j ∈ [2u];

• Apv̄,j = {rv̄, rv̄,1, rv̄,2} ∀v ∈ V, ∀j ∈ [2u];

• Api = {rt} ∀i ∈ [z];

• αrv = αrv̄ = ε and βrv = βrv̄ = z + 1− ε ∀v ∈ V ;

• αrv,1 = αrv,2 = αrv̄,1 = αrv̄,2 = 1 ∀v ∈ V ;

• βrv,1 = βrv,2 = βrv̄,1 = βrv̄,2 = z + 1− u ∀ v ∈ V ;

• αrt = 1 and βrt = 0.

Figure 7.2 shows a picture representing how the players’ action sets are
constructed in games Γ(C, V ), where, for simplicity, only the part referring
to a single variable v ∈ V and a single clause ϕ ∈ C is reported.

4The reduction in Lemma 7.7 does not rely on standard constructions, as most of the reductions for congestion
games only work with action profiles, while ours needs randomization. Indeed, in asymmetric SCGs, a social-
cost-minimizing action profile can be computed in poly-time by solving an instance of min-cost flow problem.
This also prevents the use of other techniques for proving the hardness of CCEs, e.g., those by Barman and Ligett
(2015).
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rt
<latexit sha1_base64="rzSMsswhY26KKYB1URd+mu4Nnws=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjII8pCSKFpfNuGU89m6W4MiK59ACxUdouV7KPgXbOMCEqYazexqZ8ePlLTkup/O0vLK6tp6aaO8ubW9s1vZ22/ZMDYCmyJUoen4YFFJjU2SpLATGYTAV9j2J1eZ335AY2Wo72gaYT+AsZYjKYBS6dYMaFCpujU3B18kXkGqrEBjUPnqDUMRB6hJKLC267kR9RMwJIXCWbkXW4xATGCM3ZRqCND2kzzqjB/HFijkERouFc9F/L2RQGDtNPDTyQDo3s57mfif141pdNFPpI5iQi2yQyQV5oesMDLtAPlQGiSCLDlyqbkAA0RoJAchUjFOSymnfXjz3y+S1mnNc2vezVm1flk0U2KH7IidMI+dszq7Zg3WZIKN2RN7Zi/Oo/PqvDnvP6NLTrFzwP7A+fgGEU2SYg==</latexit><latexit sha1_base64="rzSMsswhY26KKYB1URd+mu4Nnws=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjII8pCSKFpfNuGU89m6W4MiK59ACxUdouV7KPgXbOMCEqYazexqZ8ePlLTkup/O0vLK6tp6aaO8ubW9s1vZ22/ZMDYCmyJUoen4YFFJjU2SpLATGYTAV9j2J1eZ335AY2Wo72gaYT+AsZYjKYBS6dYMaFCpujU3B18kXkGqrEBjUPnqDUMRB6hJKLC267kR9RMwJIXCWbkXW4xATGCM3ZRqCND2kzzqjB/HFijkERouFc9F/L2RQGDtNPDTyQDo3s57mfif141pdNFPpI5iQi2yQyQV5oesMDLtAPlQGiSCLDlyqbkAA0RoJAchUjFOSymnfXjz3y+S1mnNc2vezVm1flk0U2KH7IidMI+dszq7Zg3WZIKN2RN7Zi/Oo/PqvDnvP6NLTrFzwP7A+fgGEU2SYg==</latexit><latexit sha1_base64="rzSMsswhY26KKYB1URd+mu4Nnws=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjII8pCSKFpfNuGU89m6W4MiK59ACxUdouV7KPgXbOMCEqYazexqZ8ePlLTkup/O0vLK6tp6aaO8ubW9s1vZ22/ZMDYCmyJUoen4YFFJjU2SpLATGYTAV9j2J1eZ335AY2Wo72gaYT+AsZYjKYBS6dYMaFCpujU3B18kXkGqrEBjUPnqDUMRB6hJKLC267kR9RMwJIXCWbkXW4xATGCM3ZRqCND2kzzqjB/HFijkERouFc9F/L2RQGDtNPDTyQDo3s57mfif141pdNFPpI5iQi2yQyQV5oesMDLtAPlQGiSCLDlyqbkAA0RoJAchUjFOSymnfXjz3y+S1mnNc2vezVm1flk0U2KH7IidMI+dszq7Zg3WZIKN2RN7Zi/Oo/PqvDnvP6NLTrFzwP7A+fgGEU2SYg==</latexit><latexit sha1_base64="rzSMsswhY26KKYB1URd+mu4Nnws=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjII8pCSKFpfNuGU89m6W4MiK59ACxUdouV7KPgXbOMCEqYazexqZ8ePlLTkup/O0vLK6tp6aaO8ubW9s1vZ22/ZMDYCmyJUoen4YFFJjU2SpLATGYTAV9j2J1eZ335AY2Wo72gaYT+AsZYjKYBS6dYMaFCpujU3B18kXkGqrEBjUPnqDUMRB6hJKLC267kR9RMwJIXCWbkXW4xATGCM3ZRqCND2kzzqjB/HFijkERouFc9F/L2RQGDtNPDTyQDo3s57mfif141pdNFPpI5iQi2yQyQV5oesMDLtAPlQGiSCLDlyqbkAA0RoJAchUjFOSymnfXjz3y+S1mnNc2vezVm1flk0U2KH7IidMI+dszq7Zg3WZIKN2RN7Zi/Oo/PqvDnvP6NLTrFzwP7A+fgGEU2SYg==</latexit>

rv
<latexit sha1_base64="ecW8ha7a5/V1xIrKV3dI95quKy8=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBkIeUWNH6sgmnnB+6WwdFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTa4zvzNFbWQY3NMsQteHcSBHUgCl0p0eTAfVml23c/Bl4hSkxgo0B9Wv/jAUsY8BCQXG9Bw7IjcBTVIonFf6scEIxATG2EtpAD4aN8mjzvlJbIBCHqHmUvFcxN8bCfjGzHwvnfSBHsyil4n/eb2YRpduIoMoJgxEdoikwvyQEVqmHSAfSo1EkCVHLgMuQAMRaslBiFSM01IqaR/O4vfLpH1Wd+y6c3tea1wVzZTZETtmp8xhF6zBbliTtZhgY/bEntmL9Wi9Wm/W+89oySp2DtkfWB/fFGuSZA==</latexit><latexit sha1_base64="ecW8ha7a5/V1xIrKV3dI95quKy8=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBkIeUWNH6sgmnnB+6WwdFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTa4zvzNFbWQY3NMsQteHcSBHUgCl0p0eTAfVml23c/Bl4hSkxgo0B9Wv/jAUsY8BCQXG9Bw7IjcBTVIonFf6scEIxATG2EtpAD4aN8mjzvlJbIBCHqHmUvFcxN8bCfjGzHwvnfSBHsyil4n/eb2YRpduIoMoJgxEdoikwvyQEVqmHSAfSo1EkCVHLgMuQAMRaslBiFSM01IqaR/O4vfLpH1Wd+y6c3tea1wVzZTZETtmp8xhF6zBbliTtZhgY/bEntmL9Wi9Wm/W+89oySp2DtkfWB/fFGuSZA==</latexit><latexit sha1_base64="ecW8ha7a5/V1xIrKV3dI95quKy8=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBkIeUWNH6sgmnnB+6WwdFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTa4zvzNFbWQY3NMsQteHcSBHUgCl0p0eTAfVml23c/Bl4hSkxgo0B9Wv/jAUsY8BCQXG9Bw7IjcBTVIonFf6scEIxATG2EtpAD4aN8mjzvlJbIBCHqHmUvFcxN8bCfjGzHwvnfSBHsyil4n/eb2YRpduIoMoJgxEdoikwvyQEVqmHSAfSo1EkCVHLgMuQAMRaslBiFSM01IqaR/O4vfLpH1Wd+y6c3tea1wVzZTZETtmp8xhF6zBbliTtZhgY/bEntmL9Wi9Wm/W+89oySp2DtkfWB/fFGuSZA==</latexit><latexit sha1_base64="ecW8ha7a5/V1xIrKV3dI95quKy8=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBkIeUWNH6sgmnnB+6WwdFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTa4zvzNFbWQY3NMsQteHcSBHUgCl0p0eTAfVml23c/Bl4hSkxgo0B9Wv/jAUsY8BCQXG9Bw7IjcBTVIonFf6scEIxATG2EtpAD4aN8mjzvlJbIBCHqHmUvFcxN8bCfjGzHwvnfSBHsyil4n/eb2YRpduIoMoJgxEdoikwvyQEVqmHSAfSo1EkCVHLgMuQAMRaslBiFSM01IqaR/O4vfLpH1Wd+y6c3tea1wVzZTZETtmp8xhF6zBbliTtZhgY/bEntmL9Wi9Wm/W+89oySp2DtkfWB/fFGuSZA==</latexit>

rv,1
<latexit sha1_base64="7JzWMTeVPbgp+hHeRM4Q+QpVXJ8=">AAAB+XicbVC7TsNAEFyHVwivACXNiQiJAkU2QoIygoYySOQhJVF0vmzCKeezdbeOFFn5CFqo6BAtX0PBv2AbFxCYajSzq50dP1LSkut+OKWV1bX1jfJmZWt7Z3evun/QtmFsBLZEqELT9blFJTW2SJLCbmSQB77Cjj+9yfzODI2Vob6neYSDgE+0HEvBKZU6ZpjMzrzFsFpz624O9pd4BalBgeaw+tkfhSIOUJNQ3Nqe50Y0SLghKRQuKv3YYsTFlE+wl1LNA7SDJI+7YCex5RSyCA2TiuUi/txIeGDtPPDTyYDTg132MvE/rxfT+GqQSB3FhFpkh0gqzA9ZYWTaA7KRNEjEs+TIpGaCG06ERjIuRCrGaTGVtA9v+fu/pH1e99y6d3dRa1wXzZThCI7hFDy4hAbcQhNaIGAKj/AEz07ivDivztv3aMkpdg7hF5z3L8L3k+E=</latexit><latexit sha1_base64="7JzWMTeVPbgp+hHeRM4Q+QpVXJ8=">AAAB+XicbVC7TsNAEFyHVwivACXNiQiJAkU2QoIygoYySOQhJVF0vmzCKeezdbeOFFn5CFqo6BAtX0PBv2AbFxCYajSzq50dP1LSkut+OKWV1bX1jfJmZWt7Z3evun/QtmFsBLZEqELT9blFJTW2SJLCbmSQB77Cjj+9yfzODI2Vob6neYSDgE+0HEvBKZU6ZpjMzrzFsFpz624O9pd4BalBgeaw+tkfhSIOUJNQ3Nqe50Y0SLghKRQuKv3YYsTFlE+wl1LNA7SDJI+7YCex5RSyCA2TiuUi/txIeGDtPPDTyYDTg132MvE/rxfT+GqQSB3FhFpkh0gqzA9ZYWTaA7KRNEjEs+TIpGaCG06ERjIuRCrGaTGVtA9v+fu/pH1e99y6d3dRa1wXzZThCI7hFDy4hAbcQhNaIGAKj/AEz07ivDivztv3aMkpdg7hF5z3L8L3k+E=</latexit><latexit sha1_base64="7JzWMTeVPbgp+hHeRM4Q+QpVXJ8=">AAAB+XicbVC7TsNAEFyHVwivACXNiQiJAkU2QoIygoYySOQhJVF0vmzCKeezdbeOFFn5CFqo6BAtX0PBv2AbFxCYajSzq50dP1LSkut+OKWV1bX1jfJmZWt7Z3evun/QtmFsBLZEqELT9blFJTW2SJLCbmSQB77Cjj+9yfzODI2Vob6neYSDgE+0HEvBKZU6ZpjMzrzFsFpz624O9pd4BalBgeaw+tkfhSIOUJNQ3Nqe50Y0SLghKRQuKv3YYsTFlE+wl1LNA7SDJI+7YCex5RSyCA2TiuUi/txIeGDtPPDTyYDTg132MvE/rxfT+GqQSB3FhFpkh0gqzA9ZYWTaA7KRNEjEs+TIpGaCG06ERjIuRCrGaTGVtA9v+fu/pH1e99y6d3dRa1wXzZThCI7hFDy4hAbcQhNaIGAKj/AEz07ivDivztv3aMkpdg7hF5z3L8L3k+E=</latexit><latexit sha1_base64="7JzWMTeVPbgp+hHeRM4Q+QpVXJ8=">AAAB+XicbVC7TsNAEFyHVwivACXNiQiJAkU2QoIygoYySOQhJVF0vmzCKeezdbeOFFn5CFqo6BAtX0PBv2AbFxCYajSzq50dP1LSkut+OKWV1bX1jfJmZWt7Z3evun/QtmFsBLZEqELT9blFJTW2SJLCbmSQB77Cjj+9yfzODI2Vob6neYSDgE+0HEvBKZU6ZpjMzrzFsFpz624O9pd4BalBgeaw+tkfhSIOUJNQ3Nqe50Y0SLghKRQuKv3YYsTFlE+wl1LNA7SDJI+7YCex5RSyCA2TiuUi/txIeGDtPPDTyYDTg132MvE/rxfT+GqQSB3FhFpkh0gqzA9ZYWTaA7KRNEjEs+TIpGaCG06ERjIuRCrGaTGVtA9v+fu/pH1e99y6d3dRa1wXzZThCI7hFDy4hAbcQhNaIGAKj/AEz07ivDivztv3aMkpdg7hF5z3L8L3k+E=</latexit>

rv,2
<latexit sha1_base64="4RQVcrMxnJLYPRMjPwQiWM6Ytm0=">AAAB+XicbVC7TsNAEFyHVwivACXNiQiJAkV2hARlBA1lkMhDSqzofNmEU84P3a0jRVY+ghYqOkTL11DwL9jGBSRMNZrZ1c6OFylpyLY/rdLa+sbmVnm7srO7t39QPTzqmDDWAtsiVKHuedygkgG2SZLCXqSR+57Crje9zfzuDLWRYfBA8whdn08COZaCUyp19TCZXTQWw2rNrts52CpxClKDAq1h9WswCkXsY0BCcWP6jh2Rm3BNUihcVAaxwYiLKZ9gP6UB99G4SR53wc5iwylkEWomFctF/L2RcN+Yue+lkz6nR7PsZeJ/Xj+m8bWbyCCKCQORHSKpMD9khJZpD8hGUiMRz5IjkwETXHMi1JJxIVIxTouppH04y9+vkk6j7th15/6y1rwpminDCZzCOThwBU24gxa0QcAUnuAZXqzEerXerPef0ZJV7BzDH1gf38SHk+I=</latexit><latexit sha1_base64="4RQVcrMxnJLYPRMjPwQiWM6Ytm0=">AAAB+XicbVC7TsNAEFyHVwivACXNiQiJAkV2hARlBA1lkMhDSqzofNmEU84P3a0jRVY+ghYqOkTL11DwL9jGBSRMNZrZ1c6OFylpyLY/rdLa+sbmVnm7srO7t39QPTzqmDDWAtsiVKHuedygkgG2SZLCXqSR+57Crje9zfzuDLWRYfBA8whdn08COZaCUyp19TCZXTQWw2rNrts52CpxClKDAq1h9WswCkXsY0BCcWP6jh2Rm3BNUihcVAaxwYiLKZ9gP6UB99G4SR53wc5iwylkEWomFctF/L2RcN+Yue+lkz6nR7PsZeJ/Xj+m8bWbyCCKCQORHSKpMD9khJZpD8hGUiMRz5IjkwETXHMi1JJxIVIxTouppH04y9+vkk6j7th15/6y1rwpminDCZzCOThwBU24gxa0QcAUnuAZXqzEerXerPef0ZJV7BzDH1gf38SHk+I=</latexit><latexit sha1_base64="4RQVcrMxnJLYPRMjPwQiWM6Ytm0=">AAAB+XicbVC7TsNAEFyHVwivACXNiQiJAkV2hARlBA1lkMhDSqzofNmEU84P3a0jRVY+ghYqOkTL11DwL9jGBSRMNZrZ1c6OFylpyLY/rdLa+sbmVnm7srO7t39QPTzqmDDWAtsiVKHuedygkgG2SZLCXqSR+57Crje9zfzuDLWRYfBA8whdn08COZaCUyp19TCZXTQWw2rNrts52CpxClKDAq1h9WswCkXsY0BCcWP6jh2Rm3BNUihcVAaxwYiLKZ9gP6UB99G4SR53wc5iwylkEWomFctF/L2RcN+Yue+lkz6nR7PsZeJ/Xj+m8bWbyCCKCQORHSKpMD9khJZpD8hGUiMRz5IjkwETXHMi1JJxIVIxTouppH04y9+vkk6j7th15/6y1rwpminDCZzCOThwBU24gxa0QcAUnuAZXqzEerXerPef0ZJV7BzDH1gf38SHk+I=</latexit><latexit sha1_base64="4RQVcrMxnJLYPRMjPwQiWM6Ytm0=">AAAB+XicbVC7TsNAEFyHVwivACXNiQiJAkV2hARlBA1lkMhDSqzofNmEU84P3a0jRVY+ghYqOkTL11DwL9jGBSRMNZrZ1c6OFylpyLY/rdLa+sbmVnm7srO7t39QPTzqmDDWAtsiVKHuedygkgG2SZLCXqSR+57Crje9zfzuDLWRYfBA8whdn08COZaCUyp19TCZXTQWw2rNrts52CpxClKDAq1h9WswCkXsY0BCcWP6jh2Rm3BNUihcVAaxwYiLKZ9gP6UB99G4SR53wc5iwylkEWomFctF/L2RcN+Yue+lkz6nR7PsZeJ/Xj+m8bWbyCCKCQORHSKpMD9khJZpD8hGUiMRz5IjkwETXHMi1JJxIVIxTouppH04y9+vkk6j7th15/6y1rwpminDCZzCOThwBU24gxa0QcAUnuAZXqzEerXerPef0ZJV7BzDH1gf38SHk+I=</latexit>

rv̄,2
<latexit sha1_base64="XcAw1Xx7otHIKa7pu2pCNYUaJvg=">AAAB/nicbVA9SwNBEN2LXzF+RS1tFoNgIeEuCFoGbSwjmBjIhTC3mcQlex/szgXCEfBX2GplJ7b+FQv/i3fnFZr4qsd7M8yb50VKGrLtT6u0srq2vlHerGxt7+zuVfcPOiaMtcC2CFWoux4YVDLANklS2I00gu8pvPcm15l/P0VtZBjc0SzCvg/jQI6kAEolVw8S1wPNp2eN+aBas+t2Dr5MnILUWIHWoPrlDkMR+xiQUGBMz7Ej6iegSQqF84obG4xATGCMvZQG4KPpJ3nmOT+JDVDII9RcKp6L+HsjAd+Yme+lkz7Qg1n0MvE/rxfT6LKfyCCKCQORHSKpMD9khJZpGciHUiMRZMmRy4AL0ECEWnIQIhXjtJ1K2oez+P0y6TTqjl13bs9rzauimTI7YsfslDnsgjXZDWuxNhMsYk/smb1Yj9ar9Wa9/4yWrGLnkP2B9fENMaeVxQ==</latexit><latexit sha1_base64="XcAw1Xx7otHIKa7pu2pCNYUaJvg=">AAAB/nicbVA9SwNBEN2LXzF+RS1tFoNgIeEuCFoGbSwjmBjIhTC3mcQlex/szgXCEfBX2GplJ7b+FQv/i3fnFZr4qsd7M8yb50VKGrLtT6u0srq2vlHerGxt7+zuVfcPOiaMtcC2CFWoux4YVDLANklS2I00gu8pvPcm15l/P0VtZBjc0SzCvg/jQI6kAEolVw8S1wPNp2eN+aBas+t2Dr5MnILUWIHWoPrlDkMR+xiQUGBMz7Ej6iegSQqF84obG4xATGCMvZQG4KPpJ3nmOT+JDVDII9RcKp6L+HsjAd+Yme+lkz7Qg1n0MvE/rxfT6LKfyCCKCQORHSKpMD9khJZpGciHUiMRZMmRy4AL0ECEWnIQIhXjtJ1K2oez+P0y6TTqjl13bs9rzauimTI7YsfslDnsgjXZDWuxNhMsYk/smb1Yj9ar9Wa9/4yWrGLnkP2B9fENMaeVxQ==</latexit><latexit sha1_base64="XcAw1Xx7otHIKa7pu2pCNYUaJvg=">AAAB/nicbVA9SwNBEN2LXzF+RS1tFoNgIeEuCFoGbSwjmBjIhTC3mcQlex/szgXCEfBX2GplJ7b+FQv/i3fnFZr4qsd7M8yb50VKGrLtT6u0srq2vlHerGxt7+zuVfcPOiaMtcC2CFWoux4YVDLANklS2I00gu8pvPcm15l/P0VtZBjc0SzCvg/jQI6kAEolVw8S1wPNp2eN+aBas+t2Dr5MnILUWIHWoPrlDkMR+xiQUGBMz7Ej6iegSQqF84obG4xATGCMvZQG4KPpJ3nmOT+JDVDII9RcKp6L+HsjAd+Yme+lkz7Qg1n0MvE/rxfT6LKfyCCKCQORHSKpMD9khJZpGciHUiMRZMmRy4AL0ECEWnIQIhXjtJ1K2oez+P0y6TTqjl13bs9rzauimTI7YsfslDnsgjXZDWuxNhMsYk/smb1Yj9ar9Wa9/4yWrGLnkP2B9fENMaeVxQ==</latexit><latexit sha1_base64="XcAw1Xx7otHIKa7pu2pCNYUaJvg=">AAAB/nicbVA9SwNBEN2LXzF+RS1tFoNgIeEuCFoGbSwjmBjIhTC3mcQlex/szgXCEfBX2GplJ7b+FQv/i3fnFZr4qsd7M8yb50VKGrLtT6u0srq2vlHerGxt7+zuVfcPOiaMtcC2CFWoux4YVDLANklS2I00gu8pvPcm15l/P0VtZBjc0SzCvg/jQI6kAEolVw8S1wPNp2eN+aBas+t2Dr5MnILUWIHWoPrlDkMR+xiQUGBMz7Ej6iegSQqF84obG4xATGCMvZQG4KPpJ3nmOT+JDVDII9RcKp6L+HsjAd+Yme+lkz7Qg1n0MvE/rxfT6LKfyCCKCQORHSKpMD9khJZpGciHUiMRZMmRy4AL0ECEWnIQIhXjtJ1K2oez+P0y6TTqjl13bs9rzauimTI7YsfslDnsgjXZDWuxNhMsYk/smb1Yj9ar9Wa9/4yWrGLnkP2B9fENMaeVxQ==</latexit>

rv̄,1
<latexit sha1_base64="y6ORZ2L9bTDjMia3lJ/EX4T2wEY=">AAAB/nicbVDLSgNBEJyNrxhfUY9eBoPgQcKuCHoMevEYwTwgG0LvpBOHzD6Y6Q2EJeBXeNWTN/Hqr3jwX9xd96CJdSqquunq8iIlDdn2p1VaWV1b3yhvVra2d3b3qvsHbRPGWmBLhCrUXQ8MKhlgiyQp7EYawfcUdrzJTeZ3pqiNDIN7mkXY92EcyJEUQKnk6kHieqD59MyZD6o1u27n4MvEKUiNFWgOql/uMBSxjwEJBcb0HDuifgKapFA4r7ixwQjEBMbYS2kAPpp+kmee85PYAIU8Qs2l4rmIvzcS8I2Z+V466QM9mEUvE//zejGNrvqJDKKYMBDZIZIK80NGaJmWgXwoNRJBlhy5DLgADUSoJQchUjFO26mkfTiL3y+T9nndsevO3UWtcV00U2ZH7JidModdsga7ZU3WYoJF7Ik9sxfr0Xq13qz3n9GSVewcsj+wPr4BMBeVxA==</latexit><latexit sha1_base64="y6ORZ2L9bTDjMia3lJ/EX4T2wEY=">AAAB/nicbVDLSgNBEJyNrxhfUY9eBoPgQcKuCHoMevEYwTwgG0LvpBOHzD6Y6Q2EJeBXeNWTN/Hqr3jwX9xd96CJdSqquunq8iIlDdn2p1VaWV1b3yhvVra2d3b3qvsHbRPGWmBLhCrUXQ8MKhlgiyQp7EYawfcUdrzJTeZ3pqiNDIN7mkXY92EcyJEUQKnk6kHieqD59MyZD6o1u27n4MvEKUiNFWgOql/uMBSxjwEJBcb0HDuifgKapFA4r7ixwQjEBMbYS2kAPpp+kmee85PYAIU8Qs2l4rmIvzcS8I2Z+V466QM9mEUvE//zejGNrvqJDKKYMBDZIZIK80NGaJmWgXwoNRJBlhy5DLgADUSoJQchUjFO26mkfTiL3y+T9nndsevO3UWtcV00U2ZH7JidModdsga7ZU3WYoJF7Ik9sxfr0Xq13qz3n9GSVewcsj+wPr4BMBeVxA==</latexit><latexit sha1_base64="y6ORZ2L9bTDjMia3lJ/EX4T2wEY=">AAAB/nicbVDLSgNBEJyNrxhfUY9eBoPgQcKuCHoMevEYwTwgG0LvpBOHzD6Y6Q2EJeBXeNWTN/Hqr3jwX9xd96CJdSqquunq8iIlDdn2p1VaWV1b3yhvVra2d3b3qvsHbRPGWmBLhCrUXQ8MKhlgiyQp7EYawfcUdrzJTeZ3pqiNDIN7mkXY92EcyJEUQKnk6kHieqD59MyZD6o1u27n4MvEKUiNFWgOql/uMBSxjwEJBcb0HDuifgKapFA4r7ixwQjEBMbYS2kAPpp+kmee85PYAIU8Qs2l4rmIvzcS8I2Z+V466QM9mEUvE//zejGNrvqJDKKYMBDZIZIK80NGaJmWgXwoNRJBlhy5DLgADUSoJQchUjFO26mkfTiL3y+T9nndsevO3UWtcV00U2ZH7JidModdsga7ZU3WYoJF7Ik9sxfr0Xq13qz3n9GSVewcsj+wPr4BMBeVxA==</latexit><latexit sha1_base64="bzB0uW1fzy1MgMhO8gWsRy3sg4E=">AAAB5HicbVC7TsNAEFyHVzABQk1zIkKiimwaKJFoKINEHlKwovVlE045n627NVIU5QdoqegQf0XBv2CbFJAw1WhmVzs7caaV4yD49Gpb2zu7e/V9/6DhHx4dNxs9l+ZWUlemOrWDGB1pZajLijUNMkuYxJr68ey29PvPZJ1KzQPPM4oSnBo1URK5kDqjZitoBxXEJglXpAUrjJpfj+NU5gkZlhqdG4ZBxtECLSupaek/5o4ylDOc0rCgBhNy0aKKuRTnuUNORUZWKC0qkX5vLDBxbp7ExWSC/OTWvVL8zxvmPLmOFspkOZOR5SFWmqpDTlpV/E9irCwxY5mchDJCokVmskqglIWYF4X4RR3h+vObpHfZDoN2eB9AHU7hDC4ghCu4gTvoQBckjOEFXj3nvXnvP7XVvFV/J/AH3sc3ljCOsg==</latexit><latexit sha1_base64="E5sA9fL0sYdfVBIo+ji6evtkvAQ=">AAAB83icbZA7SwNBFIXvxleMUaOtzWAQLCTs2mgp2FhGMA/ILuHu5CYOmX0wczcQloC/wlYrO/H3WPhf3MQUmniqwzkz3Hu/MNXKsut+OqWNza3tnfJuZa+6f3BYO6q2bZIZSS2Z6MR0Q7SkVUwtVqypmxrCKNTUCce3874zIWNVEj/wNKUgwlGshkoiF5Fv+rkfohGTC2/Wr9XdhruQWDfe0tRhqWa/9uUPEplFFLPUaG3Pc1MOcjSspKZZxc8spSjHOKJeYWOMyAb5YueZOMssciJSMkJpsQjp948cI2unUVi8jJAf7Wo3D//rehkPr4NcxWnGFMv5IFaaFoOsNKqAQWKgDDHjfHMSKhYSDTKTUQKlLMKsoFMpeHir16+b9mXDcxvevQtlOIFTOAcPruAG7qAJLZCQwjO8wKvz5Lw57z/kSs4S4TH8kfPxDb0ylFs=</latexit><latexit sha1_base64="E5sA9fL0sYdfVBIo+ji6evtkvAQ=">AAAB83icbZA7SwNBFIXvxleMUaOtzWAQLCTs2mgp2FhGMA/ILuHu5CYOmX0wczcQloC/wlYrO/H3WPhf3MQUmniqwzkz3Hu/MNXKsut+OqWNza3tnfJuZa+6f3BYO6q2bZIZSS2Z6MR0Q7SkVUwtVqypmxrCKNTUCce3874zIWNVEj/wNKUgwlGshkoiF5Fv+rkfohGTC2/Wr9XdhruQWDfe0tRhqWa/9uUPEplFFLPUaG3Pc1MOcjSspKZZxc8spSjHOKJeYWOMyAb5YueZOMssciJSMkJpsQjp948cI2unUVi8jJAf7Wo3D//rehkPr4NcxWnGFMv5IFaaFoOsNKqAQWKgDDHjfHMSKhYSDTKTUQKlLMKsoFMpeHir16+b9mXDcxvevQtlOIFTOAcPruAG7qAJLZCQwjO8wKvz5Lw57z/kSs4S4TH8kfPxDb0ylFs=</latexit><latexit sha1_base64="ebZDy7dP7vmpyIYjFXujzC4okDE=">AAAB/nicbVC7TsNAEDzzDOEVoKQ5ESFRoMimgTKChjJI5CHFVrS+bMIp54fu1pEiKxJfQQsVHaLlVyj4F2zjAhKmGs3samfHj5U0ZNuf1srq2vrGZmWrur2zu7dfOzjsmCjRAtsiUpHu+WBQyRDbJElhL9YIga+w609ucr87RW1kFN7TLEYvgHEoR1IAZZKrB6nrg+bTc2c+qNXthl2ALxOnJHVWojWofbnDSCQBhiQUGNN37Ji8FDRJoXBedRODMYgJjLGf0RACNF5aZJ7z08QARTxGzaXihYi/N1IIjJkFfjYZAD2YRS8X//P6CY2uvFSGcUIYivwQSYXFISO0zMpAPpQaiSBPjlyGXIAGItSSgxCZmGTtVLM+nMXvl0nnouHYDefOrjevy2Yq7JidsDPmsEvWZLesxdpMsJg9sWf2Yj1ar9ab9f4zumKVO0fsD6yPby7XlcA=</latexit><latexit sha1_base64="y6ORZ2L9bTDjMia3lJ/EX4T2wEY=">AAAB/nicbVDLSgNBEJyNrxhfUY9eBoPgQcKuCHoMevEYwTwgG0LvpBOHzD6Y6Q2EJeBXeNWTN/Hqr3jwX9xd96CJdSqquunq8iIlDdn2p1VaWV1b3yhvVra2d3b3qvsHbRPGWmBLhCrUXQ8MKhlgiyQp7EYawfcUdrzJTeZ3pqiNDIN7mkXY92EcyJEUQKnk6kHieqD59MyZD6o1u27n4MvEKUiNFWgOql/uMBSxjwEJBcb0HDuifgKapFA4r7ixwQjEBMbYS2kAPpp+kmee85PYAIU8Qs2l4rmIvzcS8I2Z+V466QM9mEUvE//zejGNrvqJDKKYMBDZIZIK80NGaJmWgXwoNRJBlhy5DLgADUSoJQchUjFO26mkfTiL3y+T9nndsevO3UWtcV00U2ZH7JidModdsga7ZU3WYoJF7Ik9sxfr0Xq13qz3n9GSVewcsj+wPr4BMBeVxA==</latexit><latexit sha1_base64="y6ORZ2L9bTDjMia3lJ/EX4T2wEY=">AAAB/nicbVDLSgNBEJyNrxhfUY9eBoPgQcKuCHoMevEYwTwgG0LvpBOHzD6Y6Q2EJeBXeNWTN/Hqr3jwX9xd96CJdSqquunq8iIlDdn2p1VaWV1b3yhvVra2d3b3qvsHbRPGWmBLhCrUXQ8MKhlgiyQp7EYawfcUdrzJTeZ3pqiNDIN7mkXY92EcyJEUQKnk6kHieqD59MyZD6o1u27n4MvEKUiNFWgOql/uMBSxjwEJBcb0HDuifgKapFA4r7ixwQjEBMbYS2kAPpp+kmee85PYAIU8Qs2l4rmIvzcS8I2Z+V466QM9mEUvE//zejGNrvqJDKKYMBDZIZIK80NGaJmWgXwoNRJBlhy5DLgADUSoJQchUjFO26mkfTiL3y+T9nndsevO3UWtcV00U2ZH7JidModdsga7ZU3WYoJF7Ik9sxfr0Xq13qz3n9GSVewcsj+wPr4BMBeVxA==</latexit><latexit sha1_base64="y6ORZ2L9bTDjMia3lJ/EX4T2wEY=">AAAB/nicbVDLSgNBEJyNrxhfUY9eBoPgQcKuCHoMevEYwTwgG0LvpBOHzD6Y6Q2EJeBXeNWTN/Hqr3jwX9xd96CJdSqquunq8iIlDdn2p1VaWV1b3yhvVra2d3b3qvsHbRPGWmBLhCrUXQ8MKhlgiyQp7EYawfcUdrzJTeZ3pqiNDIN7mkXY92EcyJEUQKnk6kHieqD59MyZD6o1u27n4MvEKUiNFWgOql/uMBSxjwEJBcb0HDuifgKapFA4r7ixwQjEBMbYS2kAPpp+kmee85PYAIU8Qs2l4rmIvzcS8I2Z+V466QM9mEUvE//zejGNrvqJDKKYMBDZIZIK80NGaJmWgXwoNRJBlhy5DLgADUSoJQchUjFO26mkfTiL3y+T9nndsevO3UWtcV00U2ZH7JidModdsga7ZU3WYoJF7Ik9sxfr0Xq13qz3n9GSVewcsj+wPr4BMBeVxA==</latexit><latexit sha1_base64="y6ORZ2L9bTDjMia3lJ/EX4T2wEY=">AAAB/nicbVDLSgNBEJyNrxhfUY9eBoPgQcKuCHoMevEYwTwgG0LvpBOHzD6Y6Q2EJeBXeNWTN/Hqr3jwX9xd96CJdSqquunq8iIlDdn2p1VaWV1b3yhvVra2d3b3qvsHbRPGWmBLhCrUXQ8MKhlgiyQp7EYawfcUdrzJTeZ3pqiNDIN7mkXY92EcyJEUQKnk6kHieqD59MyZD6o1u27n4MvEKUiNFWgOql/uMBSxjwEJBcb0HDuifgKapFA4r7ixwQjEBMbYS2kAPpp+kmee85PYAIU8Qs2l4rmIvzcS8I2Z+V466QM9mEUvE//zejGNrvqJDKKYMBDZIZIK80NGaJmWgXwoNRJBlhy5DLgADUSoJQchUjFO26mkfTiL3y+T9nndsevO3UWtcV00U2ZH7JidModdsga7ZU3WYoJF7Ik9sxfr0Xq13qz3n9GSVewcsj+wPr4BMBeVxA==</latexit><latexit sha1_base64="y6ORZ2L9bTDjMia3lJ/EX4T2wEY=">AAAB/nicbVDLSgNBEJyNrxhfUY9eBoPgQcKuCHoMevEYwTwgG0LvpBOHzD6Y6Q2EJeBXeNWTN/Hqr3jwX9xd96CJdSqquunq8iIlDdn2p1VaWV1b3yhvVra2d3b3qvsHbRPGWmBLhCrUXQ8MKhlgiyQp7EYawfcUdrzJTeZ3pqiNDIN7mkXY92EcyJEUQKnk6kHieqD59MyZD6o1u27n4MvEKUiNFWgOql/uMBSxjwEJBcb0HDuifgKapFA4r7ixwQjEBMbYS2kAPpp+kmee85PYAIU8Qs2l4rmIvzcS8I2Z+V466QM9mEUvE//zejGNrvqJDKKYMBDZIZIK80NGaJmWgXwoNRJBlhy5DLgADUSoJQchUjFO26mkfTiL3y+T9nndsevO3UWtcV00U2ZH7JidModdsga7ZU3WYoJF7Ik9sxfr0Xq13qz3n9GSVewcsj+wPr4BMBeVxA==</latexit><latexit sha1_base64="y6ORZ2L9bTDjMia3lJ/EX4T2wEY=">AAAB/nicbVDLSgNBEJyNrxhfUY9eBoPgQcKuCHoMevEYwTwgG0LvpBOHzD6Y6Q2EJeBXeNWTN/Hqr3jwX9xd96CJdSqquunq8iIlDdn2p1VaWV1b3yhvVra2d3b3qvsHbRPGWmBLhCrUXQ8MKhlgiyQp7EYawfcUdrzJTeZ3pqiNDIN7mkXY92EcyJEUQKnk6kHieqD59MyZD6o1u27n4MvEKUiNFWgOql/uMBSxjwEJBcb0HDuifgKapFA4r7ixwQjEBMbYS2kAPpp+kmee85PYAIU8Qs2l4rmIvzcS8I2Z+V466QM9mEUvE//zejGNrvqJDKKYMBDZIZIK80NGaJmWgXwoNRJBlhy5DLgADUSoJQchUjFO26mkfTiL3y+T9nndsevO3UWtcV00U2ZH7JidModdsga7ZU3WYoJF7Ik9sxfr0Xq13qz3n9GSVewcsj+wPr4BMBeVxA==</latexit>

rv̄
<latexit sha1_base64="702KNheNKpGHSDDalnwEM6xmCG8=">AAAB/HicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg+RWNH6sgmnnM/W3TpSZIWvoIWKDtHyLxT8C05wAQlTjWZ2tbMTxEpact1Pp7Cyura+UdwsbW3v7O6V9w+aNkqMwIaIVGTaAVhUUmODJClsxwYhDBS2gtH1zG+N0VgZ6TuaxOiHMNRyIAVQJt2bXtoNwPDxtFeuuFV3Dr5MvJxUWI56r/zV7UciCVGTUGBtx3Nj8lMwJIXCaambWIxBjGCInYxqCNH66TzxlJ8kFijiMRouFZ+L+HsjhdDaSRhkkyHQg130ZuJ/XiehwaWfSh0nhFrMDpFUOD9khZFZFcj70iARzJIjl5oLMECERnIQIhOTrJtS1oe3+P0yaZ5VPbfq3Z5Xald5M0V2xI7ZKfPYBauxG1ZnDSaYZk/smb04j86r8+a8/4wWnHznkP2B8/ENTaKVUw==</latexit><latexit sha1_base64="702KNheNKpGHSDDalnwEM6xmCG8=">AAAB/HicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg+RWNH6sgmnnM/W3TpSZIWvoIWKDtHyLxT8C05wAQlTjWZ2tbMTxEpact1Pp7Cyura+UdwsbW3v7O6V9w+aNkqMwIaIVGTaAVhUUmODJClsxwYhDBS2gtH1zG+N0VgZ6TuaxOiHMNRyIAVQJt2bXtoNwPDxtFeuuFV3Dr5MvJxUWI56r/zV7UciCVGTUGBtx3Nj8lMwJIXCaambWIxBjGCInYxqCNH66TzxlJ8kFijiMRouFZ+L+HsjhdDaSRhkkyHQg130ZuJ/XiehwaWfSh0nhFrMDpFUOD9khZFZFcj70iARzJIjl5oLMECERnIQIhOTrJtS1oe3+P0yaZ5VPbfq3Z5Xald5M0V2xI7ZKfPYBauxG1ZnDSaYZk/smb04j86r8+a8/4wWnHznkP2B8/ENTaKVUw==</latexit><latexit sha1_base64="702KNheNKpGHSDDalnwEM6xmCG8=">AAAB/HicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg+RWNH6sgmnnM/W3TpSZIWvoIWKDtHyLxT8C05wAQlTjWZ2tbMTxEpact1Pp7Cyura+UdwsbW3v7O6V9w+aNkqMwIaIVGTaAVhUUmODJClsxwYhDBS2gtH1zG+N0VgZ6TuaxOiHMNRyIAVQJt2bXtoNwPDxtFeuuFV3Dr5MvJxUWI56r/zV7UciCVGTUGBtx3Nj8lMwJIXCaambWIxBjGCInYxqCNH66TzxlJ8kFijiMRouFZ+L+HsjhdDaSRhkkyHQg130ZuJ/XiehwaWfSh0nhFrMDpFUOD9khZFZFcj70iARzJIjl5oLMECERnIQIhOTrJtS1oe3+P0yaZ5VPbfq3Z5Xald5M0V2xI7ZKfPYBauxG1ZnDSaYZk/smb04j86r8+a8/4wWnHznkP2B8/ENTaKVUw==</latexit><latexit sha1_base64="702KNheNKpGHSDDalnwEM6xmCG8=">AAAB/HicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIg+RWNH6sgmnnM/W3TpSZIWvoIWKDtHyLxT8C05wAQlTjWZ2tbMTxEpact1Pp7Cyura+UdwsbW3v7O6V9w+aNkqMwIaIVGTaAVhUUmODJClsxwYhDBS2gtH1zG+N0VgZ6TuaxOiHMNRyIAVQJt2bXtoNwPDxtFeuuFV3Dr5MvJxUWI56r/zV7UciCVGTUGBtx3Nj8lMwJIXCaambWIxBjGCInYxqCNH66TzxlJ8kFijiMRouFZ+L+HsjhdDaSRhkkyHQg130ZuJ/XiehwaWfSh0nhFrMDpFUOD9khZFZFcj70iARzJIjl5oLMECERnIQIhOTrJtS1oe3+P0yaZ5VPbfq3Z5Xald5M0V2xI7ZKfPYBauxG1ZnDSaYZk/smb04j86r8+a8/4wWnHznkP2B8/ENTaKVUw==</latexit>

pv
<latexit sha1_base64="smvv1dS4ocpN72Q5oDo7UftuEdk=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBkIeUWNH5sgmnnM+nu3VQZOUTaKGiQ7R8DwX/gm1cQMJUo5ld7ewEWgqLrvvplFZW19Y3ypuVre2d3b3q/kHbRrHh0OKRjEw3YBakUNBCgRK62gALAwmdYHKd+Z0pGCsidY8zDX7IxkqMBGeYSnd6MB1Ua27dzUGXiVeQGinQHFS/+sOIxyEo5JJZ2/NcjX7CDAouYV7pxxY04xM2hl5KFQvB+kkedU5PYsswohoMFZLmIvzeSFho7SwM0smQ4YNd9DLxP68X4+jST4TSMYLi2SEUEvJDlhuRdgB0KAwgsiw5UKEoZ4YhghGUcZ6KcVpKJe3DW/x+mbTP6p5b927Pa42ropkyOSLH5JR45II0yA1pkhbhZEyeyDN5cR6dV+fNef8ZLTnFziH5A+fjGxFJkmI=</latexit><latexit sha1_base64="smvv1dS4ocpN72Q5oDo7UftuEdk=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBkIeUWNH5sgmnnM+nu3VQZOUTaKGiQ7R8DwX/gm1cQMJUo5ld7ewEWgqLrvvplFZW19Y3ypuVre2d3b3q/kHbRrHh0OKRjEw3YBakUNBCgRK62gALAwmdYHKd+Z0pGCsidY8zDX7IxkqMBGeYSnd6MB1Ua27dzUGXiVeQGinQHFS/+sOIxyEo5JJZ2/NcjX7CDAouYV7pxxY04xM2hl5KFQvB+kkedU5PYsswohoMFZLmIvzeSFho7SwM0smQ4YNd9DLxP68X4+jST4TSMYLi2SEUEvJDlhuRdgB0KAwgsiw5UKEoZ4YhghGUcZ6KcVpKJe3DW/x+mbTP6p5b927Pa42ropkyOSLH5JR45II0yA1pkhbhZEyeyDN5cR6dV+fNef8ZLTnFziH5A+fjGxFJkmI=</latexit><latexit sha1_base64="smvv1dS4ocpN72Q5oDo7UftuEdk=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBkIeUWNH5sgmnnM+nu3VQZOUTaKGiQ7R8DwX/gm1cQMJUo5ld7ewEWgqLrvvplFZW19Y3ypuVre2d3b3q/kHbRrHh0OKRjEw3YBakUNBCgRK62gALAwmdYHKd+Z0pGCsidY8zDX7IxkqMBGeYSnd6MB1Ua27dzUGXiVeQGinQHFS/+sOIxyEo5JJZ2/NcjX7CDAouYV7pxxY04xM2hl5KFQvB+kkedU5PYsswohoMFZLmIvzeSFho7SwM0smQ4YNd9DLxP68X4+jST4TSMYLi2SEUEvJDlhuRdgB0KAwgsiw5UKEoZ4YhghGUcZ6KcVpKJe3DW/x+mbTP6p5b927Pa42ropkyOSLH5JR45II0yA1pkhbhZEyeyDN5cR6dV+fNef8ZLTnFziH5A+fjGxFJkmI=</latexit><latexit sha1_base64="smvv1dS4ocpN72Q5oDo7UftuEdk=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBkIeUWNH5sgmnnM+nu3VQZOUTaKGiQ7R8DwX/gm1cQMJUo5ld7ewEWgqLrvvplFZW19Y3ypuVre2d3b3q/kHbRrHh0OKRjEw3YBakUNBCgRK62gALAwmdYHKd+Z0pGCsidY8zDX7IxkqMBGeYSnd6MB1Ua27dzUGXiVeQGinQHFS/+sOIxyEo5JJZ2/NcjX7CDAouYV7pxxY04xM2hl5KFQvB+kkedU5PYsswohoMFZLmIvzeSFho7SwM0smQ4YNd9DLxP68X4+jST4TSMYLi2SEUEvJDlhuRdgB0KAwgsiw5UKEoZ4YhghGUcZ6KcVpKJe3DW/x+mbTP6p5b927Pa42ropkyOSLH5JR45II0yA1pkhbhZEyeyDN5cR6dV+fNef8ZLTnFziH5A+fjGxFJkmI=</latexit>

p',q
<latexit sha1_base64="R+4FUa7zMBmJ6YZiKVaOKQZlxSQ=">AAACAHicbVA9TwJBEN3zE/ELtbTZSEwsDLkzJloSbSwxkY8EkMwtA2zYu1t350jIhcZfYauVnbH1n1j4X7xDCgVf9fLeTObN87WSllz301laXlldW89t5De3tnd2C3v7NRvFRmBVRCoyDR8sKhlilSQpbGiDEPgK6/7wOvPrIzRWRuEdjTW2A+iHsicFUCrd607SGoHRA3nKHyadQtEtuVPwReLNSJHNUOkUvlrdSMQBhiQUWNv0XE3tBAxJoXCSb8UWNYgh9LGZ0hACtO1kmnrCj2MLFHGNhkvFpyL+3kggsHYc+OlkADSw814m/uc1Y+pdthMZ6pgwFNkhkgqnh6wwMq0DeVcaJIIsOXIZcgEGiNBIDkKkYpz2k0/78Oa/XyS1s5Lnlrzb82L5atZMjh2yI3bCPHbByuyGVViVCWbYE3tmL86j8+q8Oe8/o0vObOeA/YHz8Q1B3pb1</latexit><latexit sha1_base64="R+4FUa7zMBmJ6YZiKVaOKQZlxSQ=">AAACAHicbVA9TwJBEN3zE/ELtbTZSEwsDLkzJloSbSwxkY8EkMwtA2zYu1t350jIhcZfYauVnbH1n1j4X7xDCgVf9fLeTObN87WSllz301laXlldW89t5De3tnd2C3v7NRvFRmBVRCoyDR8sKhlilSQpbGiDEPgK6/7wOvPrIzRWRuEdjTW2A+iHsicFUCrd607SGoHRA3nKHyadQtEtuVPwReLNSJHNUOkUvlrdSMQBhiQUWNv0XE3tBAxJoXCSb8UWNYgh9LGZ0hACtO1kmnrCj2MLFHGNhkvFpyL+3kggsHYc+OlkADSw814m/uc1Y+pdthMZ6pgwFNkhkgqnh6wwMq0DeVcaJIIsOXIZcgEGiNBIDkKkYpz2k0/78Oa/XyS1s5Lnlrzb82L5atZMjh2yI3bCPHbByuyGVViVCWbYE3tmL86j8+q8Oe8/o0vObOeA/YHz8Q1B3pb1</latexit><latexit sha1_base64="R+4FUa7zMBmJ6YZiKVaOKQZlxSQ=">AAACAHicbVA9TwJBEN3zE/ELtbTZSEwsDLkzJloSbSwxkY8EkMwtA2zYu1t350jIhcZfYauVnbH1n1j4X7xDCgVf9fLeTObN87WSllz301laXlldW89t5De3tnd2C3v7NRvFRmBVRCoyDR8sKhlilSQpbGiDEPgK6/7wOvPrIzRWRuEdjTW2A+iHsicFUCrd607SGoHRA3nKHyadQtEtuVPwReLNSJHNUOkUvlrdSMQBhiQUWNv0XE3tBAxJoXCSb8UWNYgh9LGZ0hACtO1kmnrCj2MLFHGNhkvFpyL+3kggsHYc+OlkADSw814m/uc1Y+pdthMZ6pgwFNkhkgqnh6wwMq0DeVcaJIIsOXIZcgEGiNBIDkKkYpz2k0/78Oa/XyS1s5Lnlrzb82L5atZMjh2yI3bCPHbByuyGVViVCWbYE3tmL86j8+q8Oe8/o0vObOeA/YHz8Q1B3pb1</latexit><latexit sha1_base64="R+4FUa7zMBmJ6YZiKVaOKQZlxSQ=">AAACAHicbVA9TwJBEN3zE/ELtbTZSEwsDLkzJloSbSwxkY8EkMwtA2zYu1t350jIhcZfYauVnbH1n1j4X7xDCgVf9fLeTObN87WSllz301laXlldW89t5De3tnd2C3v7NRvFRmBVRCoyDR8sKhlilSQpbGiDEPgK6/7wOvPrIzRWRuEdjTW2A+iHsicFUCrd607SGoHRA3nKHyadQtEtuVPwReLNSJHNUOkUvlrdSMQBhiQUWNv0XE3tBAxJoXCSb8UWNYgh9LGZ0hACtO1kmnrCj2MLFHGNhkvFpyL+3kggsHYc+OlkADSw814m/uc1Y+pdthMZ6pgwFNkhkgqnh6wwMq0DeVcaJIIsOXIZcgEGiNBIDkKkYpz2k0/78Oa/XyS1s5Lnlrzb82L5atZMjh2yI3bCPHbByuyGVViVCWbYE3tmL86j8+q8Oe8/o0vObOeA/YHz8Q1B3pb1</latexit>

. . .
<latexit sha1_base64="+0qRffubnqPXH7ituNqH1sxnCOo=">AAAB+HicbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjKChjJI5CElVnS+bMKR89m6WyMFK/9ACxUdouVvKPgXbJMCEqYazexqZyeIlbTkup/O0vLK6tp6aaO8ubW9s1vZ22/ZKDECmyJSkekE3KKSGpskSWEnNsjDQGE7GF/lfvsBjZWRvqVJjH7IR1oOpeCUSa2eGkRk+5WqW3MLsEXizUgVZmj0K1+9QSSSEDUJxa3tem5MfsoNSaFwWu4lFmMuxnyE3YxqHqL10yLtlB0nllPEYjRMKlaI+Hsj5aG1kzDIJkNOd3bey8X/vG5Cwws/lTpOCLXID5FUWByywsisBmQDaZCI58mRSc0EN5wIjWRciExMsl7KWR/e/PeLpHVa89yad3NWrV/OminBIRzBCXhwDnW4hgY0QcA9PMEzvDiPzqvz5rz/jC45s50D+APn4xtzFJO9</latexit><latexit sha1_base64="+0qRffubnqPXH7ituNqH1sxnCOo=">AAAB+HicbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjKChjJI5CElVnS+bMKR89m6WyMFK/9ACxUdouVvKPgXbJMCEqYazexqZyeIlbTkup/O0vLK6tp6aaO8ubW9s1vZ22/ZKDECmyJSkekE3KKSGpskSWEnNsjDQGE7GF/lfvsBjZWRvqVJjH7IR1oOpeCUSa2eGkRk+5WqW3MLsEXizUgVZmj0K1+9QSSSEDUJxa3tem5MfsoNSaFwWu4lFmMuxnyE3YxqHqL10yLtlB0nllPEYjRMKlaI+Hsj5aG1kzDIJkNOd3bey8X/vG5Cwws/lTpOCLXID5FUWByywsisBmQDaZCI58mRSc0EN5wIjWRciExMsl7KWR/e/PeLpHVa89yad3NWrV/OminBIRzBCXhwDnW4hgY0QcA9PMEzvDiPzqvz5rz/jC45s50D+APn4xtzFJO9</latexit><latexit sha1_base64="+0qRffubnqPXH7ituNqH1sxnCOo=">AAAB+HicbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjKChjJI5CElVnS+bMKR89m6WyMFK/9ACxUdouVvKPgXbJMCEqYazexqZyeIlbTkup/O0vLK6tp6aaO8ubW9s1vZ22/ZKDECmyJSkekE3KKSGpskSWEnNsjDQGE7GF/lfvsBjZWRvqVJjH7IR1oOpeCUSa2eGkRk+5WqW3MLsEXizUgVZmj0K1+9QSSSEDUJxa3tem5MfsoNSaFwWu4lFmMuxnyE3YxqHqL10yLtlB0nllPEYjRMKlaI+Hsj5aG1kzDIJkNOd3bey8X/vG5Cwws/lTpOCLXID5FUWByywsisBmQDaZCI58mRSc0EN5wIjWRciExMsl7KWR/e/PeLpHVa89yad3NWrV/OminBIRzBCXhwDnW4hgY0QcA9PMEzvDiPzqvz5rz/jC45s50D+APn4xtzFJO9</latexit><latexit sha1_base64="+0qRffubnqPXH7ituNqH1sxnCOo=">AAAB+HicbVC7TsNAEFzzDOEVoKQ5ESFRRTZCgjKChjJI5CElVnS+bMKR89m6WyMFK/9ACxUdouVvKPgXbJMCEqYazexqZyeIlbTkup/O0vLK6tp6aaO8ubW9s1vZ22/ZKDECmyJSkekE3KKSGpskSWEnNsjDQGE7GF/lfvsBjZWRvqVJjH7IR1oOpeCUSa2eGkRk+5WqW3MLsEXizUgVZmj0K1+9QSSSEDUJxa3tem5MfsoNSaFwWu4lFmMuxnyE3YxqHqL10yLtlB0nllPEYjRMKlaI+Hsj5aG1kzDIJkNOd3bey8X/vG5Cwws/lTpOCLXID5FUWByywsisBmQDaZCI58mRSc0EN5wIjWRciExMsl7KWR/e/PeLpHVa89yad3NWrV/OminBIRzBCXhwDnW4hgY0QcA9PMEzvDiPzqvz5rz/jC45s50D+APn4xtzFJO9</latexit>

pv,j
<latexit sha1_base64="/FAiaPeEfkEdLKM1mhw50UjFUtI=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESFRoMhGSFBG0FAGiTykxIrOl004cj6f7taRIpOfoIWKDtHyMxT8C7ZxAQlTjWZ2tbMTaCksuu6ns7S8srq2Xtoob25t7+xW9vZbNooNhyaPZGQ6AbMghYImCpTQ0QZYGEhoB+PrzG9PwFgRqTucavBDNlJiKDjDVOrofjI5pQ+zfqXq1twcdJF4BamSAo1+5as3iHgcgkIumbVdz9XoJ8yg4BJm5V5sQTM+ZiPoplSxEKyf5Hln9Di2DCOqwVAhaS7C742EhdZOwyCdDBne23kvE//zujEOL/1EKB0jKJ4dQiEhP2S5EWkRQAfCACLLkgMVinJmGCIYQRnnqRinzZTTPrz57xdJ66zmuTXv9rxavyqaKZFDckROiEcuSJ3ckAZpEk4keSLP5MV5dF6dN+f9Z3TJKXYOyB84H99x85RC</latexit><latexit sha1_base64="/FAiaPeEfkEdLKM1mhw50UjFUtI=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESFRoMhGSFBG0FAGiTykxIrOl004cj6f7taRIpOfoIWKDtHyMxT8C7ZxAQlTjWZ2tbMTaCksuu6ns7S8srq2Xtoob25t7+xW9vZbNooNhyaPZGQ6AbMghYImCpTQ0QZYGEhoB+PrzG9PwFgRqTucavBDNlJiKDjDVOrofjI5pQ+zfqXq1twcdJF4BamSAo1+5as3iHgcgkIumbVdz9XoJ8yg4BJm5V5sQTM+ZiPoplSxEKyf5Hln9Di2DCOqwVAhaS7C742EhdZOwyCdDBne23kvE//zujEOL/1EKB0jKJ4dQiEhP2S5EWkRQAfCACLLkgMVinJmGCIYQRnnqRinzZTTPrz57xdJ66zmuTXv9rxavyqaKZFDckROiEcuSJ3ckAZpEk4keSLP5MV5dF6dN+f9Z3TJKXYOyB84H99x85RC</latexit><latexit sha1_base64="/FAiaPeEfkEdLKM1mhw50UjFUtI=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESFRoMhGSFBG0FAGiTykxIrOl004cj6f7taRIpOfoIWKDtHyMxT8C7ZxAQlTjWZ2tbMTaCksuu6ns7S8srq2Xtoob25t7+xW9vZbNooNhyaPZGQ6AbMghYImCpTQ0QZYGEhoB+PrzG9PwFgRqTucavBDNlJiKDjDVOrofjI5pQ+zfqXq1twcdJF4BamSAo1+5as3iHgcgkIumbVdz9XoJ8yg4BJm5V5sQTM+ZiPoplSxEKyf5Hln9Di2DCOqwVAhaS7C742EhdZOwyCdDBne23kvE//zujEOL/1EKB0jKJ4dQiEhP2S5EWkRQAfCACLLkgMVinJmGCIYQRnnqRinzZTTPrz57xdJ66zmuTXv9rxavyqaKZFDckROiEcuSJ3ckAZpEk4keSLP5MV5dF6dN+f9Z3TJKXYOyB84H99x85RC</latexit><latexit sha1_base64="/FAiaPeEfkEdLKM1mhw50UjFUtI=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESFRoMhGSFBG0FAGiTykxIrOl004cj6f7taRIpOfoIWKDtHyMxT8C7ZxAQlTjWZ2tbMTaCksuu6ns7S8srq2Xtoob25t7+xW9vZbNooNhyaPZGQ6AbMghYImCpTQ0QZYGEhoB+PrzG9PwFgRqTucavBDNlJiKDjDVOrofjI5pQ+zfqXq1twcdJF4BamSAo1+5as3iHgcgkIumbVdz9XoJ8yg4BJm5V5sQTM+ZiPoplSxEKyf5Hln9Di2DCOqwVAhaS7C742EhdZOwyCdDBne23kvE//zujEOL/1EKB0jKJ4dQiEhP2S5EWkRQAfCACLLkgMVinJmGCIYQRnnqRinzZTTPrz57xdJ66zmuTXv9rxavyqaKZFDckROiEcuSJ3ckAZpEk4keSLP5MV5dF6dN+f9Z3TJKXYOyB84H99x85RC</latexit>

pv̄,j
<latexit sha1_base64="FsH8BBkWkQijYVLWd/RT9hM5eZA=">AAAB/3icbVC7TsNAEDyHVwivACXNiQiJAkU2QoIygoYySOQhJVa0vmzCkfODu3WkyErBV9BCRYdo+RQK/gXbpICEqUYzu9rZ8SIlDdn2p1VYWl5ZXSuulzY2t7Z3yrt7TRPGWmBDhCrUbQ8MKhlggyQpbEcawfcUtrzRVea3xqiNDINbmkTo+jAM5EAKoFRyo17S9UDz8Qm/n/bKFbtq5+CLxJmRCpuh3it/dfuhiH0MSCgwpuPYEbkJaJJC4bTUjQ1GIEYwxE5KA/DRuEkeesqPYgMU8gg1l4rnIv7eSMA3ZuJ76aQPdGfmvUz8z+vENLhwExlEMWEgskMkFeaHjNAybQN5X2okgiw5chlwARqIUEsOQqRinNZTSvtw5r9fJM3TqmNXnZuzSu1y1kyRHbBDdswcds5q7JrVWYMJ9sCe2DN7sR6tV+vNev8ZLViznX32B9bHN+C1liU=</latexit><latexit sha1_base64="FsH8BBkWkQijYVLWd/RT9hM5eZA=">AAAB/3icbVC7TsNAEDyHVwivACXNiQiJAkU2QoIygoYySOQhJVa0vmzCkfODu3WkyErBV9BCRYdo+RQK/gXbpICEqUYzu9rZ8SIlDdn2p1VYWl5ZXSuulzY2t7Z3yrt7TRPGWmBDhCrUbQ8MKhlggyQpbEcawfcUtrzRVea3xqiNDINbmkTo+jAM5EAKoFRyo17S9UDz8Qm/n/bKFbtq5+CLxJmRCpuh3it/dfuhiH0MSCgwpuPYEbkJaJJC4bTUjQ1GIEYwxE5KA/DRuEkeesqPYgMU8gg1l4rnIv7eSMA3ZuJ76aQPdGfmvUz8z+vENLhwExlEMWEgskMkFeaHjNAybQN5X2okgiw5chlwARqIUEsOQqRinNZTSvtw5r9fJM3TqmNXnZuzSu1y1kyRHbBDdswcds5q7JrVWYMJ9sCe2DN7sR6tV+vNev8ZLViznX32B9bHN+C1liU=</latexit><latexit sha1_base64="FsH8BBkWkQijYVLWd/RT9hM5eZA=">AAAB/3icbVC7TsNAEDyHVwivACXNiQiJAkU2QoIygoYySOQhJVa0vmzCkfODu3WkyErBV9BCRYdo+RQK/gXbpICEqUYzu9rZ8SIlDdn2p1VYWl5ZXSuulzY2t7Z3yrt7TRPGWmBDhCrUbQ8MKhlggyQpbEcawfcUtrzRVea3xqiNDINbmkTo+jAM5EAKoFRyo17S9UDz8Qm/n/bKFbtq5+CLxJmRCpuh3it/dfuhiH0MSCgwpuPYEbkJaJJC4bTUjQ1GIEYwxE5KA/DRuEkeesqPYgMU8gg1l4rnIv7eSMA3ZuJ76aQPdGfmvUz8z+vENLhwExlEMWEgskMkFeaHjNAybQN5X2okgiw5chlwARqIUEsOQqRinNZTSvtw5r9fJM3TqmNXnZuzSu1y1kyRHbBDdswcds5q7JrVWYMJ9sCe2DN7sR6tV+vNev8ZLViznX32B9bHN+C1liU=</latexit><latexit sha1_base64="FsH8BBkWkQijYVLWd/RT9hM5eZA=">AAAB/3icbVC7TsNAEDyHVwivACXNiQiJAkU2QoIygoYySOQhJVa0vmzCkfODu3WkyErBV9BCRYdo+RQK/gXbpICEqUYzu9rZ8SIlDdn2p1VYWl5ZXSuulzY2t7Z3yrt7TRPGWmBDhCrUbQ8MKhlggyQpbEcawfcUtrzRVea3xqiNDINbmkTo+jAM5EAKoFRyo17S9UDz8Qm/n/bKFbtq5+CLxJmRCpuh3it/dfuhiH0MSCgwpuPYEbkJaJJC4bTUjQ1GIEYwxE5KA/DRuEkeesqPYgMU8gg1l4rnIv7eSMA3ZuJ76aQPdGfmvUz8z+vENLhwExlEMWEgskMkFeaHjNAybQN5X2okgiw5chlwARqIUEsOQqRinNZTSvtw5r9fJM3TqmNXnZuzSu1y1kyRHbBDdswcds5q7JrVWYMJ9sCe2DN7sR6tV+vNev8ZLViznX32B9bHN+C1liU=</latexit>

pi
<latexit sha1_base64="MZ2k0uekG3TPqXCEhMCnXGpQ+6w=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjII8pCSKFpfNuGUs326W4MiK59ACxUdouV7KPgXbOMCEqYazexqZ8fXSlpy3U9naXlldW29tFHe3Nre2a3s7bdsFBuBTRGpyHR8sKhkiE2SpLCjDULgK2z7k6vMbz+gsTIK72iqsR/AOJQjKYBS6VYP5KBSdWtuDr5IvIJUWYHGoPLVG0YiDjAkocDarudq6idgSAqFs3IvtqhBTGCM3ZSGEKDtJ3nUGT+OLVDENRouFc9F/L2RQGDtNPDTyQDo3s57mfif141pdNFPZKhjwlBkh0gqzA9ZYWTaAfKhNEgEWXLkMuQCDBChkRyESMU4LaWc9uHNf79IWqc1z615N2fV+mXRTIkdsiN2wjx2zursmjVYkwk2Zk/smb04j86r8+a8/4wuOcXOAfsD5+Mb/PeSVQ==</latexit><latexit sha1_base64="MZ2k0uekG3TPqXCEhMCnXGpQ+6w=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjII8pCSKFpfNuGUs326W4MiK59ACxUdouV7KPgXbOMCEqYazexqZ8fXSlpy3U9naXlldW29tFHe3Nre2a3s7bdsFBuBTRGpyHR8sKhkiE2SpLCjDULgK2z7k6vMbz+gsTIK72iqsR/AOJQjKYBS6VYP5KBSdWtuDr5IvIJUWYHGoPLVG0YiDjAkocDarudq6idgSAqFs3IvtqhBTGCM3ZSGEKDtJ3nUGT+OLVDENRouFc9F/L2RQGDtNPDTyQDo3s57mfif141pdNFPZKhjwlBkh0gqzA9ZYWTaAfKhNEgEWXLkMuQCDBChkRyESMU4LaWc9uHNf79IWqc1z615N2fV+mXRTIkdsiN2wjx2zursmjVYkwk2Zk/smb04j86r8+a8/4wuOcXOAfsD5+Mb/PeSVQ==</latexit><latexit sha1_base64="MZ2k0uekG3TPqXCEhMCnXGpQ+6w=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjII8pCSKFpfNuGUs326W4MiK59ACxUdouV7KPgXbOMCEqYazexqZ8fXSlpy3U9naXlldW29tFHe3Nre2a3s7bdsFBuBTRGpyHR8sKhkiE2SpLCjDULgK2z7k6vMbz+gsTIK72iqsR/AOJQjKYBS6VYP5KBSdWtuDr5IvIJUWYHGoPLVG0YiDjAkocDarudq6idgSAqFs3IvtqhBTGCM3ZSGEKDtJ3nUGT+OLVDENRouFc9F/L2RQGDtNPDTyQDo3s57mfif141pdNFPZKhjwlBkh0gqzA9ZYWTaAfKhNEgEWXLkMuQCDBChkRyESMU4LaWc9uHNf79IWqc1z615N2fV+mXRTIkdsiN2wjx2zursmjVYkwk2Zk/smb04j86r8+a8/4wuOcXOAfsD5+Mb/PeSVQ==</latexit><latexit sha1_base64="MZ2k0uekG3TPqXCEhMCnXGpQ+6w=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjII8pCSKFpfNuGUs326W4MiK59ACxUdouV7KPgXbOMCEqYazexqZ8fXSlpy3U9naXlldW29tFHe3Nre2a3s7bdsFBuBTRGpyHR8sKhkiE2SpLCjDULgK2z7k6vMbz+gsTIK72iqsR/AOJQjKYBS6VYP5KBSdWtuDr5IvIJUWYHGoPLVG0YiDjAkocDarudq6idgSAqFs3IvtqhBTGCM3ZSGEKDtJ3nUGT+OLVDENRouFc9F/L2RQGDtNPDTyQDo3s57mfif141pdNFPZKhjwlBkh0gqzA9ZYWTaAfKhNEgEWXLkMuQCDBChkRyESMU4LaWc9uHNf79IWqc1z615N2fV+mXRTIkdsiN2wjx2zursmjVYkwk2Zk/smb04j86r8+a8/4wuOcXOAfsD5+Mb/PeSVQ==</latexit>

Figure 7.2: Example of players’ action sets in a game instance Γ(C, V ) used for the
reduction in the proof of Lemma 7.7.

Overview. Intuitively, in games Γ(C, V ) the social cost is small if play-
ers pi (for i ∈ [z]) are the only ones selecting resource rt. Then, each
player pv (for v ∈ V ) must choose either rv or rv̄ (rather than rt), repre-
senting the fact that variable v is set to either false or true, respectively. At
the same time, players pv do not deviate to resource rt only if they are the
only players selecting their resources. This implies that all the players pϕ,q
(for ϕ ∈ C and q ∈ [3]) must play a resource not selected by any player
pv. Hence, each player pϕ,q plays a resource rl whose corresponding literal
l is true, which results in ϕ being satisfied. The action profile defined thus
far does not constitute an equilibrium, as players pϕ,q have an incentive to
deviate to resources rl with l evaluating to false. Players pv,j and pv̄,j are
used to avoid such deviations. They are told to play resources rl with very
small probability, so that other players do not deviate to them.

If. Suppose (C, V ) is satisfiable, and let τ : V → {T,F} be a truth
assignment satisfying all the clauses in C. For the ease of presentation,
we let τ(l) ∈ {T,F} be the truth value of literal l ∈ {v, v̄ | v ∈ V }
under τ . Using τ , we recover a CCE φ ∈ ∆A with social cost smaller
than or equal to γ. This selects the action profiles {a1, a2, a3} ⊆×p∈N Ap
defined in the following with probabilities φa1 = φa2 = 1

2
− 1

2m10 and
φa3 = 1

m10 . First, we determine actions for players pϕ,q (the same in a1, a2,
and a3). Each player pϕ,q (for ϕ ∈ C and q ∈ [3]) plays a resource rl with
l ∈ ϕ such that τ(l) = T, so that none of these players has an incentive to
deviate to another resource rl with τ(l) = T. Moreover, players’ actions
are such that each rl with τ(l) = T has at least one player using it, which
is useful to avoid that other players deviate on the resource. To formally
define players pϕ,q’ actions, we consider a congestion game ΓR restricted to
the players {pϕ,q | ϕ ∈ C, q ∈ [3]} with action spaces limited to resources
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rl ∈ Apϕ,q with τ(l) = T (since τ satisfies all clauses, each player has at
least one action). Clearly, ΓR admits a pure NE (Rosenthal, 1973). We
show that, in any pure NE, each resource is selected by at least one player.
By contradiction, suppose that there exists a resource rl such that no player
chooses it. Then, there must be at least two players pϕ,q (with l ∈ ϕ)
selecting some resource different from rl. As a result, there must be one
player with an incentive to deviate to the empty resource (as she would pay
z+ 1 rather than something≥ z+ 1 + ε), contradicting the NE assumption.
In conclusion, for every ϕ ∈ C and q ∈ [3], we let a1

pϕ,q , a
2
pϕ,q , and a3

pϕ,q all
be equal to the resource played by the corresponding player in some pure
NE of ΓR. Now, we define actions for players pv,j and pv̄,j . Each player
pl,j plays rl in a3 (drawn with a small probability of 1

m10 ) only if τ(l) = F,
while this never happens in a1 and a2. Intuitively, this avoids that other
players deviate to a resource rl with τ(l) = F. Moreover, players pl,j are
split into two groups alternating between resources rl,1 and rl,2 in action
profiles a1 and a2. This prevents deviations to either rl,1 or rl,2 (as there are
at least u players using the resource with high probability). Formally, for
every l ∈ {v, v̄ | v ∈ V }:
• for j ∈ [u], we let a1

pl,j
= rl,1, a2

pl,j
= rl,2, and a3

pl,j
= rl if τ(l) = F,

while a3
pl,j

= rl,1 if τ(l) = T;

• for j ∈ [2u] : j > u, we let a1
pl,j

= rl,2, a2
pl,j

= rl,1, and a3
pl,j

= rl if
τ(l) = F, while a3

pl,j
= rl,2 if τ(l) = T.

Finally, we introduce players pv’ actions. In a1 and a2 (selected with high
probability 1− 1

m10 ), each player pv uses rv if τ(v) = F, while rv̄ otherwise.
Instead, in a3 (drawn with a small probability of 1

m10 ), player pv selects rt so
as to keep the cost of players pl,j small. Thus, for every v ∈ V , we let a3

pv =

rt and a1
pv = a2

pv = rv if τ(v) = F, while a1
pv = a2

pv = rv̄ if not. Next, we
show that players have no incentive to defect from φ, i.e., φ is a CCE. Given
that player pϕ,q’s action (for ϕ ∈ C and q ∈ [3]) is determined by a pure
NE of ΓR, she does not have any incentive to deviate to another resource
rl ∈ Aϕ,q with τ(l) = T (as these resources are not selected by players
not participating to ΓR and the players in ΓR are at an NE). Moreover, in φ,
player pϕ,q’s expected cost is at most z + 1 + 3εm, while she would pay at
least (z+ 1 + ε)(1− 1

m10 ) + (z+ 1 + 2uε) 1
m10 ≥ z+ 1 + 2εm2 by selecting

a resource rl ∈ Aϕ,q with τ(l) = F. Each player pv (for v ∈ V ) does not
defect from φ, since her expected cost is (z + 1)(1 − 1

m10 ) + (z + s) 1
m10 ,

while she would pay:

• the same amount by switching to resource rt;
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• at least z + 1 + ε by playing rl with l ∈ {v, v̄} and τ(l) = T (as there
is at least one player pϕ,q on rl);

• at least (z+1)(1− 1
m10 )+(z+1+2uε) 1

m10 = z+1+2 1
m2 by selecting

rl with l ∈ {v, v̄} and τ(l) = F.

Each player pl,j (for l ∈ {v, v̄ | v ∈ V } and j ∈ [2u]) with τ(l) = F does
not deviate, since her cost is (z+ 1)(1− 1

m10 ) + (z+ 1− ε+ 2uε) 1
m10 , while

she would pay:

• at least (z + 1)(1
2
− 1

2m10 ) + (z + 2)(1
2
− 1

2m10 ) by switching to either
rl,1 or rl,2;

• at least (z + 1 + ε)(1 − 1
m10 ) + (z + 1 − ε + 2uε) 1

m10 by selecting
resource rl ∈ Apl,j .

Moreover, each player pl,j with τ(l) = T does not deviate either, as her cost
is (z + 1), while she would pay:

• at least z + 1 + ε by playing resource rl;

• at least (z + 1)(1
2

+ 1
2m10 ) + (z + 2)(1

2
− 1

2m10 ) by switching to either
rl,1 or rl,2.

Finally, players pi must select resource rt; thus, they experience a cost of
z(1− 1

m10 ) + (z + s) 1
m10 . Moreover, since the maximum cost of a resource

different from rt is z + 1 + u, players pv incur a cost at most of (z + 1 +
u)(1− 1

m10 ) + (z+ s) 1
m10 , while all the other players pay at most z+ 1 +u.

Then, the CCE φ provides a social cost smaller than or equal to

z

[
z(1− 1

m10
) + (z + s)

1

m10

]
+ s

[
(z + 1 + u)(1− 1

m10
) + (z + s)

1

m10

]
+ (4us+ 3m)(z + 1 + u)

≤ z2 +
zs

m10
+ (z + 1 + u)(s+ 4us+ 3m) + s(z + s)

1

m10

= z2 + (s+ 4us+ 3m)(z − u) + (2u+ 1)(s+ 4us+ 3m)

+ s(2z + s)
1

m10
≤ γ,

where the last inequality follows from

(2u+ 1)(s+ 4us+ 3m) + s(2z + s)
1

m10

≤ (2m12 + 1)(m+ 4m13 + 3m) +m(2z +m)
1

m10
≤ 3z

m9
,
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for m large enough.
Only if. Suppose there exists a CCE φ ∈ ∆A with social cost smaller

than or equal to γ. First, we prove that, with probability at most 1
m8 , at least

one player pv plays rt. By contradiction, assume that this is not the case.
Then, the social cost would be at least

(z2 + (4us+ s+ 3m)(z − u))(1− 1

m8
) + ((z + 1)2

+ (4us+ s+ 3m− 1)(z − u))
1

m8

≥ z2 + (4us+ s+ 3m)(z − u) + (2z − z)
1

m8
> γ.

This implies that each player pv is playing either rv or rv̄ with probability
at least 1 − 1

m8 . Then, we prove that pv is the only player on that resource
with probability at least 1 − 1

m8 − 1
m2 . Otherwise, by contradiction, her

cost would be at least z + 1 + ε
m2 = z + 1 + 1

m6 , while by playing rt she
would pay at most (z + 1)(1− 1

m8 ) + (z + s) 1
m8 ≤ z + 1 + 1

m7 . By a union
bound, there exists an action profile a ∈×p∈N Ap played with probability
at least 1 − s( 1

m8 + 1
m2 ) > 0 in which all the players pv are alone on their

resources (either rv or rv̄). Let τ : V → {T,F} be a truth assignment such
that τ(v) = T if apv = rv̄ and τ(v) = F if apv = rv. Then, τ satisfies all
the clauses, since all the players pϕ,q play rl with τ(l) = T and, thus, each
clause has at least a true literal.

The following lemma concludes the proof of Theorem 7.2.

Lemma 7.8. Any SCG can be represented as an NCG of size polynomial in
the size of the original SCG.

Proof. Given an SCG (N,R, {Ap}p∈N , {cr}r∈R) we build an NCG
(N,G, {ce}e∈E, {(sp, tp)}p∈N) as follows. The graph G = (V,E) has two
nodes vr,1, vr,2 ∈ V for each resource r ∈ R, and, additionally, for every
player p ∈ N , there is a source node sp ∈ V and a destination one tp ∈ V .
Moreover, there is an edge (vr,1, vr,2) ∈ E for every r ∈ R and, for every
p ∈ N and r ∈ Ap, there two edges (sp, vr,1) ∈ E and (vr,2, tp) ∈ E.
Finally, for the edges e = (vr,1, vr,2), we let ce = cr, while ce = 0 for all
the other edges. Clearly, the size of the NCG is polynomially bounded by
that of the original SCG, proving the result.
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CHAPTER8
Persuading in Posted Price Auctions

In this chapter, we focus on the problem of computing revenue-maximizing
public and private signaling schemes in posted price auctions. Differently
from the problems studied in the previous chapters, the sender has to deal
with an additional challenge. In particular, the seller can coordinate the
signaling scheme with actions, i.e., the prices proposed to the buyers. In
Section 8.1, we introduce Bayesian posted price auctions and the signal-
ing problem. In Section 8.2, we show that there is no additive FPTAS for
the problem of computing a revenue-maximizing signaling scheme, unless
P=NP. In Section 8.3, we introduce a general framework that will be useful
to compute both public and private signaling schemes. Section 8.4 presents
some results on non-Bayesian posted price auction. Finally, Sections 8.5
and 8.6 present two PTASs for public and private signaling, respectively.

8.1 Model of Bayesian Persuasion in Posted Price auctions

In a posted price auction, the seller tries to sell an item to a finite set R :=
{1, . . . , n̄} of buyers arriving sequentially according to a fixed ordering.
W.l.o.g., we let buyer i ∈ R be the i-th buyer according to such ordering.
The seller chooses a price proposal pi ∈ [0, 1] for each buyer i ∈ R. Then,
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each buyer in turn has to decide whether to buy the item for the proposed
price or not. Buyer i ∈ R buys only if their item valuation is at least the
proposed price pi.1 In that case, the auction ends and the seller gets revenue
pi for selling the item, otherwise the auction continues with the next buyer.

We study Bayesian posted price auctions, characterized by a finite set
of d states of nature, namely Θ := {θ1, . . . , θd}. Each buyer i ∈ R has
a valuation vector vi ∈ [0, 1]d, with vi(θ) representing buyer i’s valuation
when the state is θ ∈ Θ. Each valuation vi is independently drawn from a
probability distribution Vi supported on [0, 1]d. For the ease of presentation,
we let V ∈ [0, 1]n̄×d be the matrix of buyers’ valuations, whose entries
are V (i, θ) := vi(θ) for all i ∈ R and θ ∈ Θ.2 Moreover, by letting
V := {Vi}i∈R be the collection of all distributions of buyers’ valuations,
we write V ∼ V to denote that V is built by drawing each vi independently
from Vi.

We consider the case in which the seller—having knowledge of the state
of nature—acts as a sender by issuing signals to the buyers (the receivers).
The seller commits to a signaling scheme φ, which is a randomized map-
ping from states of nature to signals for the receivers. Moreover, the seller
commits to price proposals. Price proposals may depend on the signals
being sent to the buyers. Formally, the seller commits to a price function
f : S → [0, 1]n̄, with f(s) ∈ [0, 1]n̄ being the price vector when the signal
profile is s ∈ S. We assume that prices proposed to buyer i only depend on
the signals sent to them, and not on the signals sent to other buyers. Thus,
w.l.o.g., we can work with functions fi : Si → [0, 1] defining prices for each
buyer i ∈ R independently, with fi(si) denoting the i-th component of f(s)
for all s ∈ S and i ∈ R.3

The interaction involving the seller and the buyers goes on as follows
(Figure 8.1): (i) the seller commits to a signaling scheme φ : Θ → ∆S
and a price function f : S → [0, 1]n̄, and the buyers observe such com-
mitments; (ii) the seller observes the state of nature θ ∼ µ; (iii) the seller
draws a signal profile s ∼ φθ; and (iv) the buyers arrive sequentially, with
each buyer i ∈ R observing their signal si and being proposed price fi(si).
Then, each buyer rationally updates their prior belief over states according
to Bayes rule, and buys the item only if their expected valuation for the
item is greater than or equal to the offered price. The interaction terminates

1As customary in the literature, we assume that buyers always buy when they are offered a price that is equal
to their valuation.

2Sometimes, we also write Vi := v>i to denote the i-th row of matrix V , which is the valuation of buyer
i ∈ R.

3Let us remark that our assumption on the seller’s price function ensures that a buyer does not get additional
information about the state of nature by observing the proposed price, since the latter only depends on the signal
which is revealed to them anyway.
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•

time

Seller⇒
(Sender)

Buyer i⇒
(Receiver)

commits
(φ, f)

observes
θ ∼ µ

draws
s ∼ φθ

observes
(φ, f)

observes
(si, fi(si))

infers
prosterior ξsi

if i buys
buyer’s utility:
vi(θ) − fi(si)

seller’s revenue: fi(si)

next buyer i+1 if i leaves

Figure 8.1: Interaction between the seller and the buyers.

whenever a buyer decides to buy the item or there no more buyers arriving.
In this chapter, we will work extensively in the space of the posteri-

ors with multiple receivers. With abuse of notation, we denote with ξ =
(ξ1, . . . , ξn̄) the tuple specifying a ξi ∈ Ξ for each i ∈ R and with ξi,θ
the probability of state θ in posterior ξi. Finally, we denote with ξs the tu-
ple of posteriors induced by signal profile s ∈ S and with ξsi the posterior
induced by signal si. Since, given a signal profile s ∈ S, under a public sig-
naling scheme all the buyers always share the same posterior (i.e., ξsi = ξsj

for all i, j ∈ R), we overload notation and sometimes use ξs ∈ ∆Θ to de-
note the unique posterior appearing in ξs = (ξs1,, . . . , ξsn̄). Similarly, in
the public setting, given a posterior ξ ∈ ∆Θ we sometimes write ξ in place
of a tuple of n̄ copies of ξ.

8.1.1 Computational Problems

We focus on the problem of computing a signaling scheme φ : Θ → ∆S
and a price function f : S → [0, 1]n̄ that maximize the seller’s expected
revenue, considering both public and private signaling settings.

We denote by REV(V ,p, ξ) the expected revenue of the seller when the
distributions of buyers’ valuations are given by V = {Vi}i∈R, the proposed
prices are defined by the vector p ∈ [0, 1]n̄, and the buyers’ posteriors
are those specified by the tuple ξ = (ξ1, . . . , ξn̄) containing a posterior
ξi ∈ ∆Θ for each buyer i ∈ R. Then, the seller’s expected revenue is:∑

θ∈Θ

µθ
∑
s∈S

φθ(s)REV (V , f(s), ξs) .

In the following, we denote by OPT the value of the seller’s expected
revenue for a revenue-maximizing (φ, f) pair.

In this chapter, we assume that algorithms have access to a black-box or-
acle to sample buyers’ valuations according to the probability distributions
specified by V (rather than actually knowing such distributions). Thus, we
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look for algorithms that output pairs (φ, f) such that

E

[∑
θ∈Θ

µθ
∑
s∈S

φθ(s)REV(V , f(s), ξs)

]
≥ OPT − λ,

where λ ≥ 0 is an additive error. Notice that the expectation above is with
respect to the randomness of the algorithm, which originates from using the
black-box sampling oracle.

8.2 Hardness of Signaling with a Single Buyer

We start with a negative result: there is no FPTAS for the problem of com-
puting a revenue-maximizing (φ, f) pair unless P = NP, in both public and
private signaling settings. Our result holds even in the basic case with only
one buyer, where public and private signaling are equivalent. Notice that,
in the reduction that we use to prove our result, we assume that the support
of the distribution of valuations of the (single) buyer is finite and that such
distribution is perfectly known to the seller. This represents an even simpler
setting than that in which the seller has only access to a black-box oracle
returning samples drawn from the buyer’s distribution of valuations. The
result formally reads as follows:

Theorem 8.1. There is no additive FPTAS for the problem of computing a
revenue-maximizing (φ, f) pair unless P = NP, even when there is a single
buyer.

Proof. We employ a reduction from an NP-hard problem originally intro-
duced by Khot and Saket (2012), which we formally state in the following.
For any positive integer k ∈ N>0, integer l ∈ N such that l ≥ 2k + 1, and
arbitrarily small constant ε > 0, the problem reads as follows. Given an
undirected graph G := (U,E), distinguish between:

• Case 1. There exists a l-colorable induced subgraph of G containing
a 1 − ε fraction of all vertices, where each color class contains a 1−ε

l
fraction of all vertices.4

• Case 2. Every independent set of G contains less than a 1
lk+1 fraction

of all vertices.5

4A l-colorable induced subgraph is identified by a subset of vertices such that it is possible to assign one
among l different colors to each vertex, in such a way that there are no two adjacent vertices having the same
color. Given some color, its associated color class is the subset of all vertices in the subgraph having that color.

5An independent set of G is a subset of vertices such that there are no two adjacent vertices.
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We reduce from such problem for k = 2, l = 5, and ε = 1
2
. Our reduction

works as follows:

• Completeness. If Case 1 holds, then there exists a signaling scheme,
price function pair (φ, f) that provides the seller with an expected rev-
enue at least as large as some threshold η (see Equation (8.1) below
for its definition).

• Soundness. If Case 2 holds, then the seller’s expected revenue for any
signaling scheme, price function pair (φ, f) is smaller than η − δ with
δ := 1

m2 , where m denotes the number or vertices of the graph G.

This shows that it is NP-hard to approximate the optimal seller’s expected
revenue up to within an additive error δ. Thus, since δ depends polyno-
mially on the size of the problem instance, this also shows that there is no
additive FPTAS for the problem of computing a revenue-maximizing (φ, f)
pair, unless P = NP.

Construction Given an undirected graph G := (U,E), with vertices U :=
{u1, . . . , um}, we build a single-buyer Bayesian posted price auction as
follows.6 There is one state of nature θu ∈ Θ for each vertex u ∈ U , and
the prior belief over states µ ∈ ∆Θ is such that µθu = 1

m
for all u ∈ U .

There is a finite set of possible buyer’s valuations. For every vertex u ∈ U ,
there is a valuation vector vu ∈ [0, 1]m such that:

• vu(θu) = 1;

• vu(θu′) = 1
2

for all u′ ∈ U : (u, u′) /∈ E; and

• vu(θu′) = 0 for all u′ ∈ U : (u, u′) ∈ E.

Each valuation vu has probability 1
m2 of occurring according to the distribu-

tion V . Moreover, there is an additional valuation vector vo ∈ [0, 1]m such
that vo(θ) = 1

2
+ l

(1−ε)2m for all θ ∈ Θ, having probability 1− 1
m

.

Completeness Assume that a l-colored induced subgraph of G is given, and
that it contains a fraction 1−ε of vertices, while each color class is made up
of a fraction 1−ε

l
of all vertices. We let L := {1, . . . , l} be the set of possible

colors, with j ∈ L denoting a generic color. In the following, we show
how to build a signaling scheme, price function pair (φ, f) that provides the
seller with an expected revenue greater than or equal to a suitably-defined

6In a single-buyer setting, we always omit the subscript i from symbols, as it is clear that they refer to the
unique buyer. Moreover, with an overload of notation, we use buyer’s signals as if they were signal profiles.
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threshold η (Equation (8.1)). The seller has l + 1 signals available, namely
S := {sj}j∈L ∪ {so}. For every vertex u ∈ U , if u has been assigned
some color j ∈ L (that is, u belongs to the induced subgraph), then we
set φθu(sj) = 1 and φθu(s) = 0 for all s ∈ S : s 6= sj; otherwise, if u
has no color (that is, u does not belong to the given subgraph), then we set
φθu(so) = 1 and φθu(s) = 0 for all s ∈ S : s 6= so. Moreover, the price
function is such that

f(s) = po :=
1

2
+

l

(1− ε)2m
for every signal s ∈ S.

Next, we prove that, after receiving a signal sj ∈ S associated with some
color j ∈ L, if the buyer has valuation vu for a node u ∈ U colored of
color j, then they will buy the item. In particular, the buyer’s posterior
ξsj ∈ ∆Θ induced by signal sj is such that only state θu and states θu′ for
u′ ∈ U : (u, u′) /∈ E have positive probability (since, when the seller sends
signal sj , it must be the case that the vertex corresponding to the actual
state of nature is colored of color j). Moreover, such probabilities are equal
to ξsjθu = ξ

sj
θu′

= l
(1−ε)m (by applying Equation (3.1) and using the fact that

each color class has a fraction 1−ε
l

of vertices). Thus, since vu(θu) = 1 and
vu(θu′) = 1

2
for all u′ ∈ U : (u, u′) /∈ E, the expected valuation of the

buyer given the posterior ξsj is∑
θ∈Θ

vu(θ) ξ
sj
θ =

1

2

[
1− l

(1− ε)m

]
+

l

(1− ε)m
=

1

2
+

l

(1− ε)2m
= po,

and the buyer will buy the item. Furthermore, when the seller sends signal
so, their expected revenue is at least (1 − 1

m
)po, as it is always the case

that the buyer buys the item when they have valuation vo. Since the total
probability of sending signals sj ∈ S for j ∈ L is 1 − ε (given that the
subgraph contains a fraction 1−ε of vertices) and the probability of sending
signal so is ε, we have that the seller’s expected revenue is at least

η := (1− ε)
[

1− ε
m l

+ 1− 1

m

]
po + ε

(
1− 1

m

)
po (8.1a)

=

[
(1− ε)2

ml
+

(
1− 1

m

)]
po. (8.1b)

where the factor 1−ε
m l

+ 1− 1
m

represents the probability that the buyer buys
when sending a signal sj (this happens when either the buyer has valuation
vu for a vertex u ∈ U colored of color j or the buyer has valuation vo).
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Soundness By contradiction, we show that, if there exists a signaling scheme,
price function pair (φ, f) with seller’s expected revenue exceeding η − δ,
then the graph G admits an independent set of size 1

2l
(1 − ε)2m > m

lk+1

(recall the choice of values for k, l, and ε). If the seller’s revenue is greater
than η− δ, by an averaging argument there must be at least one signal s∗ ∈
S whose contribution to the revenue

∑
θ∈Θ µθφθ(s

∗)REV
(
V , f(s∗), ξs∗

)
is

more than η− δ, where ξs∗ ∈ ∆Θ is the buyer’s posterior induced by signal
s∗. Since the expected revenue cannot exceed the expected payment, the
price p∗ := f(s∗) that the seller proposes to the buyer when signal s∗ is sent
must be greater than

η − δ =

[
(1− ε)2

ml
+

(
1− 1

m

)]
po − δ

=

[
(1− ε)2

ml
+

(
1− 1

m

)][
1

2
+

l

(1− ε)2m

]
− δ

≥
(

1− 1

m

)[
1

2
+

l

(1− ε)2m

]
− δ

≥ 1

2
+

l

(1− ε)2m
− 1

m
− l

(1− ε)2m2
− δ > 1

2
,

where the last inequality holds for m ≥ 2 since we set ε = 1
2
, l = 5, and

δ = 1
m2 . Additionally, the price p∗ must be smaller than po (see the com-

pleteness proof), otherwise, when the buyer has valuation vo, they would
never buy the item, resulting in a contribution to the seller’s revenue at most
of 1

m
(recall that vo happens with probability 1− 1

m
and all other buyer’s val-

uations do not exceed 1). As a result, it must be the case that p∗ ∈
(

1
2
, po
]
.

Next, we prove that, after receiving signal s∗, the buyer will buy the item
in all the cases in which their valuation belongs to a subset of valuations
vu containing at least a fraction 1

2l
(1 − ε)2 of all the valuations vu. Indeed,

if this is not the case, then the contribution to the seller’s expected revenue
due to signal s∗ would be less than

p∗
[
1− 1

m
+

(1− ε)2

2ml

]
≤ po

[
1− 1

m
+

(1− ε)2

2ml

]
= η − po

(1− ε)2

2ml
≤ η − δ,

where the last inequality holds since δ = 1
m2 ≤ po

(1−ε)2

2ml
form large enough.

Let U∗ ⊆ U be the subset of vertices u ∈ U such that the buyer will buy the
item for their corresponding valuations vu. We have that |U∗| ≥ m

2l
(1− ε)2.
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Next, we show thatU∗ constitutes an independent set ofG. First, since p∗ >
1
2
, when the buyer’s valuation is vu such that u ∈ U∗, then the buyer must

value the item more than 1
2
, otherwise they would not buy. By contradiction,

suppose that there is a couple of vertices u, u′ ∈ U∗ such that (u, u′) ∈ E.
W.l.o.g., let us assume that ξs∗θu ≤ ξs

∗

θu′
. Then, the buyer’s expected valuation

induced by posterior ξs∗ is

ξs
∗

θu +
1

2

(
1− ξs∗θu − ξ

s∗

θu′

)
=

1 + ξs
∗

θu
− ξs∗θu′

2
≤ 1

2
,

which is a contradiction. Given that, by our initial assumption, the size of
every independent set must be smaller than m

lk+1 <
1
2l

(1 − ε)2m, we reach
the final contradiction proving the result.

8.3 Unifying Public and Private Signaling

In this section, we introduce a general mathematical framework related to
buyers’ posteriors and distributions over them, proving some results that
will be crucial in the rest of this chapter, both in public and private signaling
scenarios.

For public signaling, a useful technique to reduce the space of available
signals is to restrict the number of possible posteriors to q-uniform posteri-
ors. For private signaling, the trick commonly used to reduce the space of
signals when there are a finite number of valuations is to use direct signals,
which explicitly specify action recommendations for each receiver’s valua-
tion (see, e.g., Chapter 10). However, in our auction setting, this solution is
not viable, since a direct signal for a buyer i ∈ R should represent a recom-
mendation for every possible vi ∈ [0, 1]d, and these are infinitely many. For
this reason, in this section we provide a decomposition lemma that will be
used to work on q-uniform posteriors for both public and private signaling.

Our main result (Theorem 8.2) is a decomposition lemma that is suit-
able for our setting. Before stating the result, we need to introduce some
preliminary definitions.

Definition 8.1 ((α, ε)-decreasing distribution). Let α, ε > 0. A probabil-
ity distribution γ over ∆Θ is (α, ε)-decreasing around a given posterior
ξ ∈ ∆Θ if the following condition holds for every matrix V ∈ [0, 1]n̄×d of
buyers’ valuations:

Prξ̃∼γ
{
Viξ̃ ≥ Viξ − ε

}
≥ 1− α ∀i ∈ R.
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Intuitively, a probability distribution γ as in Definition 8.1 can be in-
terpreted as a perturbation of the given posterior ξ such that, with high
probability, buyers’ expected valuations in γ are at most ε less than those
in posterior ξ.7

The second definition we need is about functions mapping vectors in
[0, 1]n̄—defining a valuation for each buyer—to seller’s revenues. For in-
stance, one such function could be the seller’s revenue given price vector
p ∈ [0, 1]n̄. In particular, we define the stability of a function g compared
to another function h. Intuitively, g is stable compared to h if the value of
g, in expectation over buyers’ valuations and posteriors drawn from a prob-
ability distribution γ that is (α, ε)-decreasing around ξ, is “close” to the the
value of h given ξ, in expectation over buyers’ valuations.8 Formally:

Definition 8.2 ((δ, α, ε)-stability). Let α, ε, δ > 0. Given a posterior ξ ∈
∆Θ, some distributions V = {Vi}i∈R, and two functions g, h : [0, 1]n̄ →
[0, 1], g is (δ, α, ε)-stable compared to h for (ξ,V) if, for every probability
distribution γ over ∆Θ that is (α, ε)-decreasing around ξ, it holds:

Eξ̃∼γ,V∼V
[
g(V ξ̃)

]
≥ (1− α)EV∼V

[
h(V ξ)

]
− δε.

Now, we are ready to state our main result. We show that, for any buyer’s
posterior ξ ∈ ∆Θ, if a function g is stable compare to h, then there exists
a suitable probability distribution over q-uniform posteriors such that the
expected value of g given such distribution is “close” to that of h given ξ.

Theorem 8.2. Let α, ε, δ > 0, and set q := 32
ε2

log 4
α

. Given a posterior ξ ∈
∆Θ, some distributions V = {Vi}i∈R, and two functions g, h : [0, 1]n̄ →
[0, 1], if g is (δ, α, ε)-stable compared to h for (ξ,V), then there exists γ ∈
∆Ξq such that, for every θ ∈ Θ,

∑
ξ̃∈supp(γ) γξ̃ξ̃θ = ξθ and

E ξ̃∼γ
V∼V

[
ξ̃θg(V ξ̃)

]
≥ξθ
[
(1−α)EV∼V

[
h(V ξ)

]
−δε

]
. (8.2)

Proof. The probability distribution γ ∈ ∆Ξq over q-uniform posteriors in
the statement is defined as follows. Let ξq ∈ Ξq be a buyer’s posterior de-
fined as the empirical mean of q vectors built form q i.i.d. samples drawn
from the given posterior ξ. In particular, each sample is obtained by ran-
domly drawing a state of nature, with each state θ ∈ Θ having probability

7Definition 8.1 is similar to analogous ones in the literature (Xu, 2020), where the distance is usually measured
in both directions, as |Viξ̃ − Viξ| ≤ ε. We look only at the direction of decreasing values, since in a our setting,
if a buyer’s valuation increases, then the seller’s revenue also increases.

8The notion of compared stability has been already used, see, e.g., Chapter 6. However, previous works
consider the case in which g is a relaxation of h. Instead, our definition is conceptually different, as g and h
represent two different functions corresponding to different price vectors of the seller.
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ξθ of being selected, and, then, a d-dimensional vector is built by letting all
its components equal to 0, except for that one corresponding to θ, which is
set to 1. Notice that ξq is a random vector supported on q-uniform poste-
riors, whose expected value is posterior ξ. Then, γ is such that, for every
ξ̃ ∈ Ξq, it holds γξ̃ = Pr

{
ξq = ξ̃

}
.

It is easy to check that ξθ =
∑
ξ̃∈Ξq γξ̃ ξ̃θ = Eξ̃∼γ

[
ξ̃θ

]
for all θ ∈ Θ,

proving the first condition needed.
Next, we prove that γ satisfies Equation (8.2). To do so, we first intro-

duce some useful definitions. For every q-uniform posterior ξ̃ ∈ Ξq, with
an overload of notation we let γξ̃,θ,j be the conditional probability of having
drawn ξ̃ from γ given that the drawn posterior assigns probability j

q
to state

θ ∈ Θ with j ∈ {0, . . . , q}. Formally, for every ξ̃ ∈ Ξq:

γξ̃,θ,j :=


γξ̃∑

ξ′∈Ξq :ξ′θ=j/q γ
′
ξ

if ξ̃θ = j
q

0 otherwise

.

Then, for every θ ∈ Θ and j ∈ {0, . . . , q}, we let γθ,j be a probability
distribution over ∆Θ supported on q-uniform posteriors such that γθ,j

ξ̃
:=

γξ̃,θ,j for all ξ̃ ∈ Ξq. Moreover, for every buyer i ∈ R and matrix V ∈
[0, 1]n̄×d of buyers’ valuations, we let Ξi,V ⊆ Ξq be the set of q-uniform
posteriors that do not change buyer i’s expected valuation by more than an
additive factor ε with respect to their valuation in posterior ξ. Formally,

Ξi,V :=
{
ξ̃ ∈ Ξq |

∣∣∣Viξ − Viξ̃∣∣∣ ≤ ε
}
.

In order to complete the proof, we introduce the following three lemmas.
The first lemma shows that, for every state of nature θ ∈ Θ, it is possible
to bound the cumulative probability mass that the distribution γ assigns to
q-uniform posteriors ξ̃ ∈ Ξq such that ξ̃θ differs from ξθ by at least ε

4
(in

absolute terms). Formally:

Lemma 8.1 (Essentially Lemma 6.2). Given ξ ∈ ∆Θ, for every θ ∈ Θ it
holds: ∑

j:| jq−ξθ|≥ ε4

∑
ξ̃∈Ξq :ξ̂θ= j

q

γξ̃ ≤
α

2
ξθ,

where γ ∈ ∆Ξq is the probability distribution over q-uniform posteriors
introduced at the beginning of the proof.
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The second lemma, which is useful to prove Lemma 8.3, shows that, for
q-uniform posteriors ξ̃ ∈ Ξq such that ξ̃θ is sufficiently close to ξθ for a state
of nature θ ∈ Θ, the expected utility of each buyer is close to their utility in
the given posterior ξ with high probability. Formally:

Lemma 8.2 (Essentially Lemma 6.3). Given ξ ∈ ∆Θ, matrix V ∈ [0, 1]n̄×d

of buyers’ valuations, state of nature θ ∈ Θ, and j :
∣∣∣ jq − ξθ∣∣∣ ≤ ε

4
, the

following holds for every buyer i ∈ R:∑
ξ̃∈Ξi,V :ξ̃θ= j

q

γξ̃ ≥
(

1− α

2

) ∑
ξ̃∈Ξq :ξ̃θ= j

q

γξ̃,

where γ ∈ ∆Ξq is the probability distribution over q-uniform posteriors
introduced at the beginning of the proof.

Finally, the third lemma that we need reads as follows:

Lemma 8.3. Given ξ ∈ ∆Θ, for every state of nature θ ∈ Θ and j :∣∣∣ jq − ξθ∣∣∣ ≤ ε
4
, the probability distribution γθ,j defined at the beginning of

the proof is
(
α
2
, ε
)
-decreasing around posterior ξ.

Proof. According to Definition 8.1 and by reversing the inequalities, we
need to prove that, for every matrix V ∈ [0, 1]n̄×d of buyers’ valuations and
buyer i ∈ R, it holds Prξ̃∼γθ,j

{
Viξ̃ ≥ Viξ − ε

}
≥ 1 − α

2
. By using the

definition of the set Ξi,V , Lemma 8.2, and the definition of γθ,j , we can
write the following:

Prξ̃∼γθ,j
{
Viξ̃ ≥ Viξ − ε

}
=
∑
ξ̃∈Ξi,V

γθ,j
ξ̃

=
∑

ξ̃∈Ξi,V :ξ̃θ= j
q

γξ̃∑
ξ′∈Ξq :ξ′θ= j

q
γξ′

≥
(

1− α

2

) ∑
ξ̃∈Ξq :ξ̃θ= j

q

γξ̃∑
ξ′∈Ξq :ξ′θ= j

q
γξ′

= 1− α

2
,

which proves the lemma.

Now, we are ready to prove the theorem, by means of the following
inequalities:

Eξ̃∼γ,V∼V
[
ξ̃θ g(V ξ̃)

]
=
∑
ξ̃∈Ξq

γξ̃ ξ̃θEV∼V
[
g(V ξ̃)

]
(By dropping terms from the sum)
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≥
∑

j:| jq−ξθ|≤ ε4

j

q

∑
ξ̃∈Ξq :ξ̃θ= j

q

γξ̃ EV∼V
[
g(V ξ̃)

]

=
∑

j:| jq−ξθ|≤ ε4

j

q

 ∑
ξ′∈Ξq :ξ′θ= j

q

γξ′

 ∑
ξ̃∈Ξq :ξ̃θ= j

q

γξ̃∑
ξ′∈Ξq :ξ′θ= j

q
γξ′

EV∼V
[
g(V ξ̃)

]

=
∑

j:| jq−ξθ|≤ ε4

j

q

 ∑
ξ′∈Ξq :ξ′θ= j

q

γξ′

Eξ̃∼γθ,j ,V∼V
[
g(V ξ̃)

]
(By Def. 8.2 – Lem. 8.3)

=
∑

j:| jq−ξθ|≤ ε4

j

q

 ∑
ξ′∈Ξq :ξ′θ= j

q

γξ′

[(1− α

2

)
EV∼V

[
h(V ξ̃)

]
− δε

]
=
[(

1− α

2

)
EV∼V

[
h(V ξ̃)

]
− δε

] ∑
j:| jq−ξθ|≤ ε4

j

q

∑
ξ′∈Ξq :ξ′θ= j

q

γξ′

=
[(

1− α

2

)
EV∼V

[
h(V ξ̃)

]
− δε

]ξθ − ∑
j:| jq−ξθ|≥ ε4

∑
ξ′∈Ξq :ξ′θ= j

q

γξ′


(By Lemma 8.1), (1− α/2)2 ≥ 1− α, and α < 1)

≥ ξθ

[
(1− α)EV∼V

[
h(V ξ̃)

]
− δε

]
.

This concludes the proof.

The crucial feature of Theorem 8.2 is that Equation (8.2) holds for every
state. This is fundamental for proving our results in the private signaling
scenario. On the other hand, with public signaling, we will make use of the
following (weaker) corollary, obtained by summing Equation (8.2) over all
θ ∈ Θ.

Corollary 8.1. Let α, ε, δ > 0, and set q := 32
ε2

log 4
α

. Given a posterior ξ ∈
∆Θ, some distributions V = {Vi}i∈R, and two functions g, h : [0, 1]n̄ →
[0, 1], if g is (δ, α, ε)-stable compared to h for (ξ,V), then there exists γ ∈
∆Ξq such that, for every θ ∈ Θ,

∑
ξ̃∈supp(γ) γξ̃ξ̃θ = ξθ and

Eξ̃∼γ,V∼V
[
g(V ξ̃)

]
≥ (1− α)EV∼V

[
h(V ξ)

]
− δε. (8.3)
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8.4 Warming Up: Non-Bayesian Auctions

In this section, we focus on non-Bayesian posted price auctions, proving
some results that will be useful in the rest of the chapter.9 In particular,
we study what happens to the seller’s expected revenue when buyers’ val-
uations are “slightly decreased”, proving that the revenue also decreases,
but only by a small amount. This result will be crucial when dealing with
public signaling, and it also allows to design a polynomial-time algorithm
for finding approximately-optimal price vectors in non-Bayesian auctions,
as we show at the end of this section.

In the following, we extensively use distributions of buyers’ valuations
as specified in the definition below.

Definition 8.3. Given ε > 0, we denote by V = {Vi}i∈R and Vε = {Vεi }i∈R
two collections of distributions of buyers’ valuations such that, for every
price vector p ∈ [0, 1]n̄,

Prvi∼Vεi {vi ≥ pi − ε} ≥ Prvi∼Vi {vi ≥ pi} ∀i ∈ R.

Intuitively, valuations drawn from Vε are “slightly decreased” with re-
spect to those drawn from V , since the probability with which any buyer
i ∈ R buys the item at the (reduced) price [pi − ε]+ when their valuation
is drawn from Vεi is at least as large as the probability of buying at price pi
when their valuation is drawn from Vi. 10

Our main contribution in this section (Lemma 8.5) is to show that

max
p∈[0,1]n̄

REV(Vε,p) ≥ max
p∈[0,1]n̄

REV(V ,p)− ε.

By letting p∗ ∈ arg maxp∈[0,1]n̄REV(V ,p) be any revenue-maximizing
price vector under distributions V , one may naïvely think that, since un-
der distributions Vε and price vector [p∗ − ε]+ each buyer would buy the
item at least with the same probability as with distributions V and price vec-
tor p∗, while paying a price that is only ε less, then REV(Vε, [p∗ − ε]+) ≥
REV(V ,p∗) − ε, proving the result. However, this line of reasoning does
not work, since, as shown by the following example, it has a major flaw.

9When we study non-Bayesian posted price auctions, we stick to our notation, with the following differences:
valuations are scalars rather than vectors, namely vi ∈ [0, 1]; distributions Vi are supported on [0, 1] rather
than [0, 1]d; the matrix V is indeed a column vector whose components are buyers’ valuations; and the price
function f is replaced by a single price vector p ∈ [0, 1]n̄, with its i-th component pi being the price for buyer
i ∈ R. Moreover, we continue to use the notation REV to denote seller’s revenues, dropping the dependence
on the tuple of posteriors. Thus, in a non-Bayesian auction in which the distributions of buyers’ valuations are
V = {Vi}i∈R, the notation REV(V,p) simply denotes the seller’s expected revenue by selecting a price vector
p ∈ [0, 1]n̄.

10In this chapter, given x ∈ R, we let [x]+ := max{x, 0}. We extend the [·]+ operator to vectors by applying
it component-wise.
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Example 8.1. Consider a posted price auction with two buyers. In the
first case (distributions V), buyer 1 has valuation v1 = 1

2
and buyer 2 has

valuation v2 = 1. In such setting, an optimal price vector p∗ is such that
p∗1 = 1

2
+ε and p∗2 = 1, so that the revenue of the seller, namely REV(V ,p∗),

is 1. In the second case (distributions Vε), buyer 1 has valuations v1 = 1
2

and buyer 2 has valuation v2 = 1− ε. Thus, the revenue of the seller for the
price vector p∗,ε (with p∗,ε1 = 1

2
and p∗,ε2 = 1− ε), namely REV(Vε,p∗,ε), is

1
2
, since buyer 1 will buy the item.

The crucial feature of Example 8.1 is that there exists a p∗ in which one
buyer is offered a price that is too low, and, thus, the seller prefers not to
sell the item to her, but rather to a following buyer. This prevents a direct
application of the line of reasoning outlined above, as it shows that incre-
menting the probability with which a buyer buys is not always beneficial.
One could circumvent this issue by considering a p∗ such that the seller is
never upset if some buyer buys. In other words, it must be such that each
buyer is proposed a price that is at least as large as the seller’s expected
revenue in the posted price auction restricted to the following buyers. Next,
we show that there always exists a p∗ with such desirable property.

Letting REV>i(V ,p) be the seller’s revenue for price vector p ∈ [0, 1]n̄

and distributions V = {Vi}i∈R in the auction restricted to buyers j ∈ R :
j > i, we prove the following:

Lemma 8.4. For any V = {Vi}i∈R, there exists a revenue-maximizing price
vector p∗ ∈ arg maxp∈[0,1]n̄REV(V ,p) such that p∗i ≥ REV>i(V ,p∗) for
every buyer i ∈ R.

Proof. In order to prove the lemma, we show an even stronger result: for
every price vector p ∈ [0, 1]n̄, it is always possible to recover another price
vector p′ ∈ [0, 1]n̄ that provides the seller with an expected revenue at least
as large as that provided by p, and such that p′i ≥ REV>i(V ,p′) for every
i ∈ R. Let us assume that p does not satisfy the required condition for some
buyer i ∈ R. Then, let p′ be such that p′i = REV>i(V ,p) > pi and p′j = pj
for all j ∈ R : j 6= i. Since by construction REV>i(V , p′) = REV>i(V ,p),
the condition p′i ≥ REV>i(V , p′) holds. Moreover, the seller’s expected
revenue for p′ in the auction restricted to all buyers j ∈ R : j ≥ i, namely
REV≥i(V ,p′), is such that:

REV≥i(V ,p′)= Prvi∼Vi {vi ≥ p′i} p′i + (1− Prvi∼Vi {vi ≥ p′i}) REV>i(V ,p′)
= Prvi∼Vi {vi ≥ p′i} p′i + (1− Prvi∼Vi {vi ≥ p′i}) REV>i(V ,p)

= Prvi∼Vi {vi ≥ pi} p′i + (1− Prvi∼Vi {vi ≥ pi}) REV>i(V ,p)
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≥ Prvi∼Vi {vi ≥ pi} pi + (1− Prvi∼Vi {vi ≥ pi}) REV>i(V ,p)

= REV≥i(V ,p),

where the first equality and the last one holds by definition of REV≥i(V ,p′),
the second one follows from REV>i(V ,p′) = REV>i(V ,p), the third one
holds since p′i = REV>i(V ,p), while the inequality follows from p′i ≥ pi.
As a result, we can conclude that REV(V ,p′) ≥ REV(V ,p). The lemma is
readily proved by iteratively applying the procedure described above until
we get a price vector p′ ∈ [0, 1]n̄ such that p′i ≥ REV>i(V ,p′) for every
buyer i ∈ R, starting from an optimal price vector

p∗ ∈ arg maxp∈[0,1]n̄REV(V ,p).

The proof of the following lemma builds upon the existence of a revenue-
maximizing price vector p∗ ∈ [0, 1]n̄ as in Lemma 8.4 and the fact that,
under distributions Vε, the probability with which each buyer buys the item
given price vector [p∗ − ε]+ is greater than that with which they would buy
given p∗. Since the seller’s expected revenue is larger when a buyer buys
compared to when they do not buy (as p∗i ≥ REV>i(V ,p∗)), the seller’s
expected revenue decreases by at most ε.

Lemma 8.5. Given ε > 0, let V = {Vi}i∈R and Vε = {Vεi }i∈R satis-
fying the conditions of Definition 8.3. Then, maxp∈[0,1]n̄ REV(Vε,p) ≥
maxp∈[0,1]n̄ REV(V ,p)− ε.
Proof. Let p∗ ∈ [0, 1]n̄ be a price vector such that

p∗ ∈ arg maxp∈[0,1]n̄REV(V ,p)

and p∗i ≥ REV>i(V ,p∗) for every i ∈ R. Such price vector is guaranteed
to exist by Lemma 8.4. We show by induction that REV≥i(Vε,p∗,ε) ≥
REV≥i(V ,p)− ε, where p∗,ε = [p− ε]+. As a base case, it is easy to check
that

REV≥n̄(Vε,p∗,ε) = [p∗n − ε]+ Prvn∼Vεn {vn ≥ [p∗n − ε]+}
≥ (p∗n − ε)Prvn∼Vn {vn ≥ p∗n}
≥ p∗n Prvn∼Vn {vn ≥ p∗n} − ε
= REV≥n(V ,p∗)− ε.

By induction, assume that the above condition holds for i + 1 (notice that
REV>i(·, ·) = REV≥i+1(·, ·)), then

REV≥i(Vε,p∗,ε) = [p∗i − ε]+Prvi∼Vεi {vi ≥ [p∗i − ε]+}
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+
(
1− Prvi∼Vεi {vi ≥ [p∗i − ε]+}

)
REV>i(Vε,p∗,ε)

≥ (p∗i − ε)Prvi∼Vεi {vi ≥ [p∗i − ε]+}
+
(
1− Prvi∼Vεi {vi ≥ [p∗i − ε]+}

)
(REV>i(V ,p∗)− ε)

= p∗iPrvi∼Vεi {vi ≥ [p∗i − ε]+}
+
(
1− Prvi∼Vεi {vi ≥ [p∗i − ε]+}

)
REV>i(V ,p∗)− ε

≥ p∗iPrvi∼Vi {vi ≥ p∗i }+ (1− Prvi∼Vi {vi ≥ p∗i }) REV>i(V ,p∗)− ε
= REV≥i(V ,p∗)− ε,

where the last inequality follows from p∗i ≥ REV>i(V ,p∗) and

Prvi∼Vεi {vi ≥ [p∗i − ε]+} ≥ Prvi∼Vi {vi ≥ p∗i } .

Lemma 8.5 will be useful to prove Lemma 8.6 and to show the compared
stability of a suitably-defined function that is used to design a PTAS in the
public signaling scenario.

8.4.1 Finding Approximately-Optimal Prices

Algorithm 8.1 computes (in polynomial time) an approximately-optimal
price vector for any non-Bayesian posted price auction. For a discretization
step b ∈ N>0, we let P b ⊂ [0, 1] be the set of prices multiples of 1/b, while
Pb := ×i∈R P

b. The algorithm samples K ∈ N>0 matrices of buyers’
valuations, each one drawn according to the distributions V . Then, it finds
an optimal price vector p in the discretized set Pb, assuming that buyers’
valuations are drawn according to the empirical distribution resulting from
the sampled matrices. This last step can be done by backward induction, as
it is well known in the literature (see, e.g., (Xiao et al., 2020)).

The following Lemma 8.6 establishes the correctness of Algorithm 8.1,
also providing a bound on its running time. The key ideas of its proof are:
(i) the sampling procedure constructs a good estimation of the actual distri-
butions of buyers’ valuations; and (ii) even if the algorithm only considers
discretized prices, the components of the computed price vector are at most
1/b less than those of an optimal (unconstrained) price vector. As shown in
the proof, this is strictly related to reducing buyer’s valuations by 1

b
. Thus,

it follows by Lemma 8.5 that the seller’s expected revenue is at most 1/b
less than the optimal one.
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Algorithm 8.1 FIND-APX-PRICES

Inputs: # of samples K ∈ N>0; # of discretization steps b ∈ N>0

1: for i ∈ R do
2: for k = 1, . . . ,K do
3: vki ← Sample buyer i’s valuation using oracle for Vi
4: end for
5: VKi ← Empirical distribution of the K i.i.d. samples vKi
6: end for
7: VK ← {VKi }i∈R; p← 0; r ← 0
8: for i = n, . . . , 1 (in reversed order) do
9: pi←argmaxp′i∈P bPrvi∼VKi

{
vi ≥ p′i

}
p′i+
(
1−Prvi∼VKi

{
vi ≥ p′i

})
r

10: r ← piPrvi∼VKi {vi ≥ pi}+
(

1− Prvi∼VKi {vi ≥ pi}
)
r

11: end for
12: return (p, r)

Lemma 8.6. For any V = {Vi}i∈R and ε, τ > 0, there exist b ∈ poly
(

1
ε

)
and K ∈ poly

(
n̄, 1

ε
, log 1

τ

)
such that, with probability at least 1− τ , Algo-

rithm 8.1 returns (p, r) satisfying REV(V ,p) ≥ maxp′∈[0,1]n̄ REV(V ,p′)−ε
and r ∈ [REV(V ,p)− ε,REV(V ,p) + ε] in time poly

(
n̄, 1

ε
, log 1

τ

)
.

Proof. Letting b := d2
ε
e and K := 8

ε2
log 2bn̄

τ
∈ poly

(
n̄, 1

ε
, log 1

τ

)
, the proof

unfolds in two steps.
The first step is to show that restricting price vectors to those in the dis-

cretized set Pb results in a small reduction of the seller’s expected revenue.
Formally, we prove that:

max
p∈Pb

REV(V ,p) ≥ max
p∈[0,1]n̄

REV(V ,p)− ε

2
.

To do so, we define some modified distributions of buyers’ valuations,
namely Vb = {Vbi }i∈R, which are supported on the discretized set Pb and
are obtained by mapping each valuation vi ∈ [0, 1] in the support of Vi (for
any i ∈ R) to a discretized valuation x

b
, where x is the greatest integer

such that x
b
≤ vi. It is easy to see that, since an optimal price vector for

distributions Vb must specify prices that are multiples of 1
b
, then

max
p∈[0,1]n̄

REV(Vb,p) = max
p∈Pb

REV(Vb,p).

Moreover, by definition of b, distributions Vb are such that for every i ∈ R
and price pi ∈ [0, 1] it holds Prvi∼Vbi

{
vi ≥ pi − ε

2

}
≥ Prvi∼Vi {vi ≥ pi} .

Thus, by Lemma 8.5, maxp∈[0,1]n̄ REV(Vb,p) ≥ maxp∈[0,1]n̄ REV(V ,p) −
ε
2
, which implies that maxp∈Pb REV(V ,p) ≥ maxp∈[0,1]n̄ REV(V ,p) − ε

2
.

129



Chapter 8. Persuading in Posted Price Auctions

This proves that we can restrict the attention to price vectors inPb ⊂ [0, 1]n̄,
loosing only an additive factor ε

2
of the seller’s optimal expected revenue.

The second step of the proof is to show that replacing distributions V
with the empirical distributions VK built by Algorithm 8.1 only reduces the
seller’s optimal expected revenue by a small amount, with high probability.
For any price vector p ∈ [0, 1]n̄, by using Hoeffding’s bound we obtain that

Pr
{∣∣REV(V ,p)− REV(VK ,p)

∣∣ ≥ ε

4

}
≤ 2e−Kε

2/8,

where the probability is with respect to the stochasticity of the algorithm
(as a result of the sampling steps). Since the number of elements in the
discretized set Pb is bn̄, by a union bound we get

Pr
{∣∣REV(V ,p)− REV(VK ,p)

∣∣ < ε

4
∀p ∈ Pb

}
≥ 1−2bn̄e−Kε

2/8 = 1−τ.

Letting p ∈ Pb be the price vector returned by Algorithm 8.1, it is the case
that p ∈ arg maxp′∈PbREV(VK ,p′), given the correctness and optimality
of the backward induction procedure with which the vector p is built (Xiao
et al., 2020). Moreover, letting p∗ ∈ arg maxp′∈PbREV(V ,p′) be an op-
timal price vector over the discretized set Pb for the actual distributions of
buyers’ valuations V , with probability at least 1− τ it holds that

REV(V ,p) ≥ REV(VK ,p)− ε

4
≥ REV(VK ,p∗)− ε

4
≥ REV(V ,p∗)− ε

2
.

Hence, with probability at least 1− τ , it holds

REV(V ,p) ≥ REV(V ,p∗)− ε

2
≥ max

p′∈[0,1]n̄
REV(V ,p′)− ε,

where the last step has been proved in the first part of the proof.
In order to conclude the proof, it is sufficient to notice that, with proba-

bility at least 1− τ , it also holds that

r = REV(VK ,p) ∈
[
REV(V ,p)− ε

4
,REV(V ,p) +

ε

4

]
.

8.5 Public Signaling

In the following, we design a PTAS for computing a revenue-maximizing
(φ, f) pair in the public signaling setting. Notice that this positive result is
tight by Theorem 7.2.

130



8.5. Public Signaling

As a first intermediate result, we prove the compared stability of suitably-
defined functions, which are intimately related to the seller’s revenue. In
particular, for every price vector p ∈ [0, 1]n̄, we conveniently let gp :
[0, 1]n̄ → [0, 1] be a function that takes a vector of buyers’ valuations
and outputs the seller’s expected revenue achieved by selecting p when the
buyers’ valuations are those specified as input. The following Lemma 8.7
shows that, given some distributions of buyers’ valuations V and a posterior
ξ ∈ ∆Θ, there always exists a price vector p ∈ [0, 1]n̄ such that gp is stable
compared with gp′ for every other p′ ∈ [0, 1]n̄. This result crucially allows
us to decompose any posterior ξ ∈ ∆Θ by means of the decomposition
lemma in Corollary 8.1, while guaranteeing a small loss in terms of seller’s
expected revenue.

Lemma 8.7. Given α, ε > 0, a posterior ξ ∈ ∆Θ, and some distributions
of buyers’ valuations V = {Vi}i∈R, there exists p ∈ [0, 1]n̄ such that, for
every other p′ ∈ [0, 1]n̄, the function gp is (1, α, ε)-stable compared with
gp′ for (ξ,V).

Proof. As a first step, we prove the following: given any matrix V ∈
[0, 1]n̄×d of buyers’ valuations and any price vector p′ ∈ [0, 1]n̄, for ev-
ery distribution γ over ∆Θ that is (α, ε)-decreasing around ξ (see Defini-
tion 8.1) it holds that

Eξ̃∼γ
[
gp′(V ξ̃)

]
≥ Eξ̃∼γ

[
gp′
(

max
{
V ξ̃, V ξ − ε1

})]
− α gp′+ε1(V ξ).

(8.4)
W.l.o.g., let i ∈ R be the buyer that buys the item when buyers’ valu-
ations are specified by the vector V ξ − ε1 and the proposed prices are
those specified by p′, that is, it must be the case that p′i ≤ Viξ − ε and
p′j > Vjξ − ε for all j ∈ R : j < i. Since γ is (α, ε)-decreasing around
ξ, by sampling a posterior ξ̃ ∈ ∆Θ according to γ, with probability at
least 1 − α it holds that Viξ̃ ≥ Viξ − ε (see Definition 8.1). Moreover,
let Ξ̃ := {ξ̃ ∈ ∆Θ | Viξ̃ ≥ Viξ − ε} be the set of posteriors which result
in a buyer i’s valuation that is at most ε less than that for ξ (notice that∑
ξ̃∈Ξ̃ γξ̃ ≥ 1 − α). Then, we split the posteriors in ∆Θ into three groups,

as follows:

• Ξ1 ⊆ Ξ̃ is composed of all the posteriors ξ̃ ∈ Ξ̃ such that, for every
j ∈ R : j < i, it holds Vj ξ̃ < p′j;

• Ξ2 ⊆ Ξ̃ is composed of all the posteriors ξ̃ /∈ Ξ̃ such that, for every
j ∈ R : j < i, it holds Vj ξ̃ < p′j;
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• Ξ3 ⊆ ∆Θ is composed of all the posteriors ξ̃ ∈ ∆Θ for which there
exists a buyer j(ξ̃) ∈ R : j < i (notice the dependence on ξ̃) such
that j(ξ̃) = min{j ∈ R | Vj ξ̃ ≥ p′j}

Next, we show that, for every posterior ξ̃ ∈ Ξ1 ∪ Ξ3, it holds gp(V ξ̃) =

gp′(max{V ξ̃, V ξ−ε1}), while, for every ξ̃ ∈ Ξ2, it holds gp′(max{V ξ̃, V ξ
− ε1}) ≤ gp′+ε1(V ξ). First, let us consider a posterior ξ̃ ∈ Ξ1. For each
j ∈ R : j < i, it holds Vj ξ̃ ≤ max{Vj ξ̃, Vjξ − ε} < p′j (by definition of
Ξ1, and since buyer j does not buy the item for price p′j). Moreover, since
Viξ̃ ≥ Viξ − ε, it holds Viξ̃ = max{Viξ̃, Viξ − ε} ≥ p′i. Hence, both when
buyers’ valuations are specified by the vector V ξ̃ and when they are given
by max{V ξ̃, V ξ − ε1} (with max applied component-wise), it is the case
that buyer i buys the item at price p′i, resulting in

gp′(V ξ̃) = gp′(max{V ξ̃, V ξ − ε1}).

Now, let us consider a posterior ξ̃ ∈ Ξ2. In this case, max{Viξ̃, Viξ −
ε} = Viξ− ε ≥ p′i, while max{Vj ξ̃, Vjξ− ε} < p′j for every j ∈ R : j < i.
Thus, both when buyers’ valuations are specified by max{V ξ̃, V ξ − ε1}
and when they are given by V ξ − ε1, it is the case that buyer i buys the
item at price p′i, resulting in

gp′(max{V ξ̃, V ξ − 1}) = gp′(V ξ − ε1) ≤ gξ′+ε1(V ξ),

where the inequality holds since buyer i buys the item at price p′i for val-
uations V ξ − ε1 and price vector p′, while the buyer would still buy the
item, though at price p′i + ε ≥ p′i, for valuations V ξ and price vector
p′ + ε1. Finally, let us consider a posterior ξ̃ ∈ Ξ3. We have that, for
every j ∈ R : j < j(ξ̃), it holds Vj ξ̃ ≤ max{Vj ξ̃, Vjξ − ε} < p′j , while
max{Vj(ξ̃)ξ̃, Vj(ξ̃)ξ − ε} ≥ Vj(ξ̃)ξ̃ ≥ p′

j(ξ̃)
. As a result, both when buyers’

valuations are specified by V ξ̃ and when they are given by max{V ξ̃, V ξ−
ε1}, it is the case that buyer j(ξ̃) buys the item at price p′

j(ξ̃)
, resulting in

gp′(V ξ̃) = gp′(max{V ξ̃, V ξ − ε1}).

This allows us to prove Equation (8.4), as follows:

Eξ̃∼γ
[
gp′(max{V ξ̃, V ξ − ε1})

]
− Eξ̃∼γ

[
gp′(V ξ̃)

]
≤
∑
ξ̃∈Ξ2

γξ̃gp′+ε1(V ξ) ≤ αgp′+ε1(V ξ),
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8.5. Public Signaling

where the first inequality comes from the fact that, as previously proved,
gp′(max{V ξ̃, V ξ − ε1}) = gp′(V ξ̃) for every posterior ξ̃ ∈ Ξ1 ∪ Ξ3

and gp′(max{V ξ̃, V ξ − ε1}) ≤ gp′+ε1(V ξ) for every posterior ξ̃ ∈ Ξ2,
while the second inequality is readily obtained by noticing that

∑
ξ̃∈Ξ2 γξ̃ ≤∑

ξ̃/∈Ξ̃ γξ̃ ≤ α.
Given any posterior ξ̃ ∈ ∆Θ, the expression

max
p′∈[0,1]n̄

EV∼V
[
REV(max{V ξ̃, V ξ − ε1},p′)

]
can be interpreted as the optimal seller’s expected revenue when buyers’
valuations are determined by distributions Vε = {Vεi } such that, for ev-
ery buyer i ∈ R, their valuation is sampled by first drawing a valua-
tion vi ∈ [0, 1]d according to Vi and, then, taking max{v>i ξ̃, v>i ξ − ε}.
Moreover, maxp′∈[0,1]n̄ EV∼VREV(V ξ,p′) can be interpreted as the opti-
mal seller’s expected revenue when buyers’ valuations are determined by
distributions V = {Vi} such that valuations are determined by first sam-
pling a vi ∈ [0, 1]d from Vi and, then, taking v>i ξ. It is easy to see that
Prvi∼Vεi {vi ≥ p′i − ε} ≥ Prvi∼Vi {vi ≥ p′i} for every price p′i, so that distri-
butions Vε and V satisfy Definition 8.3. Then, by applying Lemma 8.5,
we can conclude that there exists a price vector p ∈ [0, 1]n̄ such that
REV(Vε,p) ≥ maxp′∈[0,1]n̄ REV(V ,p′) − ε. Thus, for every distribution
γ over ∆Θ that is (α, ε)-decreasing around ξ, we get

Eξ̃∼γ,V∼V
[
gp(V ξ̃)

]
≥ Eξ̃∼γ,V∼V

[
gp(max{V ξ̃, V ξ − ε1})

]
− EV∼V

[
α gp+ε1(V ξ)

]
≥ max

p′∈[0,1]n̄
EV∼V

[
REV(V ξ,p′)

]
− ε− EV∼V

[
α gp+ε1(V ξ)

]
≥ max

p′∈[0,1]n̄
EV∼V

[
REV(V ξ,p′)

]
− ε− max

p′∈[0,1]n̄
EV∼V

[
αREV(V ξ,p′)

]
≥ (1− α) max

p′∈[0,1]n̄
EV∼V

[
REV(V ξ,p′)

]
− ε,

where the first inequality holds by Equation (8.4), while the second one by
Lemma 8.5.

Our PTAS leverages the fact that public signaling schemes can be repre-
sented as probability distributions over buyers’ posteriors (recall that, in the
public signaling setting, all the buyers share the same posterior, as they all
observe the same signal). In particular, the algorithm returns a pair (γ, f◦),
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where γ is a probability distribution over ∆Θ satisfying consistency con-
straints (see Equation (3.4)), while f◦ : ∆Θ → [0, 1]n̄ is a function mapping
each posterior to a price vector. In signaling problem in which the sender
does not play an action, it is well known (see Subsection 3.1.1) that using
distributions over posteriors rather than signaling schemes φ is without loss
of generality. The following lemma shows that the same holds in our case,
i.e., given a pair (γ, f◦), it is always possible to obtain a pair (φ, f) providing
the seller with the same expected revenue.

Lemma 8.8. Given a pair (γ, f◦), where γ is a probability distribution over
∆Θ with

∑
ξ∈supp(γ) γξξθ = µθ for all θ ∈ Θ and f◦ : ∆Θ → [0, 1]n̄, there is

a pair (φ, f) s.t.∑
θ∈Θ

µθ
∑
s∈S

φθ(s)REV(V , f(s), ξs)=
∑

ξ∈supp(γ)

γξREV(V , f◦(ξ), ξ).

Proof. The idea of the proof is to build a signaling scheme φ such that
there is one-to-one correspondence between the buyers’ posteriors induced
by signal profiles s ∈ S under φ and the posteriors in the support of the
distribution γ, i.e., the set of signal profiles is defined as S = {sξ}ξ∈supp(γ).
Thus, in the following we can safely use the notation ξs to the denote the
posterior corresponding to signal profile s ∈ S . We define the signaling
scheme φ : Θ → ∆S so that, for every state θ ∈ Θ, it holds φθ(s) =

γξsξ
s
θ

µθ

for all s ∈ S . Moreover, we define f : S → [0, 1]n̄ so that f(s) = f◦(ξs)
for all s ∈ S. First, notice that the signaling scheme φ is consistent, since,
for every θ ∈ Θ, it holds

∑
s∈S φθ(s) =

∑
s∈S

γξsξ
s
θ

µθ
=
∑
ξ∈supp(γ)

γξξθ
µθ

=
1, where the last two equalities follow from the correspondence between
signal profiles and posteriors in supp(γ) and the fact that

∑
ξ∈supp(γ) γξξθ =

µθ. It is also easy to check that each signal profile s ∈ S indeed induces its
corresponding posterior ξs under the signaling scheme φ. Finally, we have∑

θ∈Θ

µθ
∑
s∈S

φθ(s)REV(V , f(s), ξs)

=
∑
θ∈Θ

µθ
∑

ξ∈supp(γ)

γ(ξ)ξθ
µθ

REV(V , f◦(ξ), ξ)

=
∑

ξ∈supp(γ)

γξREV(V , f ◦(ξ), ξ),

which concludes the proof.

Next, we show that, in order to find an approximately-optimal pair (γ, f◦),
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we can restrict the attention to q-uniform posteriors (with q suitably de-
fined). First, we introduce the following LP that computes an optimal prob-
ability distribution restricted over q-uniform posteriors.

max
γ∈∆Ξq

∑
ξ∈Ξq

γξ max
p∈[0,1]n̄

REV(V ,p, ξ) s.t. (8.5a)∑
ξ∈Ξq

γξ ξθ = µθ ∀θ ∈ Θ. (8.5b)

The following Lemma 8.9 shows the optimal value of LP 8.5 is “close” to
OPT . Its proof is based on the following core idea. Given the signaling
scheme φ in a revenue-maximizing pair (φ, f), letting γ be the distribution
over ∆Θ induced by φ, we can decompose each posterior in the support of γ
according to Corollary 8.1. Then, the obtained distributions over q-uniform
posteriors are consistent according to Equation (3.4), and, thus, they satisfy
Constraints (8.5b). Moreover, since such distributions are also decreasing
around the decomposed posteriors, by Lemma 8.7 each time a posterior is
decomposed there exists a price vector resulting in a small revenue loss.
These observations allow us to conclude that the seller’s expected revenue
provided by an optimal solution to LP 8.5 is within some small additive
loss of OPT .

Lemma 8.9. Given η > 0 and letting q = 128 1
η2 log 6

η
, an optimal solution

to LP 8.5 has value at least OPT − η.

Proof. Given a Bayesian posted price auction with prior µ ∈ ∆Θ and dis-
tributions of buyers’ valuations V , let (φ∗, f∗) be a revenue-maximizing
signaling scheme, price function pair. Then, we define γ∗ as the proba-
bility distribution over posteriors ∆Θ induced by φ∗. Moreover, we de-
fine f◦,∗ : supp(γ∗) → [0, 1]n̄ in such a way that, for every posterior
ξ ∈ supp(γ∗), it holds f◦,∗(ξ) = f∗(s), where s ∈ S is the signal inducing
ξ, namely ξ = ξs.11

Let α = ε = η
2

and q =
32 log 4

α

ε2
. Then, we build a probability distribu-

tion γ over posteriors in ∆Θ by decomposing each posterior ξ ∈ supp(γ∗)
according to Corollary 8.1. Additionally, each time we decompose a pos-
terior, for every newly-introduced posterior ξ ∈ ∆Θ we define the function
f◦ : ∆Θ → [0, 1]n̄ so that f◦(ξ) ∈ arg maxp∈[0,1]n̄REV(V ,p, ξ). Letting

11W.l.o.g., we can safely assume that there is a unique signal inducing ξ. Indeed, if two signals s ∈ S and
s′ ∈ S induce the same posterior, then it is possible to build another signaling scheme, price function pair
(φ∗, f∗) that joins the two signals in a new single signal s∗ ∈ S, by setting φ∗θ(s∗) ← φ∗θ(s) + φ∗θ(s′) and
f∗(s∗) = f(s) if REV(V, f∗(s), ξ) ≥ REV(V, f∗(s′), ξ), while f∗(s) = f∗(s′) otherwise. It is easy to check
that the new signaling scheme cannot decrease the seller’s expected revenue.
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γξ ∈ ∆Ξq be the probability distribution over q-uniform posteriors which
is obtained by decomposing posterior ξ ∈ supp(γ∗) according to Corol-
lary 8.1, we define γ so that γξ =

∑
ξ′∈supp(γ∗) γ

∗
ξ′γ

ξ′

ξ for every ξ ∈ Ξq.
First, let us notice that, for every θ ∈ Θ, it holds∑

ξ∈Ξq

γξξθ =
∑

ξ′∈supp(γ∗)

γ∗ξ′
∑
ξ∈Ξq

γξ
′

ξ ξθ

=
∑

ξ′∈supp(γ∗)

γ∗ξ′ξ
′
θ = µθ,

where the second equality follows from the property of the decomposition
in Theorem 8.2, while the last one from the fact that γ∗ is induced by a
signaling scheme. Moreover, given any posterior ξ ∈ supp(γ∗), let pξ ∈
[0, 1]n̄ be a price vector such that, for every p ∈ [0, 1]n̄, the function gpξ is
(1, α, ε)-stable compared with the function gp in (V , ξ). such price vectors
are guaranteed to exist by Lemma 8.7. Then, the pair (γ, f◦) provides the
seller with an expected revenue of∑
ξ∈Ξq

γξREV(V , f◦(ξ), ξ) =
∑

ξ∈supp(γ∗)

γ∗ξ
∑
ξ′∈Ξq

γξξ′REV(V , f◦(ξ), ξ)

=
∑

ξ∈supp(γ∗)

γ∗ξ
∑
ξ′∈Ξq

γξξ′ max
p∈[0,1]n̄

REV(V ,p, ξ)

≥
∑

ξ∈supp(γ∗)

γ∗ξ
∑
ξ′∈Ξq

γξξ′REV(V ,pξ, ξ)

≥
∑

ξ∈supp(γ∗)

γ∗ξ [(1− α)REV(V , f◦,∗(ξ), ξ)− ε]

= (1− α)
∑

ξ∈supp(γ∗)

γ∗ξREV(V , f ◦,∗(ξ), ξ)− ε

=
(

1− η

2

) ∑
ξ∈supp(γ∗)

γ∗ξREV(V , f◦,∗(ξ), ξ)− η

2

≥
∑

ξ∈supp(γ∗)

γ∗ξREV(V , f◦,∗(ξ), ξ)− η

=
∑
θ∈Θ

µθ
∑
s∈S

φ∗θ(s)REV(V , f ∗(s), ξs)− η,

which allows us to conclude that there exists a pair (γ, f◦) that only uses
q-uniform posteriors and provides the seller with an expected revenue arbi-
trary close to that of an optimal pair.
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Finally, we are ready to provide our PTAS. Its main idea is to solve
LP 8.5 (of polynomial size) for the value of q in Lemma 8.9. This results in
a small revenue loss. The last part missing for the algorithm is computing
the terms appearing in the objective of LP 8.5, i.e., a revenue-maximizing
price vector (together with its revenue) for every q-uniform posterior. In
order to do so, we can use Algorithm 8.1 (see also Lemma 8.6), which
allows us to obtain in polynomial time good approximations of such price
vectors, with high probability.

Theorem 8.3. There exists an additive PTAS for computing a revenue-
maximizing (φ, f) pair with public signaling.

Proof. By Lemma 8.9, given any constant η > 0 and letting q =
128 log 6

η

η2 ,
LP 8.5 has optimal value at leastOPT −η. The polynomial-time algorithm
that proves the theorem solves an approximated version of LP 8.5, which
is obtained by replacing the terms maxp∈[0,1]n̄ REV(V ,p, ξ) with suitable
values U(ξ). The latter are obtained by running Algorithm 8.1 (the values
of ε and τ are defined in the following) for the (non-Bayesian) auctions
in which the buyers’ valuations are those resulting by multiplying samples
drawn from distributions Vi by the posterior ξ. We let (pξ, U(ξ)) be the pair
returned by Algorithm 8.1. By Lemma 8.6, for every q-uniform posterior
ξ ∈ Ξq, Algorithm 8.1 runs in polynomial time and the price vector pξ is
such that, with probability at least 1− τ , it holds

EV∼V
[
gpξ(V ξ)

]
≥ max

p∈[0,1]n̄
EV∼V

[
gp(V ξ)

]
− ε

and
U(ξ) ∈

[
EV∼V

[
gpξ(V ξ)

]
− ε,EV∼V

[
gpξ(V ξ)

]
+ ε
]
.

As a result, with probability at least 1− τ |Ξq|, the previous conditions hold
for every q-uniform posterior.

Next, we show that, with probability at least 1− τ |Ξq|, an optimal solu-
tion to LP 8.5 is close to an optimal solution of the following LP obtained
by replacing the max terms in the objective of LP 8.5 with the values U(ξ):

max
γ∈∆Ξq

∑
ξ∈Ξq

γξU(ξ) s.t. (8.6a)∑
ξ∈Ξq

γξ ξθ = µθ ∀θ ∈ Θ. (8.6b)
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Notice that, for a constant q ∈ N>0, the number of q-uniform posteriors is
at most dq, so that LP 8.6 can be solved in polynomial time, as it involves
O(|Ξq|) variables and constraints.

Let (γ, f◦) be such that γ ∈ ∆Ξq is an optimal solution to LP 8.6 and
f◦ : ∆Θ → [0, 1]n̄ is such that, for every ξ ∈ Ξq, it holds f◦(ξ) = pξ,
which is the price vector obtained by running Algorithm 8.1. Moreover, let
(γ∗, f◦,∗) be an optimal solution to LP 8.5. Then, with probability at least
1− τ |Ξq|,∑
ξ∈Ξq

γξEV∼V
[
gf◦(ξ)(V ξ)

]
≥
∑
ξ∈Ξq

γξU(ξ)− ε

≥
∑
ξ∈Ξq

γ∗ξU(ξ)− ε ≥
∑
ξ∈Ξq

γ∗ξEV∼V
[
gf◦,∗(ξ)(V ξ, f

◦,∗(ξ))
]
− 2ε.

In conclusion, since
∑
ξ∈Ξq γ

∗
ξEV∼V

[
gf◦,∗(ξ)(V ξ, f

◦,∗(ξ))
]
≥ OPT − η by

Lemma 8.9, we have:∑
ξ∈Ξq

γξEV∼V
[
gp(V ξ)

]
≥ OPT − 2ε− η

with probability at least 1− τ |Ξq|. Hence,

E

[∑
ξ∈Ξq

γξREV(V , f◦(ξ), ξ)

]
≥ (1− τdq)OPT − 2ε− η,

where the expectation is over the randomness of the algorithm. Finally,
Lemma 8.8 allows us to recover from (γ, f◦) a signaling scheme with the
same seller’s expected revenue. For any additive approximation factor λ >
0, setting ε = λ

6
, η = λ

3
, and τ = λ

3dq
, we obtain the desired approximation

bound. Moreover, the algorithm runs in polynomial time since η is constant
and the running time of the algorithm is polynomial in ε, τ and the size of
the problem instance.

8.6 Private Signaling

With private signaling, computing a (φ, f) pair amounts to specifying a pair
(φi, fi) for each buyer i ∈ N—composed by a marginal signaling scheme
φi : Θ → ∆Si and a price function fi : Si → [0, 1] for buyer i—, and,
then, correlating the φi so as to obtain a (non-marginal) signaling scheme
φ : Θ→ ∆S . We leverage this fact to design our PTAS.
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With abuse of notation, in this section we use Ξq
i to denote the (all equal)

sets of q-uniform posteriors, one per buyer i ∈ R, while Ξq :=×i∈R Ξq
i is

the set of tuples ξ = (ξ1, . . . , ξn̄) specifying a ξi ∈ Ξq
i for each i ∈ R.

In Subsection 8.6.1, we first show that it is possible to restrict the set
of marginal signaling schemes of a given buyer i ∈ R to those encoded
as distributions over q-uniform posteriors, as we did with public signal-
ing. Then, we provide an LP formulation for computing an approximately-
optimal (φ, f) pair, dealing with the challenge of correlating marginal sig-
naling schemes in a non-trivial way. Finally, in Subsection 8.6.2, we show
how to compute a solution to the LP in polynomial time, which requires the
application of the ellipsoid method in a non-trivial way, due to the features
of the formulation.

8.6.1 LP for Approximate Signaling Schemes

Before providing the LP, we show that restricting marginal signaling schemes
to q-uniform posteriors results in a buyer’s behavior which is similar to
the one with arbitrary posteriors. This amounts to showing that suitably-
defined functions related to the probability of buying are comparatively
stable.

For i ∈ R and pi ∈ [0, 1], let gi,pi : [0, 1]n̄ → {0, 1} be a function that
takes as input a vector of buyers’ valuations and outputs 1 if and only if
vi ≥ pi (otherwise it outputs 0).

Lemma 8.10. Given α, ε > 0 and some distributions V = {Vi}i∈R, for
every buyer i ∈ R, posterior ξi ∈ ∆Θ, and price pi ∈ [0, 1], the function
gi,[pi−ε]+ is (0, α, ε)-stable compared with gi,pi for (ξi,V).

Proof. Let us recall that gi,pi : [0, 1]n̄ → {0, 1} is such that gi,pi(x) =
I[xi ≥ pi] for any value x ∈ [0, 1]n̄. As a first step, we show that, for
every valuation vector vi ∈ [0, 1]d and probability distribution γ over ∆Θ

that is (α, ε)-decreasing around ξ, it holds Eξ̃i∼γI[v
>
i ξ̃i ≥ [pi − ε]+] ≥

(1− α)I[v>i ξi ≥ pi]. Two cases are possible. If I[v>i ξi ≥ pi] = 0, then the
inequality trivially holds. If I[v>i ξi ≥ pi] = 1, by Definition 8.1 we have
that, with probability at least 1 − α, a posterior ξ̃i ∈ ∆Θ randomly drawn
according to γ satisfies v>i ξ̃i ≥ [v>i ξi− ε]+ ≥ [pi− ε]+, which implies that
I[v>i ξ̃i ≥ [pi − ε]+] = 1. Hence, Eξ̃i∼γI[v

>
i ξ̃i ≥ [pi − ε]+] ≥ (1 − α) =

(1 − α)I[v>i ξi ≥ pi], as desired. Since Eξ̃i∼γI[v
>
i ξ̃i ≥ [pi − ε]+] ≥ (1 −

α)I[v>i ξi ≥ pi] for every vi ∈ [0, 1]d, by taking the expectation over vectors
v ∼ V we obtain EV∼VEξ̃i∼γI[Viξ̃i ≥ [pi−ε]+] ≥ (1−α)EV∼VI[Viξi ≥ pi],
which fulfills the condition in Definition 8.2 and proves the result.
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The following remark will be crucial for proving Lemma 8.12. It shows
that, if for every i ∈ R we decompose buyer i’s posterior ξi ∈ ∆Θ by
means of a distribution over q-uniform posteriors (α, ε)-decreasing around
ξi, then the probability with which buyer i buys only decreases by a small
amount.

Remark 8.1. Lemma 8.10 and Theorem 8.2 imply that, given a tuple of pos-
teriors ξ = (ξ1, . . . , ξn̄) ∈×i∈R∆θ and some distributions V = {Vi}i∈R,
for every buyer i ∈ R and price pi ∈ [0, 1], there exists γi ∈ ∆Ξqi

with
q = 32

ε2
log 4

α
s.t.

E
ξ̃i∼γi

[
ξ̃i,θ Pr

V∼V

{
Viξ̃i ≥ [pi − ε]+

}]
≥ ξi,θ(1− α) Pr

V∼V
{Viξi ≥ pi}

and
∑
ξ̃i∈Ξqi

γi
ξ̃i
ξ̃i,θ = ξi,θ for all θ ∈ Θ.

Next, we show that an approximately-optimal pair (φ, f) can be found
by solving LP 8.7 instantiated with suitably-defined q ∈ N>0 and b ∈ N>0.
LP 8.7 employs:

• Variables γi,ξi (for i ∈ R and ξi ∈ Ξq
i ), which encode the distributions

over posteriors representing the marginal signaling schemes φi : Θ→
∆Si of the buyers.

• Variables ti,ξi,pi (for i ∈ R, ξi ∈ Ξq
i , and pi ∈ P b), with ti,ξi,pi encod-

ing the probability that the seller offers price pi to buyer i and buyer
i’s posterior is ξi.

• Variables yθ,ξ,p (for θ ∈ Θ, ξ ∈ Ξq, and p ∈ Pb), with yθ,ξ,p encoding
the probability that the state is θ, the buyers’ posteriors are those spec-
ified by ξ, and the prices that the seller offers to the buyers are those
given by p.

max
γ,t,y≥0

∑
θ∈Θ

∑
ξ∈Ξq

∑
p∈Pb

yθ,ξ,p REV(V ,p, ξ) s.t. (8.7a)

ξi,θti,ξi,pi =
∑

ξ′∈Ξq :ξ′i=ξi

∑
p′∈Pb:p′i=pi

yθ,ξ′,p′

∀θ ∈ Θ,∀i ∈ R,∀ξi ∈ Ξq
i ,∀pi ∈ P b (8.7b)∑

pi∈P b
ti,ξi,pi = γi,ξi ∀i ∈ R,∀ξi ∈ Ξq

i (8.7c)
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∑
ξi∈Ξqi

γiξi ξi,θ = µθ ∀i ∈ R,∀θ ∈ Θ (8.7d)

Variables ti,ξi,pi represent marginal signaling schemes, allowing for multi-
ple signals inducing the same posterior. This is needed since signals may
correspond to different price proposals.12 One may think of marginal sig-
naling schemes in LP 8.7 as if they were using signals defined as pairs
si = (ξi, pi), with the convention that fi(si) = pi. Variables yθ,ξ,p and Con-
straints (8.7b) ensure that marginal signaling schemes are correctly corre-
lated together, by directly working in the domain of the distributions over
posteriors.

To show that an optimal solution to LP 8.7 provides an approximately-
optimal (φ, f) pair, we need the following two lemmas. Lemma 8.11 proves
that, given a feasible solution to LP 8.7, we can recover a pair (φ, f) pro-
viding the seller with an expected revenue equal to the value of the LP
solution. Lemma 8.12 shows that the optimal value of LP 8.7 is “close” to
OPT . These two lemmas imply that an approximately-optimal (φ, f) pair
can be computed by solving LP 8.7.

Lemma 8.11. Given a feasible solution to LP 8.7, it is possible to recover
a pair (φ, f) that provides the seller with an expected revenue equal to the
value of the solution.

Proof. We define the set of signals for buyer i ∈ R as Si := Ξq
i × P b.

Then, we set φ : Θ → ∆S so that, for every θ ∈ Θ and s ∈ S , it holds
φθ(s) =

yθ,ξ,p
µθ

, where the pair (ξ,p) with ξ = (ξ1, . . . , ξn) ∈ Ξq and
p ∈ Pb is such that (ξi, pi) = si for each i ∈ R. Moreover, we set
fi(si) = pi for every buyer i ∈ N and signal si = (ξi, pi) ∈ Si. First, we
show that φ is well defined, that is, for every state of nature θ ∈ Θ, it holds∑

s∈S

φθ(s) =
∑
ξ∈Ξq

∑
p∈Pb

yθ,ξ,p
µθ

=
∑
ξ1∈S1

∑
p1∈P b

ξ1,θt1,ξ1,p1

µθ
=
∑
ξ1∈Ξq1

ξ1,θγ1,ξ1

µθ
=
µθ
µθ

= 1,

where we use Constraints (8.7b) in the second equality, Constraints (8.7c)
in the third one, and Constraints (8.7d) in the last one. Next, we show that,

12Notice that, in a classical setting in which the sender does not have to propose a price (or, in general, select
some action after sending signals), there always exists a signaling scheme with no pair of signals inducing the
same posterior. Indeed, two signals that induce the same posterior can always be joined into a single signal. This
is not the case in our setting, where we can only join signals that induce the same posterior and correspond to the
same price.
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for any ξ ∈ Ξq and p ∈ Pb, it holds REV(V , f(s), ξs) = REV(V ,p, ξ),
where the signal profile s ∈ S is such that si = (ξi, pi) for every i ∈ R.
Clearly, the prices coincide, namely f(s) = p. Thus, it is sufficient to prove
that each signal si = (ξi, pi) induces posterior ξi for buyer i ∈ R. For
every θ ∈ Θ, it holds

µθ
∑

s′∈S:s′i=si

φθ(s
′) =

∑
ξ′∈Ξq ,p′∈Pb:(ξ′i,p′i)=si

yθ,ξ′,p′ = ξi,θti,ξi,pi .

Hence, for every θ ∈ Θ,

ξsiθ =
µθφi,θ(si)∑

θ′∈Θ µθ′φi,θ′(si)

=
µθ
∑

s′∈S:s′i=si
φθ(s

′)∑
θ′∈Θ µθ′

∑
s′∈S:s′i=si

φθ′(s′)
=
ξi,θti,ξi,pi
ti,ξi,pi

= ξi,θ.

Thus, the seller’s expected revenue for the pair (φ, f) is∑
s∈S

∑
θ∈Θ

µθφθ(s)REV(V , f(s), ξs) =
∑
ξ∈Ξq

∑
p∈Pb

∑
θ∈Θ

µθ
yθ,ξ,p
µθ

REV(V ,p, ξ)

=
∑
θ∈Θ

∑
ξ∈Ξq

∑
p∈Pb

yθ,ξ,pREV(V ,p, ξ),

which proves the lemma.

Lemma 8.12. For every η > 0, there exist b(η), q(η) ∈ N>0 such that
LP 8.7 has optimal value at least OPT − η.

Proof. We show that, given a revenue-maximizing pair (φ, f) (with seller’s
revenue OPT ), we can recover an optimal solution to LP 8.7 whose value
is at least OPT − η when the LP is instantiated with suitable constants
b(η) ∈ N>0 and q(η) ∈ N>0 (depending on the approximation level η). Let
α = ε = η

3
, b = d 3

η
e, and q =

32 log 4
α

ε2
. Recalling that ξsi ∈ ∆Θ denotes

buyer i’s posterior induced by signal si ∈ Si, we let γsi ∈ ∆Ξqi
be the

probability distribution over q-uniform posteriors obtained by decomposing
ξsi according to Theorem 8.2. By Lemma 8.10 and Theorem 8.2, it follows
that, for every pi ∈ [0, 1] and θ ∈ Θ,∑
ξi∈Ξqi

γsiξiξi,θPrvi∼Vi
{
v>i ξi ≥ [pi − ε]+

}
≥ ξsiθ (1− α)Prvi∼Vi

{
v>i ξi ≥ pi

}
.

(8.8)
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For every signal profile s ∈ S , we define a non-Bayesian posted price
auction in which the distributions of buyers’ valuations are Vs = {Vsi }i∈N ,
where each Vsi is such that a valuation vi ∼ Vsi is obtained by first sam-
pling ṽi ∼ Vi and then letting vi = ṽ>i ξ

si . Moreover, we let ps ∈ [0, 1]n̄

be a price vector for the seller in such non-Bayesian auction, with psi ≥
REV>i(Vs,ps) for every i ∈ R. By Lemma 8.4, such a vector always ex-
ists. Finally, given ps, we let p̂s ∈ [0, 1]n̄ be such that each price p̂si is the
greatest price pi ∈ P b (among discretized prices) satisfying the inequality
pi ≤ [psi − ε]+; formally,

psi = max
{
pi ∈ P b | pi ≤ [psi − ε]+

}
.

Next, we define the optimal solution to LP 8.7 that we need to prove the
result:

• γi,ξi =
∑

si∈Si

∑
θ∈Θ µθφi,θ(si)γ

si(ξi) for every i ∈ R and ξi ∈ Ξq
i .

• ti,ξi,pi =
∑

si∈Si

∑
θ∈Θ µθφi,θ(si)γ

si
ξi
I {pi = p̂si} for every i ∈ R, ξi ∈

Ξq
i , and pi ∈ P b.

• yθ,ξ,p =
∑

s∈S µθφθ(s)
∏

i∈R
ξi,θγ

si
ξi

ξ
si
θ

I[pi = p̂si ] for every θ ∈ Θ, ξ ∈
Ξq, and p ∈ Pb.

The next step is to show that, for every signal profile s ∈ S, the seller’s
expected revenue obtained by decomposing each signal si according to
Theorem 8.2 is “close” to the one for s. Formally, we show that, for ev-
ery s ∈ S and θ ∈ Θ,∑

ξ∈Ξq

∏
i∈R

ξi,θγ
si
ξi

ξsiθ
REV(V , p̂s, ξ) ≥ REV(V , f(s), ξs)−

(
α + ε+

1

b

)
.

(8.9)

In order to do so, we relate the LHS of Equation (8.9) to the seller’ revenue
in a non-Bayesian posted price auction. In particular, we show that it is
equivalent to the seller’s revenue when employing price vector p̂s in the
auction defined by the distributions of buyers’ valuations V̂s,θ = {V̂s,θi }i∈R,
where each V̂s,θ

i is such that a valuation vi ∼ V̂s,θ
i is defined as vi = ṽ>i ξ̃i,

with ṽi ∼ Vi and ξ̃i ∈ ∆Θ sampled from a distribution such that

Pr
{
ξ̃i = ξi

}
=
ξi,θ
ξsiθ

γsiξi .
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Notice that each V̂s,θi is well defined, since Vi is by definition a probability
distribution and

∑
ξi∈Ξqi

ξi,θ
ξ
si
θ

γsiξi = 1 by Theorem 8.2, defining a probability
distribution over the posteriors. Moreover, it is easy to check that valua-
tions sampled from distributions V̂s,θi are independent among each other.
Finally, REV(V̂s,θ, p̂s) is equal to to the LHS of Equation (8.9), since, by
an inductive argument, for every i ∈ R, it holds

∑
ξ′∈Ξq :ξ′i=ξi

∏
j∈R

ξ′j,θγ
sj
ξ′j

ξ
sj
θ

=
ξi,θ
ξsiθ

γsiξi ,

where the equality comes from the fact that, for every j ∈ N , it is the case
that ∑

ξj∈Ξqj

ξj,θγ
sj
ξj

ξ
sj
θ

= 1. (8.10)

Let also notice that, in the auction defined above, the probability with which
a buyer i ∈ R has a valuation greater than or equal to psi is∑

ξi∈Ξqi

ξi,θγ
si
ξi

ξsiθ
Prṽi∼Vi(ṽ

>
i ξi ≥ psi ) ≥ (1− α)Prṽi∼Vi(ṽ

>
i ξ

si ≥ psi ),

where the inequality holds by Equation (8.8). First, we compare the seller’s
revenue in the two non-Bayesian, namely REV(Vs,ps) and REV(V̂s,θ, p̂s).
In particular, we show by induction that REV(V̂s,θ, p̂s) ≥ REV(Vs,ps) −
α − ε − 1

b
. Let REV≥i(V ,p) be the seller’s expected revenue for p in the

auction restricted to all buyers j ∈ R : j ≥ i. The base case is

REV≥n̄(V̂s,θ, p̂s) = p̂sn̄ Prvn̄∼V̂s,θ
n̄
{vn̄ ≥ p̂sn̄}

≥ p̂sn̄(1− α)Prvn̄∼Vs
n̄
{vn̄ ≥ psn̄}

≥ psn̄ Prvn̄∼Vs
n̄
{vn̄ ≥ psn̄} − ε− α−

1

b

= REV≥n̄(Vs,ps)− ε− α− 1

b
.

By induction, let us assume that the condition holds for i+ 1, then

REV≥i(V̂s,θ, p̂s)

= p̂siPrvi∼V̂s,θ
i
{vi ≥ p̂si}+

(
1− Prvi∼V̂s,θ

i
{vi ≥ p̂si}

)
REV>i(V̂s,θ, p̂s)
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≥
(
psi − ε−

1

b

)
Prvi∼V̂s,θ

i
{vi ≥ p̂si}

+
(

1− Prvi∼V̂s,θ
i
{vi ≥ p̂si}

) (
REV>i(Vs, ps)− ε− α−

1

b

)
= psiPrvi∼V̂s,θ

i
{vi ≥ p̂si}

+
(

1− Prvi∼V̂s,θ
i
{vi ≥ p̂si}

)
(REV>i(Vs,ps)− α)− ε− 1

b
≥ psi (1− α)Prvi∼Vs

i
{vi ≥ psi}

+
[
1− (1− α)Prvi∼Vs

i
{vi ≥ psi}

]
(REV>i(Vs,ps)− α)− ε− 1

b

≥ REV≥i(Vs,ps)− ε− α− 1

b
,

where the second to last inequality follows from psi ≥ REV>i(Vs,ps) and
Prvi∼V̂s,θ

i
{vi ≥ p̂si} ≥ (1 − α)Prvi∼Vs

i
{vi ≥ psi}. Hence, Equation (8.9) is

readily proved, as follows∑
ξ∈Ξq

∏
i∈R

ξi,θγ
si(ξi)

ξsiθ
REV(V , p̂s, ξ) ≥ REV(Vs,ps)−

(
α + ε+

1

b

)
≥ REV(V , f(s), ξs)−

(
α + ε+

1

b

)
,

Now, we are ready to bound the objective of LP 8.7, as follows:∑
θ∈Θ

∑
ξ∈Ξq

∑
p∈Pb

yθ,ξ,pREV(V ,p, ξ)

=
∑
θ∈Θ

∑
ξ∈Ξq

∑
p∈Pb

∑
s∈S

µθφθ(s)
∏
i∈R

ξi,θγ
si(ξi)

ξsiθ
I[p̂si = pi]REV(V ,p, ξ)

=
∑
s∈S

∑
θ∈Θ

µθφθ(s)
∑
ξ∈Ξq

∑
p∈Pbs

∏
i∈R

ξi,θγ
si(ξi)

ξsiθ
I[p̂si = pi]REV(V ,p, ξ)

≥
∑
s∈S

∑
θ∈Θ

µθφθ(s)

[
REV(V , f(s), ξs)−

(
α + ε+

1

b

)]
≥ OPT −

(
α + ε+

1

b

)
≥ OPT − η.

We conclude the proof showing that the defined solution is feasible for
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LP 8.7. First, it prove that, for every i ∈ R and θ ∈ Θ,∑
ξi∈Ξqi

ξi,θγi,ξi =
∑
ξi∈Ξqi

ξi,θ
∑
si∈Si

∑
θ′∈Θ

µθ′φi,θ′(si)γ
si
ξi

=
∑
si∈Si

∑
θ′∈Θ

µθ′φi,θ′(si)
∑
ξi∈Ξqi

ξi,θγ
si
ξi

=
∑
si∈Si

∑
θ′∈Θ

µθ′φi,θ′(si)ξ
si
θ

=
∑
si∈Si

∑
θ′∈Θ

µθ′φi,θ′(si)
µθφi,θ(si)∑

θ′∈Θ µθ′φi,θ′(si)

=
∑
si∈Si

µθφθ(si) = µθ.

Moreover, for every i ∈ R and ξi ∈ Ξq
i , it holds∑

pi∈P b
ti,ξi,pi =

∑
pi∈P b

∑
si∈Si

∑
θ∈Θ

µθφi,θ(si)γ
si
ξi
I[pi = p̂si ] =

∑
si∈Si

∑
θ∈Θ

µθφi,θ(si)γ
si
ξi

∑
pi∈P b

I[pi = p̂si ] =

∑
si∈Si

∑
θ∈Θ

µθφi,θ(si)γ
si
ξi

= γi,ξi .

Finally, for every θ ∈ Θ, i ∈ R, ξi ∈ Ξq
i , and pi ∈ P b, it holds∑

ξ′∈Ξq :ξ′i=ξi

∑
p′∈Pb:p′i=pi

yθ,ξ′,p′

=
∑

ξ′∈Ξq :ξ′i=ξi

∑
p′∈Pb:p′i=pi

∑
s∈S

µθφθ(s)
∏
j∈R

ξ′j,θ
ξ
sj
θ

γ
sj
ξ′j
I[pj = p̂sj]

=
∑
s∈S

µθφθ(s)
∑

ξ′∈Ξq :ξ′i=ξi

∑
p′∈Pb:p′i=pi

∏
j∈R

ξ′j,θ
ξ
sj
θ

γ
sj
ξ′j
I[pj = p̂sj]

=
∑
s∈S

µθφθ(s)
ξi,θ
ξsiθ

γsiξiI[pi = p̂si ] (From Equation (8.10))

=
∑
si∈Si

µθφi,θ(si)
ξi,θ
ξsiθ

γsiξiI[pi = p̂si ]

= ξi,θ
∑
si∈S

µθφi,θ(si)

∑
θ′∈Θ φi,θ′(si)

µθφi,θ(si)
γsiξiI[pi = p̂si ]
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= ξi,θ
∑
si∈S

∑
θ′∈Θ

µθ′φi,θ′(si)γ
si
ξi
I[pi = p̂si ] = ξi,θti,ξi,pi .

This concludes the proof.

8.6.2 PTAS for Private Signaling

We provide an algorithm that approximately solves LP 8.7 in polynomial
time, which completes our PTAS for computing a revenue-maximizing pair
(φ, f) in the private setting. The core idea of our algorithm is to apply the
ellipsoid method on the dual of LP 8.7.13 In particular, our implementation
of the ellipsoid algorithm uses an approximate separation oracle that needs
to solve the following optimization problem.

Definition 8.4 (MAX-LINREV). Given some distributions of buyers’ val-
uations V = {Vi}i∈R such that each Vi has finite support and a vector
w ∈ [0, 1]n̄×|Ξ

q
i |×|P

b|, solve

max
ξ∈Ξq ,p∈Pb

REV(V ,p, ξ) +
∑
i∈R

wi,ξi,pi .

As a first step, we provide an FPTAS for MAX-LINREV using a dy-
namic programming approach. This will be the main building block of our
approximate separation oracle.14

The FPTAS works as follows. Given an error tolerance δ > 0, it first
defines a step size 1

c
, with c = d n̄

δ
e, and builds a set A = {0, 1

c
, 2
c
, . . . , n̄}

of possible discretized values for the linear term appearing in the MAX-
LINREV objective. Then, for every buyer i ∈ R (in reversed order) and
value a ∈ A, the algorithm computes M(i, a), which is an approximation
of the largest seller’s revenue provided by a pair (ξ,p) when considering
buyers i, . . . , n̄ only, and restricted to pairs (ξ,p) such that the inequality∑

j∈R:j≥iwj,ξj ,pj ≥ a is satisfied. By letting zi := Prvi∼Vi
{
v>i ξi ≥ pi

}
,

the value M(i, a) can be defined by the following recursive formula:15

M(i, a) := max
ξi∈Ξqi ,pi∈P

b

a′∈A:wi,ξi,pi+a
′≥a

zipi + (1− zi)M(i+ 1, a′).

Finally, the algorithm returns maxa∈A {M(1, a) + a}. Thus:
13To be precise, we apply the ellipsoid method to the dual of a relaxed version of LP 8.7, since we need an

over-constrained dual.
14Notice that, since MAX-LINREV takes as input distributions with a finite support, we can safely assume that

such distributions can be explicitly represented in memory. In our PTAS, the inputs to the dynamic programming
algorithm are obtained by building empirical distributions thorough samples from the actual distributions of
buyers’ valuations, thus ensuring finiteness of the supports.

15Notice that, given a pair (ξ,p) with ξ ∈ Ξq and p ∈ Pb, it is possible to compute in polynomial time the
probability with which a buyer i ∈ R buys the item.
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Algorithm 8.2 Approximate Dynamic Programming algorithm for MAX-LINREV
Inputs: Discretization error tolerance δ > 0; vector of linear components w ∈
[0, 1]n×|Ξ

q
i |×|P b|; finite-support distributions of buyers’ valuations V = {Vi}i∈R

1: c← dnδ e
2: A← {0, 1

c ,
2
c , . . . ,

nδ
c }

3: Initialize an empty matrix M with dimension n× |A|
4: for a ∈ A do
5: M(n, a)← max

ξn∈Ξqn,pn∈P b:wn,ξn,pn≥a

{
Pr

vn∼Vn

{
v>n ξn ≥ pn

}
pn

}
6: end for
7: for i = n− 1, . . . , 1 (in reversed order) do
8: for a ∈ A do
9: M(i, a)← max

ξi∈Ξqi ,pi∈P b,a′∈A:

wi,ξi,pi+a
′≥a

{
Pr

vi∼Vi

{
v>i ξi ≥ pi

}
pi

+
(
1− Prvi∼Vi

{
v>i ξi ≥ pi

})
M(i+ 1, a′)

}
10: end for
11: end for
12: return maxa∈A {M(1, a) + a}

Lemma 8.13. For any δ > 0, there exists a dynamic programming al-
gorithm that provides a δ-approximation (in the additive sense) to MAX-
LINREV. Moreover, the algorithm runs in time polynomial in the size of
the input and 1

δ
.

Proof. The algorithm is described in Algorithm 8.2. It works in polynomial
time since the matrix M has n̄|A| = O(1

δ
n̄3) entries and each entry is

computed in polynomial time. This proves the second part of the statement.
In the following, we denote with REV≥i(V ,p, ξ) the seller’s expected

revenue in the Bayesian posted price auction when they select price vec-
tor p ∈ Pb and the buyers’ posteriors are specified by the tuple ξ =
(ξ1, . . . , ξn̄) ∈ Ξq.

Let S(i, a) := {(ξ,p) ∈ Ξq × Pb |
∑

j≥iwj,ξj ,pj ≥ a} for every i ∈ R
and a ∈ A. Moreover, for every a′ ∈ A, let S̄(i, a, a′) = {(ξ,p) ∈ Ξq×Pb |
wi,ξi,pi ≥ a′ ∧

∑
j>iwj,ξj ,pj ≥ a − a′}. First, we prove by induction that

M(i, a − n−i
c

) ≥ max(ξ,p)∈S(i,a) REV(V ,p, ξ) for every i ∈ R and a ∈ A.
For i = n̄, the condition trivially holds by Line 5. For i < n̄,

max
(ξ,p)∈S(i,a)

REV≥i(V ,p, ξ)

= max
a′∈[0,1]

max
(ξ,p)∈S̄(i,a,a′)

REV≥i(V ,p, ξ)
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= max
a′∈[0,1]

max
(ξ,p)∈S̄(i,a,a′)

pi Pr
vi∼Vi
{v>i ξi ≥ pi}

+

(
1− Pr

vi∼Vi
{v>i ξi ≥ pi}

)
REV≥i+1(V ,p, ξ)

≤ max
a′∈A

max
(ξ,p)∈S̄(i,a− 1

c
,a′)
pi Pr

vi∼Vi
{v>i ξi ≥ pi}

+

(
1− Pr

vi∼Vi
{v>i ξi ≥ pi}

)
REV≥i+1(V ,p, ξ)

= max
a′∈A

max
ξi∈Ξqi ,pi∈P b:wi,ξi,pi≥a

′
pi Pr

vi∼Vi
{v>i ξi ≥ pi}

+

(
1− Pr

vi∼Vi
{v>i ξi ≥ pi}

)
max

(ξ,p)∈S(i+1,a−a′− 1
c
)
REV≥i+1(V ,p, ξ)

≤ max
a′∈A

max
ξi∈Ξqi ,pi∈P b:wi,ξi,pi≥a

′
pi Pr

vi∼Vi
{v>i ξi ≥ pi}

+

(
1− Pr

vi∼Vi
{v>i ξi ≥ pi}

)
M

(
i+ 1, a− a′ − 1

c
− n̄− i− 1

c

)
= max

a′∈A,ξ∈Ξq ,p∈Pb:wi,ξi,pi+a
′≥a− n̄−i

c

pi Pr
vi∼Vi
{v>i ξi ≥ pi}

+

(
1− Pr

vi∼Vi
{v>i ξi ≥ pi}

)
M(i+ 1, a′)

= M

(
i, a− n̄− i

c

)
.

In conclusion, let OPTREV the revenue term in the value of an optimal solu-
tion to MAX-LINREV, while a ∈ [0, n̄] is the sum of the linear components
in such optimal solution (the second term in the value of the solution). Let
a∗ be the greatest element in A such that a∗ ≤ a − n̄−1

c
. Notice that a∗ ≥

a− n̄
c
. Moreover, we have that M(1, a∗) ≥ max(ξ,p)∈S(i,a) REV(V ,p, ξ) =

OPTREV.16 Hence, there exists a solution with value M(1, a∗) + a∗ ≥
OPTREV + a− n̄

c
= OPT − n̄

c
≥ OPT − δ, concluding the proof.

Now, we are ready to prove the main result of this section.

Theorem 8.4. There exists an additive PTAS for computing a revenue-
maximizing (φ, f) pair with private signaling.

Proof. We start providing the following relaxation of LP 8.7:

max
γ,x,y≥0

∑
θ∈Θ

∑
ξ∈Ξq

∑
p∈Pb

yθ,ξ,pREV(V , ξ,p) s.t. (8.11a)

16It is easy to see that, if a < n̄−1
c

, then the equality holds for a = 0.
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ξi,θti,ξi,pi ≥
∑

ξ′∈Ξ:ξ′i=ξi

∑
p′∈Pb:p′i=pi

yθ,ξ′,p′ (8.11b)

∀θ ∈ Θ,∀i ∈ R,∀ξi ∈ Ξq
i ,∀pi ∈ P b (8.11c)∑

pi∈P b
ti,ξi,pi = γi,ξi ∀i ∈ R,∀ξi ∈ Ξq

i (8.11d)

∑
ξi∈Ξq

γi,ξi ξi,θ = µθ ∀i ∈ R,∀θ ∈ Θ (8.11e)

The PTAS that we build in the rest of the proof works with the dual of
LP 8.11 so as to take advantage of the fact that it is more constrained than
that of the original LP 8.7. As a first step, the following lemma shows that
LP 8.7 and LP 8.11 are equivalent.

Lemma 8.14. LP 8.7 and LP 8.11 have the same optimal value. Moreover,
given a feasible solution to LP 8.11, it is possible compute in polynomial
time a feasible solution to LP 8.7 with a greater or equal value.

Proof. To show the equivalence between the two LPs, it is sufficient to
show that, given a feasible solution to LP 8.11, we can construct a solu-
tion to LP 8.7 with a greater or equal value. Let (y, t,γ) be a solution
to LP 8.11. For every i ∈ R, ξi ∈ Ξq

i , pi ∈ P b, let δi,ξi,pi := ξi,θti,ξi,pi −∑
ξ′∈Ξq :ξ′i=ξi

∑
p′∈Pb:p′i=pi

yθ,ξ′,p′ . Moreover, let ι = µθ−
∑
ξ∈Ξq ,p∈Pb yθ,ξ,p.

First, we show that
∑
ξi∈Ξqi ,pi∈P b

δi,ξi,pi = ι for every i ∈ R. For each
i ∈ R, it holds

∑
ξi∈Ξqi

∑
pi∈P b

δi,ξi,pi =
∑
ξi∈Ξqi

∑
pi∈P b

ξi,θti,ξi,pi − ∑
ξ′∈Ξq :ξ′i=ξi

∑
p′∈Pb:p′i=pi

yθ,ξ′,p′


=
∑
ξi∈Ξqi

ξi,θγi,ξi −
∑
ξ′∈Ξq

∑
p′∈Pb

yθ,ξ′,p′

= µθ −
∑
ξ∈Ξq

∑
p∈Pb

yθ,ξ,p = ι.

Next, we build a feasible solution (ȳ, t,γ) to LP 8.7 with ȳθ,ξ,p ≥ yθ,ξ,p
for all θ ∈ Θ, ξ ∈ Ξq, and p ∈ Pb. In particular, we set ȳθ,ξ,p = yθ,ξ,p +∏
i∈R δi,ξi,pi
ιn̄−1 . Since δi,ξi,pi ≥ 0 and ι ≥ 0 by the feasibility of (y, t,γ), it

holds that ȳθ,ξ,p ≥ yθ,ξ,p. Moreover, for each i ∈ R, θ ∈ Θ, ξi ∈ Ξq
i , and
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pi ∈ P b, we have that∑
ξ′∈Ξq :ξ′i=ξi

∑
p′∈Pb:p′i=pi

ȳθ,ξ′,p′

=
∑

ξ′∈Ξq :ξ′i=ξi

∑
p′∈Pb:p′i=pi

yθ,ξ′,p′ +
∑

ξ′∈Ξq :ξ′i=ξi

∑
p′∈Pb:p′i=pi

∏
j∈R δj,ξj ,pj
ιn̄−1

=
∑

ξ′∈Ξq :ξ′i=ξi

∑
p′∈Pb:p′i=pi

yθ,ξ,p′ + δi,ξi,pi = ti,ξi,pi ,

where the second equality follows from
∑
ξj∈Ξqj ,pj∈P b

δj,ξj ,pj = ι for every

j ∈ R. Since REV(V ,p, ξ) ≥ 0 for every p ∈ Pb and ξ ∈ Ξq, it follows
that the value of (ȳ, t,γ) is greater than or equal to the value of (ȳ, t,γ).

Our PTAS is described in Algorithm 8.3.

Algorithm 8.3 PTAS for the private signaling setting
Input: Error β, approximation factor of the approximation oracle δ, q defining the set of
q-uniform posteriors, # of discretization steps b, number of samples K.

1: Initialization: ρ1 ← 0, ρ2 ← 1, H ← ∅,H∗ ← ∅.
2: obtain an empirical distribution of valuations VK sampling K samples from V .
3: while ρ2 − ρ1 > β do
4: ρ3 ← (ρ1 + ρ2)/2
5: H ← {violated constraints returned by the ellipsoid method on F

with objective ρ3 and approximation error δ}
6: if unfeasible then
7: ρ1 ← ρ3

8: H∗ ← H
9: else

10: ρ2 ← ρ3

11: end if
12: return the solution to LP 8.16 with only constraints in H∗

13:end while

Since we only have access to an oracle returning samples from distribu-
tions V , our algorithm works with empirical distributions VK built from K
i.i.d samples, for a suitably-defined K ∈ N>0. The algorithm works with
LP 8.11 for the values b ∈ N>0 and q ∈ N>0 defined in the following, find-
ing an approximate solution to LP 8.11. Since LP 8.11 has an exponential
number of variables, the algorithm works by applying the ellipsoid method
to its dual formulation, as described in the following.
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Let a ∈ Rn̄×|Θ|, γ ∈ R−|Θ|×n̄×|Ξ
q
i |×|P

b|, and c ∈ Rn̄×|Ξqi |. Then, the dual
of LP 8.11 reads as follow.

min
a,γ≤0,c

∑
i∈R

∑
θ∈Θ

µθai,θ s.t. (8.12a)∑
i∈R

−wθ,i,ξi,pi ≥ REV(VK ,p, ξ) ∀θ ∈ Θ,∀ξ ∈ Ξq,∀p ∈ Pb (8.12b)∑
θ∈Θ

ξi,θwθ,i,ξi,pi + ci,ξi ≥ 0 ∀i ∈ R,∀ξi ∈ Ξq
i ,∀pi ∈ P b (8.12c)

− ci,ξi +
∑
θ∈Θ

ξi,θai,θ ≥ 0 ∀i ∈ R,∀ξi ∈ Ξq
i . (8.12d)

Notice that, by using the dual of LP 8.11 instead of that of LP 8.7, we
get the additional constraint w ≤ 0. LP 8.12 has a polynomial number
of variables and a polynomial number of Constraints (8.12c) and (8.12d).
Hence, to solve the LP using the ellipsoid method we need a separation
oracle for Constraints (8.12b), which are exponentially many. Instead of an
exact separation oracle, we use an approximate separation oracle that em-
ploys Algorithm 8.2 with a suitably-defined δ > 0. We use a binary search
scheme to find a value ρ? ∈ [0, 1] such that the dual problem with objec-
tive ρ? is unfeasible, while the dual with objective ρ? + β is approximately
feasible, for some β ≥ 0 defined in the following. The algorithm requires
log(β) steps and, at each step, it works by determining, for a given value ρ3,
whether there exists a feasible solution for the following feasibility problem
that we call F :∑

i∈R

∑
θ∈Θ

µθai,θ ≤ ρ3 (8.13a)

REV(V , p, ξ) +
∑
i∈R

wθ,i,ξi,pi ≤ 0 ∀θ ∈ Θ,∀ξ ∈ Ξq,∀p ∈ Pb (8.13b)∑
θ∈Θ

ξi,θwθ,i,ξi,pi + ci,ξ ≥ 0 ∀i ∈ R,∀ξi ∈ Ξq
i ,∀pi ∈ P b (8.13c)

− ci,ξi +
∑
θ∈Θ

ξi,θai,θ ≥ 0 ∀i ∈ R,∀ξi ∈ Ξq
i (8.13d)

wθ,i,ξi,pi ≤ 0 ∀θ ∈ Θ,∀i ∈ R,∀ξi ∈ Ξq
i ,∀pi ∈ P b (8.13e)

At each iteration of the bisection algorithm, the feasibility problem F is
solved via the ellipsoid method. To do so, we need a separation oracle.
We use an approximate separation oracle that returns a violated constraint
that will be defined in the following. The bisection procedure terminates
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when it determines a value ρ? such that on F the ellipsoid method returns
unfeasible for ρ?, while returning feasible for ρ?+β. Finally, the algorithm
solves a modified primal LP 8.16 with only the subset of variables y in H∗,
where H∗ is the set of violated constraints returned by the ellipsoid method
applied on the unfeasible problem with objective ρ∗. From this solution, we
can use Lemma 8.14 to find a solution to LP 8.7 with the same value and
Lemma 8.11 to find a signaling scheme with the same seller’s revenue as
the value of the solution.

Approximate Separation Oracle. Our separation oracle works as follow. Given
a point (a,w, c) in the dual space, we check if a constraint relative to the
variables t and γ of the primal is violated. Since there are a polynomial
number of these constraints, it can be done in polynomial time. If it is the
case, we return that constraint. Otherwise, our idea is to use Algorithm 8.2
with a δ defined in the following to find if a constraint relative to variable y
is violated. We apply Algorithm 8.2, once for each possible state θ ∈ Θ. In
the following, we assume that θ is fixed and we denote wθ,i,ξi,pi as wi,ξi,pi .
Algorithm 8.2 needs values such that wi,ξi,pi ∈ [0, 1] for all i ∈ R, ξi ∈ Ξq

i ,
and pi ∈ P b. We show that we can restrict the inputs to wi,ξi,pi ∈ [−1, 0].17

By constraint w ≤ 0, all wi,ξi,pi are non-positive. Otherwise, this constraint
is violated and would have been returned in the first step. Moreover, given
a vector w, we give as input to the oracle a vector w̄ such that w̄i,ξi,pi = −1
whenever wi,ξi,pi < −1.

If for at least one state θ a violated constraint is found by Algorithm 8.2,
we return that constraint, otherwise we return feasible. Our separation ora-
cle has two properties. When it returns a violated constraint, the constraint
is actually violated. In particular, if

∑
i∈R w̄θ,i,ξi,pi + REV(VK ,p, ξ) > 0,

then w̄θ,i,ξi,pi > −1 for every i ∈ R, implying w̄θ,i,ξi,pi = wθ,i,ξi,pi and∑
i∈Rwθ,i,ξi,pi + REV(VK ,p, ξ) =

∑
i∈R w̄θ,i,ξi,pi + REV(VK ,p, ξ) > 0,

Additionally, when the separation oracle returns feasible, then all the con-
straints relative to the variables y are violated by at most δ. Suppose by
contradiction that a constraint for a triple (θ, ξ,p) is violated by more than
δ. Then, the separation oracle would have found θ∗ ∈ Θ, ξ∗ ∈ Ξq, and
p∗ ∈ Pb such that:

∑
i∈R w̄θ∗,i,ξ∗i ,p∗i + REV(VK ,p∗, ξ∗) ≥

∑
i∈R w̄θ,i,ξi,pi +

REV(VK ,p, ξ)− δ ≥
∑

i∈Rwθ,i,ξi,pi + REV(VK ,p, ξ)− δ > 0, and, thus,
it would have returned this violated constraint.

Approximation Guarantee. The algorithm finds a ρ∗ such that the problem is
unfeasible, i.e., the value of ρ1 when the algorithm terminates, and a value

17It is easy to see that summing 1 to all the elements of the vector w does not change the problem.
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smaller than or equal to ρ∗ + β such that the ellipsoid method returns fea-
sible, i.e., the value of ρ2 when the algorithm terminates. For each possible
distribution of the samples VK , letOPT VK be the optimal value of LP 8.12.
As a first step, we bound the value of OPT VK . In particular, we show that
OPT V

K ≤ ρ∗ + β + δ. Since, the bisection algorithm returns that F is
feasible with objective ρ∗ + β, it finds a solution (a,w, c) such that all the
constraints regarding variables t and γ of the primal are satisfied and the
approximate separation oracle did not find a violated constraint for the con-
straints regarding variables y. We show that (a,w, c) is a solution to the
following LP.∑
i∈R

∑
θ∈Θ

µθai,θ ≤ ρ∗ + β (8.14a)∑
i∈R

−wθ,i,ξi,pi ≥ REV(Vk,p, ξ)− δ ∀θ ∈ Θ, ∀ξ ∈ Ξq, ∀p ∈ Pb (8.14b)∑
θ∈Θ

ξi,θwθ,i,ξi,pi + ci,ξi ≥ 0 ∀i ∈ R,∀ξi ∈ Ξq
i ,∀pi ∈ P b (8.14c)

− ci,ξi +
∑
θ∈Θ

ξi,θai,θ ≥ 0 ∀i ∈ R,∀ξi ∈ Ξq
i (8.14d)

wθ,i,ξi,pi ≤ 0 ∀θ ∈ Θ,∀i ∈ R, ∀ξi ∈ Ξq
i , ∀pi ∈ P b (8.14e)

All the Constraints (8.14c) and (8.14d) are satisfied since the separation or-
acle checks them explicitly, while we have shown that, when the separation
oracle return feasible, it holds

∑
i∈Rwθ,i,ξi,pi + REV(VK ,p, ξ) ≤ δ for all

θ ∈ Θ, ξ ∈ Ξq
i , and p ∈ Pb, implying that all the Constraints (8.14b) are

satisfied.
Then, by strong duality the value of the following LP is at most ρ∗ + β.

max
y,t,γ

∑
θ∈Θ

∑
ξ∈Ξq

∑
p∈Pb

yθ,ξ,p
(
REV(Vk,p, ξ)− δ

)
s.t. (8.15a)

ξi,θti,ξi,pi ≥
∑

ξ′∈Ξq :ξ′i=ξi

∑
p′∈Pb:p′i=pi

yθ,ξ,p

∀θ ∈ Θ,∀i ∈ R,∀ξi ∈ Ξq
i ,∀pi ∈ P b (8.15b)∑

p∈P b
tr,ξi,p = γi,ξi ∀i ∈ R,∀ξi ∈ Ξq

i (8.15c)

∑
ξi∈Ξqi

γi,ξiξi,θ = µθ ∀i ∈ R,∀θ ∈ Θ (8.15d)
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Notice that any solution to LP 8.11 is also a feasible solution to the
previous modified problem. Since in any feasible solution it holds that∑

θ∈Θ

∑
ξ∈Ξq ,p∈Pb yθ,ξ,p = 1 and LP 8.15 has value at most ρ∗ + β, then

OPT V
K ≤ ρ∗ + β + δ.

Let H∗ be the set of constraints regarding variables y returned by the
ellipsoid method run with objective ρ?. Since the ellipsoid method with the
approximate separation oracle returns unfeasible, by strong duality LP 8.11
with only the variables y relative to constraints in H∗ has value at least ρ∗.
Moreover, since the ellipsoid method guarantees that H∗ has polynomial
size, the LP can be solved in polynomial time. Hence, solving the following
LP, i.e., the primal LP 8.11 with only the variables y in H∗, we can find a
solution with value at least ρ∗.

max
γ,t,y≥0

∑
θ∈Θ

∑
(ξ,p):(θ,ξ,p)∈H∗

yθ,ξ,pREV(VK ,p, ξ) s.t. (8.16a)

ξi,θti,ξi,pi ≥
∑

ξ′,p′:(θ,ξ′,p′)∈H∗:ξ′i=ξi,p′i=pi,

yθ,ξ′,p′

∀θ ∈ Θ,∀i ∈ R,∀ξi ∈ Ξq
i ,∀pi ∈ P b (8.16b)∑

pi∈P b
ti,ξi,pi = γi,ξi ∀i ∈ R,∀ξi ∈ Ξq

i (8.16c)

∑
ξi∈Ξqi

γi,ξiξi,θ = µθ ∀i ∈ R,∀θ ∈ Θ (8.16d)

To conclude the proof, we show that replacing the distributions V with
VK , the expected revenue decreases by a small amount. Let yAPX,VK be
the solution returned by the algorithm with distribution VK . Moreover,
let yOPT,VK be the optimal solution to LP 8.11 with distributions VK and
yOPT,V the optimal solution with distributions V . Finally, let OPT be the
value of the optimal private signaling scheme with distributions V .

Let ε be a constant defined in the following andK=8log(2|Ξq||Pb|/ε)/ε2.
By Hoeffding bound, for every ξ ∈ Ξq and p ∈ Pb, with probability at least
1− e−2K/(ε/4)2

= 1− |Ξq||Pb|ε/4,

|REV(V , p, ξ)| − |REV(VK ,p, ξ)| ≤ ε/4.

By the union bound, it implies that with probability at least 1− ε/2,

|REV(V , p, ξ)| − REV(VK ,p, ξ)| ≤ ε/2
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for every ξ ∈ Ξq and p ∈ Pb. Then, with probability 1− ε/2,∑
θ∈Θ

∑
ξ∈Ξq

∑
p∈Pb

yAPX,V
K

θ,ξ,p REV(V ,p, ξ) ≥

∑
θ∈Θ

∑
ξ∈Ξq

∑
p∈Pb

yAPX,V
K

θ,p,ξ REV(VK ,p, ξ)− ε/4 ≥

∑
θ∈Θ

∑
ξ∈Ξq

∑
p∈Pb

yOPT,V
K

θ,p,ξ REV(VK ,p, ξ)− ε/4− δ − β ≥

∑
θ∈Θ

∑
ξ∈Ξq

∑
p∈Pb

yOPT,Vθ,p,ξ REV(VK ,p, ξ)− ε/4− δ − β ≥

∑
θ∈Θ

∑
ξ∈Ξq

∑
p∈Pb

yOPT,Vθ,p,ξ REV(V ,p, ξ)− ε/2− δ − β ≥

OPT − ε/2− δ − β − η

Hence, with probability 1 − ε/2, the solution has value at least OPT −
ε/2− δ − β − η and

EVK

∑
θ∈Θ

∑
ξ∈Ξq

∑
p∈Pb

yAPX,V
K

θ,ξ,p Rev(V ,p, ξ)


≥ OPT − ε/2− ε/2− δ − β − η
= OPT − ε− δ − β − η,

where the expectation is on the sampling procedure.
To conclude the proof, to have an approximation error λ, we can set b

and q such that the approximation error in Lemma 8.12 is η = λ/4 and
ε = δ = β = λ/4. Finally, given an approximate solution to LP 8.16,
Lemma 8.14 provides a solution to LP 8.7 with greater or equal value and
Lemma 8.11 recover a signaling scheme with the same revenue.
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Facing the Uncertainty
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CHAPTER9
Online Single-receiver Bayesian

Persuasion

In this chapter, we relax the assumption that the sender knows the utility
of the receiver. In particular, we study the Bayesian persuasion problem
in an online learning framework in which the sender repeatedly faces a
receiver whose type is unknown and chosen adversarially at each round
from a finite set of possible types. In section 9.1 we introduce the concept
of receiver’s type, while in Section 9.2 we introduce the online Bayesian
persuasion framework. In Section 9.3, we show that designing no-regret
algorithms is computationally intractable. Section 9.4 provides a no-regret
algorithm with full information feedback, while Section 9.5 provides a no-
regret algorithm with partial information feedback. Finally, in Section 9.6
we show that relaxing the persuasiveness constraints it is possible to design
polynomial-time algorithms with small regret.

9.1 Bayesian Persuasion with Types

The receiver has a finite set of % actions A := {ai}%i=1 and a set of m
possible types K := {ki}mi=1. For each type k ∈ K, the receiver’s payoff
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Chapter 9. Online Single-receiver Bayesian Persuasion

function is uk : A × Θ → [0, 1], where Θ := {θi}di=1 is a finite set of d
states of nature. For notational convenience, we denote by ukθ(a) ∈ [0, 1]
the utility observed by the receiver of type k ∈ K when the realized state of
nature is θ ∈ Θ and she/he plays action a ∈ A. The sender’s utility when
the state of nature is θ ∈ Θ is described by the function fθ : A → [0, 1].

After observing a signal s ∈ S that induces a posterior ξ ∈ Ξ, the re-
ceiver best responds by choosing an action that maximizes her/his expected
utility. We extend the Definition of BR-set and ε-BR-set to accomodate
multiple types. Formally,

Definition 9.1 (BR-set). Given posterior ξ ∈ Ξ and type k ∈ K, the best-
response set (BR-set) is:

Bkξ := arg maxa∈A
∑
θ∈Θ

ξθ u
k
θ(a).

We denote by bkξ the action belonging to the BR-set Bkξ played by the
receiver. When the receiver is indifferent among multiple actions for a
given posterior ξ, we assume that the receiver breaks ties in favor of the
sender, i.e., she/he chooses an action bkξ ∈ arg maxa∈Bkξ

∑
θ ξθ fθ(a).

Similarly, the set of ε-best responses is defined as follows.

Definition 9.2 (ε-BR-set). Given ξ ∈ Ξ and k ∈ K, the ε-best-response set
(ε-BR-set) is the set Bkε,ξ of all the actions a ∈ A such that:∑

θ∈Θ

ξθu
k
θ(a) ≥

∑
θ∈Θ

ξθu
k
θ(â)− ε ∀â ∈ A.

We denote by bkε,ξ the action in Bkε,ξ played by the receiver. When the
receiver has multiple ε-best-response actions for a given posterior ξ, we
assume she breaks ties in favor of the sender, i.e., she chooses an action
bkε,ξ ∈ arg maxa∈Bkε,ξ

∑
θ ξθfθ(a).

We conclude the section by introducing some additional notation. We
denote by f(ξ, k) :=

∑
θ ξθ fθ(b

k
ξ) the sender’s expected utility when she/he

induces a posterior ξ ∈ Ξ and the receiver is of type k ∈ K. Similarly, we
let f ε(ξ, k) :=

∑
θ ξθfθ(b

k
ε,ξ) be the sender’s expected utility with an ε-best-

responding receiver. Moreover, we use f(φ, k) and f ε(φ, k) to denote the
sender’s expected utility achieved with the signaling scheme φ. Formally,
f(φ, k) :=

∑
ξ∈supp(γ) γξf(ξ, k) and f ε(φ, k) :=

∑
ξ∈supp(γ) γξf

ε(ξ, k),
where γ is the distribution over posteriors induced by φ. Analogously, we
write f(γ, k) and f ε(γ, k).
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9.1. Bayesian Persuasion with Types

State G State I
(µG = .3) (µI = .7)

A A 0 0 0 1
C 1 1 1 0

Realized state
State G State I

S s1 0 4/7
s2 1 3/7

State of nature
State G State I γ?

ξ1 0 1 2/5
ξ2 1/2 1/2 3/5

Figure 9.1: Left: The prosecutor/judge game. Rows represent the judge’s actions. For
each possible state of nature {G, I}, the first column is the prosecutor’s payoff while the
second is the judge’s payoff. Center: The optimal signaling scheme φ?. Each column
describes the probability with which the two signals are drawn given the realized state
of nature. Right: Representation of φ? as the convex combination of posteriors γ?.

Finally, letting OPT be the sender’s optimal expected utility, we say
that a signaling scheme is α-optimal (in the additive sense) if it provides
the sender with a utility at least as large as OPT − α.

9.1.1 Example of Bayesian Persuasion without Types

We illustrate the key notion of signaling scheme in a simple example with a
single receiver type (i.e., |K| = 1). In Section 9.4.1 we will provide a more
complex example that includes types. The example is inspired by Kamenica
and Gentzkow (2011): a prosecutor (the sender) is trying to convince a
rational judge (the receiver) that a defendant is guilty. The judge has two
available actions: to acquit or to convict the defendant (denoted by A and
C, respectively). There are two possible states of nature: the defendant is
either guilty (denoted by G) or innocent (denoted by I). The prosecutor and
the judge share a prior belief µG = 0.3. Moreover, the prosecutor gets
utility 1 if the judge convicts the defendant and 0 otherwise, regardless of
the state of nature. The prosecutor gets to observe the realized state of
nature (i.e., whether the defendant is guilty or innocent). The she/he can
exploit this information to select a signal from set S = {s1, s2} and send
it to the judge. The judge has a unique type and she/he gets utility 1 for
choosing the just action (convict when guilty and acquit when innocent)
and utility 0 for choosing the unjust action (see fig. 9.1-Left).

Figure 9.1-Center depicts a sender-optimal signaling scheme φ? obtained
via the following LP:

arg maxφ≥0f(φ, k) s.t.
∑
s∈S

φθ(s) = 1 ∀θ ∈ Θ,

where k is the unique type of the judge. When the sender acts according
to φ?, signal s1 (resp., s2) originates posterior ξ1 (resp., ξ2; see Figure 9.1-
Right). Applying Equation (3.4) yields the equivalent representation of φ?
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Chapter 9. Online Single-receiver Bayesian Persuasion

as a convex combination of posteriors, i.e., γ?ξ1
= 2/5 and γ?ξ2

= 3/5.
By unpacking the objective function of the above LP (and dropping the

dependency on k) we have: Bξ1 = {A} and Bξ2 = {A,C}. Therefore,
if the posterior is ξ1, the judge will acquit the defendant, i.e., bξ1 = A.
Otherwise, if the posterior is ξ2, we have bξ2 = C since the receiver breaks
ties in favor of the sender. This highlights an intuitive interpretation of the
signaling problem: the two signals may be interpreted as action recom-
mendations. Signal s1 (resp., s2) is interpreted by the judge as a recom-
mendation to play A (resp., C). Then, our definition of best-response set
(definition 9.1) implies that it is in the receiver’s best interest to follow the
action recommendations. The best-response conditions can be formulated
in terms of linear constraints on φθ as follows:

∑
θ∈Θ

µθ φθ(s1)
(
uθ(A)− uθ(â)

)
≥ 0 and∑

θ∈Θ

µθ φθ(s2)
(
uθ(C)− uθ(â)

)
≥ 0 ∀â ∈ {A,C}.

9.2 The Online Bayesian Persuasion Framework

We consider the following online setting. The sender plays a repeated game
in which, at each round t ∈ [T ], she/he commits to a signaling scheme φt,
observes a state of nature θt ∼ µ, and she/he sends signal st ∼ φtθt to the re-
ceiver. Then, a receiver of unknown type updates her/his prior distribution
and selects an action at maximizing her/his expected reward (in the one-
shot interaction at round t). We focus on the problem in which the sequence
of receiver’s types k := {kt}t∈[T ] is selected beforehand by an adversary.
After the receiver plays at, the sender receives a feedback on her/his choice
at round t. In the full information feedback setting, the sender observes the
receiver’s type kt. Therefore, the sender can compute the expected payoff
for any signaling scheme she/he could have chosen other than φt. Instead,
in the partial information feedback setting, the sender only observes the
action at played by the receiver at round t.

We are interested in algorithms computing φt at each round t. The per-
formance of one such algorithm is measured using the average per-round
regret computed with respect to the best signaling scheme in hindsight.
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9.3. Hardness of Sub-linear Regret

Formally:

RT := max
φ

{
1

T

T∑
t=1

(
f(φ, kt)− E

[
f(φt, kt)

])}
,

where the expectation is on the randomness of the online algorithm (i.e., the
probability distribution which is used by the sender to draw the signaling
scheme at round t) and T is the number of rounds. Ideally, we would like
to find an algorithm that generates a sequence {φt}t∈[T ] with the following
properties: (i) the regret is polynomial in the size of the problem instance,
i.e., poly(m, %, d), and goes to zero as a polynomial of T ; (ii) the per-round
running time is poly(T,m, %, d). An algorithm satisfying property (i) is
usually called a no-regret algorithm.

When the receiver is allowed to play an ε-best response at any t, we
would like to design a sequence {φt}t∈[T ] of signaling schemes which have
which have small regret with respect to the best signaling scheme in hind-
sight with a receiver playing a best response. In this setting, we measure the
performance of an algorithm with the following different notion of regret:

RT
ε := max

φ

{
1

T

T∑
t=1

(
f(φ, kt)− E

[
f ε(φt, kt)

])}
. (9.1)

In the case in which requiring no-regret is too limiting, we use the fol-
lowing relaxed notion of regret. An algorithm has no-α-additive-regret if
there exists a constant c > 0 such that: RT ≤ α + 1

T c
poly(m, %, d). The

idea of no-α-regret is that the regret approaches α after a sufficiently large
number of rounds (polynomial in the size of the game). In the remaining of
the chapter, we focus on α-additive-regret and we write no-α-regret instead
of no-α-additive-regret.

9.3 Hardness of Sub-linear Regret

Our first result is negative: for any α < 1, it is unlikely (i.e., technically,
it is not the case unless NP ⊆ RP) that there exists a no-α-regret algorithm
for the online Bayesian persuasion problem requiring a per-round running
time polynomial in the size of the instance. In order to prove the result, we
provide an intermediate step, showing that the problem of approximating an
optimal signaling scheme is computationally intractable even in the offline
Bayesian persuasion problem in which the sender knows the probability
distribution over the receiver’s types (see Theorem 9.2 below).
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Chapter 9. Online Single-receiver Bayesian Persuasion

Definition 9.3 (OPT-SIGNAL). Given an offline Bayesian persuasion prob-
lem in which the distribution over the receiver’s types ρ ∈ ∆K is uniform,
i.e., ρk = 1

m
for all k ∈ K, we call OPT-SIGNAL the problem of finding an

optimal signaling scheme φ : Θ → ∆S , i.e., one maximizing the sender’s
expected utility 1

m

∑
k∈K f(φ, k).

In order to prove the hardness of OPT-SIGNAL, we resort to a result
by Guruswami and Raghavendra (2009) (see Theorem 9.1 below), which is
about the following promise problem related to the satisfiability of a fraction
of linear equations with rational coefficients and variables restricted to the
hypercube.1

Definition 9.4 (LINEQ-MA(1 − ζ, δ)). For any two constants ζ, δ ∈ R
satisfying 0 ≤ δ ≤ 1 − ζ ≤ 1, LINEQ-MA(1 − ζ, δ) is the following
promise problem: Given a set of linear equations Ax = c over variables
x ∈ Qnvar , with coefficientsA ∈ Qneq×nvar and c ∈ Qneq , distinguish between
the following two cases:

• there exists a vector x̂ ∈ {0, 1}nvar that satisfies at least a fraction 1−ζ
of the equations;

• every possible vector x ∈ Qnvar satisfies less than a fraction δ of the
equations.

Theorem 9.1 ((Guruswami and Raghavendra, 2009)). For all valid ζ, δ >
0, LINEQ-MA(1− ζ, δ) is NP-hard.

Then, we can prove the following result.

Theorem 9.2. For every 0 ≤ α < 1, it is NP-hard to compute an α-optimal
solution to OPT-SIGNAL.

Proof. We introduce a reduction from LINEQ-MA(1−ζ, δ) to OPT-SIGNAL,
showing the following:

• Completeness: If an instance of LINEQ-MA(1 − ζ, δ) admits a 1 − ζ
fraction of satisfiable equations when variables are restricted to lie the
hypercube {0, 1}nvar , then an optimal solution to OPT-SIGNAL pro-
vides the sender with an expected utility at least of 1− 2ζ;

• Soundness: If at most a δ fraction of the equations can be satisfied,
then an optimal solution to OPT-SIGNAL has sender’s expected utility
at most δ.

1In the definition in (Guruswami and Raghavendra, 2009), the vector x̂ can be non-binary. However, Gu-
ruswami and Raghavendra (2009) use a binary vector x̂ in their proof and hence the hardness result holds also
for our definition.
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Since ζ and δ can be arbitrary (with 0 ≤ δ ≤ 1− ζ ≤ 1), the two properties
above immediately prove the result. In the rest of the proof, given a vector
of variables x ∈ Qnvar , for i ∈ [nvar], we denote with xi the component
corresponding to the i-th variable. Similarly, for j ∈ [neq], cj is the j-th
component of the vector c, whereas, for i ∈ [nvar] and j ∈ [neq], the (j, i)-
entry of A is denoted by Aji.

Reduction As a preliminary step, we normalize the coefficients by letting
Ā := 1

τ
A and c̄ := 1

τ2 c, where we let

τ := 2 max

{
max

i∈[nvar],j∈[neq]
Aji, max

j∈[neq]
cj, n

2
var

}
.

It is easy to see that the normalization preserves the number of satisfiable
equations. Formally, the number of satisfied equations of Ax = c is equal
to the number of satisfied equations of Āx̄ = c̄, where x̄ = 1

τ
x. For every

variable i ∈ [nvar], we define a state of nature θi ∈ Θ. Moreover, we
introduce an additional state θ0 ∈ Θ. The prior distribution µ ∈ int(∆Θ) is
defined in such a way that µθi = 1

n2
var

for every i ∈ [nvar], while µθ0 = nvar−1
nvar

(notice that
∑

θ∈Θ µθ = 1). We define a receiver’s type kj ∈ K for each
equation j ∈ [neq] (recall that the distribution over receiver’s types ρ ∈ ∆K
is uniform by definition of OPT-SIGNAL). The receiver has three actions
available, namelyA := {a0, a1, a2}, whereas, for every kj ∈ K, the utilities
of type kj are ukjθi (a0) = 1

2
, ukjθi (a1) = 1

2
−Āji+c̄j , and ukjθi (a2) = 1

2
+Āji−c̄j

for every i ∈ [nvar], while ukjθ0(a0) = 1
2
, ukjθ0(a1) = 1

2
+ c̄j , and ukjθ0(a2) =

1
2
− c̄j . Finally, the sender’s utility is 1 when the receiver plays a0, while it

is 0 otherwise, independently of the state of nature. Formally, fθ(a0) = 1
and fθ(a1) = fθ(a2) = 0 for every θ ∈ Θ.

Completeness Suppose there exists a vector x̂ ∈ {0, 1}nvar such that at least
a fraction 1 − ζ of the equations in Ax̂ = c are satisfied. Let X1 ⊆ [nvar]
be the set of variables i ∈ [nvar] with xi = 1, while X0 := [nvar] \ X1.
Given the definition of Ā and c̄, there exists a vector x̄ ∈ {0, 1

τ
}nvar such

that at least a fraction 1 − ζ of the equations in Āx̄ = c̄ are satisfied, and,
additionally, x̄i = 1

τ
for all the variables in i ∈ X1, while x̄i = 0 whenever

i ∈ X0. Let us consider an (indirect) signaling scheme φ : Θ → ∆S
defined for the set of signals S := {s1, s2}. Let q := nvar(nvar−1)

τ−|X1| . For every
i ∈ [nvar], we define φθi(s1) = q and φθi(s2) = 1 − q if i ∈ X1, while
φθi(s1) = 0 and φθi(s2) = 1 otherwise. Moreover, we let φθ0(s1) = 1 and
φθ0(s2) = 0. Now, let us take the receiver’s posterior ξ1 ∈ ∆Θ induced by

165



Chapter 9. Online Single-receiver Bayesian Persuasion

signal s1. Let h :=
q

n2
var∑

i∈X1
q

n2
var

+nvar−1
nvar

. Then, using the definition of ξ1, it is

easy to check that ξ1
θi

= h for every i ∈ X1, ξ1
θi

= 0 for every i ∈ X0,

while ξ1
θ0

=
nvar−1
nvar∑

i∈X1
q

n2
var

+nvar−1
nvar

= 1 − h |X1|. Next, we prove that given the

posterior ξ1 at least a fraction 1− ζ of the receiver’s types has action a0 as
a best response, implying that the expected utility of the sender is equal to
1
m

∑
k∈K f(φ, k) ≥ m−1

m
(1− ζ) ≥ 1−2ζ , which holds form large enough.

For each satisfied equality j ∈ [neq] in Āx̄ = c̄, the receiver of type kj ∈ K
experiences a utility of

∑
θ∈Θ ξ

1
θu

kj
θ (a0) = 1

2
by playing action a0. Instead,

the utility she gets by playing a1 is defined as follows:∑
θ∈Θ

ξ1
θu

kj
θ (a1) =

∑
i∈X1

h

(
1

2
− Āji + c̄j

)
+ ξ1

θ0

(
1

2
+ c̄j

)
= h

∣∣X1
∣∣ (1

2
+ c̄j

)
− h

∑
i∈X1

Āji +
(
1− h

∣∣X1
∣∣)(1

2
+ c̄j

)
=

1

2
+ c̄j − h

∑
i∈X1

Āji =
1

2
+ c̄j −

1

τ

∑
i∈X1

Āji =
1

2
,

where the second to last equality holds since h = 1
τ

(by definition of h
and q), while the last equality follows from the fact that the j-th equation
is satisfied, and, thus, 1

τ

∑
i∈X1 Āji = c̄j (recall that x̄i = 1

τ
for all i ∈

X1). Using similar arguments, we can write
∑

θ∈Θ ξ
1
θu

kj
θ (a2) = 1

2
, which

concludes the completeness proof.

Soundness Suppose, by contradiction, that there exists a signaling scheme
φ : Θ → ∆S providing the sender with an expected utility greater than δ.
This implies, by an averaging argument, that there exists a signal inducing
a posterior ξ ∈ ∆Θ in which at least a fraction δ of the receiver’s types best
responds by playing action a0. Let K1 ⊆ K be the set of such reviver’s
types. For every receiver’s type kj ∈ K, it holds

∑
θ∈Θ ξθu

kj
θ (a0) = 1

2
.

Moreover, it is the case that:∑
θ∈Θ

ξθu
kj
θ (a1) =

∑
i∈[nvar]

ξθi

(
1

2
− Āji + c̄j

)
+ ξθ0

(
1

2
+ c̄j

)
=

1

2
+ c̄j −

∑
i∈[nvar]

ξθiĀji.
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Similarly, it holds:∑
θ∈Θ

ξθu
kj
θ (a2) =

1

2
− c̄j +

∑
i∈[nvar]

ξθiĀji.

By assumption, for every type kj ∈ K1, it is the case that
∑

θ∈Θ ξθu
kj
θ (a0) ≥∑

θ∈Θ ξθu
kj
θ (a1), which implies that c̄j −

∑
i∈[nvar]

ξθiĀji ≤ 0, whereas∑
θ∈Θ ξθu

kj
θ (a0) ≥

∑
θ∈Θ ξθu

kj
θ (a2), implying −c̄j +

∑
i∈[nvar]

ξθiĀji ≤ 0.
Thus,

∑
i∈[nvar]

ξθiĀji = c̄j for every j ∈ [neq] such that kj ∈ K1 and the
vector x̂ ∈ Qnvar with x̂i = ξθi for all i ∈ [nvar] satisfies at least a fraction δ
of the equations, reaching a contradiction.

Now, we use the approximation-hardness of the offline Bayesian persua-
sion problem to provide lower bounds on the α-regret in the online setting.
In order to do this, we employ a set of techniques introduced by Roughgar-
den and Wang (2019), which lead to the following result.

Theorem 9.3. For every α < 1, there is no polynomial-time algorithm
for the online Bayesian persuasion problem providing no-α-regret, unless
NP ⊆ RP.

Proof. The theorem follows applying Theorem 6.2 by Roughgarden and
Wang (2019) to the NP-hard problem in Theorem 9.2. Notice that we use an
additive notion of α-regret while the proof of Theorem 6.2 by Roughgarden
and Wang (2019) focuses on multiplicative α-regret. However, the proof
can be easily extended to work with additive α-regret.

9.4 Full Information Feedback Setting

The negative result of the previous section (Theorem 9.3) rules out the pos-
sibility of designing an algorithm which satisfies the no-regret property
and requires a poly(T,m, %, d) per-round running time. A natural ques-
tion is whether it is possible to devise a no-regret algorithm for the online
Bayesian persuasion problem by relaxing the running-time constraint. This
is not a trivial problem because, at every round t, the sender has to choose
a signaling scheme among an infinite number of alternatives and her/his
utility depends on the receiver’s best response, which yields a function that
is not linear nor convex (or even continuous in the space of the signaling
schemes). However, we show that it is possible to provide a no-regret algo-
rithm for the full information setting by restricting the sender’s action space
to a finite set of posteriors.
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First, we show that it is always possible to design a sender-optimal sig-
naling scheme defined as a convex combination of a specific finite set of
posteriors. For each type k ∈ K and action a ∈ A, we define Ξak ⊆ Ξ
as the set of posterior beliefs in which a is a receiver’s best response. For-
mally, Ξak :=

{
ξ ∈ Ξ | a ∈ Bkξ

}
. Let a = (ak)k∈K ∈×k∈KA be a tuple

specifying one action for each receiver’s type k. Then, for each tuple a, let
Ξa ⊆ ∆Θ be the (potentially empty) polytope such that each action ak is op-
timal for the corresponding type k, i.e., Ξa :=

⋂
k∈K Ξk

ak
. The polytope Ξa

has a simple interpretation: a probability distribution over posteriors in Ξa
yields a signaling scheme such that, for every type k, the receiver has no in-
terest in deviating from ak in the induced posteriors Ξa. Then, let Ξ̂ ⊆ Ξ be
the set of posteriors defined as Ξ̂ :=

⋃
a∈×k∈KA V (Ξa). 2 Finally, we define

the following set of consistent (according to Equation (3.4)) distributions
over posteriors in Ξ̂:

Γ̂ :=

γ ∈ ∆Ξ̂ |
∑
ξ∈Ξ̂

γθξθ = µθ, ∀θ ∈ Θ

. (9.2)

By letting M be a suitably defined |Θ| × |Ξ̂|-dimensional matrix with one
column for each ξ ∈ Ξ̂, then the affine hyperplanes defined by Equa-
tion (3.4) are in the form M · γ = µ. Since γ ∈ ∆Ξ̂, we can safely rewrite
the consistency constraints as M · γ ≥ µ (see the example below for a bet-
ter intuition). Then, Γ̂ can be seen as the intersection between the simplex
∆Ξ̂ and a finite number of half-spaces. Therefore, Γ̂ is a convex polytope,
whose vertices compose the finite action space that will be employed by the
no-regret algorithm. Specifically, let

Γ? := V (Γ̂). (9.3)

9.4.1 A More Complex Example with Types

Consider the game of Section 9.1.1 (see Figure 9.1–Left) where the re-
ceiver has a single type (type 1). We obtain Ξ̂ by partitioning the space of
posteriors in different best response regions and by taking the vertices of
the resulting polytopes (see Figure 9.2–Left). Then, we provide a visual
depiction of Γ̂ and Γ?, which are obtained, respectively, by intersecting ∆Ξ̂

with the hyperplanes corresponding to consistency constraints (see Equa-
tion (9.2)), and then taking the vertices of the resulting polytope (see figure

2V (X) denotes the set of vertices of polytope X .
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Guilty InnocentSpace of posteriors

ξ1 = (1, 0)>
ξ2 = (.5, .5)> ξ3 = (0, 1)>

Ξ1
A = ΞA Ξ1

C = ΞC

ξ1

ξ2

ξ3

(0, 0, 0)>

γ = (1, 0, 0)>
γ = (0, 1, 0)>

γ = (0, 0, 1)>

∆Ξ̂

Γ̂

Γ?

Figure 9.2: Left: Subdivision of the space of posteriors Ξ in the two best-response re-
gions. If ξ ∈ ΞA (resp., ξ ∈ ΞC) then the judge’s best response under ξ is acquit-
ting (resp., convicting) the defendant. When ξ = ξ2, the judge is indifferent among
her/his available actions. We have Ξ̂ = {ξ1, ξ2, ξ3}. Right: Visual depiction of ∆Ξ̂,
Γ̂ ⊆ ∆Ξ̂, and Γ? = V (Γ̂). The set Ŵ comprises of the distributions over posteriors
in Ξ̂ consistent with the prior µ = (.3, .7)> and it is obtained by intersecting ∆Ξ̂ with
[ξ1 | ξ2 | ξ3] · γ ≥ µ. As a result, we obtain Γ̂ = conv{(.3, 0, .7)>, (0, .6, .4)>}.
Finally, Γ? = V (Γ̂) = {(.3, 0, .7)>, (0, .6, .4)>}.

Type 1

State G State I
(µG = .3) (µI = .7)

A A 0 0 0 1
C 1 1 1 0

Type 2

State G State I
(µG = .3) (µI = .7)

A A 0 −1 0 1
C 1 1 1 0

G I

ξ1

ξ2 = ( 1
2
, 1

2
)> ξ3

Ξ1
A Ξ1

C

G I

ξ1

ξ4 =
(

1
3
, 2

3

)>
ξ3

Ξ2
A Ξ2

C

Ξ(A,A)

G I

ξ1 ξ4

G
Ξ(A,C)

I

ξ4 ξ2

G
Ξ(C,C)

I

ξ2 ξ3

Figure 9.3: Left: A prosecutor/judge game with two types. When the judge is of type 2 she
has a worse perception of acquitting a guilty defendant. Center: A visual depiction
of ΞkA and ΞkC for each possible type k ∈ {1, 2}. When k = 2, the judge is less
inclined towards acquitting and, therefore, the best-response boundary is ξ4. When
k = 1 (resp., k = 2) and the posterior is ξ2 (resp., ξ4), the judge is indifferent between
acquitting and convicting the defendant. Right: Best-response regions for the possible
joint actions. When a = (C,A) we have Ξa = ∅ because there is no posterior for
which A is a best response for a receiver of type 1, and C is a best response for a
receiver of type 2. We have Ξ̂ = {ξ1, ξ2, ξ3, ξ4}.
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9.2–Right). 3

Figure 9.3 shows a more complex example of the classical prosecutor/-
judge game. Here, the judge has two possible types. A judge of type 1
gets payoff 1 for a just decision, and 0 otherwise. A judge of type 2 has
a worse perception of acquitting a guilty defendant, for which she gets
−1. In this case, the computation of best-response regions is more in-
volved because different judge’s types yield different boundaries on the
space of posteriors. Specifically, by Equation (9.2), Γ̂ is the result of the
intersection between the simplex ∆Ξ̂ and the closed half-spaces specified
by [ξ1|ξ2|ξ3|ξ4] · γ ≥ µ. The vertices of the resulting polytope are γ1 =
(3/10, 0, 0, 7/10)>, γ2 = (0, 9/10, 0, 1/10)>, and γ3 = (0, 0, 3/5, 2/5)>.
Then, the new sender’s action space can be restricted to Γ? = {γ1,γ2,γ3}.

9.4.2 A No-regret Algorithm with Full Information Feedback

For an arbitrary sequence of receiver’s types, we show that there exists
γ? ∈ Γ? guaranteeing to the sender an expected utility that is equal to the
best-in-hindsight signaling scheme.

Lemma 9.1. For every sequence of receiver’s types k = {kt}t∈[T ], it holds

max
γ∈Γ

T∑
t=1

f(γ, kt) = max
γ?∈Γ?

T∑
t=1

f(γ?, kt).

Proof. The idea to prove the lemma is the following: any posterior distribu-
tion ξ in supp(γ) can be represented as the convex combination of elements
of Ξ̂. We denote such convex combination by γξ ∈ ∆Ξ̂. We define a new
signaling scheme γ? ∈ ∆Ξ̂ as follows:

γ?ξ′ :=
∑

ξ∈supp(γ):

ξ′∈supp(γξ)

γξγ
ξ
ξ′ for each ξ′ ∈ Ξ̂. (9.4)

Since γ is consistent (i.e., γ ∈ Γ) we have by construction that γ? is
consistent, and therefore γ? ∈ Γ̂. Finally, we show that γ? guarantees to
the sender an expected utility which is greater than or equal to that achieved
via γ. The crucial point here is showing that whenever the decomposition
over Ξ̂ involves a vertex (i.e., a posterior) where the receiver is indifferent
between two or more actions, her/his choice does not damage the sender.
This happens at the boundaries of best-response regions (see, e.g., what

3The polytopes were computed using Polymake, a tool for computational polyhedral geometry (Assarf
et al., 2017; Gawrilow and Joswig, 2000).
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happens at ξ2 and ξ4 in the example of Figure 9.3). The sender’s expected
utility is a linear function of the signaling scheme γ?. Therefore, the sender
can limit her attention to Γ?, since her/his maximum expected utility is
attained at one of the vertices of Γ̂.

Consider a posterior ξ ∈ Ξ and let a = {bkξ}k∈K (i.e., a is the tuple spec-
ifying the best-response action under posterior ξ for each receiver’s type k).
Tuple a defines polytope Ξa ⊆ Ξ. By Carathéodory’s theorem, any ξ ∈ Ξa
is the convex combination of a finite number of points in Ξa. Specifically,
there exists γξ ∈ ∆V (Ξa) such that, for each θ ∈ Θ,

∑
ξ′∈V (Ξa) γ

ξ
ξ′ξ
′
θ = ξθ.

Let γ ∈ Γ̂ (i.e., γ is consistent). By following Equation (9.4), we define
a distribution γ? such that, for each ξ′ ∈ Ξ̂,

γ?ξ′ :=
∑

ξ∈supp(γ):

ξ′∈supp(γξ)

γξγ
ξ
ξ′ .

By construction, γ? is a well-defined convex combination of elements of Ξ̂.
Moreover, since γ is consistent, the same holds true for γ?, which implies
γ? ∈ Γ̂.

Fix a type k ∈ K and a posterior ξ ∈ Ξ, and let a be defined as the
tuple specifying the best response under ξ for each k. At each posterior
ξ′ ∈ V (Ξa), the receiver plays bkξ′ . The following holds:

bkξ′ ∈ arg maxa′∈Bk
ξ′

∑
θ∈Θ

ξ′θfθ(a
′) ≥

∑
θ∈Θ

ξ′θfθ(b
k
ξ), (9.5)

where the inequality holds because, by construction, bkξ ∈ Bkξ′ . Therefore,
we can show that the sender’s expected utility when decomposing ξ as γξ ∈
∆V (Ξa) is guaranteed to be greater than or equal to the expected utility under
ξ. Specifically,∑
ξ′∈V (Ξa)

γξξ′f(ξ′, k) =
∑

ξ′∈V (Ξa)

γξξ′
∑
θ∈Θ

ξ′θfθ(b
k
ξ′)

≥
∑

ξ′∈V (Ξa)

γξξ′
∑
θ∈Θ

ξ′θfθ(b
k
ξ) (By Equation (9.5))

=
∑
θ∈Θ

ξθfθ(b
k
ξ) (By definition of γξ)

= f(ξ, k).

Let γ ∈ Γ be the best-in-hindsight signaling scheme. We show that, for any
sequence of receiver’s types k = {kt}t∈[T ], the sender’s expected utility
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achieved via γ is matched by the expected utility guaranteed by γ? ∈ Γ̂
defined as in Equation (9.4). We have∑

t∈[T ]

∑
ξ∈supp(γ?)

γ?ξf(ξ, kt) =
∑
t∈[T ]

∑
ξ∈supp(γ?)

∑
ξ′∈supp(γ):

ξ∈supp(γξ
′
)

γξ′γ
ξ′

ξ f(ξ, kt)

=
∑
t∈[T ]

∑
ξ′∈supp(γ)

γξ′
∑

ξ∈supp(γξ′ )

γξ
′

ξ f(ξ, kt)

≥
∑
t∈[T ]

∑
ξ′∈supp(γ)

f(ξ′, kt)

=
∑
t∈[T ]

f(γ, kt).

Finally, since
∑

t∈[T ] f(γ?, kt) =
∑

t∈[T ]

∑
ξ∈supp(γ?) γ

?
ξf(ξ, kt) is a lin-

ear function in the signaling scheme γ?, its maximum is attained at a vertex
of Γ̂. This concludes the proof.

The size of the sender’s finite action space grows exponentially in the
number of states of nature d.

Lemma 9.2. The size of Γ? is |Γ?| ∈ O
(
(m%2 + d)d

)
.

Proof. By definition, for any a = (ak)k∈K, Ξa ⊆ Ξ. Then, each γ ∈ V (Ξa)
is an extreme point of a (d−1)-dimensional convex polytope, and therefore
the point lies at the intersection of (d−1) linearly independent defining half-
spaces of the polytope. Now, to provide a bound for |Ξ̂| we first compute
the number of half-spaces separating best-response regions corresponding
to different actions. For each type k ∈ K, there are at most

(
%
2

)
half-spaces

each separating Ξak and Ξa′k
for two actions a 6= a′. Then, in order to take

all the incentive constraints into account, we have to sum over all possible
reveiver’s types, obtaining O(m%2) half-spaces. The set Ξ̂ is the result of
the intersection between the region defined by such half-spaces, and the d
constraints defining the simplex. Each extreme point of the polytope de-
fined by points in Ξ̂ lies at the intersection of d− 1 half-spaces. Therefore,
there are at most

(
m%2+d
d−1

)
∈ O

(
(m%2 + d)d

)
such extreme points. The con-

vex polytope Γ̂ is the result of the intersection between the simplex defined
over Ξ̂, which has O

(
(m%2 + d)d

)
extreme points, and d half-spaces defin-

ing consistency constraints. Then, Γ̂ has a number of extreme points which
is less than or equal to O

(
(m%2 + d)d

)
.
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Now, by letting η ∈ [0, 1] be the maximum absolute payoff value, we
can employ any algorithm satisfying RT ≤ O

(
η
√

log |A|/T
)

as a black
box (see, e.g., Polynomial Weights (Cesa-Bianchi and Lugosi, 2006) and
Follow the Lazy Leader (Kalai and Vempala, 2005)), where A is the action
set of the learner. By taking Γ? as the sender action space, we obtain the
following.

Theorem 9.4. Given an online Bayesian persuasion problem with full in-
formation feedback, there exists an online algorithm such that, for every
sequence of receiver’s types k = {kt}t∈[T ]:

RT ≤ O

(√
d log(m%2 + d)

T

)
.

Proof. We employ an arbitrary algorithm satisfyingRT ≤ O
(
η
√

log |A|/T
)

with action setA = Γ?. Let γ∗ ∈ Γ be the sender-optimal signaling scheme
in hindsight. Then,∑
t∈[T ]

E[f(γt, kt)] ≥
∑
t∈[T ]

f(γ∗, kt)−O
(√

T log |Γ?|
)

≥
∑
t∈[T ]

f(γ∗, kt)−O
(√

T log (m%2 + d)d
)

(By Lemma 9.2)

=
∑
t∈[T ]

f(γ∗, kt)−O
(√

Td log (m%2 + d)
)
.

This completes the proof.

Notice that any no-regret algorithm working on Γ? requires a per-round
running time polynomial in n,m and exponential in d (see the bound in
Lemma 9.2). This shows that the source of the hardness result in Theo-
rem 9.3 is the number of states of nature d, while achieving no-regret in
polynomial time is possible when the parameter d is fixed.

9.5 Partial Information Feedback Setting

In this setting, at every round t, the sender can only observe the action at

played by the receiver. Therefore, the sender has no information on the
utility f(γ, kt) that she/he would have obtained by choosing any signaling
scheme γ ∈ Γ? other than γt. We show how to design no-regret algorithms
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with regret bounds that depend polynomially in the size of the problem
instance by exploiting a reduction from the partial information setting to
the full information one.4 The main idea is to use a full-information no-
regret algorithm in combination with a mechanism to estimate the sender’s
utilities corresponding to signaling schemes different from the one recom-
mended by the algorithm. In particular, the overall time horizon T is split
into a given number of equally-sized blocks, each corresponding to a win-
dow of time simulating a single round of a full information setting. During
this window, the strategy suggested by the full-information algorithm is
played in most of the rounds (exploitation phase), while only few rounds
are chosen uniformly at random and used by the mechanism that estimates
the utilities provided by other signaling schemes (exploration phase).

We split the rest of this section in two parts. Subsection 9.5.1 de-
scribes in details the overall structure of the partial-information algorithm
and shows its regret bound, while Subsection 9.5.2 shows the details about
the utility estimates built by the algorithm.

9.5.1 Overall Structure of the Algorithm

Algorithm 9.1 provides a sketch of the overall procedure, where Z (Line 1)
denotes the number of blocks, which are the intervals of consecutive rounds
{Iτ}τ∈[Z] defined in Line 4. The FULL-INFORMATION(·) sub-procedure
is a black box representing a no-regret algorithm for the full information
setting, working on a subset Γ◦ ⊆ Γ? of signaling schemes. After the
execution of all the rounds of each block τ ∈ [Z], it takes as input the
utility estimates computed during Iτ and returns a recommended strategy
qτ+1 ∈ ∆Γ◦ for the next block Iτ+1 (see Line 16). During each block Iτ
with τ ∈ [Z], Algorithm 9.1 alternates between two tasks: (i) exploration
(Line 8), trying all the signaling schemes in a subset Γ} ⊆ Γ? given as
input, so as to compute the required estimates of the sender’s expected util-
ities; and (ii) exploitation (Line 10), playing strategy qτ recommend by
FULL-INFORMATION(·) for Iτ .

Our main result is the proof that Algorithm 9.1 achieves the no-regret
property.

In order to prove this result, we show that Algorithm 9.1 provides a re-
gret bound that depends on the number |Γ}| of signaling schemes used for
exploration, the logarithm of |Γ◦|, and the range and bias of the estima-
tors f̃ Iτ (γ). To do this, we extend a result shown by (Balcan et al., 2015,
Lemma 6.2) to the more general case in which only biased utility estima-

4The reduction is an extension of those proposed by Balcan et al. (2015) and Awerbuch and Mansour (2003).
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9.5. Partial Information Feedback Setting

Algorithm 9.1 ONLINE BAYESIAN PERSUASION WITH PARTIAL INFORMATION FEED-
BACK

Inputs . See Subsection 9.5.2 for the definitions of subsets Γ◦ and Γ}

• Full-information no-regret algorithm FULL-INFORMATION(·) working on a subset Γ◦ ⊆ Γ?

of signaling schemes.

• Subset Γ} ⊆ Γ? of signaling schemes used for exploration.

1: Let Z be defined as in Lemma 9.3
2: Let q1 ∈ ∆Γ◦ be the uniform distribution over Γ◦

3: for τ = 1, . . . , Z do
4: Iτ ←

{
(τ − 1)T

Z
+ 1, . . . , τ T

Z

}
5: Choose a random permutation π : [|Γ}|] → Γ} and t1, . . . , t|Γ}| rounds at random from
Iτ

6: for t = (τ − 1)T
Z

+ 1, . . . , τ T
Z

do
7: if t = tj for some j ∈ [|Γ}|] then
8: qt ← q ∈ ∆Γ? such that qγ = 1 for the signaling scheme γ = π(j) . Exploration

phase
9: else

10: qt ← qτ . Exploitation phase
11: end if
12: Play a signaling scheme γt ∈ Γ? randomly drawn from qt

13: Observe sender’s utility f(γt, kt) and receiver’s action at ∈ A
14: end for
15: Compute estimators f̃Iτ (γ) of fIτ (γ) := 1

|Iτ |
∑
t∈[T ]:t∈I f(γ, kt) for all γ ∈ Γ◦

16: qτ+1 ← FULL-INFORMATION

({
f̃Iτ (γ)

}
γ∈Γ◦

)
17: end for

175



Chapter 9. Online Single-receiver Bayesian Persuasion

tors are available, rather than unbiased ones. This result can be generalized
to any partial information setting (beyond online Bayesian persuasion).

In any block Iτ with τ ∈ [Z], for every γ ∈ Γ◦, we assume that Algo-
rithm 9.1 has access to an estimator f̃ Iτ (γ) of the sender’s average utility
f Iτ (γ) = 1

|Iτ |
∑

t∈[T ]:t∈I f(γ, kt) obtained by committing to γ during the
block Iτ , with the following properties:

(i) the bias is bounded by a given constant ι ∈ (0, 1), i.e., it holds that∣∣∣f Iτ (γ)− E
[
f̃ Iτ (γ)

]∣∣∣ ≤ ι;

(ii) the range is limited, i.e., there exists a η ∈ R such that f̃ Iτ (γ) ∈
[−η,+η].

Lemma 9.3. Suppose that Algorithm 9.1 has access to estimators f̃ Iτ (γ)
with properties (i) and (ii) for some constants ι ∈ (0, 1) and η ∈ R, for
every signaling scheme γ ∈ Γ◦ and block Iτ with τ ∈ [Z]. Moreover, let
Z := T 2/3|Γ}|−2/3η2/3 log1/3 |Γ◦|. Then, Algorithm 9.1 guarantees regret:

RT ≤ O

(
|Γ}|1/3η2/3 log1/3 |Γ◦|

T 1/3

)
+O (ι) .

Proof. In order to prove the desired regret bound for Algorithm 9.1, we rely
on two crucial observations:

• during the exploration phase of each block Iτ with τ ∈ [Z], i.e., the
iterations t1, . . . , t|Γ}|, the algorithm plays a strategy qt 6= qτ , where
qτ is the last strategy recommended by FULL-INFORMATION(·), re-
sulting in a corresponding utility loss that can be as large as −1 (since
the utilities are in the range [0, 1]);

• running the full-information no-regret algorithm (i.e., the sub-procedure
FULL-INFORMATION(·)) using biased estimates of the sender’s util-
ities (rather than their real values) results in the regret bound being
worsened by only a term that is proportional to the bias ι of the adopted
estimators.

In the following, we denote with RZ
full the cumulative regret achieved

by FULL-INFORMATION(·), where we remark the fact that each block Iτ
simulates a single iteration of the full information setting, and, thus, the
number of iterations for the full-information algorithm is Z rather than T .
Formally, we have the following definition:

RZ
full := max

γ∈Γ◦

∑
τ∈[Z]

f̃ Iτ (γ)−
∑
τ∈[Z]

∑
γ∈Γ◦

qτγ f̃
Iτ (γ),
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where we notice that the regret is computed with respect to the estimates
f̃ Iτ (γ) of the sender’s average utilities f Iτ (γ) experienced in each block Iτ ,
defined as f Iτ (γ) = 1

|Iτ |
∑

t∈Iτ f(γ, kt) for every γ ∈ Γ◦. We also remark
that the full-information algorithm is run on a subset Γ◦ ⊆ Γ? of signaling
schemes, and, thus, the regret RZ

full is defined with respect to them. More-
over, from Section 9.4, we know that there exists an algorithm satisfying the
regret bound RZ

full ≤ O
(
η
√
Z log |Γ◦|

)
, where η is the range of the util-

ity values observed by the algorithm that, in our case, corresponds to the
range of the estimates observed by the algorithm, which is limited thanks
to property (ii) of the estimators.

In order to prove the result, we also need the following relation, which
holds for every τ ∈ [Z] and signaling scheme γ ∈ Γ◦:

∑
t∈Iτ

f(γ, kt) = |Iτ |f Iτ (γ) ≥ |Iτ |
(
E[f̃ Iτ ]− ι

)
=
T

Z

(
E[f̃ Iτ ]− ι

)
, (9.6)

where the first equality holds by definition, the inequality holds thanks to
property (i) of the estimators, while the last equality is given by |Iτ | = T

Z
.

Letting U be the sender’s expected utility achieved by playing according
to Algorithm 9.1, the following relations hold:

1

T
U :=

1

T

∑
τ∈[Z]

∑
t∈Iτ

∑
γ∈Γ◦

qtγf(γ, kt)

(qt 6= qτ in |Γ}| iterations and max. loss = −1)

≥ 1

T

∑
τ∈[Z]

∑
γ∈W◦

qτγ
∑
t∈Iτ

f(γ, kt)− |Γ
}|Z
T

≥ 1

T

∑
τ∈[Z]

∑
γ∈W◦

qτγ
T

Z

(
E
[
f̃Iτ (γ)

]
− ι
)
− |Γ

}|Z
T

(By Equation (9.6))

=
1

Z

∑
τ∈[Z]

∑
γ∈Γ◦

qτγ

(
E
[
f̃Iτ (γ)

]
− ι
)
− |Γ

}|Z
T

(Since
∑
τ∈[Z]

∑
γ∈Γ◦

qτγ = Z, being qτ ∈ ∆Γ◦ )

=
1

Z

∑
τ∈[Z]

∑
γ∈Γ◦

qτγE
[
f̃Iτ (γ)

]
− ι− |Γ

}|Z
T

=
1

Z
E

∑
τ∈[Z]

∑
γ∈Γ◦

qτγ f̃
Iτ (γ)

− ι− |Γ}|Z
T

=
1

Z
E
[

max
γ∈Γ◦

∑
τ∈Z

f̃Iτ (γ)−RZfull

]
− ι− |Γ

}|Z
T

(Definition of RZfull)
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≥ 1

Z
max
γ∈Γ◦

∑
τ∈[Z]

E
[
f̃Iτ (γ)

]
− 1

Z
RZfull − ι−

|Γ}|Z
T

(Jensen’s inequality)

≥ 1

Z
max
γ∈Γ◦

∑
τ∈[Z]

(
fIτ (γ)− ι

)
− 1

Z
RZfull − ι−

|Γ}|Z
T

(By property (i))

=
1

Z
max
γ∈Γ◦

∑
τ∈[Z]

fIτ (γ)− ι− 1

Z
RZfull − ι−

|Γ}|Z
T

=
1

Z
max
γ∈Γ◦

Z

T

∑
τ∈[Z]

∑
t∈Iτ

f(γ, kt)− 1

Z
RZfull − 2ι− |Γ

}|Z
T

(By def. of fIτ (γ) and |Iτ | =
T

Z
)

=
1

T
max
γ∈Γ◦

∑
τ∈[Z]

∑
t∈Iτ

f(γ, kt)− 1

Z
RZfull − 2ι− |Γ

}|Z
T

=
1

T
max
γ∈Γ◦

∑
t∈[T ]

f(γ, kt)− 1

Z
RZfull − 2ι− |Γ

}|Z
T

=

≥ 1

T
max
γ∈Γ◦

∑
t∈[T ]

f(γ, kt)− 1

Z
O
(
η
√
Z log |Γ◦|

)
− 2ι− |Γ

}|Z
T

≥ 1

T
max
γ∈Γ◦

∑
t∈[T ]

f(γ, kt)−O
(
|Γ}|1/3η2/3 log1/3 |Γ◦|

T 1/3

)
− 2ι− |Γ

}|1/3η2/3 log1/3 |Γ◦|
T 1/3

≥ 1

T
max
γ∈Γ◦

∑
t∈[T ]

f(γ, kt)−O
(
|Γ}|1/3η2/3 log1/3 |Γ◦|

T 1/3

)
−O (ι)

By using the definition of the regret RT of Algorithm 9.1, we get the state-
ment.

lemma 9.3 shows that even if utility estimators have small bias, we can
still hope for a no-regret algorithm. However, we have to guarantee that
Γ} has a polynomial size, and that the estimator has a limited range. These
requirements can be achieved by estimating sender’s utilities indirectly by
means of other related estimates, at the cost of giving up on the unbiased-
ness of the estimators.

The key observation that allows to get the desired estimators f̃ Iτ (γ)
by only exploring a polynomially-sized set Γ} is that the utilities f Iτ (γ)
that we wish to estimate are not independent, but they all depend on the
frequency of each receiver’s type during block Iτ . Thus, only these (poly-
nomially many) quantities need to be estimated. In order to do so, we use
the concept of barycentric spanners (Awerbuch and Kleinberg, 2008). A
direct application of barycentric spanners to our setting would require be-
ing able to induce any receiver’s posterior during the exploration phase.
Unfortunately, this is not possible as the sender is forced to play consis-
tent signaling schemes (see Equation (3.3)), which could prevent her from
inducing certain posteriors. We achieve the goal of keeping the bias and
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the range of the estimators small by adopting the following two technical
caveats:

(i) we focus on posteriors that can be induced by a signaling scheme with
at least some (‘not too small’) probability, which ensures that the re-
sulting estimators have a limited range; and

(ii) we restrict the full-information algorithm to signaling schemes Γ◦ ⊆
Γ? inducing a small number of posteriors, which guarantees to have
estimators with a small bias.

Our complete technical results on utilities estimation are provided in the
following subsection.

9.5.2 Utilities Estimation

We show in details how to compute the estimates needed by Algorithm 9.1
by using random samples from a polynomially-sized set Γ} ⊆ Γ?. Let
us recall that, during each block Iτ with τ ∈ [Z], Algorithm 9.1 needs to
compute the estimators f̃ Iτ (γ) of f Iτ (γ) = 1

|Iτ |
∑

t∈Iτ f(γ, kt) for all the
signaling schemes γ ∈ Γ◦ (Line 15). Notice that the set Γ◦ ⊆ Γ? is defined
(as shown in Lemma 9.6) in order to be able to build estimators with the
desired properties (i) and (ii).

As discussed at the end of the preceding Subsection 9.5.1, the key in-
sight that allows us to get the required estimates by using only a polynomial
number of random samples is that the utilities to be estimated are not inde-
pendent. This is because they depend on the frequencies of the receiver’s
actions during bock Iτ , which depend, in turn, on the frequencies of the re-
ceiver’s types. Thus, the goal is to devise estimators for the frequencies of
the receiver’s types during each block Iτ . As an intuition, imagine that the
sender commits to a signaling scheme such that each receiver’s type best
responds by playing a different action. Then, by observing the receiver’s
action, the sender gets to know the receiver’s type with certainty. In general,
for a given signaling scheme, there might be many different receiver’s types
that are better off playing the same action. In order to handle this problem
and build the required estimates of the frequencies of the receiver’s types,
we use insights from the bandit linear optimization literature, and, in par-
ticular, we use the concept of barycentric spanner introduced by Awerbuch
and Kleinberg (2008).

For every block Iτ with τ ∈ [Z], we let gτ : [0, 1]m → R be a function
that, given a vector x = [x1, . . . , xm] ∈ [0, 1]m, returns the sum of the num-
ber of times the receiver’s types in K were active during block Iτ weighted
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by the coefficients defined by the vector x. Formally, the following defini-
tion holds:

gτ (x) :=
∑
k∈K

xk
∑
t∈Bτ

I[kt = k],

where I[kt = k] is an indicator function that is equal to 1 if and only if it is
the case that kt = k, while it is 0 otherwise. Notice that, for a given τ ∈ [Z]
and k ∈ K, the term

∑
t∈Bτ I[k

t = k] is a constant, and, thus, the function
gτ is linear. Intuitively, gτ is the key element that allows us to connect the
utilities that we need to estimate with the actual quantities we can estimate
through the use of barycentric spanners.

The first crucial step is to restrict the attention to posteriors that can
be induced with at least some (‘not too small’) probability. This ensures
that our estimators have a limited range. Given a probability threshold σ ∈
(0, 1), we denote with Ξ} ⊆ Ξ the set of posteriors that can be induced with
probability at least σ by some signaling scheme. We can verify whether a
given posterior ξ ∈ Ξ belongs to Ξ} by solving an LP. Formally, ξ ∈ Ξ} if
and only if the following set of linear equations admits a feasible solution
γ ∈ ∆Ξ:

γξ ≥ σ (9.8a)∑
ξ∈Ξ

γξξθ = µθ ∀θ ∈ Θ. (9.8b)

We define Q as the set of all the tuples a = (ak)k∈K ∈×k∈KA for which
there exists a posterior ξ ∈ Ξ} such that, for every receiver’s type k ∈
K, the action ak specified by the tuple is a best response to ξ for type k.
Formally:

Q :=
⋃
ξ∈Ξ}

(
b1
ξ, . . . , b

m
ξ

)
,

where we recall that bkξ denotes the best response of type k ∈ K under
posterior ξ. Intuitively, Q is the set of tuples of receiver’s best responses
which result from the posteriors that the sender can induce with probability
at least σ.5

Given a tuple a = (ak)k∈K ∈ Q and a receiver’s action a ∈ A, we
denote with I(a=a) ∈ {0, 1}m an indicator vector whose k-th component is
equal to 1 if and only if type k ∈ K plays action a in a, i.e., it holds ak = a.

5Let us remark that the sets Ξ} and Q depend on the given threshold σ ∈ (0, 1). In the following, for the
ease of notation, we omit such dependence, as the actual value of σ that the two sets refer to will be clear from
context.
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Moreover, we define X as the set of all the indicators vectors; formally,
X :=

{
I(a=a) | a ∈ Q, a ∈ A

}
.

Since the set X is a finite (and hence compact) subset of the Euclidean
space Rm, we can use the following proposition due to Awerbuch and
Kleinberg (2008) to introduce the barycentric spanner of X .

Proposition 9.1 (Awerbuch and Kleinberg (2008), Proposition 2.2). If X
is a compact subset of an m-dimensional vector space V , then there exists
a set H = {h1, ...,hm} ⊆ X such that for all x ∈ X , x may be expressed
as a linear combination of elements ofH using coefficients in [−1, 1]. That
is, for all x ∈ X , there exists a vector of coefficients λ = [λ1, . . . , λm] ∈
[−1, 1]m such that x =

∑
i∈[m] λih

i. The set H is called barycentric span-
ner of X .

In the following, we denote with H := {h1, ...,hm} ⊆ X a barycentric
spanner of X . Notice that, since each element h ∈ H of the barycentric
spanner belongs to X by definition, there exist a tuple a ∈ Q and a re-
ceiver’s action a ∈ A such that h is equal to the indicator vector I(a=a).
Moreover, by definition of Q, there exists a posterior ξ ∈ Ξ} such that the
tuple of best responses

(
b1
ξ, . . . , b

m
ξ

)
coincides with a.

Next, we describe how Algorithm 9.1 computes the required estimates.
During the exploration phase of block Iτ with τ ∈ [Z], one iteration is de-
voted to each element h ∈ H of the barycentric spanner, so as to get an
estimate of gτ (h). During such iteration, the algorithm plays a signaling
scheme γ ∈ ∆Ξ that is feasible for the LP defined by Constraints (9.8)
where the posterior ξ ∈ Ξ} is that associated to h. This means that the
set of all such signaling schemes is used as Γ} in Algorithm 9.1. More-
over, when the induced receiver’s posterior is ξ and the receiver responds
by playing action a, the algorithm sets a variable pτ (h) to the value 1

γξ
,

otherwise pτ (h) is set to 0.
The following lemma shows that the variables pτ (h) computed by the

algorithm during each block Iτ with τ ∈ [Z] are unbiased estimates of the
values gτ (h).

Lemma 9.4. For any τ ∈ [Z] and h ∈ H, it holds E [pτ (h) · |Iτ |] = gτ (h).

Proof. First, recall that pτ (h) = 1
γξ

if and only if during the iteration of
exploration devoted to h, the induced receiver’s posterior is ξ and she/he
best responds by playing a (otherwise, pτ (h) = 0). Since the iteration
is selected uniformly at random over the block Iτ and the sequence of re-
ceiver’s types k = {kt}t∈[T ] is chosen adversarially before the beginning of
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the game, we can conclude that also the receiver’s type for that iteration is
picked uniformly at random. Thus,

E [pτ (h)] =
1

γξ
· γξ · P

{
randomly chosen type from Iτ best responds to ξ

consistently with h
}
,

where by best responding consistently we mean that the type k ∈ K is such
that hk = 1, i.e., she plays action a in a. By using the definition of gτ (h),
we can write the following:

E [pτ (h)] =

∑
k∈K:hk=1 gτ (e

k)

|Iτ |
=
gτ (h)

|Iτ |
,

where ek ∈ Rm denotes an m-dimensional vector whose k-th component
is 1, while others components are 0.

For any x ∈ X , we let λ(x) = [λ1(x), . . . , λm(x)] ∈ [−1, 1]m be the
vector of coefficients representing x with respect to basis H. Formally, we
can write x =

∑
i∈[m] λi(x)hi.

For any posterior ξ ∈ Ξ}, let a[ξ] ∈ Q be such that a[ξ] =
(
b1
ξ, . . . , b

m
ξ

)
.

Then, for each τ ∈ [Z], let us define

f̃ Iτ (ξ) :=
∑
a∈A

∑
k∈K

λk
(
I(a[ξ]=a)

)
pτ
(
hk
)∑
θ∈Θ

ξθfθ(a).

Letting f Iτ (ξ) := 1
|Iτ |
∑

t∈τ f(ξ, kt) be the sender’s average utility achieved
by inducing the receiver’s posterior ξ ∈ Ξ} during each iteration of block
Iτ with τ ∈ [Z], the following lemma shows that f̃ Iτ (ξ) is an unbiased es-
timator of f Iτ (ξ), and, additionally, the range in which the estimator values
lie is not to large.

Lemma 9.5. For any posterior ξ ∈ Ξ} and τ ∈ [Z], it holds E
[
f̃ Iτ (ξ)

]
=

f Iτ (ξ). Moreover, f̃ Iτ (ξ) ∈ [−%m
σ
, %m
σ

].

Proof. The first statement follows from the following relations:

E
[
f̃ Iτ (ξ)

]
= E

[∑
a∈A

∑
k∈K

λk
(
I(a[ξ]=a)

)
pτ
(
hk
)∑
θ∈Θ

ξθfθ(a)

]
=
∑
a∈A

∑
k∈K

λk
(
I(a[ξ]=a)

)
E
[
pτ
(
hk
)]∑

θ∈Θ

ξθfθ(a)
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=
∑
a∈A

∑
θ∈Θ

ξθf
θ(a)

∑
k∈K

λk
(
I(a[ξ]=a)

)
E
[
pτ
(
hk
)]

=
∑
a∈A

∑
θ∈Θ

ξθfθ(a)
∑
k∈K

λk
(
I(a[ξ]=a)

) gτ (hk)
|Iτ |

(By Lemma 9.4)

=
∑
a∈A

∑
θ∈Θ

ξθfθ(a)
∑
k∈K

gτ
(
I(a[ξ]=a)

)
|Iτ |

(By definition of gτ )

= f Iτ (ξ),

where the last equality holds by using again the definition of gτ and re-
arranging the terms.

As for the second statement, since λk
(
I(a[ξ]=a)

)
∈ [−1, 1], it holds∑

θ∈Θ ξθfθ(a) ∈ [0, 1], and pτ
(
hk
)
∈
[
0, 1

σ

]
, it is easy to show that f̃ Iτ (ξ) ∈

[−%m
σ
, %m
σ

].

In the next lemma, we show that there always exists a best-in-hindsight
signaling scheme that uses (i.e., induces with positive probability) only a
small number of posteriors. This is the final step needed to show that the
estimators f̃ Iτ (ξ) allow to compute slightly biased estimates of the utilities
needed by the full-information algorithm.

Lemma 9.6. Given a sequence of receiver’s types k = {kt}t∈[T ], there
always exists a best-in-hindsight signaling scheme γ? ∈ Γ? such that the
set of posteriors it induces with positive probability

{
ξ ∈ Ξ | γ?ξ > 0

}
has

cardinality at most the number of states d.

Proof. By Lemma 9.1, there always exists an optimal signaling scheme
in Γ?. Notice that a best-in-hindsight signaling scheme γ? in Γ? can be
computed by solving the following LP:

max
γ∈Γ?

∑
t∈[T ]

∑
ξ∈Ξ̂

γξf(γ, kt)

s.t.
∑
ξ∈Ξ̂

γξξθ = µθ ∀θ ∈ Θ.

Since the LP has d equalities, it always admits an optimal basic, i.e., a
vertex of Γ̂, feasible solution in which at most d variables γξ are greater
than 0. This concludes the proof.

Then, we define the Γ◦ used by Algorithm 9.1 as the set of signal-
ing schemes γ ∈ Γ? whose support is at most d, i.e., it is the case that
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|{ξ ∈ Ξ | γξ > 0}| ≤ d. By Lemma 9.6, a best-in-hindsight signaling
scheme is always guaranteed to be in the set Γ◦.

Letting f̃ Iτ (γ) :=
∑
ξ∈Ξ} γξf̃

Iτ (ξ) for every γ ∈ Γ◦ and τ ∈ [Z],
the following lemma shows that each f̃ Iτ (γ) is a biased estimator of the
sender’s average utility f Iτ (γ) in block Iτ , while also providing bounds
on the bias and the range of the estimators. This final result allows us to
effectively use the estimators f̃ Iτ (γ) defined above in Algorithm 9.1.

Lemma 9.7. For any signaling scheme γ ∈ Γ◦ and τ ∈ [Z], it holds
f Iτ (γ) ≥ E

[
f̃ Iτ (γ)

]
≥ f Iτ (γ)−dσ. Moreover, it is the case that f̃ Iτ (γ) ∈

[−%m
σ
, %m
σ

].

Proof. By using Lemma 9.5, it is easy to check that the left inequality in
the first statement holds:

f Iτ (γ) =
∑
ξ∈Ξ

γξf
Iτ (ξ) ≥

∑
ξ∈Ξ}

γξf
Iτ (ξ) =

∑
ξ∈Ξ}

γξE
[
f̃ Iτ (ξ)

]
= E

[
f̃ Iτ (γ)

]
.

Moreover, it is the case that:

E
[
f̃ Iτ (γ)

]
=
∑
ξ∈Ξ}

γξE
[
f̃ Iτ (ξ)

]
=
∑
ξ∈Ξ}

γξfIτ (ξ) (By Lemma 9.5)

= f Iτ (γ)−
∑

ξ∈Ξ\Ξ}

γξf
Iτ (ξ) (By definition of f Iτ (γ))

≥ f Iτ (γ)−
∑

ξ∈Ξ\Ξ}

γξ (Since f Iτ (γ) ≤ 1)

≥ f Iτ (γ)−
∑

ξ∈Ξ\Ξ}

σ (By definition of Ξ}, it must be γξ < σ)

≥ f Iτ (γ)− dσ (Since γ ∈ Γ◦)

Finally, f̃ Iτ (γ) ∈ [−%m
σ
, %m
σ

] follows from the fact that, by definition,
f̃ Iτ (γ) is the weighted sum of quantities within the range [−%m

σ
, %m
σ

], with
the weights sum being at most 1.

Finally, we can prove the following theorem.

Theorem 9.5. Given an online Bayesian persuasion problem with partial
feedback, there exist Γ◦ ⊆ Γ?, Γ} ⊆ Γ?, and estimators f̃ Iτ (γ) such that
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Algorithm 9.1 provides the following regret bound:

RT ≤ O

(
m%2/3d log1/3 (%m+ d)

T 1/5

)
.

Proof. By setting σ := d−2/5T−1/5, it is sufficient to run Algorithm 9.1
with estimators f Iτ (γ) for every γ ∈ Γ◦ computed as previously described
in this section. Thus, it holds |Γ}| = m and η = %md2/5T 1/5. By Theo-
rem 9.3, the following holds:

RT ≤ O

(
|Γ}|1/3η2/3log1/3|Γ◦|

T 1/3

)
+O (ι)

= O

(
m1/3

(
%md2/5T 1/5

)2/3
log1/3 |Γ◦|

T 1/3

)
+O

(
d

d2/5T 1/5

)

= O

(
m%2/3d4/15 (d log (%2m+ d))

1/3

T 1/5

)
+O

(
d3/5

T 1/5

)

= O

(
m%2/3d3/5 log1/3 (%m+ d)

T 1/5

)
.

This concludes the proof.

9.6 A No-α-regret Algorithm for ε-persuasive Signaling Schemes

Theorem 9.3 shows that, for all α < 1, there is no polynomial-time al-
gorithm for the online Bayesian persuasion problem guaranteeing no-α-
regret, unless NP ⊆ RP. This implies that achieving sublinear regret with
a polynomial-time algorithm is unlikely. Section 9.4 and 9.5 described no-
regret algorithms for the full information and partial information feedback
requiring an exponential per-iteration running time. In this section we fo-
cus on the following natural question: is it possible to design an algorithm
with a better running time, at the cost of relaxing the persuasiveness con-
straints?

We consider the notion of regret defined in Equation (9.1). When com-
puting RT

ε , we compare the performance of the best-in-hindsight persua-
sive signaling scheme with the sequence of ε-persuasive signaling schemes
computed via the online algorithm. Then, we are interested in online algo-
rithms guaranteeing, for any α > 0 and ε > 0, the no-α-regret property.
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Specifically, there must be a constant c > 0 such that, after T iterations,
it holds: RT

ε ≤ α + 1
T c
poly(m, %, d). We show that in many settings it

is possible to devise an online algorithm for the online Bayesian persua-
sion problem exhibiting the no-α-regret property for each constant α that
works in polynomial time in the size of the problem. In particular, we pro-
vide an algorithm that works in time quasi-polynomial in the number of
receiver’actions. Hence, assuming that the number of receiver’actions is
fixed, the algorithm runs in polynomial time. In many applications, it is
oftentimes enough to set % = 2. This is the case, for example, in common
voting problems (Alonso and Câmara, 2016) and product marketing prob-
lems (Babichenko and Barman, 2017; Candogan, 2019). Notice that Theo-
rem 9.3 shows that even with three actions it is computationally intractable
to compute a sequence of persuasive signaling scheme with no-α-regret for
each α < 1. The main result reads as follows:

Theorem 9.6. Given a Bayesian persuasion problem with partial feedback,
for any α > 0 and ε > 0, there exists a poly

(
Tmd

log(%/α)

ε2

)
time algorithm

such that:

RT
ε ≤ O

(
dlog(%/α)/ε2

√
T

)
+ α.

As a corollary, for each constant α and ε, we obtain a polynomial-time
no- α-regret algorithm when the number of actions % is fixed.

Corollary 9.1. Given a Bayesian persuasion problem with partial feed-
back, for any constant number of actions % ≥ 1, constant α > 0, and
constant ε > 0, there exists a polynomial-time algorithm such that:

RT
ε ≤

poly(m, d)√
T

+ α.

In order to prove Theorem 9.6, we need to introduce some additional
machinery and to prove two fundamentals auxiliary results. We follow a
reasoning similar to that of Section 9.4. Specifically, we show that there
exists a set of signaling schemes of size quasi-polynomial in the number of
actions and polynomial in the instance size that for each possible sequence
of receiver’ types includes a signaling scheme nearly as good as the optimal
one.

Let Ξq be the set of q-uniform posteriors and recall that |Ξq| ∈ O(dq).
We show that, in order to prove Theorem 9.6, it is enough to set q =
2 log(%/α)

ε2
, and to limit the sender’s action space to signaling schemes de-

fined over posteriors in Ξq. The following lemma shows that for any ε > 0
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and α > 0, any posterior ξ∗ ∈ Ξ can be represented as a convex combina-
tion of elements of Ξq which guarantees a sender’s expected utility (when
the receiver is ε-best responding) at most distant by α from the expected
utility at ξ∗.

Lemma 9.8. For each ε > 0 and α > 0, and each posterior ξ∗ ∈ Ξ, there
exists a γ ∈ ∆Ξq , with q = 2 log(%/α)

ε2
, such that: for each θ ∈ Θ,∑

ξ∈supp(γ)

γξξθ = ξ∗θ ,

and, for each type k ∈ K,∑
ξ∈supp(γ)

γξf
ε(ξ, k) ≥ f(ξ∗, k)− α, (9.9)

where |Γ∗| = d
2log(%/α)

ε2 .

Proof. Let ξ̃ ∈ Ξq be the empirical distribution of q i.i.d. samples drawn
according to ξ∗, where each θ ∈ Θ has probability ξ∗θ of being sampled.
Therefore, the vector ξ̃ is a random variable supported on q-uniform poste-
riors with expectation ξ∗. Moreover, let γ ∈ ∆Ξq be a probability distribu-
tion such as, for each ξ ∈ Ξq, γξ := Pr(ξ̃ = ξ).

Given an arbitrary k ∈ K, we show that γ satisfies Equation (9.9). Let
Ξq,ε be the set of posteriors such that ξ ∈ Ξq,ε iff, for each a ∈ A, it holds:∣∣∣∣∣∑

θ∈Θ

(
ξθu

k
θ(a)− ξ∗θukθ(a)

)∣∣∣∣∣ ≤ ε

2
. (9.10)

Then, for each ξ ∈ Ξq,ε, we have that Bkξ∗ ⊆ Bkε,ξ. In particular, for any
a∗ ∈ Bkξ∗ , ξ ∈ Ξq,ε and a ∈ A:∑
θ∈Θ

ξθu
k
θ(a
∗) ≥

∑
θ∈Θ

ξ∗θu
k
θ(a
∗)− ε

2
(By Eq. (9.10) and the definition of Bkξ∗)

≥
∑
θ∈Θ

ξ∗θu
k
θ(a)− ε

2
(By Definition 9.2)

≥
∑
θ∈Θ

ξθu
k
θ(a)− ε (By Equation (9.10))

which is precisely the definition of Bkε,ξ.
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For each a ∈ A, let t̃ka :=
∑

θ∈Θ ξ̃θu
k
θ(a) and tka :=

∑
θ∈Θ ξ

∗
θu

k
θ(a). By

the Hoeffding’s inequality we have that, for each a ∈ A,

Pr
(∣∣t̃ka − E[t̃ka]

∣∣ ≥ ε

2

)
≤ 2e−2q(ε/2)2

= 2e− log(%/α) ≤ α

%
. (9.11)

Moreover, Equation (9.10) and the union bound yield the following:∑
ξ∈Ξq,ε

γξ = Pr(ξ̃ ∈ Ξq,ε)

= Pr

(⋂
a∈A

∣∣t̃ka − tka∣∣ ≤ ε

2

)
≥ 1−

∑
a∈A

Pr
(∣∣t̃ka − tka∣∣ ≥ ε

2

)
≥ 1− α. (By Equation (9.11))

Let ᾱ be a d-dimensional vector defined as ᾱθ :=
∑
ξ∈Ξq\Ξq,ε γξξθ. By

definition and for the previous result we have:
∑

θ∈Θ ᾱθ ≤ α.
Finally, we can show that Equation (9.9) is satisfied:∑

ξ∈Ξq

γξf
ε(ξ, k) ≥

∑
ξ∈Ξq,ε

γξf
ε(ξ, k) (Ξq,ε ⊆ Ξq)

=
∑
ξ∈Ξq,ε

γξ

(∑
θ∈Θ

ξθfθ(b
k
ε,ξ)

)

≥
∑
ξ∈Ξq,ε

γξ

(∑
θ∈Θ

ξθfθ(b
k
ξ∗)

)
(Bkξ∗ ⊆ Bkε,ξ for each ξ ∈ Ξq,ε)

1 =
∑
θ∈Θ

fθ(b
k
ξ∗)

( ∑
ξ∈Ξq,ε

γξξθ

)

=
∑
θ∈Θ

fθ(b
k
ξ∗)

(∑
ξ∈Ξq

γξξθ − ᾱθ

)
(By definition of ᾱ)

=
∑
θ∈Θ

fθ(b
k
ξ∗)

(∑
ξ∈Ξq

γξξθ

)
−
∑
θ∈Θ

usθ(b
k
ξ∗)ᾱθ

≥
∑
θ∈Θ

fθ(b
k
ξ∗)

(∑
ξ∈Ξq

γξξθ

)
−
∑
θ∈Θ

ᾱθ (Utilities in [0, 1])
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≥
∑
θ∈Θ

fθ(b
k
ξ∗)

(∑
ξ∈Ξq

γξξθ

)
− α.

By definition of γ, we have that, for each θ ∈ Θ:∑
ξ∈Ξq

γξξθ = ξ∗θ .

Then, the above implies that:∑
ξ∈Ξq

γξf
ε(ξ, k) ≥

∑
θ∈Θ

ξ∗θfθ(b
k
ξ∗)− α = f(ξ∗, k)− α.

This concludes the proof.

We showed that for any ε > 0 and α > 0, any posterior ξ∗ ∈ Ξ can
be represented as a convex combination of elements of Ξq which guaran-
tees a sender’s expected utility (when the receiver is ε-best responding) at
most distant by α from the expected utility at ξ∗. We exploit this result
to show that there exists a set of signaling schemes with quasi-polynomial
size which guarantees ε-persuasiveness as well as near optimal sender’s
expected utility. This set is defined analogously to what we did in Equa-
tions (9.2) and (9.3), with the only difference that now the set of consistent
distributions is built starting from ∆Ξq . In particular,

Γ∗ := V

({
γ ∈ ∆Ξq |

∑
ξ∈Ξq

γξξθ = µθ, ∀θ ∈ Θ

})
. (9.12)

Therefore, the action-space Γ∗ is defined as the set of extreme points of
the convex polytope obtained by intersecting ∆Ξq with d half-spaces corre-
sponding to consistency constraints. By construction, we have that |Γ∗| ∈
O(dq). We characterize Γ∗ via the following lemma:

Lemma 9.9. For each sequence of receivers k = {kt}t∈[T ],

max
γ∈Γ

∑
t∈[T ]

f(γ, kt)− max
γ∗∈Γ∗

∑
t∈[T ]

f ε(γ∗, kt) ≤ αT.

Proof. Given an arbitrary γ ∈ Γ, each posterior ξ ∈ supp(γ) can be rewrit-
ten according to Lemma 9.8 as a convex combinations of q-uniform poste-
riors, which we denote by γξ ∈ ∆Ξq . Let γ∗ ∈ ∆Ξq be a signaling scheme
such that, for each ξ′ ∈ Ξq, it holds:

γ∗ξ′ =
∑

ξ∈supp(γ)

γξγ
ξ
ξ′ .
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The signaling scheme γ∗ is consistent by construction. Moreover, the fol-
lowing holds:

∑
t∈[T ]

f(γ, kt) =
∑
k∈K

∑
t∈[T ]:
kt=k

(∑
ξ∈Ξ

wξ

(∑
θ∈Θ

ξθfθ(b
k
ξ)

))

(By Lemma 9.8)

≤
∑
k∈K

∑
t∈[T ]:
kt=k

(∑
ξ∈Ξ

wξ

(∑
ξ′∈Ξq

wξξ′

(∑
θ∈Θ

ξ′θfθ(b
k
ξ′)

)
+ α

))

=
∑
k∈K

∑
t∈[T ]:
kt=k

(∑
ξ′∈Ξq

w∗ξ′

(∑
θ∈Θ

ξ′θfθ(b
k
ξ′)

)
+ α

)

=
∑
k∈K

∑
t∈[T ]:
kt=k

(
f(γ∗, kt) + α

)
=
∑
t∈[T ]

f(γ∗, kt) + αT.

Then, there exists an ε-persuasive signaling scheme γ∗ which is consis-
tent and belongs to ∆Ξq while satisfying the lemma. Since

∑
t∈[T ] f(γ∗, kt)

is a linear function of γ∗, its maximum is attained precisely at one of the ex-
treme points of the set of consistent signaling schemes in ∆Ξq , i.e., γ∗ ∈ Γ∗.
This concludes the proof.

At this point, we can easily provide a proof of the main theorem (The-
orem 9.6) by limiting the sender’s strategy space to Γ∗. The last compo-
nent of the proof is to have a no-regret algorithm for the sender’s strategy
space to Γ∗. We can obtain no-regret with respect to the optimal signaling
scheme in W ∗ employing any algorithm for the adversarial MAB problem
satisfying RT ≤ O(

√
|A|T ) where A is an arbitrary action set. This can

be achieved for example via the INF (Implicitly Normalized Forecaster)
algorithm by Audibert and Bubeck (2009).

Proof of Theorem 9.6. Take any no-regret algorithm satisfying

RT ≤ O(
√
|A|T ),

where A is the action set. Then, by taking Γ∗ as the sender’s action-set we
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obtain:

max
γ∈Γ∗

1

T

∑
t∈[T ]

(
f ε(γ, kt)− E[f ε(γt, kt)]

)
≤ O

(√
|Γ∗|
T

)
.

By Lemma 9.9,

1

T

max
γ∈Γ

∑
t∈[T ]

f(γ, kt)− max
γ∗∈Γ∗

∑
t∈[T ]

f ε(γ∗, kt)

 ≤ α.

Then, we have

RT
ε = max

γ∈Γ

1

T

∑
t∈[T ]

(
f(γ, kt)− E[f ε(γt, kt)]

)
≤

1

T

(
max
γ∈Γ

∑
t∈[T ]

f(γ, kt)−max
γ∈Γ∗

∑
t∈[T ]

f ε(γ, kt)

+ max
γ∈Γ∗

∑
t∈[T ]

f ε(γ, kt)−
∑
t∈[T ]

E[f ε(γt, kt)]
)

≤ O

(√
|Γ∗
T

)
+ α.

By substituting |Γ∗| = d
2 log(%/α)

ε2 (see Lemma 9.8) in the above expression
we have

RT
ε ≤ O

(
dlog(%/α)/ε2

√
T

)
+ α.

This concludes the proof.
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CHAPTER10
Online Multi-receiver Bayesian Persuasion

In this Chapter, we extend the online Bayesian persuasion framework in-
troduced in Chapter 9 to multiple receivers. In Section 10.1 we extend
the Bayesian persuasion framework with multiple receivers to include re-
ceivers’ types, focusing on the setting in which each receiver has a con-
stant number of types. In Section 10.2, we introduce the online learn-
ing framework with multiple receivers. Then, in Section 10.3 we show
that designing no-α-multiplicative-regret algorithms with polynomial per-
iteration running time is an intractable problem when the sender’s utility
function is supermodular or anonymous, even if each receiver has a con-
stant number of types. In Section 10.4, we design a general online gradient
descent scheme with approximate projection oracles. This algorithm can
be applied to any online learning problem with a finite number of possible
loss (under mild assumptions). The main result of the section is to show that
the gradient descent scheme provides no-α-multiplicative-regret given ac-
cess to an α-approximate projection oracle. In Section 10.5, we show that,
in the multi-receiver Bayesian persuasion setting, such an oracle can be
implemented in polynomial time given access to a approximate separation
oracle. Finally, Section 10.6 concludes the construction of the no-(1−1/e)-
multiplicative-regret algorithm for submodular sender’s utility functions by

193



Chapter 10. Online Multi-receiver Bayesian Persuasion

showing how to implement in polynomial time an (1 − 1/e)-approximate
separation oracle for settings in which the sender’s utility is submodular.

10.1 Multi-receiver Bayesian Persuasion with Types

We consider a generalization to a multi-receiver setting of the online prob-
lem introduced in Chapter 9. There is a finite set R := {ri}n̄i=1 of n̄
receivers, and each receiver r ∈ R has a type chosen from a finite set
Kr := {kr,i}mri=1 of mr different types (let m := maxr∈Rmr). We intro-
duce K :=×r∈RKr as the set of type profiles, which are tuples k ∈ K
defining a type kr ∈ Kr for each receiver r ∈ R. Each receiver r ∈ R has
two actions available, defined by Ar := {a0, a1}. We let A :=×r∈RAr
be the set of action profiles specifying an action for each receiver. We
assume no inter-agent externalities. Hence, the payoff of a receiver de-
pends on the action played by her/him and the state of nature, while it does
not depend on the actions played by the other receivers. Formally, a re-
ceiver r ∈ R of type k ∈ Kr has a utility ur,k : Θ × Ar → [0, 1]. For
the ease of notation, we let ur,kθ := ur,kθ (a1, θ) − ur,kθ (a0) be the payoff
difference for a receiver r of type k when the state of nature is θ ∈ Θ.
The sender’s utility in a state θ depends on the actions played by all the
receivers, and it is defined by fθ : A → [0, 1]. In this chapter, we fo-
cus on private signaling, where each receiver has her/his own signal that
is privately communicated to her/him. We remark that, given a signaling
scheme φ, a receiver r ∈ R of type k ∈ Kr observing a private signal
s ∈ Sr experiences an expected utility

∑
θ∈Θ µθ

∑
s∈S:sr=s

φθ(s)ur,kθ (a)
(up to a normalization constant) when playing action a ∈ Ar. Assuming
the receivers’ type profile is k ∈ K, the goal of the sender is to commit to
an optimal signaling scheme φ, which is one maximizing her/his expected
utility f(φ,k) :=

∑
θ∈Θ µθ

∑
s∈S φθ(s) fθ(R

k
s ), where we let Rks ⊆ R be

the set of receivers who play a1 after observing their private signal sr in
s, under signaling scheme φ. By well-known revelation-principle-style ar-
guments (Kamenica and Gentzkow, 2011; Arieli and Babichenko, 2019),
we can restrict our attention to signaling schemes that are direct and per-
suasive. In our setting, a direct signal sent to a receiver specifies an action
recommendation for each receiver’s type; thus, we let Sr := 2Kr for every
r ∈ R. A signal s ∈ Sr for a receiver r ∈ R is encoded by a subset
of her/his types, namely s ⊆ Kr. Given a direct and persuasive signaling
scheme φ, for a signal profile s ∈ S and a type profile k ∈ K, the set Rks
appearing in the definition of the sender’s expected utility f(φ,k) can be
formally expressed as Rks := {r ∈ R | kr ∈ sr}.
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In the rest of this chapter, we assume that the the sender’s utility is
monotone non-decreasing in the set of receivers playing a1. Formally, for
each state θ ∈ Θ, we let fθ(R) ≤ fθ(R

′) for every R ⊆ R′ ⊆ R, while
fθ(∅) = 0 for the ease of presentation. Moreover, we assume that the num-
ber of types mr of each receiver r ∈ R is fixed; in other words, the value
of m cannot grow arbitrarily large. 1

10.2 Online Settings

The sender plays a repeated game in which, at each iteration t ∈ [T ], she/he
commits to a signaling scheme φt, observes the realized state of nature
θt ∼ µ, and privately sends signals determined by st ∼ φtθt to the receivers.
Then, each receiver (whose type is unknown to the sender) selects an action
maximizing her/his expected utility given the observed signal (in the one-
shot interaction at iteration t).

We focus on the problem of computing a sequence {φt}t∈[T ] of signaling
schemes maximizing the sender’s expected utility when the sequence of re-
ceivers’ types {kt}t∈[T ], with kt ∈ K, is adversarially selected beforehand.
After each iteration t ∈ [T ], the sender gets payoff f(φt,kt) and receives
a full-information feedback on her/his choice at t, which is represented by
the type profile kt. Therefore, after each iteration, the sender can compute
the expected utility f(φ,kt) guaranteed by any signaling scheme φ she/he
could have chosen during that iteration.

We are interested in an algorithm computing φt at each iteration t ∈
[T ]. We measure the performance of one such algorithm using the α-
multiplicative-regret RT

M,α. Formally, for 0 < α ≤ 1,

RT
M,α := αmax

φ

∑
t∈[T ]

f(φ,kt)− E

∑
t∈[T ]

f(φt,kt)

 ,
where the expectation is on the randomness of the algorithm. The classical
notion of regret is obtained for α = 1. In the remaining of the chapter,
we focus on the notion of α-multiplicative-regret, and we write α-regret
instead of α-multiplicative-regret and RT

α instead of RT
M,α.

Ideally, we would like an algorithm that returns a sequence {φt}t∈[T ]

with the following properties:

• the α-regret is sublinear in T for some 0 < α ≤ 1;
1The monotonicity assumption is w.l.o.g., since our positive result (Theorem 10.9) relies on it. Instead, assum-

ing a fixed number of types is necessary, since, even in single-receiver settings, designing no-regret algorithms
with running time polynomial in % is intractable as proven in Theorem 9.2 of the previous chapter.
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• the number of computational steps it takes to compute φt at each iter-
ation t ∈ [T ] is poly(T, n̄, d), that is, it is a polynomial function of the
parameters T , n̄, and d.

An algorithm satisfying the first property is called a no-α-regret algorithm
(it is no-regret if it does so for α = 1). In this work, we focus on the
weaker notion of α-regret since, as we discuss next, requiring no-regret is
oftentimes too limiting in our setting (from a computational perspective).

10.3 Hardness of Being No-α-Regret

We start with a negative result. We show that designing no-α-regret algo-
rithms with polynomial per-iteration running time is an intractable problem
(formally, it is impossible unless NP ⊆ RP) when the sender’s utility is
such that functions fθ are supermodular or anonymous. This hardness re-
sult is deeply connected with the intractability of the offline version of our
multi-receiver Bayesian persuasion problem that we formally define in the
following Section 10.3.1. Then, Section 10.3.2 collects all the hardness
results.

10.3.1 Offline Multi-Receiver Bayesian Persuasion

We consider an offline setting where the receivers’ type profile k ∈ K is
drawn from a known probability distribution (rather then being selected ad-
versarially at each iteration). Given a subset of possible type profiles K ⊆
K and a distribution λ ∈ int(∆K), we call BAYESIAN-OPT-SIGNAL the
problem of computing a signaling scheme that maximizes the sender’s ex-
pected utility. This can be achieved by solving the following LP of expo-
nential size.2

max
φ

∑
k∈K

λk
∑
θ∈Θ

µθ
∑
s∈S

φθ(s)fθ(R
k
s ) (10.1a)

s.t.
∑
θ∈Θ

µθ
∑

s∈S:sr=s

φθ(s)ur,kθ ≥ 0

∀r ∈ R,∀s ∈ Sr,∀k ∈ Kr : k ∈ s (10.1b)∑
s∈S

φθ(s) = 1 ∀θ ∈ Θ (10.1c)

2Constraints (10.1b) encode persuasiveness for the signals recommending to play a1. The analogous con-
straints for a0 can be omitted. Indeed, by assuming that each fθ is non-decreasing in the set of receivers who
play a1, any signaling scheme in which the sender recommends a0 when the state is θ and the receiver prefers
a1 over a0 can be improved by recommending a1 instead.
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φθ(s) ≥ 0 ∀θ ∈ θ, ∀s ∈ S. (10.1d)

10.3.2 Hardness Results

First, we study the computational complexity of finding an approximate so-
lution to BAYESIAN-OPT-SIGNAL. In particular, given 0 < α ≤ 1, we
look for an α-approximate solution in the multiplicative sense, i.e., a signal-
ing scheme providing at least a fraction α of the sender’s optimal expected
utility (the optimal value of LP 10.1). Theorem 7.2 provides our main
hardness result, which is based on a reduction from the promise-version
of LABEL-COVER. The following is the formal definition of an instance
of the LABEL-COVER problem.

Definition 10.1 (LABEL-COVER instance). An instance of LABEL-COVER
consists of a tuple (G,Σ,Π), where:

• G := (U, V,E) is a bipartite graph defined by two disjoint sets of nodes
U and V , connected by the edges in E ⊆ U × V , which are such that
all the nodes in U have the same degree;

• Σ is a finite set of labels; and

• Π := {Πe : Σ→ Σ | e ∈ E} is a finite set of edge constraints.

Definition 10.2 (Labeling). Given an instance (G,Σ,Π) of LABEL-COVER,
a labeling of the graph G is a mapping π : U ∪ V → Σ that assigns a label
to each vertex of G such that all the edge constraints are satisfied. For-
mally, a labeling π satisfies the constraint for an edge e = (u, v) ∈ E if
π(v) = Πe(π(u)).

The classical LABEL-COVER problem is the search problem of finding
a valid labeling for a LABEL-COVER instance given as input. In the fol-
lowing, we consider a different version of the problem, which is the promise
problem associated with LABEL-COVER instances, defined as follows.

Definition 10.3 (GAP-LABEL-COVERc,b). For any pair of numbers 0 <
b < c < 1, we define GAP-LABEL-COVERc,b as the following promise
problem.

• Input: An instance (G,Σ,Π) of LABEL-COVER such that either
one of the following is true:

– there exists a labeling π : U ∪ V → Σ that satisfies at least a
fraction c of the edge constraints in Π;
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– any labeling π : U ∪ V → Σ satisfies less than a fraction b of the
edge constraints in Π.

• Output: Determine which of the above two cases hold.

In order to prove Theorem 10.2, we make use of the following result due
to Raz (1998) and Arora et al. (1998).

Theorem 10.1 ((Raz, 1998; Arora et al., 1998)). For any ε > 0, there
exists a constant kε ∈ N that depends on ε such that the promise problem
GAP-LABEL-COVER1,ε restricted to inputs (G,Σ,Π) with |Σ| = kε is
NP-hard.

Finally, we can prove the following.

Theorem 10.2. For every 0 < α ≤ 1, it is NP-hard to compute an α-
approximate solution to BAYESIAN-OPT-SIGNAL, even when the sender’s
utility is such that, for every θ ∈ Θ, fθ(R) = 1 iff |R| ≥ 2, while fθ(R) = 0
otherwise.

Proof. We provide a reduction from GAP-LABEL-COVER1,ε. Our re-
duction maps an instance (G,Σ,Π) of LABEL-COVER to an instance of
BAYESIAN-OPT-SIGNAL with the following properties:

• (completeness) if the LABEL-COVER instance admits a labeling sat-
isfying all the edge constraints (recall c = 1), then the BAYESIAN-
OPT-SIGNAL instance has a signaling scheme with sender’s expected
utility ≥

(
1− ε

|Σ|

)
1
|Σ| ≥

1
2|Σ| ;

• (soundness) if the LABEL-COVER instance is such that any label-
ing satisfies at most a fraction ε of the edge constraints, then an opti-
mal signaling scheme in the BAYESIAN-OPT-SIGNAL instance has
sender’s expected utility at most 2ε

|Σ| .

By Theorem 10.1, for any ε > 0 there exists a constant kε ∈ N that depends
on ε such that GAP-LABEL-COVER1,ε restricted to inputs (G,Σ,Π) with
|Σ| = kε is NP-hard. Given 0 < α ≤ 1, by setting ε = α

4
and noticing

that 2ε/|Σ|
1/2|Σ| = 4ε = α, we can conclude that it is NP-hard to compute an

α-approximate solution to BAYESIAN-OPT-SIGNAL.

Construction Given an instance (G,Σ,Π) of LABEL-COVER defined over
a bipartite graphG := (U, V,E), we build an instance of BAYESIAN-OPT-
SIGNAL as follows.
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• For each label σ ∈ Σ, there is a corresponding state of nature θσ ∈ Θ.
Moreover, there is an additional state θ0 ∈ Θ. Thus, the total number
of possible states is d = |Σ|+ 1.

• The prior distribution is µ ∈ int(∆Θ) such that µθσ = ε
|Σ|2 for every

θσ ∈ Θ and µθ0 = 1− ε
|Σ| .

• For every vertex v ∈ U ∪V of the graph G, there is a receiver rv ∈ R.
Thus, n = |U ∪ V |.

• Each receiver rv ∈ R has mrv = |Σ| + 1 possible types. The set of
types of receiver rv is Krv = {kσ | σ ∈ Σ} ∪ {k0}.

• A receiver rv ∈ R of type kσ ∈ Krv has utility such that urv ,kσθσ
= 1

2

and urv ,kσθσ′
= −1 for all θσ′ ∈ Θ : θσ′ 6= θσ, while urv ,kσθ0

= − ε
2|Σ|2 .

Moreover, a receiver rv ∈ R of type k0 has utility such that urv ,k0

θ =
−1 for all θ ∈ Θ.

• The sender’s utility is such that, for every θ ∈ Θ, the function fθ :
2R → [0, 1] satisfies fθ(R) = 1 if and only if R ⊆ R : |R| ≥ 2, while
fθ(R) = 0 otherwise.

• The subset K ⊆ K of type profiles that can occur with positive proba-
bility is K := {kuv,σ | e = (u, v) ∈ E, σ ∈ Σ}, where, for every edge
e = (u, v) ∈ E and label σ ∈ Σ, the type profile kuv,σ ∈ K is such
that kuv,σru = kσ, kuv,σrv = kσ′ with σ′ = Πe(u), and kuv,σrv′

= k0 for
every rv′ ∈ R : rv′ /∈ {ru, rv}.

• The probability distribution λ ∈ int(∆K) is such that λk = 1
|E||Σ| for

every k ∈ K.

Notice that, in the BAYESIAN-OPT-SIGNAL instances used for the reduc-
tion, the sender’s payoff is 1 if and only if at least two receivers play action
a1, while it is 0 otherwise. Let us also recall that direct signals for a receiver
rv ∈ R are defined by the set Srv := 2Krv , with a signal being represented
as the set of receiver’s types that are recommended to play action a1.

Completeness Let π : U ∪V → Σ be a labeling of the graph G that satisfies
all the edge constraints. We define a corresponding direct signaling scheme
φ : Θ → ∆S as follows. For any label σ ∈ Σ, let sσ ∈ S be a signal
profile such that the signal sent to receiver rv ∈ R is sσrv = {kσ}, i.e., only
a receiver of the type kσ is told to play a1, while all the other types are
recommended to play a0. Moreover, let sπ ∈ S be a signal profile in which
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the signal sent to receiver rv ∈ R is sπrv = {kσ} with σ ∈ Σ : σ = π(v),
i.e., each receiver rv is told to play action a1 only if her/his type is kσ
for the label σ assigned to vertex v by the labeling π, otherwise she/he is
recommended to play a0. Then, we define φθσ(sσ) = 1 for every state of
nature θσ ∈ Θ, while φθ0(sπ) = 1. Notice that the signaling scheme φ is
deterministic, since each state of nature is mapped to only one signal profile
(with probability one). As a first step, we prove that the signaling scheme
φ is persuasive. Let us fix a receiver rv ∈ R. After receiving a signal
s = {kσ} ∈ Srv with σ ∈ Σ : σ 6= π(v), by definition of φ, the receiver’s
posterior belief is such that state of nature θσ is assigned probability one.
Thus, if the receiver has type kσ, then she/he is incentivized to play action
a1, since urv ,kσθσ

= 1
2
> 0 (recall that urv ,kσθσ

is the utility different “action
a1 minus action a0” when the state is θσ). Instead, if the receiver has type
k ∈ Krv : k 6= kσ, then she/he is incentivized to play action a0, since
either k = k0 and urv ,k0

θσ
= −1 < 0 or k = kσ′ with σ′ ∈ Σ : σ′ 6= σ

and u
rv ,kσ′
θσ

= −1 < 0. After receiving a signal s = {kσ} ∈ Srv with
σ = π(v), the receiver’s posterior belief is such that the states of nature θσ
and θ0 are assigned probabilities proportional to their corresponding prior
probabilities, respectively µθσ and µθ0 (she/he cannot tell whether sσ or
sπ has been selected by the sender). Thus, if the receiver has type kσ, then
she/he is incentivized to play action a1, since her expected utility difference
“action a1 minus action a0” is the following:

µθσ
µθσ + µθ0

urv ,kσθσ
+

µθ0
µθσ + µθ0

urv ,kσθ0

=
1

µθσ + µθ0

[
ε

|Σ|2
1

2
−
(

1− ε

|Σ|

)
ε

2|Σ|2

]
>

1

µθσ + µθ0

[
ε

2|Σ|2
− ε

2|Σ|2

]
= 0.

If the receiver has a type different from kσ, simple arguments show that the
expected utility difference is negative, incentivizing action a0. This proves
that the signaling scheme φ is persuasive. Next, we bound the sender’s
expected utility in φ. Notice that, when the state of nature is θ0, if the
receivers’ type profile is kuv,σ ∈ K with σ = π(u) for some edge e =
(u, v) ∈ E, then both receivers ru and rv play action a1. This is readily
proved since kuv,σru = kσ and kuv,σrv = kσ′ with σ = π(u) and σ′ = π(v)
(recall that π(v) = Πe(u) as φ satisfies all the edge constraints), and, thus,
both ru and rv are recommended to play a1 when the state is θ0. As a result,
under signaling scheme φ, when the receivers’ type profile is kuv,σ ∈ K,
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then the sender’s resulting payoff is one (recall the definition of functions
fθ). By recalling that each type profile kuv,σ ∈ K with σ = π(u) (for each
edge e = (u, v) ∈ E) occurs with probability λkuv,σ = 1

|E||Σ| , we can lower
bound the sender’s expected utility (see the objective of Problem (10.1)) as
follows: ∑

k∈K

λk
∑
θ∈Θ

µθ
∑
s∈S

φθ(s)fθ
(
Rks
)

≥ µθ0
∑

kuv,σ∈K:σ=π(u)

λkuv,σ

= µθ0
1

|Σ|
=

(
1− ε

|Σ|

)
1

|Σ|
.

Soundness By contradiction, suppose that there exists a direct and per-
suasive signaling scheme φ : Θ → ∆S that provides the sender with
an expected utility greater than 2ε

|Σ| . Since the sender can extract an ex-
pected utility at most of ε

|Σ| from states of nature θ ∈ Θ with θ 6= θ0

(as
∑

θ∈Θ:θ 6=θ0 µθ = ε
|Σ| and the maximum value of functions fθ is one),

then it must be the case that the expected utility contribution due to state
θ0 is greater than ε

|Σ| . Let us consider the distribution over signal profiles
φθ0 ∈ ∆S induced by state of nature θ0. We prove that, for each signal
profile s ∈ S such that φθ0(s) > 0 and each receiver rv ∈ R, it must hold
that |sr| ≤ 1, i.e., at most one type of receiver rv is recommended to play
a1. First, notice that a receiver of type k0 cannot be incentivized to play a1,
since urv ,k0

θ = −1 for all θ ∈ Θ. By contradiction, suppose that there are
two receiver’s types kσ, kσ′ ∈ Krv with kσ 6= kσ′ such that kσ, kσ′ ∈ sr (i.e.,
they are both recommended to play a1). By letting ξ ∈ ∆Θ be the posterior
belief of receiver rv induced by sr, for type kσ it must be the case that:

ξθσu
rv ,kσ
θσ

+
∑

θσ′′∈Θ:θσ′′ 6=θσ

ξθσ′′u
rv ,kσ
θσ′′

+ ξθ0u
rv ,kσ
θ0

=
1

2
ξθσ −

∑
θσ′′∈Θ:θσ′′ 6=θσ

ξθσ′′ −
ε

2|Σ|2
ξθ0 > 0,

since the signaling scheme is persuasive, and, thus, a receiver of type kσ
must be incentivized to play action a1. This implies that

ξθσ > 2
∑

θσ′′∈Θ:θσ′′ 6=θσ

ξθσ′′ ≥ 2ξθσ′ .
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Analogous arguments for type kσ′ imply that ξθσ′ > 2ξθσ , reaching a con-
tradiction. This shows that, for each s ∈ S such that φθ0(s) > 0 and each
rv ∈ R, it must be the case that |sr| ≤ 1. Next, we provide the last con-
tradiction proving the result. Let us recall that, by assumption, the sender’s
expected utility contribution due to θ0 is∑

k∈K

λk
∑
s∈S

φθ0(s)fθ0
(
Rks
)
≥ ε

|Σ|
.

By an averaging argument, this implies that there must exist a signal profile
s ∈ S such that φθ0(s) > 0 and

∑
k∈K λkfθ0

(
Rks
)
≥ ε
|Σ| . Let s ∈ S be

such signal profile. Let us define a corresponding labeling π : U ∪ V → Σ
of the graph G such that, for every vertex v ∈ U ∪ V , it holds π(v) = σ,
where σ ∈ Σ is the label corresponding to the unique type kσ of receiver
rv that is recommended to play action a1 under s (if any, otherwise any
label is fine). Since

∑
k∈K λkfθ0

(
Rks
)
≥ ε
|Σ| and it holds λk = 1

|E||Σ| and
fθ0
(
Rks
)
∈ {0, 1} for every k ∈ K, it must be the case that there are at

least ε|E| type profiles k ∈ K such that fθ0
(
Rks
)

= 1. Since a receiver
of type k0 cannot be incentivized to play action a1, the value of fθ0

(
Rks
)

can be one only if there are at least two receivers with types different from
k0 that play action a1. Thus, it must hold that fθ0

(
Rks
)

= 0 for all the
type profiles kuv,σ ∈ K such that σ 6= π(u) (as kuv,σru would be equal to
kσ with σ 6= π(u) and kσ /∈ sru). For the type profiles kuv,σ ∈ K such
that σ = π(u) (one per edge e = (u, v) ∈ E of the graph G), the value of
fθ0
(
Rks
)

is one if and only if π(v) = Πe(u), so that both receivers ru and
rv are told to play action a1. As a result, this implies that there must be at
least ε|E| edges e ∈ E for which the labeling π satisfies the corresponding
edge constraint Πe, which is a contradiction.

Notice that Theorem 7.2 holds for problem instances in which functions
fθ are anonymous. Moreover, the reduction can be easily modified so that
functions fθ are supermodular and satisfy fθ(R) = max{0, |R| − 1} for
R ⊆ R. Thus:

Corollary 10.1. For 0 < α ≤ 1, it is NP-hard to compute an α-approximate
solution to BAYESIAN-OPT-SIGNAL, even when the sender’s utility is
such that functions fθ are supermodular or anonymous for every θ ∈ Θ.

By using arguments similar to those employed in the proof of Theorem
6.2 by Roughgarden and Wang (2019), the hardness of computing an α-
approximate solution to the offline problem can be extended to designing
no-α-regret algorithms in the online setting. Then:
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Theorem 10.3. For every 0 < α ≤ 1, there is no polynomial-time no-α-
regret algorithm for the multi-receiver online Bayesian persuasion prob-
lem, unless NP ⊆ RP, even when functions fθ are supermodular or anony-
mous for all θ ∈ Θ.

In the rest of the work, we show how to design a polynomial-time no-
(1− 1

e
)-regret algorithm for the case in which the sender’s utility is such that

functions fθ are submodular. This result is tight since even in the setting
without types the problem is NP-hard to approximate to within a factor
better that 1− 1/e (Babichenko and Barman, 2017).

10.4 An Online Gradient Descent Scheme with Approximate
Projection Oracles

As a first step in building our polynomial-time algorithm, we introduce our
OGD scheme with an approximate projection oracle. Intuitively, it works
by transforming the multi-receiver online Bayesian persuasion setting into
an equivalent online learning problem whose decision space does not need
to explicitly deal with signaling schemes (thus avoiding the burden of hav-
ing an exponential number of possible signal profiles). The OGD algorithm
is then applied on this new domain. In our setting, we do not have access
to a polynomial-time (exact) projection oracle, and, thus, we design and
analyze the algorithm assuming access to an approximate one only. As we
show later in Sections 10.5 and 10.6, such approximate projection oracle
can be implemented in polynomial time when the functions fθ are submod-
ular.

Let us recall that the OGD scheme that we describe in this section is
general and applies to any online learning problem with a finite number of
possible loss functions.

10.4.1 A General Approach

Consider an online learning problem in which the learner takes a decision
yt ∈ Y at each iteration t ∈ [T ]. Then, the learner observes a feedback
et ∈ E , where E is a finite set of p possible feedbacks. The reward (or
negative loss) of a decision y ∈ Y given feedback e ∈ E is defined by
u(y, e) for a given function u : Y×E → [0, 1]. Thus, the learner is awarded
u(yt, et) for decision yt at iteration t, while she/he would have achieved
u(y, et) for any other choice y ∈ Y .

We transform this general online learning problem to a new one in which
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the learner’s decision set is X ⊆ [0, 1]p with:

X :=
⋃
y∈Y

{
x ∈ [0, 1]p | xe ≤ u(y, e) ∀e ∈ E

}
. (10.2)

Intuitively, the set X contains all the vectors whose components xe (one for
each feedback e ∈ E) are the learner’s rewards u(y, e) for some decision
y ∈ Y in the original problem. Moreover, the inequality “≤” in the defini-
tion of X also includes all the reward vectors that are dominated by those
corresponding to some decision in Y . At each iteration t ∈ [T ], the learner
takes a decision xt ∈ X and observes a feedback et ∈ E . The reward of
decision x ∈ X at iteration t is the et-th component of x, namely xet . It is
sometimes useful to write it as 1>etx, where 1et ∈ {0, 1}p is a vector whose
et-th component is 1, while all the others are 0. Thus, the learner’s reward
at iteration t is xtet . Notice that the size of the decision set X of the new on-
line learning setting does not depend on the dimensionality of the original
decision set Y (which, in our setting, would be exponential), but only on
the number of feedbacks p.

If Y and u are such thatX is compact and convex, then we can minimize
the α-regretRT

α in the original problem by doing that in the new setting. Let
us introduce the set αX := {αx | x ∈ X} for any 0 < α ≤ 1. Given a
sequence of feedbacks {et}t∈[T ] and a sequence of decisions {xt}t∈[T ], with
et ∈ E and xt ∈ X , we have that:

RT
α := max

x∈αX

∑
t∈[T ]

1>et
(
x− xt

)
≥ αmax

y∈Y

∑
t∈[T ]

u(y, et)−
∑
t∈[T ]

u(yt, et),

where {yt}t∈[T ] is a sequence of decisions yt ∈ Y for the original problem
such that xte ≤ u(yt, e) for e ∈ E .

We assume to have access to an approximate projection oracle for αX ,
which we define in the following. By letting E ⊆ E be a subset of feed-
backs, we define τE : X → [0, 1]p as the function mapping any vector
x ∈ X to another one that is equal to x in all the components corre-
sponding to feedbacks e ∈ E, while it is 0 everywhere else. Moreover,
we let XE := {τE(x) | x ∈ X} be the image of X through τE , while
αXE := {αx | x ∈ XE} for 0 < α ≤ 1.

Definition 10.4 (Approximate projection oracle). Consider a subset of feed-
backs E ⊆ E , a vector y ∈ [0, 2]p such that ye = 0 for all e /∈ E, and an
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approximation error ε ∈ R+. Then, for any 0 < α ≤ 1, an approximate
projection oracle ϕα(E, y, ε) is an algorithm returning a vector x ∈ XE
and a decision y ∈ Y with xe ≤ u(y, e) for all e ∈ E , such that:

||x′ − x||2 ≤ ||x′ − y||2 + ε ∀x′ ∈ αXE.

Intuitively, ϕα returns a vector x ∈ XE that is an approximate projection
of y onto the subspace αXE . The vector x can be outside of αXE . However,
it is “better” than a projection onto αXE , since, ignoring the ε error, x is
closer than y to any vector in αXE . Moreover, ϕα also gives a decision
y ∈ Y that corresponds to the returned vector x. Notice that, if α = 1 and
ε = 0, this is equivalent to find an exact projection onto the subspace XE .

10.4.2 A Particular Setting: Multi-Receiver Online Bayesian Persua-
sion

Our setting can be easily cast into the general learning framework described
so far. The possible feedbacks are type profiles, namely E := K, while the
receivers’ type profile kt ∈ K is the feedback observed at iteration t ∈ [T ],
namely et := kt. Notice that the number of possible feedbacks is p = mn̄,
which is exponential in the number of receivers. The decision set of the
learner (sender) Y is the set of all the possible signaling schemes φ, with
yt := φt being the one chosen at iteration t. The rewards observed by the
sender are the utilities f(φ,k); formally, for every signaling scheme φ and
type profile k ∈ K, which define a pair y ∈ Y and e ∈ E using the generic
notation, we let u(y, e) := f(φ,k). Then, the new decision setX ⊆ [0, 1]|K|

is defined as in Equation (10.2). Notice that X is a compact and convex set,
since it can be defined by a set of linear inequalities. In the following, we
overload the notation and, for any subset K ⊆ K of types profiles, we let
XK := XE for E ⊆ E : E = K.

10.4.3 OGD with Approximate Projection Oracle

Algorithm 10.1 is an OGD scheme that operates in the X domain by having
access to an approximate projection oracle ϕα (we call the algorithm OGD-
APO).

The procedure in Algorithm 10.1 keeps track of the setEt ⊆ E of differ-
ent feedbacks observed up to each iteration t ∈ [T ]. Moreover, it works on
the subspaceXEt , whose vectors are zero in all the components correspond-
ing to feedbacks e /∈ Et. Since it is the case that |Et| ≤ t, the procedure in
Algorithm 10.1 attains a per-iteration running time that is independent of
the number of possible feedbacks p.
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Algorithm 10.1 OGD-APO

Input: • approximate projection oracle ϕα
• learning rate η ∈ (0, 1]
• approximation error ε ∈ [0, 1]

Initialize y1 ∈ Y , E0 ← ∅, and x1 ← 0 ∈ XE1

for t = 1, . . . , T do
Take decision yt

Observe feedback et ∈ E and reward u(yt, et) = xtet
Et ← Et−1 ∪ {et}
yt+1 ← xt + η1et(
xt+1, yt+1

)
← ϕα

(
Et, yt+1, ε

)
end for

Next, we bound the α-regret incurred by Algorithm 10.1.

Theorem 10.4. Given an oracle ϕα (as in Definition 10.4) for some 0 <
α ≤ 1, a learning rate η ∈ (0, 1], and an approximation error ε ∈ [0, 1],
Algorithm 10.1 has α-regret

RT
α ≤
|ET |
2η

+
ηT

2
+
εT

2η
,

with a per-iteration running time poly(t).

Proof. First, we bound the per-iteration running time of Algorithm 10.1.
For any t ∈ [T ], we have Et =

⋃
t′∈[t] e

t′ , which represents the set of
feedbacks observed up to iteration t. Thus, it holds |Et| ≤ t. At iteration
t ∈ [T ], the algorithm works with vectors xt and yt+1. The first one belongs
to XEt−1 (as it is returned by ϕα at iteration t− 1), and, thus, it has at most
t − 1 non-zero components. Similarly, since yt+1 = xt + η1et , it holds
that yt+1 ∈ [0, 2]p and yt+1

e = 0 for all e /∈ Et, which implies that yt+1

has at most t non-zero components. As a result, we can sparsely represent
vectors xt and yt+1 so that Algorithm 10.1 has a per-iteration running time
bounded by t for any iteration t ∈ [T ], independently of the actual size p of
the vectors. Moreover, notice that yt+1 satisfies the conditions required by
the inputs of the oracle ϕα.

Next, we bound the α-regret of Algorithm 10.1. For the ease of notation,
in the following, for any vector x ∈ X and subset E ⊆ E , we let xE :=
τE(x). Moreover, for any t ∈ [T ], we let It := I [et /∈ Et−1], which is the
indicator function that is equal to 1 if and only if et /∈ Et−1, i.e., when the
feedback et at iteration t has never been observed before. Fix x ∈ αX .
Then, the following relations hold:∣∣∣∣xEt − xt+1

∣∣∣∣2 ≤ ∣∣∣∣xEt − yt+1||2 + ε (10.3a)
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=
∣∣∣∣xEt − xt − η1et

∣∣∣∣2 + ε (10.3b)

=
∣∣∣∣xEt−1 + It xet1et − xt − η1et

∣∣∣∣2 + ε (10.3c)

=
∣∣∣∣xEt−1 + It xet1et − xt

∣∣∣∣2 + η2

− 2η1>et
(
xEt−1 + It xet1et − xt

)
+ ε (10.3d)

=
∣∣∣∣xEt−1 − xtEt−1

∣∣∣∣2 + It
∣∣xet − xtet∣∣2 + η2

− 2η1>et
(
xEt−1 + It xet1et − xt

)
+ ε (10.3e)

≤
∣∣∣∣xEt−1 − xtEt−1

∣∣∣∣2 + It + η2

− 2η1>et
(
xEt−1 + It xet1et − xt

)
+ ε. (10.3f)

Notice that Equation (10.3b) holds by definition of ϕα since xEt ∈ αXEt ,
Equation (10.3d) follows from xEt = xEt−1+It xet1et , while Equation (10.3e)
can be derived by decomposing the first squared norm in the preceding ex-
pression. By using the last relation above, we can write the following:∑
t∈[T ]

1>et
(
x− xt

)
(10.4a)

=
∑
t∈[T ]

1>et
(
xEt−1 + It xet1et − xt

)
(10.4b)

≤ 1

2η

∑
t∈[T ]

(∣∣∣∣xEt−1 − xtEt−1

∣∣∣∣2 − ∣∣∣∣xEt − xt+1
∣∣∣∣2 + It + η2 + ε

)
(10.4c)

=
1

2η

∑
t∈[T ]

(
It + η2 + ε

)
(10.4d)

=
1

2η

(
|ET |+ Tη2 + Tε

)
, (10.4e)

where Equation (10.4d) is obtained by telescoping the sum. Then, the fol-
lowing concludes the proof:

RT
α := αmax

y∈Y

∑
t∈[T ]

u(y, et)−
∑
t∈[T ]

u(yt, et)

≤ αmax
x∈X

∑
t∈[T ]

xet −
∑
t∈[T ]

xtet

= αmax
x∈X

∑
t∈[T ]

1>et
(
x− xt

)
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= max
x∈αX

∑
t∈[T ]

1>et
(
x− xt

)
≤ 1

2η

(
|ET |+ Tη2 + Tε

)
.

By setting η = 1√
T

, ε = 1
T

, we get RT
α ≤
√
T
(

1 + |ET |
2

)
.

Notice that the bound only depends on the number of observed feed-
backs |ET |, while it is independent of the overall number of possible feed-
backs p. This is crucial for the multi-receiver online Bayesian persuasion
case, where p is exponential in the the number of receivers n̄. On the other
hand, as T goes to infinity, we have |ET | ≤ p, so that the regret bound is
sublinear in T .

10.5 Constructing a Poly-Time Approximate Projection Ora-
cle

The crux of the OGD-APO algorithm (Algorithm 10.1) is being able to
perform the approximate projection step. In this section, we show that,
in the multi-receiver Bayesian persuasion setting, the approximate projec-
tion oracle ϕα required by OGD-APO can be implemented in polynomial
time by an appropriately-engineered ellipsoid algorithm. This calls for an
approximate separation oracle Oα (see Definition 10.5).

We proceed as follows. In Section 10.5.1, we define an appropriate no-
tion of approximate separation oracle, and show how to find, in polynomial
time, an α-approximate solution to the offline problem BAYESIAN-OPT-
SIGNAL. This is a preparatory step towards the understanding of our main
result in this section, and it may be of independent interest. Then, in Sec-
tion 10.5.2, we exploit some of the techniques introduced for the offline
setting in order to build ϕα starting from an approximate separation oracle
Oα.

10.5.1 Warming Up: The Offline Setting

An approximate separation oracle Oα finds a signal profile s ∈ S that ap-
proximately maximizes a weighted sum of the fθ functions, plus a weight
for each receiver which depends on the signal sr sent to that receiver. For-
mally:

Definition 10.5 (Approximate separation oracle). Consider a state θ ∈ Θ,
a subset K ⊆ K, a vector λ ∈ R|K|+ , weights w = (wr,s)r∈R,s∈Sr with
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wr,s ∈ R and wr,∅ = 0 for all r ∈ R, and an approximation error ε ∈ R+.
Then, for any 0 < α ≤ 1, an approximation oracle Oα(θ,K,λ,w, ε) is an
algorithm returning an s ∈ S such that:∑
k∈K

λkfθ(R
k
s ) +

∑
r∈R

wr,sr

≥ max
s?∈S

{
α
∑
k∈K

λkfθ(R
k
s?) +

∑
r∈R

wr,s?r

}
− ε, (10.5)

in time poly
(
n, |K|,maxr,s |wr,s|,maxk λk,

1
ε

)
.

As a preliminary result, we show how to use an oracle Oα to find in
polynomial time an α-approximate solution to BAYESIAN-OPT-SIGNAL
(see Section 9.3). This problem is interesting in its own right, and allows us
to develop a line of reasoning that will be essential to prove Theorem 10.6.

Theorem 10.5. Given ε ∈ R+ and an approximate separation oracle Oα,
with 0 < α ≤ 1, there exists a polynomial-time approximation algorithm
for BAYESIAN-OPT-SIGNAL returning a signaling scheme with sender’s
utility at least αOPT − ε, where OPT is the value of an optimal signaling
scheme. Moreover, the algorithm works in time poly(1

ε
).

Proof. The dual problem of LP 10.1 reads as follows:

min
z,d

∑
θ∈Θ

dθ (10.6a)

s.t. µθ
∑
r∈R

∑
k∈sr

ur,kθ zr,sr,k + dθ ≥ µθ
∑
k∈K

λkfθ(R
k
s )∀θ ∈ Θ, ∀s ∈ S (10.6b)

zr,s,k ≤ 0 ∀r ∈ R,∀s ∈ Sr,∀k ∈ Kr : k ∈ s.
(10.6c)

where d ∈ R|Θ| is the vector of dual variable corresponding to the primal
Constraints (10.1c), and z ∈ R|R×Sr×Kr|− is the vector of dual variable corre-
sponding to Constraints (10.1b) in the primal. We rewrite the dual LP 10.6
so as to highlight the relation between an approximate separation oracle for
Constraints (10.6b) and the oracle Oα. Specifically, we have

min
z≥0,d

∑
θ∈Θ

dθ (10.7a)

s.t. dθ ≥ µθ

(∑
k∈K

λkfθ(R
k
s ) +

∑
r∈R

∑
k∈sr

ur,kθ zr,sr,k

)
(10.7b)
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∀θ ∈ Θ,∀s ∈ S. (10.7c)

Now, we show that it is possible to build a binary search scheme to find
a value γ? ∈ [0, 1] such that the dual problem with objective γ? is feasible,
while the dual with objective γ? − β is infeasible. The constant β ≥ 0
will be specified later in the proof. The algorithm requires log(β) steps and
works by determining, for a given value γ̄ ∈ [0, 1], whether there exists a
feasible pair (d, z) for the following feasibility problem F :

F



∑
θ∈Θ

dθ ≤ γ̄

dθ ≥ µθ

(∑
k∈K

λkfθ(R
k
s ) +

∑
r∈R

∑
k∈sr

ur,kθ zr,sr,k

)
∀θ ∈ Θ,∀s ∈ S

z ≥ 0.

At each iteration of the bisection algorithm, the feasibility problem F is
solved via the ellipsoid method. The algorithm is inizialized with l = 0,
h = 1, and γ̄ = 1

2
. If F is infeasible for γ̄, the algorithm sets l← (l+ h)/2

and γ̄ ← (h + γ̄)/2. Otherwise, if F is (approximately) feasible, it sets
h← (l+h)/2 and γ̄ ← (l+ γ̄)/2. Then, the procedure is repeated with the
updated value of γ̄. The bisection procedure terminates when it determines
a value γ? such that F is feasible for γ̄ = γ?, while it is infeasible for
γ̄ = γ?−β. In the following, we present the approximate separation oracle
which is employed at each iteration of the ellipsoid method.

Separation Oracle Given a point (d̄, z̄) in the dual space, and γ̄ ∈ [0, 1], we
design an approximate separation oracle to determine if the point (d̄, z̄) is
approximately feasible, or to determine a constraint of F that is violated by
such point. For each θ ∈ Θ, r ∈ R, and s ∈ Sr, let

wθr,s := µθ
∑
k∈s

ur,kθ z̄r,s,k.

When the magnitude of the weights |wθr,s| is small, we show that it is
enough to employ the optimization oracle Oα in order to find a violated
constraint, or to certify that all the constraints are approximately satisfied.
On the other hand, when the weights |wθr,s| are large (in particular, when the
largest weight has exponential size in the size of the problem instance), the
optimization oracle Oα loses its polynomial time guarantees (see Defini-
tion 10.5). We show how to handle those specific settings in the following
case analysis:
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• Equation (10.7c) implies that dθ ≥ 0 for each θ ∈ Θ. Then, if there
exists a θ ∈ Θ such that d̄θ < 0, we return the violated constraint
(θ,∅) (that is, dθ ≥ 0).

• If there exists θ ∈ Θ such that d̄θ > 1, then the first constraint of F

must be violated as γ̄ ∈ [0, 1].

• If there exists a receiver r ∈ R and a signal s ∈ Sr such that wθr,s > 1,
then the constraint of F corresponding to the pair (θ, s) is violated,
because dθ ≤ 1.

• If no violated constraint was found in the previous steps, we proceed
by checking if there exists a state θ′ ∈ Θ, a receiver r′ ∈ R, and a
signal s′ ∈ Sr, such that wθ′r′,s′ ≤ −|R|. If this is the case, we observe
that for any pair (θ′, s), with s ∈ S : sr = s′, the corresponding
constraint in F reads

µθ
∑
k∈K

λkfθ(R
k
s ) +

∑
r∈R\{r′}

wθ
′

r,sr + wθ
′

r′,s′ ≤ 0,

since d̄ ≥ 0 if the current step is reached. For wθ′r′,s′ ≤ −|R| the above
constraints are trivially satisfied, and therefore we can safely manage
(for the current iteration of the ellipsoid method) any such constraint
by setting wθ′r′,s′ = −|R|.

If none of the previous steps returned a violated constraint, we can safely
assume that 0 ≤ dθ ≤ 1 and −|R| ≤ wθr,s ≤ 1, for each θ ∈ Θ, r ∈ R,
and s ∈ Sr. Moreover, we observe that, by definition, for each r ∈ R and
θ ∈ Θ, it holds wθr,∅ = 0. Since the magnitude of the weights is guaranteed
to be small (that is, weights are guaranteed to be in the range [−|R|, 1]), for
each θ ∈ Θ we can invoke Oα(θ,K, λ,wθ, δ) to determine an sθ ∈ S such
that

µθ
∑
k∈K

λkfθ(R
k
sθ)+

∑
r∈R

wθr,sθr ≥ max
s∈S

{
αµθ

∑
k∈K

λkfθ(R
k
s ) +

∑
r∈R

wθr,sr

}
−δ,

where δ is an approximation error that will be defined in the following.
If at least one sθ is such that (θ, sθ) is violated, we output that constraint,
otherwise the algorithm returns that the LP is feasible.

Putting It All Together The bisection algorithm computes a γ? ∈ [0, 1] and
a pair (d̄, z̄) such that the approximate separation oracle does not find a
violated constraint. The following lemma defines a modified LP and shows
that (d̄, z̄) is a feasible solution for this problem and has value at most γ?.

211



Chapter 10. Online Multi-receiver Bayesian Persuasion

Lemma 10.1. The pair (d̄, z̄) is a feasible solution to the following LP and
has value at most γ?:

min
z≥0,d

∑
θ∈Θ

dθ

s.t. dθ ≥ αµθ
∑
k∈K

λkfθ(R
k
s ) + µθ

∑
r∈R

∑
k∈sr

ur,kθ zr,sr,k − δ ∀θ ∈ Θ, ∀s ∈S.

Proof. The value is at most γ? by assumption (that is, the separation ora-
cle does not find a violated constraint for (d̄, z̄) in F with objective γ?).
Analogously, it holds that d̄θ ∈ [0, 1] for each θ ∈ Θ, and wθr,s ≤ 1 for
each r ∈ R, s ∈ Sr, and θ ∈ Θ. Suppose, by contradiction, that (θ, s′) is
a violated constraint of the modified LP above. Then, given d̄, oracle Oα
would have found an s ∈ S such that

µθ
∑
k∈K

λkf(Rks ) + µθ
∑
r∈R

∑
k∈sr

ur,kθ z̄r,sr,k

≥ α
∑
θ∈Θ

µθ
∑
k∈K

λkfθ(R
k
s′) + µθ

∑
r∈R

∑
k∈s′r

ur,kθ z̄r,s′r,k − δ > d̄θ,

where the first inequality follows by Definition 10.5, and the second from
the assumption that the modified dual is infeasible. Hence,Oα would return
a violated constraint, reaching a contradiction.

The dual problem of the LP of Lemma 10.1 reads as follows:

max
φ

∑
s∈S

∑
θ∈Θ

φθ(s)

(
αµθ

∑
k∈K

λk fθ(R
k
s )− δ

)
s.t.

∑
θ∈Θ

µθ
∑

s:sr=s′

φθ(s)ur,kθ ≥ 0 ∀r ∈ R,∀s′ ∈ Sr,∀k ∈ Kr : k ∈ s′∑
s∈S

φθ(s) = 1 ∀θ ∈ Θ

φθ(s) ≥ 0 ∀θ ∈ Θ, s ∈ S.
By strong duality, Lemma 10.1 implies that the value of the above problem
is at most γ?. Then, let OPT be value of the optimal solution to LP 10.1.
The same solution is feasible for the LP we just described, where it has
value

αOPT − |Θ|δ ≤ γ?. (10.10)
Now, we show how to find a solution to the original problem (LP 10.1)

with value at least γ? − β. Let H be the set of constraints returned by the
ellipsoid method run on the feasibility problem F with objective γ? − β.
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Lemma 10.2. LP 10.1 with variables restricted to those corresponding to
dual constraints H returns a signaling scheme with value at least γ? − β.
Moreover, the solution can be determined in polynomial time.

Proof. By construction of the bisection algorithm, F is infeasible for value
γ? − β. Hence, the following LP has value at least γ? − β:

min
z≥0,d

∑
θ∈Θ

dθ

s.t. dθ ≥ µθ

(∑
k∈K

λkfθ(R
k
s ) +

∑
r∈R

∑
k∈sr

ur,kθ zr,sr,k

)
∀(θ, s) ∈ H.

Notice that the primal of the above LP is exactly LP 10.1 with variables re-
stricted to those corresponding to dual constraints inH, and that the former
(restricted) LP has value at least γ? − β by strong duality. To conclude the
proof, the ellipsoid method guarantees thatH is of polynomial size. Hence,
the LP can be solved in polynomial time.

Let APX be the value of an optimal solution to LP 10.1 restricted to
variables corresponding to dual constraints inH. Then,

APX ≥ γ? − β
≥ αOPT − |Θ|δ − β
≥ αOPT − ε,

where the first inequality holds by Lemma 10.2, the second inequality fol-
lows from Equation (10.10), and the last inequality is obtained by setting
δ = ε

2|Θ| and β = ε
2
.

10.5.2 From an Approximate Separation Oracle to an Approximate
Projection Oracle

Now, we show how to design a polynomial-time approximate projection
oracle ϕα using an approximate separation oracle Oα. The proof employs
a convex linearly-constrained quadratic program that computes the optimal
projection on X , the ellipsoid method, and a careful primal-dual analysis.

Theorem 10.6. Given a subset K ⊆ K, a vector y ∈ [0, 2]|K| such that
yk = 0 for all k /∈ K, and an approximation error ε ∈ R+, for any
0 < α ≤ 1, the approximate projection oracle ϕα(K, y, ε) can be computed
in polynomial time by querying the approximate separation oracle Oα.
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Proof. The problem of computing the projection of point y on XK (see
Equation (10.2)) can be formulated via the following convex programming
problem, which we denote by P :

P



min
φ,x

∑
k∈K

(xk − yk)2

s.t.
∑
θ∈Θ

µθ

∑
s∈S:
sr=s′

φθ(s)ur,kθ

 ≥ 0 ∀r ∈ R,∀s′ ∈ Sr,∀k ∈ Kr : k ∈ s′

∑
s∈S

φθ(s) = 1 ∀θ ∈ Θ

φθ(s) ≥ 0 ∀θ ∈ Θ,∀s ∈ S

xk ≤
∑
θ∈Θ

∑
s∈S

µθ φθ(s)fθ(R
k
s ) ∀k ∈ K.

Then, we compute the Lagrangian of P by introducing dual variables
zr,s,k ≤ 0 for each r ∈ R, s ∈ Sr, and k ∈ s, dθ ∈ R for each θ ∈ Θ,
vθ,s ≤ 0 for each θ ∈ Θ, s ∈ S, and νk ≥ 0 for each k ∈ K. Specifically,
the Lagrangian of P reads as follows

L(φ,x, z,v,ν,d) :=
∑
k∈K

(xk − yk)2

+
∑
r∈R

∑
s′∈Sr

∑
k∈s′

zr,s,k

(∑
θ∈Θ

µθ
∑

s:sr=s′

φθ(s)ur,kθ

)

+
∑

θ∈Θ,s∈S

vθ,sφθ(s) +
∑
θ∈Θ

dθ

(∑
s∈S

φθ(s)− 1

)

+
∑
k∈K

νk

(
xk −

∑
θ∈Θ,s∈S

µθφθ(s)fθ(R
k
s )

)
.

We observe that Slater’s condition holds for P (all constraints are linear,
and by setting x = 0 any signaling scheme φ constitutes a feasible solu-
tion). Therefore, by strong duality, an optimal dual solution must satisfy
the KKT conditions. In particular, in order for stationarity to hold, it must
be 0 ∈ ∂φθ(s)(L) for each s and θ. Then, for each θ ∈ Θ and s ∈ S, we
have

∂φθ(s)(L) =
∑
r∈R

∑
k∈sr

µθzr,sr,ku
r,k
θ + vθ,s + dθ −

∑
k∈K

νkµθfθ(R
k
s ) = 0.
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Then, for each θ ∈ Θ and s ∈ S, we obtain∑
r∈R

∑
k∈sr

µθzr,sr,ku
r,k
θ + dθ −

∑
k∈K

νkµθfθ(R
k
s )) ≥ 0. (10.12)

Moreover, stationarity has to hold with respect to variables x. Formally, for
each k ∈ K,

∂xk(L) = 2(xk − yk)νk = 0.

Therefore, for each k ∈ K,

xk = yk −
νk
2
. (10.13)

By Equations (10.12) and (10.13), we obtain the following dual quadratic
program

D



max
z,v,ν,d

∑
k∈K

(
νkyk −

ν2
k

4

)
−
∑
θ∈Θ

dθ

s.t. dθ ≥
∑
k∈K

νkµθfθ(R
k
s ) +

∑
r∈R

∑
k∈sr

µθzr,sr,ku
r,k
θ ∀θ ∈ Θ,∀s ∈ S

zr,s,k ≥ 0 ∀r ∈ R,∀s ∈ Sr,∀k ∈ Kr : k ∈ s

νk ≥ 0 ∀k ∈ K.

in which the objective function is obtained by observing that each term
φθ(s) in the definition of L is multiplied by ∂φθ(s)(L), which has to be
equal to zero by stationarity. Similarly to what we did in the proof of The-
orem 10.5, we repeatedly apply the ellipsoid method equipped with an ap-
proximate separation oracle to problem D . In this case, the analysis is more
involved than what happens in Theorem 10.5, because we are interested in
computing an approximate projection on αXK rather than an approximate
solution of P . We proceed by casting D as a feasibility problem with a
certain objective (analogously to F in Theorem 10.5). In particular, given
objective γ ∈ [0, 1], the objective function of D becomes the following
constraint in the feasibility problem∑

k∈K

(
νkyk −

ν2
k

4

)
−
∑
θ∈Θ

dθ ≥ γ. (10.14)

Then, given an approximation oracle Oα which will be specified later, we
apply to the feasibility problem the search algorithm described in Algo-
rithm 10.2.
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Algorithm 10.2 SEARCH ALGORITHM

Input: Error ε, y ∈ R|K|+ , subspace K ⊆ K.
1: Initialization: β ← ε

2 , δ ← ε
2|Θ| , γ ← |K|+ β, andH ← ∅.

2: repeat
3: γ ← γ − β
4: HUNF ← H
5: H ← {violated constraints returned by the ellipsoid method on D ,

with objective γand constraintsHUNF}
6: until D is feasible with objective γ (see Equation (10.14))
7: returnHUNF

At each iteration of the main loop, given an objective value γ, Algo-
rithm 10.2 checks whether the problem D is approximately feasible or un-
feasible, by applying the ellipsoid algorithm with separation oracleOα. Let
H be the set of constraints returned by the separation oracle (the separating
hyperplanes due to the linear inequalities). At each iteration, the ellipsoid
method is applied on the problem with explicit constraints in the current set
HUNF (that is, each constraint in HUNF is explicitly checked for feasibility),
while the other constraints are checked through the approximate separation
oracle. Algorithm 10.2 returns the set of violated constraints HUNF corre-
sponding to the last value of γ for which the problem was unfeasible. Now,
we describe how to implement the approximate separation oracle employed
in Algorithm 10.2. Then, we conclude the proof by showing how to build
an approximate projection starting from the set HUNF computed as we just
described.

Approximate Separation Oracle Let (z̄, v̄, ν̄, d̄) be a point in the space of
dual variables. Then, let, for each θ ∈ Θ, r ∈ R, and s ∈ Sr,

wθr,s :=
∑
k∈s

z̄r,s,kµθu
r,k
θ .

First, we can check in polynomial time if one of the constraint in H
is violated. If at least one of those constraint is violated, we output that
constraint. Moreover, if the constraint corresponding to the objective is
violated, we can output a separation hyperplane in polynomial time since
the constraint has a polynomial number of variables. Then, by following the
same rationale of the proof of Theorem 10.5 (offline setting), we proceed
with a case analysis in which we ensure it is possible to output a violated
constraint when |νk| or |wθr,s| are too large to guarantee polynomial-time
sovability by Definition 10.5.
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• First, it has to hold dθ ∈ [0, 4|K|] for each θ ∈ Θ. Indeed, if dθ < 0,
then the constraint relative to (θ,∅) would be violated. Otherwise,
suppose that there exists a θ with d̄θ > 4|K|. Two cases are possible:
(i) the constraint corresponding to the objective is violated, which al-
lows us to output a separation hyperplane; (ii) it holds∑

k∈K

(
ν̄kyk −

ν̄2
k

4

)
> 4|K|,

which implies that there exists a k ∈ K such that ν̄kyk − ν̄2
k/4 > 4.

However, we reach a contradiction since, by assumption, yk ≤ 2 for
each k ∈ K, and therefore it must hold ν̄kyk− ν̄2

k/4 ≤ 2ν̄k− ν̄2
k/4 ≤

4.

• Second, we show how to determine a violated constraint when ν̄k /∈
[0, |K| + 10]. Specifically, if there exists a k ∈ K for which ν̄k < 0,
then the objective is negative, and we can return a separation hyper-
plane (corresponding to Equation (10.14)). If there exists a νk >
|K|+ 10, then∑
k′∈K

(
ν̄k′yk′ −

ν̄2
k′

4

)
≤ 2νk −

ν̄2
k

4
+

∑
k′∈K\{k}

(
2ν̄k′ −

ν̄2
k′

4

)

≤ 2|K|+ 20− |K|
2

4
− 5|K| − 25 + 4|K|

= −|K|
2

4
+ |K| − 5

< 0,

where the first inequality follows by the assumption that yk ≤ 2 for
each k ∈ K, and the second inequality follows from the fact that
2νk− ν̄2

k/4 has its maximum in ν̄k = 4 and, when ν̄k ≥ |K|+ 10, the
maximum is at ν̄k = |K| + 10 since the function in concave. Hence,
we obtain that Constraint (10.14) is violated.

• Finally, suppose that there exists a θ ∈ Θ, r ∈ R, s ∈ Sr such that
wθr,s > 4|K|. Then, the constraint corresponding to (θ, s) is violated
(because dθ ≤ 4|K|, otherwise we would have already determined a
violated constraint in the first case of our analysis). If, instead, there
exists a θ ∈ Θ, r ∈ R, s ∈ Sr such that wθr,s < −4|K||R| − 10, then,
for all the inequalities (θ, s′) with s′r = s, it holds d̄θ ≥ 0 and

µθ
∑
k∈K

ν̄kfθ(R
k
s ) +

∑
r′∈R\{r}

wθr′,s′
r′

+ wθr,s′r ≤ 0.
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In this last case, all the inequalities corresponding to (θ, s′) with s′r =
s are guaranteed to be satisfied. Then, we can safely manage all the
inequalities comprising of wθr,s ≤ −4|K||R| − 10 by setting wθr,s =
−4|K||R| − 10.

After the previous steps, it is guaranteed that |wθr,s| ≤ 4|K||R|+10 for each
θ, r, s, and νk ∈ [0, |K| + 10] for each k. Hence, we can employ an oracle
Oα with |wθr,s| and λθk = νkµθ, which is guaranteed to be polynomial in the
size of the instance by Definition 10.5. Let δ be an error parameter which
will be defined in the remainder of the proof. For each θ ∈ Θ, we call the
oracle Oα(θ,K, {νk}k∈K ,wθ, δ). Each query to the oracle returns an sθ. If
at least one of the constraints corresponding to a pair (θ, sθ) is violated, we
output that constraint. Otherwise, if for each θ ∈ Θ the constraint (θ, sθ) is
satisfied, we conclude that the point is in the feasible region.

Putting It All Together Algorithm 10.2 terminates at objective γ?. It is easy
to see that the algorithm terminates in polynomial time because it must re-
turn feasible when γ = 0. Our proof proceeds in two steps. First, we prove
that a particular problem obtained from P has value at least γ?. Then, we
prove that the solution of P with only variables in HUNF has value close to
γ?. Finally, we show that the two solutions are, respectively, the projec-
tion and an approximate projection on a set that includes αXK . This will
complete the proof.

If the algorithm terminates at objective γ∗, the following convex opti-
mization problem is feasible (see Theorem 10.5).3

∑
k∈K

(
νkyk − ν2

k/4
)
−
∑
θ∈Θ

dθ ≥ γ?

dθ ≥
∑
k∈K

νkµθfθ(R
k
s )−

∑
r∈R,k∈sr

zr,sr,k µθu
r,k
θ ∀(θ, s) ∈ HUNF

dθ ≥
∑
k∈K

ανkµθfθ(R
k
s )−

∑
r∈R,k∈sr

zr,sr,k µθu
r,k
θ − δ ∀(θ, s) /∈ HUNF.

By strong duality, the following convex optimization problem has value at

3In the following, we will refer to the proof of Theorem 10.5 when the steps of the two proofs are analogous.
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least γ?

Pf



min
φ,x

∑
k∈K

(xk − yk)2 + δ
∑

(θ,s)/∈HUNF

φθ(s)

s.t.
∑
θ∈Θ

µθ

 ∑
s′:s′r=s

φθ(s
′)ur,kθ

 ≥ 0 ∀r ∈ R, ∀s ∈ Sr, ∀k ∈ Kr : k ∈ s

∑
s∈S

φθ(s) = 1 ∀θ ∈ Θ

φθ(s) ≥ 0 ∀θ ∈ Θ,∀s ∈ S

xk ≤
∑
θ∈Θ

 ∑
s:(θ,s)∈HUNF

µθ φθ(s)fθ(R
k
s ) + α

∑
s:(θ,s)/∈HUNF

µθ φθ(s)fθ(R
k
s )


∀k ∈ K.

Moreover, since the algorithm did not terminate at value γ? + β, problem
D with value γ? + β is unfeasible when restricting the set of constraints to
HUNF. The primal problem P restricted to primal variables corresponding
to dual constraints inHUNF reads as follows

min
φ,x

∑
k∈K

(xk − yk)2

s.t.
∑
θ∈Θ

µθ

 ∑
s:(θ,s)∈HUNF,

sr=s′

φθ(s)ur,kθ

 ≥ 0 ∀r ∈ R, s′ ∈ Sr,∀k ∈ Kr : k ∈ s′

∑
s:(θ,s)∈HUNF

φθ(s) = 1 ∀θ ∈ Θ

φθ(s) ≥ 0 ∀(θ, s) ∈ HUNF

xk ≤
∑
θ∈Θ

∑
s:(θ,s)∈HUNF

µθ φθ(s)fθ(R
k
s ) ∀k ∈ K.

By strong duality, the above problem has value at most γ?+β. Moreover, it
has a polynomial number of variables and constraints because the ellipsoid
method returns a set of constraintsHUNF of polynomial size. Therefore, the
above problem can be solved in polynomial time.

A solution to the above problem is a feasible signaling scheme. Let
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(xε, φ) be its solution. We have that xε ∈ X̄K , with

X̄K =
{
x : xk ≤

∑
θ∈Θ

( ∑
s:(θ,s)∈HUNF

µθ φθ(s)fθ(R
k
s )+

α
∑

s:(θ,s)/∈HUNF

µθ φθ(s)fθ(R
k
s )
)
∀k ∈ K,φ ∈ Φ

}
.

It holds αXK ⊆ X̄K . Now, we show that xε is close to x?, where x? is
the projection of y on X̄K (that is the solution of Pf with δ = 0). Since x?

is a feasible solution of Pf and the minimum of Pf is at least γ?, it holds
||x? − y||2 + δ|Θ| ≥ γ?. Then,

||x? − y||2 + δ|Θ|+ β ≥ γ? + β

≥ ||xε − y||2

= ||xε − x? + x? − y||2

= ||xε − x?||2 + ||x? − y||2 + 2〈xε − x?,x? − y〉
≥ ||xε − x?||2 + ||x? − y||2,

where the last inequality follows from 〈xε−x?,x?− y〉 ≥ 0, because x? is
the projection of y on X̄K and xε ∈ X̄K . Hence, ||xε − x?||2 ≤ δ|Θ| + β.
Finally, let x be a point in αXK . Then,

||xε − x||2 ≤ ||xε − x?||2 + ||x? − x||2

≤ ||xε − x?||2 + ||y− x||2

≤ ||y− x||2 + δ|Θ|+ β,

where the second inequality follow from the fact that x? is the projection
of y on a superset of αXK . Setting δ = ε

2|Θ| and β = ε
2

concludes the
proof.

10.6 A Poly-Time No-α-Regret Algorithm for Submodular Sender’s
Utilities

In this section, we conclude the construction of our polynomial-time no-
(1− 1

e
)-regret algorithm for settings in which sender’s utilities are submodu-

lar. The last component that we need to design is an approximate separation
oracleOα (see Definition 10.5) running in polynomial time. Next, we show
how to obtain this by exploiting the fact that functions fθ are submodular
in the set of receivers playing action a1.

First, we establish a relation between direct signals S and matroids. We
define a matroidMS := (GS , IS) such that:
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• the ground set is GS := {(r, s) | r ∈ R, s ∈ Sr};

• a subset I ⊆ GS belongs to IS if and only if I contains at most one
pair for each receiver r ∈ R.

The elements of the ground set GS represent receiver, signal pairs. However,
sets I ∈ IS do not characterize signal profiles, as they may not define a
signal for each receiver. Indeed, direct signal profiles are captured by the
basis set B(MS) of the matroid MS . Let us recall that B(MS) contains
all the maximal sets in IS , and, thus, a subset I ⊆ IS belongs to B(MS) if
and only if I contains exactly one pair for each receiver r ∈ R. Intuitively,
a basis I ∈ B(MS) defines a direct signal profile s ∈ S in which, for each
receiver r ∈ R, all the receiver’s types in s ∈ Sr such that (r, s) ∈ I are
recommended to play action a1, while the others are told to play a0.

The following Theorem 10.7 provides a polynomial-time approxima-
tion oracle O1− 1

e
for instances in which fθ is submodular for each state of

nature θ ∈ Θ. The core idea of its proof is that
∑
k∈K λkfθ(R

k
s ) (see Equa-

tion (10.5)) can be seen as a submodular function defined for the ground
set GS and optimizing over direct signal profiles s ∈ S is equivalent to
doing that over the bases B(MS) of the matroidMS . Then, the result is
readily proved by exploiting some results concerning the optimization over
matroids.4

Theorem 10.7. If the sender’s utility is such that function fθ is submodu-
lar for each θ ∈ Θ, then there exists a polynomial-time separation oracle
O1− 1

e
.

To prove Theorem 10.7, we need some preliminary results concerning
the optimization over matroids. Given a non-decreasing submodular set
function f : 2G → R+ and a linear set function ` : 2G 3 I 7→

∑
i∈I wi

defined for finite ground set G and weights w = (wi)i∈G with wi ∈ R for
each i ∈ G, let us consider the problem of maximizing the sum f(I) +
`(I) over the bases I ∈ B(M) of a given matroid M := (G, I). We
make use of a theorem due to Sviridenko et al. (2017), which, by letting
vf := maxI∈2G f(I), v` := maxI∈2G |`(I)|, and v := max{vf , v`}, reads as
follows:

Theorem 10.8 (Essentially Theorem 3.1 by Sviridenko et al. (2017)). For
every ε > 0, there exists an algorithm running in time poly

(
|G|, 1

ε

)
that

4The separation oracle provided in Theorem 10.7 guarantees the desired approximation factor with arbitrary
high probability. It is easy to see that, since the algorithm fails with arbitrary small probability, this does not
modify our regret bound except for an (arbitrary small) negligible term.
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produces a basis I ∈ B(M) satisfying f(I) + `(I) ≥
(
1− 1

e

)
f(I ′) +

`(I ′)−O(ε)v for every I ′ ∈ B(M) with high probability.

Next, we provide the proof of Theorem 10.7.

Proof of Theorem 10.7. We show how to implement an approximation ora-
cle Oα(θ,K,λ,w, ε) (see Definition 10.5) with α = 1 − 1

e
that has a run-

ning time poly
(
n, |K|,maxr,s |wr,s|,maxk λk,

1
ε

)
. LetMS := (GS , IS) be

a matroid defined as in Section 10.6 for direct signal profiles S. Let us recall
that, given the relation between the bases of MS and direct signals, each
direct signal profiles s ∈ S corresponds to a basis I ∈ B(MS), which is
defined as I := {(r, sr) | r ∈ R}. In the following, given a subset I ⊆ GS
and a type profile k ∈ K, we letRkI ⊆ R be the set of receivers r ∈ R such
that there exits a pair (r, s) ∈ I (for some signal s ∈ Sr) with the receiver’s
type kr being recommended to play a1 under signal s; formally,

RkI := {r ∈ R | ∃(r, s) ∈ I : kr ∈ s} .

First, we show that, when using matroid notation, the left-hand side of
Equation (10.5) can be expressed as the sum of a non-decreasing submodu-
lar set function and a linear set function. To this end, let fλθ : 2GS → R+ be
defined as fλθ (I) =

∑
k∈K λkfθ(R

k
I ) for every subset I ⊆ GS . We prove

that fλθ is submodular. Since fλθ is a suitably defined weighted sum of the
functions fθ, it is sufficient to prove that, for each type profile k ∈ K, the
function fθ : 2R → [0, 1] is submodular in the sets RkI . For every pair of
subsets I ⊆ I ′ ⊆ GS , and for every receiver r ∈ R and signal s ∈ Sr,
the marginal contribution to the value of function fθ due to the addition of
element (r, s) to the set I is:

fθ(R
k
I∪(r,s))− fθ(RkI )

= I {kr ∈ s ∧ @(r, s′) ∈ I : kr ∈ s′}
(
fθ(R

k
I ∪ {r})− fθ(RkI )

)
≥

≥ I {kr ∈ s ∧ @(r, s′) ∈ I ′ : kr ∈ s′}
(
fθ(R

k
I ∪ {r})− fθ(RkI )

)
≥

≥ I {kr ∈ s ∧ @(r, s′) ∈ I ′ : kr ∈ s′}
(
fθ(R

k
I′ ∪ {r})− fθ(RkI′)

)
=

= fθ(R
k
I′∪(r,s))− fθ(RkI′),

where the last inequality holds since the functions fθ are submodular by
assumption. Since the last expression is the marginal contribution to the
value of function fθ due to the addition of element (r, s) to the set I ′, the
relations above prove that the function fλθ is submodular. Let `w : 2GS →
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R+ be a linear function such that `w(I) =
∑

r∈Rwr,sr for every basis I ⊆
B(MS), with each sr ∈ Sr being the signal of receiver r ∈ R specified
by the signal profile corresponding to the basis, namely (r, sr) ∈ I . Then,
we have that finding a signal profile s ∈ S satisfying Equation (10.5) is
equivalent to finding a basis I ∈ B(MS) of the matroidMS (representing
a direct signal profile) such that:

fλθ (I) + `w(I) ≥ max
I?∈B(MS)

{
α
∑
k∈K

fλθ (I?) + `w(I?)

}
− ε.

Notice that, for ε′ > 0, the algorithm of Theorem 10.8 by Sviridenko et al.
(2017) can be employed to find a basis I ∈ B(MS) such that fλθ (I) +
`w(I) ≥

(
1− 1

e

)
fλθ (I ′) + `w(I ′) − O(ε′)v for every I ′ ∈ B(M) with

high probability, employing time polynomial in |GS | and 1
ε
. Since |GS | is

polynomial in n and v is polynomial in |K|,maxr,s |wr,s| and maxk λk, by
setting ε′ = O( ε

v
) and α = 1− 1

e
, we get the result.

In conclusion, by letting KT ⊆ K be the set of receivers’ type pro-
files observed by the sender up to iteration T , the following Theorem 10.9
provides our polynomial-time no-(1 − 1

e
)-regret algorithm working with

submodular sender’s utilities.

Theorem 10.9. If the sender’s utility is such that function fθ is submodular
for each θ ∈ Θ, then there exists a no-(1 − 1

e
)-regret algorithm having

(1− 1
e
)-regret

RT
1− 1

e
≤ O

(√
T |KT |

)
,

with a per-iteration running time poly(T, n, d).

Proof. We can run Algorithm 10.1 on an instance of our multi-receiver on-
line Bayesian persuasion problem. By Theorem 10.4, if we set η = 1√

T
,

ε = 1
T

, and α = 1 − 1
e
, we get the desired regret bound (notice that the set

of observed feedbacks is Et = Kt in our setting). Algorithm 10.1 employs
an approximate projection oracle ϕ1− 1

e
that we can implement in polyno-

mial time by using the algorithm provided in Theorem 10.6. This requires
access to a polynomial-time approximate separation oracle O1− 1

e
, which

can be implemented by using Theorem 10.7, under the assumption that the
sender’s utility is such that functions fθ are submodular.

Notice that the regret bound only depends on the number |KT | of re-
ceivers’ type profiles observed up to iteration T , while it is independent of
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Chapter 10. Online Multi-receiver Bayesian Persuasion

the overall number of possible type profiles |K| = mn̄, which is exponen-
tial in the number of receivers. Thus, the (1 − 1

e
)-regret is polynomial in

the size of the problem instance provided that the type profiles received as
feedbacks by the sender are polynomially many (though the sender does not
have to know which are these type profiles in advance). This is reasonable
in many practical applications, where not all the type profiles can occur,
since, e.g., receivers’ types are highly correlated. On the other hand, let us
remark that, as T goes to infinity, we have |KT | ≤ mn̄, so that the regret is
sublinear in T .
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CHAPTER11
Bayesian Persuasion with Type Reporting

In Chapters 9 and 10, we showed that the first crucial step towards the com-
putation of efficient online algorithms is the study of the problem in which
the receiver’s payoffs depend on her unknown type, which is randomly de-
termined by a known finite-support probability distribution. However, we
have shown that this problem is intractable in the classical Bayesian per-
suasion framework. In this chapter, we circumvent this issue extending the
Bayesian persuasion framework with a type reporting step. In Section 11.1,
we introduce the formal model of Bayesian persuasion with type reporting.
In Section 11.2, we focus on the case with a single receiver, showing that an
optimal sender’s strategy can be computed in polynomial time. In Section
11.3, we study the case with multiple receivers, showing that an optimal
sender’s strategy can be computed in polynomial time when the sender’s
utility function is supermodular or anonymous, while when the sender’s
utility function is submodular we design an algorithm that provides a tight
(1− 1/e)-approximation.
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Chapter 11. Bayesian Persuasion with Type Reporting

11.1 Model with Type Reporting

In this section, we formally introduce the Bayesian persuasion framework
with type reporting that we study in the rest of this chapter. In particular,
in Subsection 11.1.1, we describe the model with a single receiver, while
in Subsection 11.1.2 we extend it to multi-receiver settings. A model of
signaling with type reporting is introduce in Xu et al. (2016a); Gan et al.
(2019) for the specific setting of Bayesian Stackelberg Games. However,
they design IC menus of signaling schemes for settings in which the sender
has no private information.

11.1.1 Model with a Single Receiver

The receiver has a finite set A := {ai}%i=1 of % available actions and a
type chosen from a finite set K := {ki}mi=1 of m possible types. For each
type k ∈ K, the receiver’s payoff function is uk : A × Θ → [0, 1], where
Θ := {θi}di=1 is a finite set of d states of nature. We denote by ukθ(a) ∈ [0, 1]
the payoff obtained by the receiver of type k ∈ K when the state of nature
is θ ∈ Θ and they play action a ∈ A. The sender’s payoffs are described
by the functions fθ : A → [0, 1] for θ ∈ Θ.

The sender commits to a signaling scheme φ, which is a randomized
mapping from states of nature to signals for the receiver. Formally, φ :
Θ → ∆S , where S is a set of available signals. For convenience, we let
φθ be the probability distribution employed by the sender to draw signals
when the state of nature is θ ∈ Θ and we denote by φθ(s) the probability
of sending signal s ∈ S. Moreover, we slightly abuse the notation and
use φ to also denote the probability distribution over signals induced by the
signaling scheme φ and the prior distribution µ. We recall that we denote
as Bkξ := arg maxa∈A

∑
θ∈Θ ξθu

k
θ(a) the set of actions that maximize the

expected utility of the receiver of type k ∈ K in any posterior ξ ∈ Ξ, while
we denote by bkξ ∈ arg maxa∈Bkξ

∑
θ ξθfθ(a) the action in Bkξ that is actually

played by the receiver of type k in posterior ξ.
In our Bayesian persuasion framework with type reporting, the sender

asks the receiver to report their type before observing the realized state
of nature. This enables the sender to increase their expected utility. In
particular, before the receiver reports their type, the sender proposes to the
receiver a menu Φ = {φk}k∈K of signaling schemes, committing to send
signals according to the signaling scheme φk if the receiver reports their
type to be k ∈ K. In details, the interaction goes on as follows: (i) the
sender proposes a menu Φ = {φk}k∈K to the receiver; (ii) the receiver
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11.1. Model with Type Reporting

reports a type k ∈ K that maximizes their expected utility give the proposed
menu; (iii) the sender observes the realized state of nature θ ∼ µ; (iv) the
sender draws a signal s ∈ S according to φkθ and communicates it to the
receiver; finally, the interaction terminates with steps (iv) and (v) of the
classical setting (see Section 3.1).

Notice that, in step (ii), the receiver of type k ∈ K can compute their
expected utility for each signaling scheme φk′ in the menu as∑

θ∈Θ

µθEs∼φk′θ
[
ukθ
(
bkξs
)]
,

and, then, they can report a type k′ ∈ K whose corresponding signaling
scheme φk′ maximizes their expected utility.

We focus on menus of signaling schemes that are incentive compatible
(IC), i.e., in which the receiver of type k is incentivized to report their true
type, for any k ∈ K.1 Formally, a menu Φ = {φk}k∈K is IC if, for every
type k ∈ K, the following constraints are satisfied:∑

θ∈Θ

µθEs∼φkθ
[
ukθ
(
bkξs
)]
≥
∑
θ∈Θ

µθEs∼φk′θ
[
ukθ
(
bkξs
)]
∀k′ 6= k. (11.1)

We say that a signaling scheme is direct if S = A, which means that
signals correspond to action recommendations for the receiver. Moreover,
we say that a direct signaling scheme is persuasive if the receiver has an
incentive to follow the action recommendations that they receive as signals,
when they report their true type. It is easy to check that a menu Φ =
{φk}k∈K of direct and persuasive signaling schemes is IC if∑

a∈A

∑
θ∈Θ

µθφ
k
θ(a)ukθ(a) ≥

∑
a∈A

max
a′∈A

∑
θ∈Θ

µθφ
k′

θ (a)ukθ(a
′) ∀k′ 6= k. (11.2)

11.1.2 Model with Multiple Receivers

In a multi-receiver setting, there is a finite set R := {ri}n̄i=1 of n̄ receivers,
and each receiver r ∈ R has a type chosen from a finite set Kr := {kr,i}mri=1

of mr different types. We introduce K := ×r∈RKr as the set of type
profiles, which are tuples k ∈ K defining a type kr ∈ Kr for each re-
ceiver r ∈ R. Each receiver r ∈ R has two actions available, defined by
Ar := {a0, a1}. We let A :=×r∈RAr be the set of action profiles speci-
fying an action for each receiver. We assume that there are no inter-agent

1Notice that, by a revelation-principle-style argument (see the book by Shoham and Leyton-Brown (2008) for
some examples of these kind of arguments), focusing on IC menus of signaling schemes is w.l.o.g. when looking
for a sender-optimal menu.

227



Chapter 11. Bayesian Persuasion with Type Reporting

externalities. Formally, a receiver r ∈ R of type k ∈ Kr has a payoff func-
tion ur,k : Ar × Θ → [0, 1]. The sender’s payoffs depend on the actions
played by all the receivers, and they are defined by f : A × Θ → [0, 1].
In the rest of this chapter, we assume that the sender’s payoffs are mono-
tone non-decreasing in the set of receivers playing a1. As it is customary,
we focus on three families of functions: submodular, supermodular, and
anonymous. With multiple receivers, the sender must send a signal to each
of them. We focus on private signaling, where each receiver has their own
signal that is privately communicated to them.

The interaction between the sender and the receivers goes on as follows:
(i) the sender proposes to each receiver r ∈ R a menu of marginal signaling
schemes Φr = {φkr}k∈Kr ; (ii) each receiver r ∈ R reports a type kr ∈ Kr
such that φkrr is the marginal signaling scheme maximizing their expected
utility; (iii) the sender commits to a signaling scheme φ whose resulting
marginal signaling schemes φr are such that φr := φkrr for all r ∈ R; (iv)
the sender observes the realized state of nature θ ∼ µ and draws a signal
profile s ∼ φθ; (v) each receiver r ∈ R observes their signal sr, rationally
updates their prior belief over Θ according to the Bayes rule, and selects
an action maximizing their expected utility. Notice that the sender only
needs to propose marginal signaling schemes to the receivers (rather than
general ones), since the expected utility of each receiver only depends on
their marginal signaling scheme, and not on the others. Thus, the sender
can delay the choice of the (general) signaling scheme after types have
been reported.

Similarly to the single-receiver case, we restrict the attention to IC menu
of marginal signaling schemes. Thus, in a multi-receiver setting, a sender’s
strategy is composed by an IC menu of marginal signaling scheme Φr =
{φkr}k∈Kr for each receiver r ∈ R, and a set of signaling schemes {φk}k∈K
(one per type profile possibly reported by the receivers) such that the re-
sulting marginal signaling scheme satisfy φk,r = φkrr for all k ∈ K and
r ∈ R.

11.1.3 Sender’s Computational Problems

We consider the computational problem in which, given the probability
distribution over the receivers’ types, the sender wants to maximize their
expected utility. In the single-receiver case, the receiver’s type k ∈ K
is drawn from a known distribution λ ∈ ∆K. We call MENU-SINGLE
the problem of computing an IC menu of signaling schemes Φ = {φk}k∈K
that maximizes the sender’s expected utility, given a probability distribution
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11.2. Single-receiver Problem

λ ∈ ∆K as input. In the multi-receiver case, the types profiles k ∈ K
are drawn from a known distribution λ ∈ ∆K̄, where K̄ ⊆ K is a subset
of possible types vectors, i.e., the support of λ. We call MENU-MULTI
the problem of computing a sender’s strategy—made by an IC menu of
marginal signaling schemes Φr = {φkr}k∈Kr for each receiver r ∈ R and a
set of signaling schemes {φk}k∈K̄—that maximizes the sender’s expected
utility, given a probability distribution λ ∈ ∆K̄ as input.2

11.2 Single-receiver Problem

We show how to solve MENU-SINGLE in polynomial time. By using the
well-known equivalence between signaling schemes and distributions over
posteriors, it is easy to check that an optimal menu of signaling schemes can
be computed by the following LP 11.3 with an infinite number of variables,
namely γk ∈ ∆Ξ for k ∈ K. In LP 11.3, the objective is the sender’s
expected utility assuming the receiver reports their true type, the first set
of constraints encodes IC conditions, while the last one ensures that the
distributions over posteriors correctly represent signaling schemes.

max
γ

∑
k∈K

λkEξ∼γk
∑
θ∈Θ

ξθfθ
(
bkξ
)

s.t. (11.3)

Eξ∼γk

[∑
θ∈Θ

ξθu
k
θ

(
bkξ
)]
≥ Eξ∼γk

[∑
θ∈Θ

ξθu
k
θ

(
bkξ
)]

∀k 6= k′ ∈ K

Eξ∼γk [ξθ] = µθ ∀θ ∈ Θ,∀k ∈ K
γk ∈ ∆Ξ ∀k ∈ K.

As a first step, we show that there always exists an optimal solution to
LP 11.3 in which the probability distributions γk ∈ ∆Ξ have finite sup-
port. This allows us to compute an optimal menu of signaling schemes
by solving an LP with a finite number of variables. In the following, for
every k ∈ K and a ∈ A, let Ξk,a :=

{
ξ ∈ Ξ : a ∈ Bkξ

}
and Ξ̂k,a :={

ξ ∈ Ξ : a = bkξ
}

. Moreover, for every a ∈×k∈KA, let Ξa :=
⋂
k∈K Ξk,ak

and Ξ̂a :=
⋂
k∈K Ξ̂k,ak , where ak is the k-th component of a. Finally, let

Ξ∗ be such that Ξ∗ :=
⋃

a∈×k∈KA V (Ξa), where V (Ξa) denotes the set of
vertices of the polytope Ξa. The following Lemma 11.1 shows that there
always exists an optimal menu of signaling schemes that can be encoded as

2A polynomial-time algorithm for MENU-MULTI must run in time polynomial in the size of the instance
and in the size of the support of the distribution λ. Notice that, in general, the latter may be exponential in the
number of receivers n̄.
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probability distributions over Ξ∗. Formally, the lemma is proved by show-
ing that the following LP 11.4 is equivalent to LP 11.3.

max
γ

∑
k∈K

λk
∑
ξ∈Ξ∗

γkξ
∑
θ∈Θ

ξθfθ
(
bkξ
)

s.t. (11.4a)∑
ξ∈Ξ∗

γkξ
∑
θ∈Θ

ξθu
k
θ

(
bkξ
)
≥
∑
ξ∈Ξ∗

γk
′

ξ

∑
θ∈Θ

ξθu
k
θ

(
bkξ
)

∀k 6= k′ ∈K (11.4b)∑
ξ∈Ξ∗

γkξξθ = µθ ∀k ∈ K,∀θ ∈ Θ (11.4c)∑
ξ∈Ξ∗

γkξ = 1 ∀k ∈ K. (11.4d)

Intuitively, the result is shown by noticing that, once fixed the receiver’s
best responses to a ∈×k∈KA, the sums over Θ in the objective and the
constraints of LP 11.3 are linear in the posterior ξ, which allows to apply
Carathéodory theorem to replace each posterior with a probability distribu-
tions over the vertices of Ξa.

Lemma 11.1. In single-receiver instances, there always exists a sender-
optimal menu of signaling schemes that can be encoded as probability dis-
tributions over the finite set of posteriors Ξ∗.

Proof. We show that, given a menu of signaling schemes Φ = {φk}k∈K
with each φk encoded as a probability distribution γk ∈ ∆Ξ, we can con-
struct a new menu of signaling schemes Φ̄ = {φ̄k}k∈K with each φ̄k en-
coded as a finite-supported probability distribution γ̄k ∈ ∆Ξ∗ and such that
the sender’s expected utility for Φ̄ is greater than or equal to that for Φ. This
immediately proves the statement.

In order to do so, we split the posteriors in Ξ into the sets Ξ̂a for a ∈
×k∈KA. Notice that Ξ =

⋃
a∈×k∈KA Ξ̂a. Then, we replace the distribu-

tions γk with other probability distributions supported on sets V (Ξa) ⊆ Ξ∗.
For every action profile a ∈ ×k∈KA and type k ∈ K, we let ξk,a :=

Eξ∼γk
[
ξ | ξ ∈ Ξ̂a

]
. Since Ξ̂a ⊆ Ξa and Ξa is a bounded convex polytope,

by Carathéodory theorem there exists a probability distribution γk,a ∈ ∆Ξ∗

such that its support is a subset of the set of vertices V (Ξa) and it holds
Eξ∼γk,a [ξ] = ξk,a. Then, let us define the probability distributions γ̄k ∈
∆Ξ∗ for k ∈ K so that, for every posterior ξ ∈ Ξ∗, it holds

γ̄kξ =
∑

a∈×k∈KA
γk,aξ Prξ′∼γk

{
ξ′ ∈ Ξ̂a

}
.
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Next, we show that the distributions γ̄k ∈ ∆Ξ∗ for k ∈ K defined above
constitute a feasible solution to LP 11.4 and the sender’s expected utility in
the resulting menu of signaling schemes Φ̄ is at least as large as the sender’s
expected utility for the menu of signaling schemes Φ. First, let us notice
that, for every a ∈×k∈KA, k ∈ K, and k′ ∈ K, it holds

∑
ξ∈V (Ξa)

γk
′,a
ξ

[∑
θ∈Θ

ξθu
k
θ

(
bkξ
)]

=
∑

ξ∈V (Ξa)

γk
′,a
ξ

[∑
θ∈Θ

ξθu
k
θ(ak)

]
(11.5a)

=
∑
θ∈Θ

ξk
′,a
θ ukθ(ak) (11.5b)

= Eξ∼γk′
[∑
θ∈Θ

ξθu
k
θ(ak) | ξ ∈ Ξ̂a

]
, (11.5c)

where the second equality comes from the fact that action ak is the best
response of the receiver of type k in each posterior ξ ∈ Ξa. Similarly, we
can prove that, for every a ∈×k∈KA and k ∈ K, it holds

∑
ξ∈V (Ξa)

γk,aξ

[∑
θ∈Θ

ξθfθ
(
bkξ
)]
≥

∑
ξ∈V (Ξa)

γk,aξ

[∑
θ∈Θ

ξθfθ(ak)

]
(11.6a)

=
∑
θ∈Θ

ξk,aθ fθ(ak) (11.6b)

= Eξ∼γk

[∑
θ∈Θ

ξθfθ(ak) | ξ ∈ Ξ̂a

]
. (11.6c)

Then, we can show that the IC constraints, namely Constraints (11.4b), are
satisfied. Formally, for every k ∈ K and k′ ∈ K : k 6= k′, we have:∑
ξ∈Ξ∗

γ̄k
′

ξ

∑
θ∈Θ

ξθu
k
θ

(
bkξ
)

=
∑
ξ∈Ξ∗

∑
a∈×k∈KA

γk
′,a
ξ Prξ′∼γk′

{
ξ′ ∈ Ξ̂a

}∑
θ∈Θ

ξθu
k
θ

(
bkξ
)

=
∑

a∈×k∈KA
Prξ′∼γk′

{
ξ′ ∈ Ξ̂a

} ∑
ξ∈V (Ξa)

γk
′,a
ξ

[∑
θ∈Θ

ξθu
k
θ

(
bkξ
)]

=
∑

a∈×k∈KA
Prξ′∼γk

{
ξ′ ∈ Ξ̂a

}
Eξ∼γk′

[∑
θ∈Θ

ξθu
k
θ(ak) | ξ ∈ Ξ̂a

]

= Eξ∼γk′
[∑
θ∈Θ

ξθu
k
θ

(
bkξ
)]
,
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where the second equality comes from the fact that γk
′,a
ξ is non-zero only for

posteriors ξ ∈ V (Ξa) and in third equality we use Equation (11.5). Hence,
for every k ∈ K and k′ ∈ K : k 6= k′, we have

∑
ξ∈Ξ∗

γ̄kξ
∑
θ∈Θ

ξθu
k
θ

(
bkξ
)

= Eξ∼γk

[∑
θ∈Θ

ξθu
k
(
bkξ
)]

≥ Eξ∼γk′
[∑
θ∈Θ

ξθu
k
(
bkξ
)]

=
∑
ξ∈Ξ∗

γk
′

ξ

∑
θ∈Θ

ξθu
k
θ

(
bkξ
)
,

where the inequality comes from the w.l.o.g. assumption that the menu Φ is
IC. This proves that Constraints (11.4b) hold. Similarly, we can prove that
the sender’s expected utility does not decrease when using Φ̄ rather than Φ.
Formally,∑
k∈K

λk
∑
ξ∈Ξ∗

γ̄kξ
∑
θ∈Θ

ξθfθ
(
bkξ
)

=
∑
k∈K

λk
∑
ξ∈Ξ∗

∑
a∈×k∈KA

γk
′,a
ξ Prξ′∼γk

{
ξ′ ∈ Ξ̂a

}∑
θ∈Θ

ξθfθ
(
bkξ
)

=
∑
k∈K

λk
∑

a∈×k∈KA
Prξ′∼γk

{
ξ′ ∈ Ξ̂a

} ∑
ξ∈V (Ξa)

γk
′,a
ξ

∑
θ∈Θ

ξθfθ
(
bkξ
)

≥
∑
k∈K

λk
∑

a∈×k∈KA
Prξ′∼γk

{
ξ′ ∈ Ξ̂a

}
Eξ∼γk

[∑
θ∈Θ

ξθfθ(ak) | ξ ∈ Ξ̂a

]

=
∑
k∈K

λkEξ∼γk

[∑
θ∈Θ

ξθfθ
(
bkξ
)]
,

where the inequality comes from Equation (11.6). Moreover, Constraints (11.4c)
are satisfied, since∑

ξ∈Ξ∗

γ̄kξξθ =
∑
ξ∈Ξ∗

∑
a∈×k∈KA

γk,aξ Prξ′∼γk
{
ξ′ ∈ Ξ̂a

}
ξθ

=
∑

a∈×k∈KA
Prξ′∼γk

{
ξ′ ∈ Ξ̂a

} ∑
ξ∈V (Ξa)

γk,aξ ξθ
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=
∑

a∈×k∈KA
Prξ′∼γk

{
ξ′ ∈ Ξ̂a

}
Eξ∼γk

[
ξθ | ξ ∈ Ξ̂a

]
= Eξ∼γk [ξθ] = µθ.

Finally, it is easy to see that the γ̄k are valid probability distributions. In-
deed, for every k ∈ K, it holds∑

ξ∈Ξ∗

γ̄kξ =
∑

a∈×k∈KA
Prξ′∼γk

{
ξ′ ∈ Ξ̂a

}∑
ξ∈Ξ∗

γk,aξ

=
∑

a∈×k∈KA
Prξ′∼γk

{
ξ′ ∈ Ξ̂a

}
= 1.

This concludes the proof.

Next, we show that there always exists an optimal menu of direct and
persuasive signaling schemes, and that it can be computed in polynomial
time by solving a polynomially-sized LP obtained by further simplifying
LP 11.4 (Theorem 11.1). Notice that, in a Bayesian persuasion problem
without type reporting, an optimal signaling scheme must employ a signal
for each action profile a ∈×k∈KA. Since these profiles are exponentially
many, an optimal direct and persuasive signaling scheme cannot be com-
puted in polynomial time by linear programming. Indeed, in Chapter 9 we
show that without typer reporting the problem is NP-hard.

An intuition behind the proof of Theorem 11.1 is provided the following.
Fix type k ∈ K and action a ∈ A. Suppose that an optimal menu of
signaling schemes employs γk ∈ ∆Ξ∗ for the type k, and that γk has in
the support two posteriors ξ1, ξ2 ∈ Ξ̂k,a with probabilities γkξ1 and γkξ2 .
Consider a new signaling scheme that replaces the two posteriors ξ1 and ξ2

with their convex combination ξ∗ ∈ ∆Ξ∗ , so that

ξ∗θ =
γkξ1ξ1

θ + γkξ2ξ2
θ

γkξ1 + γkξ2

for every θ ∈ Θ

and
γkξ∗ = γkξ1 + γkξ2 .

Both ξ1 and ξ2 induce the same best response of the receiver of type k, and
Objective (11.4a) and Constraints (11.4c) are linear in ξ. Hence, replacing
the two posteriors with their convex combination ξ∗ preserves the value
of the objective, while maintaining the constraints satisfied. The same does
not hold for Constraints (11.4b), which are linear in the posterior only if we
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fix the best responses of all the receiver’s types. For Constraints (11.4b),
if we consider an inequality in which γk appears in the left hand side, the
sum over Θ is linear in ξ and

γkξ1

∑
θ∈Θ

ξ1
θu

k
θ(a) + γkξ2

∑
θ∈Θ

ξ2
θu

k
θ(a) = γkξ∗

∑
θ∈Θ

ξ∗θu
k
θ(a).

Instead, if γk appears in the right hand side, by the convexity of the max
operator it hods:

γkξ1 max
a′∈A

∑
θ∈Θ

ξ1
θu

k
θ(a
′) + γkξ2 max

a′∈A

∑
θ∈Θ

ξ1
θu

k
θ(a
′)

≥ max
a′∈A

[
γkξ1

∑
θ∈Θ

ξ1
θu

k
θ(a
′) + γkξ2

∑
θ∈Θ

ξ1
θu

k
θ(a
′)

]
= max

a′∈A

∑
θ∈Θ

ξ∗θu
k
θ(a
′).

Therefore, if we replace two posteriors that induce the same receiver’s
best responses with their convex combination, the left hand side of Con-
straints (11.4b) is preserved, while the value of the right hand side can only
decrease, guaranteeing that Constraints (11.4b) remain satisfied. By using
this idea, we can join all the posteriors that induce the same best responses.
Finally, by resorting to the equivalence between signaling schemes and dis-
tributions over, we obtain the following LP 11.7 of polynomial size. Hence,
an optimal menu of signaling schemes can be computed in polynomial time.

max
φ,l

∑
k∈K

λk
∑
θ∈Θ

µθ
∑
a∈A

φkθ(a)fθ(a) s.t. (11.7a)∑
a∈A

∑
θ∈Θ

µθφ
k
θ(a)ukθ(a) ≥

∑
a∈A

lk,k
′

a ∀k 6= k′ ∈ K (11.7b)

lk,k
′

a ≥
∑
θ∈Θ

µθφ
k
θ(a)ukθ(a

′) ∀k 6= k′ ∈ K,∀a, a′ ∈ A (11.7c)∑
θ∈Θ

µθφ
k′

θ (a)ukθ(a)≥
∑
θ∈Θ

µθφ
k′

θ (a)ukθ(a
′) ∀k ∈ K,∀a, a′ ∈ A (11.7d)∑

a∈A

φkθ(a) = 1 ∀k ∈ K,∀θ ∈ Θ. (11.7e)

Notice that Constraints (11.7b) and (11.7c) are equivalent to the IC con-
straints for direct and persuasive signaling schemes, which are those spec-
ified in Equation (11.2), where maxa′∈A

∑
θ∈Θ µθφ

k′

θ (a)ukθ(a
′) is the best
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response of the receiver of type k ∈ K to the direct signal a for the receiver
of type k′ ∈ K . Moreover, Constraints (11.7d) force the signaling schemes
to be persuasive.

Theorem 11.1. In single-receiver instances, there always exists an opti-
mal menu of direct and persuasive signaling schemes. Moreover, it can be
computed in polynomial time.

Proof. Since LP 11.7 has polynomially-many variables and constraints, an
optimal menu of direct and persuasive signaling schemes can be computed
in polynomial time by solving the LP. Thus, we only need to show that, in
any single-receiver instance, there always exists an optimal menu of direct
and persuasive signaling schemes. In particular, we show that, given an
optimal solution {γk}k∈K to LP 11.4, there exists a solution to LP 11.7 with
the same value. The menu Φ = {φk}k∈K of signaling schemes defined by
the solution to LP 11.7 is the desired optimal menu of direct and persuasive
signaling schemes. We define the solution to LP 11.7 as follows. For every

k ∈ K, a ∈ A, and θ ∈ Θ, we let φkθ(a) =
∑
ξ∈Ξ̂k,a∩Ξ∗ γ

k
ξξθ

µθ
. First, we prove

that the two solutions have the same objective value. Formally,∑
k∈K

λk
∑
θ∈Θ

µθ
∑
a∈A

φkθ(a)fθ(a) =
∑
k∈K

λk
∑
θ∈Θ

∑
a∈A

∑
ξ∈Ξ̂k,a∩Ξ∗

γkξξθfθ(a)

=
∑
k∈K

λk
∑
ξ∈Ξ∗

γkξ
∑
θ∈Θ

ξθfθ
(
bkξ
)
,

where the last equality follows from the fact that bkξ = a for all the poste-
riors in ξ ∈ Ξ̂k,a. Thus, we are left to check that the solution is feasible.
Recall that Constraints (11.7b) and (11.7c) are equivalent to the constraints
in Equation (11.2). The latter are satisfied since, for every k 6= k′ ∈ K, it
holds ∑

a∈A

∑
θ∈Θ

µθφ
k
θ(a)ukθ(a) =

∑
a∈ A

∑
θ∈Θ

∑
ξ∈Ξ̂k,a∩Ξ∗

γkξξθu
k
θ(a)

=
∑
ξ∈Ξ∗

γkξ
∑
θ∈Θ

ξθu
k
θ

(
bkξ
)

≥
∑
ξ∈Ξ∗

γk
′

ξ

∑
θ∈Θ

ξθu
k
θ

(
bkξ
)

=
∑
a∈A

∑
ξ∈Ξ̂k,a∩Ξ∗

γk
′

ξ

∑
θ∈Θ

ξθu
k
θ

(
bkξ
)
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=
∑
a∈A

∑
ξ∈Ξ̂k,a

γk
′

ξ max
a′∈A

∑
θ∈Θ

ξθu
k
θ(a
′)

≥
∑
a∈A

max
a′∈A

∑
ξ∈Ξ̂k,a∩Ξ∗

γk
′

ξ

∑
θ∈Θ

ξθu
k
θ(a
′)

=
∑
a∈A

max
a′∈A

∑
θ∈Θ

µθφ
k′

θ (a)ukθ(a
′).

Moreover, each signaling scheme φk is persuasive, since, for every k ∈ K,
and a 6= a′ ∈ A, it holds∑

θ∈Θ

µθφ
k
θ(a)ukθ(a) =

∑
θ∈Θ

∑
ξ∈Ξ̂k,a∩Ξ∗

γkξξθu
k
θ(a)

=
∑
θ∈Θ

∑
ξ∈Ξ̂k,a∩Ξ∗

γkξξθu
k
θ

(
bkξ
)

≥
∑
θ∈Θ

∑
ξ∈Ξ̂k,a∩Ξ∗

γkξξθu
k
θ(a
′)

=
∑
θ∈Θ

µθφ
k
θ(a)ukθ(a

′),

and it is well defined since, for every k ∈ K and θ ∈ Θ, it holds∑
a∈A

φkθ(a) =
∑
a∈A

∑
ξ∈Ξ̂k,a∩Ξ∗

γkξξθ

µθ
=
∑
ξ∈Ξ∗

γkξξθ

µθ
=
µθ
µθ

= 1.

This concludes the proof.

11.3 Multi-receiver Problem

In this section, we switch the attention to MENU-MULTI. As we will show
in the following (Theorem 11.2), given any multi-receiver instance, there
always exists an optimal sender’s strategy that uses menus of direct and
persuasive marginal signaling schemes. This allows us to formulate the
sender’s problem as the following LP 11.8, which will be crucial for the
results in the rest of this section.

Since φkr,θ(a0) = 1 − φkr,θ(a1) for every r ∈ R, k ∈ Kr, and θ ∈ Θ, by
letting xr,kθ = φkr,θ(a1) we can formulate the following LP:

max
φ≥0,x≥0,l

∑
θ∈Θ

µθ
∑
k∈K̄

λk
∑
R⊆R

φkθ (R)fθ(R) s.t. (11.8a)
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∑
R⊆R:r∈R

φkθ (R) = xr,krθ ∀k ∈ K̄,∀r ∈ R, ∀θ ∈ Θ (11.8b)

∑
θ∈Θ

µθx
r,k
θ ur,kθ (a1) +

∑
θ∈Θ

µθ

(
1− xr,kθ

)
ur,kθ (a0)

≥ lr,k,k
′

a1
+ lr,k,k

′

a0
∀r ∈ R,∀k 6= k′ ∈ Kr (11.8c)

lr,k,k
′

a1
≥
∑
θ∈Θ

µθx
r,k′

θ ur,kθ (a)

∀r ∈ R, ∀a ∈ Ar,∀k 6= k′ ∈ Kr (11.8d)

lr,k,k
′

a0
≥
∑
θ∈Θ

µθ

(
1− xr,k

′

θ

)
ur,kθ (a)

∀r ∈ R,∀a ∈ Ar,∀k 6= k′ ∈ Kr (11.8e)∑
θ∈Θ

µθx
r,k
θ

[
ur,kθ (a1)− ur,kθ (a0)

]
≥ 0 ∀r ∈ R,∀k ∈ Kr (11.8f)∑

θ∈Θ

µθ

(
1− xr,kθ

) [
ur,kθ (a0)− ur,kθ (a1)

]
≥ 0 ∀r ∈ R,∀k ∈ Kr (11.8g)∑

R⊆R

φkθ (R) = 1 ∀k ∈ K̄, ∀θ ∈ Θ. (11.8h)

In the LP, Constraints (11.8b) represent consistency conditions ensuring
that the general signaling scheme φk results in the marginal signaling schemes
φk,r, which are defined by means of variables xr,kθ . Constraints (11.8c),
(11.8d), and (11.8e) represent IC constraints for the menus of marginal sig-
naling schemes, where, as in LP 11.7, we use Constraints (11.8d) and (11.8e)
with variables lr,k,k′a0

, lr,k,k′a1
to compute receivers’ expected utilities of play-

ing a best response. Finally, Constraints (11.8f) and (11.8g) encode the
persuasiveness conditions, while Constraints (11.8h) require the signaling
scheme be well defined.

Next, we prove our main existence result supporting LP 11.8.

Theorem 11.2. In multi-receiver instances, there always exists an optimal
sender’s strategy that uses menus of direct and persuasive marginal signal-
ing schemes.

Proof. The key insight of the proof is that, in a multi-receiver instance,
the sender’s expected utility only depends on the marginal probabilities
with which the receivers play actions a1 and a0 given each state of na-
ture. In order to see that, observe that, once the marginal probabilities xr,kθ
are fixed, an optimal (general) signaling scheme φk can be computed by
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solving LP 11.8 with Constraints (11.8b) and (11.8h) only. Thus, we only
need to show that, given a receiver r and an arbitrary menu of marginal sig-
naling schemes {φkr}k∈Kr , we can always build a menu of direct marginal
signaling scheme {φ̄kr}k∈Kr such that φ̄kr,θ(a1) ≥ φkr,θ(a1) for each θ ∈ Θ
and k ∈ Kr. By the monotonicity assumption on fθ the optimal sender’s
strategy with marginal signaling scheme {φ̄kr}r∈R,k∈Kr has an utility greater
or equal to the one with {φkr}r∈R,k∈Kr .

This can be proved by following steps similar to those of Lemma 11.1
and Theorem 11.1 for each menu of marginal signaling schemes. In par-
ticular, let r be a receiver and Φr = {φkr}k∈Kr be a menu of marginal sig-
naling schemes that induces probability distribution γkr over the posteriors
when the reported type is k. Notice that the probability that the receiver
of type k ∈ Kr plays an action a ∈ Ar is given by

∑
ξ∈Ξ̂k,a1 γ

r,k
ξ ξθ.3 We

can obtain a menu of probability distribution {γ̄r,k}k∈Kr over Ξ∗ such that
the probability that the receiver plays a1 increases for each k and θ, i.e.,∑

ξ∈Ξ̂k,a1∩Ξ∗ γ̄
r,k
ξ ξθ ≥

∑
ξ∈Ξ̂k,a1 γ

r,k
ξ ξθ. To see this, it is sufficient to fol-

low the proof of Lemma 11.1 and notice that the receiver always breaks
ties in favor of a1 by the monotonicity assumption on fθ. Finally, setting

φ̄kr,θ(a) =
∑
ξ∈Ξ̂k,a∩Ξ∗ γ̄

k
ξξθ

µθ
for each k ∈ Kr, θ ∈ Θ and a ∈ Ar, we obtain a

menu of signaling schemes such that

φ̄kr,θ(a1) =

∑
ξ∈Ξ̂k,a1∩Ξ∗ γ̄

k
ξξθ

µθ
≥
∑

ξ∈Ξ̂k,a1 γ
r,k
ξ ξθ

µθ
∀θ ∈ Θ,∀k ∈ Kr

To conclude, following the proof of Theorem 11.1 we can show that the
menu of marginal signaling schemes {φ̄kr}k∈Kr is IC and persuasive.

11.3.1 Supermodular/Anonymous Sender’s Utility

LP 11.8 has an exponential number of variables and a polynomial number
of constraints. Nevertheless, we show that it is possible to apply the ellip-
soid algorithm to its dual formulation in polynomial time, provided access
to a suitably-defined separation oracle.

Theorem 11.3. Given access to an oracle that solves maxR⊆R fθ(R) +∑
r∈R wr for any w ∈ Rn̄, there exists a polynomial-time algorithm that

finds an optimal sender’s strategy in any multi-receiver instance.

3For the ease of presentation, we assume that γr,k has finite support. Formally, we should replace∑
ξ∈Ξ̂k,a γ

r,k
ξ ξθ with Prξ∼γr,k

{
ξ ∈ Ξ̂k,a

}
E
[
ξθ | ξ ∈ Ξ̂k,a

]
.
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Proof. Since 11.8 has an exponential number of constraints, we work on
the dual formulation.

min
q,t≤0,z≤0,y≤0,p

−
∑

r∈R,k 6=k′∈Kr

∑
θ

µθu
r,k
θ (a0)tr,k,k′

+
∑

r∈R,a∈Ar,k 6=k′∈Kr

∑
θ∈Θ

µθu
r,k
θ (a)za0,r,a,k,k′

−
∑

r∈R,k∈Kr

∑
θ

µθ[u
r,k
θ (a0)− ur,kθ (a1)]ya0,r,k +

∑
k∈K̄,θ∈Θ

pk,θ (11.9a)

s.t.−
∑

k′∈K̄:k′r=k

qk′,r,θ +
∑
k′ 6=k

tr,k,k′ [µθu
r,k
θ (a1)− µθur,kθ (a0)]

−
∑

a∈Ar,k′ 6=k

µθu
k′

θ (a)za1,r,a′,k′,k +
∑

a∈Ar,k′ 6=k

µθu
k′

θ (a)za0,r,a′,k′,k

+ µθ[u
r,k
θ (a1)− ur,kθ (a0)]ya1,r,k

− µθ[ur,kθ (a0)− ur,kθ (a0)]ya0,r,k ≥ 0∀r ∈ R, k ∈ Kr,∀θ ∈ Θ (11.9b)

− tr,k,k′ +
∑
a′∈Ar

za1,r,a′,k,k′ ≥ 0 ∀r ∈ R, k 6= k′ ∈ Kr (11.9c)

− tr,k,k′ +
∑
a′∈Ar

za0,r,a′,k,k′ ≥ 0 ∀r ∈ R, k 6= k′ ∈ Kr (11.9d)∑
r∈R

qk,r,θ + pk,θ ≥ µθλkfθ(R) ∀k ∈ K̄,∀θ ∈ Θ,∀R ⊆ R (11.9e)

where variables qk,r,θ relative to constraints (11.8b), tr,k,k′ to (11.8c),
za,r,a′,k,k′ to (11.8d) and (11.8e), ya,r,k to (11.8f) and (11.8g), pk,θ to (11.8h).

To solve the problem with the ellipsoid method it is sufficient to design
a polynomial time separation oracle. We focus on the separation oracle that
returns a violated constraint. Given an assignment to the variables, there
are a polynomial number of Constraints (11.9b), (11.9c), and 11.9d (with
polynomially many variables) and we can check if one of these constraints
is violated in polynomial time. Moreover, for each θ̄, k̄, we can find if
there exists a violated constraint (k̄, θ̄, R). We can use the oracle to find
maxR⊆R λkfθ(R)−

∑
r:r∈R qk̄,r,θ̄. If it is greater than pk̄,θ̄, we can return a

violated constraint, while if it is smaller or equal to pk̄,θ̄, all the constraints
{(k̄, θ̄, R)}R⊆R are satisfied.

An oracle that solves maxR⊆R fθ(R) +
∑

r∈R wr can be implemented
in polynomial time for supermodular and anonymous functions, as shown
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by Dughmi and Xu (2017). As a consequence, we obtain the following
corollary.

Corollary 11.1. In multi-receiver instances with supermodular or anony-
mous sender’s utility functions, there exists a polynomial-time algorithm
that computes an optimal sender’s strategy.

Proof. By Theorem 11.3, we only need to design a polynomial time oracle.
Since the sum of a supermodular and a modular function is supermodular,
and unconstrained supermodular maximization can be solved in polyno-
mial time, an oracle can be designed in polynomial time for supermodular
functions. For anonymous functions we can construct a polynomial time
oracle as follows. We can enumerate over all n ∈ {0, . . . , n̄}. Once we fix
the size of the set to n, the optimal set includes the n receiver with higher
values of weights w.

11.3.2 Submodular Sender’s Utility

In this section, we show how to obtain in polynomial time a
(
1− 1

e

)
-

approximation to an optimal sender’s strategy in instances with submodular
utility functions, modulo an additive loss ε > 0. This is the best approxi-
mation result that can be achieved in polynomial time, since, as it follows
from results in the literature, it is NP-hard to obtain an approximation fac-
tor better than

(
1− 1

e

)
. Indeed, if we consider settings without types, i.e.,

in which |Kr| = 1 for all r ∈ R, the problem reduces to computing an op-
timal signaling scheme when the sender knows receivers’ utilities. Then, in
the restricted case in which there are only two states of nature, Babichenko
and Barman (2017) show that, for each ε > 0, it is NP-hard to provide a(
1− 1

e
+ ε
)
-approximation of an optimal signaling scheme.

Then, the following theorem provides a tight approximation algorithm
that runs in polynomial time.

Theorem 11.4. For each ε > 0, there exists an algorithm with running time
polynomial in the instance size and 1

ε
that returns a sender’s strategy with

utility at least
(
1− 1

e

)
OPT − ε in expectation, where OPT is the sender’s

expected utility in an optimal strategy.

In order to prove the result, we reduce the problem of computing the
desired (approximate) sender’s strategy to solving the following linearly-
constrained mathematical program (Program 11.10). The program exploits
the fact that, as we will show next, there always exists an “almost” opti-
mal sender’s strategy in which the sender employs signaling schemes φk
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(for k ∈ K̄) such that the distributions φkθ are q-uniform over the set 2R.
Recall that we say that a distribution is q-uniform if it follows a uniform
distribution on a multiset of size q. Then, the mathematical program reads
as follows.

max
x

∑
θ∈Θ

µθ
∑
k∈K̄

λk
1

q

∑
j∈[q]

Fθ
(
xj,k,θ

)
s.t. (11.10a)

∑
j∈[q]

1

q
xj,k,θr ≤ xr,krθ ∀r ∈ R,∀k ∈ K̄,∀θ ∈ Θ (11.10b)

∑
θ∈Θ

µθx
r,k
θ ur,kθ (a1) +

∑
θ∈Θ

µθ

(
1− xr,kθ

)
ur,kθ (a0)

≥ lk,k
′

a1
+ lk,k

′

a0
∀r ∈ R,∀k 6= k′ ∈ Kr (11.10c)

lk,k
′

a1
≥
∑
θ∈Θ

µθx
r,k′

θ ur,kθ (a)

∀r ∈ R,∀a ∈ Ar,∀k 6= k′ ∈ Kr (11.10d)

lk,k
′

a0
≥
∑
θ∈Θ

µθ

(
1− xr,k

′

θ

)
ur,kθ (a)

∀r ∈ R,∀a ∈ Ar,∀k 6= k′ ∈ Kr (11.10e)∑
θ∈Θ

µθx
r,k
θ

[
ur,kθ (a1)− ur,kθ (a0)

]
≥ 0 ∀r ∈ R, k ∈ Kr (11.10f)∑

θ∈Θ

µθ

(
1− xr,kθ

)[
ur,kθ (a0)− ur,kθ (a1)

]
≥ 0∀r ∈ R,∀k ∈ Kr (11.10g)

0 ≤ xr,kθ ≤ 1 ∀r ∈ R,∀k ∈ Kr,∀θ ∈ Θ (11.10h)

0 ≤ xj,k,θr ≤ 1 ∀j ∈ [q],∀r ∈ R,∀k ∈ Kr,∀θ ∈ Θ. (11.10i)

In Program 11.10, each variable xr,kθ represents the probability φkr,,θ(a1) that
the sender recommends action a1 to receiver r ∈ R of type k ∈ Kr in state
θ ∈ Θ. Constraints (11.10c)–(11.10h) force the marginal signaling schemes
to be well defined, where Constraints (11.10c), (11.10d), and (11.10e) en-
code the IC conditions, Constraints (11.10f) and (11.10g) ensure the per-
suasiveness property, and Constraints (11.10h) require the marginal signal-
ing schemes to be feasible, i.e., φr,kθ (a1) + φr,kθ (a0) = 1 and φr,kθ (a) ≥ 0 for
every a ∈ {a0, a1}. Moreover, the program uses variables xj,k,θr ∈ {0, 1}
to represent whether the recommended action to receiver r ∈ R is a1 or a0

in the j-th action profile in the support of φkθ . Notice that we relaxed these
variables to xj,k,θr ∈ [0, 1] and use the multi-linear extension of the sender’s
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utility functions fθ, which, for every θ ∈ Θ, reads as

Fθ(x) :=
∑
R⊆R

fθ(R)
∏
r∈R

xr
∏
r/∈R

(1− xr).

Moreover, we also relax the constraints ensuring the consistency of the
marginal signaling schemes, namely Constraints (11.10b), by replacing
the condition

∑
j∈[q]

1
q
xj,k,θr = xr,krθ for all r ∈ R,k ∈ K̄, θ ∈ Θ with∑

j∈[q]
1
q
xj,k,θr ≤ xr,krθ for all r ∈ R,k ∈ K̄, θ ∈ Θ.

In order to reduce the problem of computing the desired sender’s strat-
egy to solving Program 11.10, we need the following two lemmas (Lemma
11.2 and Lemma 11.3). We show that the value of Program 11.10 for
a suitably-defined q approximates the value of an optimal sender’s strat-
egy (i.e., an optimal solution to LP 11.8) and that, given a solution to
Program (11.10), we can recover a sender’s strategy with approximately
the same expected utility for the sender. Our result is related to those
in (Dughmi and Xu, 2017) for the case without types. However, Dughmi
and Xu (2017) use a probabilistic method to show the existence of an “al-
most” optimal signaling scheme that uses q-uniform distributions over the
signals. This approach cannot be applied to our problem since it slightly
modifies the receivers’ utilities. In the case of persuasiveness constraints,
they show how to maintain feasibility. However, this approach does not
work for the IC constraints. We propose a different technique based on the
fact that LP 11.8 has a polynomial number of constraints. Let β be the
number of constraint of LP 11.10. Notice that β is polynomial in the size
of the LP. We show that, for each ε > 0, there exist a q such that LP 11.10
has value at least OPT − ε, where OPT is the value of an optimal sender’
strategy.

Lemma 11.2. For each ε > 0, the optimal value of Program 11.10 with
q = dβ/εe is at least OPT − ε, where OPT is the value of an optimal
sender’s strategy and β is the number of constraints of LP 11.8.

Proof. Given an optimal solution (φ, x) to LP 11.8, we show how to build
a solution to LP 11.10 with almost the same value. Since LP (11.8) has β
constraints, there exists an optimal solution (φ, x) to LP 11.8 with support
at most β. We construct a solution to Program 11.10 with the same values
of variables xr,kθ (representing marginalsignalign schemes). Then, we show
how to obtain a q-uniform distribution for every k ∈ K and θ ∈ Θ. Fix k ∈
K and θ ∈ Θ. LetGk,θ ⊆ 2R be the subsets ofR ⊆ R that are in the support
of distribution φkθ , namely φkθ (R) > 0. Notice that |Gk,θ| ≤ β, since the
solution has support at most β. For every R ∈ Gk,θ, we define Nk,θ(R) as
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the greatest integer i such that φkθ (R) ≥ i
q
. Finally, for every R ∈ Gk,θ,

we choose Nk,θ(R) indexes j ∈ [q] (with each index being selected at most
one time) for which we set xj,k,θr = 1 for every r ∈ R, and xj,k,θr = 0 for
every r /∈ R. Since

∑
R∈Gk,θ |Nk,θ(R)| ≤

∑
R∈Gk,θ qφ

k
θ (R) = q, we have

defined values for at most q indexes. For all the remaining indexes j ∈ [q],
we set xj,k,θr = 0 for r ∈ R.

It is easy to see that the defined solution is feasible since, for every
k ∈ K, θ ∈ Θ, and r ∈ R, it holds that∑

j∈[q]

1

q
xj,k,θr =

1

q

∑
R∈Gk,θ:r∈R

Nk,θ(R) ≤
∑

R∈Gk,θ:r∈R

φkθ (R) = xr,krθ .

Moreover, for every k ∈ K and θ ∈ Θ, the sender’s expected utility in a
state of nature θ ∈ Θ is at least

1

q

∑
j∈[q]

Fθ
(
xj,k,θ

)
=

1

q

∑
R∈Gk,θ

Nk,θ(R)fθ(R)

≥
∑

R∈Gk,θ

(
φkθ (R)fθ(R)− 1

q

)
≥

∑
R∈Gk,θ

φkθ (R)fθ(R)− β

q

≥
∑
R⊆R

φkθ (R)fθ(R)− ε,

where the equality follows from xj,k,θr ∈ {0, 1}, the first inequality by
1
q
Nk,θ(R) ≥ φkθ (R) − 1

q
, the second one from the fact that |Gk,θ| ≤ β,

and the last one by the definitions of q and Gk,θ. Hence, the sender’s ex-
pected utility is at least∑

θ∈Θ

µθ
∑
k∈K

λk
1

q

∑
j∈[q]

Fθ(x
j,k,θ)

≥
∑
θ∈Θ

µθ
∑
k∈K

λk

(∑
R⊆R

φkθ(R)fθ(R)− ε

)
=
∑
θ∈Θ

µθ
∑
k∈K

λk
∑
R⊆R

φkθ(R)fθ(R)− ε

This concludes the proof.
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Then, we show how to obtain a signaling scheme given a solution of
Program 11.10. Dughmi and Xu (2017) build a signaling scheme by using
a technique whose generalization to our setting works as follows. Given a
state of nature θ ∈ Θ and a vector of types k ∈ K̄, it selects a j ∈ [q] uni-
formly at random and recommends signal a1 to receiver r ∈ R with prob-
ability xj,k,θr , while it recommends a0 otherwise. By definition of multi-
linear extension, using this technique the sender achieves expected utility
equal to the value of the given solution to Program 11.10. However, this
signaling scheme uses an exponential number of signal profiles, and, thus,
it cannot be represented explicitly. In the following lemma, we show how
to obtain a sender’s strategy in which signaling schemes use a polynomial
number of signal profiles.

Lemma 11.3. Given a solution to Program 11.10 with value APX , for
each ι > 0, there exists an algorithm with running time polynomial in the
instance size and 1/ι that returns a sender’s strategy with utility at least
APX − n̄/q − ι in expectation. Moreover, such sender’s strategy employs
signaling schemes using polynomially-many signal profiles.

Proof. Let x be a solution to Program 11.10 with value APX . Next, we
show how to obtain the desired sender’s strategy.

First, we build a new solution to Program 11.10 such that Constraints
(11.10b) are satisfied with equality. Since the functions Fθ are monotonic,
we can simply obtain such solution by increasing the values of variables
xj,k,θr . It is easy to see that, by the monotonicity of Fθ, the objective function
does not decrease.

Then, we obtain an “almost binary” solution by applying, for every
θ ∈ Θ and k ∈ K̄, the procedure outlined in Algorithm 11.1. An a first
operation, the algorithm iterates over the receivers, doing the operations
described in the following for each receiver r ∈ R.

For each j ∈ [q], the algorithm computes an estimate of the following
partial derivative

∂Fθ
(
xj,k,θ

)
∂xj,k,θr

=∑
R⊆R\{r}

[
fθ(R ∪ {r})− fθ(R)

] ∏
r′∈R

xj,k,θr

∏
r′ /∈R,r′ 6=r

(
1− xj,k,θr

)
,

This is accomplished by drawing σ = −8
ι2
n̄2 log p

2
samples of the random

variable fθ(R̃∪ {r})− fθ(R̃) (with p = ι
2|K̄|dqn̄ ), where R̃ ⊆ R is obtained

by randomly picking each receiver r′ ∈ R : r′ 6= r independently with
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probability xj,k,θr′ . It is easy to see that the expected value of the random
variable is exactly equal to value of the partial derivative above. Letting
ẽj,k,θr be the empirical mean of the samples, by an Hoeffding bound, we get

Pr

{∣∣∣∣∣ẽj,k,θr −
∂Fθ

(
xj,k,θ

)
∂xj,k,θr

∣∣∣∣∣ ≥ ι

4n̄

}
≤ p.

Moreover, consider the event E in which
∣∣∣ẽj,k,θr − ∂Fθ

(
xj,k,θ

)
∂xj,k,θr

∣∣∣ ≤ ι
4n̄

for all

j ∈ [q],k ∈ K̄, θ ∈ Θ, and r ∈ R. By a union bound, the event E holds
with probability at least 1− p|K̄|dqn̄.

As a second step, the algorithm re-labels the indexes so that, if j < j′,
then ẽj,k,θr ≥ ẽj

′,k,θ
r . Notice that the value of the partial derivative with

respect to xj,k,θr does not depend on its value. Hence, given two indexes j <
j′, by “moving” a value t from xj

′,k,θ
r to xj,k,θr , the sum

∑
j∈[q] Fθ

(
xj,k,θr

)
decreases at most of

t

(
∂Fθ(x

j′,k,θ)

∂xj
′,k,θ
r

− ∂Fθ(x
j,k,θ)

∂xj,k,θr

)
≤ t
( ι

2n
+ ẽj

′,k,θ
r − ẽj,k,θr

)
≤ t

ι

2n
.

Let Qk,θ,r = {1, . . . , j∗} be the set of the j∗ =
⌊∑

j∈[q] x
j,k,θ
r

⌋
smallest

indexes in [q]. Then, the algorithm updates the solution x by setting xj,k,θr =
1 for all indexes j ∈ Qk,θ,r and setting

xj
∗,k,θ
r =

∑
j′∈Qk,θ,r

xj
′,k,θ
r −

 ∑
j′∈Qk,θ,r

xj
′,k,θ
r

 .
After having iterated over all the receivers, the algorithm has built a new

feasible solution x̄ to Program 11.10 such that∑
j∈[q]

[Fθ(x̄
j,k,θ
r )− Fθ(xj,k,θr )] ≥ −qι/2,

since the algorithm moved at most a value q from variables indexed by j′

to variables indexed byj < j′. Moreover, each receiver r ∈ R has at most
a non-binary element among variables x̄j,k,θr .

As a final step, the algorithm first builds a set Qk,θ of indexes j ∈ [q]
such that x̄j,k,θ is a binary vector. Notice that there always exists one such
set Qk,θ of size at least q − n̄. Then, the algorithm constructs a signaling
scheme such that

φkθ (R) =
1

q

∣∣{j ∈ Qk,θ : xj,k,θr = 1∀r ∈ R, xj,k,θr = 0∀r /∈ R
}∣∣ .
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Notice that
∑

R∈R:r∈R φ
k
θ (R) ≤ xr,kr and, by the monotonicity assumption

on fθ, it is easy to build a signaling scheme such that
∑

R∈R:r∈R φ
k
θ (R) =

xr,kr with greater sender’s expected utility. Finally, the algorithm out-
puts the sender’s strategy made by {φk}k∈K̄ and {xr,k}r∈R,k∈Kr , where the
menus of marginal signaling schemes are those given as input.

To conclude the proof, we show that the utility of the sender’s strategy
described above is at least APX − n̄/q − ι in expectation. If the event E
holds, the utility of the solution is at least∑

θ∈Θ

µθ
∑
k∈K̄

λkφ
k
θ (R)fθ(R)

≥
∑
θ∈Θ

µθ
∑
k∈K̄

λk
1

q

∑
j∈Qk,θ

Fθ
(
x̄j,k,θ

)

≥
∑
θ∈Θ

µθ
∑
k∈K̄

λk
1

q

∑
j∈[q]

Fθ
(
x̄j,k,θ

)
− n̄


≥
∑
θ∈Θ

µθ
∑
k∈K̄

λk
1

q

∑
j∈[q]

Fθ
(
xj,k,θ

)
− n̄− ιq

2


=
∑
θ∈Θ

µθ
∑
k∈K̄

λk

1

q

∑
j∈[q]

Fθ
(
xj,k,θ

)
− n̄/q − ι/2


≥
∑
θ∈Θ

µθ
∑
k∈K̄

λk
1

q

∑
j∈[q]

Fθ
(
xj,k,θ

)
− n̄/q − ι/2

= APX − n̄/q − ι/2.

Hence, the sender’s expected utility is at least

Pr {E} (APX − n̄/q − ι/2) ≥ (1− p|K̄|dqn̄)(APX − n̄/q − ι/2)

≥ APX − n̄/q − ι/2− p|K̄|dqn̄
≥ APX − n̄/q − ι.

Since we the marginal signaling schemes do not change, all the persuasive-
ness and IC constraints are satisfied. Moreover, for every k ∈ K̄, θ ∈ Θ,
and r ∈ R, it holds∑

R⊆R:r∈R

φkθ (R) =
1

q

∑
j∈[q]

x̄j,k,θr =
1

q

∑
j∈[q]

xj,k,θr = xr,krθ ,
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while it is easy to see that
∑

R⊆R φ
k
θ (R) = 1 for every k ∈ K̄ and θ ∈ Θ.

This concludes the proof of the lemma.

Algorithm 11.1 Algorithm in Lemma 11.3
Input: Number of samples σ > 0; A solution x to Program 11.10; k ∈ K̄; θ ∈ Θ

1: for r ∈ R do
2: Compute ẽj,k,θr that estimate ∂Fθ(xj,k,θ)

∂xj,k,θr
with σ samples

3: Re-label indexes j ∈ [q] in decreasing order of ẽj,k,θr

4: j∗ ←
⌊∑

j∈[q] x
j,k,θ
r

⌋
5: xj

∗+1,k,θ
r ←

∑
j∈[q] x

j,k,θ
r − j∗

6: Qk,θ,r ← {1, . . . , j∗}
7: for j ∈ Qk,θ,r do
8: xj,k,θr ← 1
9: end for

10: for j ≥ j∗ + 2 do
11: xj,k,θr ← 0
12: end for
13: end for
14: Construct φkθ such that:
15: φkθ (R)= 1

q

∣∣{j ∈ [q] :xj,k,θr =1∀r ∈R, xj,k,θr =0∀r /∈R
}∣∣ ∀R⊆R

16: Update φkθ to make it consistent with the menus of marginal signaling schemes
{xr,krθ }r∈R

17: return φkθ

Now, we can prove Theorem 11.4.

proof of Theorem 11.4. By Lemmas 11.2 and 11.3, we only need to provide
an algorithm that approximates the optimal solution of LP 11.10. The ob-
jective is a linear combination with non-negative coefficients of the multi-
linear extension of monotone submodular functions. Hence, it is smooth,
monotone and submodular. Moreover, since we relaxed Constraints (11.10b),
the feasible region is a down-monotone polytope4 and it is defined by a set
of polynomially-many constraints. For each δ > 0, this problem admits a(
1− 1

e

)
OPT − δ-approximation in time polynomial in the instance size

and δ, see the continuous greedy algorithm in (Calinescu et al., 2011) and
(Dughmi and Xu, 2017) for a formulation in a similar problem.5 Finally,
we can obtain an arbitrary good approximation choosing an arbitrary large
value for q and an arbitrary small value for δ and ι.

4A polytope P ∈ Rn+ is down-monotone if 0 ≤ x ≤ y coordinate-wise and y ∈ P imply x ∈ P .
5The bound holds only for arbitrary large probability. This reduces the total expected utility by an arbitrary

small factor.
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CHAPTER12
Conclusions and Future Research

In this thesis, we significantly advance the state of the art on algorithmic
Bayesian persuasion along two different directions. First, we study the al-
gorithmic problem of designing optimal information disclosure policies in
real-world scenarios. In particular, we study several voting problems, in-
cluding majority voting, plurality voting and district-based elections char-
acterizing the computational complexity of each problem under private and
public signaling. In doing so, we provide some insights on the complexity
of general persuasion problems, such as the characterization of bi-criteria
approximations in public signaling problems. Moreover, we show how the
partial disclosure of information can be used to reduce the social cost in
routing games and to increase the revenue in posted price auctions. Then,
we relax the assumptions that the sender knows the receiver’s utility func-
tion, initiating the study of online Bayesian persuasion. This is the first
step in designing adaptive information disclosure policies that deals with
the uncertainty intrinsic in all real-world applications.

We conclude the chapter proposing some future research directions. De-
spite the great attention received by the economics and artificial intelligence
communities and the large class of potential real-world applications, the
use of Bayesian persuasion in the real world is still limited. We believe that
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one of the main obstacle to the design of information disclosure policies
in practice is the perfect knowledge assumption. An interesting direction
is to study how the general online Bayesian persuasion framework intro-
duced in the second part of the thesis can be applied to structured games
like the one studied in the first part of the thesis. This posses various chal-
lenges. First, despite the design of no-regret algorithms is computationally
intractable in general, it would be interesting to find some structured games
for which it is possible to design efficient no-regret algorithms. As a second
point, while for the single-receiver online Bayesian persuasion problem we
provide no-regret algorithms with both full information and partial infor-
mation feedback, our analysis of settings with multiple-receiver is limited
to the case with full feedback and no externalities. While this assumptions
are reasonable in some settings, they do not fit with some applications. For
instance, routing games requires to take in account externalities among the
players.

Another interesting direction is to deal with the computational chal-
lenges introduced by the online learning framework. In particular, we
showed that the computation of no-regret algorithms in the online Bayesian
persuasion problem is often computational intractable, making it difficult
to apply in practice. We concluded the thesis proposing a way to solve this
problem, showing that the intractability of an offline version of the problem
can be circumvented with a type reporting step. It remains an open ques-
tion if a type reporting step can be used to design efficient online learning
algorithms.

Moreover, in our online learning framework we assume that the re-
ceivers have a finite number of known possible types. Despite this is a
significant improvement over the perfect knowledge of the receivers’ utili-
ties, this approach assumes some prior knowledge of the receivers. It would
be interesting to extend our results to the case in which the receivers can
have arbitrary utilities and hence an infinite number of possible types.

In this thesis, we show how to deal with uncertainly over the receivers’
utility functions. However, this is not the only unreasonable assumption of
the classical Bayesian persuasion framework. For instance, another impor-
tant assumption is that the sender and receivers share the same prior belief.
In practice, these beliefs come from past observations, and thus are uncer-
tain and approximated. Zu et al. (2021) study a game between a sender
and a receiver that do not know the prior distribution. It would be inter-
esting to consider uncertainly on the receiver’s payoffs and the prior belief
simultaneously.
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