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A B S T R A C T

The rapid improvement of machine learning and computer vision systems has
fueled the development of self-driving vehicles. These systems rely on their
underlying hardware, such as automotive image sensors, which are being
developed with great intensity to effectively tackle the challenges imposed by
real-world scenarios. In this context, bio-inspired silicon retinas or event-based
cameras offer a wide range of characteristics that allow them to be a valid
candidate for artificial vision: very high temporal resolution and low latency
(both in the order of microseconds), very high dynamic range (140 dB vs. 60

dB of standard cameras), and low power consumption [3]. Unlike traditional
cameras, which generate frames at a constant rate, event-based cameras
respond to brightness changes in the scene asynchronously and independently
for each pixel on the silicon retina, generating a variable data-rate stream of
events. However, because event cameras work in a fundamentally different
way from standard cameras, novel methods are required to process their
output and unlock their potential.

In this thesis, we explore and develop deep learning architectures capable
of successfully processing streams of events generated by neuromorphic
image sensors for image classification and semantic segmentation tasks in
automotive contexts. The main goal of our work was to exploit the sparse
asynchronous nature of event-driven data without resorting to costly frame
reconstruction techniques. To achieve this feature, we based our efforts on
PointNet [1] and PoinetNet++ [2] which are state-of-the-art architectures for
point clouds, an important type of geometric data structure that shares all
characteristics with the data generated by event cameras. Our architectures
are trained and validated on different event-based automotive datasets. The
results are then compared to state-of-the-art models.
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S O M M A R I O

Il secolo scorso è stato segnato da incredibili progressi scientifici e sviluppi
tecnologici. Tra questi, forse quello che più ha cambiato la vita di tutti è
stato lo sviluppo dei primi calcolatori elettronici. La crescita esponenziale
dei progressi tecnologici nel campo del calcolo digitale sta dando i suoi
frutti nella vita di tutti i giorni: oggi quasi ogni dispositivo tecnologico
contiene una piccola unità di calcolo capace di eseguire intensi calcoli in una
frazione di tempo. Non c’era da stupirsi che presto i computer sarebbero stati
una parte fondamentale della vita umana. Fin dall’alba dei primi computer,
la questione è stata fino a dove può arrivare la potenza di calcolo. Questa
questione tecnologica ma anche filosofica è stata affrontata da molti ricercatori
negli ultimi decenni in modo tale che la coesistenza tra uomo e macchina
è diventata simbiotica e il miglioramento dei computer elettronici è stato
spesso ispirato dall’organismo che conosciamo meglio: il corpo umano.

Basti dire che lo sviluppo più importante nell’area della tecnologia dell’in-
formazione degli ultimi anni, l’apprendimento automatico, trae i suoi prodotti
dal concetto di apprendimento come lo conosciamo negli esseri viventi. Un
chiaro esempio di tecnologia bio-ispirata è rappresentato dalle architetture
di reti neurali di apprendimento profondo, che basano il loro funziona-
mento sul concetto di "neurone artificiale", il gemello digitale del neurone
come lo conosciamo negli animali. Queste potenti architetture possono essere
adattate per funzionare in una grande varietà di situazioni quotidiane, che
vanno dai sistemi di elaborazione del linguaggio naturale alla predizione del
comportamento umano, come l’analisi del sentimento. Una delle aree più
interessanti dei modelli di deep learning è nel campo della visione artificiale,
dove vengono costruiti modelli robusti che permettono alle macchine di
estrarre informazioni utili dalle immagini facendo uso di rappresentazioni
astratte dei dati di input. Il riconoscimento facciale, che si trova su ogni
smartphone moderno, è solo una delle tante applicazioni dei modelli di deep
learning per la visione artificiale, ma il suo funzionamento è tutt’altro che
banale. Gli esseri umani hanno una capacità innata di riconoscere diversi tipi
di volti sulla base di caratteristiche chiaramente visibili. Una rete neurale
di apprendimento profondo, d’altra parte, deve imparare a riconoscere il
proprio set di caratteristiche per identificare correttamente i diversi volti. Una
rete di questo tipo è costruita in strati, ognuno dei quali è progettato per
estrarre le caratteristiche in modo gerarchico e combinando caratteristiche più
semplici per crearne altre complesse. In questo contesto, le architetture leader
e più performanti sono basate su un tipo speciale di modelli di deep learning
chiamati Reti Neurali Convoluzionali che basano il loro modus operandi sulla

xiv



nozione matematica di convoluzione per generare un insieme gerarchico di
modelli generali.

Gli sviluppi bio-ispirati non si limitano al regno del software della tecnolo-
gia dell’informazione, ma trovano anche la loro strada nei recenti sviluppi
dell’hardware come i sensori neuromorfici, dispositivi biologicamente ispirati
che trovano le loro grandi applicazioni nelle telecamere a eventi. I sensori visi-
vi tradizionali acquisiscono immagini complete ad un determinato frame-rate,
specificato da un clock interno. Al contrario, le telecamere basate sugli eventi,
come i sensori di visione dinamica (DVS) o i sensori di visione dinamica e a
pixel attivi (DAVIS), usano sensori asincroni che campionano la luce in base
alla dinamica dell’ambiente circostante, generando un flusso di dati variabile
di "eventi" o "picchi" digitali, dove ogni evento rappresenta un cambiamento
di luminosità. In modo analogo, i sensori audio basati sul silicio, o sensori
audio dinamici (DAS), emulano il funzionamento di una coclea binoculare
producendo eventi ogni volta che viene rilevata un’attività uditiva. I sensori
di visione dinamica hanno recentemente attirato l’interesse di molti ingegneri
dell’industria automobilistica, che sono costantemente alla ricerca di sensori
più efficienti e avanzati. Tra questi, i sensori di percezione sono di grande
interesse data la recente tendenza a sviluppare veicoli in grado di interagire
con l’ambiente circostante. Questi sensori di visione devono avere caratteristi-
che molto specifiche: basso costo, alta gamma dinamica, resistenza alle luci
tremolanti e tolleranza alle cattive condizioni atmosferiche. In questo contesto
le telecamere basate su eventi sono il candidato perfetto per gli scenari di
guida autonoma, dove la latenza, il basso consumo energetico e un’alta riso-
luzione temporale sono elementi chiave. Infatti, le telecamere basate su eventi
generano eventi solo quando un pixel percepisce un cambiamento di lumi-
nosità. L’alta risoluzione temporale permette di rilevare questi cambiamenti
nella scena molto frequentemente, una caratteristica desiderabile per i sensori
automobilistici. Inoltre, i dati prodotti non sono ridondanti in quanto solo
le informazioni variabili vengono percepite, mentre ciò che rimane statico
nella scena dal punto di vista dell’auto e quindi di scarsa rilevanza non viene
percepito dalla telecamera ad eventi. Posch et al. sono stati tra i primi a
proporre sensori basati sugli eventi per i sistemi di assistenza automatica alla
guida (ADAS).

Questo nuovo cambio di paradigma imposto dalle telecamere basate sugli
eventi richiede architetture progettate in modo specifico che possano gestire
i flussi di eventi ed elaborarli. Le reti neurali spike (SSN) sono architetture
che cercano di sfruttare ulteriormente gli aspetti neurobiologici della compu-
tazione neurale artificiale. I neuroni "spiking" comunicano tra loro tramite
sequenze di picchi, chiamati "treni di picchi", che codificano informazioni
spaziali e temporali. Una volta che tale neurone accumula abbastanza infor-
mazioni rilevanti, emette uno spike. Questo permette alla rete di rilevare gli
stimoli in diverse istanze temporali. Poiché la natura degli eventi generati
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dalle telecamere basate sugli eventi è simile a quella degli spike, le archi-
tetture SNN sono state utilizzate nelle prime fasi della ricerca nel campo
della computer vision basata sugli eventi. Tuttavia, la performance delle
Spiking Neural Networks è limitata dalla natura discreta degli eventi, che li
rende modelli non differenziabili che sono molto difficili da addestrare con
approcci tradizionali di discesa del gradiente. Soluzioni di ripiego sono state
proposte da alcune ricerche, utilizzando i filtri Gabor come pesi nelle reti o
addestrando prima una CNN e convertendo i pesi in una SNN. Le soluzioni
ottenute, tuttavia, sono sub-ottimali e tipicamente le prestazioni sono inferiori
alle CNN convenzionali sui frame. Altri approcci integrano eventi in specifici
intervalli di tempo per generare fotogrammi ai quali vengono applicate le
CNN tradizionali. Questo metodo produce prestazioni robuste, date le CNN
potenti e ottimizzate disponibili oggi. Tuttavia, questi approcci non sfruttano
pienamente la natura sparsa e asincrona dei flussi di eventi.

Il nostro approccio parte dall’analisi dei dati generati da un sensore basato
sugli eventi. Una telecamera basata sugli eventi con una griglia di pixel di
dimensioni MxN genera un flusso di eventi I:

Ψ = {ei}
I
i=1, with ei = (xi, yiti, pi) (0.1)

dove (xi, yi) ∈ [1, ...,M]x[1, ..., N] sono le coordinate del pixel che genera
l’evento, ti > 0 è l’istante temporale in cui l’evento è generato e pi ∈ {−1, 1}

o pi ∈ {0, 1} (a seconda del tipo di sensore di eventi usato) è la polarità
dell’evento. Questo flusso Ψ di eventi può essere visto come una nuvola di
punti tridimensionale dove per ogni evento ei le prime due dimensioni sono
rappresentate dalle coordinate (xi, yi) e la terza dimensione è il tempo ti.
Questa analisi è stata il punto di partenza del nostro lavoro, che concentra i
suoi sforzi nell’adattare e migliorare le architetture esistenti di elaborazione
delle nuvole di punti, Pointnet e PointNet++, per gestire flussi basati su eventi
generati da sensori di visione dinamica in scenari automobilistici.
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1
I N T R O D U C T I O N

The last century has been marked by incredible scientific progress and techno-
logical developments. Among them, perhaps the one that changed everyone’s
life the most was the development of the first electronic calculators. The
exponential growth of technological advances in the field of digital computa-
tion is bearing fruit in everyday life: nowadays almost every technological
device contains a small computational unit capable of performing intense
calculations in a fraction of time. It was to no surprise that soon, computers
would have been a fundamental part of human life. Ever since the dawn of
the first computers, the question has been how far computing power can
go. This technological but also philosophical matter has been approached by
many researchers in the last decades such that the coexistence between man
and machine became symbiotic and the improvement of electronic computers
were often inspired by the organism we know best: the human body.

Suffice it to say that the most prominent development in the area of infor-
mation technology of recent years, machine learning, draws its products from
the concept of learning as we know it in living beings. A clear example of
bio-inspired technology is represented by deep learning neural network archi-
tectures, which base their functioning on the concept of the "artificial neuron",
the digital twin of the neuron as we know it in animals. These powerful archi-
tectures can be adapted to function in a vast variety of everyday situations,
ranging from Natural Language Processing systems to human behavioral pre-
diction, in the likes of Sentiment Analysis. One of the most interesting areas of
deep learning models is in the field of Computer Vision where robust models
are build that allows machines to extract useful information from images
making use of abstract representations of the input data. Facial recognition,
found on every modern smartphone, is just one of many applications of deep
learning models for computer vision but its functioning is far from trivial.
Humans have an innate ability to recognize different types of faces based on
clearly visible features. A deep learning neural network, on the other hand,
must learn to recognize its own set of features in order to correctly identify
different faces. Such a network is built in layers, each designed to extract
features in a hierarchical manner and combining simpler features to create
complex ones. In this context, the leading and best-performing architectures
are based on a special kind of deep learning models called Convolutional Neu-
ral Networks which base their modus operandi on the mathematical notion of
convolution to generate a hierarchical set of general patterns.

1



2 introduction

The bio-inspired developments are not limited to the software realm of
information technology but also find their way in recent hardware devel-
opments like neuromorphic sensors, biologically-inspired devices that find
their great applications in event-based cameras [3, 5–9] and audio sensors [8–10].
Traditional visual sensors acquire full images at a given frame rate, specified
by an internal clock. By contrast, event-based cameras, such as Dynamic Vision
Sensors (DVS) or Dynamic and active-pixel vision sensors (DAVIS), use asyn-
chronous sensors that sample light based on the dynamics of the surrounding
environment, generating a variable data-rate stream of digital "events" or
"spikes", with each event representing a change of brightness. In an analogous
way, silicon-based audio sensors, or Dynamic Audio Sensors (DAS), emulate
the functioning of a binocular cochlea by producing events whenever an
auditory activity is detected.

Dynamic vision sensors have recently attracted the interest of many en-
gineers in the automotive industry, who are constantly looking for more
efficient and advanced sensors. Among these, perception sensors are of great
interest given the recent trend to develop vehicles capable of interacting
with their surroundings. These vision sensors must have very specific char-
acteristics: low cost, high dynamic range, resistance to flickering lights, and
tolerance to bad weather conditions. In this context, event-based cameras
are the perfect candidate for autonomous driving scenarios, where latency,
low power consumption, and a high temporal resolution are key elements.
Event-based cameras generate events only when a pixel perceives a change
in brightness. The high temporal resolution allows these changes in the scene
to be detected very frequently, a desirable feature for automotive sensors. In
addition, the data produced is not redundant as only the variable information
is perceived, while what remains static in the scene from the car’s point of
view and therefore of little relevance is not perceived by the event camera.
Posch et al. [6] were among the first to propose event-based sensors for
automatic driver assistance systems (ADAS).

This new shift of paradigm imposed by event-based cameras requires
specifically designed architectures that can handle event streams and process
them. Spiking Neural Networks (SSN) [11–14] are architectures that try to ex-
ploit even further the neurobiological aspects of artificial neural computation.
Spiking neurons communicate between each other by sequences of spikes,
called spike trains, which encode spatial and temporal information. Once such
a neuron accumulates enough relevant information it emits a spike. This
allows the network to detect stimuli at different temporal instances. Since the
nature of events generated by event-based cameras is similar to that of spikes,
SNN architectures were used in the early stages of research in the field of
event-based computer vision. However, the performance of Spiking Neural
Networks is limited by the discrete nature of the events, which renders them
non-differentiable models that are very hard to train with traditional gradient
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descent approaches. Work-around solutions have been proposed by some
researchers, using Gabor filters as weights in networks [15] or training on
a CNN first and converting weights to a SNN [16]. The obtained solutions,
however, are sub-optimal, and typically the performance is lower than con-
ventional CNNs on frames. Other approaches integrate events at specific
time intervals in order to generate frames to which traditional CNNs are
applied [68, 18]. This method yields robust performances given the powerful
and optimized CNNs available today. Nevertheless, these approaches do not
fully exploit the sparse and asynchronous nature of event streams.

Our approach start with the analysis of data generated by an event-based
sensor. An event-based camera with a pixel-grid size MxN generates a stream
of I events:

Ψ = {ei}
I
i=1, with ei = (xi, yiti, pi) (1.1)

where (xi, yi) ∈ [1, ...,M]x[1, ..., N] are the coordinates of the pixel gener-
ating the event, ti > 0 the timestamp at which the event is generated and
pi ∈ {−1, 1} or pi ∈ {0, 1} (depending on the kind of event sensor used)
being the polarity of the event. This stream Ψ of events can be seen as a
three-dimensional point cloud where for each event ei the first two dimen-
sions are represented by the coordinates (xi, yi) and the third dimension
being the time ti. This analysis was the starting point of our work, which
focuses its effort on adapting and improving existing point cloud processing
architectures, Pointnet [1] and PointNet++ [2], to handle event-based streams
generated by dynamic vision sensors in automotive scenarios.

1.1 main contributions

In this thesis, we have adapted PointNet and PointNet++ to process event
streams generated by neuromorphic vision sensors. In Chapter 5 we first
explain the parallelism that exists between point clouds, which constitute the
typical PointNet input, and event streams. We then introduce techniques for
adapting PointNet-based architectures so that they can process and generate
deep learning models on event-driven data. Several experiments have been
carried out on different datasets generated by event-based vision sensors in
the automotive domain. The experiments include mainly classification and
segmentation tasks. In the last Sections, we explore the transfer learning and
object detection capabilities of our network.

1.2 thesis structure

The thesis is structured so that it is complete and comprehensible in every
aspect. Below is a short overview of the topics covered:
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• In Chapter 2 we first introduce the field of autonomous driving, the
central interest of our neural network application. The chapter gives
an overview of what is meant by autonomous driving and how this
field is evolving. This is followed by a description of the most com-
mon perceptual sensors found in a modern vehicle along with their
applications.

• Chapter 3 focuses on the history of neuromorphic systems with partic-
ular emphasis on the neuromorphic vision sensors that form the basis
of the event cameras used in this thesis. The different types of event
cameras available and their applications will then be analyzed.

• Chapter 4 gives a broad overview of the literature and the state-of-the-
art for neuromorphic vision in the field of autonomous driving. Datasets
recorded with event cameras will be explored along with various data
representation models. Finally, a description of how neural networks
are able to process event streams and how the networks can be used in
various tasks related to autonomous driving is given.

• Chapter 5 we introduce our contribution by presenting the architectures
used and conclude with the evaluation of the experiments.
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AU T O N O M O U S D R I V I N G S Y S T E M S

2.1 introduction

The past decade has been a turning point for the automotive industry world-
wide. Changes in our society and environment have required car manufac-
turers to address the new needs that have emerged. One of the main and
best-known factors is environmental pollution, which has led car manu-
facturers to develop increasingly efficient combustion engines, culminating
in the development of electrically powered vehicles that can compete with
combustion models. But one of the big trends in the automotive sector is au-
tonomous driving, a car that is capable of fulfilling the operational functions
of a traditional car without a human operator. The potential of autonomous
driving systems in conjunction with recent technological developments has
led to a rapid rise in this sector. An autonomous driving system placed in
a surrounding environment may be able to drastically reduce the number
of fatalities caused by road accidents due to human carelessness or error.
In addition, such a system could have great benefits in terms of efficiency,
increasing the viability of the road network by reducing traffic and the need
for cities to create parking spaces. Finally, the success of recent car-sharing
models could exploit autonomous driving to create fleets of autonomous cars,
leaving the human component as a mere passenger.

Vehicles with autonomous or assisted driving systems must be equipped
with sensors capable of collecting stimuli from the surrounding environment,
which will be processed by sophisticated computer models designed to rec-
ognize useful elements in the scene, and finally by actuators that can interact
with the state of the car in response to need. This complex of systems must
work in unison even in the most adverse situations to ensure predictable
vehicle behavior. For example, a car with advanced driver-assistance systems
(ADAS) that rely on recognizing road signs will have difficulty if the signs
are not visible due to damage to the road surface or unfavorable weather
conditions. Another example is uncommon driving situations, such as avoid-
ing unexpected obstacles on the road or reacting to traffic policemen. It
is clear that the underlying components of autonomous vehicles must be
designed in such a way that all possible situations can be assessed without
incurring prohibitive costs. Recently the term Vehicle-to-Everything (V2X) has
been coined in response to the ever complexity of communication skills
required by autonomous systems. Cars of these types are able to commu-
nicate with the surrounding environment, vehicles, and even pedestrians.

5
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Through its instant communication V2X allows road safety applications such
as forward collision warning, lane change warning, roadworks warning o
emergency vehicle approaching. Other benefits will be brought to various
sectors, such as the telecommunication industry who will greatly profit from
the increasing data traffic required by autonomous systems. Cities will be
able to re-organize their urban spaces as autonomous cars will be able to park
themselves outside of the city center. On the other hand, other sectors will be
negatively impacted by autonomous driving. The car insurance sector will
be revolutionized, as it will have to deal with increasingly safe vehicles and
the possibility of better analyzing events in the event of accidents. Premiums
will decrease and the liability will shift from drivers towards manufacturers.
[19] Vehicles with more advanced driving systems will make the human
driver component obsolete, affecting an entire sector of people who make
their living from driving. Researchers forecast [21] that by 2025 we’ll see
approximately 8 million autonomous or semi-autonomous vehicles on the
road. There is no doubt that this decade will be crucial for our society to
adapt to the new demands and risks imposed by autonomous vehicles.

2.2 classification of autonomous vehicles

The Society of Automotive Engineers (SAE) defines 6 levels of driving au-
tomation ranging from 0 (fully manual) to 5 (fully autonomous) [20]:

• L0: vehicles of this category do not possess any autonomous capabilities
as the human driver is continuously in control of speed and direction.

• L1: the driver continuously performs the longitudinal or lateral dynamic
driving task while the other task is performed by the system. An
example of L1 system is the parking assistant.

• L2: the driver must monitor the dynamic driving task and the driving
environment at all times, however, the system performs the longitudinal
and lateral driving task in a defined use case. The traffic jam assist is an
example of L2 system.

• L3: the driver does not need to monitor the dynamic driving task nor
the driving environment, but he must always be in a position to resume
control. Systems of such kind perform the driving task in a defined use
case and are able to recognize its performance and limits by requesting
the action of the driver at need with sufficient margin. An example of
L3 are highway patrol systems.

• L4: the driver is not required during the defined use case. Autonomous
driving in urban environments is an example of L4 system.
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Figure 2.1: The autonomous vehicle classification and their timeline according the
the KPMG study. Vehicles of kind L3 are current state-of-art.

• L5: the driver is not required during the entire journey as the system
is able to perform the driving task in all situations. Full end-to-end
journeys are L5 systems.

These levels have been adopted by the U.S. Department of Transportation.
A 2015 study published by KPMG [19] provided also an estimated de-

velopment timeline as seen in Figure 2.1 for the above-mentioned systems.
In the current state of affairs, major car manufacturers consider L3-type
systems as their main production targets, as they are in line with available
technology. Other companies such as Google are already looking ahead by
working on fully autonomous vehicles at the L5 level. "The randomness
of the environment such as children or wildlife can not be dealt with by
today’s technology", as stated by Markus Rothoff, Director of Autonomous
Driving at Volvo, resonates with the majority of researchers who agree that
the technology available today is not enough to make a step further than L3
models.

2.3 sensors of autonomous vehicles

Achieving automotive autonomy requires artificial intelligence to process
and integrate data generated by a set of sensors that must allow the vehicle
to get a useful and complete picture of the surrounding environment. The
complexity of scenarios in everyday driving requires sensors specialized
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Figure 2.2: Modern vehicles are equipped with a suit of different kind of sensors,
each specialized in a particulate task.
Source: SAE International

in different sensory tasks. Each sensor in the suite has its strengths and
weaknesses. In the next Sections, we will analyze the most common sensors
available on modern autonomous vehicles.

2.3.1 Ultrasonic sensors

Ultrasonic sensors are usually mounted in pairs or series of 4 on the front
and rear of the machine. Their low cost makes this sensor an essential piece
of equipment for modern vehicles for short-distance and low-speed detection.
As showing in Figure 2.2 their main application is to detect obstacles in the
immediate vicinity of the vehicle, imitating the navigation process of bats
by generating ultrasonic impulses, i.e sound waves with frequencies above
20kHz, which are reflected by barriers. Using this information, the sensors
are able to identify how far away the objects are and notify the vehicle in
time. These sensors are used in parking space detection [22], which can be
incorporated in self-parking systems, low-speed lateral collision avoidance
[23] or blind spot detection. By their nature, the impulses are affected by
the interference caused by climatic conditions as well as by the particular
texture of the reflected object. Although they have a lower propagation speed
than light or radio waves, ultrasonic sensors have found also applications in
long-range scene evaluation [24].
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Figure 2.3: PointPoint Cloud created by Velodyne Lidar’s Alpha Prime sensor
Source: Velodyne

2.3.2 RADAR Sensors

Radar, or radio detection and ranging, uses reflected radio waves to sense
surrounding objects, similar to LiDAR systems. These sensors are not a recent
discovery, in fact, they have been used since the early 1900s when the potential
of electromagnetic waves was used to detect the presence of ships in fog.
With the advent of the first aircraft, radar became the dominant technology
for exploring the surrounding airspace. Over the years radars able to detect
various ranges of objects, depending on the emitted wavelengths. Radar
sensors pick up metal objects best, seeing humans as partially translucent,
and seeing plastic or wood as nearly transparent. Despite its drawbacks,
this sensing method does give cars long-range sensing abilities that can see
through dust, fog, rain, and snow. As shown in Figure 2.2 radars on are
commonly used for adaptive cruise control [25, 26], emergency braking and
collision avoidance [27–29]. Although less powerful than LiDAR, radars offer
a wide range of benefits at a relatively low cost, making them one of the main
sensors fitted to modern machinery.

2.3.3 LiDAR Sensors

Light Detection and Ranging or LiDAR, is a sensing method that measures the
reflection of ultraviolet, visible, or near-infrared light off of objects as it scans
in 360°. Multiple beams are emitted at angles to each other as the sensor array
physically spins inside the device’s housing to produce a three-dimensional
picture of its surroundings. Repeating this process millions of times per
second creates a precise, real-time 3D map of the environment as shown in
Figure 2.3. An onboard computer can utilize this map for safe navigation.
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LiDARs offer a wide range of sensing capabilities that unfortunately come
currently at a very high cost. Recent studies [31] have focused on creating
solid-state LiDARs, which perform a similar task and are significantly more
cost-effective. Because they do not have a rotating component, solid-state
LiDARs cannot create a 360° image without the aid of additional sensors.

Because of their powerful characteristics, LiDARs have attracted the focus
of many researches. Navarro-Serment et al. used several SICK laser line
scanners to build a LIDAR array for pedestrian detection and tracking in an
indoor environment [32]. Schlosser et al. explored several aspects in LIDAR
and RGB image fusion for CNNs for pedestrian detection [33]. The method
proposed by Kun Zhou et al. [30] not only focuses on object detection and
tracking but also recognizes lane markings and road features.

2.3.4 Positional sensors

Nowadays almost every modern vehicle is equipped with the Global Posi-
tioning Sensor (GPS), a satellite-based radio navigation system owned by the
United States government and operated by the United States Air Force. It is a
global navigation satellite system (GNSS) that provides geolocation and time
information to a GPS receiver anywhere on or near the Earth where there is
an unobstructed line of sight to four or more GPS satellites. Through GPS
it is possible to determine the longitude and latitude (the position) within a
precision of a couple of meters, as well as speed and course. Although widely
used, GPS technology is not always sufficient to determine the exact position
or speed of a vehicle. Several factors can affect the quality of the accuracy of
GPS signals, such as the geometry of the satellites that make up the system,
atmospheric conditions, the quality of signal receivers mounted on cars, radio
interference, or signals reflected off buildings or walls ("multipath signals")
or even strong solar storms. Everyone is familiar with the situation of losing
GPS signals in tunnels, for example. Knowing the exact position and speed
of a vehicle is, therefore, no trivial task.

The Interial measurement unit (IMU) is an electronic device that measures
and reports a body’s specific force, angular rate, and orientation of the
body, using a combination of accelerometers, gyroscopes, and sometimes
magnetometers. These measurements can then be shared with GPS systems
to improve their accuracy in low-signal situations.

Another important category of positional sensors is defined by wheel speed
sensors that record the speed of the wheels by measuring acceleration in both
the longitudinal and vertical axis and communicate this data to the driving
safety system. The steering angle sensor is used to determine where the front
wheels are pointed. The wheel speed and angle sensor, combined with IMU
and GPS system allow for a precise and robust system that can continuously



2.3 sensors of autonomous vehicles 11

estimate the position, speed, and curse of AVs using well know controlling
techniques like the Kalman Filter [34, 35].

2.3.5 Vision Sensors

Sight is certainly one of the fundamental tools for animals to evaluate the
world around them. Not only can we see the visible spectrum of electromag-
netic waves that are reflected in our eyes, but we make binocular vision our
tool for assessing the distance and movement of objects. Vision sensors (or
cameras, as they are also called) offer a good spatial resolution, but cannot
directly measure distance or velocity. They rely on external light, so they
see traffic signals and daytime scenes, but at night can miss pedestrians
or wildlife not illuminated by headlights or street lights. Cameras have the
advantage of being able to record and encode colors, which often yields
valuable information (for example recognizing the color of the traffic lights)
but analysis of color data is time-consuming. Infrared vision enhances that
ability by picking up a thermal or heat signature to differentiate between
humans and objects. Essential for noticing a difference in temperature on
the road surface, alerting the AV to black ice. They can, however, be fooled
in situations that human eyes would normally be able to handle, such as a
brightly colored object against a bright sky or even painted objects that depict
a different situation than reality. To enhance safety, existing implementations
often mount eight or more 1,080-pixel cameras around the car running at 60

Hz amounting to a staggering 1.8 Gbytes of raw data per second generated.
The powerful and useful information carried by vision sensors combined

with already well-defined image processing techniques for machine vision
makes these sensors a must-have for AVs. Indeed, many are applications
and researches involving vision sensors since images and videos can be
processed by Deep Neural Networking. The state-of-the-art methods for
object detection can be categorized into two main types: one-stage methods
and two stage-methods. One-stage methods prioritize inference speed, and
example models include YOLO [38], SSD [40] and RetinaNet [41]. Two-stage
methods prioritize detection accuracy, and example models include Faster
R-CNN [43] or Mask R-CNN [45]. An example is a method used by Jiwoong
Choi et al. [42], where YoloV3 is combined with Gaussian parameters and
novelty loss function to increase bounding-box mean average precision (mAP).
Combined with other sensors for speed and position estimation, raw camera
data can be used to create depth-estimation of objections. [36].

In this study, the focus will be on a particular type of visual sensor called
an event-based cameras [3, 5–9] which has a different working principle
compared to the standard frame-based cameras, which leads to promising
properties of low energy consumption, low latency, high dynamic range
(HDR), and high temporal resolution. In the next Chapter, we will discuss
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how these types of cameras work and how they can be used for vision in
autonomous driving.



3
N E U R O M O R P H I C V I S I O N A N D E V E N T B A S E D C A M E R A S

Nature still outperforms the most powerful computers in tasks involving
perception, sensing, and actuation like vision, audition, and motion control.
Moreover, these tasks are performed by animals in such an energy-efficient
way that cannot be matched by their artificial counterparts. It is, therefore,
no surprise that many researchers have focused their efforts on studying,
learning, and creating technology inspired by nature.

In this Chapter we will focus on bio-inspired technology, with particular
attention to event-based cameras which are the main source for the data we
will use in our study. Finally, we will introduce different types of Neural
Networks that have been developed over the years that can process and
operate on event-based data.

3.1 neuromorphic systems

Engineers have taken inspiration from nature since the dawn of time. The
solution to many problems requires a perfect understanding of how certain
natural mechanisms work. The idea of applying concepts derived from nature
to artificial information processing systems is older than you might think: the
first work on artificial neurons was proposed in the 1940s and showed that
they were capable of performing calculations and being used for machine
learning [46, 47]. The first digital electronic circuits that mimic the functioning
of neurons in neural systems were developed in the 1980s by Carver Med at
CalTech [48–50], coining the term "neuromorphic" for systems that adopt the
form, or morph, neural systems. In "Neuromorphic Electronic Systems"[50],
Meads states that the advantage of biological information processing systems
can be attributed principally to the use of elementary physical phenomena
as computational primitives, and to the representation of information by
the relative values of analog signals, rather than by the absolute values
of digital signals. This approach requires adaptive techniques to mitigate
the effects of component differences which naturally leads to systems that
learn about their environment. Large-scale adaptive analog systems are more
robust to component degradation and failure than are more conventional
systems, and they use far less power. In his publication, Meads argues that
the brain is 10 million times more efficient than the best technology we
can imagine. During his research Meads found that transistors, or sets of
transistors, share many interesting features with the nervous system. Both
systems make use of electrical charge as analog state variable. To build more

13
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complex systems, connections between components must be exclusive to
certain links, while other components should be left out. This characteristic
requires isolation by means of energy barriers that will not allow charges
to leak where they should not. In the nervous system, such barriers are
built by the difference in the dielectric constant between fat and aqueous
solutions. In electronics, they are built by the difference in the band-gap
between silicon and silicon dioxide, which is used as a gate dielectric in
MOS technology. Furthermore a single transistor, in addition to providing
amplification and gain to signals, computes a complex nonlinear function
of its control and channel voltages. This function is not directly comparable
to the functions that synapses evaluate using their pre-synaptic and post-
synaptic potentials, but strategically arranged transistors are able to compute
remarkably competent synaptic functions. Finally, Meads investigated the
capacity of nervous systems to retain long-term memory. In microelectronics,
electronic charges can be stored on a floating polysilicon node surrounded by
silicon dioxide, an insulator. This charge can be stored indefinitely on the node.
This technology has been used on commercial EEPROM, small non-volatile
memory devices, since the 1970s. Meads, consequently, suggested that since
elementary devices, transistors, are able to implement the basic functions of
the nervous system, it should be feasible to build entire systems based on the
organization of the nervous system.

Meads’ studies have been greeted with great enthusiasm by researchers and
engineers in the field of bio-engineering and have brought to light interesting
new studies for the development of neuromorphic devices. The first neuro-
morphic electronic devices are implemented as Very Large Scale Integration
(VSLI) integrated circuits or systems-on-chips (SoCs) on silicon sheets, which
uses the transistor as is primary computational primitive, to model voltage-
controlled neurons and synapses [53]. Further works focused on realizing
biological computational primitives such as phototransduction, multiplica-
tion, inhibition, correlation, thresholding, or winner-take-all selection [48–50].
Over the following years, the greatest success of neuromorphic systems has
been in the emulation of sensory signal acquisition and transduction, most
notably in vision.

3.2 neuromorphic vision

Traditional optical sensors base the acquisition of visual information on
creating a sequence of digital images, called frames, which are recorded at
discrete moments in time and therefore time-quantized at a given frame rate.
Even state-of-the-art sensors are vulnerable to loss of information between
frames. Generally speaking, recordings made by traditional optical sensors
are suitable for most applications involving humans, as the loss of information
due to a limited frame rate is tolerable. However, visual feedback loops, high-
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Figure 3.1: Simplified schematic drawing of the retina layers that are used to model
the silicon retina. The lower layers encode information into spike patterns of ganglion
cells and transmitted along their axons, which form the optic nerve, to different
brain regions.
Source [55]

speed motor control, or autonomous navigation could be affected by this
shortcoming.

Animals perceive visual information in a fundamentally different way.
Visual systems in nature are driven and controlled by events happening
in the surrounding environment that are captured asynchronously and in
continuous time. As the frame-less model of biological vision is applied to
artificial imaging systems, it means that control over the acquisition of visual
information is no longer exerted externally on a collection of pixels, but
rather that decision-making is delegated to each pixel. In frame-based models
regardless of whether the information — or a portion of it — has changed
since the previous frame was collected, each recorded frame conveys the
information from all pixels. As a result of this process, the acquired image
data has a higher degree of redundancy. Since in many applications the data
generated must be consumed by other devices (e.g. Neural Networks) large
data volumes increase memory size and processing power demands.

The artificial retina was one of the first neuromorphic electronic devices
to be introduced [54]. The retina is a thin sheet of tissue that lines the orb of
the eye and converts raw light into the nerve signals that the brain interprets
as visual images. By closer inspection, the retina is made up of five layers
of cells, each of which transmits information both vertically (from one layer
to the next) and horizontally (between adjacent cells in the same layer). The
top three layers are the best understood: photoreceptors (rods and cones),
horizontal cells, and bipolar cells. The rods and cones transform light into
electrical signals; the horizontal cells, meanwhile, respond to the average light
intensity in their neighborhood. Bipolar cells transmit a signal corresponding
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Figure 3.2: The hexagonal pattern of artificial retina cells. The voltage at each
node in the horizontal cell network presents a spatially weighted average of the
photoreceptor inputs to the network. Changing the values of the resistors modulates
the effective area over which signals are averaged. The final output of each pixel in
the silicon retina comes from an amplifier that senses the voltage difference between
the output of a photoreceptor unit and the corresponding node in the horizontal cell
network.
Source [54]

to the ratio of the signals from rods and horizontal cells through the ganglion
cells, where it is further processed before being delivered to the brain. Figure
3.1 illustrates a simplified version of the retina schematic.

Silicon retinas are structured devices that try to model the three top layers
of the retina. This artificial retina uses silicon area doped with impurities
as the basis for transistors and photosensors, polysilicon is used to form
wires and resistors and metal lines act as low-resistance wires. The single
silicon retinal cell is then connected through resistances and capacitors in
a hexagonal pattern to recreate the horizontal layer as seen in Figure 3.2.
This prototype of the first artificial retinas yield results closely related to its
biological counterparts in terms of response to changes in light intensities.
The shape of the response curve is similar to that of biological bipolar cells.
Abrupt changes in light cause a large jump in output voltage, equal to the
difference between the input and the previous average voltage stored in
the resistive network. The response then settles to a plateau as the network
computes the new average [54]. Retina chips with 100 times more pixels, as
well as additional circuits that replicate the movement-sensitive and edge-
enhancing functions of lower-level retina layers, would be needed for real
vision. Successive studies led to the development of more complex artificial
retinas that include lower-levels of the retina as well [56, 57].

The abstraction of two main forms of retinal ganglion cells, X- and Y-
cells, as well as their related retina-brain pathways, appears to be extremely
significant in the production of useful bioinspired artificial vision systems.
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Figure 3.3: The AER communication protocol. Three neurons on the sending chip
generate spikes which are interpreted as binary events. A binary address is generated
by the AE and transmitted to the receiver chip by the bus line; the binary address is
decoded to the binary event by the AD and spikes are emitted on the corresponding
neurons of the receiver chip where the positions of the neurons are determined by
the AD.

The Y-cells, also known as Magno-cells, are the base of the transient channel
or Magno-cellular pathway. Y-Cells have short latency and rapidly conducting
axons combined with a large receptive field and a transient response to
changes. The X-cells are the cornerstone of the Parvo-cellular pathway, also
known as the sustained channel. The axons of X-cells conduct more slowly
and have longer latency. They have narrower receptive fields and react for
longer periods. The transportation of detailed pattern, texture, and color
details are most likely carried out by X-cells. Given their nature, Y-cells
perform mainly general recognition and alerting functions, especially in
peripheral vision. More detailed information, such as spatial features and
color, is processed by the X-cells of the Parvo system. The implementation of
Y-cells in neuromorphic systems led to the development of the Dynamic Vision
Sensors (DVS) [58–60] and later to the Asynchronous, Time-based Image Sensor
(ATIS) [61–63], which in addition to the abstraction of Y-cells implemented
additional features taken from X-cells. In Section 3.3 we will provide an
in-depth look at these two categories of sensors.

3.2.1 Address-Event Representation AER

The mechanism that helps neuromorphic systems’ internal parts to interact
is an essential feature of their architecture. Biological systems are normally
made up of millions of neural cells that interact with one another through
point-to-point connections in three dimensions. Such a complex layout is
currently not possible for Very Large Scale Integration (VLSI) technologies
due to wire complexity and spatial limits. Usually, a neuron produces bursts
at frequencies between 10 and 1000 Hz, whereas the bandwidth of a current
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Figure 3.4: Circuit layout of the DVS pixel. The photoreceptor circuit has the desir-
able properties that it automatically controls individual pixel gain (by its logarithmic
response) while at the same time responding quickly to changes. The differencing
circuit then amplifies the changes with high precision whose output is fed to com-
parators. If the input of a comparator overcomes its threshold, an ON or OFF event
is generated. Source [59]

bus is typically in the order of MHz. This allows several units to communicate
at the same time by replacing the point-to-point architecture with a few
connections and a packet-based, or event-based, protocol. The Address-Event-
Represention (AER) is a protocol developed by the CalTech institute [64, 65]
and became rapidly the most commonly used communication protocol for
neuromorphic devices. Each computation unit is assigned to a unique address
that identifies the source information, which is shared with other neurons
on a physical bus through time-multiplexing (see Figure 3.3). Events consist
of its unique address and additional information required. A timestamp is
included only if events are processed on non-event-based architectures.

Because of its ability to simulate a point-to-point connection effectively, the
AER protocol is the most widely used technology in neuromorphic electronics,
especially in the field of artificial retinas.

3.3 event-based sensors and cameras

As anticipated in Section 3.2, DVS and ATIS are powerful vision sensors based
on silicon retinas. The sensors are “event-driven” instead of clock-driven and,
like its biological model, respond to “natural” events happening in the scene
they observed. Event-based camera are novelty cameras that use the DVS or
ATIS as their building stone. Although they share common features, there is
also some difference between cameras mounting DVS or ATIS.

3.3.1 The Dynamic Vision Sensor (DVS)

The Dynamic Vision Sensor models a 3-layer retina as shown in Figure 3.4.
This sensor belongs to the category of Termporal Difference (TD) devices and
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Figure 3.5: Histogrammed output from the vision sensor viewing with an illumina-
tion ratio of 135:1 (a shadow was cast to create this illumination step). The events
are converted in gray-scale by using an integration interval of 160ms. (b) The same
scene is photographed by a Nikon 995 digital camera to expose the two halves of the
scene. Source [59]

is composed of an array of independent pixels. Every time a pixel detects a
significant change in the illumination level - independently from the other
pixels - an event is generated, containing the physical location of the pixel
and a single bit to indicate if the illumination has increased or decreased. The
event can be summarized as:

e = [x, y, t, p] (3.1)

where the event e indicates that a change in illumination has been detected
by the pixel in position (x, y) at time t, with p ∈ [0, 1] being the polarity.
Conventionally p = 1 indicates an ON event (increase in in illumination)
whereas p = 0 indicates a OFF event if a decrease in illumination has been
detected. The information is the process by the AER protocol where the
(x, y) location is encoded in the address of the emitted packets. DVS pixels
capture its motion by emitting a continuous stream of events at a microsecond
resolution that encodes changes in pixel log intensity. This type of sensor is
very well suited for applications involving high-speed motion detection and
analysis with a much higher time resolution compared to standard frame-
based image sensors. The asynchronous stream of events, on the other hand,
only contains change information and not absolute intensity information. This
method of visual data acquisition and processing produces a pure dynamic
vision device that closely resembles its paradigm, the human retina’s transient
pathway, without providing gray-level information in the scene. Examples of
the dynamic range can be seen in Figure 3.5

Traditional computer vision algorithms cannot be readily applied as no
static scene information is provided. As a solution to this problem was pro-
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Figure 3.6: Urban scenario recorded with the DAVIS sensors. Frame-based images on
the left (with additional driving measurements) and corresponding events integrated
over the corresponding frame-rate based interval. Source [67]

posed in 2014 with the Dynamic and Active Pixel Vision Sensor (DAVIS) [66]
which fuses the dynamic capabilities of the DVS pixel and the static, syn-
chronous, and frame-rate based abilities of the Active Pixel Sensor (APS).
This dual readout is achieved through a shared photodiode and by adding
five transistors to the original DVS pixel, increasing the DVS area by only
about 5%. The combined static and dynamic output of the DAVIS makes it
promising in a range of applications: The DVS output can be used to track
and segment fast-moving objects, while the APS output allows for the recog-
nition and classification of these objects using established machine vision
techniques. Because tracking is done using only DVS events, the frame rate
of the APS output can be set arbitrarily low. The combined advantage of
the dual outputs makes the DAVIS sensor well-suited for mobile applica-
tions or distributed sensor networks with a tight power budget because it
allows low latency at low system-level power consumption. In this context,
the "DDD17: End-to-End Driving Dataset" [67] is one of the most complete
datasets available for automotive applications that features recordings from
several driving scenarios. The registrations were performed by a DAVIS346B
prototype, containing a DAVIS APS+DVS camera, such that event-based and
traditional frame-based data could be recorded at the same time, through
the same optics. The camera resolution is 346×260 pixels. An example of the
recording in the DDD17 dataset is shown in Figure 3.6.

3.3.2 The Asynchronous Time-based Image Sensor (ATIS)

The second type of neuromorphic devices, called Exposure Measurement de-
vices, measure the absolute intensity of the pixel is whenever a pixel detects
a change in the illumination. Its value is represented in the form of AER
events by emitting two events whose relative inter-spike interval is propor-
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tional to the measured intensity. This principle is also called asynchronous
pulse-width-modulation (PWM) imaging. This type of devices allows also for
the measurement of the actual intensity of the pixels while preserving an
event-based approach, as opposed to DVS sensors that communicate only
something that has changed in a particular location of the field of view.

The ATIS sensors combine the technology of the TD and EM devices [61]. The
ATIS pixels convey transition and grayscale events to the readout periphery
on their own when the events are arbitrated. An address encoder provides
the pixel’s array address, which is sent out on an asynchronous bit-parallel
AER bus (Figure 3.7).

Figure 3.7: The ATIS pixel is composed of the DVS pixel that provides the change
detector functionality and the Exposure Measurement (EM) module. Source [63]





4
E V E N T- B A S E D V I S I O N F O R AU T O N O M O U S D R I V I N G

Bio-inspired features make event cameras very attractive for the emerging
field of autonomous driving. The event-based neuromorphic vision sensor
such as DVS has an High Dynamic Range (HDR) (120 dB), compared to the 60

dB frame-based camera sensors. This allows artificial neuromorphic vision
sensors to adapt to very dark and bright stimuli ensuring a highly robust
perception system even in a light-changing scene such as an autonomous
vehicle driving through a tunnel. The brightness changes can be captured
quickly in analog circuity with a 1-MHz clock, detecting and generating
timestamps with microsecond resolution. Considering the fast response re-
quirement of the controller in autonomous vehicles in emergency driving
scenes, this feature could lead to useful implementations. In a high-speed
driving situation, the motion blur problem can occur if the motion of moving
objects exceeds the frame-based camera’s sampling frequency, causing the
vision mechanism to struggle. A neuromorphic vision sensor based on events
can capture dynamic motion precisely and without motion blur. Ultimately,
power consumption is reduced as only active pixels of neuromorphic vi-
sion sensor transmit events, filtering redundant data autonomously. For the
onboard computers and devices in autonomous vehicles, energy-efficient
sensors are as important as advanced algorithms.

In the next Sections we will provide an in-depth overview of the existing
technologies for event-based perception for autonomous driving.

4.1 event-based datasets for autonomous driving

In the past years, many efforts have been made to create useful event-based
datasets for autonomous driving using DVS, DAVIS, or ATIS systems. The
data has then been processed to create useful data representations, ready to
be consumed by ad-hoc created algorithms for computer vision tasks, such as
semantic scene segmentation, object detection, or flow estimation. Labeling
the asynchronous event data is always a challenging problem because almost
all of the annotation tools are developed for frame-based cameras. Addi-
tionally, there is not a standard format for the annotations. Many attempts
have been made to generate useful labels. Some techniques involve manually
labeling other resort to pre-trained CNNs on gray-scale images to produce
ground-truth data.

23
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(a) NCars sample (b) Prophesee’s GEN1 sample

Figure 4.1: a) Example of the positive ("car") class of the NCARS dataset. b) Gray-
scale example from Prophesee’s GEN1, with bounding boxes for cars (in red) and
pedestrians (in blue)

4.1.1 N-CARS Dataset

The N-CARS data set introduced by Prophesee [68] provides recording cars
in urban environments with a DVS. The data was recorded using an ATIS
camera mounted behind the windshield of a car. The dataset is split into 7940
car and 7482 background training samples, 4396 car, and 4211 background
testing samples. Each example lasts 100 milliseconds. The dataset is very
useful to build event-based classification models. An extract from the dataset
can be seen in Figure 4.1a.

4.1.2 Prophesee’s GEN1 Automotive Detection Dataset

The Prophesee’s GEN1 Automotive Detection Dataset was recorded using a
PROPHESEE GEN1 sensor [69] with a resolution of 304×240 pixels, mounted
on a car dashboard. The labels were obtained using the gray level estimation
feature of the ATIS camera by labeling manually. It contains 39 hours of open
road and various driving scenarios ranging from urban, highway, suburbs,
and countryside scenes. Each file consists of 60 seconds recordings that
were cut from longer recording sessions. Furthermore, manual bounding box
annotations are available for two classes are present: pedestrians and cars (
see Figure 4.1b).

4.1.3 DAVIS Driving Dataset 2017 (DDD17)

The DDD17 [67] is the first-ever public dataset of real automotive end-to-end
training data recorded with an advanced 346x260 pixel DAVIS sensor. The
recording includes various car data such as steering angle, speed, GPS, throt-
tle, etc along with DVS and APS data. Given the wide range of information
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included, the dataset can be used for many applications such as semantic
scene segmentation, object detection, or flow estimation. An example of the
data recorded by the DAVIS for the DDD17 dataset can be seen in Figure 3.6.

4.1.4 MVSEC Dataset

The Multivehicle Stereo Event Camera Data Set (MVSEC) for 3D perception was
presented in [70]. It is the first dataset with a synchronized stereo event-based
neuromorphic vision system. The ground-truth data are generated with the
aid of calibrating LiDAR system, contributing to the stereo depth estimation
with the event-based vision sensor. The dataset consists of many recordings
of outdoor scenarios, at different locations and speeds. Its main application
is for localization, odometry, and obstacle avoidance tasks.

4.2 representation of event-based data

The raw output of event-based sensors is an event stream of sparse and asyn-
chronously generated data points (Figure 4.2). This representation is very
different than the topologically structured data consumed by standard vision
pipelines, like convolutional neural networks. Therefore architectures that
process data generated from neuromorphic vision sensors usually require
encoding methods to create synchronous images or grid-like representa-
tions that can be easily consumed by traditional neural networks. Spatial
encodingmakes only use of spatial features. It is used in event frame and
event count data representation. Temporal information is included in spatial-
temporal representations, like Surface of Active Events (SAE), Voxel Grids,
and Leaky integrate-and-fire (LIF). Table 4.1 gives a short overview of the
main data representation techniques along with a brief description.

Representation Dimensions Description Weakness

Event Frame HxW Image of event polarities No temporal and polarity information

Event Count 2xHxW Image of event counts No time stamps

SAE 2xHxW Image of most recent time stamp No temporal history

LIF HxW Image of event spikes generated by the neuron No polarity information

Voxel Grid BxHxW Voxel grid summing event polarities No polarity information

Table 4.1: Summary of the most common type of event data representations

4.2.1 Event Frames and Event Count Frames

Spatial encoding converts event data into event frames [74] by storing event
data at pixel location (xi, yi). Information of time is not stored but used for
example to aggregate information over a given fixed time interval (constant
time frame). The value of a pixel is usually represented by the polarity of the
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Figure 4.2: Visual representation of a 50ms data stream taken from a sample of the
DAVIS Driving Dataset.

(a) Constant time frame T=10ms (b) Constant event frame E=15000

Figure 4.3: Comparison of two spacial encoding approaches on the sample event
stream in Figure 4.2

last event or statistical characteristics, such as the event count in a fixed time
interval. An event-stream of N− 1 events can be defined as:

Ψ = {ei}
I
i=1, with ei = (xi, yi, ti, pi) (4.1)

with xi, yi being the coordinates, pi the polarity and ti the time-stamp of
event i.

A type of spatial encoding, called Constant time frames, aggregates events
pixel-wise in a given fixed-time interval. This encoding can be formulated as

Ftj = card(ei|T · (j− 1) 6 ti 6 T · j) (4.2)

where Ftj represents the jth frame of time interval T , card() being the cardi-
nality of the set and ei being the ith event of the stream.

In similar fashion, the constant count frames generates frames by aggregating
a fixed number of events E:

Ftj = card(ei|E · (j− 1) 6 i 6 E · j) (4.3)
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with Ftj being the jth frame with E events. Examples of constant time frame
and constant event frame representations are shown in Figure 4.3

The last spatial encoding technique is called event count frames [75, 78],
defined as

Hist±(x, y) =
∑

pi=±,ti∈T
δ(x− xi, y− yi). (4.4)

Two separate histograms, one for each polarity value, are generated in a fixed-
time interval T using the Kronecker delta (δ) function as counting function.
This methods yields a two-channel event frame.

4.2.2 Surface of active events

The surface of active events (SAE) [76, 77], uses timestamped values instead of
intensity values to represent the pixel values, i.e. for each incoming event ei:

SAE : ti → P(xi, yi) (4.5)

where ti is the timestamp of the most recent event at each pixel P(xi, yi)
whose value is determined by the occurrence time of the events. This is a
useful method to incorporate the temporal information, however, it considers
only the most recent event for each pixel, ignoring therefore previous events
in that location.

4.2.3 Leaky integrate-and-fire (LIF) neurons

A more bio-inspired approach is represented by the Leaky integrate and fire
(LIF), which is an artificial neuron that receives input spikes (events) from
neuromorphic sensors that are able to modify the potential of the neuron’s
membrane. If the potential exceeds a predefined threshold, a stimulus will be
emitted. A LIF neuron can be modeled as

τ
dV

dt
= −(V(t) − Vreset) + RI(t) (4.6)

with V(t) and R being the neuron’s membrane potential and resistance, I(t)
the total synaptic current, and τ the membrane’s time constant. LIF neurons
are the building block of spiking neural networks, as explained in Section 4.4

4.2.4 Voxel Grid

A novel event representation was proposed with the Voxel Grid [78]. Given a
stream of events Ψ = {ei}

I
i=1 with ei = (xi, yi, ti, pi), a fixed number of bins

B are used to split the stream in the time domain. The events in the time are
then scaled in range [0, B− 1], generating an event volume:

t∗i = (B− 1)(ti − t0)/(tN − t1) (4.7)



28 event-based vision for autonomous driving

V(x, y, t) =
∑
i

pikb(x− xi)kb(y− yi)kb(t− t
∗
i ) (4.8)

kb(a) = max(0, 1− |a|) (4.9)

In the case where no events overlap between pixels, this representation allows
us to reconstruct the exact set of events. When multiple events overlap on
a voxel, the summation does cause some information to be lost, but the
resulting volume still retains the distribution of the events across both the
spatial and temporal dimensions within the window.

4.2.5 Event Spike Tensor (EST)

Event Spike Tensor (EST) [80] generalize the framework of the event data
representing. The aim of EST is to find a mapping M : Ψ → T between the
event stream Ψ and tensor T , a grid-like to be used in CNNs. An event stream
can be seen as a point-set in four dimensions that can be summarized with
the notion of event field:

S±(x, y, t) =
∑
ek∈Ψ±

δ(x− xk, y− yk)δ(t− tk) (4.10)

defined in continuous space and time, for event with positive polarity Ψ+

and negative polarity Ψ−. This representation replaces events with a Dirac
pulse in space-time. Furthermore, Equation 4.10 can interpreted as successive
measurements of a function f± in the event domain:

S±(x, y, t) =
∑
ek∈Ψ±

f±(x, y, t)δ(x− xk, y− yk)δ(t− tk). (4.11)

Equation 4.11 is called Event Measurement Field. It assigns a measurement
f±(x, y, t) to each event. By choosing the appropriate measurement function,
the representations in the above mentioned section can be easily derived. If
the measurements function considers the event polarity, f±(x, y, t) = ±1, or
the event count ,f±(x, y, t) , Equation 4.11 reduces to the event frame and
event count representation mentioned in Section 4.2.1.

Kernel convolutions are able to extract further information from the event
measurement field, which retains high temporal resolution of the event but
is still ill-defined due to the use of Dirac pulses. Using kernel convolutions
the new representation becomes:

(k ∗ S±)(x, y, t) =
∑
ek∈Ψ±

f±(x, y, t)k(x− xk, y− yk, t− tk). (4.12)

An example of kernel is the exponential kernel k(x, y, t) = δ(x, y)1τe
−t
τ which

is used to construct the hierarchy of time surfaces (HOTS) and histogram of
average time surfaces (HATS).
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Figure 4.4: An overview of the EST framework. Each event is associated with a
measurement (green) which is convolved with a (possibly learned) kernel. This con-
volved signal is then sampled on a regular grid. Finally, various representations can
be instantiated by performing projections over the temporal axis or over polarities.

The convolved signal can then be sampled creating a grid-like representa-
tion

S±[xl, ym, tn] =
∑
ek∈Ψ±

f±(x, y, t)k(xl − xk, ym,−yk, tn − tk). (4.13)

This generalized term in Equation 4.13 is called Event Spike Tensor (EST).
This general form retains all four dimensions, and therefore different than the
representations mentioned in the previous sections. However, by adjusting
the kernel k and measurement function f it is possible to derive SAE, HATS ,
HOTS or Voxel Grids by using projections.

In [80] an End-To-End Learned Representation is proposed exploiting the
EST representation and replacing the handcrafted kernel with an MLP aimed
at finding the best function for event streams. The proposed EST framework
is illustrated in Figure 4.4.

4.3 handcrafted features : time surfaces

The paradigm shift imposed by neuromorphic sensors requires new neu-
ral network architectures that can handle and process the generated event
streams. In the past years fast, optimized, and highly performing architec-
tures based con Convolutional Neural Networks have been developed for
feature learning on frames generated by traditional cameras. Without proper
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adjustments, these architectures fail with their intent on raw event-based
data. A robust feature detection pipeline is essential in autonomous driving,
where it is important to distinguish effectively the different elements in the
scene. Time surface are effective features to track the activity of an object in an
event-based scenario, developed due to the lack of low-level feature represen-
tation and descriptors. Time surfaces represent temporal characteristics and
describe the spatial-temporal context around an event by using exponential
decay that records the activity of past events in the neighborhood. For an
event ei = (xi, yi, ti, pi) a time-surface Si of dimension 2Rx2R is defined as

Si =

e−
ti−T(Ci+R,P)

τ , if pi = P

0, otherwise
(4.14)

where Ci = (xi, yi) is the pixel coordinates of the incoming event ei, R the
radius of the neighborhood around ei, T(Ci + R, P) is the time stamp of the
last event with polarity P received from pixel Ci + R, and τ is a constant decay
factor.
Hand crafted time surfaces have been used in a hierarchical structure for
object recognition [71] that relies on a time-oriented approach to extract
valuable spatial-temporal features from event. Another implementation was
proposed by Sironi, Brambilla, Bourdis, Lagorce and Ryad Benosman with
the Histogram of averaged time-surfaces (HATS) [68], where event streams
are converted into local memory time surfaces which are used to compute
histograms to create the final descriptor. After the features are extracted from
the event stream, a Support Vector Machine (SVM) is used to classify objects in
the N-CARS dataset.
Although time surfaces have shown good generalization performances, their
usage is often limited to recognize simpler shapes in relatively uniform
scenarios. More complex shapes generated by varying density event streams
require the combination of different levels of feature representations to be
effectively recognized by machines. For this purpose, it is necessary to use
architectures that are able to learn and extract useful patterns in the data
automatically.

4.4 spiking neural networks (snn)

A Spiking Neural Network (SNN) is a neural network architecture that leverages
the functionality of biological neurons by creating a computational system
that emulates the working principle of the receptive field in the primary
visual cortex. Just as biological neurons, spiking neurons interact with one
another through spike-trains, which encode temporal and spatial information.
The basic principle of SNN is that a neuron will not emit any spike if it has not
received any input spike from the preceding SNN layer. Furthermore, only
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if the membrane voltage generated by obtained spikes reaches a predefined
threshold can the resulting neuron produce spikes that are fed to the next
layer. To abstract features, predefined network units such as the difference
of Gaussians or Gabor filters are usually used in the first layer of SNN. The
generated features are then processed in parallel and fed to deeper layers
in the network [14–17]. Although proven to be useful for object detection
scenarios [11–13], SNNs are not differentiable and therefore hard to train, as
conventional training methods like gradient descent can not be applied.

J. Acharya, V. Padala, and A. Basu proposed a three-layer SNN archi-
tecture for autonomous driving [72]. The proposed architecture consists of
refractory, convolution, and clustering layers designed with bio-realistic leaky
integrate and fire(LIF) neurons and synapses. The proposed algorithm is
tested on traffic scene recordings from a DAVIS sensor setup. Efforts led by
J. H. Lee, T. Delbruck, and M. Pfeiffer result in an SSN architecture with
backpropagation [73] using LIF neuron and winner-takes-all (WTA) circuits.
The differentiable transfer functions are derived in the WTA configuration
to make SNN trainable with backpropagation. However, trainable SNN is
only tested on simple data sets (such as MNIST) and has not been applied in
specific autonomous driving scenarios.

4.5 convolutional neural networks (cnn)

Convolutional neural networks (CNNs or ConvNets) are powerful feature
extraction architectures, specialized in processing data that has a known
grid-like topology. They are highly efficient and have been proved to be
the most successful to handle 2-D image topology. Neurons of a layer are
indeed organized into a two-dimensional surface and they receive inputs only
from a small region in the previous layer, known as the receptive field. Each
unit, therefore, computes a local feature of the previous layer which is then
combined with the ones computed by adjacent neurons to form higher-order
features in subsequent layers. This feature extraction topology is similar to
the way in which visual information is processed in the biological brain. The
main operation of CNNs are performed in two core layers called convolutional
layer (Section 4.5.1) and pooling layer (Section 4.5.2).

The performance of CNNs has surpassed traditional machine learning
methods in many vision tasks, relying on successful training algorithms and
large amounts of data. In Sections 4.5.3 − 4.5.5, will provide examples of
CNN architectures for autonomous driving with event-based cameras.
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Figure 4.5: Convolution operation on a 5x5 pixel grid using a 3x3 kernel with
zero-padding and stride 2. Each pixel in the input map and padding borders contain
a certain value. This value is multiplied by the corresponding value in the sliding
kernel (numbers in subscript). The multiplied values are then summed together,
forming the value of that region in the output feature map.

4.5.1 Convolutional layer

The convolution is a mathematical operation on two functions (f and g)
that produces a third function f ∗ g that expresses how the shape of one is
modified by the other. In CNN the first argument f of the convolution is
the input and the second argument g is the so-called kernel or filters. Every
filter is usually small along the spatial dimensions (height and width), but
it extends through the full depth of the input volume which represents the
feature dimension. The choice of the filter dimension depends and their
number depends on the particular objects to be recognized. Common kernel
sizes are 3x3xd or 5x5xd, with d being the channels of the image. During
the convolution operation, each filter is sliding with a given stride across the
width and height of the image applying every time the filter transformation
i.e at each location, the product between each element of the filter and the
input element it overlaps is computed and the results are summed up to
obtain the value of the current location. This procedure is applied for each
dimension of the image in parallel. The spatial dimensions of the output
feature map are equal to the number of steps made, plus one, accounting for
the initial position of the kernel. This means that the size of the feature map
is usually smaller than the size of the input grid. In certain cases it useful to
maintain the original size of the input map. This can be achieved employing a
technique called zero-padding which transforms the original image by adding
borders of size P pixels, filled with zeros (Figure 4.5).
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Figure 4.6: Example of pooling using a MAX aggregation function. A 2x2 filter with
stride 2 slide over the feature map outputting for each region the maximum value.

On the other hand, certain applications require to produces wider receptive
fields without interfering with the number of parameters in the model. This
can be achieved with the Dilated Convolution. This operation includes the
dilation rate d, which defines a spacing between kernel values. This operation
is particularly useful for semantic segmentation where it is important to
provide information of larger regions combined with fine details.

4.5.2 Pooling layer

The features generated by the convolutional layer can detect characteristic
patterns in images, like edges or loops. However, it is improbable that two
images representing the same object are inherently identical. Perspective,
resolution, or lighting conditions are some of the effects that influence the
outcome of a picture. Therefore a feature extractor must be able to cope with
transformations or perturbation of the input. The pooling layer’s goal is to
make representations invariant to such transformation whilst also reducing
the number of parameters in the model. The pooling operation reduces the
spatial size of the previous representation, i.e. feature maps generated by
convolutional layers, by using an aggregation function applied to every depth
slice that results in downsampling of the feature map. Common aggregation
functions are MAX, average or L2-norm implemented in 2x2filters with stride
2. Wider filters are usually avoided as too much information would be lost
(Figure 4.6).

4.5.3 Optical flow, depth and egomotion

2-D motion estimation, also known as optical flow is defined as the distribution
of apparent velocities of movements of brightness patterns between two
images. By directly measuring the precise time at which each pixel changes,
the event stream directly encodes fine-grained motion information, which
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Figure 4.7: Example of the ECN network predicting the optical flow and depth on
sparse event data in a night scene: event camera output (left), ground truth (middle
column), network output (right) (top row - flow, bottom row - depth). The event data
is overlaid on the ground truth and inference images in blue.

researchers have taken advantage of to perform optical flow estimation.
Using the high temporal resolution of neuromorphic vision sensors, Alex
Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis proposed
Ev-FlowNet [77], a self-supervised deep learning architecture for optical
flow estimation. The architecture uses a four-channel event representation
composed of a two-channel image using histograms (4.4) and SAE (4.5) of
different polarity which is processed by four stride convolutional layers, two
residual blocks, and four up-sampling convolutional layers. The architecture
produces robust results estimating the flow of objects in the MVSEC dataset.

In [78] the same authors proposed an improved architecture for unsuper-
vised learning used for optical flow, depth, and egomotion. The improved
architecture uses Voxel Grid ( 4.8) data representation in the input of the
pipeline. The data is then processed by an encoder-decoder architecture re-
sponsible for optical flow and depth. Besides, a pose model block has been
added for estimating egomotion. Experimental results on the MVSEC data
indicate that the architecture can learn various motion information of events.

Chengxi Ye, Anton Mitrokhin, Cornelia Fermuller, James A. Yorke, and
Yiannis Aloimonos developed the Evently-Cascaded Convolutional Network
(ECN) architecture for optical flow, depth, and egomotion using a monocular
pipeline. The architecture has a depth prediction component, consisting of
an encoder-decoder architecture, and a parallel pose component that uses
consecutive frames to estimate the translational and rotational velocity with
respect to the middle frame. The optical flow is calculated given the poses of
the neighboring frame and the depth of the middle frame. The lightweight
architecture allows processing 250 fps on a single NVIDIA 1080 titanium
GPU. The performances are significantly improved compared to previous
works. Figure 4.7 illustrates an output example of the ECN network.



4.5 convolutional neural networks (cnn) 35

Figure 4.8: Output of the detection pipeline proposed by Chen [81]. The left image
of is the DVS image with bounding boxes (in red) produced by DVS-only detection,
while the right image of each pair is the APS image with DVS-only bounding boxes
(in red) copied over and the RRC detections (in yellow) for comparison.

4.5.4 Object detection

One of the most interesting applications of convolutional networks is object
recognition, the aim of which is to efficiently identify targets in the analyzed
scene. In autonomous driving, object recognition plays a significant role. It
of fundamental importance for a vehicle to able to distinguish the different
objects that can be found in its surrounding environment to correctly take an
action.

In [81] Chen proposed a framework for generating and learning on labels
and bounding boxes of the DDD17. The first step consists of producing
pseudo-labels created by feeding a CNN the APS images from the DAVIS
dataset. The pseudo-labels generated above a certain threshold are considered
as ground-truth and can be processed along with the event data provided
by the DVS sensors in more complex architectures for event-based object
detection. The dynamic vision sensor data are converted to images by binning
the dynamic vision sensor outputs in 10ms intervals, each pixel taken value
σ(x) = 255 ∗ 1

1+e−
x
2

with x being the sum of polarities in the 10ms interval.
The data is then processed by the tiny YOLO CNN architecture [37] achieving
high-speed detection (100fps) in real outdoor scenarios. Detection was also
performed on the APS grayscale images generated by the DAVIS using the
Recurrent Rolling Convolution (RCC) architecture [39]. The DVS binned
frame + YOLO CNN pipeline has an AP@0.5 = 40, 3% being able to detect
60, 1% of the actual objects. The APS grayscales + RRC has a better average
precision AP@0.5 = 53, 7% and was able to detect 64, 1% of the actual objects.
Nevertheless, the DVS sensor was able to detect 10, 6% of the objects that
were not detected by the APS+RRC pipeline, reinforcing the fact that the DVS
only detector learned general representations of cars, though it was trained
on the knowledge from the RRC.
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A similar approach was proposed in [82]. A convolutional SNN with LIF
neurons [4.2.3] is utilized to generate visual attention maps based on the
firing rate of output neurons. Two separate event-based and frame-based
streams are incorporated into the YOLO V3 [38] object detector to obtain the
detection output. With a joint decision model to post-process the output, the
algorithm outperforms the state-of-the-art achieving a AP = 0.908 at 9FPS in
day conditions and AP = 0.833 at 9FPS.

In [83] an architecture was proposed and tested for the detection of pedes-
trians. The event data is split into three separate streams, one for negative
events, one for positive events, and one for both polarities combined. The
three streams are then applied to a Frequency, SAE, and LIF encoding, each
allowing different characteristics of the event stream to be exploited. This
method is called multi-cue event information fusion. The method generates
three sequences of frames, which can be merged as RGB channels of an
image and processed by a YOLO-based architecture or can be processed
individually by a YOLO detector obtaining three different detectors that are
fused with a Dynamic Belief Fusion function. The performance improvement
of DBF indicates that detection accuracy can be improved by investigating
complementary information provided by each detector.

Recently, a cross-modal approach was presented in [84]; wormhole learning
was utilized to pair red, green, blue (RGB) camera and event-based neuro-
morphic vision sensors to improve the object detection performance under
the scenario of urban driving. The experimental results of wormhole learn-
ing reveal that there are many innovative approaches to combine data from
different heterogeneous sensors, such as RGB cameras, infrared cameras, and
neuromorphic vision sensors.

4.5.5 Semantic segmentation

In the sensing and perception system of autonomous driving, a comprehen-
sive understanding of the surrounding environment is provided by semantic
segmentation. The first CNN-based baseline for semantic segmentation with
an event-based neuromorphic vision sensor is introduced [18], trained, and
validated on the DDD17 event-based dataset. The ground-truth labels for
semantic segmentation were generated by applying a pre-trained CNN to
grayscale images provided in the DDD17 dataset (Figure 4.9).

The event data stream is encoded in a novelty 6-channel image representa-
tion. The first two-channels are classic histogram representations [4.2.1] for
each polarity. Furthermore, the mean (M) and standard deviation (S) of the
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Figure 4.9: Grascale image taken from the DDD17 dataset (left) and the labels
generated by a pre-trained CNN on the Cityscales dataset (right). The labels are then
used on a 6 channel representation in the Ev-SegNet pipeline.

normalized timestamps of events in time interval W happening at each pixel
(xi, yi) is computed separately for the positive and negative events:

M(x, y, p) =
1

Hist(x, y, p)

N∑
i=1,ti∈W

tiδ(xi, x)δ(yi, y)δ(pi, p) (4.15)

S(x, y, p) =

√∑N
i=1,ti∈W(tiδ(xi, x)δ(yi, y)δ(pi, p) −Mean(x, y, p))2

Hist(x, y, p) − 1
(4.16)

The 6-channel data representation is then fed to an Xception [85] state-of-
the-art encoder and lightweight decoder. Lastly, the complementarity between
the frame-based camera and event-based neuromorphic vision sensor is
presented by comparing the semantic segmentation results produced from
event data and corresponding gray-scale images. The EV-SegNet pipeline is
able to achieve high accuracy (0.897) and mean intersection over union (mIoU)
(0.548) on 6 different classes of labels.

4.5.6 Active perception

State-of-the-art self-driving vehicles have sophisticated active systems that can
not only perceive their surroundings but can also make decisions about the
state of the car. An example of this kind was presented in [86]. Raw data from
event-based sensors are collected into histograms[4.2.1] within a time interval
T , using separate channels for each polarity. The resulting synchronous event-
frames are processed by a ResNet [44] inspired network that predicts a
steering angle of the vehicle. The proposed method can accurately predict
the steering angle of vehicles and performs better on DDD17 data sets than
the state-of-the-art systems using gray-scale images.
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4.6 the future for event-based cameras in autonomous driv-
ing

Event cameras, like the DVS, undoubtedly have interesting applications in the
field of autonomous driving, but they are also a fairly recent technology that
has not yet reached the maturity levels of other sensors such as LiDAR, radar,
or traditional cameras. State-of-the-art CNNs that process images are heavily
optimized achieving excellent performances in classification, segmentation,
and object detection. By using different representations to create a grid-like
topology, event-based streams are capable of working on such CNNs, but they
still lack important characteristics (e.g. color or resolution) that are essential
for achieving state-of-the-art performances. On the other hand, the features
of neuromorphic vision sensors have incredible potential for autonomous
vehicles with much researches being focused on event-based cameras, as the
consensus is that there is substantial room for development and improvement.

As mentioned in Chapter 2, autonomous driving vehicles have a wide range
of sensors, each with its advantages and disadvantages. A neuromorphic
visual sensor fits perfectly into this scenario: it has features that few other
sensors can offer, such as a very high temporal resolution or a high dynamic
range, but it also has shortcomings, such as the lack of color perception, which
is present in traditional cameras. Merging the capabilities of an event-based
sensor with other sensors in the vehicle to create a complete sensor system
seems like the ideal solution, but doing so reintroduces the disadvantage of
redundant data. It remains to be seen whether the DVS output can be used
to trigger frame captures of other sensors. If it is, the DVS and other sensors
can operate together with mixed conventional machine vision, bio-inspired,
and event-based neuromorphic vision-based approaches. Therefore, some
of the limitations of a traditional sensor-based perception system may be
overcome; moreover, new scenarios that were previously inaccessible in the
visual sensing and perception of autonomous vehicles might be reached.

Active perception is perhaps the area where event cameras can bring the
biggest improvements. Currently, self-driving vehicles distinguish between
perception and active movement phases. This is because state-of-the-art
perception sensors are frame-based, i.e. in discrete-time domains while vehicle
movement takes place in continuous time. Event cameras can bridge this
gap with their very high temporal resolution, being able to actually "see"
the movement of the vehicle. This hypothesis supposes the creation of new
types of event flow representation that are more suitable for the purpose.
The creation of a fast and robust active perception system would open the
door for near-perfect autonomous navigation systems capable of recognizing
obstacles and making decisions accordingly.

Event-based sensors are also limited to their technology: the is no appear-
ance feature such as color and texture because an event-based neuromorphic



4.6 the future for event-based cameras in autonomous driving 39

vision sensor only transmits local pixel-level changes, making it perform
poorly in some applications with high requirements for appearance features.
Although researchers have used the method of IR (mentioned in the section
“Spatial Encoding”) to reconstruct image frames from event streams, the qual-
ity of reconstructed image frames is still not comparable to the output data
produced by RGB cameras. The application of an event-based neuromorphic
vision sensor is limited in some scenarios where energy, latency, and dynamic
range are not important, especially in high-resolution complex scenarios.





5
E V E N T- B A S E D L E A R N I N G A P P R O A C H W I T H P O I N T N E T

Almost all deep learning architectures that process event streams generated by
neuromorphic sensors base their operation on mature and optimized convolu-
tional neural networks, using intermediate grid-like topology representations.
This stems from the fact that modern object recognition architectures are
optimized to such an extent that they can process images at high frame rates,
making them suitable for application in autonomous driving. Instead, our
efforts have focused on maintaining an asynchronous and sparse represen-
tation of events, treating the event stream as a point cloud. Point clouds are
important geometric data structures that have become popular over the past
years thanks to the rise of more affordable 3D sensors such as LiDARS and
RGB-D cameras. Consequently, a large part of technological research has also
focused on how to exploit 3D data in the form of point clouds with modern
Deep Learning architectures.

In the next Sections we will introduce point clouds and two deep learning
networks that are able to process and learn directly on raw point clouds.
In Section 5.5 we introduce our pipeline on point clouds generated from
event-based sensors, evaluated on different automotive datasets.

5.1 point clouds

With the rapid development of 3D acquisition technologies, sensors capable
of capturing a 3D environment have become increasingly available and
affordable such as LiDARSs and RGB-D cameras. 3D data acquired by these
sensors can provide a rich set of geometric, shape, and scale information.
There is also a variety of representations for 3D data including depth images,
meshes, volumetric grids, and point clouds. As a commonly used format,
point cloud representation preserves the original geometric information
in 3D space, a very useful characteristic for scenes understanding related
applications like robots or autonomous driving. Moreover, point clouds are
simple and unified structures that avoid the combinatorial irregularities and
complexities of meshes.

A point cloud is represented as a set of 3D points:

P = {pi}
I
i=1, with pi = (xi, yi, zi) (5.1)

where each point Pi is a vector of its coordinates (x, y, z) plus extra feature
channels such as color, normal etc. Most deep learning architectures do not
directly handle point clouds, but try to transform the input into topologies

41
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that can be consumed by traditional convolutional neural networks. While
the typical sparsity of point clouds is lost, the ability to process input with
advanced CNN-based systems is gained. In the next two Sections we will
provide two architectures that are able to learn directly on raw point clouds.
Exploiting the sparsity of events is a desired feature especially in autonomous
driving scenario, where data throughput is one of the key characteristics.

5.2 pointnet architecture

PointNet [1] is a unified neural network architecture that directly takes
unordered point clouds as input and outputs either class labels for the entire
input or per point segment/part labels for each point of the input. The
architecture is relatively simple but at the same time highly robust to small
perturbations of input points as well as to corruption through point insertion
(outliers) or deletion (missing data). The network learns a set of optimization
functions/criteria that select interesting or informative points of the point
cloud and encode the reason for their selection. The final fully connected
layers of the network aggregate these learnt optimal values into the global
descriptor for the entire shape as mentioned above (shape classification) or
are used to predict per point labels (shape segmentation). The versatility of
the neural network makes it suitable for a wide range of applications ranging
from object classification, part segmentation, to scene semantic parsing.

As input, Pointnet expects an unordered set of 3D point {Pii = 1, ..., n}
where each point Pi is a vector of its (x, y, z) coordinates plus extra feature
channels such as color, normal etc. A point cloud in Euclidean space has
three main properties:

• Unordered: a point cloud is a set of points without a specific order.
A network working with N 3D point sets must be invariant to N!
permutations of the input set in data feeding order. This is in contrast
with traditional pixel arrays in images or volumetric grids.

• Interaction among points: points are within a certain metric from a
space, which means that points are not isolated and neighboring points
form a meaningful subset. The network must be able to capture local
structures from close-by points and combinatorial interactions among
local structures.

• Transformation invariance: a geometric object, a point cloud should be
invariant to certain transformations. For example, rotating the whole
point cloud should not affect the global point category or segmentation
of the points.

The research of designing a point cloud-consuming neural network must
bear in mind these three fundamental characteristics. PointNet proposes



5.2 pointnet architecture 43

Figure 5.1: The classification network takes n points as input, applies input and
feature transformations, and then aggregates point features by max pooling. The
output is classification scores for k classes. The segmentation network is an extension
to the classification net. It concatenates global and local features and outputs per
point scores. “mlp” stands for multi-layer perceptron, numbers in bracket are layer
sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the
last mlp in classification net

a pipeline consisting of three key modules, each tackling one of the above-
mentioned properties: a max pooling layer as a symmetric function to aggregate
information from all the points, a local and global information combination
structure, and two joint alignment networks that align both input points
and point features. In Figure 5.1 the general architecture is proposed. In the
next Sections, we will explore the core modules of the architecture and their
applications.

5.2.1 Symmetry Function for Unordered Input

The first property of a 3D point set is invariance to input permutation.
Sorting the input into a canonical order seems like a trivial solution to the
problem. Generally, in a high-dimensional space, it is not easy to find a
stable ordering with respect to point perturbations. It is hard for a network
to learn a consistent mapping from input to output as the ordering issue
persists. Experimental results show that by ordering the input the proposed
architecture performs poorly, even if slightly better than on a raw unordered
set of data points. Another approach consists of implementing a Recurrent
Neural Network (RNN) trained with randomly permuted sequences. Ideally,
the network should be able to become invariant to input order. Unfortunately,
this does not hold for RNNs, in a general sense [89]. A slight invariance can
be handled by RNNs but the effect does not scale to the usual sizes of point
clouds. The solution adopted by the authors of PoineNet is to use a symmetric
function on transformed elements in the point set:

f({x1, ..., xn}) ≈ g(h(x1), ..., h(xn)), (5.2)



44 event-based learning approach with pointnet

where f : 2RN → R, h : RN → RK and g : RK × ...×RK︸ ︷︷ ︸
n

→ R is a

symmetric function. Function h is approximated by a multi-layer perceptron
network and function g by a composition of a single variable function and a
max pooling function. The key idea is that in the worst case the network can
learn to convert a point cloud into a volumetric representation, by partitioning
the space into equal-sized voxels. In practice, however, the network learns a
much smarter strategy, by summarizing a shape by a sparse set of key points.

5.2.2 Local and Global Information Aggregation

The output of the Equation 5.2 forms a vector [f1, ..., fK] which is a global
signature of the input set. This vector can be used for classification purposes
by applying a Support Vector Machine (SVM) or a multi-layer perceptron
classifier. However, part and semantic segmentation require the combination
of local and global features. As shown in Figure 5.1, the global feature vector
is combined with per point features. The combined feature vector is now
aware of local and global patterns.

5.2.3 Joint Alignment Network

Invariance under transformation is the third property of unordered 3D point
sets. For example, in an urban driving scenario, an event-based vision sensor
records an event stream corresponding to a moving car in front of the camera.
This event stream is fed to the PointNet architecture which must be able
to classify the point cloud correctly as ’car’. Should the point cloud be
rotated or translated, the architecture must still be able to correctly classify
the point set. This feature is achieved by PointNet with means an affine
transformation matrix, predicted by a mini-network called T-Net. The T-Net
emulates the whole PointNet pipeline, by processing the raw point cloud
and regressing it to a 3x3 matrix. To further improve performance the T-Net
can also be applied to features by regressing it to a 64x64 matrix. However,
the transformation matrix in the feature space has a much higher dimension
than the spatial transform matrix, which greatly increases the difficulty
of optimization. A regularization term is therefore added to the softmax
training loss, increasing the performance as backed by experimental results.
The feature transformation matrix is constrained to be close to an orthogonal
matrix:

Lreg = ||I−AAT ||2F, (5.3)

where A is the feature alignment matrix predicted by the mini-network. An
orthogonal transformation does not lose information in the input, which is
a desired feature. In Table 5.1 the effects of different transformations on the
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Transform Accuracy

none 87.1

input (3x3) 87.9

feature (64x64) 86.9

feature (64x64) + reg. 87.4

both 89.2

Table 5.1: Effect of input and feature transformations on the accuracy on the
ModelNet40 dataset.

accuracy on the ModelNet40 datasets are compared. Experimental results
show that the highest accuracy can be obtained by using both transformations
on input and features.

5.2.4 Implementation and hyperparameters

The PointNet architecture is implemented in Python 3.6 using Pytorch v.

1.3 as deep learning framework. The PointNet pipeline is implemented as
indicated in the official release [1].

At run-time different set of hyperparameters are set:

• Number of epochs: represents the number training iterations. This pa-
rameter usually has high value as it could take many iterations to find
the best weights for the model. However, training for too many epoch
may cause the network to overfit, decreasing the generalization ability
of the network. In our experiments we decided to use early stopping,
a technique which is commonly used to assist the training of neural
networks. After each epoch, the validation set is used to evaluate the
generalization capabilities of the network on samples never seen during
training. When the network performance on the validation set begins
to decrease (or, equally, when its validation error starts to increase), the
training procedure is stopped. This prevents the network from overfit
since the training process is interrupted as soon as the generalization
capabilities of the network start to decrease. For all our experiments we
set the number of epochs to 150 with early-stopping patience set to 10,
meaning that if the validation error does not decrease for 10 consecutive
epochs the training process is stopped. Testing is then performed by
the model that according to validation has the highest overall accuracy.

• Optimization method: defines the algorithm used to optimize the loss
function and to train the network to perform the desired task. The
optimization strategy is the same as the basic PointNet implementation
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that uses the Adam optimizer. The optimizer is configured using a learn-
ing rate, the parameter that controls the magnitude of every weights
update, and beta-coefficients used for computing running averages of
gradient and its square. In our experiments the learning rate is set to
0.001 with β1 = 0.9 and β2 = 0.999.

• Learning Rate Scheduler: the learning rate scheduler is responsible for
adjusting the learning rate during training by progressively decreasing
the learning rate parameter in order to reduce the magnitude of each
update in late stages of the learning procedure. In our experiments
we adopt the Step learning rate scheduler, that decays the learning
rate of each parameter group by gamma every step-size epochs. In all
our experiments we use step− size = 20 and γ = 0.5.

• Batch size: determines how many samples are fed simultaneously to the
network. The bigger the batch-size the. The choice of this parameter may
influence the learning convergence in a similar ways as the learning rate
does. Using a higher number of samples, indeed, usually results in a
smoother decrease of the loss function since the training procedure can
base its updates on a greater number of samples. In our experiments we
used batch-size 4 or 8. Bigger sizes would not allow for the samples to fit
inside the GPU memory. We adopted the gradient accumulation technique
by collecting the gradients of different batches for n steps. Optimization
is performed only after the accumulation has been concluded. This has
the effect of simulating bigger batch sizes.

5.3 pointnet++ architecture

Although PointNet shows great capabilities to perform on three-dimensional
point sets, it lacks the ability to capture local structures induced by the
metric space points live in, limiting its ability to recognize fine-grained
patterns and generalizability to complex scenes. Charles R. Qi, Li Yi, Hao Su,
and Leonidas J. Guibas propose a novelty architecture, PointNet++ [2], that
applies PointNet recursively on a nested partition of the input point cloud. By
exploiting metric space distances, the network is able to learn local features
with increasing contextual scales. The idea derives from traditional CNNs: at
lower levels, neurons have smaller receptive fields whereas at higher levels
they have larger receptive fields. The ability to abstract local patterns along
the hierarchy allows better generalizability to unseen cases. Furthermore,
the improved architecture implements new learning layers that are able to
combine features from multiple scales. This allows the network to generalize
better on point sets that are generated with varying densities.

PointNet++ is designed in a hierarchical manner where the input space is
partitioned into overlapping regions by the distance metric of the underlying
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space. In each region, local features are extracted capturing fine geometric
patterns from small neighborhoods. Such features are combined at increas-
ing scales to produce higher-level features. This process is repeated until
features for the whole point set are generated. The main functionalities of
PointNet++ are within two core layers called Set Abstraction (SA) level and
Feature Propagation (FP) layer.

5.3.1 Set Abstraction level

PointNet uses a single max-pooling operation to aggregate the whole point
set. On the other hand, PointNet++ builds a hierarchical grouping of points
and progressively abstracts larger and larger regions along the hierarchy. This
hierarchical structure is composed of several set abstraction levels. At each
level, a set of points is abstracted to produce a new set with fewer elements.
Each set abstraction level is composed of three layers:

• Sampling layer: given input points {x1, ..., xn} the farthest point sampling
(FPS) algorithm chooses a subset of points {xi1, ..., xim}, such that xi
is the most distant point from the set {xi1, ..., xij−1} with regard to the
rest of the points. This generates a receptive field in a data dependent
manner.

• Grouping layer: the grouping layers find local region sets by defining
neighboring points around the centroids found at the SA level. Given a
point set N× (d+C) and a set of centroids N ′ × d the grouping layers
find N×K× (d+C) group of points, where each group corresponds to
a local region and K is the number of points in the neighborhood of cen-
troid points. PointNet++ focuses on Ball Query and K-Nearest Neighbors
(kNN) algorithms to find local regions for each centroids. Compared
with kNN, ball query’s local neighborhood guarantees a fixed region
scale thus making local region features more generalizable across space,
which is preferred for tasks requiring local pattern recognition.

• PointNet layer: As stated in Section 5.2, PointNet is a valid and robust
feature extractor for point sets. In this layer N ′ local regions of points
with data size N ′ × K× (d+ C) is abstracted employing a PointNet
architecture by its centroid and local features that encode the centroid’s
neighborhood, forming aN ′× (d+C ′) output vector. The coordinates of
each region a firstly translated into a local frame relative to the centroids
point. By using relative coordinates together with point features the
network is able to capture per-point relation in the local regions.
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Figure 5.2: The PointNet++ pipeline. This particular layout represents the single
scale point grouping.

5.3.2 Feature Propagation Layer

In the set abstraction layer, the original point set is subsampled and features
are created for local regions. In segmentation tasks however it is necessary to
provide point features for all the original points. A solution is to sample all
points as centroids, which would lead to very high computational costs. A
better solution is to propagate the generated features from subsampled points
to the original points. Just like the sampling layers, the feature propagation is
structured in a hierarchical manner using distance-based interpolation and
cross-level skip-links (Figure 5.2). In each feature propagation level, the point
features are propagated from Nl× (d+C) point to Nl− 1 points where Nl−1
andNl (withNl 6 Nl−1 ) are point sets of input and output of set abstraction
level l. Since the two layers contain a different number of points, interpolation
is used by means of inverse distance weighted average based on k nearest
neighbors, as shown in Equation 5.4. Usual values are k = 3 nearest neighbors
and p = 2. The interpolated features on Nl−1 points are concatenated with
skip-link point features from the set abstraction level. The resulting features
are then processed by a unit PointNet, similar to a one-by-one convolution
in CNNs. Finally, a few shared connected and ReLU layers are applied to
update each point’s feature vector. The process is repeated until all features
have been propagated to the original points.

f(j)(x) =

∑k
i=1wi(x)f

(j)
i∑k

i=1wi(x)
where wi(x) =

1

d(x, xi)p
, j = 1, ..., C (5.4)

5.3.3 Robust Feature Learning under Non-Uniform Sampling Density

An important analysis to make when processing point clouds is to understand
the distribution of points within the data structure. PointNet has shown very
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(a) MSG
(b) MRG

Figure 5.3: a) Multi-scale grouping b) Multi-resolution grouping

good performance when it comes to recognizing objects within point clouds
generated synthetically by sampling 3D meshes uniformly. This is different
with point clouds generated by a sensor for example. In this scenario, the
point set will often have more densely populated areas than others. The
variability of density within the point cloud is certainly a factor to be taken
into account. Features learned in dense data may not generalize to sparsely
sampled regions. Consequently, models trained for sparse point clouds may
not recognize fine-grained local structures. During the design of PointNet++,
this aspect has been taken into account. Ideally, PointNet++ should be able
to inspect as closely as possible into a point set to capture the finest details
in densely sampled regions. However, such close inspection is prohibited in
low-density areas because local patterns may be corrupted by the sampling
deficiency. In this case, the architecture should look for larger-scale patterns
in the greater vicinity. This problem is solved in PointNet++ by proposing
density adaptive PointNet layers, that learn to combine features from regions
of different scales when the input sampling density changes. Each abstraction
level extracts multiple scales of local patterns and combines them intelligently
according to local point densities. In terms of grouping local regions and
combining features from different scales, PointNet++ proposes two types of
adaptive layers (Figure 5.3):

• Multi-scale grouping (MSG): a simple but effective way to capture multi-
scale patterns is to apply grouping layers with different scales followed
by according PointNets to extract features of each scale. Features of
different scales are concatenated from a multi-scale feature. In training,
the network learns an optimized strategy to combine the multi-scale
features. This is done by randomly dropping out input points with a
randomized probability for each instance, called random input dropout.
Specifically, for each training point set, a dropout ratio θ uniformly
sampled from [0, p] where p 6 1 is defined. For each point, the network
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randomly drops a point with probability θ. In most settings, p = 0.95
is chosen to avoid generating empty point sets. In doing the network
trains on point sets of various sparsity (induced by θ) and varying
uniformity (induced by randomness in dropout). During the test phase,
all available points are kept.

• Multi-resolution grouping (MRG): as shown in Figure 5.3, features of
a region at some level Li are a concatenation of two vectors. One
vector (left in figure) is obtained by summarizing the features at each
subregion from the lower level Li−1 using the set abstraction level. The
other vector (right) is the feature that is obtained by directly processing
all raw points in the local region using a single PointNet. When the
density of a local region is low, the first vector may be less reliable than
the second vector, since the subregion in computing the first vector
contains even sparser points and suffers more from sampling deficiency.
In such a case, the second vector should be weighted higher. On the
other hand, when the density of a local region is high, the first vector
provides information of finer details since it possesses the ability to
inspect at higher resolutions recursively in lower levels. Compared with
MSG, this method is computationally more efficient since this method
avoids feature extraction in large-scale neighborhoods at the lowest
levels.

5.3.4 Implementation and hyperparameters

The PointNet++ architecture is implemented in Python 3.7 using PytorchLightning

v. 1.3 as deep learning framework. The PointNet++ pipeline is implemented
as indicated in the official release [2].

At run-time different set of hyperparameters are set:

• Number of epochs: represents the number training iterations. This pa-
rameter usually has high value as it could take many iterations to find
the best weights for the model. However, training for too many epoch
may cause the network to overfit, decreasing the generalization ability
of the network. In our experiments we decided to use early stopping,
a technique which is commonly used to assist the training of neural
networks. After each epoch, the validation set is used to evaluate the
generalization capabilities of the network on samples never seen during
training. When the network performance on the validation set begins
to decrease (or, equally, when its validation error starts to increase), the
training procedure is stopped. This prevents the network from overfit
since the training process is interrupted as soon as the generalization
capabilities of the network start to decrease. For all our experiments we
set the number of epochs to 150 with early-stopping patience set to 15,
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meaning that if the validation error does not decrease for 10 consecutive
epochs the training process is stopped. Testing is then performed by
the model that according to validation has the highest overall accuracy.

• Optimization method: defines the algorithm used to optimize the loss
function and to train the network to perform the desired task. The opti-
mization strategy is the same as the basic PointNet implementation that
uses the Adam optimizer. The optimizer is configured using a learning
rate, the parameter that controls the magnitude of every weights update.
In our experiments the learning rate is set to 0.001.

• Learning Rate Scheduler: the learning rate scheduler is responsible for
adjusting the learning rate during training by progressively decreasing
the learning rate parameter in order to reduce the magnitude of each
update in late stages of the learning procedure. In our experiments
we adopt the Lambda learning rate scheduler, that sets the learning
rate of each parameter group to the initial learning-rate times a given
function. The learning rate decay function is set to 0.5.

• Batch size: determines how many samples are fed simultaneously to the
network. The bigger the batch-size the. The choice of this parameter may
influence the learning convergence in a similar ways as the learning rate
does. Using a higher number of samples, indeed, usually results in a
smoother decrease of the loss function since the training procedure can
base its updates on a greater number of samples. In our experiments we
used batch-size 4 or 8. Bigger sizes would not allow for the samples to fit
inside the GPU memory. We adopted the gradient accumulation technique
by collecting the gradients of different batches for n steps. Optimization
is performed only after the accumulation has been concluded. This has
the effect of simulating bigger batch sizes.

• Number of centroids: this parameter determines the number of cen-
troids used in each of the 4 set abstraction levels. The default num-
ber of centroids are (in order of set-abstraction layer they belong to)
[1024, 256, 64, 16]. To achieve a better partition of the space we exper-
imented with a larger size at lower levels using [4096, 1024, 256] cen-
troids.

5.4 performance analysis of pointnets

PointNet and PointNet++ are robust feature learners for point clouds. Al-
though the underlying architecture is relatively simple, PoinNet has excellent
capabilities as a feature extractor in tasks such as classification or segmenta-
tion. More complex structures, where the density of points within the cloud



52 event-based learning approach with pointnet

Method Input Accuracy (%)

VoxNet [91] vox. 85.9

Subvolume [92] vox. 89.2

MVCNN [93] img. 90.1

PointNet (vanilla) pc 87.2

PointNet (with transforms) pc 89.1

PointNet++ pc 90.7

PointNett++ + norm. pc 91,9

Table 5.2: 3D object classification on ModelNet40

is variable for example, need instead the hierarchical pipeline of PoineNet++
to generate more consistent predictions. In the next Section we will provide
experimental results carried out on PointNet and PointNet++ by the authors.
Each performance evaluation is compared with other state-of-the-art models.

5.4.1 Evaluation on ModelNet40

The two architectures were tested on the ModelNet40 dataset [90], a dataset
comprising 40 classes of artificially generated CAD objects containing 9,843

samples for training and 2,468 samples for testing. From each CAD model,
1024 points were extracted uniformly based on the face area, which is then nor-
malized into a unit sphere. Augmentation is performed on training samples
by using rotation along an axis and random jitter of the points by Gaussian
noise with zero mean and 0.02 standard deviation. The performances are
compared in Table 5.2 to other state-of-the-art models and a baseline model
built using MLP on traditional features extracted from point clouds (point
density, D2, shape contour, etc.). There is still a small gap between basic Point-
Net and multi-view based method (MVCNN), which is due to the loss of fine
geometry details that can be captured by rendered images. With PointNet++
more fine-grained patterns can be detected along the hierarchy, allowing for
a performance on-par with state-of-the-art CNNs. Although the dataset is
mostly made up of low-complex 3D objects, the performances of the two
architectures show that the core layers of PointNet are indeed able to learn
structures via raw point clouds.

5.4.2 Evaluation on ScanNet

To validate that PointNet and PointNet++ are suitable for large scale point
cloud analysis, both architectures are evaluated on semantic scene labeling
task. The performances in this task are evaluated on the ScanNet dataset [94],
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Method Input Accuracy (%)

3DCNN [95] vox. 73.0

PointNet (with transforms) pc 73.9

PointNet++ SSG pc 83.3

PointNet++ MSR pc 83.4

PointNet++ MSG pc 84.5

Table 5.3: Segmentation Performance on ScanNet

an RGB-D video dataset containing 2.5 million views in more than 1500 scans,
annotated with 3D camera poses, surface reconstructions, and instance-level
semantic segmentations. The data was recorded with an easy-to-use and scal-
able RGB-D capture system that includes automated surface reconstruction
and crowd-sourced semantic annotation. The authors of ScanNet provided
also a neural network to provide a baseline score by applying a fully convo-
lutional neural network on voxelized scans based on [95]. RGB information
contained in the dataset is not considered and only on the scanned geometry
is used as input. To make a fair comparison, both PointNet architectures do
not consider RGB information in all experiments and convert point cloud
label prediction into voxel labeling following Dai et al.’s approach. The per-
formances are compared in Table 5.3. Learning directly on point clouds,
sampled in data depending manner, instead of voxelized scans reduces addi-
tional quantization error resulting more effective learning. Finally PointNet++
shows the best overall performances due to its hierarchical structure.

5.5 event-based data as pointnet input

Equation 5.1 formalizes the notion of the point cloud as a set of independent
points in a 3D space, where each point is identified by its coordinates. This
representation shares many similarities with an event stream generated
by a dynamic vision sensor with a pixel-grid size MxN, as formalized by
Equation 4.1:

Ψ = {ei}
I
i=1, with ei = (xi, yiti, pi)

where (xi, yi) are the coordinates of the pixel generating event, ti is the
time stamp and pi ∈ 0, 1 or pi ∈ −1, 1 the polarity of event i. It is easy to
see that each event stream can be modeled as a 3D point cloud, with the
third dimension being the time. The polarity of each event is an additional
feature of each point in the point cloud, just like color for RGB-D cameras. In
Figure 5.4 we show an event stream represented as a 2D image and how it
compares to its 3D point cloud representation. It should be noted that these
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(a) Image reconstruction (b) Point cloud

Figure 5.4: Sample taken from the ’car’ class of the NCars dataset. a) Image recon-
struction of the sample. Positive polarity events have a white pixel, negative polarity
events are represented by black pixels. b) Point cloud of the sample. Red dots are
negative polarity events, blue dots are positive polarity events.

objects detected by event-based sensors do not represent the actual 3D shape
of the object, but they represent how the object is perceived by the sensor
over time. As time goes on, more changes i.e. more motion is detected by
the sensor leading to a point cloud increasing in size. Intuitively, one might
think that having more events in the point cloud is an advantage for neural
networks: more points mean that the scene is better represented and it is,
hence, easier to extract defined structures such as cars or pedestrians. This
is generally not true for event-based sensors. In rapidly changing scenarios,
such as urban driving, a huge amount of data is generated by the event sensor.
By analyzing some random samples from the DDD17 dataset, around 350.000
events are generated each second on average by the DAVIS sensors. An event
stream over 10s would produce 3.5 million events. However, extracting useful
information from such a point cloud is far from easy. Firstly, the large number
of points is very difficult for neural networks to manage. Furthermore, the
cloud of points taken as a whole generates structures that are difficult to
distinguish. Just think of a car that turns left in front of the sensor. Initially,
the car generates events in the center of the sensor. As it turns, events are
generated on the left side of the sensors. The point cloud thus obtained
should contain an object, the car, which forms an ’L’ structure. Taking a
sufficiently long time interval, the car could assume arbitrary structures that
are difficult for a neural network to learn. Conversely, if we consider a point
cloud generated over a time span of 1ms only a small number of events
will be generated. If the number of points is too small, it is impossible to
extract meaningful objects. For object recognition tasks it is consequently
important that the time domain ( the z-axis in a point cloud) is set properly.
For this purpose we adopt the notion of time-windows in order to learn
efficient representation from data streams.
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Figure 5.5: Example of the sliding time window mechanism. The time window
length is T = 5µs and the stride is s = 3µs. Each square eti represents all the events
happening at time stamp ti. In this case the set of events for time-window TW1 is

given by
i=7⋃
i=3

eti.

5.5.1 Sliding time-windows

Finding the right cut-off time point is not trivial: point clouds generated
in a smaller time span (e.g. 500µs) are less resource-intensive and can be
processed faster, but often lack enough structural information to extract useful
patterns. Conversely, point clouds generated in a larger time span (e.g. 5s)
could contain information that is not relevant anymore and is more resource-
intensive to handle. To try different sized point clouds, we choose to handle
event-based data using a sliding time-window representation (Figure 5.5).

Given a time interval T and a stride s a time window can be described as :

TWi = {ej = (xj, tj, tj, pj)|s ∗ i 6 tj 6 s ∗ i+ T } (5.5)

The sliding time window representation is easy to implement. At inference
time this implementation can be modeled as a rolling buffer of length T
containing an arbitrary number of events. The buffer is updated according
to the stride s, which means that the last s events will be inserted into the
buffer while the oldest s events will be discarded. This creates a new time
window on which to perform inference. By finding the right buffer length
and stride the sliding time window representation allows to dynamically
handle the incoming stream of events with the benefit of fast response time
without losing relevant information of past events. To improve performance,
a decision buffer can be implemented to ignore unreliable predictions.

The sliding time window representation has been used in [88], a pipeline
that combines a PointNet [1] architecture with sliding time windows on
event streams to classify hand gestures generated by a neuromorphic sensor.
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The paper proposed different time window lengths and strides to find the
best configuration for the given task. The network is effectively able to learn
and classify hand gestures with a fast response time (100ms). A similar
architecture has been proposed in EventNet [87], a neural network designed
for real-time processing of asynchronous event streams in a recursive and
event-wise manner. The EventNet architecture proposes an optimized version
of PointNet that focuses on fewer computational operations, allowing the
network to achieve higher response times to incoming event streams without
losing inference performance.

Our work has mainly focused on applying PointNet and PointNet++ to
automotive datasets. This combination is an excellent candidate for meeting
the demands of the autonomous driving sector. On the hardware side, event
cameras have attractive features in terms of time resolution, energy efficiency,
and dynamic range. On the software side, PointNet is a good candidate to
efficiently process the data streams generated by the sensor.

5.5.2 Noise processing

The pre-processing of the raw data is essential for extracting meaningful
information for sensor systems. An event-based neuromorphic vision sensor
not only captures the change in the light intensity caused by moving objects,
but also generates some noise activities due to the movements of background
objects and the sensor noise such as temporal noise and junction leakage
currents. To improve the quality of data we adopt a spatial-temporal cor-
relation filter on our time windows. The filter searches for the most recent
neighborhood (defined by distance d) event around each event’s pixel loca-
tion. So given an event ejti in time-window twi, the neighborhood of pixel
(xj, yj) is searched for events in the most recent time-window twi−1. If there
are no events, then the event is considered as a noise point and discarded.
Illustration 5.6 depicts the functioning of the filter using an example. This
process effectively cleans out events located in isolated regions. A useful
application of the filter is with data that is being processed by PointNet++.
For the purposes of effective machine learning, the FPS algorithm adopted
in the set abstraction levels of PointNet++ should select centroids that go
on to define regions containing useful and interesting structures. If instead
a noise point is selected as a centroid then the information contained in its
neighborhood will be of little relevance as it will not contain useful structures.
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Figure 5.6: Example of how the noise filter works. For each event (in red) of time
window i, the filter searches for events in the neighborhood (in green) defined by d
in the previous time window i− 1. In this case d = 1

5.6 event-based classification on pointnet-based architec-
tures

In Section 5.4.1 we reported on the performance that PointNet and its suc-
cessor have achieved in classifying three-dimensional objects, generated
synthetically by sampling CAD meshes from the ModelNet40 Dataset. Our
first approach in applying PointNet-based architectures in the automotive
field is based on the classification of short data streams from the NCars
dataset [68]. The dataset, briefly introduced in Section 4.1.1, was created as
part of the HATS representation proposed by Sironi et al. The data was gen-
erated using an ATIS camera recording 80 minutes of video. The gray-scale
measurements generate were used to generate gray-scale images. A state-of-
the-art object detector was then used to extract bounding boxes of vehicles
and background images. Subsequently, the data was cleaned manually to
ensure that all objects were consistent with the predictions made by the de-
tector. Since the gray-scale images have the same temporal resolutions as the
change detection events, it is easy to extract event-based samples from the full
stream corresponding to the predicted bounding boxes. The NCars dataset is
composed of 12, 336 car samples and 11, 693 non- cars samples (background).
The dataset was split into 7940 car and 7482 background training samples,
and 4396 car and 4211 background testing samples. Each example lasts 100
milliseconds stored in generic .dat files. We generated a validation dataset by
using a balanced 80− 20 split on the training set. The validation set is used
to check the performance after each epoch and is used as a discriminator of
the early stopping regularization.
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5.6.1 Configuration of experiments

Each experiment is generated from a configuration file containing values that
can be set dynamically. In addition to the network parameters defined in the
previous section, various parameters allow the input data to be modified to
improve performance. As already mentioned in Section 5.5.1, time windows
are an effective tool for creating point clouds from a stream of events. Each
sample is divided at run-time into several time windows, which are assigned
the class of the source sample. For example, a 100ms sample of the class ’car’
can be split into four disjointed time windows labeled ’car’ by using a 25ms
long window with a 25ms stride. Below is the complete list of parameters of
the configuration file:

• Time window length: defines the length in µs of the time window. A time
window of 5.000µs means that the difference of the most recent and the
oldest timestamp in the time window cannot exceed 5.000µs. Different
values have been chosen, ranging from 5.000µs to 100.000µs.

• Time window step: defines by how much the time window moves forward.
For example given a time window with length length = 5.000µs, from
tfirst = 0µs and tlast = 4.999µs, a time step of 2.500µs generates a new
time window with events in range tfirst = 2.500µ and tlast = 7.500µs.
Different values have been chosen, ranging from 5.000µs to 50.000µs.

• Number of events: defines the minimum number of events a time win-
dow must contain. If the number is below a certain threshold then
splitting the sample into smaller time windows would create point
clouds containing an insufficient number of events. Experimental re-
sults on PointNet have shown that a point cloud should contain at least
512 points.

• Polarity: the PointNet architecture can handle additional information
about points, such as normal or RGB color values. Event-based cameras
provide the polarity feature, which can assume either value 0 (off event)
or 1 (on event). IIn some experiments, the polarity of the events was
an integral part of the point clouds in order to assess whether the
presence or absence of this feature could influence the performance of
the network.

• Temporal difference: is a transformation of the timestamps of a given point
cloud. Timestamps are expressed in µs and can therefore assume large
integer values. On the other hand. the x, y pixel coordinates are within a
defined domain depending on the pixel array size of the camera. Larger
numbers have the tendencies to dominate over smaller numbers inside
neural networks. To avoid this, each timestamp is replaced with the
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Figure 5.7: Sample i is split into 4 disjoint time windows, each containing a variable
number of events. Each time window has the label of the original sample. The neural
network predicts a class for each time window. The majority voter picks the most
represented class and assigns it to the original sample.

temporal difference calculated as tdelta = tcurrent − tprevious. The
events with the smallest time value (i.e. the first events of the time
window) will have tdelta = 0.

• Min-Max Normalization: is a transformation that maps values in a certain
range to values between 0 and 1. This has a regulatory effect since every
time window contains values in [0, 1] for each of its features.

• Input and Feature transforms: input and feature transforms are performed
by the so-called T-Nets inside the PointNet pipeline, as mentioned in
Section 5.2.3. Experimental results show that keeping both transforma-
tion matrices produces better performance in the network. In each of
our experiments, both input and feature transform has been used.

5.6.2 Evaluation metrics

The performance of each model is evaluated using accuracy, calculated as
the total number of correctly classified time windows divided by the total
number of time windows in the dataset considered. To also provide a metric
for each sample, the scores of each time window that make up the sample
are accumulated. A majority voter finally chooses the most represented class.
An example of how the majority voter works is shown in Figure 5.7.

5.6.3 Experimental results

We used different sets of configurations to find the most effective way of
learning event-based point clouds using the PointNet framework. Parameters
are loaded dynamically at run-time from configuration files.
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T. Length T. Step Accuracy MV Accuracy

5.000 5.000 0,898 0,901

15.000 5.000 0,891 0,910

50.000 5.000 0,847 0,851

5.000 15.000 0,829 0,848

15.000 15.000 0,874 0,88

50.000 15.000 0,857 0,866

100.000 - 0,697 0,697

Table 5.4: PointNet performance on NCars. All samples use temporal difference
and no polarity.

Firstly we considered different time window lengths and time window
steps to evaluate the performance. Each time window is composed of a point
cloud containing twi = [x, y, tdelta]. Temporal difference values have been
used instead of timestamps. The polarity feature has not been considered
initially, as we wanted to treat the input data as a 3D point cloud without
additional features. The results are shown in Table 5.4. Time windows with
a length equal to the length of the whole sample, 100ms, perform worst.
Smaller time windows in the order of 5ms to 15ms achieve the highest
accuracy scores. Although the time windows are relatively small, they contain
enough points for the network to effectively generalize the structures they
contain. One of the biggest advantages of PointNet is the ability to learn
structures through key points. On the other hand, larger time windows may
contain structures that are difficult to distinguish within the point cloud. The
time step parameter determines how much the time window advances over
time. The time step parameter determines how far the time window moves
forward. If the parameter coincides with the length of the time window,
then each sample will be divided into disjointed time windows. Assigning
smaller values to the time step parameter than the length has the effect of
creating overlapping time windows. Thus, the smaller the step, the more
time windows will be generated at run-time. This has a similar effect to data
augmentation in that more different samples will be presented to the network.
Experimental data confirm this hypothesis in that with the same window
length, lower time step values generate better-performing models.

We then experimented to assess how polarity, number of events, and nor-
malization can influence the results. To do this, we took as reference the
length and step values of the time window of the best performing configu-
ration. The polarity takes on a binary value for each event in the new point.
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T. Length T. Step Feat/Trans Accuracy MV Accuracy

5.000 15.000 - 0,891 0,910

5.000 15.000 Polarity 0,894 0,904

5.000 15.000 Normalization 0,884 0,897

5.000 15.000 1024 min events 0,878 0,891

Table 5.5: PointNet performance on NCars. Additional features or transformations
do not affect the performance in a significant way.

The results show that adding this feature does not affect the performance of
the data. Using min-max normalization has the effect of standardizing data
in a range between 0 and 1 (including timestamps).

The configuration with normalized data produces more robust performance
and is less prone to fluctuations in both training and validation. This is a
desirable effect as the network makes use of early-stopping, which in the
event of validation loss fluctuations could lead to a premature halt in learning.
Yet, it does not increase the performances of the models.

Finally, we tried different approaches regarding the minimum number of
events within a time window. If a time window contains less than n events,
then it is stretched beyond its standard length to accumulate at least n events.
However, choosing values that are too high may produce time windows that
are too long, which, as shown in Table 5.4, decreases performance. The effects
of polarity, the minimum number of events, and normalization are compared
in Table 5.5.

We then applied the best PointNet configuration to PointNet++ using both
SSG and MSG. The performance of PointNet++ improves when using normal-
isation on the input data. This is due to the fact that PointNet++ is applied
recursively on three dimensional sub-regions in space. The parameterisation
of these sub-regions is more intuitive and quicker using values between 0 and
1. Experimental results a slight improvement of the basic version of PointNet.
The hierarchical structure of PointNet++ extracts features on different levels
and scales which are combined to create robust features for the global point
cloud.

PointNet and PointNet++ have shown excellent capabilities in classify-
ing objects generated datasets in the automotive field 5.6. Our best model
performs better than HATS[68] which uses active surfaces instead of point
clouds. Finally, the performance is slightly lower than MatrixLSTM [4] which
processes images using LSTMs instead of asynchronous point clouds.
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Method Accuracy

PointNet 0,910

PointNet++ SSG 0,899

PointNet++ MSG 0,921

HATS [68] 0,902

Matrix-LSTM [4] 0,950

Table 5.6: Performance of PointNet with time window compared to state-of-the art
models.

5.7 event-based semantic segmentation on pointnet-based ar-
chitectures

The process of semantic segmentation poses an interesting problem in the
automotive sector. Considering a cloud of points generated by a flow of
events of a neuromorphic sensor, semantic segmentation has the task of
assigning a certain label to each point in the point cloud. The final objective is
to divide the scene into meaningful structures. For example, in an automotive
dataset, a neural network should effectively distinguish pedestrians, cars,
roads, and other objects in the scene. Our semantic segmentation experiments
are based on samples extracted from the DDD17 dataset published by Binas
et al. and briefly introduced in Section 4.1.3. The dataset is composed of over
12h of recordings using a 346x260 pixel DAVIS sensor on urban and highway
driving scenarios. The DVS and APS data is recorded along with vehicle
speeds, GPS position, driver steering, throttle, and brake measurements. The
DVS sensor generates the event streams that are of interest to us. However,
the dataset does not include event labels. Alonso and Murillo propose the
EvSegNet architecture [18] which exploits a subset of samples from the
DDD17 dataset for semantic segmentation. The DDD17 dataset consists of
40 sequences of different driving set-ups. These sequences were recorded on
different scenarios (e.g. motorways and urban scenarios), with very different
illumination conditions: some of them have been recorded during day-time
(where everything is clear and visible), but others have overexposure or have
been recorded at night, making some of the grayscale images almost useless
for standard visual recognition approaches. Therefore only a subset of DDD17

has been used for the label generation process. Ground truth labels were
generated from frames generated by the APS sensor in a 50ms time interval
using a state-of-the-art CNN pre-trained on Cityscapes [96] dataset. The final
model obtains 83% categories mIoU on the Cityscapes validation data. This is
still a bit far from the top results obtained on that dataset with RGB images
(92% mIoU), but enough quality for the process. The network generates
labels for a total of six different categories: road, background + buildings
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Figure 5.8: A sample taken from the DDD17 dataset. On the right side is the gray-
scale image generated by using 50ms of APS data. In the middle is the corresponding
labels image generated using a pre-trained CNN. By integrating over the same time
interval, we can obtain an image reconstruction using the events provided by the
DVS sensor. Each event is assigned the value of the corresponding pixel of the labels
reference image.

and constructions, objects (traffic lights, signs, etc.), nature, pedestrians, and
vehicles. The labels are stored in .png format and were used as ground-
truth during the training and evaluation of experiments. For each label to be
assigned to the event at the right time instant, it is necessary to use the same
integration interval used to generate the reference frames, i.e. 50ms. Thus, the
configuration used in all our segmentation experiments uses time windows
of 50ms length with 50ms time steps. This generally generates voluminous
point clouds that are consistent with the labels found in [18].

5.7.1 Configuration of experiments

Below we propose different configuration and setup strategies that are aimed
to improve the learning abilities of both PointNet architectures.

• Sub-sampling: the time windows generated contain a variable number
of points depending on the scene perceived. Since these are mostly
samples taken from urban driving scenarios with frequent changes in
the scene, the point clouds within our time windows contain a large
number of points. This could create memory problems during the
training phase on the GPU. To overcome this problem, we adopted
sub-sampling measures on point clouds that are too large, without
losing any structural information contained in them. The first method
considers only the n latest events inside the point cloud. The second
method sub-samples n data points from 3D space evenly, by dropping
random points at uniform intervals so that every time slice is equally
represented by events. The value of n is set at 30.000 events, as bigger
point clouds can lead to memory issues during training.

• Weighted random sampler: the recordings taken into account by EvSeg-
Net for label generation concern urban driving scenarios. This makes
it possible to include classes such as pedestrians, which would not
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have been represented in highway driving. In any case, the dataset
suffers from class imbalance. Most of the samples contain road, back-
ground+buildings, and vehicle labels. Nature, objects, and pedestrians
are not so common. We implemented therefore a weighted random sam-
pler, that picks time windows randomly based on a fitness score. The
higher the score the more likely will the sample be picked during train-
ing. We created a fitness function that takes into account the number of
different classes represented over the overall number of pixels in the
point cloud. The value of each pixel is based on the total frequency of
that class in the dataset. This means that background events have a low
score and events labeled as a pedestrian will have the highest score.
During training samples containing uncommon labels are more likely
to be picked. This has the effect of increasing the performance of less
represented classes.

• Augmentation: point clouds contained inside a time window are subject
to random rotations between (0, 30◦). This avoids that certain labels
are predicted in fixed regions of the scene resulting in overall better
generalization performance.

• Normalization: every time window is processed with mix-max nor-
malized input features. Experimental results have shown that non-
normalized data generate very high loss values. This does not allow an
objective evaluation of performance nor does it allow the correct use of
early stopping.

• Number of classes: as specified above, the labels are generated by a pre-
trained CNN. The labels, hence, have inaccuracies, especially in smaller
objects such as cones, road signs, traffic lights. The segmentation of trees
and plants is also often inaccurate. In addition to the segmentation on
the 6 labels, we propose the segmentation made on 4 classes, grouping
in single class background, nature and, objects.

5.7.2 Evaluation metrics

To evaluate performance in semantic segmentation, it is not enough to use
accuracy as in the case of prediction. For example, a network that predicts for
all the points the class "background" would be able to obtain a discreet score
of accuracy since almost all the scenes contain a large number of background
points. A valid metric for segmentation task is the mean intersection over union
(mIOU) or Jaccard index. The IoU score is calculated for each class as the area
of overlap between the predicted segmentation and the ground truth divided
by the area of union between the predicted segmentation and the ground
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Figure 5.9: The left image shows events of the time window with ground-truth
labels. The image on the right are events with predicted labels. PointNet struggles
with highly detailed structures like trees (in green). PointNet also tends to predict
a horizontal strip with the label ’car’ (in red), being the region where vehicles are
present in the training samples. This is an undesired outcome as the network was
not able to capture structures within the point cloud.

truth. The scores of each class are summed together and divided by the total
number of classes in order to obtain the average (mIOU).

5.7.3 Experimental results

Different configurations have been used to find the best segmentation strategy.
The first experiments were performed using PointNet on all six classes,
without using data augmentation. Performance with this configuration did
not produce satisfactory results with an accuracy score of 0.68 and 0.39

mIOU. By visualizing the predicted labels we noticed that PointNet fails
to capture local structures. PointNet learns to predict labels based on the
particular location of the event and not based on effective structure. This can
be seen in Fig. 5.9. To improve the performance we add augmentation and
weighted sampling. Augmentation is used on time window during training
to avoid the region-based bias of labels by rotating the point clouds randomly.
Weighted sampling is used to improve the performance on less represented
labels such as pedestrians. The same configuration was then applied to only
4 classes. The aim is to see whether reducing the number of classes and
therefore of unrepresentative objects, will improve the overall performance.
The general feeling is that PointNet learns a naive method of predicting
semantic labels, based more on regions than on objects in the scene. Basically,
it predicts labels there where it expects to find objects of that category, even if
often there aren’t any. This problem is due to PointNet’s inability to capture
local structures and patterns in the scene, especially in regions with varying
densities. Experimental results on PointNet are shown in Table 5.7.

PointNet++ mitigates this problem by introducing hierarchical layers that
are able to recognize local structures at different scales. This fact is reflected
in the experimental data obtained on PointNet++. In addition to applying
PointNet recursively and hierarchically, PointNet++ adds the functionality
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Classes Augmentation Weighted sampler Polarity Accuracy mIOU

6 No No Yes 0,684 0,291

6 Yes Yes No 0,689 0,278

6 Yes Yes Yes 0,709 0,299

4 No No Yes 0,848 0,395

4 Yes Yes Yes 0,871 0,421

Table 5.7: PointNet performances on DDD17

of multi-scale grouping that improves the networks learning ability by com-
bining features from different scales. This has the effect of generating robust
features even for point clouds with varying point densities. This is very
useful in event streams generated by neuromorphic sensors. Some areas of
the sensor are more subject to changes than others, depending on the scene.
The PointNet++ experiments all feature augmentation, polarity, and weighted
sampling which have proven to boost performances on the basic version of
PointNet. The single-scale variant of PointNet++ has lower performances in
accuracy and mIOU with respect to the multi-scale implementations as shown
in Table 5.8. Multi-scale grouping versions have shown their effectiveness
by aggregating features from different scales. To further exploit the MSG
pipeline we implemented an MSG version that features the usual 4 SA layers
but each layer has a larger number of centroids. This means that in each level
more overlapping regions are defined. This is computationally more intensive
but produces higher mIOU and accuracy results. Adding more centroids
especially at lowers levels means that the network learns features with greater
detail. This is useful for small objects, like traffic signs, branches, or objects
further away from the camera. PointNet++ is able to extract structures within
the scene reducing significantly the location-based bias that was typical of
the basic version of PointNet.

PointNet++ with multi-scale grouping combined with an increased number
of centroids grouping achieves the overall best results for our segmentation
pipeline using 6 classes. By visualizing the results the pipeline can provide a
good generalization of the scene as seen in Figure 5.10. Still, labels are not as
consistent between consecutive frames as the ground-truth values. PointNet++
is a good feature extractor for static point clouds but lacks the memory
element typically needed for sequences like time windows. We propose
an addition to the PointNet++ architecture by adding two Gated Recurrent
Units, a special kind of recurrent neural network that works as a memory
element. The GRU units are used between the last Set Abstraction layer and
its corresponding Feature Propagation layer. The aim is to track the position of
the centroids (first GRU) and features generated (second GRU) in the last SA
level, to generate labels that are more consistent across consecutive sequences.
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Mode Classes Accuracy mIOU

SSG 6 0,692 0,299

MSG 6 0,723 0,330

MSG + centroids 6 0,728 0,332

MSG + GRU 6 0,759 0,336

EvSegNet [18] 6 0,897 0,548

EvSegNet (events only) [18] 6 0,890 0,520

SSG 4 0,893 0,433

MSG 4 0,893 0,446

MSG + centroids 4 0,884 0,374

MSG + GRU 4 0,919 0,431

Table 5.8: PointNet++ performances on DDD17. The scores are compared to the
baseline EvSegNet. The first baseline score refers to the performance on images. The
second score takes into account only the pixel locations where events have occurred.
This was done to create a score that is more comparable to our evaluation.

For this purpose, each gated unit processes 4 consecutive sequences at a
time. The addition of GRU adds computational complexity but brings also
advantages in terms of performance. Experiments on the DDD17 dataset
have shown that models trained with both GRUs achieve smoother and more
consistent predictions among consecutive frames. Yet, this approach is prone
to generating inconsistent predictions in case of rapid changes in the scene.
As an example, time windows that contain event streams of the car taking a
turn are subject to a bigger volume mispredictions. This effect is alleviated
after a few milliseconds. The approach is, consequently, more suitable in
scenarios with little variation in the scene, for example on motorway driving.

In conclusion, the basic version of PointNet shows good aptitudes for
segmenting macro-regions within a point cloud generated by event sensors.
It lacks finesse when it comes to more detailed objects in the scene. The naive
way of interpreting the scene is not sufficient for the automotive field. While
PointNet++ succeeds in covering the gaps highlighted by its basic model, it
lacks an element of consistency between consecutive time windows. Adding
a memory element such as GRUs only improves performance in certain
scenarios. The results are not comparable with those obtained by EvSegNet,
which achieves a high accuracy of 0.89 and 0.54 mIOU. It must be said
that EvSegNet does make use of events, but generates 6-channel histogram
representations from them, which are processed by highly optimized state-of-
the-art CNNs.
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Figure 5.10: The left image shows events of the time window with ground-truth
labels. The image on the right are events with predicted labels. PointNet++ is able to
locate separate objects that are well defined and closer to the vision sensor. Objects
that are further away and close to other objects are harder to detect, like the tree in
the background.

Figure 5.11: A good example of transfer learning. We applied PointNet++ pre-
trained on the DDD17 to generate labels on time windows generated from the GEN1

Auatomotive Detection Dataset from Prophesee. The network is able to recognize
different elements in the scene correctly.

5.8 transfer learning

Transfer learning is an interesting branch of machine learning that focuses
on storing knowledge acquired while solving one problem and applying it
to a related but separate problem. In our use case, it is interesting to see if
networks trained on the DDD17 dataset can perform on other datasets in
the automotive field. This is an interesting aspect to explore because it could
provide a basic architecture to generate labels for each event on datasets
that do not have them. Instead, our networks were trained with samples
from the DDD17 dataset with a 346x260 DAVIS sensor, which were then
pre-processed to eliminate the lower portion of events at the windshield and
bonnet. Ground-truth labels were provided by EvSegNet. To test the trans-
fer learning capabilities, we chose Prophesee’s GEN1 Automotive Detection
Dataset [69], which is one of the largest automotive event datasets. It con-
tains 39 hours of recordings made with an ATIS event camera with 304x240

resolution. The different resolution is irrelevant as PointNet++ uses point
clouds normalized between 0 and 1, as well as making use of T-Nets that
make the network tolerant to initial input transformations. To generate the
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time windows we used the same settings as the pre-trained network at 50ms
intervals. The generated samples were then tested on the best-performing
model of PointNet++. Visual feedback shows that the network is able to
extract meaningful information, but in limited use cases (see Figure 5.11).

Generally speaking, the predictions are not as consistent as on the DDD17

dataset. The difference between the two sensors is a factor to be considered:
the DAVIS camera combines a DVS sensor and an APS sensor, whereas the
ATIS camera has pixels that contain a DVS subpixel (called change detection
CD) that triggers another subpixel to read out the absolute intensity (exposure
measurement EM). The ATIS achieves large static dynamic range (> 120dB).
However, the ATIS has the disadvantage that pixels are at least double the
area of DVS pixels. Resolution can be a determining factor as a higher number
of pixels allows the scene to be captured in greater detail. This is important
for a self-driving event camera, where objects in the distance appear smaller
and are difficult to distinguish.

5.9 detection pipeline proposal

Object detection is one of the most sought-after fields in the field of au-
tonomous driving. It consists of recognizing objects within the scene and
assigning them a bounding box, i.e. a region in which the neural network
is confident of finding that object. Among the best-known object detection
architectures is YoloV3 [38], which represents the state-of-the-art thanks to
its ability to recognize a wide range of objects, even in real-time. It is easy
to understand how to assign bounding-boxes, once the object has been rec-
ognized, in a two-dimensional space. The task becomes more complicated
when considering 3D point clouds. A good proposal has been made in [97]
which is capable of generating bounding boxes in 3D. The algorithm is based
on data collected from a LiDAR that allows the depth of objects in the scene
to be estimated. In this way, objects can be placed in three-dimensional space.
With data collected by event sensors, no component gives information about
the depth of the field of view. Generating bounding boxes with event data is,
consequently, anything but simple. In our work, we propose a simple variant
of creating bounding boxes on event-driven data streams. The algorithm is
based on the clustering of segmented scenes. The points belonging to each
class are processed by a clustering algorithm. Depending on its configuration,
the algorithm proposes clusters to which bounding boxes can be assigned.
It is clear that the goodness of the clustering is highly dependent on the
effectiveness of the segmentation algorithm.

For our experiments, we use DBSCAN, a fast, non-parametric clustering
algorithm. Given a set of points in some space, DBSCAN groups together
points that are closely packed together (points with many nearby neighbors),
marking them as outliers points that lie alone in low-density regions (whose
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(a) Eps = 10, Min points = 10 (b) Eps = 50, Min points = 20

Figure 5.12: DBSCAN on a sample of the DDD17 dataset. The labels are predicted
from our best performing model a) With this setup the algorithm is able to tell
different cars a part better. b) This configuration is unable to detect the different
vehicles in the scene, however it is more robust to small mispredicted regions.

nearest neighbors are too far away). DBSCAN does not require one to specify
the number of clusters in the data a priori, as opposed to k-means, and shows
excellent performance with variable-density data. The algorithm can be set
up using two parameters:

• Min points: represents the number points in a neighborhood for a point
to be considered as a core point.

• Eps: represents the maximum distance between two samples for one to
be considered as in the neighborhood of the other.

The choice of the parameters affects considerably the outcome of the
clustering performance. Low eps and min points create very small clusters
that are not very robust to noise. High values for both parameters produce
few clusters containing many points. A comparison is shown in Figure 5.12.
This naive approach is fairly simple and too naive for complex scenarios as
autonomous driving. A limited use case could be scenes that are not subject
to any sudden changes, for example, the detection of obstacles in autonomous
agricultural vehicles.

5.10 future developments

The results obtained highlight the advantages and limitations of PointNet
on event-driven data. Both architectures can process point clouds directly
without the need for intermediate representations, thus maintaining the
sparse and asynchronous nature of events. The PointNet architecture certainly
leaves room for improvement: its application is designed more for static
environments, although it shows great potential to be exploited also in more
dynamic scenarios. A combination of more robust memory elements could
increase the generalization ability. Second, all mathematical models are highly
dependent on the quality of their input data. PointNet-based architectures
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are no exception here. Neuromorphic sensors are still at an early stage of
their development, but ongoing developments are bringing new interesting
features to this area. Recent event cameras have higher resolutions in terms
of the pixel matrix [98]. This certainly has advantages in the generation of
point clouds as each object in the scene can be sampled with a larger number
of points, generating more defined structures. Nevertheless, the problem
of generating ground-truth labels that are consistent with the nature of the
events remains. In this field, the work done by EvSegNet has laid stable
foundations for a valid approach to this problem. Ultimately, an event camera
is not the only protagonist inside a self-driving vehicle, but rather part of a
heterogeneous ecosystem of sensors, each with its strengths and weaknesses.
The fusion of data from different sensors has often shown great advantages
in the field of autonomous driving. Integrating an event camera, which by
nature works asynchronously, into this scenario is not so obvious, but it could
open the way for a wide range of data to be explored.
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