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Abstract

IN the last decades and, in particular, in the last few years, Deep Learning (DL) solu-
tions emerged as state of the art in several domains, e.g., image classification, object
detection, speech translation and command identification, medical diagnoses, natural

language processing, artificial players in games, and many others.
In the same period, following the massive spread of pervasive technologies such as

Internet of Things (IoT) units, embedded systems, or Micro-Controller Units (MCUs) in
various application scenarios (e.g., automotive, medical devices, and smart cities, to name
a few), the need for intelligent processing mechanisms as close as possible to data genera-
tion emerged as well. The traditional paradigm of having a pervasive sensor (or pervasive
network of sensors) that acquires data to be processed by a remote high-performance com-
puter is overcome by real-time requirements and connectivity issues.

Nevertheless, the memory and computational requirements characterizing deep learn-
ing models and algorithms are much larger than the corresponding abilities in memory
and computation of embedded systems or IoT units, significantly limiting their applica-
tion. The related literature in this field is highly fragmented, with several works aiming
to reduce the complexity of deep learning solutions. However, only a few aim to deploy
such DL algorithms on IoT units or even on MCUs. All these works fall under the um-
brella of a novel research area, namely Tiny Machine Learning (TML), whose goal is to
design machine and deep learning models and algorithms able to take into account the
constraints on memory, computation, and also energy the embedded systems, the IoT, and
the micro-controller units impose.

This work aims to introduce a methodology as well as algorithms and solutions to
close the gap between the complexity of Deep Learning solutions and the capabilities of
embedded, IoT, or micro-controller units.

Achieving this goal required operating at different levels. First, the methodology aims
at proposing inference-based Deep Tiny Machine Learning solutions, i.e., DL algorithms
that can run on tiny devices after their training has been carried out elsewhere. Second,
the first approaches to on-device Deep Tiny Machine Learning training are proposed. Fi-
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nally, the methodology encompasses Wide Deep TML solutions that distribute the DL
processing on a network of embedded systems, IoT, and MCUs.

The methodology has been validated on available benchmarks and datasets to prove its
effectiveness. Moreover, in a “from the laboratory to the wild” approach, the methodology
has been validated in two different real-world scenarios, i.e., the detection of bird calls
within audio waveforms in remote environments and the characterization and prediction
of solar activity from solar magnetograms. Finally, a deep-learning-as-a-service approach
to support privacy-preserving deep learning solutions (i.e., able to operate on encrypted
data) has been proposed to deal with the need to acquire and process sensitive data on the
Cloud.
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Italian Summary

NEGLI ultimi decenni e in particolare negli ultimi anni, le soluzioni di Deep Lear-
ning sono velocemente diventate lo stato dell’arte in diversi scenari applicativi
“intelligenti”. Gli esempi più noti sono: la classificazione, il rilevamento e l’i-

dentificazione di oggetti nelle immagini; la classificazione di video e la creazione auto-
matica di sottotitoli o descrizioni; la traduzione di discorsi; il riconoscimento di comandi
vocali; le diagnosi mediche; l’analisi del linguaggio scritto; le intelligenze artificiali nei
giochi; i sistemi di navigazione automatica delle automobili o dei droni; e i sistemi di
raccomandazione ad esempio di film o prodotti in un mercato.

Nello stesso periodo, anche le tecnologie pervasive hanno vissuto una rapida espan-
sione in vari scenari applicativi, come nei dispositivi medici; nelle automobili (ad esempio
nella gestione degli airbag, nel mantenimento di una velocità di crociera, nel controllo
di trazione e del sistema frenante); e nelle cosiddette Smart Cities (ovvero l’utilizzo di
sistemi pervasivi in vari ambiti urbani, come la gestione dell’illuminazione pubblica, del
trasporto pubblico o il monitoraggio ambientale). Esempi di dispositivi pervasivi sono i
sistemi embedded, l’Internet of Things (IoT) e i micro-controllori, di seguito indicati per
brevità come unità IoT. La necessità di spostare gli algoritmi intelligenti (ad esempio, per
il riconoscimento di guasti o di cambiamenti nell’ambiente) il più vicino possibile al punto
in cui i dati vengono generati è l’immediata conseguenza della diffusione pervasiva delle
unità IoT.

Il paradigma tradizionale dove un sensore pervasivo acquisisce dati e li inoltra ver-
so un server remoto (ad esempio, sul Cloud) –dove viene svolta tutta la computazione
intelligente– in attesa di una risposta (ad esempio un comando per gli attuatori) non è più
realistica e attuabile per tre motivi. In primo luogo, la connessione verso i server remoti
deve essere stabile e ad alta velocità affinché l’intera soluzione sia attiva in maniera con-
tinuativa. In secondo luogo, delegare la computazione intelligente a un server remoto non
è applicabile in tutti quegli scenari applicativi critici dove sono presenti requisiti stretti in
termini di latenza tra l’acquisizione del dato e l’attuazione della corrispondente decisione.
Infine, è preferibile non ricorrere a un server remoto laddove i dati che vengono acqui-
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siti e inviati sono sensibili (ad esempio, quando vengono analizzate diagnosi mediche o
immagini di persone in un sistema di video-sorveglianza).

Il problema principale nell’eseguire algoritmi intelligenti (e.g., basati su Deep Lear-
ning) su unità IoT è la complessità di quest’ultimi. Infatti, i requisiti in termini di memoria,
computazione ed energia dei modelli di Deep Learning sono quasi sempre in contrasto con
le corrispondenti capacità in termini di memoria, computazione ed energia disponibili nel-
le unità IoT. Per avere un’idea, i modelli convolutivi usati nel dominio delle immagini
hanno decine di milioni di parametri (i modelli di ResNet hanno da 11 a 60 milioni di
parametri, mentre quelli Inception da 24 a 43), mentre i modelli usati per modellare il
linguaggio, come BERT, richiedono centinaia di milioni o miliardi di parametri. Siccome
ogni parametro viene solitamente rappresentato con un tipo di dato a 32 bit, si osserva
subito come la memoria richiesta soltanto per i parametri dei modelli scala facilmente da
decine di mega-byte ai giga-byte. In termini di computazione richiesta, invece, il numero
di operazioni richieste per classificare una singola immagine da modelli come la ResNet o
l’Inception varia dai 5 agli 11 milioni. L’altra faccia della medaglia sono le capacità delle
unità IoT. Ad esempio, il micro-controllore STM32H743ZI ha a disposizione 1024 kilo-
byte di memoria e un processore Cortex M7 a 480 MHz, mentre gli altri micro-controllori
hanno a disposizione dai 96 ai 512 kilo-byte di memoria e processori a frequenze minori.

In letteratura, questo problema è affrontato in maniera molto frammentata, con nume-
rosi lavori che si pongono l’obiettivo di ridurre i requisiti di memoria o computazione delle
soluzioni Deep Learning, ma con pochi lavori che hanno una visione d’insieme definendo
quindi modelli di Deep Learning pensati per essere eseguiti su unità IoT.

In particolare, si possono individuare tre principali aree di ricerca. La prima si concen-
tra nello sviluppo di soluzioni hardware dedicate. Le piattaforme hardware risultanti sono
caratterizzate dalle migliori prestazioni in termini di latenza (tempo di esecuzione dell’al-
goritmo per cui sono state pensate), di consumi energetici e di potenza richiesta. Tuttavia
il processo di sviluppo risulta particolarmente complesso e le soluzioni sviluppate sono ca-
ratterizzate da una minore flessibilità. La seconda area di ricerca introduce varie tecniche
di approssimazione per ridurre la complessità in termini di memoria o di computazione dei
modelli di Deep Learning. Esempi di tali tecniche sono: la riduzione della precisione nella
rappresentazione dei parametri (da un tipo di dato a 32 bit verso rappresentazioni a 16, 8 e
perfino 2 o 1 bit); l’introduzione di tecniche di pruning (letteralmente potare in inglese) sui
parametri o su alcuni task dei modelli di Deep Learning stessi; e l’introduzione di uscite
intermedie che possono essere prese quando il modello di Deep Learning acquisisce ab-
bastanza confidenza sulla decisione finale, saltando di conseguenza tutta la computazione
rimanente. Infine, la terza e ultima direzione di ricerca divide i modelli di Deep Learning
in task semplici e compatibili con le unità IoT e studia il modo migliore per distribuire
questi task su un insieme di unità IoT connesse e potenzialmente eterogenee.

Recentemente, è emersa una nuova area di ricerca, chiamata Tiny Machine Learning
(TML), con l’obiettivo di sviluppare soluzioni di (Machine e) Deep Learning tenendo in
considerazione i vincoli tecnologici dell’unità IoT su cui si pensa di eseguirle. L’impronta
di memoria dei modelli TML generati deve essere quindi nell’ordine di grandezza di pochi
kilo-byte, mentre il consumo energetico nell’ordine dei micro- o milli-Watt.

La maggior parte delle soluzioni TML disponibili in letteratura (come anche parte
delle soluzioni presentate in questo lavoro) si focalizza sullo sviluppo di soluzioni a sup-
porto dell’inferenza dei modelli di Deep Learning, ovvero la gestione di un singolo dato
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in ingresso, come la classificazione di una immagine o la traduzione di una porzione di te-
sto. Un’ulteriore direzione di ricerca, pressoché inesplorata in letteratura, ambisce a ideare
soluzioni che permettono quello che in inglese viene definito come on-device learning, ov-
vero introdurre la possibilità di apprendimento per i modelli TML direttamente sull’unità
IoT su cui vengono eseguiti. Il motivo di questa mancanza risiede principalmente nella
particolare complessità delle tecniche di apprendimento rispetto alla semplice inferenza.
Tuttavia, la capacità di apprendimento e quindi adattamento dei modelli TML direttamente
sulle unità IoT è cruciale. L’ambiente in cui questi modelli operano è infatti tipicamente
non stazionario, con effetti potenzialmente catastrofici sulle prestazioni dei modelli TML
che assumono un ambiente immutabile nel tempo (esempi di cambiamenti che si rifletto-
no nei dati acquisiti sono dovuti a guasti nei sensori di acquisizione, alla stagionalità o a
effetti di invecchiamento).

L’obiettivo di questo lavoro è la definizione di una metodologia per lo sviluppo di
soluzioni di Deep and Wide Tiny Machine Learning, dove l’aggettivo deep (profondo in
inglese) suggerisce l’utilizzo dei modelli di Deep Learning, mentre il termine wide (largo,
ampio in inglese) la possibilità di definire task da distribuire su più unità IoT potenzial-
mente eterogenee. In aggiunta, questo lavoro definisce una prima soluzione al problema
dell’on-device learning.

La metodologia è stata validata sui dataset e sui benchmark disponibili per dimostrar-
ne l’efficacia. Inoltre, secondo un approccio from the lab to the wild (dal laboratorio al
selvaggio), alcune delle tecniche proposte sono state applicate in due scenari applicativi
reali: il riconoscimento di vocalizzi di uccelli in aree remote (dove la connettività è assen-
te o limitata) attraverso l’analisi di audio; e la caratterizzazione (e in futuro predizione)
delle attività solari –altamente non stazionarie– attraverso l’analisi dei magnetogrammi
solari acquisiti dalla Terra. Infine, in questo lavoro viene presentato un approccio deep-
learning-as-a-service in cui l’esecuzione dei modelli di Deep Learning viene eseguita su
dati criptati, per gestire tutti i casi non coperti dalla metodologia presentata in cui è ne-
cessario utilizzare servizi sul Cloud, ma al tempo stesso garantire la privacy dei dati che
vengono elaborati.
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CHAPTER1
Introduction to Tiny Machine Learning

1.1 Closing the Gap Between Deep Learning and IoT Units,
Embedded Systems, and Micro-controllers

Machine Learning (ML) and Deep Learning (DL) techniques have widely spread across
the most diverse areas in the last decade, achieving state of the art in several fields. Con-
volutional Neural Networks (CNNs) models, such as the ResNet (He et al., 2016) or the
Inception (Szegedy et al., 2015; 2017), provide a classification of input images. Exten-
sions of such architectures, such as the Yolo (Redmon et al., 2016; Redmon and Farhadi,
2018) or the EfficientDet (Tan et al., 2020), also identify the position of detected objects
within images. Recurrent DL architectures achieve the highest classification capabilities in
video classification (Tran et al., 2019), but also in speech recognition, translation (Baevski
et al., 2019; Zhang et al., 2018b), and language modelling (Devlin et al., 2019; Shoeybi
et al., 2019). Other DL techniques have been also successfully applied to different fields,
such as anomaly detection (Tack et al., 2020), recommender systems (Muller et al., 2018;
Zheng et al., 2016), reinforcement learning (Li, 2018; Metelli et al., 2019), autonomous
driving (Chen et al., 2015) and drones navigation (Gandhi et al., 2017).

A few characteristics can be found to be commonly shared among all of these DL
techniques. First of all, a high number of parameters. For example, the ResNet CNN
has 11 to 60 million parameters, the Inception 24 to 43 million, whereas the language
modeling techniques, e.g., BERT (Devlin et al., 2019), have hundreds of millions or even
billions of parameters. By considering a 32-bit (floating-point) data type, the memory
required by these parameters easily scales from dozens of megabytes to several gigabytes.
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Furthermore, performing the training of these models can require days, weeks, or even
more on high-performance computers, often equipped with clusters of GPUs, as deeply
analyzed in (Chen et al., 2018a).1 Finally, performing inference of such DL models, i.e.,
the processing of one –unseen– input by a trained model (e.g., the classification of a new
image or the sentence identification in an audio sample), is significantly simpler than the
training. However, it still requires millions or billions of floating-point operations per
single input. For instance, the Inception and the Resnet need 5 to 11 billion multiplications
to classify a single input image.

Among all the above-mentioned ML and DL techniques’ possible applications, a chal-
lenging and breakthrough technology with enormous room for improvement is the so-
called intelligence for pervasive units, such as IoT units or embedded systems. Such
devices are nowadays part of our everyday life in a wide range of application scenarios
(e.g., smart cities, automotive, or medical devices) and ask to move the processing (and
in particular the intelligent processing) as close as possible to where data are generated.
Indeed, machine and deep learning solutions processing these data directly on the perva-
sive devices are crucial to support real-time applications, prolong the system lifetime, and
increase the Quality-of-Service (Alippi et al., 2018; Sanchez-Iborra and Skarmeta, 2020;
Tang et al., 2017a). The downside is that IoT units and embedded systems have strict con-
straints on memory, computation, and power consumption. The order of magnitude is sig-
nificantly lower than that required by DL solutions, being Kilobytes to (a few) Megabytes
in terms of memory (Disabato et al., 2021b) and milli-Watts in terms of power consump-
tion (Kim et al., 2018; Martinez et al., 2015). Such constraints are even harsher and more
severe on Micro-Controllers Units (MCUs). Their memory is indeed of a few Kilo-Bytes,
with expected power consumptions of micro- to milli-Watts (Banbury et al., 2020; Lin
et al., 2020a). A few examples follow. The high-performance STM32H743ZI MCU (of
STMicroelectronics), equipped with a 480-MHz Cortex M7 processor, has 1024KB of
RAM (divided into five blocks of different speed). The majority of other ST MCUs have
96 to 512KB of RAM. The MCUs of Texas Instrument (e.g., the TMS320F280025C or the
Cortex-M4–based TM4C1294NCPDT) are usually equipped with 128 or 256KB of RAM.

The goal of this thesis –and of any work addressing this problem– is to design intel-
ligent mechanisms based on machine or deep learning techniques whose requirements in
terms of memory footprint, computational load, and energy are compatible with the tech-
nological constraints on memory, computation, and energy introduced by the IoT units and
the embedded systems they are designed for. Chapter 3 widely analyses the related liter-
ature, highlighting that it is highly fragmented and with very few solutions encompassing
all the aspects of this problem (Alippi et al., 2018; Teerapittayanon et al., 2017). However,
there are three major research directions.

At first, several works design dedicated hardware solutions for machine and deep learn-
ing models (see Section 3.1). Such solutions provide significant gains in terms of power
consumption and performances with respect to general hardware at the expense of a com-
plex design phase of the design phase and a reduced flexibility (Cavigelli and Benini, 2016;
Zhang et al., 2015a; Dundar et al., 2016).

A second major research direction is that of approximated solutions (see Section 3.2)

1As an example, (Richards et al., 2021) estimates about 4.5 years in terms of GPU hours to properly train
their deep learning model, whereas (Badre et al., 2018) estimates about 16 (GPU-)weeks to train the Inception-
V3 (Szegedy et al., 2016) Convolutional Neural Network.
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with several different approaches to reduce the complexity of deep learning models. In
almost all those solutions, the IoT or microcontroller units are not a target of the intro-
duced approximations. Task dropping (e.g., pruning of deep learning models’ layers or
parameters) (Denton et al., 2014; Han et al., 2016; He et al., 2017; Li et al., 2018; Lin
et al., 2018; Rigamonti et al., 2013) and quantization techniques on parameters (Bulat and
Tzimiropoulos, 2021; Cai et al., 2017; Gupta et al., 2015; Rastegari et al., 2016) are able
to (drastically) reduce the memory footprint of machine and deep learning models at the
expenses of a drop in the metric the algorithm is evaluated on. Similarly, the introduction
of early-exit paths within such algorithms allows reducing their mean computational com-
plexity (Bolukbasi et al., 2017; Disabato and Roveri, 2018; Kaya et al., 2019; Yang et al.,
2020; Zhou et al., 2019; 2020), with an impact strictly dependent on how frequently such
early-exit paths are taken (thus skipping the remaining computation).

Finally, the third research direction is that of distributed computation (see Section 3.5),
with solutions derived from the offloading solutions aiming at finding the optimal distribu-
tion of the processing pipeline of deep learning models across a set of heterogeneous IoT
units, MCUs, and, if any, the Cloud (Bhardwaj et al., 2019; Chen et al., 2019a; Disabato
et al., 2021b; Hu and Krishnamachari, 2020; Tao and Li, 2018; Teerapittayanon et al.,
2017; Zhao et al., 2018).

Recently, Tiny Machine Learning (TML) (Banbury et al., 2020; Cai et al., 2020a; Dis-
abato and Roveri, 2021; Fedorov et al., 2019; 2020; Gopinath et al., 2019; Kumar et al.,
2017; Lin et al., 2020a; Rusci et al., 2020; Venzke et al., 2020) emerged as a novel and
promising further research direction aiming at designing machine and deep learning so-
lutions able to be executed on IoT units or even on micro-controller units (namely, tiny
devices), i.e., with a memory footprint in the order of kilobytes and power consumption
in the order of milli- to micro-Watts. To fill the gap between the memory, computational,
and energy demands of machine and deep learning models with the corresponding require-
ments of tiny devices, all the techniques coming from the literature of approximated deep
learning mentioned above are brought into play.

Furthermore, the TML solutions mainly enable the inference of DL or ML algorithms.
There are indeed very few works in the field of Tiny Machine Learning proposing on-
device learning, i.e., the training of machine and deep learning solutions directly on the
tiny devices (Cai et al., 2020a; Disabato and Roveri, 2020; 2021). The ability to learn
TML models directly on tiny devices is crucial to improve the TML algorithm over time
by exploiting fresh information coming from the field, and to deal with concept drift,
i.e., variations in the statistical behavior of the data generating process, a quite common
situation in real-world applications (e.g., due to seasonality or periodicity effects, faults
affecting sensors or actuators, changes in the user’s behavior, or aging consequences).
Failing to adapt TML models to concept drift results in a (possibly dramatic) decrease of
the TML accuracy over time (Ditzler et al., 2015; Disabato et al., 2021b).

In this challenging scenario, this thesis proposes a methodology to design and de-
ploy Deep and Wide Tiny Machine Learning (TML) solutions that are able to take into
account the constraints on memory, computation, and energy of tiny devices (either IoT
units, MCUs, or Embedded Systems). More in detail, the methodology addresses the prob-
lem from two different perspectives, each of which is deepened in a specific part of this
manuscript:

• Part II details how to support the inference of Deep Learning Models (DLMs) on
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Tiny devices, i.e., the design of Deep Tiny Machine Learning solutions by means of
approximation (Chapter 5). More in details, the approximation encompasses either
the memory footprint of the DL algorithm (Section 5.1) or its mean computational
complexity (Section 5.2) by introducing one or more early-exits (Gate-Classifiers).
In addition to stationary Deep TML models, Section 5.3 introduces adaptation tech-
niques to allow these Tiny Deep Learning Model to react to concept drift. Similarly,
Chapter 6 presents the proposed solution for on-device learning.

• Part III focuses on the Wide (Deep) Tiny Machine Learning algorithms, i.e., it ad-
dresses (in Chapter 7) the problem mentioned above by splitting the DLMs into
(non-approximated) sub-tasks then distributed among possibly heterogeneous tiny
devices. In this way, wider DLMs can be designed at the expense of taking into ac-
count the introduced communication issues and delays. The term Wide here should
not be confused with the so-called Wide and Deep Learning models (Burel et al.,
2017; Cheng et al., 2016; Zheng et al., 2017) that combine a wide linear model and
a Deep Learning one. Moreover, Chapter 8 suggests a solution to run a part of DLM
computation on the Cloud in a confidential manner, i.e., in such a way the Cloud can
produce the expected output without knowing what it is processing about.

The remaining of the thesis is organized as follows:

• Part I is the opening part of the thesis. In addition to this introductory Section,
Section 1.2 details the scientific papers presented in this manuscript as well as the
corresponding Chapters or Sections presenting them, whereas Chapter 2 formalizes
the complexity of Machine and Deep Learning Models. Then, Chapter 3 widely
inspects the related literature, whereas Chapter 4 formalizes the addressed problem
of designing Deep and Wide Tiny Machine Learning solutions.

• Part IV summarizes the experimental results of this work, proving the effectiveness
of the proposed work.

• Part V tailors the theory of the previous parts to two real application scenarios,
showing the feasibility and effectiveness of the proposed methodology. In particular,
Section 11.1 presents two Deep Tiny Machine Learning solutions to detect bird
calls or songs in 10s length audios that are able to run in a remote area for more
than a week. Section 11.2 deals with the highly nonstationary processes at the Sun,
proposing solutions to model the solar activity within acquired magnetograms.
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1.2 Paper Contributions

This section summarizes the research contributions and points them to the corresponding
portion of the manuscript where they are presented.

Part II–Chapter 5 encompasses the following works (Alippi et al., 2018; Disabato and
Roveri, 2018; 2019):

(i) Cesare Alippi, Simone Disabato, and Manuel Roveri. Moving Convolutional Neu-
ral Networks to Embedded Systems: The AlexNet and VGG-16 Case. In 17th
ACM/IEEE International Conference on Information Processing in Sensor Networks
(IPSN), pages 212–223, Porto, apr 2018. IEEE

Abstract

Execution of deep learning solutions is mostly restricted to high performing computing plat-
forms, e.g., those endowed with GPUs or FPGAs, due to the high demand on computation and
memory such solutions require. Despite the fact that dedicated hardware is nowadays subject
of research and effective solutions exist, we envision a future where deep learning solutions
-here Convolutional Neural Networks (CNNs)- are mostly executed by low-cost off-the shelf
embedded platforms already available in the market.

This paper moves in this direction and aims at filling the gap between CNNs and embedded
systems by introducing a methodology for the design and porting of CNNs to limited in re-
sources embedded systems. In order to achieve this goal we employ approximate computing
techniques to reduce the computational load and memory occupation of the deep learning
architecture by compromising accuracy with memory and computation.

The proposed methodology has been validated on two well-know CNNs, i.e., AlexNet and
VGG-16, applied to an image-recognition application and ported to two relevant off-the-shelf
embedded platforms.

(ii) Simone Disabato and Manuel Roveri. Reducing the computation load of convo-
lutional neural networks through gate classification. In 2018 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2018.

Abstract

Reducing the computational load of Convolutional Neural Networks (CNNs) is of utmost
importance to allow their execution in computing systems characterized by constraints on
computation and energy (e.g., embedded and cyber-physical systems and Internet-of-Things).
To address this problem, which has been rarely addressed in the related literature, this pa-
per introduces the Gate-Classification CNNs. The core of this novel family of CNNs is the
presence of Gate-Classification layers that allow to incrementally process the input image
through the CNN layers and take a decision as soon as “enough confidence” about the clas-
sification is gained, hence not requiring the processing of the whole CNN when not needed.
The Gate-Classification CNNs rely on the ability of CNNs to process features characterized
by increasing complexity and meaning and, in particular, the Gate-Classification layers al-
low to select the path within the CNN according to the information content provided by the
input image and the processed features. A wide experimental campaign on public-available
datasets supports the effectiveness of the proposed solution.

(iii) Simone Disabato and Manuel Roveri. Learning convolutional neural networks in
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presence of concept drift. In 2019 International Joint Conference on Neural Net-
works (IJCNN), pages 1–8. IEEE, 2019.

Abstract

Designing adaptive machine learning systems able to operate in nonstationary conditions,
also called concept drift, is a novel and promising research area. Convolutional Neural Net-
works (CNNs) have not been considered a viable solution for such adaptive systems due to
the high computational load and the high number of images they require for the training. This
paper introduces an adaptive mechanism for learning CNNs able to operate in presence of
concept drift. Such an adaptive mechanism follows an “active approach”, where the adap-
tation is triggered by the detection of a concept drift, and relies on the “transfer learning”
paradigm to transfer (part of the) knowledge from the CNN operating before the concept drift
to the one operating after. The effectiveness of the proposed solution has been evaluated on
two types of CNNs and two real-world image benchmarks.

Part III–Chapter 6 encompasses the following works (Disabato and Roveri, 2020; 2021):

(iv) Simone Disabato and Manuel Roveri. Incremental on-device tiny machine learn-
ing. In Proceedings of the 2nd International Workshop on Challenges in Artificial
Intelligence and Machine Learning for Internet of Things, pages 7–13, 2020.

Abstract

Tiny Machine Learning (TML) is a novel research area aiming at designing and developing
Machine Learning (ML) techniques meant to be executed on Embedded Systems and Internet-
of-Things (IoT) units. Such techniques, which take into account the constraints on compu-
tation, memory, and energy characterizing the hardware platform they operate on, exploit
approximation and pruning mechanisms to reduce the computational load and the memory
demand of Machine and Deep Learning (DL) algorithms.

Despite the advancement of the research, TML solutions present in the literature assume
that Embedded Systems and IoT units support only the inference of ML and DL algorithms,
whereas their training is confined to more-powerful computing units (due to larger computa-
tional load and memory demand). This also prevents such pervasive devices from being able
to learn in an incremental way directly from the field to improve the accuracy over time or to
adapt to new working conditions.

The aim of this paper is to address such an open challenge by introducing an incremen-
tal algorithm based on transfer learning and k-nearest neighbor to support the on-device
learning (and not only the inference) of ML and DL solutions on embedded systems and IoT
units. Moreover, the proposed solution is general and can be applied to different application
scenarios. Experimental results on image/audio benchmarks and two off-the-shelf hardware
platforms show the feasibility and effectiveness of the proposed solution.

(v) Simone Disabato and Manuel Roveri. Tiny machine learning for concept drift. arXiv
preprint arXiv:2107.14759, 2021.

Abstract

Tiny Machine Learning (TML) is a new research area whose goal is to design machine and
deep learning techniques able to operate in Embedded Systems and IoT units, hence satisfy-
ing the severe technological constraints on memory, computation, and energy characterizing
these pervasive devices. Interestingly, the related literature mainly focused on reducing the
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computational and memory demand of the inference phase of machine and deep learning
models. At the same time, the training is typically assumed to be carried out in Cloud or
edge computing systems (due to the larger memory and computational requirements). This
assumption results in TML solutions that might become obsolete when the process generating
the data is affected by concept drift (e.g., due to periodicity or seasonality effect, faults or
malfunctioning affecting sensors or actuators, or changes in the users’ behavior), a common
situation in real-world application scenarios. For the first time in the literature, this paper
introduces a Tiny Machine Learning for Concept Drift (TML-CD) solution based on deep
learning feature extractors and a k-nearest neighbors classifier integrating a hybrid adapta-
tion module able to deal with concept drift affecting the data-generating process. This adap-
tation module continuously updates (in a passive way) the knowledge base of TML-CD and,
at the same time, employs a Change Detection Test to inspect for changes (in an active way)
to quickly adapt to concept drift by removing the obsolete knowledge. Experimental results
on both image and audio benchmarks show the effectiveness of the proposed solution, whilst
the porting of TML-CD on three off-the-shelf micro-controller units shows the feasibility of
what is proposed in real-world pervasive systems.

Part III–Chapter 7 presents the following paper (Disabato et al., 2021b):

(vi) Simone Disabato, Manuel Roveri, and Cesare Alippi. Distributed deep convolu-
tional neural networks for the internet-of-things. IEEE Transactions on Computers,
2021b.

Abstract

Severe constraints on memory and computation characterizing the Internet-of-Things (IoT)
units may prevent the execution of Deep Learning (DL)-based solutions, which typically de-
mand large memory and high processing load. In order to support a real-time execution of
the considered DL model at the IoT unit level, DL solutions must be designed having in mind
constraints on memory and processing capability exposed by the chosen IoT technology. In
this paper, we introduce a design methodology aiming at allocating the execution of Convo-
lutional Neural Networks (CNNs) on a distributed IoT application. Such a methodology is
formalized as an optimization problem where the latency between the data-gathering phase
and the subsequent decision-making one is minimized, within the given constraints on mem-
ory and processing load at the units level. The methodology supports multiple sources of data
as well as multiple CNNs in execution on the same IoT system allowing the design of CNN-
based applications demanding autonomy, low decision-latency, and high Quality-of-Service.

Part III–Chapter 8 encompasses the paper on privacy preserving (Disabato et al., 2020):

(vii) Simone Disabato, Alessandro Falcetta, Alessio Mongelluzzo, and Manuel Roveri. A
privacy-preserving distributed architecture for deep-learning-as-a-service. In 2020
International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE,
2020.

Abstract

Deep-learning-as-a-service is a novel and promising computing paradigm aiming at pro-
viding machine/deep learning solutions and mechanisms through Cloud-based computing
infrastructures. Thanks to its ability to remotely execute and train deep learning models
(that typically require high computational loads and memory occupation), such an approach
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guarantees high performance, scalability, and availability. Unfortunately, such an approach
requires to send information to be processed (e.g., signals, images, positions, sounds, videos)
to the Cloud, hence having potentially catastrophic-impacts on the privacy of users. This
paper introduces a novel distributed architecture for deep-learning-as-a-service that is able
to preserve the user sensitive data while providing Cloud-based machine and deep learning
services. The proposed architecture, which relies on Homomorphic Encryption that is able to
perform operations on encrypted data, has been tailored for Convolutional Neural Networks
(CNNs) in the domain of image analysis and implemented through a client-server REST-based
approach. Experimental results show the effectiveness of the proposed architecture.

Finally, Part V–Chapter 11 presents the paper on birdsong detection (Disabato et al.,
2021a) and that on solar magnetograms (Valdés et al., 2020):

(viii) Simone Disabato, Giuseppe Canonaco, Paul G Flikkema, Manuel Roveri, and Ce-
sare Alippi. Birdsong detection at the edge with deep learning. In 2021 IEEE
International Conference on Smart Computing (SMARTCOMP), pages 9–16. IEEE,
2021a.

Abstract

Understanding the distribution of bird species and populations and learning how birds be-
have and communicate are of great importance in wildlife biology, animal ecology, conser-
vation of ecosystems, and assessing the effects of climate change and urbanization. The
temporal and spatial limitations of human observation have motivated significant efforts to
develop technology for bird song and vocalization detection and classification. While solu-
tions based on signal processing and machine learning are extant, they are limited in various
combinations of speed, computational complexity, and memory use, as well as in detection/-
classification capability in real-world conditions. This paper introduces ToucaNet, a deep
neural network for birdsong detection based on transfer-learning, a deep learning mecha-
nism allowing us to exploit knowledge acquired on various tasks: this enables us to speed
up training and shows improved detection accuracy. ToucaNet provides birdsong detection
accuracy in line with the best solutions in the literature but with much less computational
complexity and memory demand. We also introduce BarbNet, an approximated version of
ToucaNet tailored for Internet-of-Things (IoT) units. We show the proposed solution’s effec-
tiveness and efficiency in terms of detection accuracy and the implementation feasibility in
real-world IoT devices, with specific results for the STM32 Nucleo H7 board, which is based
on an ARM Cortex-M7 processor. To our best knowledge, this is the first birdsong detec-
tion algorithm designed to take into account constraints on memory, computational speed,
and power usage of embedded devices. Thus, this work points the way to cost-effective IoT
technology for at-scale intelligent birdsong data collection and analysis in the field.

(ix) Julio J Valdés, Ljubomir Nikolić, Simone Disabato, and Manuel Roveri. A compu-
tational intelligence characterization of solar magnetograms. In 2020 International
Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2020 .

Abstract

Space Weather (SW) poses a hazard to modern society. SW phenomena depend on the Sun’s
magnetic field, whose understanding and forecasting is an important research subject. To
achieve this goal, in this paper Global Oscillation Network Group (GONG) solar magne-
tograms 2006-2019 are investigated with different approaches provided by unsupervised and
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supervised Computational Intelligence techniques. Such techniques were successful at pro-
viding insights into the behavior and evolution of the photospheric magnetic field, revealing
patterns of activity and their relation with the different phases of the solar cycle. On the one
hand, representative prototypes of synoptic maps were found, capturing the variations in ho-
mogeneity, intensity and variability of magnetic activity. On the other hand, Convolutional
Neural Networks (CNNs) combined with transfer learning and dimensionality reduction tech-
niques were helpful in providing classification models that accurately predict classes associ-
ated with the main stages of the cycle. Such models provide results in good correspondence
with the natural classes found in feature spaces and have classification errors concentrated
mostly at transition periods of the solar cycles.
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CHAPTER2
Background:

Complexity of Deep Learning Models

This section aims at presenting and detailing the complexity of the deep learning models,
by extending the formalizations proposed in (Alippi et al., 2018; He and Sun, 2015).

LetDϑ be a deep learning model with parameters ϑ (the formal definition can be found
in Section 4.2). The memory complexity (or memory footprint)mD is then defined as the
quantity of memory required to store all the parameters, i.e.,

mD = |ϑ| ·mϑ, (2.1)

where |ϑ| is the cardinality of ϑ (i.e., the number of parameters of D), and mϑ the mem-
ory footprint of each parameter.2 Typically, mϑ = 32 bits with the corresponding single-
precision floating-point representation (Gupta et al., 2015). However, as shown in Sec-
tion 3.2.2, mϑ can be reduced by relying on half-precision floating-point (16 bits), fixed-
point, 8-bit integer, and even binary (1-bit) representations for the parameters. Section 2.1
details the number of parameters characterizing several deep learning layers.

It is worth noting that, when deploying a deep learning model to an IoT device or an
MCU, the above-proposed definition of the memory complexity mD is an underestima-
tion of the effective memory required to run inference. A more detailed definition, not
considered in this work, is the following:

m̂D = |ϑ| ·mϑ +min +maux, (2.2)
2In the following the number of parameters of a given layer ` within D is referred to as p`.
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where the parameters ϑ footprint is summed to that of the input min and the footprint
maux of all the auxiliary data structures needed by D, including the activations (i.e., the
transformations of the input at the end of each layer of D). This formalization is less
general than that in Equation (2.1) since the term maux strictly depends on the specific
implementation of the modelD. However, it better depicts the footprint of theD inference,
allowing an easy match to the available RAM of an IoT unit or an MCU. To run the D
inference on such a device is indeed enough that its RAM capacity is at least m̂D.

The time complexity (or computational complexity or computational cost) is defined
as in (Alippi et al., 2018; He and Sun, 2015) as the number of multiply-add operations to
carry out one inference of D, i.e.,

cD = nmul + nadd, (2.3)

This definition in terms of number of operations is the most general and has the advantage
of being independent from the platform where the deep learning model D is executed
on, its operating system, its memory management system, and all the other technological
aspects that influence the execution time. However, an estimation of the inference time
t
(D)
i required by model D can be obtained as follows:

t
(D)
i = nmul · tmul + nadd · tadd + cD · tmem, (2.4)

where tmul and tadd represent the time demanded to carry out a multiplication and an ad-
dition, respectively; whereas tmem encompasses all the timings needed in average to move
the operands (of both multiplications and additions) into the RAM and then into the arith-
metic unit (tmem = 0 when all the parameters are stored into RAM). It is crucial to point
out that all the three terms tmul, tadd, and tmem depend on the architecture running the
deep learning model and on the data type of the operands. Moreover, this formulation does
not consider any optimization (e.g., caching mechanisms) or delays due to the operating
system’s scheduling. As a consequence, from now on, the time complexity is defined as in
Equation (2.3). Section 2.2 details the time complexity of several deep learning layers.

Finally, the energy complexity eD is defined as an extension of the time complexity,
i.e.,

eD = nmul · emul + nadd · eadd, (2.5)

where emul and eadd represent the energy consumption required by a multiplication and
an addition operation, respectively. Differently from the memory and the time complexity,
this complexity term cannot be generalized to be implementation-independent. The terms
emul and eadd are indeed relative to the architecture the modelD is deployed on and on the
parameters (and activations) representation. Section 2.3 details the energy consumption
terms emul and eadd on target MCUs for different data types.

2.1 Characteristics and Number of Parameters in DL Layers

This section details the characteristics and the number of parameters for various kinds of
Deep Learning layers.

14



2.1. Characteristics and Number of Parameters in DL Layers

Table 2.1: The memory and time complexity of several deep learning models layers.
Please refer to Section 2 for their formal definition. Unless otherwise specified the
layers are supposed to operate on three-dimensional input xin · yin · zin and generate
an output of size xo · yo · zo.

Layer ` Layer Parameters Memory Complexity p` Time Complexity c` (O(·))

Convolutional Number of filters fn
Filter size fx · fy · fz

fx · fy · fz · fn fx · fy · zin · fn · xo · yo

Pooling Pooling Sizes px, py 0 px · py · xo · yo · zo
Batch

Normalization
γc, βc

(c = 0, . . . , zin)
2 · zin xin · yin · zin

Local Response
Normalization

Number of channels nc
α, β

3 nc · xin · yin · zin

Linear (input xin) Number of outputs xo xin · xo xin · xo

2.1.1 Convolutional Layer
The (three-dimensional) convolutional layer is typical of Convolutional Neural Networks
(CNNs). Given a three-dimensional input xin × yin × zin, it applies fn convolutional
filters (of size fx · fy · fz) repeatedly on it, with fz = zin in almost all the applications.
In details, the convolution starts from the upper left portion of the input and then slides
by a parameter called stride (sx on rows, sy on columns). The resulting output has size
xo × yo × zo, where:

xo =
xin − f̄x + 2 · padx

sx
+ 1, yo =

yin − f̄y + 2 · pady
sy

+ 1, zo = fn, (2.6)

where padx and pady represent the (zero-)padding on both sides on rows and columns,
respectively, and f̄x = (fx − 1) · dx + 1 and f̄y = (fy − 1) · dy + 1 represent the filter
size when employing dilation dx and dy . Dilation is a convolutional parameter that defines
the distance in terms of input values along the given dimension between two consecutive
values of the filters (almost all the applications uses dx = dy = 1 that means the filter is
applied on adjacent input values).

The number of parameters pconv is

pconv = fx · fy · fz · fn, (2.7)

that are the parameters of the filters themselves. It is noteworthy to point out that these
results hold for three-dimensional convolutional layers but can be easily adapted to con-
volutional layers with two or more than three dimensions.

Implementing such a layer usually relies on a matrix multiplication between the (suit-
ably modified) input and the matrix of filters. The availability of many routines to carry out
the matrix multiplication is the reason behind this choice (Burrus and Parks, 1985; Chetlur
et al., 2014; Sze et al., 2017). The input is converted into a matrix with xo ·yo ·zo rows and
fx ·fy ·fz columns, where each row is an unrolled sequence of the input the convolutional
filter is multiplied by. The matrix of filter has fx ·fy ·fz rows and fn columns, where each
column is an unrolled filter. Since the input patches covered by the convolutional filters
are overlapping (unless the rare cases where the stride (at least) equals the filter size), the
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just mentioned conversion into matrix multiplication results in a (non-negligible) memory
footprint increment that should be considered when using this algorithm. Consequently,
a balance between the gain in terms of computation speed and the memory occupation is
required.

2.1.2 Maximum or Average Pooling Layer
The pooling layers are common solutions in deep learning architectures to reduce the
dimensionality of the activations. Given a three-dimensional input xin × yin × zin, they
apply their pooling function (i.e., either maximum or average) on bidimensional windows
of size px × py . In detail, the pooling operates as convolutional layers starting from the
upper left portion of the input, then sliding by the stride (namely sx and sy). However, it
considers each channel independently (where channels refer to the third dimension of the
input, i.e., zin). The resulting output has size xo × yo × zo, where:

xo =
xin − px + 2 · padx

sx
+ 1, yo =

yin − py + 2 · pady
sy

+ 1, zo = zin, (2.8)

where padx and pady are the same of convolutional layers.
The pooling layers, being dimensionality reduction operators, do not introduce param-

eters, i.e.,
ppool = 0. (2.9)

As a final remark, there are less common pooling layers that apply the power of degree p to
the inputs (where p =∞ corresponds to the maximum function) or stochastic formulations
in the definition of pooling regions (Graham, 2014).

2.1.3 Batch and Local Normalization Layer
The normalization layers are common in many state-of-the-art CNNs, with a few variants.
The most common is batch-normalization (Ioffe and Szegedy, 2015) that normalizes each
channel (the third dimension in a three-dimensional input) by subtracting the mean and
by dividing by the variance of either the batch itself or the moving average values of the
batches seen so far. In addition, the affine version of this transform adds to learnable
parameters per each channel c, namely βc and γc, defining the following normalization:

xc =
xc − E [xc]√
V ar [xc] + ε

· γc + βc, (2.10)

where ε is a numerical stability small constant value and xc here refers to the c-th channel
of the input (after and before the normalization).

The local response normalization, used for instance in the AlexNet (Krizhevsky et al.,
2012), normalizes instead each channel according to the values of nearby channels as
follows:

xc = xc ·

κ+
α

nc
·

min{zin,c+nc/2}∑
c′=max{0,c−nc/2}

x2
c′

−β , (2.11)

where nc is the number of nearby channels the transform considers (if available), and α,
β, and κ are the normalization parameters.
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For each type of normalization, the output has the same size of the input, i.e., xo ×
yo × zo = xin × yin × zin. The number of parameters strictly depends on the type of
normalization:

pbatch_norm = 2 · zin, plocal_response_norm = 3, (2.12)

that are negligible values w.r.t. other layers, as convolutional or fully-connected ones.

2.1.4 Linear or Fully-Connected Layer
The linear or fully connected layer is the most straightforward layer adopted from the first
artificial neural networks. Given an input of size xin and a number of outputs (usually
referred to as hidden neurons) xo, the output is a linear combination of all the inputs. The
number of parameters is thus:

pfc = xin · xo. (2.13)

Since the layer is a matrix multiplication between the parameters’ matrix (of size xin · xo)
and the layer’s input, all the implementations usually rely on matrix multiplication routines
as in convolutional layers.

2.2 Number of Operations in Several DL Layers

2.2.1 Convolutional Layer
Given a three-dimensional input xin × yin × zin, the (three-dimensional) convolutional
output has size xo × yo × zo as defined in Eq. (2.6), computed with the following time
complexity with fn filters of size fx · fy · zin:

tmul_conv = fx · fy · zin · fn · xo · yo,
tadd_conv = (fx · fy · zin − 1) · fn · xo · yo,

(2.14)

that is O (fx · fy · zin · fn · xo · yo) in the worst case (i.e., not considering matrix multi-
plication-based algorithm detailed in Section 2.1.1).

It is noteworthy to point out that the formalization above does not explicitly show the
values of stride, padding, and dilation that are embedded into the output size values.

2.2.2 Maximum or Average Pooling Layer
Given a three-dimensional input xin × yin × zin, a pooling function with a windows of
size px × py produces an output of size xo × yo × zo as defined in Eq. (2.8), with the
following time complexity:

tmul_avg_pool = px · py · xo · yo · zo,
tadd_avg_pool = (px · py − 1) · xo · yo · zo,

(2.15)

in the case of average pooling and

tmul_max_pool = 0,

tadd_max_pool = px · py · xo · yo · zo,
(2.16)
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in the case of maximum pooling, with the number of additions that counts all the logical
comparisons to carry out the maximum function (the number of additions is 0).

The complexity of a pooling layer is then O (px · py · xo · yo · zo).

2.2.3 Batch and Local Normalization Layer
The batch normalization is a linear transformation that, given a three-dimensional input
xin × yin × zin, has the following time complexity:

tmul_batch_norm ≈ 3 · xin · yin · zin,
tadd_max_pool ≈ 3 · xin · yin · zin,

(2.17)

that corresponds to O (xin · yin · zin).
The local response normalization, with nc channels to compare with, is slightly more

complex having a time complexity:

tmul_local_response_norm = (nc + 3) · xin · yin · zin,
tadd_local_response_norm = nc · xin · yin · zin,

(2.18)

without considering the expensive xin · yin · zin negative exponentiations. In this way, the
complexity is no longer linear, being O (nc · xin · yin · zin).

2.2.4 Linear or Fully-Connected Layer
Given an input of size xin and a number of outputs (usually referred to as hidden neurons)
xo, the time complexity is defined as follows

tmul_fc = xin · xo,
tadd_conv = (xin − 1) · xo,

(2.19)

with a complexity O (xin · xo).

2.3 Energy Consumption of Common Operations

In the related literature, several works are aiming at estimating or modeling the energy
consumption of every single instruction or by a sequence of instructions (e.g., to compute
the energy required by a given algorithm) (Castillo et al., 2007; Fei et al., 2004; Horowitz,
2014; Molka et al., 2010; Tiwari et al., 1996). A brief review and some actual results
follow. The simplest, used for instance in (Tiwari et al., 1996), estimates the energy of a
single instruction op in a classic way by multiplying the power by the time the instruction
requires:

Eop = Pop · top = Vcc · i ·Nop · τ, (2.20)

where Vcc is the supply voltage, i the average current, and Nop · τ the execution time
expressed as the product of the number of op clock cycles and the clock frequency τ .

The described basic model is then extended in several works. A few examples follow.
At first, (Tiwari et al., 1996) takes into account the overhead due to operations switching
(formally, the energy required to execute two different instruction is greater than the sum
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Table 2.2: The energy measurements, expressed in pJ, on different operations for different
technologies and processors as stated in (Castillo et al., 2007; Horowitz, 2014; Molka
et al., 2010).

(a) The energy measurements (Horowitz,
2014) on a 45 nm technology to exe-
cute the given operation only, i.e., with-
out considering moving operands from
register to the arithmetic unit and stor-
ing the results back.

Operation Energy (pJ)

8-bit Integer Add 0.03
32-bit Integer Add 0.1

16-bit Floating-Point Add 0.4
32-bit Floating-Point Add 0.9

8-bit Integer Multiply 0.2
32-bit Integer Multiply 3

16-bit Floating-Point Multiply 1
32-bit Floating-Point Multiply 4

(b) The energy measurements in pJ (of the whole
floating-point 32-bit instruction) on two differ-
ent processors, the high-performance Intel Xeon
X5670 from (Molka et al., 2010) and the old
ARM9TDMI for microcontrollers from (Castillo
et al., 2007). For both the processors, the nom-
inal operating frequency f and tension Vdd, and
the manufacturing technology are reported.

Operation ARM9TDMI
f = 200MHz
Vdd = 2.5V
250nm techn.

Intel Xeon X5670
f = 2.93GHz
Vdd = 1.35V

32nm techn.

Add 2250 111

Multiply 2250 164

Comparison 3375 -

of the energy to execute the same two instructions independently). (Molka et al., 2010)
defines different models to employ the characteristics and parameters of different kind of
instructions. Finally, a few works focus on specific architectures, e.g., very long instruction
word processors (Bona et al., 2005; Laurent et al., 2001).

Table 2.2 reports results specific to one particular processing technology and a few pro-
cessors with different purposes as stated in (Castillo et al., 2007; Horowitz, 2014; Molka
et al., 2010). More in detail, Table 2.2a reports the rough energy consumptions for a 45 nm
technology to execute only the given operation, i.e., without considering moving operands
from register to the arithmetic unit, storing the operation output back, and other memory
management mechanisms (Horowitz, 2014). These results are as expected, showing that
the floating-point operations are significantly energy-hungry than integer ones. The same
is true for multiplications with respect to additions and higher precision data types w.r.t.
lower precision ones (e.g., 32-bit integers w.r.t. 8-bit ones).

Table 2.2b compares the energy consumptions of the whole considered operations
(with 32-bit floating-point data types) from operands gathering to output saving of two
processors with different purposes: the ARM9TDMI, an old core designed for microcon-
trollers (Castillo et al., 2007); and the high-performance Intel Xeon X5670 designed for
data-centers (Molka et al., 2010). The former has a 250 nm manufacturing technology and
nominally operates at 200 MHz and 2.5 V. The latter is a 32nm core operating at 2.93 GHz
and 1.35 V. As expected, the energy consumptions are significantly different for the two
cores (the Intel Xeon requires about 5% of the energy of the ARM9 core), resulting in
the need for application and technology-specific energy consumptions analysis in order to
define the values of emul and eadd in Equation (2.5).
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CHAPTER3
Related Literature

The analysis of the related literature starts from the dedicated hardware solutions in order
to support machine and deep learning algorithms (Section 3.1), then Section 3.2 presents
the approximation techniques that aim at reducing either the memory footprint of deep
learning algorithms by means of task dropping (Section 3.2.1) and precision scaling (Sec-
tion 3.2.2) techniques, or their computational load by introducing Early-Exits within the
deep learning models themselves (Section 3.2.3). Section 3.3 analyses the deep learning
models in presence of concept drift. Section 3.4 presents the related literature about Tiny
Machine Learning and, finally, Section 3.5 briefly discusses a few solutions to distribute
the deep learning pipeline among (possibly heterogeneous) IoT units or embedded sys-
tems.3

3.1 Dedicated Hardware Solutions

This section (briefly) presents the research direction of custom hardware for machine and
deep learning models. The resulting hardware solutions are characterized by the best
power consumptions, inference time, and throughputs. The downside is the complexity
of the design phase as well as the reduced or lack of flexibility.

In this research direction, the hardware units allowing for parallel processing and thus
increasing the throughput of the DL processing while reducing the inference time have
faced a massive growth in interest, such as the Graphical Processing Units (GPUs). Al-

3This analysis contains the papers listed in Section 1.2 and presented within this thesis.
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though GPUs were originally dedicated to the rendering in computer graphics, they have
rapidly become one of the most common choices in DL processing, with data centers
equipped with clusters of GPUs (Cano, 2018; Cui et al., 2016; Gu et al., 2019; Wang
et al., 2019b). Recently, Tensor Processing Units (TPUs) (Jouppi et al., 2018; Wang et al.,
2019b) emerged as new technological hardware specifically meant for machine and deep
learning processing on data centers. Then, Field Programmable Gate Arrays (FPGAs) are
another common choice for DL processing due to their reconfiguration capabilities (Qiu
et al., 2016; Véstias et al., 2017; Zhang et al., 2015a).

Despite GPUs, TPUs, and FPGAs provide significant increments in terms of through-
put, their energy requirements are out of purpose for IoT units or embedded systems that
are not equipped with any of them (Alippi et al., 2018; Wang et al., 2019b). Moreover,
the design of custom processors, neural engines, and other optimized hardware solutions
allow to achieve further improvements in the throughput and, at the same time, reduce
the power consumption, with greater gains in all those scenarios involving quantization
or custom data types (e.g., fixed-point representations) (Wang et al., 2019a). As an ex-
ample, the Neural Processing Unit proposed by (Fowers et al., 2018) claims an order of
magnitude improvement w.r.t. GPUs on large Recurrent Neural Networks (RNNs) models,
whereas the 28-nm system-on-chip (SoC) specifically designed for IoT solutions presented
in (Whatmough et al., 2018) guarantees the lowest energy consumption while preserving
the accuracy of the employed DL model (on the MNIST dataset (LeCun et al., 1998) the
energy required by a single inference is 0.36 µJ at 667 MHz and 0.57 µJ at 1.2 GHz). The
last-mentioned solution is particularly interesting because it is one of the solutions specifi-
cally meant for IoT units (Whatmough et al., 2018), although the complexity of the design
stage limits this research direction in the IoT world. A few examples of custom hardware
solutions are the Intel Nervana (Hickmann et al., 2020), the IBM TrueNorth (Akopyan
et al., 2015), the Microsoft BrainWave (Chung et al., 2018), as well as (Ando et al., 2017;
Fowers et al., 2018; Knag et al., 2020; Moons et al., 2017; Shin et al., 2017).

(Guo et al., 2017b; Wang et al., 2019a) provide a survey on custom hardware solutions
for deep learning models, as well as on accelerators to further increase the throughput
without modifying the underlying hardware platform. A common characteristic to many
custom hardware solutions is their specificity w.r.t. a group or a few families or machine
or deep learning solutions. For instance, on FPGAs, (Blott et al., 2018; Gao et al., 2019;
Han et al., 2017; Umuroglu et al., 2017; Wang et al., 2018b; Zhang et al., 2017) provided
solutions for RNNs models, whereas (Boutros et al., 2018; Guo et al., 2017a; Wei et al.,
2018; Venieris and Bouganis, 2018) focused on Convolutional Neural Networks (CNNs).
(Wang et al., 2018b) proposed the C-LSTM (LSTM is a recurrent deep learning model)
framework that computes the FPGA implementation for an LSTM through compression of
the parameters, quantization of inputs and activations to 16-bit, and a few other optimiza-
tions for the inference. A similar approach is that of (Han et al., 2017) that employed both
quantization and compression techniques to design LSTMs on FPGAs for speech recogni-
tion applications, with an implementation consuming (in terms of energy) less than 10%
and being three times faster during inference than GPUs. In the case of CNNs, (Venieris
and Bouganis, 2018) proposed the FPGA ConvNets framework that models the CNNs as a
graph to compute the corresponding optimal hardware implementation (up to 1.05x more
energy-efficient than GPUs), where the nodes are the optimized hardware implementations
of some common CNN layers. Analogously, (Boutros et al., 2018) implemented FPGA-

22



3.2. Approximating Deep Learning Techniques

specific digital signal processing blocks for CNNs working with low-precision computa-
tion (i.e., with 8 or 4-bit data formats), as well as (Guo et al., 2017a) that suggested a
similar framework aiming at designing the best FPGA mapping of CNNs by relying only
on 8-bit data types and being up to 2 times more energy efficient than the correspond-
ing GPU implementation. Finally, (Blott et al., 2018; Umuroglu et al., 2017) proposed
the FINN framework that focuses on the quantization of weights, including also mixed-
precision solutions (i.e., where the layers of the pipeline can have different data precision
formats).

Also, in the contest of custom hardware platforms, there are solutions designed for
CNN processing (Chen et al., 2014; Farabet et al., 2011; Moons and Verhelst, 2016;
Sharma et al., 2018), recurrent processing (Wang et al., 2017b), or both (Shin et al.,
2017). (Wang et al., 2017b) designed a 90-nm solution specifically meant for LSTM,
that can compress up to 95% of the original memory requirements (through some of the
hardware optimization mentioned above for FPGAs) with a small impact on the accu-
racy. (Moons and Verhelst, 2016) designed a 40-nm solution exploiting the sparsity of
convolutions as well as dynamic computation precision (i.e., the employed CNN compu-
tation can be done at 16, 8, or 4 according to desired energy consumption without affecting
the inference time) in order to provide high throughput while optimizing the energy con-
sumption in CNN processing. (Sharma et al., 2018) considered a 45-nm solution to present
the Bit Fusion accelerator, that can offer dynamic precision in the deep learning models
with a significant gain in terms of energy consumption w.r.t. to GPUs.

Other works tried to optimize some common routines in DL processing. (Dundar et al.,
2016) was one of the first works in this field proposing to transform (in a compiler-way)
the CNNs pipeline into a sequence of operations to be executed in a hardware acceler-
ator with memory constraints. (Albericio et al., 2016; 2017) addressed the problem of
reducing the number of useless operations (e.g., multiplications involving zero operands),
whereas (Moss et al., 2018) designed matrix multiplication routines for FPGAs that are
intensively used, for instance, in CNNs. Other works in this field can be found in (Kim
et al., 2021; Lee et al., 2018; Long et al., 2018; Ueyoshi et al., 2018; Yuan et al., 2019).

A further step considers optimized architecture for binary or ternary computing. (Knag
et al., 2020) designed a 10-nm CMOS accelerator for binary DL models’ computation with
reduced area and higher energy efficiency with respect to other binary solutions (Moons
et al., 2018; Valavi et al., 2019). (Ando et al., 2017) instead designed an in-memory chip
(i.e., without the need for external memory accesses) supporting both binary and ternary
operations. (Andri et al., 2016) designed a 65nm solution specifically inspired by Binary-
Connects CNNs (Courbariaux et al., 2015; Hubara et al., 2017). Other optimized hardware
solutions for binary, ternary (or both of them) DL processing can be found in (Chen et al.,
2018b; Conti et al., 2018; Kim et al., 2019; Shan et al., 2020; Whatmough et al., 2018; Yin
et al., 2018).

3.2 Approximating Deep Learning Techniques

A survey on approximating techniques, not tailored to DL solutions, is available in (Mittal,
2016). Among them, the widely used approximation techniques in DL models are task
dropping or skipping and precision scaling techniques. In the former approach, detailed
in Section 3.2.1, the whole computation is reduced through skipping portions of the DL
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models (e.g., pruning layers (Alippi et al., 2018; Han et al., 2016) or portions of them),
with the interesting case of Early–Exit approaches (Bolukbasi et al., 2017; Disabato and
Roveri, 2018), where the computation path within CNNs depends on the input information
content (see Section 3.2.3 for details). In the latter approach, described in Section 3.2.2,
either the parameters θ of a DL modelD or the activations are approximated by relying on
quantization techniques and different data types.

In addition to these techniques, a third approach designs techniques to spread the DL
computation among many (possibly heterogeneous) IoT units or MCUs. Section 3.5 pro-
vides insights on such approaches.

3.2.1 Task Dropping Approximations
The related literature about task dropping introduces several different works that reduce the
memory footprint (and, by removing tasks, also the computational load) of deep learning
algorithms. These works can be grouped into pruning mechanisms (Alippi et al., 2018;
Alvarez and Salzmann, 2017; Dong et al., 2017; Han et al., 2016; Li et al., 2017; Ullrich
et al., 2017), novel optimized deep learning architectures (Chollet, 2017; Howard et al.,
2017; Iandola et al., 2016; Liu et al., 2015; Lu et al., 2019; Yang et al., 2015; Zhang et al.,
2018a), or optimizations of the deep learning processing pipeline (Chen et al., 2019b;
Jaderberg et al., 2014; Li et al., 2019; Rigamonti et al., 2013).

The pruning algorithms can be grouped according to the “level” at which they operate.
Structured algorithms (Alippi et al., 2018; He et al., 2017; Li et al., 2017; Luo et al., 2017)
prune the structure of the deep learning models (e.g., the convolutional channels, or the
layers), whereas unstructured ones can prune at parameters level (Han et al., 2016; Huang
and Wang, 2018). (Han et al., 2016) significantly reduced the memory footprint of deep
learning solutions through a three-stage pipeline. At first, the network pruning removes
all the weights that, at the end of the DL model training, are below a given threshold (and
then refines the resulting network). In a second step, the remaining weights are quantized
(see Section 3.2.2 for the related literature) and clustered through k-Means, with all the
weights within the same cluster sharing the value of the centroid. The third and last step
considers Huffman coding (Van Leeuwen, 1976) to further reduce the memory footprint.
As an example, the AlexNet CNN can be compressed from 240 to 7 MB with no drop in its
classification accuracy. (Ullrich et al., 2017) modified the approach of (Han et al., 2016) by
introducing a training procedure that in one step compresses the model with both quantiza-
tion and parameters’ sharing. Similarly, (He et al., 2017; 2018; Li et al., 2017; Luo et al.,
2017) suggested pruning filters within convolutional layers to reduce the memory foot-
print. In this way, there is no need to develop novel processing solutions to deal with the
compressed pipeline (e.g., to handle shared weights saved in common locations). (Dong
et al., 2017) instead pruned parameters within the model according to the second-order
derivative of the error function, proving bounds on the maximum accuracy drops. (Al-
varez and Salzmann, 2017) suggested defining a training function that also encompasses
the target of finding a compressed representation of weights by enforcing their represent-
ing matrices to have low-rank. Other pruning mechanisms can be found in (Adamczewski
and Park, 2021; Carreira-Perpinán and Idelbayev, 2018; Gordon et al., 2018; Lin et al.,
2020b; Liu et al., 2017; Tan and Motani, 2020; Yeom et al., 2021; Yu et al., 2018).

Interestingly, (Liu et al., 2019) observed that structured pruning algorithms from a
larger model along with a fine-tuning of the pruned model can lead to worst or at most
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comparable performances with respect to training the pruned model from scratch with
random weights. The same results partially hold for unstructured pruning algorithms.
Following this work, the pruning mechanisms should be considered only when a pre-
trained model is already available, otherwise training a deep learning model designed to
satisfy the technological constraints might result in a better solution.

The research in the direction of reducing the memory footprint of deep learning models
has also produced novel models with architectural optimizations. (He et al., 2016; Yang
et al., 2015) reduced the memory footprint of fully-connected layers by replacing them
with an average pooling (He et al., 2016; Szegedy et al., 2015) or by introducing matrix
factorization techniques in the fully-connected layers parameters (Yang et al., 2015). (Ian-
dola et al., 2016) proposed the SqueezeNet, a CNN with less than 0.5 MB of memory
footprint, but the same accuracy of the AlexNet one. The design choices to reduce the
number of parameters and, in turn, the memory footprint are three: replace the 3x3 con-
volutional filters with 1x1 ones, introduce downsamples late in the architecture to have
larger activation maps in the first convolutional layers, and the squeeze layers to reduce
the number of inputs each convolutional filter covers. MobileNets (Howard et al., 2017)
introduced the depth-wise convolutions that factorize standard convolutions as a single
filter per each input channel and a 1x1 point-wise convolution to combine their outputs,
with a significant drop in the required computational load. Other models employing depth-
wise convolutions are the Xception (Chollet, 2017), the Factorized Networks (Wang et al.,
2017a) or the ResNeXt (Xie et al., 2017). The ShuffleNet (Zhang et al., 2018a) further
reduced the computational complexity of depth-wise convolutions and, in particular, of
point-wise ones, by organizing the convolutional inputs into groups, each of them pro-
cessed by a subset of convolutional filters (similar to the approach of AlexNet (Krizhevsky
et al., 2012) whose goal was to split the computation among GPUs and to that of the
NasNet (Zoph et al., 2018)). (Liu et al., 2015) proposed Sparse Convolutional Neural
Networks, where the learning forces the majority of weights to be zero, zeroing more than
90% of the weights with a drop less than 1% in accuracy. Similarly, (Lu et al., 2019) pro-
posed super sparse convolutional kernels where all the values except one are forced to be
zero. (Molchanov et al., 2017) relied on Variational Dropout (Gal and Ghahramani, 2016)
regularization (i.e., a way to see the dropout (Srivastava et al., 2014), i.e., the probabil-
ity of skipping a neuron during training in dense layers, as a Bayesian regularization) to
generate sparse deep learning models. For instance, the number of VGG parameters can
be decreased by a factor of 68. Other works employing sparsity to reduce the memory
footprint of deep learning models can be found in (Elsen et al., 2020; Huang and Wang,
2018; Li et al., 2020b; Quesada et al., 2018; Ren et al., 2018; Scardapane et al., 2017;
Zhou et al., 2016a; Wen et al., 2016).

A similar approach aims at optimize the deep learning computational pipeline and, in
particular, that of the convolutional layers. (Rigamonti et al., 2013) reduced the convolu-
tions computation by defining the convolutional filters as linear combinations of smaller
separable filters. A similar work is that of (Jaderberg et al., 2014) that drastically reduced
the convolutional computation load by forcing the training to learn a set of low-rank con-
volutional filters. Other works suggested various approaches to reduce the convolutional
complexity through various matrix factorization techniques (Ioannou et al., 2015; Lebe-
dev et al., 2014; Li et al., 2019; Silva et al., 2017), orthogonal convolutions (Wang et al.,
2020a), or other approaches (Denton et al., 2014; Zhang et al., 2015b).
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Finally, in the field of natural language processing, (Li et al., 2020c) observed that
the best results in defining compressed models derived from pruning of overparameterized
ones, whereas (Ganesh et al., 2021) suggested reusing the techniques mentioned in this
section for CNNs and other deep learning models. In such a research direction, examples
of structured pruning solutions can be found in (Chi et al., 2021; Fan et al., 2020; Khetan
and Karnin, 2020; Ganesh et al., 2021; Hou et al., 2020; Xu et al., 2020), whereas un-
structured ones in (Chen et al., 2020; Gordon et al., 2020; Mao et al., 2020; Sanh et al.,
2020).

3.2.2 Precision Scaling
Machine and deep learning models typically rely on 32-bit floating-point data types (Gupta
et al., 2015). Precision scaling techniques to a reduced number of bits (e.g., 16, 8, or even
1) can significantly reduce the memory footprint of the considered deep learning solution.
In this direction several works proposed novel data-type representations (Das et al., 2018;
Köster et al., 2017) as well as fixed-point representations (Anwar et al., 2015; Han et al.,
2016; Lin et al., 2016; Vanhoucke et al., 2011; Wang et al., 2018a).

(Köster et al., 2017) proposed a new hybrid data format in the middle between floating-
point and fixed-point representation. As in floating-point there are N bits allocated for the
mantissa and M for the exponent, but the exponent is kept common to all elements within a
tensor and thus defined only once for each tensor. In particular, using a format with 16 bits
for the mantissa and 5 bits for the common exponent, the authors achieved similar clas-
sification errors on state-of-the-art CNN models with 32-bit precision and outperformed
corresponding 16-bit ones. Similarly, (Courbariaux et al., 2014) suggested keeping com-
mon and adaptive scaling factors (i.e., the equivalent of exponent part in floating-point)
in groups of variables. Other examples of dynamic float point data types can be found
in (Das et al., 2018; Johnson, 2018; Mellempudi et al., 2017). In contrast, works exploit-
ing different floating-point representations are (Agrawal et al., 2019; Burgess et al., 2019;
Cambier et al., 2020; Henry et al., 2019) with different configurations of the bits reserved
to mantissa and exponent, e.g., the so-called Brain Floating Point 16 (BFloat 16) with 7
bits for the mantissa and 8 for the exponent.

(Gupta et al., 2015) studied the effects of introducing a 16-bit fixed-point representa-
tion in deep learning processing, proving a negligible or null drop in accuracy with their
proposed stochastic quantization method. The fixed point representation is 〈i, f〉 (with
i the bits for the integer part, f those for the fractional part, and i + f = 16 the num-
ber of bits used to represent each value) and can represent all the values from −2i−1 to
2i−1 − 2−f with a step of 2−f . Instead of quantizing each number to their corresponding
nearest quantized value, (Gupta et al., 2015) solution assigns each number to the nearest
quantized value with a probability that is as higher as these two values are close. (Jacob
et al., 2018; Zhu et al., 2020), instead, developed a CNN framework that relies only on
8-bit integer values on both the inference and the training. Similarly, (Wang et al., 2018a)
employs integer 8-bit computation, but with 32-bit floating-point gradients during training,
whereas (Soudry et al., 2014) proposed a Bayesian approach to learn with 8-bit parameters.
Other works employing 8-bit representations for deep learning parameters are (Banner
et al., 2018; Dettmers, 2016; Wu et al., 2018; Yang et al., 2019), whereas works employ-
ing 4 to 6 bits representations can be found in (Elhoushi et al., 2021; Miyashita et al., 2016;
Sun et al., 2020).
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Literature about binary or ternary solutions exists with several variants on how and
where the quantization is performed (Courbariaux et al., 2015; Hubara et al., 2017; Hwang
and Sung, 2014; Kim and Smaragdis, 2018; Liu et al., 2018; Venkatesh et al., 2017; Wan
et al., 2018). (Rastegari et al., 2016) proposed both Binary-Weight-Networks (BWNs) and
XNOR-Networks, both based on CNNs. BWN binarizes only the parameters of the orig-
inal CNN through the sign function, whereas an XNOR-Network applies the quantization
to inputs, activations, and CNN’s parameters, resulting in a speed-up (on CPUs) up to 65x
w.r.t. 32-bit CNNs. Moreover, an architectural design rule has been devised to minimize
quantization’s impact on a quite common CNN block employing a convolutional, a batch-
normalization, and a (max) pooling layer. The batch normalization is carried out prior to
the binarization of the inputs so that their mean is zero. Then the pooling strictly follows
the convolution. In this way, the equivalent XNOR version of the AlexNet (Krizhevsky
et al., 2012) achieves the same accuracy on the ImageNet dataset. In a similar way, (Kim
and Smaragdis, 2018) proposed Bitwise Neural Networks, that having both the parameters
and the activations binary, replaced all the deep learning processing with bitwise opera-
tions that efficiently pack 32 original operations in a single instruction. (Wan et al., 2018)
proposed optimized kernels for the so-called Ternary-Binary Networks (TBNs) having
ternary inputs and binary parameters, that can guarantee a 32x drop in memory footprint
and about 40x speed-up in inference time. (Courbariaux et al., 2015; Hubara et al., 2017)
suggested two different quantization functions for binary networks, i.e., the sign function
and a stochastic variant of the sign function, where the sign of x is computed on x minus a
uniform variable z and the function maps each input x− z to +1 with a probability equal
to the hard sigmoid of x, to −1 otherwise. Moreover, (Courbariaux et al., 2015; Hubara
et al., 2017) studied how to allow the backpropagation on these networks by relying on
real-valued gradients of the weights, an adequately defined estimator of the gradient func-
tion that zeroes the gradient for large values and is based on the proposed stochastic sign
function, and a shift-based implementation of the batch-normalization that provides sig-
nificant speed-ups during the training. The resulting CNNs (or RNNs) behave closely to
corresponding full-precision models in terms of evaluation metrics. Other works studying
training on binary or ternary networks are (Hwang and Sung, 2014; Seide et al., 2014;
Tang et al., 2017b; Zhou et al., 2016b).

Many works studied the optimal way to quantize the representation when employing
fixed-point or fixed-value representations for deep learning computation (Anwar et al.,
2015; Cai et al., 2017; Cai and Vasconcelos, 2020; Cai et al., 2020b; Chen et al., 2021;
Gong et al., 2014; Hwang and Sung, 2014; Langroudi et al., 2021; Lin et al., 2016;
Pouransari et al., 2020; Yang and Jin, 2021; Yao et al., 2021), whereas a conceptually sim-
ilar approach studies how to vary the number of bits used to represents both the deep learn-
ing parameters and the activations (Bulat and Tzimiropoulos, 2021; Jin et al., 2020). (An-
war et al., 2015) introduced an optimization problem to find out the best fixed-point rep-
resentation for each layer of a given CNN. Such an optimization problem finds out the
best quantization configuration for each layer while keeping all the remaining ones at the
original 32-bit floating-point precision. At the end, all the layers are quantized to their
best fixed-point representation, with a mean gain of 10% on the memory footprint. Sim-
ilarly, (Hwang and Sung, 2014) designed an optimization problem that initializes three
possible quantized values (-x, 0, and +x, then encoded as -1, 0, and +1) through the min-
imization of the squared quantization error and then optimizes them via an exhaustive
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search. (Lin et al., 2016) proposed several quantizers with different step-sizes in order
to minimize the quantization error, either symmetric or not to include the zero. For in-
stance, a symmetric 1-bit uniform quantizer encodes values -0.5 and 0.5 (step-size of 1),
a symmetric 2-bit quantizer for Normal inputs encodes the values -1.494, -0.498, 0.498,
and 1.494 (step-size of 0.996), whereas its corresponding asymmetric quantizer the values
-0.996, 0.0, 0.996, and 1.992. In particular, (Lin et al., 2016) also devised an optimization
problem to design different quantizations for each CNN layer that tries to minimize both
the CNN’s memory footprint and the introduced quantization error. A different approach
to quantization is that of (Gong et al., 2014), where the CNN’s parameters are quantized by
k-means clustering of their values (k corresponds to the power of two of the desired num-
ber of bits in the compressed representation), with the centroids of the clustering algorithm
being the quantized values. Recently, (Chen et al., 2021) designed a discrete optimization
problem to address the mixed-precision quantization problem, i.e., when each layer of a
CNN can be quantized with a different number of bits.

Finally, in the field of neural language processing, (Bhandare et al., 2019; Lin et al.,
2020c; Zafrir et al., 2019) introduced quantization to 8-bit on BERT models (Devlin et al.,
2019). (Shen et al., 2020) studied quantized versions of BERT models, and through the
second-order Hessian information derived, they designed 2-bit models with less than 2%
drop in accuracy, whereas (Bai et al., 2020) suggested a binary BERT model.

3.2.3 Early–Exit DL Models
The term Early–Exit DL models refers to all the models whose processing pipeline strictly
depends on the information content brought by the input, i.e., the computation can be car-
ried out at given intermediate checkpoints within the DL models, avoiding the computation
of the remaining layers. Differently from the above-mentioned task dropping techniques,
here the computational gain derived from the introduced approximations is usually not
fixed, being conditioned on when the computation ends up at each checkpoint. Need-
less to say, these solutions can be easily distributed over a group of devices by assigning
to each one the computation up to a given checkpoint, as suggested by (Disabato et al.,
2021b; Scardapane et al., 2020) with different approaches.

Almost all the works in this field focus on CNNs (Bolukbasi et al., 2017; Disabato
and Roveri, 2018; Kaya et al., 2019; Passalis et al., 2020; Teerapittayanon et al., 2016;
Xu et al., 2018; Yang et al., 2020; Zhou et al., 2019). Inspired by the internal classifier of
the Inception V3 (Szegedy et al., 2015) (in that CNN used to speed-up the training phase
assuming that it predicts as the final one), (Kaya et al., 2019) modifies existing CNNs by
introducing one or more internal classifiers. There is the possibility to train the internal
classifiers only (e.g., when attached to pretrained CNNs) or to train the whole architecture.
In the latter case, the predictions and the importance of the internal classifiers are weighted
with configurable coefficients. The authors also define the concept of overthinking, which
is the case in which the CNN is able to predict the correct label at an internal classifier.
To mitigate this problem, they define a confidence threshold the internal classifier should
reach to provide the final classification (and exits). (Disabato and Roveri, 2018) proposes
Gate-Classification CNNs that are characterized by the presence of one or more interme-
diate classifiers, namely Gate-Classification layers, that are able to provide the final clas-
sification about the input if they have enough confidence on, skipping all the subsequent
layers. The training of these CNNs first optimizes all its parameters θ (similarly to (Kaya
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et al., 2019)), then learns a confidence threshold (for all the intermediate Gate-Classifiers)
aiming at not reducing the whole architecture accuracy. The BranchyNet (Teerapittayanon
et al., 2016) follows the same idea, but the authors develop a one-step training procedure
optimizing the classifiers and their decision functions jointly.

Similarly, (Bolukbasi et al., 2017) defines an adaptive early–exit strategy that intro-
duces decision functions after several DL layers, that allows to skip the remaining com-
putation if they can provide the final classification. These decision functions are learned
along with the parameters of the model in order to keep the mean computational budget
(across several inferences) under a given application-specific threshold. Following the ap-
proach proposed in (Wang et al., 2015), (Bolukbasi et al., 2017) suggests a second solution
having several DL models into a direct acyclic graph. The choice of the path within the
graph to provide a prediction on a given input depends on the available computational
budget (i.e., the path is chosen before the computation itself).

(Yang et al., 2020) proposes Resolution Adaptive CNNs, where multiple CNNs of
different spatial resolutions are adopted. For each input sample, the inner CNNs are pro-
cessed from the lowest to the highest resolution, with the possibility to provide the final
classification after any of them if enough confidence on the final prediction is achieved.

A different approach to the problem is that of SkipNet (Wang et al., 2018c), where the
CNN architecture is modified by the introduction of special (gating) residual connections
aiming at deciding whether or not executing the next layer (or group of layers), based
on the output of the previous one. The authors suggest a hybrid algorithm combining
supervised information and a reinforcement learning approach to allow these gates to learn
the “skipping” policy. Such an approach is able to balance the final accuracy and the
required mean amount of computational gain. Similarly, (Verelst and Tuytelaars, 2020)
suggests convolutional layers where the convolutional filter is not applied to the whole
input, but only on the regions of interest, according to the input information. Although
both the proposed approaches are interesting and allow to obtain significant computational
gains in some tasks, they might not match the memory constraints imposed by IoT devices
or MCUs, requiring to have the whole model available for every inference.

Finally, (Zhou et al., 2020) proposes the Patience-based Early Exit model that enriches
the (pre-trained) ALBERT model (Lan et al., 2019) for NLP, with early exits. The au-
thor introduces a classifier after each layer of the pretrained language model and provides
the final classification if for a given number of consecutive layers the final prediction is
unchanged (this number is called patience).

3.3 Machine and Deep Learning in Presence of Concept Drift

The literature about machine and deep learning in presence of concept drift refers to adap-
tive solutions able to deal with concept drift affecting the data generating process. The
related literature usually groups them into two main families: passive and active (Ditzler
et al., 2015; Gama et al., 2014; Lu et al., 2018).

Passive solutions adapt the model at each incoming data, disregarding the fact that a
concept drift has occurred in the data-generating process (or not). The gradual forgetting
classifiers, e.g. (Elwell and Polikar, 2011; Krawczyk and Woźniak, 2015; Polikar et al.,
2001), which reduce the importance of older samples over time, are examples of passive
solutions. The Concept Drift Very Fast Decision Tree (CDVFDT) (Hulten et al., 2001)
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introduces a Decision Tree that learns new subtrees on incoming data. However, most
passive solutions employ ensemble methods and their adaptation mechanisms consist in
adding, removing, or weighting the ensemble base classifiers, e.g., Streaming Ensemble
Algorithm (Street and Kim, 2001), Dynamic Classifier Selection (Almeida et al., 2018),
or the adaptive ensemble of Decision Trees proposed in (Pietruczuk et al., 2017). Deep
learning-based passive solutions (Li et al., 2020a; Parisi et al., 2019; Pérez-Sánchez et al.,
2018; Zenke et al., 2017) has to deal with the catastrophic forgetting phenomena, i.e.,
the propensity to discard the older knowledge during learning of new incoming informa-
tion (French, 1999; Ratcliff, 1990). (Zenke et al., 2017) introduced synapses similar to
biological ones, whereas (Li et al., 2020a) proposed a Bayesian approach encompassing a
Gaussian Mixture Model to maintain the older information while learning the new one.

On the contrary, active solutions aim at detecting concept drift in the data generation
process and, only in that case, they adapt their model to the new conditions. Change De-
tection Tests (CDT) are statistical techniques meant to sequentially process the incoming
data inspecting for concept drift. (Ditzler and Polikar, 2011) proposed to use the Hellinger
distance between the reference probability distribution and the one estimated on incom-
ing data along with a t-test to detect changes. (Dasu et al., 2006) relies on bootstrapping
several windows of data and the Kullback Leibler divergence as a measure of the dis-
tance among them. A few works detect changes with density estimation techniques (Bu
et al., 2016; Duda et al., 2018). Other examples of CDT used in active solutions can be
found in (Baena-Garcıa et al., 2006; Boracchi et al., 2018; Page, 1954; Wang et al., 2020b;
Zambon et al., 2018). In active solutions, the adaptation stage following a concept drift
detection is usually carried out in two steps (Alippi et al., 2013): first, the time instant the
concept drift occurred is estimated by ad-hoc mechanisms (e.g., by Change-Point Meth-
ods); second, the obsolete knowledge, i.e., that acquired before the concept drift occurred,
is discarded. To achieve this goal, the adaptation mechanisms typically rely on a window
over the last acquired data, whose size is usually optimized over time to reduce its memory
requirements (Aggarwal, 2006; Vitter, 1985), or on all the samples seen so far (suitably
weighted) (Klinkenberg, 2004). Finally, deep learning-based active approaches (integrat-
ing deep learning solutions with active adaptive solutions) can be found in (Disabato and
Roveri, 2019; Yang et al., 2019). (Disabato and Roveri, 2019) proposed a non-parametric
CUSUM (Page, 1954; Lorden et al., 1971) that monitors the CNN classification error to
inspect for changes. Once a change is detected, the adaptation employs the exploration of
the CNN processing pipeline to identify the layers that have become obsolete due to the
concept drift, which are then adapted. (Yang et al., 2019) proposed to rely on two different
models operating in parallel, one of them continuously trained on novel incoming data. A
change can be detected when the dissimilarity between the two models, i.e., the stable on
older knowledge and the responsive one, overcomes a threshold.

3.4 Tiny Machine Learning Related Literature

Tiny Machine Learning (TML) is a relatively new research area aiming at designing ma-
chine and deep learning solutions that can be executed mainly on microcontrollers units
(but also on IoT units) with memory constraints in the order of kilobytes and expected
energy consumptions of milli- to micro-Watts. Prior to TML, there were several works
aiming at reducing the complexity in memory, computation, and energy of deep learn-
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ing solutions, but few of them with the target of IoT units or embedded systems (Alippi
et al., 2018; Dundar et al., 2016; Kumar et al., 2017; Miyashita et al., 2016). In particu-
lar, (Alippi et al., 2018) proposed a methodology that takes into account the deep learning
model to be executed on an embedded system along with the technological constraints on
memory and computation such an embedded system introduces. After that, the method-
ology produces in output a set of approximated solutions by means of task dropping and
precision scaling mechanisms that can be mapped on the considered embedded system and
do not pareto dominate each other on an evaluation set. (Kumar et al., 2017) presented the
Bonsai tree algorithm to enable the deep learning inference on IoT devices with 2 KB of
RAM. Bonsai learns a sparse tree representation of the original deep learning model into
a low-dimensional space where the points are projected (the parameters of the projection
are learned along with the tree itself). The nodes within the learned tree are non-linear
decision functions and the predictions of all the leaves are summed up to define the final
model prediction. After the birth of TML, all the literature about deep learning approxi-
mations, here presented in Sections 3.1–3.2.3, has been taken into account to satisfy the
severe technological constraints on memory, computation, and energy characterizing IoT
units and embedded systems (Banbury et al., 2020; Disabato and Roveri, 2020; 2021;
Sanchez-Iborra and Skarmeta, 2020).

As regards the target of the approximation mechanisms, most of TML literature fo-
cuses on approximated Convolutional Neural Networks (Banbury et al., 2021; Fedorov
et al., 2019; Gopinath et al., 2019; Liberis et al., 2021; Lin et al., 2020a), with a few works
considering recurrent DL architectures (Fedorov et al., 2020; Kumar et al., 2020; Venzke
et al., 2020) and, to the best of our knowledge, no work addressing Tiny NLP. (Lin et al.,
2020a) proposed a framework that explores several deep learning architectures under the
desired technological constraints on memory, computation, and energy. Such optimiza-
tion takes into account different layers as well different implementations of those layers in
order to increase the variety of explored solutions as well as find out the best possible im-
plementation for the produced model (in terms of layer implementations but also memory
reuse whenever possible). Similarly, (Banbury et al., 2021) developed a framework that ex-
plores different architectures under the technological constraints of target micro-controller
units by optimizing the number of operations. Other works exploring CNNs architecture
for micro-controller units are (Fedorov et al., 2019; Liberis et al., 2021). (Gopinath et al.,
2019) instead designed a compiler that translates machine and deep learning models into
corresponding models with fixed-point representation in order to satisfy the given memory
constraint. (Rusci et al., 2020) studied the impact of quantized networks in TinyML em-
bedded systems with solutions employing representations with 2, 4, or 8 bits. Then, (Kusu-
pati et al., 2018) developed recurrent models of 1 to 6 KB, namely FastGRNN (Fast, Ac-
curate, Stable and Tiny Gated Recurrent Neural Network), that in addition to the standard
update of the hidden state has a residual component from the previous state with only two
additional scalar parameters added to the model, i.e., the weights of this residual compo-
nent and the other component.

All the works mentioned above addressed the problem of enabling the inference of tiny
machine or deep learning algorithms. However, in the literature, there are very few works
proposing on-device learning mechanisms, i.e., where the training of tiny machine or deep
learning algorithms can be carried out directly on the embedded system, the IoT or mi-
crocontroller unit is deployed on (Cai et al., 2020a; Disabato and Roveri, 2020; 2021; Ren
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et al., 2021). (Cai et al., 2020a) presented the Tiny-Transfer-Learning (TinyTL) solution
that enables the learning of the biases of a deep learning model, whereas the weights are
frozen. In this way, the learning algorithm does not need to store the intermediate acti-
vations in order to back-propagate the gradients to the weights. Moreover, to compensate
for the reduced learning ability derived from having frozen weights, TinyTL introduced a
lite residual learning module in each layer: the output of each layer is then computed on
the (frozen) weights and the learnable biases plus a residual component computed on a re-
duced version of the previous layer’s activations with learnable weights. This lite residual
component operates on smaller activations, thus has a significantly smaller impact on the
activations stored by the backpropagation algorithm. However, the solution is not meant
for micro-controller units. (Disabato and Roveri, 2020), instead, addressed the problem of
learning on micro-controller units by relying on a deep learning-based feature extractor
(designed by means of task dropping techniques to satisfy the technological constraints
of the considered micro-controller unit) and a k-Nearest Neighbor classifier operating on
the extracted features. Such TML solution can learn incrementally since the kNN is a
non-parametric classifier whose adaptation consists in changes of its knowledge set (i.e.,
the set of saved samples used to classify a novel unseen one). Hence novel knowledge
can be provided by simply saving incoming (supervised) samples within the kNN knowl-
edge set. Such an approach is quite simple, has a relatively negligible adaptation cost, and
can operate in all those scenarios where initially a very few supervised samples are pro-
vided to the TML algorithm. (Disabato and Roveri, 2021) extended the work of (Disabato
and Roveri, 2020) with the introduction of three different adaptation mechanisms to make
the model adaptive to concept drift. In this way, the deployed TML model can adapt its
knowledge set by either discarding obsolete information (e.g., sample referring to the en-
vironment conditions previous to a concept drift) or introducing novel data. Finally, (Ren
et al., 2021) proposed an online learning approach that can adapt deep learning models by
introducing an extra learnable output layer, whereas the parameters of the original model
are kept frozen.

3.5 Distributing the DL Computation on Pervasive Systems

Section 3.2 presented the related literature about approximation techniques to reduce the
memory and computational requirements of machine and deep learning techniques, most
of them then used in Tiny Machine Learning solutions (see Section 3.4). A totally different
approach to the problem of reducing the memory, computation, and energy requirements
of machine and deep learning solutions in order to match the corresponding constraints on
memory, computation, and energy of IoT units, embedded systems, and micro-controller
units, is that of distributing the deep learning pipeline among several units that can also be
heterogeneous.

This idea derives from the offloading techniques for distributed computing systems.
Here, the goal is not to reduce deep learning solutions’ complexity but to move compu-
tationally-intensive processing to high-performing units of the distributed system. In this
domain, (Shi et al., 2012) proposed a framework to optimally offload code in a pervasive
system comprising mobile units with intermittent connectivity. Similarly, (Bozorgchenani
et al., 2020; Kao et al., 2017; Pu et al., 2016) proposed frameworks to offload the code in
resource-constrained mobile devices with the goal of reducing the total latency to carry out
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the given task, but at the same time being aware of the energy status of the devices, i.e., the
frameworks have as an additional goal to increase the system lifetime and to offload the
computation primarily to those units with the highest energy. In particular, (Bozorgchenani
et al., 2020) employs the possibility for the connected devices to harvest energy through
solar panels with configurable parameters (e.g., size, inclination, position in the world,
presence of obstacles, kind of nearby terrain, and so on). (Wang et al., 2020b) proposed an
online-learning based scheduler to optimally distribute the computation in industrial IoT
systems by taking into account the power status of the devices as well as the connectivity
issues. Differently, (Hong et al., 2013) proposed a high-level programming language to
design applications meant for Fog-Computing Sensor Networks able to hide the hetero-
geneity of computing nodes and their position in space. (Hu and Krishnamachari, 2019)
proposed a low-complexity scheduler that increases the throughput in IoT clusters by rely-
ing on tasks duplication and splitting by taking into account communication and computa-
tion capabilities, but not IoT units memory constraints. Other similar works can be found
in (Cuervo et al., 2010; Ghosh et al., 2019; Shi et al., 2014; Wu et al., 2021).

Very few works present in the literature encompass the code offloading of machine
learning-based applications in pervasive systems, e.g., (Cheng et al., 2015) where the clas-
sification/pattern recognition tasks of a wearable device are partially offloaded to other
computing units (e.g., mobile phones). In the field of deep learning solutions, (Kang et al.,
2017) highlighted that a distribution of the deep learning model layers among the avail-
able mobile devices and the Cloud has significant advantages in terms of both latency and
energy w.r.t. sending the acquired data to the Cloud and waiting back for the results. The
study covers various applications, from image classification to natural language process-
ing. In this direction, (Teerapittayanon et al., 2017) introduced a distributed framework
for CNNs operating in edge computing platforms, with the possibility of distributing the
CNNs computation, mostly restricted to the Cloud, also to edge or local devices. (Disabato
et al., 2021b) proposed a quadratic optimization problem to distribute the computation of
one or more deep learning models (even with Early-Exits or shared layers) into a het-
erogeneous network of IoT units by taking into account the constraints on memory and
computation such IoT units introduce. (Zhao et al., 2018) instead proposed a framework
that distributes the layers of the considered CNN models vertically, i.e., the computation of
each single layer can be split (whenever possible, e.g., for convolutional filters) to also ex-
ploit the parallelism in computation and optimize the data reuse. (Hu and Krishnamachari,
2020) addressed the problem of transmitting the deep learning layers’ activations among
the IoT units processing consecutive layers by compressing them with autoencoder mod-
els. Other works aiming at distribute the deep learning computation are (Bhardwaj et al.,
2019; Chen et al., 2019a; He et al., 2020; Laskaridis et al., 2020; Stahl et al., 2019; Tao
and Li, 2018).
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CHAPTER4
Problem Formulation

This chapter formalizes the Tiny Machine Learning problem of executing (distributed) DL
solutions on embedded systems, IoT units, or microcontrollers units. In particular, to sim-
plify the description, the term IoT unit (or system) is used as a general term and thus em-
ploys all the different types of devices (i.e., also embedded systems and microcontrollers
units). Section 4.1 details the data-generation process in both stationary and nonstation-
ary environments. After that, Section 4.2 presents the concept of Deep Learning Model
(DLM), whereas Section 4.3 provides the formalization of a network of heterogeneous
IoT units on which it is possible to spread the computation of DLMs. Finally, Section 4.4
summarizes all the notation.

4.1 Data-Generating Process

Let P be a data generating process that, at each time instant t, provides a pair (xt, yt)
sampled from an unknown probability distribution pt(x, y), where x is the input of the
proposed solution D (e.g., an image or an audio clip) and y ∈ ∆ its classification label.4

Moreover, following a test-then-train approach (Ditzler et al., 2015), the proposed
solution D receives the supervised information (the true label yt) only after it provides the
classification output ŷt = D (xt) on input xt, at each time instant t. Without any loss
of generality, the supervised information might not be provided at every time instant. In
those cases, the proposed solution only provides its classification output.

4Let δ be the cardinality of ∆, i.e., the number of classes in the considered classification problem.
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In a concept drift scenario, the process P might evolve over time, hence assuming that
a shift in the distribution pt(x, y) might occur at an unknown time instant t∗. It is worth
noting that the change in pt(x, y) might affect the input x (e.g., by the introduction of
noise), the set ∆ (e.g., class change), or both.

4.2 Deep Learning Model

In the most general way, a Deep Learning Model (DLM) can be split intoM layers. Given
an input x (e.g., an image or an audio waveform), the DLM D provides in output a value
y (e.g., a label in a classification task or a value in a regression algorithm), i.e., y = D (x).
More specifically, the processing pipeline within the DLM algorithm follows the sequence
of layers (with a few exceptions, e.g., Early-Exit DLMs presented in Section 3.2.3), that
is,

y = D (x) = ϕ
(M)
θM

(xM−1)

x` = ϕ
(`)
θ`

(x`−1) , for each ` ∈ {1, . . . ,M}
x1 = ϕ

(1)
θ1

(x1)

(4.1)

where ` represents a generic layer, ϕ(`)
θ`

, for each ` ∈ {1, . . . ,M}, is the function with
parameters θ` accounting for the `-th layer of the DLM, and x` the output (or intermediate
activation) of that layer to be processed by the subsequent ` + 1-th layer. The function ϕ
that models the DLM layers can be, for instance, a convolutional layer, a non-linearity, a
pooling operator, to name a few examples.

In particular scenarios, it is helpful to group a bunch of DLM layers according to their
function. To provide a comprehensive formalization, a group of additional operators is
defined:

• the feature extractor operator %, that usually encompasses a subset of a DLM layers,
with the goal of extracting features ζ from an input x, i.e., ζ = % (x).

• the dimensionality reduction operator ς , that might be based on a DLM or a machine
learning technique (such as Principal Component Analysis, Variance Thresholding,
to name a few), with the goal of reducing the dimensionality of its input. Given an
input x, the output y = ς (x) of the dimensionality reduction operator has |y| ≤ |x|,
with |·| cardinality operator.

• a classifier operator K, that might be based on a DLM (e.g., a sequence of fully-
connected layers) or on a machine learning technique (e.g., a k-Nearest Neigh-
bor (Altman, 1992) or a Support Vector Machine (Cortes and Vapnik, 1995)), with
the goal of providing the classification output. Given an input x, that might be ei-
ther a “simple” input (e.g., images or audio) or the output of other DLM layers or
operators, the classifier operatorK provides the classification output y as y = K (x).

For instance, when considering Convolutional Neural Networks –DLM algorithms mainly
used in image or video applications– their pipeline of layers can be organized into two
operators: a feature extractor encompassing all the convolutional layers along with other
related ones (e.g., non-linear, pooling, or batch normalization layers), then a classifier
operator encompassing fully-connected layers providing the final classification output y
of the input image x, i.e., y = D (x) = K ◦ % (x).
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4.3 A Possibly Heterogeneous IoT System

The IoT system comprises a set of C data-acquisition units {s1, . . . , sC} endowed with
sensors and providing the inputs to be processed by the C DLMs (each DLM processes
data coming from one data acquisition unit), a set NN = {1, . . . , N} of N possibly het-
erogeneous IoT units implementing code execution, and one target unit f receiving all the
C DLMs’ outcomes to make a decision or activate a reaction.5 Without any loss of gener-
ality, the C data-acquisition units are assumed only to acquire data and do not participate
in the computation. The i-th IoT unit i ∈ NN is characterized by its own constraints on
maximum memory capacity m̄i and available computation c̄i.

The IoT system can be modelled as a graph G(V,E) of nodes V and arcs E. The
nodes set includes the IoT units, the sources, and the target unit f , i.e., V = {NN ∪
{s1, . . . , sC , f}}. An arc ei1,i2 between unit i1 and i2 exists in E if i2 is within the
range of the transmission technology the IoT unit i1 is equipped with.6 Let di1,i2 , for each
i1, i2 ∈ V , be the hop-distance between units i1 and i2 of V defined as the number of hops
(communication steps), data need to take to reach i2 from i1. In other terms, distance di1,i2
is the shortest communication path between units i1 and i2 within the graph G. Following
the definition of shortest path in a graph, if no path between unit i1 and i2 exists, then
di1,i2 = +∞. We also assume that no isolated node exists, i.e., di1,i2 < ∞, for each
i1, i2 ∈ V .

Let Mu, for each u ∈ NC = {1, . . . , C}, be the number of layers characterizing
the u-th DLM. Each layer j of DLM u, for each j ∈ {1, . . . ,Mu} and u ∈ NC , is
characterized by a given memory demand mu,j and computation cu,j . More specifically,
the memory complexitymu,j (in Bytes) defines the number of weights that layer j of DLM
u has to store multiplied by the size of the data type used to represent those parameters
(typically the 32-bit floating-point type). In contrast, the computational load cu,j measures
the number of multiplications to be executed by that layer (see Section 2). Let Ku,j ,
for each u ∈ NC and j ∈ {1, . . . ,Mu}, be the memory occupation of the intermediate
representation transmitted from layer j to the subsequent layer j + 1 of DLM u, and Ku,s

and Ku,Mu
be the memory occupation of the input of DLM u transmitted from source su

to the unit executing the first layer of the u-th DLM and the final classification provided
by layer Mu sent to the target unit f , respectively. In particular, Ku,Mu

is either the
classification label or the posterior probability of the classes resulting from the softmax
layer.

4.4 List of Symbols

This section recaps all the nomenclature and symbols used within this document. It is
crucial to point out that a few symbols overlap, but according to the Section or the context
should be clear identify the correct meaning of them. For instance, the lowercase f is used
to represent a frequency when the audio is employed, but also the IoT unit the output of

5The inputs are assumed to be generated by the data-generating process P , either in stationary or nonstation-
ary conditions.

6All the units in V are assumed to share the same transmission technology with a fixed transmission data-rate.
If the IoT units i1 and i2 adopt two different transmission technologies such that i2 is within the transmission
range of i1, but i1 is not inside the one of i2, then di1,i2 = 1 6= di2,i1 (loss of symmetry property).
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a deep learning model is sent to when describing the proposed solution to distribute the
computation of a deep learning model on a network of IoT units. Moreover, the lowercase
x usually refers to an input, with its variant representing its possible transformations dur-
ing a preprocessing step. Similarly, the lowercase y refers to a generic output of a deep
learning model.

Data-Generation Process

∆ The set of classes in a classification problem.

δ The number of classes in a classification problem, i.e., the cardinality of ∆.

P The data-generation process.

x or xt The input (at time t).

y or yt The supervised information, e.g. the classification true label, of the input x (at
time t).

Deep Learning Model

` or j The index of layers within a DLM.

D A Deep Learning Model (DLM).

K A classifier operator.

θ DLM’s parameters. The subscript ` indexes the layers of DLM.

ϕ
(`)
θ`

The function with parameters θ` representing the `-th layer of a DLM.

% A feature extractor operator.

ς A dimensionality reduction operator.

x` The output (activations) of the DLM’s layer `.

Complexity of Deep Learning Model

c̄ Available computation of an IoT unit. A subscript further specifies the IoT unit
this value refers to.

ē Energy budget of an IoT unit. A subscript further specifies the IoT unit this value
refers to.

m̄ Memory capacity of an IoT unit. A subscript further specifies the IoT unit this
value refers to.

c Computational or time complexity. A subscript further specifies what this com-
plexity refers to (e.g., a layer, a deep learning model, and so on).

e Energy complexity. A subscript further specifies what this complexity refers to.
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K Memory complexity of the activations of a deep learning solution at a given inter-
mediate layer, at the input, or at the final layer . A subscript further specifies what
this complexity refers to.

m Memory complexity. A subscript further specifies what this complexity refers to.

ti Computational complexity expressed as inference time. A superscript further
specifies what this complexity refers to.

IoT System

ω The minimum number of time a DLM model has to be processed in the IoT sys-
tem. A subscript indexes the model.

ξi1,i2 The probability that a transmission between the IoT units i1 and i2 fails. Alterna-
tively, it can be seen as the retransmission rate.

C The number of deep learning models to be run in the IoT System.

fu The u-th target unit (i.e., the node the final classification is sent to) in the IoT
system.

gu,j The probability the final classification is provided at the layer j of the u-th deep
learning model in the IoT system.

M The number of layers in each deep learning model to be run in the IoT System. A
subscript indexes the model.

N The number of (heterogeneous) nodes in the IoT System.

pu,j The probability of executing the layer j of the u-th deep learning model in the IoT
system.

su The u-th source (i.e. a node acquiring data) in the IoT system.

Deep Tiny Machine Learning

γ` The confidence threshold of a Gate-Classification layer (at layer ` of the DLM).

D̂ The approximated version of D.

〈α̂D̂,mD̂, cD̂〉 The triple (relative to model D̂) of classification metric α̂ and memory m
and computational c complexities used to define the pareto front F byM.

F The pareto front of Deep TML models provided byM.

M The methodology providing Deep Tiny Machine Learning Models.

θ̃ The DLM parameters approximated by precision scaling (with parameter q̃).

m̃ The number of layers within D̂.

q̃ The precision scaling format within D̂.
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Adaptive Deep Tiny Machine Learning

εt The classification error at time t, i.e., 1 if ŷt 6= yt, 0 otherwise.

t̂ The CDT detection time.

ŷt The output of the DLM D solution at time t (i.e., ŷt = D (xt)).

L The set of layers within D considered by pipeline exploration.

To, Tn The two sets of old (o) and novel (n) samples used during adaptation.

˜̀ The first obsolete layer (output of the pipeline exploration method).

$ The size of the history window.

ϑ The CDT decision function.

Ξ The (minimum) size of To and Tn.

pe The pipeline exploration method.

pv A p-value, output of the paired t-test.

tr The Refinement Procedure estimated change detection time.

xt The input provided by the data generation process P at time t.

yt The classification output provided by the data generation process P at time t.

On-Device Deep Tiny Machine Learning

ŷt The output of the on-device TML solution at time t (i.e., ŷt = D (xt)).

ι A parameter tuning the slope of pa.

K In this domain, the classifier is a kNN.

T The training or knowledge set.

υ̃0 The exponential mean estimate of the CIT algorithm accuracy.

υ, n In Active or Hybrid Tiny kNN algorithms, the parameters of the Binomial dis-
tribution used in the CUSUM CDT. More in details, υ0 is the current estimated
value, whereas υ1 the (possibly unknown) value after a change.

Υ1 In Active or Hybrid Tiny kNN algorithms, the set of possible values for υ1 after
the change.

$ The size of either the adaptation window of Active Tiny kNN algorithm or the
training set T of Hybrid Tiny kNN.

% In this domain, the feature extractor is the first layer of the ResNet-18.

ς In this domain, the dimensionality reduction operator is the filter selection within
the feature extractor.
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ϑ In Active or Hybrid Tiny kNN algorithms, it represents a CDT function.

ξ In Active or Hybrid Tiny kNN algorithms, the number of initial samples used to
estimate the value of υ0.

ζt In Active or Hybrid Tiny kNN algorithms, the outcome of the Binomail distribu-
tion considered in the CUSUM CDT at time t.

gt In Active or Hybrid Tiny kNN algorithms, the output of CDT decision function ϑ
at time t.

h In Active or Hybrid Tiny kNN algorithms, the threshold of CDT.

p The maximum number of samples employed by the CIT passive algorithm.

pa The probability a misclassified sample is added to the knowledge set T in the CIT
algorithm.

st In Active or Hybrid Tiny kNN algorithms, the log likelihood ratio at time t. This
quantity is an input of the CDT function ϑ.

tr In Active or Hybrid Tiny kNN algorithms, the estimation of the change time.

W The adaptation window of Active Tiny kNN algorithm.

xt The input provided by the data generation process P at time t.

yt The classification output provided by the data generation process P at time t.

Privacy-Preserving

x̂, ŷ The encrypted values of x and y, respectively.

D In this domain, a CNN approximated to have only additions and multiplications.

DΘ In this domain, the encoded version of a CNN D with the parameters Θ.

Θ The set of encryption parameters (m, p, q).

˜̀ The CNN D layer at which extract the features in transfer learning mode.

D The decryption function, requiring an encrypted value ŷ, the parameters Θ, and
the secret key ks.

E The encryption function, requiring an input x, the parameters Θ, and the public
key kp.

f In this domain, a CNN.

kp, ks A pair of public and secret keys, respectively.

m Polynomial modulus degree.

p Plaintext modulus.
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q Ciphertext coefficient modulus.

x A generic input (image).

x`, x̂` The output of a CNN layer `, either plain or encrypted.

y The classification of the input x.

Birdsong Detection Application

ψ The ToucaNet architecture (more specifically, its detector).

x̄c In this domain, the number of columns of the spectrogram x

x̄r In this domain, the number of rows of the spectrogram x.

x̂ or x̄ In this domain, a spectrogram computed from x.

d The dimension of the acquired audio (that might contains a bird call).

fa The acquisition frequency of a given audio (that might contains a bird call).

hl The distance between two consecutive windows of the Short Time Fourier Trans-
form on a waveform x during the computation of the spectrogram.

nfft The number of Fourier transforms used during the computation of the spectrogram
through the Short Time Fourier Transform.

ta The acquisition time of a given audio (that might contains a bird call).

x In this domain, x is the input waveform.

Solar Magnetogram Application

φ The longitude.

% In this domain, the feature extractor operator is a (part of) either an AlexNet or a
ResNet-101.

ς In this domain, the dimensionality reduction operator is the PCA.

ϑ The colatitude.

Br Radial component of the magnetic field.

R0 Sun Radius.

sϑ,φ or S A synoptic map.

Other Used Symbols

εa,b The percentage error between the two quantities a and b.
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CHAPTER5
Deep Tiny Machine Learning Solutions

The first approach to devise Deep Tiny Machine Learning solutions focuses on the design
of inference-only solutions, whereas their training is carried out elsewhere, e.g., on the
Cloud. In order to match the memory, computational, and energy requirements of the
machine and deep learning solutions to the corresponding memory, computational, and
energy technological constraints introduced by the IoT units, this chapter presents different
approaches.

Section 5.1 deals with the reduction of DLM memory footprints, either by approxi-
mating the DLM pipeline or the precision of the DLMs’ parameters.

Section 5.2 focuses on the computational load constraint by proposing Early-Exits
within the DLM pipeline that can be optionally taken, skipping the remaining computation
and thus reducing the mean computational load of the DLM.

Finally, Section 5.3 presents an approach to make DLMs adaptive in presence of con-
cept drift. Although this cannot be considered a pure TML approach (the training pro-
cedure during the adaptation is unfeasible for almost all the IoT units), it supports the
triggering of DLM adaptation over time (in response to changes in the data generating
process), a crucial ability for IoT units operating in real-world (possibly time-varying)
environments (please refer to Chapter 6 for details).

5.1 Reducing Memory Complexity

Section 4.2 formalized the concept of Deep Learning Algorithm D, its pipeline of layers,
and the layer parameters θ` (with ` referring to the layer).
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(a) A generic DLM D architecture with M layers and 32-bit data parameters θ`, according to the
definition in Eq. (4.1), where a layer identified by a negative number −x corresponds to the
layer M − x.i
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(b) The approximated DLM D̂ architecture with m̃ ≤M layers after task dropping and the param-
eters θ̃` after precision scaling with parameter q̃ from θ`, for each layer ` within D. Optionally,
a final classifier layer K with parameters θK working on features xm̃ at layer m̃ can be added.

Figure 5.1: A sketch of the proposed mechanisms to reduce the memory footprint of a
Deep Learning Model D.

The memory footprint of DLMs algorithms can be reduced through the several solu-
tions proposed in the related literature under the approximation techniques (see Section 3.2
for details). In particular, Section 5.1.1 details how to approximate the DLM pipeline us-
ing task dropping (e.g., layers removal) or pruning (e.g., reducing the number of filters
within a convolutional layer) techniques, whereas Section 5.1.2 focuses on the precision
scaling of the DLMs’ parameters. Finally, Sections 5.1.3 proposes a methodology to de-
sign Deep Tiny Machine Learning models combining both the approaches, then evaluated
in Section 9.1.

5.1.1 Task Dropping or Pruning
In the literature of approximating techniques (Mittal, 2016), the terms task dropping refers
to all the solutions that reduce the computational load and the memory footprint by skip-
ping the execution of some tasks associated with the processing chain. In our domain, task
dropping refers to removing all the DLM layers that are not feasible with the considered
IoT unit memory and computational constraints. Formally, instead of executing the whole
DLM D’s pipeline of M layers, only the first m̃ ≤ M are kept and carried out on the IoT
unit, defining the following approximate DLM model D̂:

D = ϕ
(M)
θM

(xM−1) = ϕ
(M)
θM

(
ϕ

(M−1)
θM−1

(xM−2)
)

= ϕ
(M)
θM

(
. . .
(
ϕ

(m̃)
θm̃

(xm̃−1)
))

,

D̂ = ϕ
(m̃)
θm̃

(xm̃−1) .
(5.1)

Other task dropping strategies can be envisioned as well, e.g., by considering non consec-
utive layers in the approximate model D̂. Similarly to task dropping, pruning techniques
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5.1. Reducing Memory Complexity

can further reduce the memory footprint by approximating the single tasks. In this case,
several solutions are specific to the considered DLM layer. For instance, pruning in con-
volutional layers might reduce the number of filters, whereas in fully-connected ones the
number of neurons.

A classification layerK can be added at the end of the approximated DLM D̂ in order to
design a complete approximated pipeline that can either address the original classification
task or, more generally, a novel one. Formally,

D̂ = KθK
(
ϕ

(m̃)
θm̃

(xm̃−1)
)
, (5.2)

where θK represents the parameters of the classifier K, that classifies on the activations
xm̃ extracted by the approximated model at its last layer m̃.

5.1.2 Precision Scaling

Precision scaling aims to change the precision (number of bits for the representation) of
the inputs or intermediate operands to reduce the memory occupation (Mittal, 2016). In
our specific case, precision scaling aims at reducing the memory occupation associated
with the parameters θ` of D by considering approximated versions θ̃` of θ`, for any layer
` within D or, more generally, for a subset of layers L. The most common choice for pa-
rameters θ` is to rely on 32-bit floating-point data types. In this scenario, precision scaling
approximates the parameters through rounding down to a fixed-point representation with
16, 8, or even 1 bit. In particular, in the latter case, namely binary parameters, the approx-
imation can be done through the sign function on the original values, i.e., θ̃` = sgn (θ`).

Formally, the resulting approximated model D̂ is:

D = ϕ
(M)
θM

(xM−1) = ϕ
(M)
θM

(
ϕ

(M−1)
θM−1

(xM−2)
)

= ϕ
(M)
θM

(
. . .
(
ϕ

(1)
θ1

(x)
))

,

D̂ = ϕ
(M)

θ̃M
(xM−1) = ϕ

(M)

θ̃M

(
ϕ

(M−1)

θ̃M−1
(xM−2)

)
= ϕ

(M)

θ̃M

(
. . .
(
ϕ

(1)

θ̃1
(x)
))

,
(5.3)

where for each layer ϕ(`)
θ`

, for each ` in {1, . . . ,M}, the precision of its parameters θ` have
been scaled to θ̃`. In particular, let q̃ be the parameter of the precision scaling modeling the
number of bits in θ̃` and its fixed-representation format. The most used fixed representation
pair q̃ (with a few variants) employs three values: the total number of bits, the number of
bits for the integer representation, and a value specifying the presence or not of a sign bit
(the number of bits for the fractional part are derived from the other three values).

Interestingly, there is a parallelism between precision scaling and DL regularization.
On the one hand, the rounding operation of precision scaling introduces a perturbation
in the original weights θ`s (Alippi, 2014). On the other hand, noise-addition or dropout
mechanisms (Srivastava et al., 2014) are typically considered during the training of DLMs
to make them more robust against perturbations, e.g., more tolerant to truncation/rounding
operations. Examples of other techniques to achieve a similar level of robustness encom-
pass the modification of the figure of merit optimized during learning (Srivastava et al.,
2014).
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Algorithm 5.1: The methodology computing the Pareto Front of the feasible Deep
Learning Model approximations given the memory m̄ and computational c̄ constraints
of the target IoT unit(s).

Input: DLM D, Memory m̄ and Computational c̄ constraints, Classifier K, Training set T .
Parameters : The transformation function Ω from a DLM to its approximation.
Output: The Pareto Front of feasible solutions F .

1 Initialize Fall ← ∅. /* Feasible Solutions Set. */
/* Search of feasible approximations. */

2 foreach m̃ ∈ {1, . . . ,M} do
3 foreach q̃ ∈ {q̃1, . . . , q̃max} do

/* Compute current approximation candidate. */

4 Compute D̂ ← Ω (D, m̃, q̃,KθK) = KθK
(
ϕ

(m̃)

θ̃m̃
(xm̃−1)

)
.

5 if mD̂ ≤ m̄ and cD̂ ≤ c̄ then
6 Fall ← Fall ∪ {D̂}. /* The candidate D̂ is feasible. */

/* Evaluate the feasible solutions. */
7 Initialize T← ∅
8 foreach D̂ ∈ Fall do
9 α̂← train

(
D̂, T

)
. /* Train D̂ with T . */

10 T← T ∪ 〈α̂,mD̂, cD̂〉.
11 F ← pareto (Fall,T). /* Compute the pareto front. */

5.1.3 Combine Task Dropping and Precision Scaling To Design Deep
Tiny Machine Learning Models

Figure 5.1 shows the proposed mechanisms to reduce the memory footprint of a DLM
D (Figure 5.1a) by creating its approximated version D̂ (Figure 5.1b) that is able to be
executed on the IoT unit(s).

Formally, the methodologyM to automatically design approximated Deep Tiny Ma-
chine Learning models is

F =M (D,Ω, T , m̄, c̄) , (5.4)

where m̄ and c̄ are the memory capacity and the available computational of the considered
IoT units, namely the introduced technological constraints, T is a training set, and Ω the
transformation from the original DLM D to its approximation D̂, i.e.:

D̂ = Ω (D, m̃, q̃,KθK) = KθK
(
ϕ

(m̃)

θ̃m̃
(xm̃−1)

)
, (5.5)

where m̃ specifies how many layers to keep in the task dropping step, q̃ the parameters
precision during their scaling, and the (optional) parameter K is the classifier to be added
at the top of D̂.7

The result of the methodologyM is the Pareto front F w.r.t. the training set T con-
taining all the models D̂ that satisfy the constraints m̄ and c̄.

7To simplify the notation, the sets of possible values for m̃, q̃, and optionally K, as well as the training set T
are “included” within the input Ω of the methodology in Eq. (5.4).
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Algorithm 5.1 shows the sketch of a possible implementation that encompasses two
steps, which are detailed in the following.

Step 1: Identification of Feasible Solutions. This step aims at identifying all the feasi-
ble approximations D̂i of the original DLM model D, i.e.,

Fall =
{
D̂ s.t. mD̂ ≤ m̄ and cD̂ ≤ c̄

}
, (5.6)

generated via the transform Ω and the exploration of all possible m̃ = {1, . . . ,M} and
q̃ = {q1, . . . , qmax} (Algorithm 5.1, Lines 2–6). In the most general configuration, during
the exploration the methodology encompasses: a set of possible classifiers K since their
parameters θK impact the definition of feasible models; the possibility to define custom
sets for the number of layers m̃ and the precision q̃ thus avoiding to check all the interme-
diate possible values; the possibility to consider mixed-precision mechanisms, i.e., where
the precision q̃ vary across the layers of D̂. Obviously, the wide is the grid of possible
solutions, the higher is the time the methodology requires to provide the results. Hence, a
trade-off between the granularity of the exploration and its time span is expected.

Step 2: Identification of the Pareto Front. The second step takes as input the set Fall
and provides as output the Pareto frontF with respect to the training set T (Algorithm 5.1,
Lines 7–11). More in detail, for each approximation D̂i ∈ Fall, the classifier K of D̂i is
trained and evaluated on disjoint subsets of T producing a metric α̂i.8 The Pareto front F
is then computed on the triples 〈α̂i,mD̂i , cD̂i〉.

It is noteworthy to point out that the comparisons between two metrics α̂i and α̂j
should take into account the confidence interval of the estimates, in particular when the
number of samples is small. A simple way to do so withinM is through a paired test to
assess the classification comparison.

Selecting the Target Solution: a Discussion. The output of the methodology is a set of
solutions. As a consequence, the choice of the DLM is left to the methodology users, e.g.,
an embedded system application designer. Such designer should select the solution within
the Pareto front that is more suitable for the technological constraints of the application he
is designing. To give an example, a solution with a smaller accuracy, memory, and time
complexity might be preferable w.r.t. a more complex and accurate feasible solution in a
real-time scenario, but the same reasoning no longer applies to a scenario where a higher
accuracy is crucial disregarding the computational time.

A second aspect that might be critical for the proposed algorithm is the possibility
to provide a solution that overfits the evaluation subset within T , a common problem in
the tools –namely autoML tools– that aims at finding the best machine or deep learning
model for a given dataset (Fabris and Freitas, 2019; Wong et al., 2018). This potential
issue has not been investigated in this work for the proposed methodology. However,
such methodology considers technological constraints, hence potentially alleviating the
overfitting issue since there is not the possibility to create an over-complex DLM. As a
final remark, an alternative approach w.r.t. the proposed methodology is that of Neural

8Other approaches can be considered as well, e.g., Leave-One-Out, k-Fold Cross-Validation, and Bootstrap.
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Figure 5.2: The representation of a Gate-Classification layer ϕ(`)
θ`

. The output of the pre-

vious layer, i.e. x`−1, is processed by the classifier K(`)
θ`

. Thereafter, if the posterior

probability L
(
K(`)
θ`

(x`−1)
)

overcomes the threshold γ`, the classificationK(`)
θ`

(x`−1)

is final and provided as output (solid line), otherwise x`−1 is forwarded to the subse-
quent layer ϕ(`+1) of the pipeline (dashed line).

Architectural Search (Elsken et al., 2019; Li and Talwalkar, 2020), that explores differ-
ent possible DL architectures in order to find the optimal one for the considered task or
problem. Having said that, the drawbacks are the wider exploration space (that potentially
grows indefinitely) and the need for training each explored candidate DL architecture, a
strong limitation in all those scenarios where a few data are available.

5.2 Reducing Computational Complexity via Early–Exit: Gate-
Classification

The term Early–Exit DLMs refers to all the models whose processing pipeline varies ac-
cording to the input information content, i.e., there is the possibility to ends up the com-
putation at intermediate layers, namely the Early-Exits, hence skipping all the remaining
computation. The introduction of Early-Exits within Deep Tiny Machine Learning mod-
els does not affect the memory footprint of the algorithm (the introduction of such layers,
instead, causes an increment of the footprint) but guarantees a mean reduction in the com-
putational load of the model itself. This gain depends on how many times these Early-Exits
are actually taken.

This section aims at addressing the problem by supporting the design of DLMs with
one or more Early-Exits, whereas Section 9.2 provides the corresponding evaluation.

The Gate-Classification Layer. Figure 5.2 shows the proposed Early-Exit layer, called
Gate Classification layer. The Gate-Classification layer is defined as follows:

ϕ
(`)
θ`

(x`−1) =

{
x` = x`−1 if L

(
K(`)
θ`

(x`−1)
)
< γ`

ŷ = K(`)
θ`

(x`−1) otherwise
(5.7)
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where K(`)
θ`

is a classifier that takes as input the activations x`−1 of the (`− 1)-th layer of

the DLM and provides as output both a classification K(`)
θ`

(x`−1) ∈ ∆ and the posterior

probability L
(
K(`)
θ`

(x`−1)
)
∈ [0, 1] of the predicted class. When the posterior proba-

bility is larger than an automatically computed threshold γ`, the classifier K has enough
“confidence” to take a decision and the classification becomes the output of the DLM, i.e.,
ŷ = K(`)

θ`
(x`−1). In this case, all the layers from ` + 1 to M are skipped, hence saving

computational load. Conversely, when the posterior probability is lower than γ`, the DLM
proceeds to the next ` + 1 layer as in traditional DLMs, with x`−1 being the forwarded
activations.

Needless to say, K can be any deep learning-based (e.g., fully-connected layers) or
even machine learning-based (e.g., k-Nearest Neighbors or Support Vector Machines) clas-
sifier with a posterior probability that can be (at least approximately) computed.

As a final remark, the proposed “gating” mechanism is close to the idea of having
multiple paths within DLMs as in Deep Residual Learning (He et al., 2016) and Highway
Networks (Srivastava et al., 2015; Zilly et al., 2017). Such paths allow information to
flow across several layers of the DLMs. Our Gate-Classification mechanism extends this
paradigm by introducing a control (i.e., the gate) on the information gained by the DLM
in the hierarchical processing of the knowledge representation through the layers. These
gates on the posterior probability of suitably trained classifiers (operating within the DLM)
allow to regulate the processing of information through the DLM layers by either selecting
a path directly connected to the output or by activating the next layer in the processing of
the DLM.

Training Gate-Classification DLMs. The training of the Gate-Classification DLMs re-
lies on two steps:

• learning the parameters θ`s of the M DLM layers ϕ(`)
θ`

;

• learning the parameters γ of each Gate-Classification layer.

These two sequential steps are detailed in the following.

Training Gate-Classification DLMs: Learning the Parameters. During the first train-
ing step, the Gate-Classification layers are disabled, i.e., they forward the activations of
the previous layer to the subsequent one in the DLM pipeline (this can be seen as having
a value of γ ≥ 1). In this way, the training of the DLM’s parameters θ can be carried
out with any of the available methods in the literature, e.g., gradient descend with back-
propagation (Rumelhart et al., 1986). The core of this learning step is that all the classifiers,
i.e., the gates and the final classifier, are jointly optimized.9 Defined as g < M the num-
ber of introduced Gate-Classification layers indices and as ŷi the δ-dimensional posterior
probability on the considered δ classes of Gate-Classification layer i, the loss function in
the gradient-descend algorithm is the weighted sum of the classifiers’ cross-entropy, i.e.,

L (ŷ1, . . . , ŷg, ŷM,y) =

− w1 · H (ŷ, ŷ1)− . . .− wg · H (ŷ, ŷg)− wM · H (ŷ, ŷM) (5.8)

9This approach is similar to that of the Inception CNN (Szegedy et al., 2015).
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where ŷ represents the true posterior probability (i.e., 1 only on the correct classification
class), H represents the cross-entropy function of two vectors, and the g + 1 weighting
coefficients are hyper-parameters of the problem.

Training Gate-Classification DLMs: Learning the Thresholds γ. Once the training
of the DLM’s parameters has been carried out, the thresholds γ of the Gate-Classification
layers can be computed. In particular, the value of γ should be the one that allows to
activate the gate Early-Exit as much as possible (thus skipping the remaining pipeline)
without reducing the global DLM classification capability.

Given a validation set T , the value of γ is set as the minimum value γ̂ such that
there still exists an overlapping between the η-level confidence intervals of the empirical
classification errors computed with γ̂ and with γ = 1 on T .

5.3 Adapting Deep Learning Models in Nonstationary Envi-
ronments

Section 4.1 highlights that the data-generation process P might evolve over time (e.g.,
due to faults in the sensors, aging effects, seasonality). If the Deep Learning Model (Sec-
tion 4.2) does not take into account this scenario, the effects on its performances might
be catastrophic (Ditzler et al., 2015). This section aims to introduce an adaptive learning
mechanism able to support the adaptation of DLMs in the presence of concept drift. In
particular, the considered DLMs exploit a classification task and the concept drift within
P are assumed to reflect on the classification metric (e.g., the accuracy) of the DLM itself.
It is worth noting that the proposed approach is not specifically meant for TML since the
suggested adaptation is not feasible on the IoT units. However, this work is a step into the
direction of on-device learning, a problem addressed in Chapter 6.

Figure 5.3 and Algorithm 5.2 detail this proposed adaptive mechanism for DLMs in
presence of concept drift (Disabato and Roveri, 2019). The adaptive DLM D comprises
three further modules along with the DLM itself: a Change Detection Test ϑ, a Refinement
Procedure, and the Adaptation procedure. More in details, an active approach based on
a Change Detection Test ϑ continuously monitors the classification metric εt of D over
time inspecting for variations (Algorithm 5.2–Lines 4–9). Once a change is detected at
time t̂, the Refinement Procedure estimates the time instant tr the concept drift occurred
(Algorithm 5.2–Line 10). The Adaptation procedure comprises two steps:

• the Pipeline exploration explores the DLM D pipeline to identify the layers that
became obsolete due to the concept drift, hence having to be adapted to the new
working conditions (Algorithm 5.2–Lines 11– 13);

• the Retraining phase re-trains only the obsolete layers in a transfer learning fash-
ion (Yosinski et al., 2014) by relying on the input subsequence corresponding to the
novel samples after the concept drift, i.e., all the data after the estimated change time
tr (Algorithm 5.2–Line 14).

The DLM has been already formalized in Section 4.2, whereas the remaining modules are
defined in the following. Finally, Section 9.3 experimentally evaluates this adaptive DLM.
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Figure 5.3: The adaptive mechanism for Deep Learning Models in presence of concept
drift. This mechanism encompasses four modules: the DLM D classifying the inputs,
the Change Detection Test ϑ monitoring the DLM errors εt over time t inspecting for
changes, the Refinement Procedure estimating the time tr the concept drift occurred,
and the Adaptation module adapting the DLM to the concept drift.

5.3.1 Change-Detection Test and Refinement Procedure
Algorithm 5.2 presents the CDT in the most general way, i.e., at the current time instant
t it computes the metric st is working on (Algorithm 5.2–Line 7). After that, the CDT
applies its decision function ϑ either on the computed metric st or on all the previously
computed metrics s1, . . . , st from time instant 1 to t (Algorithm 5.2–Line 8). The CDT
detects a change in the data generation process P if the output gt of ϑ at time instant t
overcomes a user-defined threshold h (Algorithm 5.2–Line 9).

This Section, instead, details the Change-Detection Test along with the Refinement
Procedure in the case of a classification problem. However, similar solutions can be de-
vised for other problems, e.g., regression or multi-class classification.

Under the test-then-train formalization described in Section 4.1, once D produced the
classification ŷt of the input x, the adaptive mechanism can compute the classification
error εt, that is defined as

εt =

{
1 ŷt 6= yt,

0 otherwise.
(5.9)

It is crucial to stress that changes in the data-generation process P are assumed to reflect
on the classification error εt in order to be detected by this adaptive mechanism. All the
changes not affecting the classification error can be neglected and considered as irrelevant
since they do not impact theD performances. For this reason, the classification error εts is
monitored over time by means of a CDT ϑ aiming at detecting variations in its probability
distribution.

Among the solutions present in the literature, the considered CDT ϑ is the non para-
metric CUSUM test suggested by (Lorden et al., 1971). Such a CDT represents a non-
parametric version of the well-known Cumulative Sum (CUSUM) test (Basseville et al.,
1993; Page, 1954), suitably modified to operate on Bernoulli distributions, i.e., the out-
comes of the classification error εt at each time instant t.10 The reason to chose the
CUSUM CDT is twofold. First, the parametric CUSUM (Page, 1954) provides theoret-
ically guarantees, such as the possibility to define the average run length (i.e., the mean
number of processed inputs before an action is taken), to compute bounds on detection de-
lay (i.e., the time between the change and its detection) and the distance between two false

10Please refer to Section 6.3.2 for a definition of such CUSUM test in similar settings.
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Algorithm 5.2: The Adaptive Deep Learning Model for Concept Drift. The DLM D
enriched with adaptative functionalities is considered as an input.

Input: DLM D, CDT ϑ.
Parameters : History Window Size $, CDT threshold h, Adaptation inputs Ξ, Pipeline

Exploration Target Layers L, Paired t-test Confidence α.
1 Initialize W ← ∅. /* History Window. */

/* Loop over samples arriving at time t. */
2 foreach (xt, yt) ∼ P, t = 1, 2, . . . do
3 Predict ŷt ← D(xt).
4 W ←W ∪ {(xt, yt)}. /* Update History Window. */
5 if |W | ≥ $ then
6 W ←W \ {(xt−$, yt−$)}.
7 Compute CDT metric st. /* Active Step. */
8 Apply CDT gt ← ϑ (s1, . . . , st).
9 if gt ≥ h then /* Change Detection Check. */

10 Estimate Real Change Time tr . /* Refinement Procedure. */
11 To ← {(xt̄, yt̄) ∈W : t̄ ∈ [tr − Ξ, tr)}. /* Old Samples. */
12 Tn ← {(xt̄, yt̄) ∈W : t̄ ∈ [tr, tr + Ξ)}. /* Novel Samples. */

13 ˜̀← pe (D, To, Tn,L, α) /* Pipeline Exploration. */

14 Update D with Tn from layer ˜̀. /* Retraining. */

alarms, and the asymptotic or first-order optimality to the change detection problem (Lor-
den et al., 1971; Basseville et al., 1993; Pollak, 1987). Second, the non-parametric variant
has the advantage of providing an estimate tr of the time instant each detected change
occurred, hence it acts also as a Refinement Procedure. Other solutions for RP could be
found in (Alippi et al., 2017), e.g., based on statistical hypothesis tests or change-point
methods.

Independently from the adopted CDT ϑ (the suggested one or another), they usually
suffer from false positive and negative detections (Alippi et al., 2017). In the considered
scenario, a false positive detection would induce an unnecessary adaptation (possibly in-
creasing the computational load of the adaptive machine learning system). In contrast, a
false negative detection could affect the classification accuracy since the DLM D operates
in an obsolete configuration.

5.3.2 Adaptation: Pipeline Exploration and Retraining

When the CDT detects a change, whose RP’s estimated change time is tr, the adaptation
stage begins, with the goal to adapt the DLM D to concept drift.

The trivial way to adaptD is to retrain it with all the novel content, i.e., all the sequence
{(xtr , ytr ) , . . . , (xt, yt)} following the (estimated) change time. Unfortunately, this ap-
proach might lead to unsatisfactory results since the number of available inputs during the
retraining is generally much lower than those typically considered in DLM training. More-
over, the time required to train the whole processing chain of D could not be compatible
with the need to adapt it to concept drift quickly.

Differently, Figure 5.4 shows the proposed adaptation module that relies on the fact
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that the processing chain of D is organized into layers characterized by an increasing
granularity of the representation. Following the “transfer learning” approach (Yosinski
et al., 2014), the goal is to transfer knowledge, i.e., part of the processing chain, from the
DLM operating before the concept drift detection to the one operating after. To achieve
this goal, the proposed adaptation module comprises two steps. The Pipeline exploration
(Figure 5.4b) scans the processing chain of D to identify the layer ˜̀ after which all the
remaining layers have to be retrained because obsolete. The Retraining (Figure 5.4c) re-
trains the layers from ˜̀toM ofD. As a consequence, all the layers before ˜̀are transferred
from the DLM operating before the concept drift to the one operating after.

It is assumed that the structure of the processing chain of D is left unchanged dur-
ing this adaptation procedure, i.e., no layer is added or removed. This assumption could
be weakened by considering an exploration technique to identify the best architecture of
the processing chain during the adaptation phase provided that enough (time and) data
{(xtr , ytr ) , . . . , (xt, yt)} are available.

Pipeline exploration. Let To and Tn be two Ξ-dimensional batches of tuples acquired
before and after the estimated change time tr, respectively, defined as follow:

To = {(xt̄, yt̄) ∈W : t̄ ∈ [tr − Ξ, tr)} , (5.10)
Tn = {(xt̄, yt̄) ∈W : t̄ ∈ [tr, tr + Ξ)} , (5.11)

where Ξ corresponds to the number of inputs acquired between tr and the current time
instant t. Obviously, it is possible to define a minimum value for Ξ to guarantee that
at least a given number of inputs is available for the adaptation procedure. This comes
at the expense of a possible delay in the activation of the procedure itself. Moreover,
the algorithm is assumed to keep the last $ samples as history window (Algorithm 5.2–
Lines 4– 6).

Let L ⊆ {1, . . . ,M} be the set of “convenient” layers, the pipeline exploration has
to explore in D, e.g., fully-connected, sub-sampling, and non-linearity layers. Figure 5.4
shows the pipeline exploration, whose goal is to find the layer ˜̀∈ L after which the layers
in D became obsolete (due to the concept drift).

To achieve this goal, all the layers in L are evaluated to check if they provide the same
classification ability on To and Tn, looking for the first layer ˜̀∈ L at which this hypothesis
does not hold. More specifically, for each layer ` ∈ L, two classifiers K(`)

o and K(`)
n are

trained on (a training subset of) To and Tn, respectively. Both classifiers belong to the same
family of classifiers (e.g., Neural Networks, Support Vector Machines, or Decision Trees),
share the same architecture (e.g., the number of layers and neurons in Neural Networks),
and are trained in the same conditions (e.g., the same initialization procedure with a shared
random seed).

Let E(`)
o and E(`)

n , for each ` ∈ L, be the sequence of binary classification errors (i.e.,
1 for a misclassified sample, 0 otherwise) on (a test subset of) To and Tn, respectively. To
assess that both the classifiersK(`)

o andK(`)
n provides the same classification capabilities, a

Paired t-test statistical hypothesis test (Lehmann and Romano, 2006) is employed aiming
at making inference about the difference in the mean of the sets E(`)

o and E(`)
n . The null

hypothesis of the test equals to zero the difference between the means of the two sets,
whereas the alternative hypothesis assumes such difference is not equal to zero.
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v is lower than

the confidence α is in this example ˜̀= M − 1, with α = 0.05.i
i

“tikz/adaptive_tml_pipeline_exploration_output” — 2021/9/30 — 9:09 — page 31 — #1 i
i

i
i

i
i

P xt ϕ
(1)
θ1

(xt) ϕ
(2)
θ2

(x1) . . . ϕ
(−1)
θ−1

(x−2) K(M)
θM

(x−1) ŷt
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Figure 5.4: A detail of the adaptation procedure of the proposed adaptive mechanisms for
learning deep learning models in presence of concept drift.

Let
p`v = paired t-test

(
E(`)
o , E(`)

n , α
)
, (5.12)

be the p-value of the Paired t-test statistical hypothesis test applied to layer `, for each
` ∈ L, with α the confidence of the hypothesis test. It is noteworthy to point out that
having multiple hypothesis tests, corrections on the confidence α could be considered
(e.g., the Bonferroni correction (Bonferroni, 1936; Dunn, 1961)).

The first obsolete layer ˜̀ is then

˜̀= min
`∈L

{
` | p`v < α

}
, (5.13)

i.e., ˜̀ is the first layer of D for which the Paired t-test rejects the null hypothesis with
confidence 1 − α, where the ordering of layers reflects that of the DML D itself. In the
example given in Figure 5.4b, ˜̀ is M − 1.

Retraining. The retraining stage is activated by the pipeline exploration in order to
learn, for each layer ` = ˜̀, . . . ,M of the DLM D, its parameters θ`. This task depends on
the type of employed DLM, e.g., for CNNs, a learning algorithm based on gradient descent
(e.g., (Glorot and Bengio, 2010; Krizhevsky et al., 2012)) on the whole novel knowledge
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set Tn, with a number of epochs balancing the achieved accuracy after adaptation and the
training time. In the example given in Figure 5.4, the retraining stage employs the layers
M − 1 and M , whose resulting adapted DML D is in Figure 5.4c.

As a final remark, if the cardinality of Tn is too small for the retraining stage, such
stage can be postponed until enough novel knowledge is acquired and, in the meanwhile,
the classifier K(M)

n provides the output for the DML D.

5.3.3 Discussion
There are two critical aspects of the proposed adaptation mechanism. The first one is the
magnitude of change. Small changes might have a limited but not negligible impact on
the DLM accuracy. As a consequence, a trade-off is expected between the need to detect
these changes and to shrink towards zero the number of false-positive detections (i.e.,
detecting a change that has not occurred). This trade-off can be modeled with a further
hyper-parameter that defines the minimum change magnitude in terms of accuracy impact,
i.e., the minimum accuracy drop that can be led back to a change.

In the second order, the adaptation parameters have to be set carefully to trade off the
need for either a fast or accurate adaptation. This choice reflects on the number of layers
the pipeline exploration method considers, but in particular on the minimum number of
samples Ξ acquired before starting the pipeline exploration itself (the more the samples,
the higher the confidence in defining the set of obsolete layers at the expense of a higher
exploration time) or the retraining. In the latter case, a small number of samples may result
in an over-fitted model, whereas a too large number of samples is prone to be unfeasible
in time-constrained application scenarios.

57





CHAPTER6
On-Device Tiny Machine Learning

Chapter 5 presented various ways to design Tiny Machine Learning (TML) solutions en-
compassing Deep Learning Models (DLM), namely, Deep Tiny Machine Learning solu-
tions. Such approaches focus on approximation, pruning, and quantization mechanisms to
reduce the memory and computational demand of DLMs. Although these solutions run on
embedded systems and IoT units, their training is typically carried out on high-performing
units (such as Cloud or Edge-Computing systems), with very few papers in the related lit-
erature proposing on-device incremental learning mechanisms (Cai et al., 2020a; Disabato
and Roveri, 2020; 2021).

The ability to learn TML models directly on the devices is crucial to improve the ac-
curacy over time by exploiting fresh information coming from the field, and to deal with
concept drift, i.e., variations in the statistical behavior of the data generating process, a
quite common situation in real-world applications (e.g., due to seasonality or periodicity
effects, faults affecting sensors or actuators, changes in the user’s behavior, or aging con-
sequences). Failing to adapt TML models to concept drift results in a (possibly dramatic)
decrease in the accuracy over time (Ditzler et al., 2015).

This chapter aims at addressing this challenge by introducing, for the first time in the
literature, a Tiny Machine Learning algorithm for Concept Drift (TML-CD) that can learn
directly on the IoT unit and adapt the knowledge base in response to a concept drift (thus
tracking the evolution of the data generating process). Differently from the solution pre-
sented in Section 5.3, this approach is fully on-device, i.e., both the inference and the
adaptation steps are executed on the considered IoT unit. To achieve this goal, the pa-
pers (Disabato and Roveri, 2020; 2021) introduced four different adaptation mechanisms
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Figure 6.1: The proposed architecture of the proposed solution for Tiny Machine Learning
for Concept Drift (TML-CD) D on embedded systems and IoT units.

(i.e., incremental, passive, active, and hybrid), each of which has its advantages, issues,
effectiveness, and behavior. The hybrid solution is the suggested approach among these
mechanisms thanks to its ability to trade-off adaptation with memory demand.

Section 6.1 presents the deep TML-CD architecture, that encompasses two main op-
erating stages: the configuration (Section 6.2) and the testing (Section 6.3). In particular,
being the adaptation within the testing stage, Section 6.3 presents also the four proposed
adaptation mechanisms.

6.1 On-Device Deep Tiny Machine Learning for Concept Drift

Section 4.1 formalized the data-generation process P in nonstationary conditions along
with the considered classification problem with δ classes. P provides at each time instant
t a pair (xt, yt) where xt is the input and yt ∈ ∆ the corresponding label. Moreover,
Section 4.2 formalized the concept of Deep Learning Model and of the operators used to
define the proposed solution.

Figure 6.1 shows the general architecture of the proposed solution for Tiny Machine
Learning for Concept Drift (TML-CD) D, which comprises the following five different
modules:

• Feature Extractor %. The Feature Extractor extracts features from the input xt. As
in (Alippi et al., 2018), the Feature Extractor is a pre-trained DLM approximated by
means of Task-Dropping (e.g., pruning of layers), Precision Scaling (e.g., weights
precision reduction), or both, to satisfy the constraints on computation, memory, and
energy characterizing the IoT units running D (see Section 5.1 for details).

• Dimensionality Reduction Operator ς The Dimensionality Reduction Operator ς
(that can be optionally activated) reduces the dimensionality of features extracted
by %. In this Chapter, among the approaches presented in (Disabato and Roveri,
2020), the Filter-Selection without supervised information is adopted. This tech-
nique selects the f out of F filters of the last % convolutional layer (and its subse-
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Algorithm 6.1: A sketch of the proposed on-device deep tiny machine learning solution
for concept drift.

Input: Training Set T , Feature Extractor ς ◦ %.
Parameters : Number of neighbors k.

1 Preprocess T . /* Initialization. */
2 Initialize the k-NN classifier K with ς ◦ % (T ).
3 Define D = K ◦ ς ◦ %.

/* Loop over samples arriving at time t. */
4 foreach (xt, yt) ∼ P, t = 1, 2, . . . do
5 Predict ŷt ← D(xt).
6 Adaptation of D.

quent batch-normalization channels, if any) providing the highest mean activation
on publicly available benchmarks or datasets.

It is crucial to point out that the adaptation step of D does not affect the feature
extractor % nor the dimensionality reduction operator ς , which are therefore fixed
over time. Moreover, since the choice of the f filters to keep does not rely on the
specific data-generation process P , the block ς ◦% can be defined at design time and
before the porting ofD on the IoT units. This is the reason why ς◦% is an input to our
algorithm, and ς takes part in the choice of the approximated DL-feature extractor.

• kNN Classifier and Training Set T . The kNN (Altman, 1992) classifier K (·),
whose input is either the output of the dimensionality-reduction operator ς ◦ % or
that of the feature extractor % (when no dimensionality reduction is considered),
provides the classification ŷt of the input xt, while T is its training set. From the
algorithmic point of view, the kNN is a statistical classifier based on majority voting,
i.e., the predicted class corresponds to the majority class of the k nearest neighbors
of the input sample within K’s training set T . Interestingly, it does not require a
training phase, but only the initialization of its training set T . Unless otherwise
specified, the parameter k, i.e., the number of neighbors, is set to the ceiling of the
square root of the available samples, as suggested in (Alippi et al., 2013).

• Adaptation Module. The adaptation module receives as input the sample xt and
its kNN K prediction ŷt and, when the supervised information yt is available, it
updates the TML-CD solutionD so as to make it adaptive over time to concept drift.
Among the four presented modules, the adaptation involves only the K’s training
set T (Losing et al., 2016; Roseberry and Cano, 2018). The kNN classifier adaption
indeed requires to simply add the new supervised information (xt, yt) to its training
set T .

Algorithm 6.1 details how the proposed TML-CD D works. More in detail, the TML-
CD D, which receives in input a feature extractor along with a dimensionality reduction
operator (ς ◦ %) and an initial training set T , comprises two different stages: configuration
and testing.

The configuration stage, detailed in lines 1–3 and shown in Figure 6.1a, encompasses
an initial preprocessing step where the training set T is preprocessed to reduce the mem-
ory occupation (line 1) by means of a condensing mechanism (Algorithm 6.2). Once the
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Algorithm 6.2: The Condensed Nearest Neighbor (Hart, 1968).
Input: Training Set T .
Output: Condensed Representation T̄ ⊆ T .

/* H contains one sample, D all the others. */
1 Initialize H ← {t ∈ T } and D ← T \H .
2 Initialize the kNN K with H .
3 do
4 foreach t← (x, y) ∈ D do
5 Predict ŷ ← K(t).
6 if ŷ 6= y then /* Condensing Update: */
7 D ← D \ {t}. /* Move t from D to H. */
8 H ← H ∪ {t}.
9 (Re–)train the kNN K with H .

10 while H and D are modified in the foreach loop.
11 return T̄ ← H

preprocessing step has been carried out, the knowledge base of the kNN classifier is ini-
tialized on the features extracted from the preprocessed training set T , i.e., the training set
of K is ς ◦ % (T ). Section 6.2 will detail the configuration stage.

After the completion of the configuration stage, the TML-CD solution D = K ◦ ς ◦ %
enters the testing stage where it is able to operate on the novel incoming samples provided
by the data-generating process P (lines 4–6). At each time instant t = 1, 2, . . ., the pro-
posed solution D receives in input xt and provides the output ŷt = D(xt) (line 5). Then,
when the supervised information yt about xt is made available as per the "test-and-train"
approach, it activates the adaptation step (line 6). Section 6.3 will detail the testing stage
by describing the proposed adaptive mechanisms for TML-CD.

6.2 The Configuration Stage: Condensing the Training Set T
The kNN classifier has the great advantage of not requiring a proper training phase. How-
ever, this advantage comes, in principle, at the expense of the following two drawbacks.
First, a kNN-based classifier requires to store all the data of the training set. Second, the
more significant the amount of the training data, the higher the time to provide a classifi-
cation in output. These drawbacks are more severe as the samples within T increase.

The related literature addresses these two issues from three different perspectives.
First, condensing techniques (Hart, 1968; Tomek, 1976b) aim at identifying the small-

est subset of training data that can correctly classify all the training samples. Second,
editing techniques (Laurikkala, 2001; Tomek, 1976a; Wilson, 1972) instead reduce the
number of stored samples by removing the noisy ones, i.e., those not agreeing with their
neighborhoods. Third, (Smith et al., 2014) proposed to train a supervised parametric clas-
sifier on available data and to remove all the samples having a classification probability
below a hard threshold.

In this work, we focus on the first approach and, in particular, on the Condensed Near-
est Neighbour algorithm. In more detail, D applies this algorithm during the preprocess-
ing step (Algorithm 6.1–Line 1) in order to optimize both the memory and computational
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Algorithm 6.3: The Condensing-in-Time (Passive).
Input: Training Set T , Feature Extractor ς ◦ %.
Parameters : Maximum number of training samples p.

1 Compute T ← T̄ with Algorithm 6.2. /* Condense T . */
2 Initialize the k-NN classifier K with ς ◦ % (T ).
3 Define D = K ◦ ς ◦ %.

/* Loop over samples arriving at time t. */
4 foreach (xt, yt) ∼ P, t = 1, 2, . . . do
5 Predict ŷt ← D(xt)
6 if ŷt 6= yt then /* Passive Update. */
7 T ← T ∪ (xt, yt)
8 if |T | > p then /* Window Size Check. */
9 (xt̃, yt̃)← arg mint̄ {(xt̄, yt̄) ∈ T }

10 T ← T \ {(xt̃, yt̃)}
11 Update D with T

requirements of the classifier K. More specifically, given a N -dimensional training set
T = {(xt, yt) , t = 1, . . . , N}, the preprocessing step computes the condensed represen-
tation of T , i.e., the minimum subset T̄ ⊆ T for which K is able to correctly classify
all the samples in T . Algorithm 6.2 shows the pseudo-code of the condensing algorithm
proposed by (Hart, 1968) that is employed in the preprocessing step. Section 9.4.4 ex-
perimentally evaluates the impact on accuracy and memory demand of this condensing
stage, highlighting that the significant savings in terms of memory come at the expense of
a negligible drop in accuracy (in stationary conditions).

6.3 The Testing Stage: Adapting T

The adaptation module, which is the core of the proposed D, has been declined from four
different perspectives, differing in the type of adaptation mechanism therein employed:

• Incremental Update. This baseline approach is particularly useful when a very few
data are available during the configuration stage. The adaptation simply adds (all)
the incoming samples to its knowledge base, without any explicit change detection
nor a passive mechanism to select the samples that have to be stored;

• Passive Update (Section 6.3.1). The adaptation module relies on a fully passive ap-
proach where the adaptation is carried out at each new incoming supervised samples,
without requiring an explicit detection of a change in the data-generating process P;

• Active Update (Section 6.3.2). This adaptation module relies on a CDT to detects
changes in P . Once a change is detected, the algorithm adapts K accordingly;

• Hybrid Update (Section 6.3.3). The hybrid adaptation module integrates the pas-
sive approach with a CDT to speed up the adaptation stage exactly when needed.
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6.3.1 Passive Update: the Condensing-in-Time approach
The passive approach, called Condensing-in-Time (CIT) algorithm, updates the training
set T every time a new supervised sample is available. Algorithm 6.3 presents the CIT
algorithm.

It receives in input the feature extractor along with a dimensionality reduction operator
ς ◦ % and a training set T , whose condensed representation T̄ ⊆ T (see Algorithm 6.2)
is used to initialize the training set T of the kNN. Once initialized, the CIT–D, i.e., the
D solution implementing the CIT adaption module, is ready to classify novel incoming
samples. The CIT passively updates the K’s knowledge set T at every time instant t for
which the supervised information, i.e., the true label yt, is available. More in details, CIT–
D adds the sample xt and its true label yt (at time instant t) to the kNN K knowledge set
T if and only if xt is misclassified, i.e., ŷt 6= yt (Algorithm 6.3, Lines 6–11). This idea is
inspired by the condensing algorithm update, shown at Lines 6–9 in Algorithm 6.2, but it
is here tailored to the time evolution of the data-generating process.

It is worth noting that the CIT algorithm can only add a new supervised sample to the
knowledge set T of the kNNK, hence potentially introducing critical issues in the memory
and computational demand of the kNN when the number of samples in T increases.

The CIT algorithm employs two different solutions in order to keep under control the
cardinality of T .

The former introduces a maximum number of samples p that can be stored, i.e., |T | ≤
p, being |·| cardinality operator. Hence, every time the adaptation stage introduces a sam-
ple in T overcoming this limit, the oldest sample is removed (Algorithm 6.3, Lines 8–10).
As a consequence, the solution D based on the CIT classifier operates on the last p super-
vised samples introduced in T . Besides, this mechanism allows also to remove old samples
in T by introducing only misclassified samples, i.e., those bringing more information to
the classifier.

The latter relies on a probability pa to decide whether to ignore an error or to add it
to the training set T . The idea is the following: under stationary conditions, the TML-CD
D has a constant accuracy υ0 over time, and the rate of samples added to the training set
is ῡ0 = 1 − υ0 (that corresponds to the error rate). As a consequence, the cardinality of
T continuously increases without affecting the accuracy υ0, a side effect of the CIT algo-
rithm. Ideally, pa should be close to zero (i.e., T cannot change) in stationary conditions
and close to one (i.e., all the errors are added to T ) when there is a change affecting the
accuracy.

Although many solutions can be developed, the following simple solution is advised.
The CIT algorithm keeps trace of the mean value of υ0 over time, e.g., by computing the
exponential mean υ̃0, and computes its first derivative υ̃′0. Since in stationary conditions
υ̃0 is assumed to remain roughly constant, the value of υ̃′0 is close to zero. The probability
pa is then a function that receives as input υ̃′0 and returns a value close to 0 when υ̃′0 → 0

and close to 1 as υ̃′0 goes far from 0, such as the absolute value of hyperbolic tangent or
the hyperbolic secant of υ̃′0 reciprocal:

pa =
∣∣∣tanh(ι · υ̃′0)∣∣∣ or pa = sech

(
1

ι · υ̃′0

)
, (6.1)

where ι is an additional parameter defining the slope of the probability pa curve.
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Algorithm 6.4: The Active Tiny kNN.
Input: Feature Extractor ς ◦ %, CDT ϑ, Training Set T .
Parameters : History Window Size $, CDT threshold h.

1 Compute T ← T̄ with Algorithm 6.2. /* Condense T . */
2 Initialize the k-NN classifier K with ς ◦ % (T ).
3 Define D = K ◦ ς ◦ %.
4 Initialize W ← ∅. /* History Window. */

/* Loop over samples arriving at time t. */
5 foreach (xt, yt) ∼ P, t = 1, 2, . . . do
6 Predict ŷt ← D(xt).
7 W ←W ∪ {(xt, yt)}. /* Update History Window. */
8 if |W | ≥ $ then
9 W ←W \ {(xt−$, yt−$)}.

10 Compute CDT metric st. /* Active Step. */
11 Apply CDT gt ← ϑ (s1, . . . , st).
12 if gt ≥ h then /* Change Detection Check. */
13 Estimate Real Change Time tr .
14 T ← {(xt̄, yt̄) ∈W : t̄ ≥ tr}. /* Novel Samples. */
15 [Optional] Condense T .
16 Update D with T .

6.3.2 Active Update: Active Tiny kNN
The Active Tiny kNN, whose pseudocode is shown in Algorithm 6.4, relies on a Change
Detection Test (CDT) ϑ to detect changes in the data generation process P . The core of
this algorithm is the ability to adapt the classifierK’s training set T only after the detection
of a concept drift. In addition, the Active Tiny kNN allocates space for a history window
W of size $, being $ a parameter of the algorithm (described in the sequel).

In more detail, for each sample (xt, yt) provided by P at time instant t, the Active Tiny
kNN predicts the label ŷt = D(xt) and, when the supervised information yt is available,
the active update is activated (Algorithm 6.4, Lines 7–16).

At first, it adds the pair (xt, yt) to the history window W and discards the oldest pair
if the window already contains $ pairs (Algorithm 6.4, Lines 7–9). After that, the Active
Tiny kNN computes the figure of merit st (at time t) and applies the CDT decision function
ϑ to inspect for changes in P (Algorithm 6.4, Lines 10–11), i.e., gt = ϑ (s1, . . . , st). In
the most general situation, the computation of gt at time t takes into account all the figures
of merits computed from t = 1. A change is detected in the data-generation process
P when gt overcomes the detection threshold h, being h a parameter of the algorithm
(Algorithm 6.4, Line 12).

Once a change is detected, the adaptation stage starts (Algorithm 6.4, Lines 13–16).
In the first place, it estimates the time tr the change occurred at (e.g., with a Change Point
Method). After that, it discards from the history window W all the samples older than the
estimated change time tr. The updated history window W (optionally condensed through
Algorithm 6.2) becomes the new K’s training set T .

It is noteworthy to point out that the memory footprint of the Active Tiny kNN is
bounded over time since it requires to store the training set T and history window W of
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at most $ samples (the CDT memory footprint can be neglected). Moreover, since the
adaptation stage modifies the knowledge set T only through copies of the (at most whole)
history window W , the total memory footprint cannot overcome twice the memory of the
history window W , i.e., that of 2$ samples.

Although the solution accepts as input any CDT ϑ, in the context of this work, ϑ is the
well-known and theoretically grounded CUSUM algorithm (Page, 1954) in its generalized
version (Lorden et al., 1971), monitoring the accuracy of the Active Tiny kNN over time.
As a consequence, any change in the data-generation process P is assumed to reflect on
the K classification accuracy.

The generalized CUSUM CDT is designed as follows. Let υ0 be the stationary classi-
fication accuracy (estimated on the first ξ supervised samples in the testing stage, being ξ
parameter of the Active Tiny kNN algorithm). A Bernoulli distribution with parameter υ0

and, in turn, a Binomial distribution with parameters υ0 and n (with n size of the batches
on which the accuracy is computed in the following) model our scenario in stationary con-
ditions. The figure of merit of the CUSUM CDT is the likelihood ratio of the probability
distributions modeling the scenario after and before the change, i.e.:

st = ln
pυ1(ζt)

pυ0(ζt)
, (6.2)

where υ1 represents the classification accuracy after the change and ζt the realization of
the Binomial distribution at time t, i.e., the accuracy on the n supervised samples arrived
before time t.11

Since the value of υ1 is a priori unknown, the generalized version of the CUSUM al-
gorithm employs a set Υ1 containing a grid of possible accuracies υ1 after change equally
spaced from 0 to 1, except for the neighborhood of υ0.12 The resulting decision function
ϑ is:

gt = ϑ (s1, . . . , st) = max
1≤j≤t

sup
υ1∈Υ1

Stj(υ1), (6.3)

where

Stj(υ1) =

t∑
i=j

si, (6.4)

represents the sum of the log-likelihood ratio sts from time j to time t.
Assuming the parameter n large enough, the considered Binomial distribution can be

approximated as a Normal one with mean nυ0 and variance nυ0(1 − υ0). Hence, the
log-likelihood ratio st in Equation 6.2 then becomes:

st =
υ1ῡ1 − υ0ῡ0

2nυ0ῡ0υ1ῡ1
ζ2
t +

ῡ0 − ῡ1

ῡ0ῡ1
ζt +

n(υ0ῡ1 − υ1ῡ0)

2ῡ0ῡ1
+ ln

√
υ0ῡ0

υ1ῡ1
, (6.5)

where ῡ0 = 1− υ0 and ῡ1 = 1− υ1.

11Although the Active Tiny kNN algorithm is general enough to deal with any CDT, in the described CUSUM
case with Binomial distribution of size n, the CDT figure of merit is not computed for every supervised samples,
but every n. As a consequence, all the n− 1 st values before a window of size n is full are set to zero.

12The cardinality of Υ1, i.e., the number of tested values υ1, is a parameter of the Active Tiny kNN.
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Algorithm 6.5: The Hybrid Tiny kNN.
Input: Feature Extractor ς ◦ %, CDT ϑ, Training Set T .
Parameters : Maximum T Size $, CDT threshold h.

1 Compute T ← T̄ with Algorithm 6.2. /* Condense T . */
2 Initialize the k-NN classifier K with ς ◦ % (T ).
3 Define D = K ◦ ς ◦ %.

/* Loop over samples arriving at time t. */
4 foreach (xt, yt) ∼ P, t = 1, 2, . . . do
5 Predict ŷt ← D(xt).
6 if ŷt 6= yt then /* Passive Update. */
7 T ← T ∪ (xt, yt)
8 if |T | ≥ $ then
9 tmin ← mint̄ {(xt̄, yt̄) ∈ T }

10 T ← T \ {(xtmin , ytmin)}.
11 Update D with T .

12 Compute CDT metric st. /* Active Step. */
13 Apply CDT gt ← ϑ (s1, . . . , st).
14 if gt ≥ h then /* Change Detection Check. */
15 Estimate Real Change Time tr .
16 T ← {(xt̄, yt̄) ∈ T : t̄ ≥ tr}. /* Novel Samples. */
17 [Optional] Condense T .
18 Update D with T .

As a final remark, the CUSUM CDT is also endowed with the ability to estimate the
change time tr (and, if desired, of the parameter υ1 after the change). The estimated
change time tr is indeed the index j̃ maximizing the decision function ϑ in Eq. (6.3), i.e.:(

j̃, υ̃1

)
= arg max

1≤j≤t
sup
υ1∈Υ1

Stj(υ1). (6.6)

6.3.3 Hybrid Tiny kNN: Integrating Condensing-in-Time and Active
Tiny kNN

The core of the proposed hybrid update is to integrate the "condensing-in-time" ability of
the passive update with the capability to quickly adapt to changes by discarding obsolete
knowledge of the active one.

In more detail, the (CIT) passive update continuously adapts T when supervised in-
formation is available, regardless a concept drift occurred (or not). This ability comes at
the expense of two weak points. First, there is (in principle) no bound on the memory
occupation, although two solutions have been suggested to mitigate the problem. Second,
when a change occurs, the passive update does not discard the obsolete knowledge present
in T , i.e., samples generated by P before the concept drift occurred.

On the contrary, the active adaptation provides a bound on the memory occupation
(i.e., twice the history window size W ) and, in turn, the required computation. However,
similarly to the other active approaches present in the literature (Baena-Garcıa et al., 2006;
Disabato and Roveri, 2019; Wang et al., 2020b), the effectiveness of the active adaptation
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phase is strictly related to the ability to promptly detect the concept drift in P .
The proposed hybrid update aspires at compensating the weak points of passive and

active updates by integrating the "condensing-in-time" solution described in Algorithm 6.2
with the CUSUM-based CDT detailed in Section 6.3.2. The resulting algorithm, namely
the Hybrid Tiny kNN, is shown in Algorithm 6.5. Here, the inputs and the initialization
are the same as Active Tiny kNN. The only difference resides in the fact that the Hybrid
Tiny kNN does not allocate a history window, but it relies on the training set T (whose
size is bounded by $) as history window.

Similarly to the algorithms it derives from, the Hybrid Tiny kNN predicts the label
ŷt = D(xt) and, when the supervised information yt is made available, it carries out both
a passive (Algorithm 6.5, Lines 6–11) and an active update (Algorithm 6.5, Lines 12–18),
for each sample (xt, yt) generated by P at time instant t. Although the passive update
is equal to that of the "condensing-in-time" algorithm, the active one requires to take into
account the effects of the passive updates, which are supposed to increase the classification
capability of the algorithm over time (until the accuracy of Hybrid Tiny kNN reaches its
maximum value). Consequently, the CUSUM CDT is slightly modified in its set Υ1,
which contains only values that are smaller than υ0, i.e., the accuracy estimated on an
initial window of data. In this way, the hybrid update does not detect as concept drift
the increases in the accuracy brought by the passive update (hence focusing on changes
inducing a drop in the accuracy). Moreover, the adaptation phase triggered by the CDT
involves directly the knowledge set T of the classifier K, where samples older than the
estimated time of change tr are discarded (Algorithm 6.5, Lines 15–18).

Summing up, the hybrid update continuously adapts T over time thanks to the passive
adaptation, hence avoiding the risk of non-detecting changes due to false-negative detec-
tions of the CDT. At the same time, the active adaptation present in the hybrid update
can quickly discard obsolete knowledge when a change is detected and set a bound on the
memory footprint of T . All these aspects will be evaluated in Section 9.4.5.

6.4 Discussion: Parameters Choice and Limitations

This section firstly proposes a few suggestions about the choice of the proposed algo-
rithms’ hyper-parameters, then there is a discussion about the major limitation of those
algorithms, in addition to the discussion about changes that have a small impact on DLM
accuracy (see Section 5.3.3).

In both Active Tiny kNN and Hybrid Tiny kNN algorithms, the choice of the threshold
h is application-dependent. More in detail, such value should be a trade-off between the
number of expected false positives and negatives. On the one hand, a small value for
h can result in a high number of false positives, i.e., detecting changes that have never
occurred and activating an unnecessary adaptation step. Such adaptation might remove
non-obsolete knowledge from the training set T , hence potentially impacting the algorithm
in the subsequent steps. Moreover, a high rate of false positives is undesirable in critical
scenarios where each detection has an impact (e.g., airport surveillance where a detection
causes a block of the security checks until the issue has been solved). On the other hand, a
too high value of h will result in an increased number of false negatives, i.e., not detecting
a change that has occurred. Consequently, the obsoleted knowledge is kept, whereas the
fresh and novel one might not, with impacts on the algorithms.
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The choice of the history window size in Active Tiny kNN or the knowledge set T
size in Hybrid Tiny kNN $, as well as the maximum number of training samples p in CIT
algorithm, can be tuned according to the application. However, the choice is mainly based
on the technological constraints of the IoT unit the algorithm is deployed on. As a rule of
thumb, $ or p size can be the maximum available according to the memory capacity m̄
of the considered IoT unit, making sure that there is enough room for all the algorithms
running on the device.

The algorithms presented in this chapter (but also that in Section 5.3) are all supervised.
This assumption can be a major limitation in all those scenarios where the supervision is
rarely provided or it is not available at all. In both cases, defining a CDT ϑ that relies
on an unsupervised metric can alleviate this issue. As an example, instead of defining
the CDT ϑ on the classification accuracy, one can model the spatial representation of the
classes in stationary conditions (e.g., through clustering algorithms to obtain a compressed
representation through the centroids and properly defined volumes enclosing each class
data) and then measure when such representation starts to drift. However, supervision
is highly suggested to correctly handle the new representation once the CDT detects a
change. These aspects are left for future work (see Section 12.1).
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CHAPTER7
Distribute Computation over

Heterogeneous Internet of Things Units

Chapters 5 and 6 addressed the problem of defining a Tiny Machine Learning algorithm
able to be executed on a single IoT unit (as well as introducing solutions for the on-device
learning). A totally different approach to the problem aims at distributing the computation
of a Deep Learning Model (DLM) across several IoT units (that are thus organized into
an IoT system) (Disabato et al., 2021b). The advantage of this approach is that a DLM
that cannot be executed on a single IoT unit due to its memory, computation, or energy
requirements, can instead be executed on a group of IoT units. Each IoT unit supports the
execution of part of the DLM (e.g., one or more of its layers) according to its memory,
computation, and energy capacity, and then forward the computed results to the other IoT
unit(s) executing the subsequent part of the DLM.

A methodology aiming at addressing this problem usually models the distributed DLM
as a directed graph spanning over the network of IoT units (where each node corresponds
to a subtask of the DLM on the IoT unit executing it and each arc the sequence of those
subtasks). Such a methodology takes into accounts the following aspects. First of all,
the original DLM (or more generally, a group of DLMs to be executed at the same time),
its requirements, and all the possible subtasks that can be defined within it (typically, the
division is made at layer-level, but further splits can be designed as well). Second, the
memory capacity, the available computation, and the energy budget of all the available
IoT units within the IoT system. Third, the methodology has to take into account the
network architecture: the position and distance of the IoT units along with the connectivity
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technology employed to transmit the information between IoT units (not only in terms of
transmission speed and range but also possible failures and retransmissions to be more
robust). Finally, the last aspect is the deployment of the computed directed graph and
its possibility to adapt to new operating conditions (e.g., due to concept drift in the data
generation process, the introduction of new DLMs to be executed, changes in the network
topology because of IoT units addition, IoT units running out of energy).

The problem is formalized in Section 4.3, with a complement in Section 7.1. The
methodology (Disabato et al., 2021b) is then described in the remaining Sections (tailored
to specific cases). It addresses the problem of finding the optimal placement of the C
DLMs layers on the N IoT units in order to minimize the latency in transmitting decisions
about the inputs gathered by the C sources to the target unit f . Finally, Section 10.1
experimental evaluates the methodology.

7.1 Dealing With Early-Exit Deep Learning Models

Section 4.3 formalizes the most general case of a system of (possibly heterogeneous) IoT
units, with the most general definition of the DLMs to be mapped on it. In this Section,
such formalization is extended to consider all those DLMs whose processing path depend
on the information content, e.g., the Adaptive (Bolukbasi et al., 2017) or Gate-Classifica-
tion CNNs (Disabato and Roveri, 2018). In these DLMs, the classification completes as
soon as enough confidence is achieved within the processing path, thus the execution of
the remaining layers is aborted.

To achieve this goal, Early-Exit DLMs (EX-DLMs) are endowed with intermediate
exit points, creating multiple paths within the DLM, each of which is characterized by a
probability of being traversed. More formally, given aMu-layer EX-DLM, let pu,j ∈ [0, 1]
be the probability that the j-th layer of the u-th DLM processes the input image13 and
let gu,j ∈ [0, 1], for each u ∈ NC and j ∈ {1, . . . ,Mu}, be the probability that the
computation ends at layer j of the u-th EX-DLM is

gu,j =

{
pu,j − pu,j+1 if j < Mu

1−∑Mu−1
v=1 gu,v if j = Mu

. (7.1)

7.2 Distributing Deep Learning Models over an IoT System as
a Quadratic Optimization Problem

The methodology aiming at distributing the DLMs over an IoT system is formulated as an
optimization problem that relies on the C ·N ·M variables αu,i,j defined as:

αu,i,j =

{
1 if IoT unit i executes layer j of DLM u

0 otherwise
, (7.2)

for each u ∈ NC , for each i ∈ NN and for each j ∈ NM = {1, . . . ,M}, being M =
max{M1, . . . ,Mu} the maximum number of layers among the considered C DLMs (i.e.,
the maximum depth of all DLMs).

13In the case of the mentioned Early-Exit CNNs, the probabilities pu,js can be estimated during their learn-
ing (Disabato and Roveri, 2018; Teerapittayanon et al., 2016) or on a validation set immediately after.
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Table 7.1: Details about the IoT units and Deep Learning Models used in Chapter 7 and
its corresponding experimental evaluation (Section 10.1).

(a) The memory demand mj , the computational load cj , and the memory Kj required to store
the intermediate representations of the 5-layer DLM and the 6-layer EX-DLM, with a 32-bit
data type and the Early-Exit layer marked with an asterisk. In that layer, Kj represents the
dimensions of the representation sent to the layer j + 1 when the classification is not taken at
layer j.

Layer (j) mj (KB) cj (106 mult.) Kj (KB)

s Source (Image 28× 28× 3) - - 9.41

L11 5x5 convolution, 64 filters 19.20 3.76 200.70
L12 2x2 max pooling, stride 2 - 0.05 50.18

L2* gc1 (3-layer dense 384,192,10) 19 570.18 4.89 50.18

L31 5x5 convolution, 64 filters 409.60 20.07 50.18
L32 2x2 max pooling, stride 2 - 0.01 12.54

L4 fully-connected 384 4 816.90 1.20 1.54
L5 fully-connected 192 294.91 0.07 0.77
L6 fully-connected 10 7.68 0.002 0.04

(b) The memory demand mj , the computational load cj , and the memory Kj required to store the
intermediate representations of the AlexNet and its EX-DLM variant, with a 32-bit data type and
the Early-Exit layer marked with an asterisk. In that layer, Kj represents the dimensions of the
representation sent to the layer j + 1 when the classification is not taken at layer j.

Layer (j) mj (KB) cj (106 mult.) Kj (KB)

s Source (Image 227× 227× 3) - - 618.35

11 11x11 convolution, 96 filters, stride 4 139.78 105.42 1161.60
12 3x3 max pooling, stride 2 - 0.31 279.94

21 5x5 convolution, 256 filters 1 229.82 223.95 746.50
22 3x3 max pooling, stride 2 - 0.39 173.06

3* gc1(3-layer dense 128,64,2) 22 185.22 5.55 173.06

4 3x3 convolution, 384 filters 3 540.48 149.52 259.58
5 3x3 convolution, 384 filters 2 655.74 112.14 259.58
61 3x3 convolution, 256 filters 1 770.50 74.76 173.06
62 3x3 max pooling, stride 2 - 0.08 36.86

7 fully-connected 4096 151 011.39 37.75 16.38
8 fully-connected 4096, 2 67 158.02 16.78 0.01

(c) The maximum memory usage m̄i (defined as half the available RAM), and the million (106)
multiplications per second eis (defined as a tenth of the clock cycles performed in one second)
of the considered IoT units.

Node (i) m̄i (KB) ei (106 mult.)

S1 STM32H7 (480MHz ARM Cortex M7, no OS) 512 48

B1 BeagleBone AI (1.5GHz Dual-core ARM Cortex A15) 524 288 300
O1 OrangePi Zero (1.2GHz H2 Quad-core ARM Cortex-A7) 131 072 480
R1 Raspberry Pi 3B+ (1.4GHz Quad-core ARM Cortex-A53) 524 288 560

Without any loss of generality, the distances di1,i2 , for each i1, i2 ∈ V , can be precom-
puted, allowing us to define an integer quadratic optimization problem on variables αu,i,js.
As detailed in Section 4.3, {s1, . . . , sC} and f do not participate in the optimization prob-
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lem since their task is to acquire inputs and receive the final classification, respectively.
This assumption can be easily removed by considering additional IoT computing units in
the same positions of sis and f .

The objective function to be minimized models the latency in making a decision by the
C DLMs placed on the IoT units, defined as the time occurring between inputs acquisition
by sensor unit sus (size Ku,s) and final classifications Ku,Mu

s are transmitted to unit f :

C∑
u=1

N∑
i=1

N∑
k=1

M−1∑
j=1

αu,i,j · αu,k,j+1 · pu,j+1 ·
Ku,j

ρ
· di,k +

N∑
i=1

t
(p)
i + ts + tf , (7.3)

such that

∀i ∈ NN
C∑
u=1

M∑
j=1

αu,i,j ≤ L (7.4)

∀i ∈ NN
C∑
u=1

M∑
j=1

αu,i,j ·mu,j ≤ m̄i (7.5)

∀i ∈ NN
C∑
u=1

M∑
j=1

αu,i,j · cu,j ≤ c̄i (7.6)

∀u ∈ NC ,∀j ∈ NM
N∑
i=1

αu,i,j =

{
1 if j ≤Mu

0 otherwise
(7.7)

and where

ts =

C∑
u=1

N∑
i=1

αu,i,1 · pu,1 ·
Ku,s

ρ
· ds,i (7.8)

t
(p)
i =

C∑
u=1

M∑
j=1

αu,i,j · pu,j ·
cu,j
ei

(7.9)

tf =

C∑
u=1

N∑
i=1

M∑
j=1

αu,i,j · gu,j ·
Ku,Mu

ρ
· di,f (7.10)

The objective function in Eq. (7.3) comprises four different components of the latency:

(i) The source time ts, defined in Eq. (7.8), required to transmit the inputs from the
sources sus to the IoT units executing the first layer of the DLMs. Although the
first layer is always reached, i.e., pu,1 = 1 for each u ∈ NC , the term pu,1 has been
added to Eq. (7.8) to provide homogeneity in the formalization.

(ii) The transmission time of intermediate representations among the IoT units process-
ing the DLM layers. More precisely, the transmission time of the intermediate rep-
resentation of the j-th layer of the u-th DLM from unit i to k is

tt =
Ku,j

ρ
· di,k, (7.11)
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where ρ is the data-rate of the considered transmission technology and di,k is the
hop-distance between IoT units i and k as defined in Section 4.3. In Eq. (7.3) the
transmission time is weighted by the probability pu,j+1 that layer j + 1 is executed
right after layer j.

(iii) The processing time t(p)i of the DLM layers on the IoT units. Specifically, the pro-
cessing time of layer j of DLM u on the i-th IoT unit is approximated as the ratio
between the computational demand cu,j that layer requires and the number of mul-
tiplications ei the IoT unit i carries out in one second14. In Eq. (7.9), the processing
time is weighted by the probability pu,j that the layer j of DLM u is executed.

(iv) The sink time tf required to transmit the final classification Ku,Mu , for each u ∈
NC , from the IoT units taking these decisions to the target unit f . It is noteworthy
to point out that Eq. (7.10) takes into account all feasible output paths from node i
to the target unit f , suitably weighted by the probability gu,j that the classification
is made at layer j of DLM u in execution on IoT unit i.

The constraint in Eq. (7.4) ensures that each IoT unit contains at most L layers, being L
an additional user-defined model hyper-parameter. In particular, when L = 1, at most
one layer can be assigned to an IoT unit, while L > 1 implies that up to L layers (also
belonging to different DLMs) can be assigned to a particular IoT unit. The constraints
in Eq. (7.5) and (7.6) are meant to take into account the technological limits about mem-
ory usage and computational load characterizing each IoT unit. Finally, the constraint in
Eq. (7.7) ensures that each layer j, for each j ∈ NM , is assigned to exactly one node and,
at the same time, manages the possibility that the C DLMs might be characterized by a
different number Mu ≤ M of layers, for each u ∈ NC . In fact, in those cases (i.e., when
Mu < M ), the unneeded αu,i,js are set to 0.

When the j1-th layer of DLM u1 and the j2-th layer of DLM u2 are shared between
the two DLMs, the following constraint is added to the optimization problem

∀i ∈ NN αu1,i,j1 = αu2,i,j2 , (7.12)

to ensure that the shared layer is placed on the same IoT unit. In addition, the constraints
on the maximum number of layers placed on a IoT unit - Eq. (7.4) - and the memory usage
and computational load constraints - Eqs (7.5) and (7.6) - are modified as follows to count
the shared layer only once:

∀i ∈ NN
C∑
u=1

M∑
j=1

αu,i,j ≤ L+ αu2,i,j2 , (7.13)

∀i ∈ NN
C∑
u=1

M∑
j=1

αu,i,j ·mu,j ≤ m̄i + αu2,i,j2 ·mu2,j2 , (7.14)

∀i ∈ NN
C∑
u=1

M∑
j=1

αu,i,j · cu,j ≤ c̄i + αu2,i,j2 · cu2,j2 . (7.15)

14The eis encompass the number of available cores, the type of pipeline such cores implement to approach
one operation per clock cycle, the presence or not of a GPU allowing to parallelize DLM operations (e.g., the
convolutions) and all the delays resulting from the processing system and memory management.
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If a layer is shared among k DLMs, the Eqs. (7.13), (7.14), and (7.15) need to take into
account k − 1 out of the k variables corresponding to the shared layer.

The considered class of optimization problems, i.e., the integer quadratic programs, is
NP-complete. More specifically, since the αu,i,js are binary variables, it is possible to con-
vert it to a binary linear program, which is one of Karp’s 21 NP-complete problems (Karp,
1972).

The optimization problem outcome is the optimal placement αu,i,js of the C DLMs’
layers to the N IoT units minimizing the delay in making a classification. In the event that
the optimization provides more than one solution, the optimal placement is any feasible
solution with minimal latency. More advanced mechanisms could be considered, e.g., se-
lecting the configuration characterized by the lowest energy consumption in transmission
or computation.

7.3 Distributing a Single DLM over an IoT System

When the number of DLMs is equal to one, i.e., C = 1, the optimization problem variables
formalization in Eq. (7.2) simplifies in N ·M binary variables αi,j to determine whether
layer j of the DLM is assigned to unit i of the IoT system, i.e.,

αi,j =

{
1 if IoT unit i executes DLM layer j
0 otherwise

, (7.16)

for each i ∈ NN and j ∈ NM . Moreover, the objective function in Eq. (7.3) modelling the
latency in making a decision to be minimized is reformulated as:

N∑
i=1

N∑
k=i

M−1∑
j=1

αi,j · αk,j+1 ·
Kj

ρ
· di,k +

N∑
i=1

t
(p)
i + ts + tf , (7.17)

where the probability of executing each layer is omitted being equal to 1 for all of them.
Then, the constraints in Eqs. (7.4), (7.5), (7.6) and (7.7) become:

∀i ∈ NN
M∑
j=1

αi,j ≤ L, (7.18)

∀i ∈ NN
M∑
j=1

αi,j ·mj ≤ m̄i, (7.19)

∀i ∈ NN
M∑
j=1

αi,j · cj ≤ c̄i, (7.20)

∀j ∈ NM
N∑
i=1

αi,j = 1, (7.21)
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(a) The architecture of the 5-layer DLM detailed in Table 7.1a, where x is the input image.i
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(c) An example of the methodology outcome
where the layers L1,. . . , L5 of the 5-layer
DLM in Figure 7.1a are placed on the IoT
units of the system shown in Figure 7.1b,
when setting L = 1.

n01 n02 n03 n04 n05 n06 n07 n08 n09 n10 n11

L1 0 0 0 0 1 0 0 0 0 0 0
L2 0 0 0 0 0 0 0 0 0 1 0
L3 0 0 0 1 0 0 0 0 0 0 0
L4 1 0 0 0 0 0 0 0 0 0 0
L5 0 0 0 0 0 1 0 0 0 0 0

(d) The variables αu,i,js representing the methodology outcome for the solution shown in Fig-
ure 7.1c, with u = 1.

Figure 7.1: Distributing a single 5-layer DLM (i.e., C = 1) over an IoT system.

whereas

ts =

N∑
i=1

αi,1 ·
Ks

ρ
· ds,i, (7.22)

t
(p)
i =

M∑
j=1

αi,j ·
cj
ei
, (7.23)

tf =

N∑
i=1

αi,M ·
KM

ρ
· di,f , (7.24)
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account for the transmission time between the source s and the IoT unit running the first
layer of the DLM, the processing time on all unit is, and the transmission time between
the unit running the M -th layer of the DLM and the sink f , respectively.

In this configuration, the methodology has been applied as an example to the 5-layer
DLM described in Figure 7.1a, characterized by M = 5 layers and whose details are
in Table 7.1a. The considered IoT system is the one shown in Figure 7.1b comprising
N = 11 IoT units and being s and f the same unit. The IoT units belong to two differ-
ent technological families, i.e., STM32H7 (round nodes) and Raspberry Pi 3B+ (squared
nodes), whose memory m̄i and computational c̄i constraints are detailed in Table 7.1c. An
example of the optimization problem outcome in this technological scenario with L = 1 is
given in Figure 7.1c, whose corresponding αi,js are detailed in Figure 7.1d. In the optimal
placement, involving three STM32H7 units (nodes n05, n01, and n06) and two Raspberry
Pi 3B+ (nodes n10, and n04), the layer L3 of the DLM has been assigned to a Raspberry
Pi 3B+ IoT unit (i.e., n04) since its execution on STM32H7 would violate the memory
constraint.

7.4 Distributing a Single EX-DLM over an IoT System

This configuration refers to the case where a single Early-Exit Deep Learning Model (EX-
DLM) has to be placed on the IoT system, i.e., C = 1.

More specifically, the problem variables are simplified into N · M binary variables
αi,j , as defined in Eq. (7.16). The pu,js and gu,js are simplified as pj and gj , for each
j ∈ NM , defining the probabilities that layer j is executed and that the final classification
is made at layer j (i.e., the direct path from j to the sink is traversed), respectively.

The objective function modeling the latency in decision making defined in Eq (7.3) is
tailored as follows:

N∑
i=1

N∑
k=i

M−1∑
j=1

αi,j · αk,j+1 · pj+1 ·
Kj

ρ
· di,k +

N∑
i=1

t
(p)
i + ts + tf , (7.25)

with constraints as in Eqs. (7.18), (7.19), (7.20), and (7.21), and where the source time ts,
the processing time t(p)i , and the sink time tf have been modified as follows:

ts =

N∑
i=1

αi,1 · p1 ·
Ks

ρ
· ds,i, (7.26)

t
(p)
i =

M∑
j=1

αi,j · pj ·
cj
ei
, (7.27)

tf =

N∑
i=1

M∑
j=1

αi,j · gj ·
KM

ρ
· di,f . (7.28)

A 6-layer EX-DLM is shown, as an example, in Figure 7.2a and detailed in Table 7.1a.
This EX-DLM has M = 6 and the Early Exit at layer j = 2, with a probability ν = 0.99
of taking the final classification. Hence, p1 = p2 = 1 and p3 = p4 = p5 = 0.01, with the
gjs different from zero only at the Early-Exit (g2 = 0.99) and the last layer (g6 = 0.01).
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(a) The architecture of the 6-layer EX-DLM detailed in Table 7.1a, where x is the input image. The
Early-Exit (composed of three fully-connected layers) can either provide the final output (solid
line from the “decision” diamond) or further exploring the pipeline (dashed path, highlighting
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pj gj

L1 1.00 0.00

L2 1.00 0.99

L3 0.01 0.00

L4 0.01 0.00

L5 0.01 0.00

L6 0.01 0.01

(b) The values of pj and gj , for each j ∈ NM ,
of the 6-layer EX-DLM architecture shown in
Figure 7.2a.
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(c) The methodology outcome with a 6-layer EX-
DLM in Figure 7.2a on the IoT system shown
in Figure 7.1b, with L = 1.

Figure 7.2: Distributing a single 6-layer EX-DLM over an IoT System. Since dn04,f = 2,
n04 requires an intermediate hop, i.e., the node n06, to send the final classification.

Figure 7.2 shows the methodology outcome in this configuration on the IoT system already
described in Figure 7.1b. The methodology outcome is particularly interesting, showing
that the Early-Exit layer (j = 2), being particularly demanding in terms of memory, is
assigned to the Raspberry Pi 3B+ n04 unit. When enough confidence is achieved at Early-
Exit (j = 2), the decision is directly sent from n04 to the sink f , otherwise, the processing
is forwarded from n04 to n01 to complete the processing up to n08. As a final observation,
it is worth noting that the distance between the Early-Exit (j = 2) and the sink f is equal
to 2. Thus this intermediate classification is delivered through the node n06.

7.5 Distributing DLMs with Shared Layers over an IoT System

An interesting application scenario is the one with multiple DLMs, either without or with
shared processing layers. In particular, the DLMs do not employ early exits, hence pu,j =
1, for each u ∈ NC and j ∈ {1, . . . ,Mu}.

In this configuration, the objective function modeling the latency in decision making
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becomes:

C∑
u=1

N∑
i=1

N∑
k=i

M−1∑
j=1

αu,i,j · αu,k,j+1 ·
Ku,j

ρ
· di,k +

N∑
i=1

t
(p)
i + ts + tf , (7.29)

with constraints defined in Eqs. (7.4), (7.5), (7.6) and (7.7), and where the source time ts,
the processing time t(p)i , and the sink time tf are modified as follows:

ts =

C∑
u=1

N∑
i=1

αu,i,1 ·
Ku,s

ρ
· ds,i, (7.30)

t
(p)
i =

C∑
u=1

M∑
j=1

αu,i,j ·
cu,j
ei
, (7.31)

tf =

C∑
u=1

N∑
i=1

αu,i,Mu
· Ku,Mu

ρ
· di,f . (7.32)

Finally, to deal with shared layers, the constraint defined in Eq. (7.12) is introduced per
each shared layer, whereas the constraints in Eqs. (7.4), (7.5), and (7.6) are modified ac-
cordingly, as detailed in Section 7.2 with Eqs. (7.13), (7.14), and (7.15).

As an example, it is provided the complete extension to the case where the first two
layers of two DLMs are shared. The additional constraints required to ensure that the
shared layers j = 1 and j = 2 (of DLMs u = 1 and u = 2) are assigned to the same node
i are:

∀i ∈ NN α1,i,1 = α2,i,1, (7.33)
∀i ∈ NN α1,i,2 = α2,i,2. (7.34)

Then, the Eqs. (7.4), (7.5), and (7.6) are modified as follows:

∀i ∈ NN
C∑
u=1

M∑
j=1

αu,i,j ≤ L+ α1,i,1 + α1,i,2, (7.35)

∀i ∈ NN
C∑
u=1

M∑
j=1

αu,i,j ·mu,j ≤ m̄i + α1,i,1 ·m1,1 + α1,i,2 ·m1,2, (7.36)

∀i ∈ NN
C∑
u=1

M∑
j=1

αu,i,j · cu,j ≤ c̄i + α1,i,1 · c1,1 + α1,i,2 · c1,2. (7.37)

It is noteworthy to point out that there is no difference in defining Eqs. (7.35), (7.36),
and (7.37) with the variables of the DLM u = 2, instead of those of DLM u = 1 as done
here. It is indeed sufficient to relax the constraints with k − 1 variables out of k, where
k represents the number of DLMs a layer is shared among, in order to count that shared
layer only once.

The proposed methodology has been applied to two instances of the 5-layer DLM
described in Figure 7.1a without common processing layers operating in the IoT system
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(a) The methodology outcome, with no shared
layer between the two 5-layer DLMs.
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Figure 7.3: Distributing two (i.e., C = 2) 5-layer DLMs (shown in Figure 7.1a), over the
IoT system in Figure 7.1b, with L = 1.

depicted in Figure 7.1b and with L = 1. Interestingly, the outcome of the methodology,
depicted in Figure 7.3a, shows that the placement of both DLMs represents the optimal
solution of the single-DLM configuration.

Moreover, the methodology has been applied to the case where the convolutional lay-
ers L1 and L2 are shared between the two DLMs. This solution is inspired by the transfer
learning paradigm, where two DLMs might share low-level representation processing lay-
ers, while high-level ones are specific for each DLM. The methodology outcome in this
scenario is interesting, showing that common layers L1 and L2 have been placed in IoT
units n06 and n01, respectively, while, after n01, the processing takes two different paths.

7.6 Open Points and Possible Extensions

Currently, the proposed methodology neither takes into account the energy status of IoT
units nor network failures (Farhan et al., 2017). The network failures could be managed
by modifying the transmission time defined in Eq. (7.11) as

tt =
(
1 + ξi,k

)
· Ku,j

ρ
· di,k, (7.38)

where ξi,k represents the probability that a failure happens (and thus a retransmission is
required) for the pair of nodes (i, k).

It is noteworthy to point out that, thanks to the transfer learning paradigm, the hierar-
chy of layers of the DLMs can be considered as general feature extractors (Yosinski et al.,
2014). For this reason, the deployed DLMs can be easily reconfigured to address a dif-
ferent problem by replacing only upper layers. Moreover, this optimization phase can be
scheduled periodically or when needed to manage variations in the IoT network configu-
ration (e.g., due to the removal or insertion of IoT units). This is a crucial aspect in the
scenario of mobile IoT units, a case that is not considered in this paper. In fact, thanks to
the transfer learning approach and by periodically recomputing the DLM allocation, the
methodology could be applied to units changing their position in the environments they
are operating in.
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The remaining of the section suggests two ways of dealing with the energy in the
proposed methodology.

7.6.1 Introducing the Energy in the Proposed Methodology
Sections 4.3 and 7.1 formalize the system of possibly heterogeneous IoT units and the
DLMs (either with or without Early-Exits) to be mapped onto it. In this Section, such
a formalization is extended by introducing new variables to take into account the energy
technological constraints the IoT units might introduce, i.e., removing the (implicitly) as-
sumption made up to now of having the IoT units connected to a power source.

Let ēi, for each i ∈ NN , be the energy budget for an IoT unit i, i.e., the amount of
energy that causes the IoT unit either to run out of energy or to enter in power saving
mode and stop to process the assigned computation. Let eu,j , for each u ∈ NC and for
each j ∈ NM , be the energy required by the layer j of DLM u, computed as in Eq. (2.5).
Let also ωu, for each u ∈ NC , be the number of times the DLM u has to be processed
before the IoT unit is deployed on runs out of energy.

Given these additional variables, a few different models to handle the energy are pro-
posed in the following. Other possible solutions or cases, as the possibility for the nodes
to harvest energy –as in (Bozorgchenani et al., 2020)– are left for future work.

Penalize the Low-Energy Nodes. The first approach focuses on the IoT units only. At
first, all the IoT units iwith a low-energy budget ēi, by forcing the corresponding variables
α·,i,· to be zero, i.e., by introducing the following additional constraints to the optimization
model:

∀i ∈ NN s.t. ēi ≤ Ẽ,
C∑
u=1

M∑
j=1

αu,i,j = 0, (7.39)

where Ẽ is a further parameter modeling the amount of energy budget ēiunder which an
IoT unit is excluded by the computation. However, an IoT unit with a low energy budget
is not “removed” from the IoT system the optimization problem views. As a consequence,
such an IoT unit can still be considered as an intermediate hop during the transferring of
activations among IoT units processing consecutive layers of the DLM.

As a final remark, this formalization does not guarantee that the DLMs distributed onto
the IoT system can be executed at least one time unless the value of Ẽ is appropriately
defined. The simplest way to achieve such a goal is to have Ẽ greater to the maximum
energy requirement introduced by any of the considered DLMs multiplied by the number
of layers the methodology can place on each IoT unit, i.e.,

Ẽ ≥ L · max
u∈NC ,j∈NM

eu,j . (7.40)

However, in real application scenarios, the value of Ẽ should be a balance between the
number of IoT units that are cut off and the number of times each DLM should be pro-
cessed. In the following, the energy problem introduces the DLMs into its formalization.

Grant One DLM Pipeline Processing. The second energy management approach aims
to guarantee that the DLMs processing pipelines are executed at least once. To achieve
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this goal, similarly to Eqs. (7.5) and (7.6) for memory and computation, respectively, the
following constraints are added to the optimization problem in order to ensure that the IoT
units have enough energy to carry out the processing they are assigned to. Formally, the
energy constraints are:

∀i ∈ NN
C∑
u=1

M∑
j=1

αu,i,j · eu,j ≤ ēi. (7.41)

Grant Many DLM Pipeline Processing. The final approach presented in this work
slightly extends the previous approach by guaranteeing that each employed DLM u can be
processed at least ωu times. The energy constraints in Eq. (7.41) are redefined as follows:

∀i ∈ NN
C∑
u=1

M∑
j=1

ωu · αu,i,j · eu,j ≤ ēi. (7.42)
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CHAPTER8
Privacy Is All You Need in

Deep-Learning-as-a-Service

In recent years, the technological evolution of Cloud-based computing infrastructures in-
tercepted the ever-growing demand for machine and deep-learning solutions leading to
the novel paradigms of machine and deep-learning-as-a-service (Yao et al., 2017). The
core of such computing paradigms is that Cloud providers provide ready-to-use remotely-
executable machine/deep learning services in addition to virtual computing environments
(as in infrastructures-as-a-service) or platform-based solutions (as in platforms-as-a-ser-
vice). Examples of such services are the identification of faces in images or videos or the
conversion of text-to-speech or speech-to-text (Hossain and Muhammad, 2015). From the
perspective of the user, being ready-to-use, these services do not require the training of
the models (that are pre-trained by the Cloud provider) nor the local recall of such mod-
els (that are executed on the Cloud). Moreover, the Cloud-based computing infrastructure
providing such machine/deep learning solutions as-a-service allows to support scalability,
availability, maintainability, and pay-per-use billing mechanisms (Erl et al., 2013). In the
context of this work, relying on such services might be an alternative (at least partially) to
approximation techniques (Sections 5.1 and 5.2) or to distributed DLMs (Chapter 7) in or-
der to enable particularly complex DLMs, at the expenses of depending on the connectivity
to the Cloud providing the services.

Unfortunately, to be effective, machine and deep-learning-as-a-service approach in-
volves the processing of data that might be sensitive, e.g., personal pictures or videos,
medical diagnoses, as well as data that might reveal ethnic origin, political opinions, but
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also genetic, biometric, and health data (Council of European Union, 2016).
This chapter aims to introduce a novel distributed architecture meant to preserve user

data privacy in the deep-learning-as-a-service computing scenario. To achieve this goal,
the proposed architecture relies on Homomorphic Encryption (HE) that is an encryption
scheme allowing the process of encrypted data (Acar et al., 2018). In the proposed archi-
tecture, by exploiting the properties of HE, users can locally encrypt their data through
a public key, send them to a suitably encoded Cloud-based deep-learning service (pro-
vided through the deep-learning-as-a-service approach), and receive back the encrypted
results of the computation that are locally decrypted through the private key. More specif-
ically, such architecture allows to decouple the encryption/decryption phases, which are
carried out on the user’s device (e.g., a personal computer or a mobile device), from the
deep-learning processing, which is carried out on the Cloud-based computing infrastruc-
ture. Such a HE-based distributed architecture allows to preserve data privacy (plain data
are never sent to the Cloud provider) while guaranteeing scalability, availability, and high
performance provided by Cloud-based solution.

The ability to process encrypted data of HE comes at two main drawbacks. First,
the computational load and the memory demand of HE-encoded operations are much
higher than regular ones, hence making the HE-encoded deep-learning processing highly
demanding in terms of computation and memory. This is the reason why the focus is
on a deep-learning-as-a-service approach where the computation is carried out on high-
performing units on the Cloud. Second, HE supports only a limited set of operations
(typically sums and multiplications). For this reason, prior to the encoding provided by
the HE scheme, the deep-learning models have to be redesigned and retrained taking into
account the constraints on the set of available operations. In addition, HE schemes have
to be configured through some parameters that trade off the accuracy in the computation
with the computational loads and memory occupation. Such a configuration, which de-
pends on the processing chain and the data to be processed, is managed at the Cloud-level
by providing different settings of parameters that the user can explore.

The proposed architecture, presented in (Disabato et al., 2020), is intended to work
with any machine and deep learning solution. However, in this work, it has been tailored
to image analysis solutions leveraging Convolutional Neural Networks (CNNs), and im-
plemented through a client (locally executed on the user device) developed as a Python
library and a server developed as a deep-learning-as-a-service container implemented on
Amazon AWS. The developed architecture relies on a REpresentational State Transfer
(REST) paradigm for exchanging encrypted data and results between client and server,
while messages rely on JSON format.

8.1 Homomorphic Encryption Background

The homomorphic scheme encryption is a special type of encryption that allows (a set
of) operations to be performed on encrypted data, i.e., directly on the ciphertexts. More
specifically, as detailed in (Boemer et al., 2019b), an encryption functionE and its decryp-
tion function D are homomorphic w.r.t. a class of functions F if, for any function f ∈ F ,
we can construct a function g such that f(x) = D(g(E(x))), for a set of input x.

The considered HE scheme is the Brakerski/Fan-Vercauteren (BFV) scheme (Fan and
Vercauteren, 2012) that relies on the Ring-Learning With Errors (RLWE) problem, sim-
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ilarly to other works (Cheon et al., 2017; Brakerski et al., 2014). (Lyubashevsky et al.,
2010) provides a detailed description of the problem and its security and implementation
aspects. However, this section briefly introduces the main concepts. The BFV scheme
relies on the following set of encryption parameters (from now on denoted with Θ):

• m: Polynomial modulus degree;

• p: Plaintext modulus;

• q: Ciphertext coefficient modulus.

The parameter m must be a positive power of 2 and represents the degree of the cyclo-
tomic polynomial Φm(x). The plaintext modulus p is a positive integer that represents
the module of the coefficients of the polynomial ring Rp = Zp[x]/Φm(x) (onto which
the RLWE problem is based). Finally, the parameter q is a large positive integer resulting
from the product of distinct prime numbers and represents the modulo of the coefficients
of the polynomial ring in the ciphertext space. A crucial concept of a HE scheme is the
Noise Budget (NB), an indicator related to the number of operations that can be done
on a ciphertext while guaranteeing the correctness of the result. This problem (i.e., the
maximum number of operations on the ciphertext) comes from the fact that, during the
encryption phase, noise is added to the ciphertexts to guarantee that, being p1 = p2 two
plain values to be encrypted with the same public key, the corresponding ciphertexts c1 and
c2 are different (i.e., c1 6= c2). All the operations performed on the ciphertext consume a
certain amount of NB (depending on the type of operation and the input): operations like
additions and multiplications between ciphertext and plaintext consume a small amount of
NB, while multiplications between ciphertexts are particularly demanding in terms of NB.
When the NB decreases to 0, decrypting that ciphertext will produce an incorrect result.

From a practical point of view, the choice of the encryption parameters Θ determines
several aspects: the initial value of the NB, its consumption during computations (hence
the number of operations to be performed on a ciphertext), the level of security against
ciphertext attacks, the computational load and memory occupation of the HE processing,
and the accuracy of the results (i.e., measuring the correctness of the decrypted values).
For example, the initial NB increases with m at the expense of larger memory occupation
and computational loads. The plaintext modulus p is directly related to the accuracy of the
HE processing. Despite being a complicated parameter to be tuned, the theory states that
larger values of p will produce more accurate results at the expense of more considerable
reductions of the NB. Finally, the parameter q influences both the initial NB and the level
of security of the encryption. A detailed description of the parameters and their effect on
the HE scheme can be found in (Laine, 2017).

It is crucial to stress that choosing the best parameter configuration is a trade-off be-
tween accuracy and performance and depends on the type and complexity of the process-
ing, the set of feasible operations, and the available computational resources. Practical
guidelines to choose Θ will be given in Section 8.3.4.

8.2 Homomorphic Encryption Related Literature

The idea of using HE to preserve the privacy of data during the computation has been intro-
duced in (Rivest et al., 1978). In this work, privacy homomorphisms are defined as encryp-
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tion functions that allow one to operate on encrypted data without preliminarily decrypting
the operands (Rivest et al., 1978). The first HE schemes allow only additions (Naccache
and Stern, 1998; Okamoto and Uchiyama, 1998; Paillier, 1999), or multiplications (ElGa-
mal, 1985).

The first homomorphic encryption scheme allowing both multiplication and additions
has been proposed in (Gentry, 2009). There, the idea was to rely on ideal lattice-based
cryptography to provide a scheme supporting additions and multiplications with theoreti-
cally grounded security guarantees. After that, (Van Dijk et al., 2010) extended this work
by relaxing the ideal lattice assumption (and its security) but allowing the usage of in-
teger polynomial rings to define the cyphertexts. (Brakerski et al., 2014) introduces the
Brakerski-Gentry-Vaikuntanathan (BGV) scheme that relies on polynomial rings to define
the cyphertexts and on the learning with error (LWE) and ring learning with errors (RLWE)
problems to provide theoretically grounded security guarantees. The RLWE problem
is also the basis of the Brakerski/Fan-Vercauteren (BFV) scheme (Fan and Vercauteren,
2012), detailed in Section 8.1, and the Cheon-Kim-Kim-Song (CKKS) scheme (Cheon
et al., 2017), which extends the polynomial rings to the complex numbers and isometric
rings.

The HE schemes mentioned above are theoretical and, to be applied, have then been
implemented to specific processing chains. As regards deep learning solutions, Cryp-
toNets (Gilad-Bachrach et al., 2016) relies on the HE BFV scheme to execute CNNs on
encrypted inputs by introducing several possible ways of approximating the non-linear
computation characterizing many layers of a CNN. Similarly, (Bourse et al., 2018) pro-
vides a fast HE scheme for the (discretized) CNN inference. Recently, the nGraph-HE
framework (Boemer et al., 2019a) has been proposed. This framework allows to train
CNNs in plaintext on a given hardware and deploy trained models to HE cryptosystems
operating on encrypted data. Unfortunately, these works are specific to a given DL solu-
tion (e.g., CNNs in (Gilad-Bachrach et al., 2016)). In contrast, our architecture is meant to
be general-purpose and able to hide the complexity of adopting HE solutions, similarly to
what was proposed in (Boemer et al., 2019a), still maintaining the as-a-service paradigm.

The literature also presents works aiming at offering encrypted computation. For ex-
ample, (Yao, 1982) proposed the Secure Multi-Party Computation (SMC) approach, where
more than one actor (namely, a party) collaborates in computing a function and having
only partial knowledge of the data they are working on. These solutions do not encompass
HE. (Barni et al., 2006) applied SMC with the Pailler HE (Paillier, 1999) to CNNs, where
a party owns the data and another owns the CNN. Hence, both the data and CNN are kept
secret during the computation. Other examples can be found in (Mohassel and Zhang,
2017; Rouhani et al., 2018). Finally, the Gazelle framework (Juvekar et al., 2018) relies
on SMC and HE to provide low-latency inference for CNN.

8.3 The Proposed HE-DL Privacy-Preserving Cloud-Based Ar-
chitecture

Figure 8.1 shows the proposed privacy-preserving distributed architecture for deep-lear-
ning-as-a-service, called HE-DL. More specifically, HE-DL relies on a distributed ap-
proach where the user device, given a pair of keys (public kp and secret ks) and the HE
parameters Θ, carries out the Encryption E (x,Θ, kp) of user data x and the Decryption
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Figure 8.1: The proposed privacy-preserving architecture for deep-learning-as-a-service.

D (ŷ,Θ, ks) of processed data DΘ(Î). Both E (·) and D (·) are based on the HE-BFV
scheme described in Section 8.1.

Conversely, the Cloud carries out the (encrypted) deep learning processingDΘ(·). This
is a crucial step since deep learning processing is typically highly demanding in terms of
computational load and memory occupation. It is crucial to point out that, as commented
in Section 8.1, the considered deep-learning-as-a-service computation has to be approx-
imated by using only addition and multiplication in order to process the ciphertext x̂.
For this reason, the set of DL models f (·)s that are made available by the Cloud are ap-
proximated through addition and multiplication, i.e., defining the set of approximated DL
models D (·)s. Once approximated, D (·)s have to be encoded following the rule of the
HE-BFV scheme to get the encoded deep-learning-as-a-service DΘ(·) by relying on the
HE parameters Θ. This encoding phase converts the plain values parameters of the DL
models in a form that allows the computation through the HE-BFV scheme on encrypted
inputs x̂s.

The DL models considered in this work are the CNNs aiming at classifying the input
images x into a class y ∈ ∆. In such a scenario, the proposed HE-DL makes available the
deep-learning-as-a-service computing paradigm into two different modalities:

• recall: the processing DΘ(·) provides the encrypted version ŷ of the final classifica-
tion y of x;

• transfer learning: the processingDΘ(·) provides the encrypted version of a process-
ing stage of the considered CNN applied to the input image x. The final classifica-
tion y is carried out on the user device thanks to a suitably-trained classifier (e.g., a
Support Vector Machine or a neural based classifier).

These two modalities will be detailed in the rest of the section, together with the descrip-
tion of the encryption and decryption phases, the approximation and encoding of CNNs,
the configuration of the encryption parameters, and the communication between the user
device and Cloud. Please refer to (Disabato et al., 2020) for details about the HE-DL im-
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Figure 8.2: A comparison of the plain and approximated CNN processing with the en-
crypted one. The layers’ parameters θ`s are omitted to simplify the notation.

plementation. Finally, Section 10.2 experimentally evaluates the HE-DL architecture in
both the modalities.

8.3.1 Encryption and Decryption
The encryption function E (x,Θ, kp) transforms (based on the HE-BFV scheme) a plain
input x into an encrypted one x̂ given the HE encryption parameters Θ with the support
of a public key kp. The decryption function D(ŷ,Θ, ks) operates on the encrypted output
ŷ of the computation DΘ(x̂), being x̂ the encrypted input. More specifically, D(ŷ,Θ, ks)
computes the plain output y given the same set of parameters Θ and the secret key ks
(corresponding to kp). The semantic of y depends on the considered working modality of
HE-DL:

• y is the classification label of the input x in the recall modality;

• y is an array of extracted features representing the values of the activation function
of a given layer of the CNN in the transfer learning modality.

8.3.2 Approximated and Encoded DL Processing
The proposed architecture HE-DL is general enough to employ a wide range of machine
and deep learning models. In this chapter, the focus is on CNNs for two main reasons.
First, CNNs are widely-used and effective solutions for image classifications. Second, for
most of their processing, CNNs are composed of addition and multiplication operations,
making them suitable candidates to be considered within a HE scheme.

Let f (·) be a CNN of M layers η(`)
θ`

with parameters θ` and ` = 1, . . . , L, aimed at
extracting features and providing the classification output y of an input image x.15

As mentioned above, in order to be used with HE, CNNs have to be approximated
by considering only computing layers and activation functions that are suitable for the

15The formalization of a CNN follows that of a Deep Learning Model in Section 4.2, being the CNN a DLM.
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considered HE-BFV scheme. Given that only addition and multiplication are allowed,
only polynomials functions can be computed directly, while non-polynomials operations
must be either approximated with a polynomial form or replaced with other (allowed)
operations. Similarly to what done in (Gilad-Bachrach et al., 2016), in the proposed HE-
DL architecture, the following rules allow to define the approximated CNN model D (·)
from the original CNN f (·):

• the ReLU activation function is replaced with a Square activation function that sim-
ply squares the input value;

• the max-pooling operator is replaced with the average one, with the division con-
verted to a multiplication by 1

fs
, being fs the pooling size (fixed and a-priori known).

• Rules to approximate other non-polynomial layers can be found in (Gilad-Bachrach
et al., 2016).

The result of this approximation is a CNN ϕ (·) whose processing layers ϕ(`)

θ̂`
can be en-

coded with the considered HE-BFV scheme (Figure 8.2a). To simplify the notation, the
parameters of each layer θl (or θ̂l when encoded) are omitted from now on. It is essential
to point out that, after replacing the non-polynomial layers, the model has to be trained
again. This is necessary because the weights of the plain model are not valid anymore if
the activation functions or other layers have been replaced by different ones. Hence, to pro-
vide a deep-learning-as-a-service, D (·) must be retrained with the same settings in which
the plain one was trained (e.g., same dataset and same learning algorithm). Obviously, if
the original model f (·) already contains HE-compatible processing layers, this procedure
is not necessary. Moreover, this approximation process can introduce a variation in the
accuracy between f (·) and D (·). This aspect will be explored in Section 10.2.

In order to work with the encrypted inputs x̂s, the suitably approximated CNN D
must be encoded with the parameters Θ as defined by the HE-BFV scheme leading to the
encoded CNN DΘ(·) (Figure 8.2b).

Summing up, the HE-based encrypted processing (Figures 8.1 and 8.2) can be formal-
ized as follows:

y = D (ŷ,Θ, ks) = D (DΘ (x̂) ,Θ, ks) = D (DΘ (E (x,Θ, kp)) ,Θ, ks) , (8.1)

where ŷ represents the input x’s encrypted classification.

8.3.3 The Two Modalities: Recall and Transfer Learning
As mentioned above, the deep-learning-as-a-service computing paradigm has two different
modalities, recall and transfer learning. The difference between them lies in how Eq. (8.1)
is implemented. The former operates on the decrypted output y of the CNND last layerM
(typically a softmax on top of a classification layer), whereas the latter one works on the
features x˜̀ extracted at a given CNN level ˜̀, with 1 ≤ ˜̀< M (typically a convolutional
or pooling one). The two modalities are detailed in what follows.

Recall. In recall, the user relies on one of the ready-to-use encoded CNN DΘ(·)s to
classify the image x. More precisely, the user wants the image x to be encrypted into
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x̂ and to be forwarded through all the layers of the encoded CNN DΘ, obtaining the final
encrypted result ŷ of the classification task, without transmitting the image x to the service
provider. The assumption underlying this modality is that the chosen model DΘ(·) has
been trained to classify images of the same domain of the input image x.

Transfer Learning. When the application problem of the user is not matched by any
model DΘ(·)s (e.g., the user wants to distinguish between cars and bikes while available
models have been trained to classify digits or faces), the transfer learning modality comes
into play. In fact, following the transfer learning paradigm (Yosinski et al., 2014; Alippi
et al., 2018), the processing of a pre-trained CNN can be split into two parts: feature
extraction and classification. The feature extraction processing represents a pre-trained
feature extractor able to feed an ad-hoc classifier trained on the specific image classifica-
tion problem (that can be different from the one originally used to train the CNN). This
allows to use part of a pre-trained CNN and train only a final classifier (hence reducing
both the training complexity and the number of required images).

In our scenario, the encrypted input images x̂s will be forwarded through the encoded
model DΘ up to a layer ˜̀. More specifically, DΘ comprises layers from 1 to ˜̀, with
1 ≤ ˜̀ ≤ L, whereas all the (possibly) remaining layers, from ˜̀+ 1 to the final one L
remain plain and (might) operate on the decrypted output of layer ˜̀, i.e.,

x˜̀ = D
(
D ˜̀

Θ (E (x,Θ, kp)) ,Θ, ks

)
, (8.2)

whereD ˜̀
Θ represents the encoded CNND up to layer ˜̀with parameters Θ. In this scenario,

the features extracted from the encrypted input x̂ are the output of the model D ˜̀
Θ.

It is noteworthy to point out that following such an approach, the user can locally train
a classifier on the decrypted vectors x˜̀ as follows. A set of K images

{
x1, . . . , xK

}
is

sent to HE-DL that provides the corresponding outputs
{
x̂1

˜̀, . . . , x̂
K
˜̀

}
, that are locally

decrypted into
{
x1

˜̀, . . . , x
K
˜̀

}
. The combination of this set of decrypted features with the

corresponding labels (that are available to the user) defines a training set to locally train a
classifier. Once trained, the system is ready-to-use: the user can send an encrypted image
x̂ to the Cloud, receive the CNN output x̂˜̀, decrypt it to x˜̀, and apply the classifier on x˜̀

to obtain the predicted classification label ŷ of x.

8.3.4 Encryption Parameters
As already mentioned, the choice of the HE parameters Θ = {m, p, q} is critical to get
correct processing of the encrypted input x̂. The choice for q is tough and influences the
security of the scheme. For this purpose, SEAL library (SEAL, 2019) provides a specific
function that, given the polynomial modulus degree m and the desired AES-equivalent
security level (sec), returns a suggested value for q (Laine, 2017). In this work, sec has
been set to 128 bits, which is the default value of SEAL. The value of q has been set
accordingly. Then, the other parameters possibly values are m ∈ {1024, 2048, 4096}
and p ∈ {32, 712, 37780, 1.3 · 105, 1.5 · 105, 2.6 · 105, 5.2 · 105, 6.0 · 105, 2.1 · 106, 1.3 ·
108, 1.5 · 108}, with the goal of having an initial NB big enough to carry out the required
CNN computation.

94



8.3. The Proposed HE-DL Privacy-Preserving Cloud-Based Architecture

8.3.5 Communication Between User Device and Cloud
The communication between the User Device and the Cloud is carried out through a JSON-
format message. More specifically, being an on-demand computation, clients have to per-
form a request to the online deep-learning-as-service provider, including:

• a set of parameters, including the encryption parameters m and p, the security level
sec, the identifier of the chosen DLM DΘ(·), and the specific layers to end the
computation at (which will determine the modality, i.e., recall or transfer learning);

• the encrypted input x̂ on which the computation is performed, which has to be en-
crypted using a public key generated according to the encryption parameters.

The provider publishes information about the available models. Once the computation has
been carried out, the Cloud responds with a JSON message containing the encrypted result
vector ŷ (or x̂˜̀ in transfer learning mode).

95





Part IV

Experimental Results
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CHAPTER9
Evaluating Deep Tiny Machine Learning

Solutions

This chapter aims to collect the results about proposed solutions for Deep Tiny Machine
Learning in Part II.

9.1 Evaluating the Methodology to design Deep Tiny Machine
Learning

The methodology to design Deep Tiny Machine Learning solutions, presented in (Alippi
et al., 2018) and detailed in Section 5.1, has been evaluated in two steps. At first, Sec-
tion 9.1.1 tests the methodology synthetically on different configurations of the number of
layers m̃, the number of fractional digits as configurations q̃ in precision scaling, and the
kind of classification algorithm K. After that, Section 9.1.2 evaluates the methodology on
two off-the-shelf embedded platforms: the STM32F7 MCU, with a 167 MHz Cortex-M7
core, 512 KB of RAM, and no operating system; and the Raspberry Pi 3B, with a 1.2 GHz
ARM-11 core and 512 MB of RAM.

9.1.1 Synthetic analysis on image recognition
The synthetic evaluation considers different configurations of m̃, q̃, D, all with δ = 3
classes to classify among. The DLMs are the AlexNet (Krizhevsky et al., 2012) and the
VGG-16 (Simonyan and Zisserman, 2014). Instead, the classification algorithms K are an
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Figure 9.1: The results of the methodology to design Deep TML solutions for embedded
systems or IoT units, with δ = 3 classes, different DLMs, and classifiers K.

SVM, a Random Forest with 100 Decision Trees, a k-Nearest Neighbors (with k equal to
the ceiling of the square root of the training set number of samples), and a single Decision
Tree. All the experiments rely on the Caltech 256 benchmark, which has 256 classes with
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Table 9.1: Porting an AlexNet-based image-recognition application to an STM32F7 MCU
and a Raspberry Pi 3B, with m̃ = 5, i.e., the first convolutional layer along with the
local response normalization, and the max-pooling.

STM32F7 Raspberry Pi 3B

CPU ARM M7@167 MHz ARM11@1.2 GHz
RAM 512 KB 1024 MB

m̄ 102 KB 102 KB
c̄ 100 · 106 100 · 106

m̃ 5 5 5 5
q̃ 8 8 8 4

Filter-Selection? yes no no no
No. Filters 1 1 - -

K Decision Tree Decision Tree SVM SVM

â 87.9 87.9 99.3 99.4

mD̂ 1.4 KB 1.4 KB 68 KB 34 KB
cD̂ 1.09 · 106 1.09 · 106 52.7 · 106 52.7 · 106

Inference Time (ms) 2700 178 8687 8687

at least 80 images per class, and it is not the same dataset used in the DLMs training.
The figure of merit is the accuracy of the resulting approximated Deep TML algorithms
D̂s, computed as an average of 100 experiments with 70-30 as training-test split and the
number of samples per class equal to the minimum between two-hundred and the minimum
number of samples in the considered classes.

Figure 9.1 shows the experimental results. The first observation is that task drop-
ping and precision scaling have minimal effects on classification accuracy. This allows to
support the idea of the Deep TML model D̂ as an application-specific and approximated
version of D. More in details, Figures 9.1a and 9.1b compare the accuracy w.r.t. the mem-
ory footprint and the computational load for different Deep TML solutions D̂ derived from
the AlexNet, respectively, whereas Figures 9.1c and 9.1d those derived from the VGG-16.
Interestingly, the methodology is able to significantly reduce the memory footprint as well
as the computational load, with minimal drops in accuracy. For instance, with the SVM
classifier and the AlexNet, the methodology provides a reduction from 227.5 to 80.2 MB
of the memory footprint and from 721 to 704 millions of operations in computational load,
by moving from the configuration (m̃ = 19, q̃ = 8) to (m̃ = 17, q̃ = 4). This meaningful
reduction in memory footprint and computational load comes at the expenses of a negligi-
ble reduction in â, i.e., less than 1%. Similarly, there is no drop in accuracy when moving
from the configuration (m̃ = 35, q̃ = 8) to (m̃ = 33, q̃ = 4) of the VGG-16, with a
reduction of the memory footprint from 537 to 253 MB, i.e., more than 50%.

9.1.2 Porting the Approximated AlexNet to Two Off-the-Shelf Em-
bedded Platforms for Image Recognition

The proposed methodology has then be tested on an image-recognition embedded appli-
cation whose technological targets are two well-known off-the-shelf embedded platforms:
the STM32F7 microcontroller and the Raspberry Pi 3B (see Table 9.1 for their technolog-
ical details).

To allow a fair evaluation of the proposed methodology, the considered image-recog-
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nition application has been modeled as a two-class classification problem (i.e., δ = 2)
aiming at distinguishing between the class people and car of the Caltech-256 benchmark.
The resulting dataset has 209 images of people and 116 of cars. The starting DLM is the
AlexNet, the constraint on memory has been set to a fifth of the STM32F7 available RAM,
i.e., m̄ = 102 KB, and the computational constraint to c̄ = 100 · 106.

Table 9.1 shows the methodology results under these settings. The methodology is
capable of designing effective Deep TML models D̂ satisfying the constraints given by
the technology. In particular, for the STM32F7, the selected configuration of D̂ refers
to m̃ = 5 and q̃ = 8, that corresponds to the first convolutional block of the AlexNet,
i.e., the convolution, the local response normalization, the non-linear activation, and the
max-pooling. Moreover, a filter selection mechanism has been applied to further reduce
the memory footprint by selecting one filter out of 96. The resulting memory footprint is
mD̂ = 1.4 KB, with a computational load cD̂ = 1.09 · 106 and an accuracy â = 87.9%,
where the employed classifier is a Decision Tree. The inference time of a simple –non-
optimized– C-implementation, measured with an oscilloscope, is 2.7s.

The results about the Raspberry Pi 3B show â, mD̂, and cD̂ for three different config-
urations, i.e., q̃ = 8 and filter-selection, q̃ = 8 without filter-selection, and q̃ = 4 without
filter-selection. As expected, when the Raspberry Pi 3B operates in the same configura-
tions as the STM32F7, the only difference is in the execution time. Interestingly, with an
SVM classifier, very high accuracy can be achieved with a model with only 34 KB as mem-
ory footprint.16 The high inference time is probably due to the considered non-optimized
C implementation.

9.2 Early-Exits Evaluation

The aim of this section is to present the experimental evaluation of the Early-Exit DLMs
equipped with Gate-Classifiers, presented in paper (Disabato and Roveri, 2018) and de-
scribed in Section 5.2. In particular, two Gate-Classification Early-Exit DLMs have been
evaluated on both their computational load and classification ability. The Section organi-
zation follows. Section 9.2.1 presents the two employed models, whereas Section 9.2.2
and 9.2.3 detail the considered datasets as well as the figures of merit adopted in the eval-
uation. Finally, Section 9.2.4 presents the evaluation.

9.2.1 The employed Gate-Classification DLMs
This experimental section employs two Early-Exit DLMs based on Gate-Classification,
that have been also considered in other part of this document (e.g., see Chapter 7), i.e.,
the 6-layer EX-DLM (see Figure 7.2a and Table 7.1a for details) and the EX-Alexnet (see
Figure 10.1a and Table 7.1b for details), with slightly different Gate-Classifier and final
classifier to take into account the specific classification problems.

The architecture of the 6-layer EX-DLM is designed for the CIFAR-10 dataset, with
the following minor architectural differences when operating on the MNIST one: the first

16The q̃ parameter mainly affects the memory occupation, while its effect on the execution time is strictly
dependent on the specific implementation (and platform): in the hardware platforms when considering the use
of 16-bit FP (the simplest implementation of q̃ = 4) in the C code does not reduce the execution time since
the GCC-compiler limits the usage of this data-type to storage purposes only, casting the operands to 32-bit FP
during processing.
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convolutional layer has 32 filters (instead of 64), whereas both the Gate-Classification
layer and the final classifiers have two fully-connected layers of 1024 and 10 neurons
(instead of three layers with 384, 192, and 10 neurons).

9.2.2 Datasets
The following four datasets have been considered in the evaluation:

• MNIST (LeCun et al., 1998) is the famous dataset of the handwritten digits com-
posed of 70000 grey-scale 28x28 images belonging to 10 classes. In particular,
there are 55000 images for training, 5000 for validation, and 10000 for testing;

• CIFAR-10 (Krizhevsky et al., 2009) is a dataset of 60000 RGB 32x32 images be-
longing to 10 categories (i.e., water, land and air vehicles, and animals). In particu-
lar, there are 45000 images for training, 5000 for validation, and 10000 for testing;

• Cats-Dogs (Elson et al., 2007) dataset has 25000 various-size RGB images belong-
ing to exactly two classes, as its name says. In particular, there are 15000 images
for the training, 5000 for validation, and 5000 for testing;

• Stanford Dogs (Khosla et al., 2011) is a dataset extracted directly from ImageNet
dataset (Deng et al., 2009) with approximately 19000 various-size RGB images be-
longing to 120 classes of dog breeds. In particular, there are 12000 images for
training and 7000 images for testing (here, due to the limited number of images in
the dataset, γ is learned on the training set) and balanced by forcing the maximum
number of images per class to 200.

In particular, in our experimental analysis, the MNIST and CIFAR-10 datasets have been
considered for the 6-layer EX-DLM, whereas the Cats-Dogs and Stanford Dogs datasets
for the EX-AlexNet.

9.2.3 Figures of Merit
The experimental analysis employs the following nine figures of merit:

• â1, the accuracy of Gate-Classification layer;

• âM , the accuracy of the other classifier, i.e., at the end of the whole DLM pipeline;

• â, the accuracy of the Early-Exit DLM;

• γ̂, the learned value of the parameter γ;

• ζ1, ζM , the percentages of exits at the Gate-Classification layer and at the end of
DLM, respectively;

• c1, cM , with an abuse of notation, the complexities of DLM up to the Gate-Classifi-
cation layer and of the whole DLM, respectively;

• c(γ̂), the mean computational complexity of the Early-Exit DLM according to the
value γ̂.

Results are averaged over five runs and the accuracies are computed as mean and standard
deviation (to provide a confidence interval).
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Table 9.2: The comparison between classic DLMs and Early-Exit-based ones.

MNIST CIFAR-10 Cats-Dogs Stanford Dogs
(LeCun et al., 1998) (Krizhevsky et al., 2009) (Elson et al., 2007) (Khosla et al., 2011)

E
ar

ly
-E

xi
tD

L
M

â1 0.976± 0.006 0.765± 0.004 0.814± 0.002 0.028± 0.000
âM 0.986± 0.001 0.776± 0.003 0.870± 0.002 0.172± 0.003
â 0.983± 0.003 0.765± 0.004 0.852± 0.003 0.150± 0.007

ζ1 0.967 1.000 0.772 0.113
ζ2 0.033 0.000 0.228 0.887

γ̂ 0.644 0.100 0.995 0.062

c1 7 059 968 8 768 640 353 260 192 353 267 74
cM 20 316 672 30 147 136 744 215 200 744 706 080
c(γ̂) 7 497 439 8 768 640 442 397 934 700 473 548

Classic
DLM

â 0.985± 0.001 0.772± 0.002 0.868± 0.003 0.173± 0.004

c 13 883 904 25 254 592 720 335 648 720 834 080

9.2.4 Experimental Evaluation

Table 9.2 show the experimental results. Several relevant comments arise.
First of all, as expected, the computational loads c(γ̂) of Early-Exit DLMs are signif-

icantly lower than those of traditional DLMs c. This is a crucial point for the proposed
solution, whose goal is to reduce the computational load of DLMs, making them fea-
sible to be executed in computing systems characterized by constraints on computation.
The reduction in computational load is quite impressive for the Gate-Classification on
the MNIST (46.3%), the CIFAR (70.9%), and the Cats-Dogs (39.6%). The reduction on
the Stanford Dogs is significantly smaller –only 2.7%– probably due to the peculiarity of
the classification problem (120 classes and no more than 200 images per class). These
gains are justified by the high percentages ζ1 of inputs classified at the Gate-Classification
layer. More specifically, in the 6-layer DLM on MNIST, only 3.3% of the images pro-
ceed up to the end. The same DLM on CIFAR is even more interesting, showing that all
the images are classified at the Gate-Classification layer. The EX-AlexNet on Cats-Dogs
provides a very high ζ1 = 0.772, but, on the contrary, on the Stanford Dogs ζ1 = 0.113
meaning that a high-enough posterior probability rarely supports the classification at the
Gate-Classification layer.

Second, the reduction in computational load comes at a very low or even negligible
reduction in the classification accuracy. This is evident by comparing the classification
accuracies â provided by the Early-Exit DLMs and those of “traditional” DLMs. Inter-
estingly, the classification accuracy provided by the 6-layer EX-DLM on the MNIST is
statistically indistinguishable from the one provided by the traditional DLM (but with a
meaningful reduction in the computational load).

It is also worth noting that the classification accuracy âM provided by the final clas-
sifier is larger than the one provided by the Gate-Classification layer â1. This is reason-
able since the final classifier is able to exploit the processing of the whole DLM. What
is particularly interesting is that âM s are close to or slightly higher than the âs of the
“traditional” DLMs. This is very promising, proving that the introduction of Early-Exits
(Gate-Classification layers) significantly reduces computational load without affecting the
model learning.

104



9.3. Adaptive Deep Learning Models Results

9.3 Adaptive Deep Learning Models Results

The aim of this section is to present the experimental evaluation of the adaptation mech-
anism for DLMs in presence of concept drift, presented in paper (Disabato and Roveri,
2019) and described in Section 5.3. Section 9.3.1 presents the employed DLMs and
datasets, whereas Sections 9.3.2 and 9.3.3 detail the considered concept drifts and the
experimental settings, respectively. Finally, Section 9.3.4 comments the results.

9.3.1 The Employed DLMs and Datasets

This experimental section relies on two Convolutional Neural Networks as DLMs: the
AlexNet (Krizhevsky et al., 2012) and the Cat-Dog CNN, i.e., a variant of the AlexNet
where the final classification layer has been replaced with a 4096x2 fully-connected layer.
The latter DLM has been trained on the Cat-Dog dataset (Elson et al., 2007) for 25 epochs
with a learning rate of 0.001, a momentum of 0.9, and a 70-30 split of training-validation
images.

In addition to the already mentioned Cat-Dog dataset (Elson et al., 2007) that has two
classes –Cats and Dogs– of 12 500 images each, we consider the ImageNet (Dean et al.,
2012), that has 1000 classes of about 1 200 images each.

9.3.2 The Employed Concept Drift

Two different concept drifts have been considered:

• Class Change refers to the scenario where one or more classes in ∆ change its/their
information content. In particular, in our experiments, the number of classes that
change their information content ranges from 1 to δ − 1.

• Camera Degradation models a problem affecting the input source that induces a
reduction in brightness, saturation or contrast whose intensity ranges from 10% to
75%. Both the type of degradation and its intensity are randomly selected.

In each experiment, the concept drift is assumed to happen after 200 · δ inputs.

9.3.3 Experimental Settings

This experimental section compares two different solutions:

• Pure Active DLM, where the adaptation procedure only retrains the last classification
layer K(M) of the considered DLM,

• Adaptive DLM, that implements the whole solution proposed in Section 5.3.

Needless to say, both the Pure Active and Adaptive DLMs share the same CDT, with
threshold h = 50, and RP as well as the same learning algorithm used during the retrain-
ing.
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Figure 9.2: The experimental evaluation of the CDT and the RP on the AlexNet DLM and
the ImageNet dataset.i
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(b) The results with Ξ = 700 · δ.

Figure 9.3: The pipeline exploration results: the distribution of ˜̀on the AlexNet and the
Cat-Dog DLMs, with different values of Ξ.

9.3.4 Experimental Evaluation
Evaluating the CDT and the RP. A preliminary analysis of the CDT and RP has been
carried out with the AlexNet and a subset of the ImageNet dataset. The number of classes
δ (randomly chosen within those of ImageNet) ranges from 2 to 5, with one of them
changing when Class Change concept drift is employed.

Figure 9.2 shows the results of this analysis. Two main comments arise.
First, the considered CDT provides very high detection accuracy for the Class Change

concept drift. In fact, Figure 9.2a shows that the percentage of false positive and negative
detections is very low for every considered value of δ. Similarly, Figure 9.2b shows the
Detection Delay –the difference between the change detection and the change time– and
the Refined Delay –the difference between the estimation tr and the real change time–
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Table 9.3: The increase in accuracy (minimum, mean, and maximum) of the Adaptive
DLM, w.r.t. the Pure Active DLM, with different number of training epochs E.

DLM δ E = 10 E = 20 E = 30

min mean max min mean max min mean max

2 0.001 0.016 0.055 0.000 0.012 0.037 0.000 0.011 0.037

AlexNet 3 0.002 0.026 0.049 0.006 0.028 0.048 0.006 0.028 0.048

5 0.004 0.021 0.040 0.003 0.039 0.090 0.003 0.040 0.092

whose values are low for Class Change concept drift. As expected, the detection delay
increases with δ.

Second, the CDT is not effective in detecting camera degradation, as shown by the
high numbers of false-negative detections in Figure 9.2a and by the high detection and
refined delays in Figure 9.2b. This is probably justified by the fact that AlexNet is robust
to such kind of changes.

Evaluating the Adaptation Module. The second part of this experimental analysis aims
at evaluating the proposed adaptation module. The settings employ two different values of
Ξ, i.e., 100δ and 700δ and the following set of convenient layers

L = {4 : pool1, 8 : pool2, 9 : conv3, 11 : conv4, 15 : pool5}

within both the considered DLMs.
To ease the comparison, each detection is assumed to be correct (i.e., there are no false

positive or negative detections) and that its refined delay is always equal to 0.
Figure 9.3 shows the distribution of the first layer ˜̀ for which the null-hypothesis is

rejected. Two comments arise. First, when the DLM is tailored to a specific application, as
in the case of Cat-Dog CNN, the distribution of ˜̀within L is significantly shifted towards
the first layer (in this case, the layer 4, namely pool1). This behavior suggests that the
features are application-specific. Thus the adaptation of the whole pipeline is required in
almost all cases. Second, there are small difference between the results with Ξ = 100δ
(Figure 9.3a) and with Ξ = 700δ (Figure 9.3b), meaning that the pipeline exploration is
effective even with a reduced amount of input images.

Finally, Table 9.3 analyses the accuracy improvements of the proposed Adaptive DLM
with respect to the Pure Active DLM adapting only the final classification layer, with dif-
ferent number of training epochs E = {10, 20, 30}. In all the configurations, the values
are non-negative, meaning that the Adaptive DLM overcomes the Pure Active DLM. More-
over, these results corroborate the idea of adapting the pipeline of the DLM instead of the
final classification layer only.

9.4 On-Device Tiny Machine Learning Results

The proposed on-device deep TML solutions in Chapter 6 and papers (Disabato and
Roveri, 2020; 2021) have been validated on two different application scenarios (described
in Section 9.4.1), two types of concept drift (defined in Section 9.4.2) and three different
Micro-Controller Units (MCUs) from STMicroelectronics (whose technological details
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are given in Section 9.4.6). In addition, the rest of the section is organized as follows. Sec-
tion 9.4.3 discusses the experimental settings, whereas Sections 9.4.4 and 9.4.5 provides
the experimental results. Finally, Section 9.4.6 presents the porting of the Hybrid Tiny
kNN algorithm on the three considered MCUs.

It is noteworthy to highlight that TML in presence of concept drift is an entirely new
research area. To the best of our knowledge, this is the first work in the related literature
proposing adaptive mechanisms for TML running on MCUs.

9.4.1 Application Scenarios and Datasets
In this experimental section, the following two application scenarios have been considered:

• the speech-command identification scenario whose goal is to correctly recognize an
user-speech command present in a one-second long audio clip. For this purpose,
the Synthetic Speech Commands Dataset (Buchner, 2017; Warden, 2018) has been
considered. This dataset comprises 30 classes of commands, corresponding, for ex-
ample, to “up”, “left”, “yes”, “go”, or a number from “zero” to “nine”. Moreover, the
audio files within the dataset comprise different kinds of voices as well as different
types of noisy classes.

• the image classification scenario whose goal is to classify an image containing ex-
actly one object. The well-known ImageNet (Deng et al., 2009) dataset, comprising
1000 classes, has been considered.

9.4.2 The Considered Concept Drift affecting P
Two different kinds of concept drift affecting the data-generation process P have been
considered:

• the addition of noise on x. This type of concept drift models the scenario where
a failure on the microphone acquiring the audio clip occurs. To achieve this goal,
the noisy variant of each class within the Synthetic Speech Commands Dataset is
considered after the change;

• a change in the classification problem, i.e., a variation in the set of classes ∆.

9.4.3 Experimental Settings
In this experimental analysis, the considered feature extractor % refers to the first layer of
the well-known ResNet-18 CNN (He et al., 2016). This layer comprises a convolutional
layer with 64 7x7 three-dimensional filters with stride 2, a batch-normalization layer, a
ReLU non-linearity, and a 3x3 max-pooling layer with stride 2. The dimensionality reduc-
tion operator ς discards 63 out of 64 filters by keeping only the one with the highest mean
activation on the ImageNet benchmark. Consequently, the resulting DL model ς ◦ % is a
single 7x7x3 filter that has 147 parameters and occupies 588B with a 32-bit floating-point
representation.

In the speech-command identification scenario, the audio waveform (sampled at fa =
22050 Hz) is converted into a spectrogram through a Short-Time Fourier Transform with
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Table 9.4: The impact of condensing techniques (C) in both the application scenarios
and in stationary conditions, when no update is done. A SVM and Neural Network
(with one fully-connected layer) classifiers have been added as baselines. The results
represent the mean ± standard deviation accuracy (αδ) and memory (mδ) over 20
experiments with δ = {2, 3, 5} classes. The memory is expressed in terms of number
of training samples within T , with |T | = 100 · δ.

(a) The condensing impact in the Speech Command Identification scenario.

Algorithm α2 m2 α3 m3 α5 m5

SVM 0.93±0.05 138±17 0.88±0.04 244±16 0.81±0.05 447±18
NN–FC1 0.71±0.14 2 0.75±0.06 3 0.49±0.12 5

kNN 0.89±0.06 200 0.82±0.06 300 0.74±0.07 500
kNN + C 0.88±0.06 64±20 0.81±0.04 128±22 0.73±0.06 255±33

(b) The condensing impact in the Image Classification scenario.

Algorithm α2 m2 α3 m3 α5 m5

SVM 0.73±0.07 188±9 0.61±0.05 292±6 0.46±0.05 496±4
NN–FC1 0.60±0.08 2 0.45±0.05 3 0.29±0.05 5

kNN 0.66±0.07 200 0.49±0.07 300 0.33±0.06 500
kNN + C 0.66±0.07 119±18 0.51±0.06 214±19 0.35±0.04 414±16

windows of size nfft = 512 and a step hl = 512 and then converted into a colored one
by means of a colormap. In the image classification, instead, the images are resized to
224x224x3 before being passed as input toD. The resulting one-second audio has a mem-
ory footprint of 88 200B, the image 602 112B, whereas the resulting colored spectrogram
of size 257x44x3 requires 135 696B.

The change always occurs after half of the available data, i.e., 500 samples per class
in the image classification scenario and 750 in the speech command identification one.
Finally, 100 samples per class are provided to all the algorithm as initial training set T ,
i.e., |T | = 100 · δ. Experimental results are averaged over twenty runs.

9.4.4 Evaluating Effects of the Pre-Processing Through Condensing
This section aims at studying the impact of condensing the kNN K training set T with
Algorithm 6.2. To achieve this goal, the proposed TML-CD D is configured with the
block ς ◦ % presented in Section 9.4.3 and an initial training set T with size |T | = 100 · δ.
Then, the classification capabilities of D when condensing is employed are evaluated in
stationary conditions, i.e., no adaptation is carried out during the operational life of D. In
addition to D without or with the initial condensing (referred to as kNN and kNN+C in
the following, respectively), the comparison comprises two well-known classifiers, i.e., a
Support Vector Machine (SVM) and a single fully-connected layer neural network classi-
fier (NN–FC1). Both the classifiers are applied on the same features of the kNN K, i.e.,
those extracted by ς ◦ % (on the initial training set T ). Moreover, the SVM is trained
until convergence, whereas the NN–FC1 is trained for 3 epochs with stochastic gradient
descent, no momentum, and a learning rate η ∈

[
1e−2, 5e−3, 1e−3, . . . , 1e−5

]
. In our

experiments, only the best performing NN–FC1 classifier is shown. It is crucial to stress
that an unfeasible training procedure in MCUs characterizes both the SVM and the NN,
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so they cannot be considered for the on-device training phase.
Table 9.4 shows the result in the proposed application scenarios with a different num-

ber of classes. The SVM and the NN–FC1 classifiers present the highest and worst accu-
racy in all the considered application scenarios, respectively. The proposed TML solution
D (without condensing) shows accuracies smaller than the SVM classifier by 4 to 8% in
speech command identification and 7 to 13% in image classification scenarios. As ex-
pected, condensing the training set T has a limited impact on the accuracy (at most 1%
drop in speech command identification scenario). However, it allows to reduce the mem-
ory requirements significantly. Without considering the NN classifier, D with condensing
is the algorithm providing the lowest memory demand.17 In the speech command iden-
tification scenario, the number of stored samples indeed ranges from 32 to 50% of the
provided samples (with δ from 2 to 5), representing the 46 to 57% of the ones required by
the SVM, i.e., its support vectors. In the image classification scenario, the memory saving
is significantly lower, with the SVM retaining almost all the samples as support vectors
and the condensed D storing 60 to 82% of them. From now on, the proposed TML-CD D
is assumed to always rely on condensing algorithm in the configuration and testing stages
(when available).

9.4.5 Experimental Results in Presence of Concept Drift
Figure 9.4 compares the three proposed adaptive algorithms, i.e., CIT, Active Tiny kNN,
and Hybrid Tiny kNN, in the two considered scenarios with different numbers of classes δ.
We considered two different figures of merit: the mean ± std accuracy (the curve of each
experiment is the convolution of the correct predictions of each experiment with a 100-
dimensional filter with all values of 0.01) and memory footprint, measured as the number
of samples within the training set T , over all the experiments. It is crucial to point out
that the memory footprint does not include any other auxiliary source of memory, e.g., the
history window W of the Active Tiny-kNN algorithm (that has a size of $ = 100 · δ).

As a comparison, this experimental analysis includes also a continuously learning
single-layer fully-connected classifier (NN–FC1) operating on the features extracted by
ς ◦ % and performing a back-propagation step for each incoming sample. The NN–FC1 is
trained for 3 epochs with stochastic gradient descent, no momentum, and a learning rate η,
with η ∈

[
1e−2, 5e−3, 1e−3, . . . , 1e−5

]
. Moreover, during the testing stage, the learning

rate for back-propagation might be reduced (η ∈
[
1e−3, 5e−4, 1e−4, . . . , 1e−6

]
). Among

all the possible combinations, Figure 9.4 shows only the one with the largest accuracy.
In more detail, Figure 9.4 shows the accuracy and memory footprint in five differ-

ent configurations: the Speech Command Identification scenario where one-class changes
with δ = {2, 3, 5} classes (Figures 9.4a, 9.4d, and 9.4e) and with the introduction of noise
with δ = 2 (Figure 9.4b), and the Image Classification scenario where one-class changes
with δ = 2 (Figure 9.4c).

The NN-FC1 baseline is the worst algorithm in almost all the cases, with low capabili-
ties of recovering after change when δ > 2 (Figures 9.4d and 9.4e). The noise has a limited
impact on the accuracy, as shown in Figure 9.4b, whose small degradation is detected nei-
ther by the Active nor by the Hybrid Tiny kNN algorithms. With the other changes, the

17The NN–FC1 memory footprint corresponds to that of its weights, which are equal to the number of classes
multiplied by the size of classifier inputs. Since the input size is the same for all the classifiers, the NN-FC1
memory is that of δ samples.
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(b) 2-class Speech Command Identification where
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(c) 2-class Image Classification where a class
changes after half samples.

Figure 9.4: The mean accuracy and the number of samples to be kept in K’s training set
T over time of the three proposed adaptive algorithms and a continuously learning
Neural Network (with one fully-connected classifier). The plots represent the mean ±
standard deviation over 20 experiments with δ = {2, 3, 5} classes and the considered
scenarios/changes. The algorithms receive as input a training set T , with |T | = 100·δ.

proposed algorithms work as expected. On the one hand, the (passive) CIT algorithm con-
tinuously improves over time, at the expense of an unbounded memory growth (in these
experiments, none of the approaches detailed in Section 6.3.1 to control it has been consid-
ered). Moreover, in all the considered scenarios, the slope of the samples’ curve increases
at the change time, highlighting the accuracy drop due to the change itself. On the other
hand, the Active kNN algorithm is able to recover after a change keeping its memory foot-
print nearly constant and significantly lower than the size of history windowW (not shown
in the Figure 9.4) due to condensing. Finally, the Hybrid Tiny kNN algorithm combines
the advantages of both the CIT and the Active Tiny kNN. It can recover faster than the two
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(d) 3-class Speech Command Identification where a class changes after half samples.i
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(e) 5-class Speech Command Identification where a class changes after half samples.

Figure 9.4 (Cont.): The mean accuracy and the number of samples to be kept in K’s
training set T over time of the three proposed adaptive algorithms and a continuously
learning Neural Network (with one fully-connected classifier). The plots represent the
mean ± standard deviation over 20 experiments with δ = {2, 3, 5} classes and the
considered scenarios/changes. The algorithms receive as input a training set T , with
|T | = 100 · δ.

other algorithms in all the considered scenarios and keep the memory footprint under con-
trol (by taking into account also the Active Tiny kNN history window memory footprint,
the Hybrid Tiny kNN has the lowest footprint). Moreover, it shows the best accuracy, be-
ing overcome by CIT only when it saturates the maximum size of its training set T that is
here fixed to $ = 100 · δ. This effect is visible in particular in Figures 9.4d and 9.4e.

9.4.6 Porting the Hybrid Tiny kNN on the STM32 MCUs
This section aims to show the technological feasibility of the Hybrid Tiny kNN algorithm
in the Speech command identification scenario. To achieve this goal, we considered the
following three different MCUs:

• The STM32H743 is a high-performance MCU having a 480 MHz Cortex-M7 pro-
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(a) The results with δ = 2 classes.
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(b) The results with δ = 3 classes.

Figure 9.5: The mean accuracy of the Hybrid Tiny kNN when satisfying the technological
requirements of the STM32 boards. The plots represent the mean ± standard devia-
tion over 20 experiments in the 2-class Speech Command Identification where a class
changes after half samples. The algorithms receive as input a training set T , with
|T | = 50.

cessor, 1024 KB of RAM (split into five blocks of different speed), and 2048 KB of
Flash memory;

• The STM32F767 is a high-performance MCU having a 216 MHz Cortex-M7 pro-
cessor, 512 KB of RAM, and 2048 KB of Flash memory;

• The STM32F401 is a general-purpose MCU having a 84 MHz Cortex-M4 processor,
96 KB of RAM, and 512 KB of Flash memory.

The main technological constraint imposed by such board is the one on the memory, i.e.,
the maximum memory footprint of the Hybrid kNN algorithm cannot overcome the avail-
able RAM of each MCU (in the case of STM32H743 that limit is lowered to 512KB, i.e.,
the size of the fastest RAM block). To satisfy this memory constraint, we set the maxi-
mum training set size of the Hybrid Tiny kNN algorithm to |T | = 50. In addition, for
the STM32F401 board, the sampling frequency fa is reduced from fa = 22050Hz to
fa = 4410Hz as suggested in (Disabato et al., 2021a). This guarantees a strong reduction
in the memory footprint of the input audio (17 640B), the generated spectrogram with win-
dows of size nfft = 128 and step hl = 128 (65x35x3 occupying 27 300B), and the output
of the feature extractor (17x9 occupying 588B). Table 9.5 details the memory footprint of
the Hybrid Tiny kNN deployed for the STM32H743 and STM32F767 (Table 9.5a) and the
STM32F401 (Table 9.5b).

Figure 9.5 shows the effects of such technological choices in the considered scenario
when a class change after half samples with δ = {2, 3}. In that figure, the baseline is
the Hybrid Tiny kNN algorithm introduced in Section 6.3.3, where $ = 100 · δ. The
algorithms deployed on the MCUs exhibit a constant accuracy until the change with a
minimum gain due to passive adaptation (limited by the constraint on the training set size).
The gap w.r.t. the baseline algorithm is between 4 and 10% (15% to 25% when varying
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Table 9.5: The detailed memory footprint (with a 32-bit data type) of the Hybrid Tiny kNN
on the STM32 MCUs. The size of the training set T includes those of samples (see ς ◦%
output), their labels (32bit), and their timestamps (32bit).

(a) STM32H743 and STM32F767.

Size Memory Footprint (B)

Audio (ta = 1 s, fa = 22050 Hz) 1x22050 88 200
Spectrogram (nfft = hl = 512) 257x44x3 135 696

ς ◦ % (1 convolutional filter 7x7x3) 7x7x3 588
ς ◦ % output 65x11 2 860

K’s Training Set T 50 143 400

Total 370 744

(b) STM32F401.

Size Memory Footprint (B)

Audio (ta = 1 s, fa = 4410 Hz) 1x4410 17 640
Spectrogram (nfft = hl = 128) 64x35x3 27 300

ς ◦ % (1 convolutional filter 7x7x3) 7x7x3 588
ς ◦ % output 17x9 612

K’s Training Set T 50 31 000

Total 77 140

Table 9.6: The experimental execution times, measured in milliseconds, on three MCUs.
The measured times are: the spectrogram processing tp, the feature extraction tς◦%,
and the K prediction with 10 and 50 samples within T . The time tK,50 also shows the
worst prediction time when the adaptation is involved.

MCU tp tς◦% tK,10 tK,50

STM32H743ZI 22.9 18.6 2.0 2.9–6.2

STM32F767ZI 53.8 41.5 2.2 4.0–12.1

STM32F401RE 34.6 43.1 2.2 4.6–136.0

also the acquisition frequency). After the change, the algorithm with |T | = 50 recovers
as fast as the baseline, then the effects of the passive updates create a gap in the accuracy.
The algorithm that considers a variation also in the sampling frequency, instead, shows a
larger drop in accuracy (about 10 to 15%). However, its passive updates are able to recover
after the change, slightly improving the accuracy over time.

Table 9.6 reports the experimental execution times of the D blocks in the considered
MCUs. More in detail, the measured quantities are: the processing time tp needed to trans-
form the acquired 1s audio into a spectrogram; the feature extractor and dimensionality
reduction blocks’ execution tς◦%; and the kNN K prediction time tK,|T | with two different
cardinalities of its training set, 10 and 50 (the latter also shows the worst measured pre-
diction time when an adaptation has been made). Results are particularly interesting. In
particular, the processing and the feature extraction are the two predominant times, requir-
ing 41.5ms and 95.3ms on high-performance MCUs (the STM32H7 and the STM32F7)
and 77.7ms on a general-purpose one (the STM32F4, although on a smaller spectrogram).

114



9.4. On-Device Tiny Machine Learning Results

The K’s prediction and the adaptation, when employed, are negligible w.r.t. the other
times, being the 7 and the 15% on the STM32H7, the 4 and the 13% on the STM32F7,
and the 6 and the 175% on the STM32F4 (whose adaptation is the only exception). As a
final remark, the total time required from the processing of the acquired audio to the final
prediction, including the possible adaptations, is significantly lower than that of the acqui-
sition, showing the effectiveness of the proposed Hybrid Tiny kNN algorithm on three real
MCUs.
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CHAPTER10
Evaluating Deep and Wide Tiny Machine

Learning Solutions

This chapter aims to collect the results about proposed solutions for Deep and Wide Tiny
Machine Learning in Part III.

10.1 Evaluating the Methodology to Distribute Deep Learning
Models over an IoT System

The methodology –presented in the paper (Disabato et al., 2021b) and described in Chap-
ter 7– to distribute the computation of Deep Learning Models over an IoT System has
been validated on four DLMs and four families of IoT devices in a synthetic scenario of
distributed image classification for the control of a critical area (e.g., recognition of the
presence of target objects in a given area through image classification). The monitored
area is assumed to be a 30m square, and the positions of the IoT units, as well as those
of the sources sus and the sink f , are randomly selected following a uniform distribution.
The hyper-parameter L, setting the maximum number of CNN layers per IoT unit, ranges
from 1 to 5.

This section is organized as follows. Section 10.1.1 recaps the employed off-the-shelf
IoT units and their transmission technologies, whereas Section 10.1.2 describes the fig-
ure of merit. Then, Sections 10.1.3 and 10.1.4 describe the experimental results in two
different synthetic IoT systems, whereas Section 10.1.5 presents the results in a real IoT

117



Chapter 10. Evaluating Deep and Wide Tiny Machine Learning Solutions

system.

10.1.1 The considered IoT Units
Table 7.1c details the four considered IoT units: the STM32H7, a simple microcontroller
unit endowed with a 400 MHz-Cortex M7, 1 MB of RAM, and no operating system; the
Raspberry Pi 3B+ equipped with 1GB of RAM and a 1.4GHz quad-core ARM Cortex
A53; the OrangePi Zero with 256MB of RAM and a 1.2GHz quad-core ARM Cortex A7;
and the BeagleBone AI with 1GB of RAM and a 1.5GHz dual-core ARM Cortex A15.

The maximum memory usage m̄is has been defined as half of the available RAM,
i.e., 512KB for the STM32H7, 128MB for the OrangePi Zero, and 512MB for both the
BeagleBone AI and the Raspberry Pi3B+. The number of multiplications per second eis
has been defined as a tenth of the clock cycles (per number of cores). Hence, e = 40 for
the STM32H7, e = 300 for the BeagleBone AI (150 per core), e = 480 for the OrangePi
Zero (120 per core, if we consider the maximum frequency of 1.2GHz), and e = 560 for
the Raspberry 3B+ (140 per core). The constraints on the computational load c̄is have not
been considered since they are application-specific.

The transmission technologies the IoT units are equipped with are the Wi-Fi 4 (standard
IEEE 802.11n) and Wi-Fi HaLow (standard IEEE 802.11ah). The transmission range is
dt = 7.5m (a tenth of the minimum indoor range). The Wi-Fi 4 data-rate is ρ = 72.2
Mb/s, that corresponds to the single-antenna scenario with 64-QAM modulation on the
20 MHz channel (Xiao, 2005), whereas the Wi-Fi HaLow one is ρ = 7.2 Mb/s with a
single-antenna and 64-QAM modulation on the 2 MHz channel (Adame et al., 2014).

10.1.2 Figures of Merit
The methodology presented in Chapter 7 is evaluated on the “data production to deci-
sion making”-latency t defined as the time between input acquisition (at a source s) and
classification reception at f . To further clarify the effects of data communication and com-
putation, t is split into the transmission tt and the processing tp terms. The former term
refers to the sum of all transmission times (from a source to IoT units, between IoT units,
or from IoT units to the target unit f ); the latter sums the processing times on the IoT
units. These terms are computed as defined in Section 7.2, whereas additional sources of
delays, such as transmission handshakes or repeated transmissions (due to failures), have
been neglected.

For each setting, transmission technology, and configuration, the evaluated figure of
metric is the mean ± standard deviation of each latency term, i.e., t, tt, and tp, computed
on 500 randomly generated IoT systems.

It is noteworthy to point out that the accuracy has not been considered as a metric since
the proposed method does not introduce any approximation w.r.t the original CNN. Hence
there is no accuracy loss due to the placement of the CNN layers.

10.1.3 First IoT System: 30 IoT Units and Two Families
The first IoT system comprises N = 30 IoT units belonging to two technological fam-
ilies, i.e., the STM32H7 and the Raspberry Pi 3B+, with two settings for the IoT units
partitioning, i.e., 50%–50% and 90%–10%.

118



10.1. Evaluating the Methodology to Distribute Deep Learning Models over
an IoT System

Table 10.1: The methodology results with N = 30 STM32H7 and Raspberry Pi 3B+ IoT
units in the 50%-50% configuration scenario and a single (EX–)DLM te be placed.
The figure of merit (mean ± std) is the latency t (transmission tt plus processing tp).

(a) The results with the Wi-Fi 4 as adopted transmission technology.

5/6-layer DLM’s Latency t (ms) (EX–)AlexNet’s Latency t (ms)

L tt tp t = tt + tp tt tp t = tt + tp

N
o

E
ar

ly
–E

xi
t 1 7.49± 0.36 44.93± 0.00 52.42± 0.36 203.06± 36.85 1257.71± 0.00 1460.77± 36.85

2 1.78± 0.21 44.93± 0.00 46.71± 0.21 127.81± 28.49 1257.71± 0.00 1385.52± 28.49
3 0.48± 0.14 44.93± 0.00 45.41± 0.14 98.75± 26.63 1257.71± 0.00 1356.46± 26.63
4 0.37± 0.11 44.93± 0.00 45.30± 0.11 95.82± 26.54 1257.71± 0.00 1353.53± 26.54

M 0.28± 0.11 44.93± 0.00 45.21± 0.11 72.49± 24.08 1257.71± 0.00 1330.20± 24.08

E
ar

ly
–E

xi
t 1 5.87± 0.27 7.27± 0.00 13.14± 0.27 129.42± 28.29 598.92± 81.81 728.35± 86.17

2 0.34± 0.10 7.27± 0.00 7.61± 0.10 93.70± 24.49 596.19± 0.00 689.89± 24.49
3 0.29± 0.10 7.27± 0.00 7.57± 0.10 72.10± 22.08 596.19± 0.00 668.29± 22.08
4 0.28± 0.10 7.27± 0.00 7.55± 0.10 72.07± 22.08 596.19± 0.00 668.26± 22.08

M 0.28± 0.10 7.27± 0.00 7.55± 0.10 71.84± 22.07 596.19± 0.00 668.03± 22.07

(b) The results with the Wi-Fi HaLow as adopted transmission technology.

5/6-layer DLM’s Latency t (ms) (EX–)AlexNet’s Latency t (ms)

L tt tp t = tt + tp tt tp t = tt + tp

N
o

E
ar

ly
–E

xi
t 1 74.82± 3.94 45.16± 0.57 119.98± 4.06 2042.48±401.64 1265.89±141.47 3308.37±432.91

2 17.75± 2.08 44.93± 0.00 62.68± 2.08 1298.23±332.66 1263.16±115.58 2561.39±361.81
3 4.49± 0.89 45.08± 0.46 49.57± 1.03 1009.79±334.87 1260.44± 81.77 2270.22±351.10
4 3.64± 0.87 44.93± 0.00 48.57± 0.87 976.71± 317.48 1263.16±115.58 2239.87±348.56

M 2.80± 0.88 44.93± 0.00 47.73± 0.88 750.02± 322.44 1260.44± 81.77 2010.46±339.52

E
ar

ly
–E

xi
t 1 58.72± 2.47 7.27± 0.01 65.99± 2.47 1304.74±310.87 598.93± 81.91 1903.66±324.56

2 3.53± 1.15 7.27± 0.00 10.80± 1.15 947.04± 258.12 596.19± 0.00 1543.23±258.12
3 3.04± 1.10 7.27± 0.00 10.31± 1.10 728.19± 221.12 596.19± 0.00 1324.38±221.12
4 2.90± 1.10 7.27± 0.00 10.17± 1.10 727.87± 221.10 596.19± 0.00 1324.06±221.10

M 2.88± 1.10 7.27± 0.00 10.16± 1.10 725.53± 220.95 596.19± 0.00 1321.72±220.95

Single Deep Learning Model Configuration. This configuration encompasses a single
DLM, either with or without an Early-Exit, to be placed on the considered IoT system.
The methodology is tested with L ∈ {1, 2, 3, 4} and compared to the Cloud approximation
(L = M ) where all the computation can be placed on a single node, i.e., it can be seen as
an approximation of sending data directly to the Cloud and then receiving back the result.

Table 10.1 shows the results in the partition setting 50%–50%. Interesting results arise.
First of all, the expected processing time tp is significantly reduced when the Early Exit is
employed, as expected and studied in (Bolukbasi et al., 2017; Disabato and Roveri, 2018)
for all the considered DLMs.18 In the case of 6-layer EX-DLM, the Early-Exit allows
to save about 75-84% (45 to 80% with Wi-Fi HaLoW) of the latency t, whereas on the
AlexNet 34 to 50%.

After that, with Wi-Fi 4 the transmission latency tt is significantly lower than the pro-
cessing one tp. Thus it is reasonable to assume that the achieved tp is the minimum
feasible in this IoT system. However, with Wi-Fi HaLow, the minimum experimental la-

18The latency t and its terms tt and tp, are defined as an expected value with EX-DLMs, by weighting their
values up to each layer j of DLM u with the probability gu,j of providing the classification.
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Table 10.2: The methodology results with N = 30 STM32H7 and Raspberry Pi 3B+ IoT
units and two 5-layer DLMs (Figure 7.1a). The figure of merit (mean ± std) is the
latency t (transmission tt plus processing tp) and is summed over all the DLMs.

(a) The results with the Wi-Fi 4 as adopted transmission technology.

50 – 50 Latency t (ms) 90 – 10 Latency t (ms)

L tt tp t = tt + tp tt tp t = tt + tp

No shared
layers

1 15.6± 1.1 89.9± 0.1 105.4± 1.1 19.4± 5.5 634.4± 417.0 653.8± 413.6
2 3.8± 0.6 89.9± 0.0 93.6± 0.6 10.2± 5.0 317.1± 401.5 327.3± 399.7
3 1.1± 0.4 89.9± 0.0 90.9± 0.4 4.0± 2.9 198.0± 240.0 201.9± 242.4
4 0.8± 0.3 89.9± 0.0 90.7± 0.3 4.0± 4.5 119.8± 67.0 123.7± 71.2
5 0.7± 0.3 89.9± 0.0 90.5± 0.3 3.0± 2.8 105.1± 34.1 108.1± 36.6

First two
layers
shared

1 15.4± 1.2 89.9± 0.1 105.3± 1.2 23.4± 9.0 452.8± 470.8 476.2± 467.4
2 3.7± 0.5 89.9± 0.0 93.5± 0.5 9.6± 8.6 250.6± 389.8 260.2± 388.0
3 2.2± 0.4 89.9± 0.0 92.1± 0.4 7.1± 5.2 115.9± 63.1 122.9± 65.8
4 0.9± 0.3 89.9± 0.0 90.8± 0.3 2.3± 1.6 90.5± 1.3 92.8± 2.2
5 0.8± 0.2 89.9± 0.0 90.7± 0.2 2.0± 1.4 90.2± 0.6 92.2± 1.7

(b) The results with the Wi-Fi HaLow as adopted transmission technology.

50 – 50 Latency t (ms) 90 – 10 Latency t (ms)

L tt tp t = tt + tp tt tp t = tt + tp

No shared
layers

1 154.4± 11.5 91.2± 6.1 245.6± 14.1 187.0± 41.4 624.6± 416.9 811.6± 394.1
2 37.4± 5.3 90.0± 0.6 127.4± 5.4 95.3± 44.4 301.7± 383.1 397.0± 372.3
3 9.9± 2.7 90.4± 0.9 100.3± 3.0 32.9± 28.8 188.1± 228.8 221.0± 254.2
4 8.1± 2.6 89.9± 0.0 98.0± 2.6 37.5± 42.6 116.6± 64.0 154.1± 105.1
5 6.4± 2.7 89.9± 0.0 96.3± 2.7 28.6± 27.0 103.5± 32.6 132.1± 57.2

First two
layers
shared

1 152.3± 9.8 90.7± 1.2 243.1± 10.1 223.7± 63.6 454.4± 459.1 678.0± 434.8
2 36.0± 4.3 90.2± 0.9 126.2± 4.5 85.4± 72.2 252.5± 389.8 338.0± 381.7
3 21.9± 3.9 90.1± 0.6 112.1± 4.0 65.3± 46.3 117.0± 62.8 182.3± 97.5
4 9.0± 2.2 90.2± 0.9 99.2± 2.4 17.9± 14.1 92.1± 1.5 110.0± 14.4
5 8.2± 2.2 90.0± 0.5 98.2± 2.2 17.1± 14.1 91.0± 0.7 108.0± 14.2

tency (tp = 44.93ms for the 5-layer DLM and tp = 1257.71ms for the AlexNet) cannot
be achieved and, in particular, the AlexNet processing with L = 1 requires more than 3
seconds (instead of 1.46s with the Wi-Fi 4 transmission technology), a latency that might
be unfeasible in many real applications.

The third crucial comment is about the L = M case. The latency t of this case
and those of corresponding ones having L ≥ 2 (L > 2 with Wi-Fi HaLow) are almost
equal (with L = 1 and Wi-Fi 4 there is a 10% increment), showing the capability of
the proposed methodology to distribute the DLM computation among the IoT units with
negligible latency increments.

Multi Deep Learning Models Configuration. In this configuration, two 5-layer DLMs
have to be placed on the considered IoT system, with and without the first two layers
shared. Table 10.2 presents the results for all the configurations and transmission technolo-
gies. Several comments arise. At first, in the configuration 90%–10%, the methodology
has to often rely on STM32H7 nodes. Hence the processing time is significantly increased
(the computation capability e of a Raspberry is 14 times greater than that of an STM32H7).
This result is even more evident when there are shared layers since the methodology can
place less computation on STM32H7s.
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The Wi-Fi 4 guarantees transmission latencies tts negligible w.r.t. the processing time
tp, that represents more than 85% of latency t (up to 96-99% with L ≥ 2). Interestingly,
the processing time is always equal to 89.9ms, which is the experimental minimum achiev-
able value in this IoT system. This consideration is no longer valid with the Wi-Fi HaLow,
where the two terms are comparable, especially when L = 1. The methodology cannot
indeed always achieve the minimum experimental processing latency, but sometimes it
has to rely on nearby STM32H7 units, as highlighted by the non-null standard deviation
of the tp, in the configurations with at least 50% of Raspberry Pi 3B+ units. Interestingly,
despite the fact that the data-rate of the Wi-Fi 4 is ten times greater than that of Wi-Fi
HaLow, the latency t in the harsher case with 90% of STM32H7 units is similar for both
the transmission technologies, with a maximum increment of 20% with L = 1 and no
shared layers.

Finally, in all cases with L ≥ 2 (L > 2 with Wi-Fi HaLow) the total latency t is
comparable to the case (L = M ), as in single DLM configuration. It is crucial to point
out the importance of this result because distributing the DLM processing on various IoT
units with a negligible increment in latency t will allow defining a pipeline in processing
sequence of inputs. Indeed, when a unit has carried out the processing of DLM layers
is designed to and sent the computed representation to the subsequent node, it is ready
to operate on the next input, as in processor pipelines. Hence, the throughput of DLM
processing can be significantly increased by processing inputs in a pipeline, with the bot-
tleneck in the IoT unit responsible for the highest processing time.

10.1.4 Second IoT System: 50 IoT Units and Three Families
A second IoT system has N = 50 units belonging to three different technological families
equipped with the Wi-Fi 4 transmission technology and partitioned as follows: 45% of
OrangePi Zero, 45% of BeagleBone AI, and 10% of Raspberry Pi 3B+. Figure 10.1b
shows an example of this IoT system, where blue circles represent the OrangePi Zero
units, cyan squares the BeagleBone AI units, green diamonds the Raspberry Pi 3B+ units,
orange asterisks the sources, and a red circled cross the target unit.

The scenario is interesting because the most powerful IoT units in terms of both mem-
ory and computation capabilities, i.e., the Raspberry Pi 3B+, are just a few (about 5 in
each simulated IoT system). In contrast, the remaining IoT units are characterized by con-
trasting peculiarities: on the one hand, the BeagleBone AI units have the same memory
capacity as the Raspberry Pi 3B+ but only 54% of the computation one; on the other hand,
the OrangePi Zero have almost the same computation capability of the Raspberry Pi 3B+
(85%, 160% if compared to BeagleBone AI), but only a fourth of the memory capability.
It is worth noting that both the Raspberry Pi 3B+ and BeagleBone AI can store all the
layers of the considered DLMs, whereas the OrangePi Zero units with 128 MB of RAM
cannot store all the layers of (EX–)AlexNets. Consequently, a balancing between the faster
OrangePi Zero units (in terms of computation capability) and the slower but with higher
memory capacity BeagleBone AI units is expected in this IoT system (at least after all the
Raspberry Pi 3B+ units have been considered, if enough closer).

In addition to the figures of merit presented in Section 10.1.2, the number of considered
nodes ηx is taken into account, where x is a technological family of IoT units, i.e., x can be
R, O, or B, representing the Raspberry Pi 3B+, the OrangePi Zero, and the BeagleBone
AI units, respectively.
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(a) The architecture of the Ex-AlexNet detailed in Table 7.1b, where x is the input image. The Early-
Exit (composed of three fully-connected layers) can either provide the final output (solid line
from the “decision” diamond) or further exploring the pipeline (dashed path, highlighting that
the forwarded features are those in input to the Early-Exit layer).i
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(g) The outcome with L = M
and 3 AlexNet.

Figure 10.1: An example of the methodology outcome on a IoT system comprisingN = 50
IoT units, i.e. Raspberry Pi 3B+, OrangePi Zero, and BeagleBone AI (10%, 45%,
and 45% the probability of each kind of unit) and three (EX–)AlexNets to be placed.
The sources are indicated by a star, whereas the target unit by a circled cross. The
transmission range is indicated only for the sources and the target and is equal for all
nodes. When EX–AlexNets (EX–A) are employed, the path with probability 0.772 is
indicated by the thicker line, whereas the full path continues with the thin one.
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Table 10.3: The methodology results on 500 randomly generated IoT systems withN = 50
OrangePi Zero, BeagleBone AI, and Raspberry Pi 3B+ units, with probability 45%-
45%-10%, and various combinations of DLMs or EX-DLMs. The figures of merit
(mean ± std) are the latency t (transmission tt plus processing tp) and the number η
of IoT units used.

(a) The placement results of 1 AlexNet.

Latency t (ms) Node usage η

L tt tp t = tt + tp ηR ηO ηB

1 206.22± 26.04 1 390.95± 54.58 1 597.17± 54.33 3.97± 1.51 4.01± 1.48 0.02± 0.15
2 151.25± 30.93 1 344.36± 56.70 1 495.61± 60.89 3.00± 0.87 1.43± 1.08 0.01± 0.12
3 125.55± 33.97 1 328.63± 51.73 1 454.19± 62.16 2.47± 0.63 0.64± 0.74 0.01± 0.12
4 119.76± 34.24 1 323.49± 47.45 1 443.25± 59.89 1.96± 0.50 0.51± 0.73 0.01± 0.09

M 97.88± 39.57 1 311.71± 44.03 1 409.58± 66.63 1.00± 0.11 0.17± 0.45 0.01± 0.09

(b) The placement results of 3 AlexNets.

Latency t (ms) Node usage η

L tt tp t = tt + tp ηR ηO ηB

1 578.58± 50.35 4 390.39±104.53 4 968.97±119.87 5.07± 2.01 17.89±1.72 1.05± 1.24
2 410.26± 43.87 4 211.45±148.26 4 621.71±142.12 5.05± 1.97 7.72± 1.95 0.11± 0.38
3 350.06± 45.97 4 108.70±154.98 4 458.76±152.25 4.84± 1.71 4.65± 1.98 0.04± 0.26
4 349.40± 54.44 4 035.36±146.02 4 384.76±147.68 4.46± 1.34 3.13± 1.86 0.04± 0.26

M 306.24± 76.75 3 947.47±106.77 4 253.71±144.39 2.86± 0.46 0.90± 1.33 0.02± 0.21

(c) The placement results of 4 AlexNets.

Latency t (ms) Node usage η

L tt tp t = tt + tp ηR ηO ηB

1 772.23± 54.88 5 960.88±138.87 6 733.11±156.94 5.22± 2.20 21.73±2.80 5.04± 2.99
2 521.34± 36.80 5 718.77±181.19 6 240.11±175.43 5.22± 2.20 11.62±2.20 0.19± 0.55
3 437.76± 50.07 5 572.27±206.36 6 010.03±196.11 5.17± 2.12 7.47± 2.34 0.07± 0.40
4 441.12± 59.81 5 458.45±213.15 5 899.57±201.50 4.99± 1.85 5.25± 2.36 0.10± 0.38

M 401.83± 77.75 5 288.65±150.73 5 690.48±183.33 3.64± 0.74 1.81± 1.93 0.04± 0.30

The placement of 1 to 4 (EX–)AlexNet. Table 10.3 and in Figure 10.1 show the results
of one to four (EX–)AlexNets placed in this IoT system. It is worth noting that with
L = M , the layers of an (EX–)AlexNet can be placed on a single node if and only if
Raspberry Pi 3B+ or BeagleBone AI IoT units are employed. If the methodology selects
an OrangePi unit, at least another IoT unit must be considered to place all the layers, due
to OrangePi memory constraints. The methodology tried indeed to avoid such option, as
shown by the values of ηB almost equal to zero.

Several comments arise. First of all, the latency t of 1 AlexNet is higher than that in
the IoT system comprising only Raspberry Pi 3B+ and STM32H7 (see Section 10.1.3).
The reason resides in the fact that, in this IoT system, the probability that an IoT unit is a
Raspberry is 10% –instead of 50%– and both the OrangePi Zero and the BeagleBone AI
units have a smaller computation capability.

Second, the latency t of 3 AlexNets is close to that with 1 AlexNet multiplied by 3
(Tables 10.3a –10.3b). In fact, the difference in percentage ranges from 0.6% to 3.5%

123



Chapter 10. Evaluating Deep and Wide Tiny Machine Learning Solutions

Table 10.3 (Cont.): The methodology results on 500 randomly generated IoT systems with
N = 50 OrangePi Zero, BeagleBone AI, and Raspberry Pi 3B+ units, with probability
45%-45%-10%, and various combinations of DLMs or EX-DLMs. The figures of merit
(mean ± std) are the latency t (transmission tt plus processing tp) and the number η
of IoT units used.

(d) The placement results of 1 EX-AlexNet.

Latency t (ms) Node usage η

L tt tp t = tt + tp ηR ηO ηB

1 117.54± 17.66 666.38± 33.56 783.92± 36.27 4.08± 1.46 3.79± 1.45 0.13± 0.34
2 93.87± 24.95 643.84± 34.46 737.71± 40.10 3.09± 0.82 1.51± 1.00 0.07± 0.25
3 77.03± 25.44 641.06± 34.80 718.09± 41.04 2.66± 0.58 0.44± 0.67 0.02± 0.13
4 74.56± 24.62 640.61± 33.94 715.17± 40.58 1.98± 0.49 0.44± 0.71 0.00± 0.06

M 68.15± 24.14 639.05± 34.41 707.20± 42.28 1.00± 0.06 0.24± 0.49 0.01± 0.08

(e) The placement results of 3 EX-AlexNets.

Latency t (ms) Node usage η

L tt tp t = tt + tp ηR ηO ηB

1 335.42± 21.31 2 078.03± 54.60 2 413.45± 59.52 4.95± 2.08 17.26±1.72 1.79± 1.29
2 268.92± 38.28 1989.59± 72.05 2258.52± 72.76 4.91± 2.03 8.36± 1.82 0.55± 0.78
3 222.56± 39.05 1971.77± 75.12 2194.33± 75.51 4.79± 1.90 4.84± 2.22 0.17± 0.59
4 222.98± 39.87 1946.47± 73.10 2169.45± 76.50 4.37± 1.43 3.37± 2.00 0.11± 0.36

M 211.27± 42.69 1914.79± 64.03 2126.06± 75.80 2.87± 0.51 1.08± 1.36 0.03± 0.17

(f) The placement results of 4 EX-AlexNets.

Latency t (ms) Node usage η

L tt tp t = tt + tp ηR ηO ηB

1 452.33± 29.81 2803.39± 67.85 3255.73± 78.62 4.95± 2.17 21.52±2.72 5.53± 2.56
2 346.37± 43.73 2689.37± 94.61 3035.74± 93.17 4.95± 2.17 12.39±1.79 1.19± 1.35
3 284.80± 46.16 2666.04±100.07 2950.84± 96.52 4.93± 2.13 8.07± 2.15 0.72± 1.05
4 289.94± 44.66 2619.44±103.84 2909.38±102.62 4.79± 1.89 5.59± 2.24 0.25± 0.68

M 281.67± 50.74 2558.70± 98.07 2840.36±105.54 3.63± 0.95 1.86± 2.12 0.12± 0.51

(L = M to L = 1), with the error percentage between the latency t3A of placing 3
AlexNets and the latency tA of placing 1 AlexNet multiplied by 3 computed as

εt3A,3·tA =
t3A − 3 · tA

t3A
. (10.1)

When 4 AlexNets are employed (Table 10.3c), the range is slightly higher, i.e., 1 to 5%
on the same values of L. This result shows the effectiveness of the proposed methodology
in placing the DLMs in the given IoT system. Moreover, by observing the values of ηR,
ηO, ηB it is clear that, whenever possible, the methodology relies on the fastest units, as
expected by the fact that the transmission latency tt is, in all the cases, significantly smaller
than the processing tp one.

Finally, as commented in Section 10.1.3, the latency t with L = 1 and L = 2 is
close to that with L = M , with an increment ranging from 13% to 18%, and from 6% to
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Table 10.4: An experimental benchmark where a 5-layer DLM (Figure 7.1a) has to be
placed on a IoT System having a Raspberry Pi 3B+ and two STM32H7s. The IoT units
are equally spaced and equipped with Wi-Fi 4. With L = 4, the methodology outcome
places the first four layers on the Raspberry and the last to one of the two STM32H7.
The figure of merit is the latency t (transmission tt plus processing tp), expressed in
milliseconds.

L Case Wi-Fi 4 Latency (ms)

tt tp t = tt + tp

4 Model 0.37 44.98 45.35

Experimental 0.42 68.47 68.89

9%, with 1 and 4 AlexNets, respectively, allowing us to define processing pipelines in the
considered IoT system, to further reduce the latency t.

Tables 10.3d–10.3f investigates the same IoT scenario with 1, 3, and 4 EX-AlexNets
to be placed. The latency t and its components tp and tt are defined as an expected value,
by weighting the latency of each possible path within the EX-DLM by its probability. The
mean numbers of nodes used ηR, ηO, and ηB are instead computed on the longest path
within the DLM.

The trend in the results is analogous to the case with AlexNets, with smaller errors.
The difference in percentage between placing 3 and 4 EX-AlexNets and 1 EX-AlexNet
multiplied by 3 and 4 ranges from 0.2% to 2.5% and from 0.4% to 3.7% (L = M to L =
1), respectively. Interestingly, the values of ηB are higher in this group of experiments,
showing that the methodology more often relies on closer BeagleBone AI units to place
part of the EX-AlexNet computation, reasonably on the less probable path.

10.1.5 Distribute a 5-layer DLM in a Real IoT System
The methodology has been also applied to the placement of the 5-layer DLM (Figure 7.1a)
on a real technological scenario comprising two STM32H7s and one Raspberry Pi 3B+.
The transmission technology is the Wi-Fi 4 and the connectivity is provided locally by the
GL.iNet GL-MT300N-V2 router. Moreover, the hyper-parameter L has been set to 4, and
the IoT units are equally spaced, i.e., at distance 1 from each other.

This experiment aims to compare the figures of merit t, tt, and tp estimated by the
methodology with the corresponding measured values on the field. The outcome of the
methodology assigned the first four layers of the CNN to the Raspberry and the fifth layer
to one of the two STM32H7s. Table 10.4 shows the measured transmission and processing
times. Interestingly, the experimental transmission time tt is almost equal to the methodol-
ogy estimation, whereas the experimental processing time tp is 30% larger. This is justified
by the fact that the model considered only multiplications. More in detail, the first four
layers on Raspberry Pi 3B+ took 68.29 ms instead of 44.93 ms, whereas the fifth layer on
STM32H7 176 µs (32 µs with code optimization) instead of 50 µs.

Eventually, the measured processing time tp of the AlexNet on the Raspberry Pi 3B+
(median over 100 runs) is 1119.47 ms. In contrast, the one provided by the methodology
is 1257.71 ms, showing that the model presented in Chapter 7 well describes this techno-
logical scenario.
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(a) The architecture of the 6-layer CNN.i
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(b) The architecture of the 5-layer CNN.

Figure 10.2: The CNNs provided by the HE-DL architecture in the experimental evalua-
tion, where x represents the input image.

10.2 Evaluating the HE-DL Architecture

The aim of this section is to evaluate the accuracy and the computation load of the deep-
learning-as-service presented in the paper (Disabato et al., 2020) and described in Chap-
ter 8. Section 10.2.1 details the CNNs provided by the deep-learning-as-service, whereas
Section 10.2.2 describes the considered datasets. Finally, Sections 10.2.3–10.2.5 present
the accuracy and computational load on both recall and transfer learning modality.

10.2.1 The Provided Convolutional Neural Networks
In this evaluation, the HE-DL architecture provides the following two CNNs, shown in
Figure 10.2:

• the 6-layer CNN (Figure 10.2a) with a convolutional layer with 8 3x3 filters, a 2x2
maximum pooling layer with stride 3, a convolutional layer with 16 3x3 filters and
stride 2, a 2x2 maximum pooling layer and two fully-connected layers with 16 and
10 neurons, respectively;

• the 5-layer DLM (Figure 10.2b) with a convolutional layer with 16 3x3 filters with
stride 3 and a ReLU activation function, a 3x3 maximum pooling layer with stride 3
and two fully connected layers with 72 and 10 neurons, respectively.

10.2.2 Datasets
Two datasets have been considered in the analysis:
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(a) The results of the 6-layer CNN.
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(b) The results of the 5-layer CNN.

Figure 10.3: The recall accuracy results of both the 6-layer CNN and the 5-layer CNN on
the FashionMNIST dataset (Xiao et al., 2017), with the standard deviation over five ex-
periments. For each considered encryption parameters Θi, three cases are compared:
the plain CNN without approximations f (·), the same plain CNN approximated to
have only additions and multiplications D (·), and, finally, the encoded CNN with Θi,
i.e., DΘi (·). It is worth noting that with smaller encryption parameters Θi (in terms of
m and p) than those shown, the accuracy quickly drops to that of a random classifier.

• the MNIST (LeCun, 1998) is a dataset of handwritten digits composed of 70000
grey-scale 28x28 images belonging to 10 classes. From the dataset, 5000 images
were used for training and 5000 for validation.

• the FashionMNIST (Xiao et al., 2017) is a dataset of fashion products composed of
70000 grey-scale 28x28 images belonging to 10 classes. From the dataset, 60000
images were used for training and 10000 for validation.

In particular, the FashionMNIST dataset has been considered in the recall modality, while
MNIST has been used in the transfer learning one.

10.2.3 Recall

In recall mode, a user wants to use a deep-learning-as-a-service modelDΘ(·) published by
a Cloud service provider, obtaining the classification y of an input image x. Figures 10.3a
and 10.3b show the accuracy of the 6-layers CNN and the 5-layers CNN on the FashionM-
NIST dataset, respectively, with respect to different values of Θ (the parameter q has been
omitted since automatically set). The two CNNs in both the configurations, plain and ap-
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Figure 10.4: The transfer learning accuracy results on the features extracted at layer
` = 4 of the 6-layer CNN (Figure 10.2a) on the MNIST dataset (LeCun, 1998). For
each considered encryption parameters Θi, four cases are compared: the plain CNN
without approximations f (4) (·) with a SVM-based classifier, the same plain CNN ap-
proximated to have only additions and multiplications D(4) (·) with the SVM, and, the
encoded CNN with Θi, i.e., D(4)

Θi
(·) with either a SVM or a Fully-Connected classifier.

proximated, have been trained on the FashionMNIST training dataset for 20 epochs, with
a learning rate of 0.001.

As expected, the accuracy of the encoded model DΘ(·) increases with m and p. In
particular, the configuration of parameters Θ4 (characterized by the largest values of m
and p) provides the same performance of the approximated modelD (·) operating on plain
data. It is noteworthy to point out that the plain 6-layers CNN (Figure 10.3a) is better than
the 5-layers CNN (Figure 10.3b) having higher accuracy than the latter. However, after
the approximation, the 5-layers CNN outperforms the 6-layers CNN. This suggests that
the approximated CNN D (·) could be designed from scratch.

10.2.4 Transfer learning
In transfer learning mode, the user relies on deep-learning-as-a-service DΘ(·) as a feature
extractor to train a local classifier, as described in Section 8.3.3. Two types of classifiers
have been used, i.e., an SVM-based classifier and a fully-connected-based classifier. Both
classifiers have been trained using the features extracted from images coming from the
MNIST (LeCun, 1998) dataset, using the first four layers of the pre-trained 6-layers CNN.
In particular, 5000 images were used for the training of the classifiers and 5000 for the
testing. Figure 10.4 shows the accuracy of the SVM-based and Fully-Connected classi-
fiers. Different values for Θ show the impact on the precision of the extracted features,
hence on the accuracy of the trained classifiers. Here, two main comments arise. First,
moving from Θ3 to Θ4 (with a relevant increase in the parameter p) does not induce a
significant improvement in the accuracy. This means that the value p = 37780 well char-
acterizes the processing chain of DΘ(·). Secondly, Θ2 for the 6-layers CNN in the recall
scenario equals Θ4 in the transfer learning scenario. However, in the latter case, this set
of parameters provides enough NB and precision to carry out the computations correctly,
whereas it does not in the former case. This can be explained by the fact that the number
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Table 10.5: The time t required to process an image for each described configuration,
with a common PC as a client and an Amazon EC2 instance as a server. The three
components of t are tc, the time required for the local encryption/decryption, tt, the
time for the data transfer, and ts, the time required for the processing on the Cloud.
The proposed values are expressed in seconds.

tc tt ts t = tc + tt + ts

R
ec

al
l

6-
la

ye
rC

N
N Θ1 2.2± 0.2 3.7± 0.0 11.8± 0.1 17.7± 0.3

Θ2 2.2± 0.1 3.7± 0.0 11.9± 0.1 17.8± 0.2

Θ3 2.1± 0.1 3.7± 0.0 11.9± 0.0 17.7± 0.1

Θ4 4.7± 0.3 14.7± 0.0 49.7± 0.5 69.1± 0.8

R
ec

al
l

5-
la

ye
rC

N
N Θ1 5.2± 0.0 14.7± 0.0 26.2± 0.3 46.1± 0.3

Θ2 5.2± 0.0 14.7± 0.0 26.1± 0.1 46.0± 0.1

Θ3 5.2± 0.0 14.7± 0.0 25.8± 0.1 45.7± 0.1

Θ4 5.2± 0.0 14.7± 0.0 25.8± 0.1 45.7± 0.1

Tr
an

sf
er

L
ea

rn
in

g

Θ1 1.2± 0.0 2.0± 0.0 5.5± 0.0 8.7± 0.0

Θ2 2.4± 0.1 3.9± 0.0 11.6± 0.1 17.9± 0.2

Θ3 2.4± 0.0 3.9± 0.0 11.5± 0.0 17.8± 0.0

Θ4 2.4± 0.0 3.9± 0.0 11.5± 0.0 17.8± 0.0

of encoded layers in this transfer learning scenario is lower than in the recall one.

10.2.5 Timing Measurements

To complete the evaluation of the proposed HE-DL architecture, this section details the
time measures of the PyCrCNN implementation (Disabato et al., 2020). More in detail,
these measures are the computational times on both the client and the server-side and
an estimation of the transmission time to exchange information. The settings consider
a single image taken from the FashionMNIST dataset for the recall modality and from
the MNIST dataset for the transfer learning modality, in a single-threaded scenario. The
models DΘ(·) have been encoded with the same Θ used for the analysis of the accuracy
described in Sections 10.2.3 and 10.2.4.

Table 10.5 reports such measures. More in details:

• tc is the time spent on the client to generate the keys couple (kp, ks), to execute
the encryption function E (x,Θ, kp) and the decryption function D(ŷ,Θ, ks). The
employed client machine used has a 2.30GHz 64-bit dual-core processor and 8 192
MB of RAM.

• ts is the time spent by the server to encode the modelD(·) and process the encrypted
image, DΘ(x̂). The considered server is an Amazon EC2 instance with 72 64-bit
cores at 3.6GHz and 144 GB of RAM.

• tt estimates the transmission times of sending the encrypted image x̂ and receiving
back the encrypted result ŷ in an high-bandwidth scenario, where the employed
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transmission technology is the Wi-Fi 4 (standard IEEE 802.11n) using a single-
antenna with 64-QAM modulation on the 20 MHz channel with the data-rate ρ =
72.2Mb/s (Xiao, 2005).

Two main comments arise. First, as expected, all the three component of the computational
times increase withm. More specifically, tc and ts increase due to the larger computational
load required to process encrypted data with largerm, while tt increases due to the increase
of the size of the ciphertexts. In addition, tc is always lower than ts since E (I,Θ, kp)

and D(ŷ,Θ, ks) are less computational demanding than ϕΘ(Î). Second, an increase in p
does not result in a variation of the computational times ts. All in all, p should be tuned
focusing on the accuracy of the results, while m must be tuned by trading-off accuracy
and computational load.

130



Part V

From the Laboratory to the Wild
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CHAPTER11
From the Laboratory to the Real World

The previous chapters focused on the definition of a methodology as general as possible. In
particular, Chapters 5 and 6 design solutions for TML devices with the possibility to learn
on the device and thus adapt over time, whereas Chapter 7 exploits a different paradigm
by distributing the computation across a group of connected TML devices.

In this Chapter, some of the techniques presented so far have been tailored to two
real-world scenarios: detecting the calls of birds in rural or wild environments without
the presence of humans and with low connection bandwidth available (Section 11.1); and
modeling the highly-non stationary solar activity from the recorded magnetograms (Sec-
tion 11.2).

11.1 Birdsong Detection in the Wild

In recent decades, bird populations have decreased significantly in many areas around the
world (Rosenberg et al., 2019). Furthermore, there is growing evidence that the environ-
mental effects of urban growth and human activities, e.g., increasing noise and night-time
light, are at least a partial cause (Injaian et al., 2018; Senzaki et al., 2020). Therefore, it
is essential to accurately survey bird activity to better understand the behavior of species
and individuals in a variety of habitats, from urban to wildland. While there has been
much progress in the detection and classification of bird vocalizations (Priyadarshani et al.,
2018), two primary challenges remain. First, discrimination of bird vocalizations from
other sounds –especially challenging in suburban/urban environments and near roads– re-
mains a technological challenge. Recently, this has been addressed with sophisticated
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signal processing and machine learning algorithms. Secondly, improved algorithms often
require more memory and a more significant computational load. Hence, it is more chal-
lenging to deploy cost-effective IoT systems for vocalization sensing in the field at scales
supporting comprehensive surveys and a more accurate assessment of the distribution of
bird species.

There are several excellent algorithmic solutions for birdsong detection and classifica-
tion, especially those based on deep learning; however, they do not take into account IoT
systems’ technological constraints. The overarching goal of this application is to bridge
this gap by introducing a novel algorithmic solution for birdsong detection based on ma-
chine learning that can be executed on off-the-shelf IoT devices.

The remaining of the section is organized as follows. Section 11.1.1 investigates the
bird-related literature. Section 11.1.2 proposes the ToucaNet pipeline to detect birdsongs
without taking into account the IoT constraints on memory, computation, or energy. Then,
Section 11.1.3 describes how to approximate the ToucaNet to take into account IoT tech-
nological constraints and presents the BarbNet implementation on an STM32H743ZI mi-
crocontroller. Finally, Section 11.1.4 evaluates the two proposed architectures and presents
the benchmarks on the considered MCU.

11.1.1 Birdsong Literature
The extensive birdsong detection literature has developed solutions that can be grouped
into two main families according to the processing stage in which they operate: prepro-
cessing techniques and detection/recognition techniques.

One of the most used preprocessing approaches consists of transforming the acquired
waveforms into spectrograms computed through a complex Short Time Fourier Transform
(STFT), often rescaled to the Mel-Scale (Frommolt and Tauchert, 2014; Lasseck, 2013;
Neal et al., 2011; Potamitis, 2014; Towsey et al., 2012). Other approaches rely on the ex-
traction of the Mel Frequency Cepstral Coefficients (MFCCs) (Briggs et al., 2009; Dufour
et al., 2013; Graciarena et al., 2010; Kogan and Margoliash, 1998; Murcia and Paniagua,
2013), or Discrete Wavelet Transform (DWT)–based features (Bastas et al., 2012). Ap-
proaches aiming at directly processing the waveforms are also emerging (Priyadarshani
et al., 2020). Several works also bring into play noise reduction techniques to mitigate
or remove environmental or anthropogenic noise. These techniques can be applied on the
waveform (Priyadarshani et al., 2016) or spectrogram (Lasseck, 2013; Potamitis, 2014).
However, the most common noise sources overlap with low-frequency bird calls (poten-
tially masking them) (Potamitis, 2014), hence reducing the effectiveness of subsequent
detection techniques (Aide et al., 2013; Fox et al., 2006).

In the field of birdsong detection/recognition, available techniques can be grouped
according to the type of approach: signal processing or machine/deep learning.

Techniques following the first approach are, for example, (Lasseck, 2013) and (Potami-
tis, 2014), where segmentation of spectrograms for birdsong detection is proposed, achiev-
ing promising results on clear noise-free calls but having reduced performance when
the signal is weak compared with interference and noise. Similarly, (Neal et al., 2011)
and (Towsey et al., 2012) attempted to detect time/frequency boxes in spectrograms repre-
senting the bird calls. Finally, (Frommolt and Tauchert, 2014) proposed template matching
to detect and isolate calls within spectrograms, whereas (Anderson et al., 1996) used dy-
namic time warping directly on the input waveform.
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Machine learning techniques for birdsong detection and recognition have mainly fo-
cused on CNNs (Berger et al., 2018; Grill and Schlüter, 2017; Lasseck, 2018; Mukherjee
et al., 2018; Ruff et al., 2019). In this setting, (Grill and Schlüter, 2017) suggested two
different types of CNN: the former working on the spectrogram of the whole audio in-
put and the latter processing spectrograms computed on shorter audio subsequences with
all the provided predictions merged at the end. (Lasseck, 2018) started from a pretrained
CNN, either an Inception v3 (Szegedy et al., 2016) or a ResNet (He et al., 2016), and
fine-tuned it to the bird detection problem in a transfer-learning fashion (Yosinski et al.,
2014). (Vesperini et al., 2018) proposed a capsule-based DL architecture that organizes the
convolutional layers in capsules whose outputs are “shared” in such a way that one portion
of the spectrogram can leverage the knowledge acquired in other spectrogram locations.
Finally, (Himawan et al., 2018) and (Mukherjee et al., 2018) proposed two recurrent DL
architectures to detect bird calls in audio signals. These DL-based approaches usually
outperform the traditional signal processing techniques (Lasseck, 2018; Ruff et al., 2019).
For the recognition task, a few techniques focusing on particular groups of bird species are
emerging (Brooker et al., 2020; Ferreira et al., 2020; Koh et al., 2019). (Ruff et al., 2019)
proposed a CNN-based architecture to detect and recognize six nocturnal owl species,
whereas (Lee et al., 2012) proposed a classification algorithm for 28 bird species based on
Gaussian Mixture Models (GMMs). More specifically, this solution models the likelihood
of the considered bird species through GMMs, with classification according to the highest
likelihood.

All in all, several solutions for birdsong detection are available in the literature, but
none of them focus on implementing such techniques on real-world IoT devices. Inter-
estingly, there are DL techniques for audio sources on microcontrollers (Banbury et al.,
2021; Disabato and Roveri, 2020), though not for the application scenarios considered in
this paper.

11.1.2 ToucaNet: a Pipeline to Detect Bird Calls
The architecture of the proposed ToucaNet bird detector, which is depicted in Figure 11.1b,
comprises two main steps:

(i) Acquisition and Preprocessing,

(ii) DL-based Birdsong Detector ψ.

Acquisition and Preprocessing. Let fa be the microphone’s sampling frequency (in
Hertz) and ta be the acquisition time window (in seconds). Let x ∈ Rd, with d = fa × ta,
be the d-dimensional vector acquired by the microphone, representing the waveform to be
preprocessed and subsequently processed by DL-based birdsong detection.

Once the microphone acquires the waveform x, the preprocessing phase converts it
into the corresponding spectrogram x̄ computed via the (absolute value of the complex)
STFT with nfft bins over constant-length windows spaced by hl samples, with both nfft
and hl constrained to be powers of two.19 The outcome of the STFT is a two-dimensional
matrix with x̄r = 1 + nfft/2 rows and x̄c = 1 + d/hl columns, which is converted into a

19The Mel-spectrogram is not considered, since it uses a human-based frequency scale.
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three-dimensional image by means of a color-map, i.e., x̂ ∈ Rx̄r×x̄c×3, to enable transfer
learning (see below). In the following, x̂ will be called a spectrogram.

The DL-based Birdsong Detector. The DL-based bird detector ψ (x̂, θ) with param-
eters θ of the ToucaNet receives as input the spectrogram x̂ and produces as output its
binary classification y ∈ {0, 1}, where y = 1 if a bird call is present within the waveform,
and y = 0 otherwise. This formalization can be extended easily to the case of birdsong
recognition by simply considering the supervised information y to belong to a discrete set
of classes representing the various bird species. In what follows, to simplify the notation,
θ will be omitted from ψ (x, θ).

Since the spectrogram is interpreted as a colored image x̂, it is possible to leverage
approaches from the image classification field. More precisely, in the context of this work,
the ToucaNet birdsong detector ψ is built upon a ResNet-18 (He et al., 2016), leveraging all
its convolutional layers (namely, up to layer conv5_1). A 9×14 average pooling filter (with
stride 1 and no padding) follows the convolutional structure. Finally, a fully connected
classifier labels the 512 extracted features into the desired two classes (Figure 11.1a depicts
the ToucaNet architecture in detail).

The convolutional structure of the ToucaNet is initialized with the weights associ-
ated to the optimal solution of Resnet-18 on the ImageNet classification task (Deng et al.,
2009), hence relying on a transfer learning approach (Yosinski et al., 2014) to speed up the
training phase. The fully-connected layer is instead initialized with a uniform distribution
in the interval

(
−1/
√
fcin, 1/

√
fcin

)
, where fcin is the input size of the layer itself, i.e.,

512.
To train ψ, an n-dimensional data set D = {(xi, yi)}ni=1 is used and the parameters θ

are optimized as

arg min
θ

1

n

n∑
i=1

l (x̂i, yi, θ) , (11.1)

where l(·) is a classification loss function and x̂i is the spectrogram of the waveform xi.
ψ is trained for 14 epochs with stochastic gradient descent, momentum 0.9, and a learning
rate of 5 · 10−2, decreased by a factor of 10 after the eighth and the twelfth epochs.

Since our final goal is to move our solution to an IoT unit, the memory footprint mψ

and the computational load cψ of ψ have been carefully evaluated. Following Eq. (2.2)
and Eq. (2.3), mψ and cψ are defined as

mψ = |θ| ·mp +min, (11.2)
cψ = nmul, (11.3)

where |θ| is the cardinality of θ, nmul is the number of multiplications required to compute
the output,min is the memory needed to store the input x (and all its transformations), and
mp is the memory required to store a single parameter (typically a 32-bit floating-point
data type).

As shown in Figure 11.3, the ToucaNet has detection capabilities in line with the best
solution available in the related literature given the same acquisition frequency (fa =
22050 Hz) but half its memory footprint (mψ = 44.714 MB) and about 80% of its com-
putational demand (cψ = 4.255 billion multiplications).
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(a) The architecture of the ToucaNet Bird Detector ψ, that receives the spectrogram x̂ (computed
with nfft = 512, hl = 512) of a waveform x sampled at fa = 22050 Hz for ta = 10s, and
provides its output classification y.i
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(c) The BarbNet Bird Detector ψ architecture, that re-
ceives the spectrogram x̂ (nfft = 64 and hl = 64)
of a waveform x sampled at fa = 2205 Hz for
ta = 10s, and provides its output classification y
on a STM32H743ZI IoT device.

Figure 11.1: Comprehensive scheme of the proposed solution to detect bird calls in audio
acquired on the field.

These computational demand and memory footprint improvements provide a more
efficient but not less effective birdsong detection solution. However, these requirements
are still too demanding to allow deployment on IoT units. Therefore, in Section 11.1.3, the
proposed ToucaNet is approximated to enable its deployment on off-the-shelf IoT systems.

11.1.3 BarbNet: the Approximated ToucaNet for IoT Units

To deploy a bird song detector at the IoT edge, its memory and computational requirements
must meet the constraints (m̄ and c̄) of the selected IoT node. To achieve this, ToucaNet
has been revised by introducing approximations both at the acquisition-preprocessing and
birdsong detection layers. Moreover, reducing the computational demand as much as pos-
sible also saves energy and prolongs the IoT device activity in the field. Figure 11.1b
depicts all the parameters that can be approximated in the ToucaNet architecture. Follow-
ing this idea, the BarbNet, i.e., the approximated version of ToucaNet that can satisfy the
memory and computational constraints of the STM32H743ZI MCU board, is defined.
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Approximating the Input. The Acquisition and Preprocessing step of the ToucaNet
comprises the STFT to compute the spectrogram x̂, whose computational complexity is
O (d · nfft · log (nfft)), which is negligible compared to the one required by the DL bird
detector. However, the total memory footprint min of this step is non-negligible and com-
prises the memory footprint mx of the input signal x and the memory footprint mx̂ of the
spectrogram x̂, i.e.,

min = (mx +mx̂) ·mp = (d+ x̄r · x̄c · 3) ·mp. (11.4)

Therefore, the memory footprint min of the Acquisition and Preprocessing step depends
on the sampling frequency fa, the acquisition time ta, and the STFT parameters nfft
and hl. Consequently, although fa is application-dependent and, in principle, must be set
two times larger than the maximum frequency in the waveforms (following the Nyquist-
Shannon sampling theorem), in this context, it needs to be considered as an approximation
parameter. Moreover, reducing fa will also reduce the computational demand cψ of the
bird detector since the spectrogram will be smaller. Since reducing fa might introduce
aliasing, an anti-aliasing filter (tailored to fa) is advised before the ADC to limit the input
signal bandwidth.

For the other three parameters, ta, nfft, and hl, the former is set according to the
available data sets (i.e., fixed to ta = 10s), and the latter two are set such that each window
of the spectrogram is 30ms and non-overlapping (refer to Table 11.1 for details) to cover
approximately one syllable of a bird call (Hart et al., 2018; Marler and Isaac, 1960; Paliwal
et al., 2010).

Approximating the DL-Based Birdsong Detector. The memory footprint and compu-
tational demand of the ToucaNet birdsong detector are controlled by reducing the number
of parameters θ and the number of features in the input to the ToucaNet FC-layer. In
the former approach, the ToucaNet birdsong detector is approximated by removing layers
from the ResNet-18-based part of the pipeline. The higher the number of layers ` kept in
the approximated ToucaNet, the higher the detection capability at the expense of a larger
memory footprint and more significant computational load. Section 11.1.4 analyses all the
configurations using the first five convolutional blocks, i.e.,

` ∈ {pool1, conv2_0, conv2_1, conv3_0, conv3_1}. (11.5)

The choice of ` strictly depends on the IoT unit constraints m̄ and c̄. For instance, the
memory constraint m̄ of the STM32H743ZI unit requires the BarbNet (Figure 11.1c) to
have ` = conv2_0.

To reduce the number of features in input to the final classifier, a dimensionality reduc-
tion operator consisting of an ap · ap average pooling layer (stride ap and no padding) is
introduced, where ap is an additional hyper-parameter of the model ψ.20 Although other
dimensionality reduction operators could have been considered, such as PCA (Pearson,
1901) or autoencoders, the average pooling operator has the advantage of having negligi-
ble computational demand and no memory footprint, making it a very appealing choice in
this setting.

20Please note that setting ap = 1 skips this operator.
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Table 11.1: A summary of the considered acquisition frequencies fa, along with the details
of the resulting spectrograms and their memory occupationMx̂ with a 32-bit data type.

fa (Hz) nfft hl x̄r x̄c Mx̂ (KB)

1100 32 32 17 344 68.53
2205 64 64 33 345 133.42
4410 128 128 65 345 262.79
8820 256 256 129 345 521.54
17640 512 512 257 345 1039.04
22050 512 512 257 431 1298.05

Table 11.2: The detailed memory footprint (with a 32-bit data type) and the computational
requirements of the BarbNet implemented on the STM32H743ZI. To optimize the mem-
ory, two arrays only are used to store the activations (an asterisk marks the activations
re-using such arrays).

Memory Footprint (KB) 106 operations

Audio (ta = 10 s, fa = 2205 Hz) *172.76 -
Spectrogram (nfft = 64, hl = 64) *133.42 -

Conv1 (Weights) 37.75 -
Pool1 (Weights) - -

Conv1–Pool1 (Activations) 195.75 28.120

Conv2_00 (Weights) 144.00 -
Conv2_00 (Activations) 195.75 28.865

Conv2_01 (Weights) 144.00 -
Conv2_01 (Activations) *195.75 28.865

Avg Pool with ap = 5 (Weights) - -
Avg Pool with ap = 5 (Activations) *4.25 0.010

FC Classifier (Weights) 8.5 -
FC Classifier (Activations) 0.008 0.002

Convolutions Auxiliary Memory 28.50 -

Total 754.26 85.878

A Bird Song Detector on an ARM Cortex-M7: BarbNet In this work, the target IoT
device is the STM32 Nucleo H743ZI2 MCU endowed with a 480 MHz ARM Cortex-M7
processor, 1024 KB of RAM, 2 MB of Flash, and no Operating System. The memory
constraint m̄ is set to the RAM size, i.e., m̄ = 1024 KB. The BarbNet (Figure 11.1c) is
the approximated version of the ToucaNet satisfying these constraints.21

Table 11.2 details the memory and computational demand of BarbNet, assuming a
32-bit floating-point representation for all the weights and activations. More specifically,
the BarbNet samples at fa = 2205 Hz and generates spectrograms x̂ with nfft = 64
and hl = 64. In principle, this small value for fa might prevent the detection of higher-
frequency birdsongs but Section 11.1.4–Figures 11.2 and 11.3 show that the figures of
merit are still good on real benchmarks.

The required memory footprint for both the signal of size d = 22050 and the result-
ing spectrogram (x̄r = 33, x̄c = 345) is 306.18 KB. The first convolutional layer of
the ResNet-18, characterized by 64 7×7 filters with stride 2 and padding 3, processes the
computed spectrogram x̂. A batch-normalization layer and a 3×3 maximum pooling with

21Please refer to Section 11.1.4 for discussion of other feasible configurations.
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Figure 11.2: Outcomes in terms of AUC (a,b) and accuracy (c,d) against the memory
footprint and computational demand by the ToucaNet and its approximations A in
terms of acquisition frequency fa and layer `. The layers ` are annotated for one plot
only. The memory footprint and the computational demand are defined in Eqs. (11.2)
and (11.3).

stride 2 follow. This block accounts for 28 million operations, requires 37.75 KB of mem-
ory to store the weights, and generates 9 ·87 ·64 activations, requiring further 195.75KB of
memory. Two 3×3 convolutions compose the second convolutional block (conv_0) with
64 filters with stride 1 and padding 1, each followed by a batch normalization. This block
does not change the activation size, has a memory footprint of 288KB, and requires nearly
58 million operations. Finally, the average pooling layer has (size and stride) ap = 5 and
requires 10000 multiplications. The pooling generates, after flattening, 1088 activations
that are provided to the fully connected classifier, which in 2176 operations yields the final
classification label, requiring 8.5KB of memory. Consequently, the total number of Barb-
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11.1. Birdsong Detection in the Wild

Net multiplications is 84 million, and its total memory footprint is 755KB.22 Note that two
arrays are used alternatively to store all the inputs and intermediate representations, saving
506.18KB of memory.

To further reduce the computational demand, a few device-dependent optimizations
have been implemented in the BarbNet deployed version on the STM32H743ZI unit, rely-
ing on the CMSIS-DSP Cortex-M7 processor’s instruction set:

• As in the most prominent DL libraries (e.g. (Chetlur et al., 2014)), the convolu-
tion layer has been converted into a matrix multiplication. The convolutional input
patches (i.e., all the activation pieces the convolutional filters are multiplied by)
are unrolled and organized as rows in the first matrix of shape (npatches, fs), with
npatches the number of patches and fs the dimension of each (unrolled) filter. The
nfft convolutional filters (of size fs) are instead rolled out and arranged as columns
in the second matrix of shape (fs, nfft). Finally, the multiplication result of size
(npatches, nfft) between the patches and filter matrices is reshaped to match the
convolutional output;

• Since convolutional filters embrace overlapping patches, the previously described
creation of the patches matrix will result in a non-negligible increment of the mem-
ory footprint. To balance this increment, the maximum number of patches multiplied
at any given time, n̂patches, is defined as an additional parameter of the problem. In
our implementation, n̂patches is fixed to the number of columns, which means that
to carry out a convolution, the number of employed matrix multiplications equals
the number of convolutional input rows;

• Batch normalization and maximum pooling operations are computed simultane-
ously with the previous convolutional layer;

• The zero-padding (to be done in all the convolutional and pooling layers) is imple-
mented without explicitly instantiating the “padded” array;

• The fully-connected layer is carried out as a matrix multiplication via CMSIS-DSP
instructions.

11.1.4 Evaluating the ToucaNet and the BarbNet
This section details the birdsong recognition experimental results by evaluating the pro-
posed ToucaNet pipeline and its several possible approximations, including the BarbNet,
with the solutions available in the related literature. Finally, this Section benchmarks the
BarbNet implementation on the STM32H7 IoT device in terms of execution time, power
consumption, and system lifetime.

Data Sets and Figures of Merit. The experimental results have been collected on three
different datasets (Stowell et al., 2019): Warblr, composed of approximately 8000 10s
recordings from smartphones (in UK); Free-Field, containing 7690 10s recordings from
a research project; and BirdVox-DCASE-20k, namely the remote monitoring flight calls

22The total number of multiplications is an upper bound since it does not consider all the optimizations.
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Solution Input Details mψ (MB) cψ aucψ

fa
(Hz)

ta (s) Dimensions Input Parameters 109 ops

BarbNet 2205 10 33x345x3 0.215 0.383 0.086 0.778± 0.006
BarbNet (2) 17640 10 257x345x3 1.941 0.383 0.631 0.853± 0.018
ToucaNet 22050 10 257x431x3 2.108 42.606 4.255 0.925± 0.008

Lasseck (Lasseck, 2018) 22050 10 299x299x3 1.864 ≈ 92 ≈ 5 0.932

CRNN 44100 10 128x768 2.057 4.452 > 6.460 0.855
CNN 44100 10 128x768 2.057 1.127 6.460 0.842

(Mukherjee et al., 2018)

Puffin 44100 10 80x1000 1.897 ≈ 4.270 ≈ 0.162 0.817
Bulbul 44100 10 80x1000 1.897 1.423 0.054 0.803

(Berger et al., 2018)

CapsNet1 16000 10 501x40 0.687 0.431 - 0.784
CapsNet2 16000 10 501x40 0.687 1.076 - 0.827
CapsNet3 16000 10 501x40 0.687 1.617 - 0.837

CapsNet Ensemble
(Vesperini et al., 2018)

16000 10 501x40 0.687 3.124 - 0.851

(a) Details of the birdsong detection state of the art solutions (each group corresponds to the same
authors).
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(b) aucψ vs memory footprintmψ outcomes obtained by the BarbNet working on an STM32H743ZI
(with m̄ = 1024 KB) and other solutions available in the related literature.

Figure 11.3: A comparison of the ToucaNet and BarbNet with the related literature. The
memory footprint and the computational demand of each solution is computed accord-
ing to Eqs. (11.2) and (11.3) and the description of the solution in the corresponding
paper. Since the employed datasets are the same, the figure of merit is reported as it is.
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11.1. Birdsong Detection in the Wild

dataset, that contains 20000 10s audio clips recorded remotely near Ithaca, NY, USA,
during autumn 2015.

The acquisition time is fixed to ta = 10s to use the available supervised information
and compare it with the related literature on the same data sets. Other data sets in the field,
such as the Chernobyl Exclusion Zone (CEZ) or the Remote monitoring night-flight calls
in Poland, have not been considered since the labels are not publicly available.

In the comparison of the birdsong detection solutions, two figures of merit have been
employed: the birdsong detection accuracy accψ and the Area Under Curve (AUC) aucψ
of the Receiver Operating Characteristic (ROC) on the class bird. In the experimental
results, such figures of merit have been computed through 10-fold cross-validation.

Pareto Front of the ToucaNet and its Approximations. As described in Section 11.1.3,
both the sampling frequency fa and the DL-based detector ψ need to be tailored to the
target IoT device. Therefore, in this section, the ToucaNet and a set of its approximations
are analysed in terms of accψ , aucψ , mψ , and cψ . The considered set of approximations
is

A = {(fa, `) : fa ∈ {1 100, 2 205, 4 410, 8 820, 17 640, 22 050} Hz,
` ∈ {conv1, conv2_0, conv2_1, conv3_0, conv3_1}}, (11.6)

where ` defines the ResNet block’s considered number of convolutional layers within the
ToucaNet (see Figure 11.1a), so if ` is conv2_1 then the ResNet-based detector is ap-
proximated by considering all the layers up to conv2_1. It is crucial to point out that the
BarbNet belongs to the set A, with fa = 2205 Hz and ` = conv2_0.

All the ToucaNet approximations are trained similarly to what is described in Sec-
tion 11.1.2. The initialization of layers follows the same as ToucaNet; the training epochs
are 14, the momentum is 0.9, and the learning rate is 5 · 10−3 decreased by a factor of 10
after the sixth and the tenth epoch.

For each configuration in A, Figure 11.2 reports aucψ vs. mψ , aucψ vs. cψ , accψ vs.
mψ , and accψ vs. cψ . In particular, in Figures 11.2a and 11.2b it is possible to observe the
Pareto Front generated by the considered ToucaNet approximations. This frontier can be
leveraged as a criterion to choose the architecture to deploy according to the constraints
imposed by a given IoT device. More specifically, in our case, given the memory constraint
m̄ = 1024 KB of the STM32H743ZI unit, there are five solutions on the Pareto Front that
are suitable for the deployment. The BarbNet is the fourth one with the highest AUC.
The fifth and best one is unfeasible when considering the intermediate activations of the
convolutional layers. Thus it is not considered in the following.

Comparing ToucaNet and BarbNet with the State-of-the-Art Solutions. Figure 11.3
compare both the ToucaNet and the BarbNet with state-of-the-art solutions in the birdsong
detection literature (Lasseck, 2018; Mukherjee et al., 2018; Berger et al., 2018; Vesperini
et al., 2018). Two main comments arise. First, ToucaNet has detection capabilities in
line with the best solution in the literature, i.e., Lasseck (Lasseck, 2018), but with half its
memory footprint and about 80% of its computational demand. Second, BarbNet is the
only solution satisfying the requirements of the STM32H743ZI unit and, when it samples
the input signal x at fa = 17640 Hz, equals or overcomes the accuracy and AUC of all the
other solutions with similar memory footprint (Figure 11.3b).
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Table 11.3: The BarbNet experimental execution timings on the STM32H743ZI, measured
with an oscilloscope.

Time (ms)

Audio (ta = 10 s, fa = 2205 Hz) 10 000.00
Spectrogram (nfft = 64, hl = 64) 22.80

Conv1–Pool1 432.00

Conv2_00 1 360.00
Conv2_01 1 470.00

Avg Pool (ap = 5) � 1.00
FC Classifier � 1.00

Total 3 284.80

Table 11.4: The energy analysis of the BarbNet deployment on the STM32H743ZI, when
considering a 3.3V power supply in the “acquire-classify-sleep” approach.

(a) Energy consumption measurements.

t (s) i (µA) P (mW) E (J)

Acquisition 10.000 721.95 2.38 0.000052

Computation 3.285 55 000.00 181.50 0.596228

Sleep 6.715 1.95 0.006 0.000043

(b) System Lifetime with different Li-Ion batteries (their available energy is 75% of the nominal
capacity).

Battery Capacity Battery Energy Lifetime

mAh J Hours Days

100 1 332 9.31 0.39
250 3 330 23.27 0.97
500 6 660 46.54 1.94

1 000 13 320 93.07 3.88
1 200 15 984 111.68 4.65
1 500 19 980 139.61 5.82
2 000 26 640 186.14 7.76
2 500 33 300 232.68 9.69
3 200 42 624 297.83 12.41

BarbNet on the STM32H7: Execution Time, Energy Consumption, and Lifetime.
A detailed experimental analysis to quantitatively measure the execution time, the energy
consumption, and the expected lifetime of the BarbNet running on STM32H7 has been
conducted, as detailed in the sequel.

Table 11.3 details the execution time results from audio acquisition to the last layer of
BarbNet and shows that BarbNet requires 3.285s to compute the classification y, signifi-
cantly below the time needed to acquire the audio signal (10s). Hence, embedded systems
endowed with multi-cores or DMA mechanisms can made the waveform acquisition and
classification simultaneously. In the technological scenario with a single core and DMA
not considered, we suggest two STM32H7 running in opposite modes. While the former is
acquiring the waveform, the latter predicts (with the BarbNet) on the previously acquired
waveform and then sleeps up to the subsequent acquisition step. The lifetime evaluation is
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11.2. Solar Magnetograms Activity Identification

based on this “acquire-classify-sleep” approach.
In more detail, Table 11.4a reports the energy required by each step, showing that

the most expensive one is the DL-Based Birdsong Detector computation step. Given the
energy consumptions detailed in Table 11.4a, Table 11.4b analyses the lifetime of the
proposed solution on the STM32H743ZI microcontroller with several real Li-Ion batteries.
To account for battery non-idealities and degradation over time, only 75% of the nominal
battery capacity is considered. Interestingly, the considered IoT unit running the BarbNet
provides a 7 days and 12.4 days lifetime when using a 2000 mAh and 3200 mAh capacity
Li-ion battery, respectively.

11.2 Solar Magnetograms Activity Identification

Space Weather (SW) represents a chain of processes that begin at the Sun. They can
adversely affect technology on Earth and its space environment posing hazards to mod-
ern society. For this reason, significant research efforts are undertaken to understand and
forecast SW and its impacts on Earth activities. More specifically, the complex interplay
between the plasma and magnetic field is the source of solar disturbances such as solar
flares and Coronal Mass Ejections (CME). Since the magnetic field controls the solar ejec-
tions, the research and (most of the) operational SW models widely use information about
the magnetic field. Although regular space and ground-based measurements of the Sun
magnetic field are available, they are restricted to the side of the Sun facing the Earth (near
side) and to the photospheric/chromospheric heights (Petrie, 2015). At these heights, close
to the Sun surface, the plasma density is high enough for a favorable signal-to-noise ratio.
The noise level represents a significant challenge for measurements on the limbs of the
solar disc, which is the visible surface of the Sun. Furthermore, due to the approximately
7.25-degree tilt of the Sun rotation axis with respect to the ecliptic plane, the polar re-
gions are not always visible, and different techniques are used to fill the gaps in the polar
regions (Sun et al., 2011).

SW has many unanswered questions about physical processes and significant gaps still
exist. Since a significant amount of solar observations exists in the solar and SW commu-
nity, Machine Learning (ML) could be a viable solution to provide significant scientific and
application advances. Such ML techniques aim at examining the behavior and determining
the evolution of the Sun magnetic field. Since measurements of the field are restricted to
the near side, there is an interest to predict active regions on the far side of the Sun. This is
particularly important for SW forecasting since, as the Sun rotates, these regions emerge
on the near side and, thus, the associated solar disturbances are more geoeffective.

This section uses Machine and Deep Learning techniques from Computational Intel-
ligence (CI) to study and characterize the behavior of the Sun magnetic field, whose data
come from the Global Oscillation Network Group (GONG) observations (Hill, 2018).
GONG provides solar magnetograms of the photospheric magnetic field with 24 hours
coverage of the Sun. These data are widely used in the research and operational SW com-
munity. For example, GONG synoptic maps are used with numerical models to derive the
coronal magnetic field (Nikolić, 2017; Nikolić, 2019) and to forecast CME propagation
and arrival times (Steenburgh et al., 2013; Pomoell and Poedts, 2018).
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(a) Photospheric magnetic field of the Sun as
viewed from the Earth on January 29, 2007
(05:54 UT). The field is saturated at ±25
Gauss. E, W, N, and S denote East, West,
North, and South, respectively. The small
square in the image represents the projec-
tion of the Earth on the solar disc.

(b) GONG synoptic maps of the photospheric
magnetic field for (a) January 29, 2007 (05:54
UT) and (b) September 06, 2014 (17:04 UT).
The magnetic field is saturated at±25 Gauss.
The central meridian and sub-Earth locations
are denoted with dash-dash and dash-dot line,
respectively.

Figure 11.4: Two examples of magnetic field in the adopted representations.

11.2.1 Solar Magnetograms, Synoptic Maps, and Data Preprocessing

A solar magnetogram represents an image of the magnetic field on the solar disc. As an
example, Figure 11.4a shows the GONG solar magnetogram of the photospheric magnetic
field for January 29, 2007 (05:54 UT). The red and blue colors represent the magnetic field
directed away from and towards the Sun, respectively. The field in Figure 11.4a represents
the radial component of the magnetic fieldBr(R0, ϑ, φ), where, R0 is the radius of the Sun,
θ is the colatitude, and φ is the longitude. In the figure, a region with a strong magnetic
field is visible on the East limb of the solar disc. As the Sun rotates, with about a 27.27
day rotation period, this active region will move from East (E) to West (W) and cross
the central meridian. The solar magnetograms can be combined into so-called synoptic
maps that represent full-surface maps of the Sun magnetic field and are often used in SW
research and operations (Hill, 2018).

More in details, the GONG synoptic maps S are re-meshed and organized as a matrix
[sϑ,φ = Br (R0, ϑ, φ)], with uniform 1◦ resolution in ϑ and φ. These re-meshed maps are
proven to improve the accuracy of the widely used potential field source surface model
of the solar corona and, particularly, of spherical harmonics in the polar regions (Nikolić,
2017; Tóth et al., 2011).

Figure 11.4b shows two examples of re-meshed synoptic maps S, for (a) January 29,
2007 (05:54 UT), and (b) September 6, 2014 (17:04 UT). The map time is associated with
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Figure 11.5: The definition of the classes according to the solar activity on the adjusted
10.7cm solar flux.

the central meridian that is denoted with the dash-dash line, whereas the dash-dot line
denotes projections of the Earth on the map at different times. As the Sun rotates, the
region φ < −60◦ will cross the central meridian. The synoptic map (a) in Figure 11.4b
corresponds to the solar magnetogram from Figure 11.4a and illustrates the magnetic field
of the Sun close to the solar cycle 23 minima, whereas Figure 11.4b(b) shows the field
around the maximum of solar cycle 24.

The GONG synoptic maps are assembled from many measurements of the photo-
spheric magnetic field, including measurements from different observatories to provide
daily coverage of the Sun. All those measurements are weighted when computing the syn-
optic map. Since a particular measurement can capture only the field on the near side of
the Sun, the far side on the synoptic map consists of non-updated past data. Furthermore,
due to the limb noise, only the longitudinal region −60◦ < φ < −60◦ most accurately
captures the Sun’s magnetic field.

Summing up, this application relies on synoptic maps S ∈ RΘ×Φ, where Θ = 360
and Φ = 181. More in detail, there are two maps per day, from November 1, 2006, to
September 30, 2019, typically acquired at 05:04 and 17:04 UT (when the maps are not
available at those times, the closest ones are used if the time difference is less than two
hours). However, there are some days when no map is available in the GONG archive.
The considered period covers the whole solar cycle 24.

11.2.2 Solar Activity Classes Definition
The solar activity within solar cycle 24 has been divided into four (unbalanced) classes,
trying to respect as much as possible the physical structure of the problem, starting from
what described by Schwabe (Schwabe and Schwabe, 1844):

• Low (794 magnetograms): the initial period of a solar cycle, characterized by low
solar activity. In our cases, the low activity period started at the beginning of cycle
24, estimated in December 2008 up to the end of 2009;
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• Rising (848): after the low activity phase, a small transition period to the high ac-
tivity one exists, here considered as a standalone class. It covers the period from
January 1, 2010, to the end of February 2011;

• High (2866): this is the phase of the solar cycle characterized by the highest solar
activity and the highest solar disturbances. It covers the period from March 1, 2011,
to January 31, 2015;

• Decline (3406): after the high activity phase, the solar activity declines up to the
next solar cycle. This period covers the magnetograms from February 2015 to the
last available ones in the series.23

It is noteworthy to point out that the crisp boundaries between these phases are artificially
introduced, while in real-world situations they are smooth. For these reasons, classifi-
cation errors close to such boundaries are reasonably expected (since most classification
algorithms assume sharp boundaries). The definition of classes is shown in Figure 11.5,
together with the 10.7 cm solar radio flux that is an indicator of solar activity (Livingston
et al., 2012; Valdés et al., 2019).

11.2.3 Solar Activity Modeling through Deep Learning Solutions
The preprocessed solar magnetograms S are converted to images by assigning a three-
dimensional color (from any perceptual uniform colormap) in the interval [−100, 100].
All the values out of this interval are considered as the interval nearest value, i.e., −100
for negative values and 100 for positive ones. Figure 11.6 presents the proposed Deep
Learning-based architecture to address the problem of modeling the solar activity (in the
spectrograms). In particular, the solution comprises the following steps:

• a pre-trained Convolutional Neural Network (CNN) % (·) acting as a feature extractor
following a transfer learning approach (LeCun and Bengio, 1995; Yosinski et al.,
2014).

• a dimensionality reduction operator ς (·). This step is crucial to mitigate the curse of
dimensionality problem deriving from high-dimensional spaces that typically char-
acterize CNNs (Zimek et al., 2012). The considered ς is a Principal Component
Analysis (Wold et al., 1987). The feature space defined by ς ◦ % (·) represents solar
magnetograms S in the reduced space of CNNs.

• Finally, the reduced feature vector can be processed by both supervised and unsu-
pervised ML techniques: Support Vector Machines (Cortes and Vapnik, 1995) as
supervised, and k-Means (Lloyd, 1982) and Gaussian Mixture Models as unsuper-
vised clustering techniques. More specifically, the supervised classification is meant
to recognize the solar activity classes defined in Section 11.2.2, whereas clustering
techniques should validate the definition of these classes by identifying clusters that
match them (ideally, each cluster should contain samples belonging to only one
class).

23The end of solar cycle 24 is indeed estimated to be in late 2019.
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Figure 11.6: The proposed deep learning architecture to characterize solar magneto-
grams Ss. On the extracted features ς ◦ % (S), various supervised or unsupervised
techniques can be applied.

It is crucial to point out that the proposed deep learning architecture does not require
training, except for the computation of the PCA ς . However, nothing avoids refining the
feature extractor %, for example, with some solar magnetogram images Ss.

11.2.4 Analysis
Implementation Details. The architecture, detailed in Section 11.2.3 and shown in Fig-
ure 11.6, has been implemented in Python (through the PyTorch (Paszke et al., 2019)
framework). In particular, two DLMs have been considered for the feature extractor %: the
AlexNet (Krizhevsky et al., 2012) at the end of each convolutional block (precisely, the
pooling layer at the first, second, and fifth block, the ReLU non-linearities at the others),
and the ResNet-101 (He et al., 2016) after each of the 32 residual blocks. The PCA ς is
computed, in each case, on the number of components that keep 95% of the variance.

Analysis Results. Figure 11.7 shows the classification results for both the considered
CNNs, with a 50-50% training/testing split of the solar magnetograms.

The AlexNet (Figure 11.7a) shows extremely high accuracy on the High activity class
as well as some difficulties with the other classes, especially the Rising one. The fourth
layer (ReLU4) exhibits the best classification accuracy on all classes with a global accuracy
of 0.925. In contrast, the fifth layer (pool5) has a very low accuracy on the Low class,
despite comparable or better accuracies on other classes w.r.t. ReLU4 layer.

Figure 11.7b shows the ResNet classification results. The first eight layers have a
low accuracy on the Low class, whereas the last layer has a small accuracy for all the
classes. However, layers 9 to 31 (at the end of fourth and fifth convolutional layers) are
able to provide high accuracy, i.e., higher than 0.9 on all classes. These results indicate
that a nine-layer architecture is appropriate. Consequently, this specific architecture will
be considered in the sequel.

Figure 11.8 shows the distribution of the magnetograms on the feature space of the
considered architecture, with a PCA aiming at keeping the 95% of the variance as a di-
mensionality reduction operator. Interestingly, Figure 11.8a exhibits a clearly distinctive
structure of the years, with only a slight overlapping between neighboring ones. From
the beginning of the magnetogram series (≤ 2009, top-left, beginning of the 24th solar
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Figure 11.7: The accuracy of the four defined solar activity’s classes on different feature
spaces. Each feature space has a feature extractor either the AlexNet (Figure 11.7a)
or the ResNet (Figure 11.7b) and as a dimensionality reduction operator a PCA with
the number of components that keeps the 95% of the variance.

cycle) to its end (≥ 2018, bottom-left, end of the 24th solar cycle), time follows a coher-
ent horseshoe path. Figure 11.8b organizes the magnetograms by the four solar activity
classes, highlighting the presence of clusters of magnetograms according to the activity
phase. Future studies with more data from the next and subsequent solar cycles (from 25th
on) would allow characterizing the transition dynamics in this feature space, providing
new tools for analyzing solar phenomena.

Figure 11.9 analyses the classification capability of a Gaussian Support Vector Ma-
chine (SVM) supervised classifier trained on the features extracted by the selected archi-
tecture. In particular, Figure 11.9a shows the confusion matrix, highlighting that the few
errors are of consecutive solar activity phases. More interestingly, Figure 11.9b plots such
errors over time, revealing that such errors are almost all in the nearby of a transition
boundary. This is a consequence of the sharp boundaries introduced during the classes
definition (see Section 11.2.2), whereas the physical process has gradual transitions with
local variations within the global trends.

The final step of the analysis aims at exploiting the temporal structure highlighted in
Figure 11.8, with magnetograms defining a horseshoe path over the years. To do so, two
unsupervised clustering algorithms (k-Means and GMM) have been taken into account
and trained with the goal of defining four clusters on a balanced subset of the magne-
tograms. Ideally, the generated clusters should match the solar activity classes defined in
Section 11.2.2 and shown in Figures 11.5 and 11.8b. Figure 11.10 shows the results of this
analysis by taking into account all the samples in the analysis (the samples not present in
the “training” subset are assigned to the closest cluster). There is good correspondence be-
tween the original classes and the generated clusters for both the algorithms, with several
magnetograms in the nearby of a transition phase assigned to the adjacent solar activity
class, as expected after introducing sharp boundaries. Figure 11.10c shows the distribution
of the samples in each cluster, revealing that only the class Rising is the only class that has
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Figure 11.8: The distribution of solar magnetograms on the first two dimensions (those
having the highest variance) of the features space defined by the ResNet output of the
layer conv4_0, then reduced by a PCA with 3468 components, i.e., those keeping 95%
of the variance. Interestingly, both the figures shows a path in the feature space during
the years (and thus the phases) of the solar cycle.
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Figure 11.9: The solar activity classification results of a Gaussian SVM on the features
space defined by the ResNet output of layer conv4_0, then reduced by a PCA with 3468
components, i.e., those keeping 95% of the variance. Interestingly, almost all the errors
are near the transition phases.

not been clearly isolated since the cluster containing the majority of its samples comprises
mostly magnetograms belonging to the High class. This behavior, more severe with the
k-Means algorithm, might be due to the unbalanced nature of the evaluation set but also
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Figure 11.10: The solar magnetograms clustering results on the first two dimensions
(those having the highest variance) of the features space defined by the ResNet out-
put of the layer conv4_0, then reduced by a PCA with 3468 components, i.e., those
keeping 95% of the variance. For both the k-Means (Figure 11.10a) and the GMM
(Figure 11.10b) algorithms, the number of samples is balanced on the four solar ac-
tivity classes (randomly subsampled). Finally, Figure 11.10c compares the clusters
defined by the two considered algorithms with the expected classes (Figure 11.8b).

by a significant part of Rising magnetograms that are clustered into the Low one.
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CHAPTER12
Conclusions and Future Work

Tiny Machine Learning is a relatively new research area aiming at designing machine and
deep learning solutions that can be executed on embedded systems, IoT, or microcontroller
units, i.e., with a memory footprint of a few kilobytes and energy consumption of milli- or
micro-Watts. Moreover, the solutions available in the related literature primarily focus on
supporting the inference of such Tiny Machine Learning algorithms on the device, whereas
there are very few works addressing the problem of on-device learning.

In this scenario, this work came into play by proposing a methodology to design and
deploy Deep and Wide Tiny Machine Learning solutions, where the term deep refers to
the support for deep learning models, whereas the term wide to the possibility to distribute
the deep learning pipeline across possibly heterogeneous embedded systems, IoT or mi-
crocontroller units. In the remaining of the section the main results, as well as possible
future research directions, are summarized.

12.1 On-Device Deep Tiny Machine Learning

The first aspect the methodology takes into account is the possibility to design approxi-
mated Deep Learning Models by means of structured pruning, i.e., with task dropping, or
precision scaling, i.e., by quantizing or relying on low-precision representations for the
deep learning model’s parameters. This approach leads to deep learning models with a
memory footprint that satisfies the technological memory constraints introduced by the
embedded system, IoT, or microcontroller unit the deep learning model will be executed
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on. Moreover, the resulting deep learning model will have a reduced computational load
as well.

In addition, the methodology encompassed as a possible design choice the introduction
of Early-Exits, here via Gate-Classification, that can reduce the mean computational load
by introducing a gating mechanism at one or more intermediate points within the deep
learning pipeline. In such gates, if the processing pipeline has enough confidence about
the final outcome can directly provide it without the need to execute the remaining layers.

Finally, with the goal of supporting on-device learning, a first work aiming at making
deep learning models adaptive in presence of concept drift has been proposed. This active
approach relies on a Change Detection Test on the deep learning model classification error
and on an adaptation procedure that identifies the portion of the deep learning processing
pipeline that has become obsolete after the concept drift. Hence, the adaptation does not
require a complete re-training of the pipeline in response to a change. After that, the
methodology included the first approach to on-device learning, i.e., a solution based on a
fixed deep learning-based feature extractor and an adaptive k-Nearest Neighbors classifier.
In particular, such an approach has been tailored to all the three approaches known in the
literature of concept drift, i.e., passive, active, and hybrid.

Future research directions include the possibility to encompass unstructured pruning
mechanisms as well as the (at least partial and constrained) exploration of feasible neural
architectures, as in Neural Architecture Search approaches (Elsken et al., 2019; Li and
Talwalkar, 2020). Moreover, there is room for improvement also in the on-device algo-
rithm by exploring memory control mechanisms in the passive algorithm, unsupervised
change detection tests in the active (and hybrid) one(s), as well as the introduction of pre-
cision scaling mechanisms or the conversion of the non-parametric adaptive classifier to a
parametric one.

12.2 Deep Wide Tiny Machine Learning

The introduction of Wide Tiny Machine Learning solutions extended the plethora of the
proposed methodology’s possible applications. In particular, there is the possibility to split
the deep learning pipeline into smaller and simpler tasks that are distributed into a hetero-
geneous network of embedded systems, IoT or microcontroller units. The methodology
encompassed single deep learning models with or without early exits, multiple (and pos-
sibly different) deep learning models, and deep learning models that share part of their
processing pipeline.

Moreover, an approach for encrypted computation on the Cloud has been proposed to
deal with all those scenarios in which there is still the need to rely on the Cloud computa-
tion and, at the same time, the processed data are sensible and should not be in any way
decrypted or sniffed by the Cloud.

Future research directions include the management of network failures in the method-
ology, a more accurate modeling of the data transmissions, the possibility to manage the
amount of data transferred among IoT units, the possibility of the IoT units to move within,
to leave from or to enter into the network, the definition of one or more algorithms com-
puting the distribution of the deep learning pipeline (e.g., heuristic for fast but maybe
sub-optimal mappings, branch and bound ones for a more accurate exploration of the so-
lutions space with bounds on the exploration time), and the management of the energy
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from other perspectives (for instance, the possibility for the IoT units to harvest energy
over time).

12.3 From the Laboratory to the Wild

Finally, some of the techniques proposed in the methodology for designing Deep and
Wide Tiny Machine Learning solutions have been applied to two real-world scenarios. At
first, the detection of bird calls within audio waveforms in remote and wild environments.
In this domain, the proposed solution with less than 512 KB of memory footprint and a
processing time of a bit more than 3 s (for waveforms of 10 s) can operate for more than
a week on a common micro-controller, the STM32H7, with a 2 000 mAh battery. The
second scenario is the prediction of the solar activity from the acquired magnetograms.
In this field, a characterization of the phenomena has been carried out, with significant
insights on the problem as well as the definition of a feature space where all the four
identified solar activity phases within a single solar cycle can be clearly identified.

Here, future research directions employ the possibility to deal with the recognition of
the birds within the acquired waveforms, e.g., by a two-step classifier in which the first step
is the proposed detection algorithm and the second step aims at identifying the bird species.
In the scenario of sun activity prediction, the introduction of predictive algorithms starting
from the proposed characterization might be beneficial in daily life if they can anticipate
solar activity.
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