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Abstract

Whenever external beam radiotherapy is employed on normal tissue to irradiate tumors,
side effects may arise as drawbacks of this non-invasive treatment. In particular, toxicities
happen when the radiation damages healthy tissue and, in radiosensitive patients, can oc-
cur years after radiotherapy impairing quality of life. These complications can depend on
several factors, among which are the radiation dose, the volume of the organ irradiated,
and the patient’s demographics. Coupled with environmental factors, illnesses’ impact on
individuals can be affected by changes in either one or many of their genes. RADprecise
international study aims at personalizing radiotherapy treatment for cancer patients by
improving prediction models for the risk of long-term side effects after radiotherapy in-
cluding innovative biomarkers. Within the RADprecise project, this thesis attempts to
include genetic information effects in late-toxicities risk models for breast-cancer patients
through an interpretable selection of the most informative genetic variants. Risk models
describing radiosensitivity could then be employed by physicians to take more informed
individual decisions in cancer treatment.

Several complexities arise from the radiogenomics context: high-dimensionality of the
data, unbalancing classes where a minority class of patients presents toxicities, imputa-
tion and noise in genomic data collection, and the presence of high-order interaction among
genes influencing the toxicities development. Moreover, multivariate analysis is necessary
for comprehensive treatment decisions and for feature selection since genetic variants de-
termining inter-individual differences in radiosensitivity are only partly toxicity-specific.
The methodology implemented in this work performs a multi-outcome selection of the
genetic variants, tackling all the aforementioned complexities, to produce a set of informa-
tive features for each of the toxicities measured in the study and general radiosensitivity,
accounting for the correlation structure present between the outcomes. The developed
model consists of an ensemble method based on anomaly detection autoencoders whose
reconstruction error is studied to detect radiosensitive patients and discover the genetic
variants correlated with toxicities arising. Each anomaly detection autoencoder within
the ensemble is enriched with a denoising technique that robustifies the analysis to the
noise of imputed genomic data. The model proprieties are studied in a simulation setting.
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Finally, the method is applied to a case study out of REQUITE database provided within
the RADprecise project.

Keywords: Radiogenomics, Late toxicity, Breast cancer, Multi-outcome feature selec-
tion, Ensamble learning, Anomaly detection autoencoder, Denoising.
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Abstract in lingua italiana

Ogni volta che la radioterapia a fasci esterni viene impiegata sui tessuti normali per irradi-
are i tumori, possono insorgere effetti collaterali come inconvenienti causati dall’irradiazione
dei tessuti sani. Queste tossicità possono manifestarsi nei pazienti radiosensibili, anni dopo
la radioterapia, compromettendo la loro qualità di vita. L’insorgenza di complicazioni può
dipendere da diversi fattori, tra cui la quantità di radiazioni, il volume dell’organo irradi-
ato e le caratteristiche demografiche del paziente. Insieme ai fattori ambientali, l’impatto
delle malattie sugli individui può essere influenzato da cambiamenti nel loro DNA di uno
o più geni.
Il progetto internazionale RADprecise mira a personalizzare il trattamento radioterapico
per i pazienti oncologici migliorando i modelli di previsione del rischio di effetti collaterali
a lungo termine dopo la radioterapia includendo biomarcatori innovativi.
Nell’ambito del progetto RADprecise, questa tesi cerca di includere gli effetti genetici
nei modelli di rischio di tossicità tardiva per le pazienti affette da cancro al seno, at-
traverso una selezione interpretabile delle varianti genetiche più informative. I modelli di
rischio che descrivono la radiosensibilità del paziente potrebbero quindi essere utilizzati
dai medici per prendere decisioni individuali più informate nel trattamento del cancro.

Diverse complessità derivano dal contesto clinico: elevata dimensionalità dei dati, classi
non equilibrate in cui una minoranza di pazienti presenta tossicità, imputazione e rumore
nella raccolta dei dati genomici e presenza di interazioni di alto ordine tra i geni che
influenzano lo sviluppo delle tossicità. Inoltre, è necessario fare inferenza su più effetti
collaterali insieme per decisioni terapeutiche complete, e utilizzare tecniche multivariate
per la selezione delle caratteristiche, poiché le varianti genetiche che determinano le dif-
ferenze interindividuali nella radiosensibilità sono solo in parte specifiche della tossicità.
La metodologia implementata in questo lavoro esegue una selezione delle varianti genetiche
considerando l’insieme delle tossicità, affrontando tutte le complessità sopra menzionate,
per produrre un insieme di variazioni genetiche informative per ciascuna delle tossicità
che tengano conto della struttura di correlazione presente tra di esse. La metodologia è
basata su un apprendimento ensemble (o d’insieme) che sfrutta come base autoencoder
per il rilevamento di anomalie, il cui errore di ricostruzione è studiato per individuare



i pazienti radiosensibili e scoprire le covariate correlate all’insorgenza di effetti collater-
ali. Ogni autoencoder all’interno dell’ensamble è arricchito con una tecnica di riduzione
del rumore che rende l’analisi più robusta rispetto a possibili errori di imputazione. Le
proprietà del modello sono studiate in un contesto di simulazione. Infine, il metodo è
stato applicato a un caso di studio estratto dal database REQUITE fornito nell’ambito
del progetto RADprecise.

Parole chiave: Radiogenomica, Tossicità tardiva, Cancro al seno, Selezione delle covari-
ate multivariata, Apprendiamento di insieme, Autoencoder per il rilevamento di anomalie,
Rimozione del rumore.
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Introduction

Thanks to treatments such as radiotherapy, the survival in patients diagnosed with can-
cer is increasing [1]. However, approximately 5% of patients receiving radiotherapy are
particularly sensitive to irradiation and likely to develop side effects after radiotherapy
[32]. This thesis work is developed within a large international study, namely, RADpre-
cise [32], aiming at personalizing radiotherapy treatment for cancer patients by improving
prediction models for the risk of long-term side effects after radiotherapy including in-
novative biomarkers [32]. RADprecise project is an extension of REQUITE consortium
study that standardized data collection across multiple countries and centers to achieve a
unique large database with homogeneous information exploitable in risk model validation
[54]. Radiosensitivity is a latent outcome and it is only inferred through measurements of
various types of late toxicities. Long term side effects are measured as binary responses or
endpoints and multivariate inference is necessary for comprehensive treatment decisions.
Normal Tissue Complication Probability (NTCP) is a model-based risk estimate that
physicians routinely use to make treatment decisions. Traditional NTCPs model the risk
of radio-induced complications in terms of radiation dose (D), and partial volume irradi-
ated (v) [14]. In recent years, new statistical and machine learning methodologies were
introduced to expand the set of predictors, including clinical information and biomarkers
in risk modeling [6, 35, 40, 41]. Genetic biomarkers are believed to be crucial in predicting
late toxicity development [54]. Therefore, their incorporation into NTCPs models may
substantially improve personalized treatment planning. A Polygenic Risk Score (PRS)
summarizes a patient’s genetic predisposition to a disease. In radiogenomics, it is usually
computed as the score associated with each patient by a predictive model,such as logistic
regression, that links the risk of developing late toxicities to the presence of associated ge-
netic mutations in the patient DNA [33]. The clinical problem for this study can then be
rephrased as the need to implement a methodology to incorporate an interpretable PRS
into an NTCP logistic model. In general, as with any other classification model, PRS
models perform at best when fed with highly influential features that provide intrinsic
information and discriminant properties for class separability. Moreover, Features Selec-
tion (FS) is fundamental when variables are many and highly correlated. This is typical
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of genomic studies, where data is highly dimensional (i.e. up to million genetic features)
and the curse of dimensionality plays an important role. Indeed the work presented in
this thesis is focused on the task of FS for genetic data.

To achieve the goal the dataset designed in REQUITE consortium study is exploited. The
information available in the database are both clinical and genetic. Raw genotype data
carry challenging characteristics that hinder the applicability of most traditional statistical
models for FS: the presence of imbalance and the imputation in genomic information
can seriously bias analysis results [8, 17]. The unbalanced binary traits, determined by
the study of rare phenotypical traits (such as late toxicities), pose serious challenges to
genomic selection due to a very low case-control ratio that may violate asymptotic assump-
tions of statistical inference [19]. Imputation methods estimate genotype probabilities at
variants not genotyped to achieve completeness in genetic information [17]. Tests of the
association of imputed SNPs with the phenotype of interest must be carried out with
great care because of their probabilistic nature. Ignoring the genotypic uncertainty and
performing analysis with standard statistical tools generally affect the power of the asso-
ciation study [17]. Moreover, the latest radiogenic studies in late-toxicity radiotherapy,
reveal that epistasis, or gene-gene interactions, affect polygenic susceptibility to common
human diseases, suggesting complex interactions are more important than the effects of
any single common genetic variant [22]. The biological relevance of interactions introduces
another source of complexity. The introduction of complex interactions in predictive mod-
els could effectively discriminate between classes of phenotypes (i.e. cases/controls, etc.).
In turn, FS methods need to be able to consider the potentially predictive power of such
interactions during selection. However, Traditional FS techniques usually just consider
the main effect of covariates in performing the selection and become sub-optimal when the
high-order interaction effect is more important then any single genetic variant. Finally, in
precision medicine applications, there is an increasing need to model several endpoints
simultaneously. In fact, risk models developed for all endpoints simultaneously can
improve performance by borrowing information from other endpoints and can identify
predisposing factors associated with radiosensitivity without explicitly defining it [41].
The presence of challenging characteristics in the data within radiogenomics analysis
implies the need to introduce specific techniques to perform a robust and reliable analy-
sis. Most of the above-mentioned complexities have been recently addressed in [37, 39],
where the authors develop a Deep Learning-based FS method for imbalanced data. The
genetic features selected via their Deep Sparse AutoEncoder Ensemble (DSAEE) are sub-
sequently included in an interaction-aware method for polygenic risk scoring (PRSi) [22].
In brief, the DSAEE FS method exploits Deep Sparse AutoEncoders as weak learners.
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AutoEncoders are trained to learn the normal patterns in the majority class observations
and tested on both majority and minority class data, mimicking AutoEncoders’ usage in
anomaly detection. The FS method in [39] presents three major benefits: the ability to
deal with heavy class imbalance the interaction-aware selection and the interpretability
of the selection method.
However, this effective algorithm does not account for the multivariate aspect of the LT
prediction. In fact, in this, and many similar precision medicine applications, the need
to simultaneously model several phenotypic traits or endpoints entails the importance in
identify predisposing factors associated with radiosensitivity without explicitly defining it.
The main contribution of this work is the improvement of the DSAEE method, generaliz-
ing it to a multiendpoint framework and widening its applicability to breast cancer
late toxicities. Specifically, this thesis proposes an innovative methodology capable of per-
forming variable selection in high-dimensional contexts where high-order interactions are
of interest and multiple outcomes are simultaneously studied. The multivariate FS is de-
veloped specifically to work on genomic data. The algorithm is robust to data imputation
and suitable for multiple binary classification problems with high imbalance in the classes
of each outcome. As in the case of the work in [22], the selection can be exploited to effi-
ciently include genetic effects in clinical risk models. In this work, each of the fundamental
aspects of the feature selection methods is individually studied to properly understand
its characteristics: robustness to imputation error is achieved by introducing a denoising
procedure in the training process of the ensemble learning autoencoders (Chapter 2 sec-
tion 2.1) so that the imputation error is considered in the reconstruction error of both
groups, leading to an unbiased analysis; selection of the discriminating feature is based
on the ensemble learning approximation of the reconstruction error distribution in the
groups (Chapter 2 section 2.2). Differences in the distribution over groups can be discov-
ered via a non-parametric test and generalized to the entire population revealing features
able to distinguish between them. Finally, multi-outcome feature selection is achieved by
the proper definition of the autoencoder control group, accounting for correlation in the
endpoints (Chapter 2 section 2.3). Feature selection is performed starting from a unique
control sample, extracted from the intersection of each endpoint control group, and an
endpoint-depending test sample. Such a selection produces a set of SNPs describing each
specific toxicity accounting for the dependency structure in the multivariate outcome.
The selected SNPs can then be combined to form an informative set of features correlated
with general toxicity and able to distinguish generally radiosensitive patients (Chapter 2
section 2.3).
In conclusion, this thesis offers an end-to-end pipeline for a multi-outcome feature selec-
tion method (Chater 2 section 2.4) in genomic applications.
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Structure of the Thesis

The structure of this Thesis is composed of four chapters. In Chapter 1 the motivation
behind the work and the specific research question stemming from the RADprecise case
study are detailed and discussed. The available data are presented and their prepro-
cessing is described, discussing possible problems that arise from the peculiar context of
genomic data. A brief overview of the theoretical background necessary to understand
the novel methodology developed in the thesis work is also provided. Chapter 2 details
the feature selection method developed as original contribution. Chapter 3 presents the
applications of the proposed methods to both simulation data and the REQUITE case
study. The work is concluded by a Discussion based on the results obtained and a few
proposals for possible future developments. Appendix A presents details about row
data. In Appendix B complementary information about the simulated analyses are pre-
sented. Appendix C shows additional results and implementation detail in REQUITE
application. Analyses were carried out using Python [53] and R [45]. All code files are
available on the GitHub repository: https://github.com/AlessiaMapelli/Master_Thesis
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1.1. The RADprecise project

1.1.1. General aim of the project

The RADprecise project is researching side effects of treatment in breast and prostate can-
cer up and beyond 5 years after radiotherapy. Thanks to treatments such as radiotherapy
more patients are surviving and thus living longer [1]. About half of all cancer patients
receive radiotherapy and approximately 5% of patients are particularly sensitive to irradi-
ation, making them more likely than others to develop side effects after radiotherapy [32].
Side effects happen when the radiation that kills cancer also damages healthy tissue and
can occur years after radiotherapy impairing quality of life. RADprecise project is an ex-
tension of REQUITE consortium study that standardized data collection across multiple
countries and centers to achieve a unique large database with homogeneous information
exploitable in risk model validation [54]. RADprecise international study aims at per-
sonalizing radiotherapy treatment for cancer patients by improving prediction models for
the risk of long-term side effects after radiotherapy including innovative biomarkers. The
project focuses on investigating the cellular response to irradiation and creating methods
to improve personalized treatment planning and minimize radiation toxicity. One of the
cellular response keys to late toxicity development is believed to be found in genetics
[54], identifying genetic biomarkers and including their effect in late toxicity risk models
could lead to an improvement in prediction and meaningful insight into the magnitude of
genetic effects. Identifying predisposing factors can contribute to the prevention of severe
late toxicities and their incorporation into treatment planning systems give the chance to
individualize radiotherapy treatment for each patient. Predictive models are also impor-
tant when informing a patient about his chance of toxicity [41]. The RADprecise project
is illustrated in Figure 1.1.
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Figure 1.1: Illustration of RADprecise study. The RADprecise project is research-
ing side effects of treatment in breast and prostate cancer up and beyond 5 years after
radiotherapy. RADprecise’s aim is to include genetic data, microRNA, transcriptomics,
and DNA repair capacity information, in addition to clinical data to predictive models
for long-term side effects. Source: [32]

1.1.2. Clinical models in late toxicity studies

During external beam radiotherapy, normal tissues are irradiated along with the tumor.
Radiation therapists try to minimize the dose to normal tissues while delivering a high
dose to the target volume. Often this is difficult and complications arise due to the
irradiation of normal tissues. These complications, also called toxicities, can depend on
several factors among which the more widely known influential covariates are the radiation
dose and the volume of the organ irradiated [14]. Normal Tissue Complication Probability
(NTCP) is a model-based risk estimate that physicians routinely use to make personalized
treatment decisions. Generally, NTCP models attempt to reduce complicated dosimetric
and anatomic information to a single risk measure [35].
"Dosimetric” predictors are those variables that relate specifically to the delivery of ra-
diation while “non-dosimetric” or “clinical” predictors include all other variables, such
as age, sex, and histology [29]. Traditional NTCP modeling is based on the Lyman-
Kutcher-Burman power law model for calculating normal tissue response with regard to
nonuniform arbitrary organ fractions. The base of the model is an error function that
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connects the three variables of interest considered, normal tissue complication probability
(NTCP), dose (D), and partial volume (v) [14]. The resultant model is parameterized
by the dose-volume histogram (DHV) reduced to a scalar equivalent. NTCPs have con-
ventionally focused on using dosimetric predictors alone but the necessity of using an
additional pool of non-dosimetric predictors was highlighted in QUANTEC [35], a group
formed to update existing models and address new modeling issues in radiation oncology.
Consequently, new statistical and machine learning methodologies were introduced to ex-
pand the set of considered predictors. The normal tissue toxicities following treatment
can be represented as multiple binary responses or endpoints and can be predicted via
classification methods [31]. One of the most commonly used is the logistic regression
model which combines both dosimetric and non-dosimetric covariates in a unique proba-
bility prediction.
This thesis attempts to include genetic information effects in NTCP models summarizing
it in a Polygenic Risk Score (PRS). A PRS summarizes a patient’s genetic predisposition
to a disease. In radiogenomics, it is usually computed as the score associated with each
patient by a predictive model, as logistic regression, that links the risk of developing late
toxicities to the presence of associated genetic mutations in the patient DNA [33]. Ill-
nesses’ impact on individuals can be affected by changes in either one or many of their
genes, frequently coupled with environmental factors. Researchers are studying genomic
variants to understand the role that they play in diseases across different populations by
comparing the genomes of individuals with and without those diseases calculating which
variants tend to be found more frequently in groups of people with a given disease [42].
Radiogenic studies in late-toxicity radiotherapy, are finding an increasing number of com-
mon genetic variants, called single nucleotide polymorphisms (SNPs). A polymorphism
is a genetic variation leading to the presence, in the population of a species, of multiple
alleles of the same gene. A SNP is a genetic polymorphism in which a given gene ex-
hibits, in different individuals, sequence variations that are due to a single base of the
polynucleotide chain. The presence of SNPs in a given gene can change its structure, its
expression level, or the function of the encoded protein, making it unique to that indi-
vidual. There is also increasing awareness that epistasis, or SNP-SNP interactions, affect
polygenic susceptibility to common human diseases suggesting complex interactions are
more important than the effects of any single common genetic variant [22]. Standard
weighted PRS estimation relies on Genome-Wide Association Study (GWAS) summary
statistics obtained on one or more discovery cohorts modeling the independent effect of
individual SNPs on the outcome. These PRSs exploit SNP-specific odds ratios or effect
sizes to weigh the contribution of the risk alleles on the disease risk or outcome. The set
of SNPs to be included in this estimation may of course affect the score’s predictive power
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significantly. Some approaches include all SNPs, with the risk of incorporating useless or
redundant information, while others retain a subset of SNPs based on predefined criteria
(e.g., those passing an arbitrary p-value threshold in the GWAS results )[38]. In this
thesis, the process to define and evaluate PRS score instead followed the methodologies
introduced in [22]. In the paper, a novel methodology to compute PRS is developed to
include high-order interactions between genetic variations. The algorithm once defined
the most important features, defines the PRS as the score of a logistic regression trained
to predict the presence or absence of the selected late toxicity. This methodology will be
further discussed in Section 1.3.5. PRS evaluation can then be incorporated into NTCP
models to include individual patient genetic data in personalized treatment.

1.1.3. Statistical modeling for multiple endpoints in late toxicity

studies

While current guidelines generally recommend single endpoints for primary analyses of
confirmatory clinical trials, it is recognized that certain settings require inference on multi-
ple endpoints for comprehensive conclusions on treatment effects [46]. Factors determining
inter-individual differences in radiosensitivity outcomes are only partly toxicity-specific
[30]. Therefore, combining treatment effect estimates from several outcome measures can
increase the statistical power of the resulting models. Such an efficient use of resources
is of special relevance for trials in small populations [46]. Prediction models developed
for all endpoints simultaneously can improve the predictions of a given endpoint by bor-
rowing information from other endpoints and are able to identify predisposing factors
associated with radiosensitivity without explicitly defining/quantifying radiosensitivity
[41]. Consequently, it is vital to consider multiple endpoints in prediction models, design-
ing new approaches for modeling overall radiosensitivity and predicting multiple toxicity
endpoints [41]. Main multi-endpoint analysis examples in the literature concern multi-
endpoint testing, a review can be found in [43, 46] or single-endpoint multivariate logistic
regression models with modified maximum likelihood estimation of the logistic coefficients
[41]. An efficient methodology to perform genetic variant selection in a multi-outcome
setting prior to their inclusion in a classification model could lead to higher performance
and interpretability.

1.2. Materials
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1.2.1. Data presentation

This thesis work is based on the REQUITE database. The REQUITE project included
over 4400 patients and the data were collected in the same way in 26 hospitals in 80 coun-
tries establishing a standardized data collection across multiple centers. The importance
of collecting the same information from different countries is to create a unique database
with homogeneous information even when radiotherapy has been delivered in different
ways [54]. Patients were recruited prior to radiotherapy (baseline) and followed up to five
years after treatment. The following standardized data were collected prospectively by
case report forms (CRFs): demographics, co-morbidity, treatment (with comprehensive
information on radiotherapy regimens and dose to organs at risk), physics, longitudinal
standardized radiotherapy toxicity (following Common Terminology Criteria for Adverse
Events (CTCAE v4.0 [27]), quality-of-life, and treatment outcome. Late toxicity data
were collected at 12, 24, 36, 48 and 60 months from the initial cancer treatment via
patient-reported outcome (PRO) forms, together with quality-of-life information [54]. All
patients donated at least two blood samples prior to the start of radiotherapy. Samples
were exploited for Single Nucleotide Polymorphisms (SNP) genotyping and to retrieve
microRNA [54]. The REQUITE CRFs, questionnaires and omic data were stored gen-
erating a huge database that can be exploited for long-term side effects prediction and
study of biomarkers and radiosensitivity relation. Details on the REQUITE population
are published in [49].

Summarizing, the REQUITE project database includes:

• patient’s clinical history, demographics, co-morbidity and patient’s habits;

• patient’s comprehensive information on cancer treatment including tumor informa-
tion, surgery information, radiotherapy and chemotherapy information;

• patient’s late radiotherapy toxicity information for each follow-up visit;

• patient’s genetic information including Single Nucleotide Polymorphisms (SNP)
genotyping.

Further details about the dataset can be found in [49] and in Appendix A.

To study the genetic correlation with different late toxicities a subset of the genotyped
SNPs was considered. Only SNPs previously linked to radiotherapy sensitivity in breast
cancer were considered [4, 9–11, 20, 34, 48, 50–52].
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Late toxicities summary at 3y follow-up visit

Nipple retraction Oedema Arm lymphodema Telangiectasia Skin induration
0 512 508 537 520 294
1 39 41 14 35 188
2 3 7 5 2 63
3 0 1 1 0 9

NA’s 45 42 42 42 45
Table 1.1: Late toxicities summary at 3 years follow-up visit. 5 late toxicities are
considered in this thesis and their numerosities in the different classes are reported in the
table. The last row counts the missing data for each toxicity.

Late toxicities summary at baseline visit

Nipple retraction Oedema Arm lymphodema Telangiectasia Skin induration
0 487 507 541 519 234
1 58 41 14 35 272
2 4 7 1 2 42
3 4 1 0 0 4

NA’s 46 43 43 43 47
Table 1.2: Late toxicities summary at the baseline visit. 5 late toxicities are
considered in this thesis and their numerosities in the different classes are reported in the
table. The last row counts the missing data for each toxicity.

1.2.2. Data preprocessing

This thesis project focuses on breast cancer patients with a documented follow-up visit
three years after the initial cancer treatment. The cohort considered involves 599 RE-
QUITE patients treated with radiation therapy for breast cancer. Information up to 3
years after the first visit is provided. The clinical goal of the thesis project is to improve
the prediction of risk models for late toxicity in breast cancer by introducing genetic in-
formation specific to each patient.
The late toxicities are defined starting from PRO forms collected 36 months after the
initial cancer treatment, where patients scored each of them between 0 and 3 according
to the toxicity gravity. A summary of the late toxicity values is reported in Table 1.1.

Information about the initial toxicity conditions at baseline visit for each patient is pro-
vided and summarized in Table 1.2

In clinical trials, two or more binary responses obtained by dichotomizing continuous or
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categorical responses are often employed as multiple primary endpoints [28].
Late toxicity at 3y follow-up visit are dichotomized based on suggestions from the clinical
counterpart in the RADprecise project, to create six endpoints included as final endpoints
in the project:

• y1i = {1 if skin induration of the ith patient ≥ 1, 0 otherwise} for i ∈ {1, ..., 599}

• y2i = {1 if skin induration of the ith patient ≥ 2, 0 otherwise} for i ∈ {1, ..., 599}

• y3i = {1 if nipple retraction of the ith patient ≥ 1, 0 otherwise} for i ∈ {1, ..., 599}

• y4i = {1 if oedema of the ith patient ≥ 1, 0 otherwise} for i ∈ {1, ..., 599}

• y5i = {1 if telangiectasia of the ith patient ≥ 1, 0 otherwise} for i ∈ {1, ..., 599}

• y6i = {1 if arm lymphodema of the ith patient ≥ 1, 0 otherwise} for i ∈ {1, ..., 599}

Each endpoint is then corrected based on its baseline score: if the level of toxicity remains
unchanged or decreases between baseline and long-term follow-up then the endpoint for
the patient is considered 0; otherwise, the value reported at the follow-up visit is consid-
ered.

Endpoints frequency in the sample ranges between 1% and 9% except for y1 with an oc-
currence of approximately 47%. Table 1.3 present a summary of the endpoints’ occurrence
in the sample. Note that the setting of the analysis is strongly unbalanced, stressing the
need for techniques able to tackle such issues.

Endpoints

total occurrences (perc) occurrences nan

y1 554 47% 260 45

y2 554 1% 72 45

y3 554 8% 42 45

y4 557 9% 49 42

y5 557 7% 37 42
y6 557 4% 20 42

Table 1.3: Summary of the binary endpoints’ occurrence in the dataset, exploited
in the project as outcomes of the analysis. The columns present the sample number
available for each outcome, the occurrence of the endpoint in the sample with the related
percentage, and the subsample for which the endpoint is not available
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Endpoints’ occurrences in the group receiving the boost dose

TOTAL
Boost group (%)

Endpoint present Endpoint not present
(% ) (% )

y1 554 438 (79%)
216 (49%) 222 (51%)

y2 554 438 (79%)
58 (13%) 380 (87%)

y3 554 439 (79%)
31 (7%) 408 (93%)

y4 557 441 (79%)
45 (10%) 396 (90%)

y5 557 441 (79%)
34 (8%) 407 (92%)

y6 557 441 (79%)
20 (5%) 421 (95%)

Table 1.4: Summary of the endpoints’ frequencies in the patient group who
received the additional boost dose of radiotherapy. For each endpoint, the total
numerosity and the group numerosity are presented. Additional information on the oc-
currence of the endpoint in the group is also reported.

Genetic information about the patients is included through Single-Nucleotide Polymor-
phisms (SNPs). 122 literature-identified SNPs are considered in the analysis. SNPs are
usually recorded as a trichotomic categorical variable with values 0, 1, or 2 indicating ab-
sence, heterozygosity, or homozygosity of the considered minor allele. Genomic data were
imputed to estimate probabilities at variants not genotyped and achieve completeness in
genetic information. To better address possible imputation errors, two different datasets
are created referred to in the following as D̃ and D, the first including imputed SNPs as
continuous and the second as categorical, rounding imputed SNPs to the closest integer.

In the analysis conducted, two groups of patients are considered based on whether or not
they received an additional dose of radiation therapy. Table 1.4 and Table 1.5 describe
the numerosity of the two groups across different endpoints including the occurrences of
each endpoint in the single groups.

The final datasets resulting from the data preprocessing contain N = 599 triplets (genome,
boost, endpoints)

D = {(x1, z1, y1), . . . , (xN , zN , yN)}
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Endpoints’ occurrences in the group not receiving the boost dose

TOTAL
No boost group (% )

Endpoint present Endpoint not present
(% ) (% )

y1 554 116 (21%)
44 (38%) 72 (62%)

y2 554 116 (21%)
14 (12%) 102 (88%)

y3 554 115 (21%)
11 (10%) 104 (90%)

y4 557 116 (21%)
4 (3%) 112 (97%)

y5 557 116 (21%)
3 (3%) 113 (97%)

y6 557 116 (21%)
0 (0%) 116 (100%)

Table 1.5: Summary of the endpoints’ frequencies in the patient group who
didn’t receive the additional boost dose of radiotherapy. For each endpoint the
total numerosity and the group numerosity are presented. Additional information on the
occurrence of the endpoint in the group is also reported.
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and
D̃ = {(x̃1, z1, y1), . . . , (x̃N , zN , yN)}

where for every patient i belonging to {1, . . . , 599}, x̃i belonging to R122 is the vector
containing values in [0,2] of the 122 SNPs considered; xi belonging to {0, 1, 2}122 is the
vector containing rounded values of the 122 SNPs considered; yi belongs to {0, 1}6 and
it’s the vector describing the presence or absence for each of the 6 endpoints evaluated,
while zi belonging to {0, 1} describes the delivery or not of the boost dose.

In the case of analyses conducted separately for each endpoint and separately for each
patient group, the input datasets to the model present the form

D = {(x1, Y1), . . . ., (xN , YN)}

and
D̃ = {(x̃1, Y1), . . . ., (x̃N , YN)}

where for every patient i belonging to {1, . . . , 599}, x̃i belongs to R122 is the vector
containing values in [0,2] of the 122 SNPs considered; xi belonging to {0, 1, 2}122 is the
vector containing rounded values of the 122 SNPs considered; Yi belonging to {0, 1}
describes the presence or absence of the specific endpoint considered. Note that since the
dataset contains some NAs, for each endpoint, only the observations that are defined were
selected.

In the clinical setting, an important need is to model also several endpoints simultaneously.
The models considering each output separately give information limited to the possible
development of the toxicity selected. It is also useful to have a wider model describing
the probability of the presence or absence of generic toxicity considering more than one
endpoint as output to the model.

1.2.3. Data complexities in Genome-wide association study

Imbalance

Genome-wide association study (GWAS) has been widely witnessed as a powerful tool for
revealing suspicious loci from various diseases. However, real-world GWAS tasks always
suffer from the data imbalance problem of sufficient control samples and limited case
samples. Unbalance datasets are present more and more in genome association studies as
technologies have enabled the collection of thousands of phenotypes from large cohorts,
in particular for diseases with low prevalence [19]. The unbalanced binary traits pose
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serious challenges to traditional statistical methods in terms of both disease prediction
[19] and genomic selection causing serious biases to the result and thus leading to losses of
significance for true causal markers [8]. More specifically, a very low case-control ratio in
GWAS data may violate asymptotic assumptions of statistical inferences. If the number
of cases is drastically smaller than the number of controls, these cases may be viewed
as outliers in most statistical models, and hence it leads to a higher variation for the
estimation of coefficients. As a result, it shrinks the absolute value of test statistics and
yields a larger p-value, which makes a truly influential variant insignificant [19]. This
results in decreasing the discovery power of conventional GWAS. Specific methodologies
need to be implemented to deal with the imbalance and perform robust and interpretable
analysis.

Data imputation in genomics studies

Genome-Wide Association Studies (GWAS) are usually performed with DNA array-based
approaches that permit the collection of thousands of low-cost genotypes. However, this
process comes at the expense of resolution and completeness as SNP chip technologies
are ultimately limited by SNPs chosen during array development. An alternative low-cost
approach is low-pass whole genome sequencing (WGS) followed by imputation. Rather
than relying on high levels of genotype confidence at a set of select loci, low-pass WGS
and imputation rely on the combined information from millions of randomly sampled
low-confidence genotypes. Results in humans demonstrate that low-pass WGS and im-
putation provide more accurate genotypes than those imputed using array data, leading
to increased power for genome-wide association studies (GWAS) and more accurate risk
model prediction [13, 26]. Imputation methods estimate genotype probabilities at variants
not genotyped by identifying segments of alleles in an organism that are inherited together
from a single parent common to the individuals studied and reference populations of more
densely typed individuals [17]. However, the presence of imputed data within association
analysis implies the need to introduce specific techniques to deal with errors imputation
may cause. In the absence of strategies for study design and data processing, the prob-
ability of poor performance and misleading results is unknown. Overall, the imputation
process led to decreased significance levels, suggesting that imputation errors may cause
statistical significance to be lost for certain experimental configurations [17].
Correct analysis of imputed data calls for the implementation of specific methods which
take genotype imputation uncertainty into account. Several techniques can be applied
to the analysis of such "uncertain" data. One approach would be to use the genotype
with the highest posterior probability for analysis as if it were directly typed but such
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a procedure could result in biased estimates of the effects. Another approach is based
on maximum likelihood: the likelihood can be computed using the total probability for-
mula in which summation is performed over the genotypes, whose true values are not
known, but whose posterior probabilities can be estimated given the data. This approach
is computationally demanding in the numerical maximization of the likelihood function.
Alternatively, a regression approach in which the posterior genotypic probabilities are
used as predictors can be applied [5]. Imputation error in the data can be also considered
as noise in the input data and tacked via signal processing techniques.

1.3. Literature review: anomaly detection autoen-

coders and feature selection methods

This section contains the groundwork for the techniques exploited in the thesis work,
starting from a general overview of autoencoders to specifics about the methodologies
employed to perform feature selection.

1.3.1. Autoencoders general review

A neural network models input-output relations, in terms of functions containing various
adaptive parameters whose values are determined using the data in training. It is possible
to write such functions in the form y = y(x;W) where W is the parameters vector
representing the weights of the network and x is the network input. Neural networks offer
a very powerful general scheme for representing nonlinear relationships between many
input variables and many output variables [15]. A neural network is typically represented
by a network diagram in which single units called neurons are structured in layers and
each layer output is the input of the next one. To describe neural network functioning,
it is convenient to start describing mathematically each neuron. A neuron output can be
represented in terms of a non-linear function of a linear combination of the neuron inputs
or hidden functions zj(x). Suppose we are computing the output of the kth neuron in the
layer given that the previous layer contains M neurons:

yk(x) = f

(
M∑
j=1

wkjzj(x)

)
(1.1)

where usually z0 = 1 and wk0 is called bias. An illustration can be found in Figure 1.2.
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Figure 1.2: Illustration of the neuron mathematics. Given the M input, their linear
combination with trainable weights is computed and a non-linear function is applied to
the weighted sum.

The output of a layer will be the vector of the M ′ neurons contained output in the layer.
The choice of neuron number in each layer depends on the complexity of the problem
being treated and on the actual size of the input space when discarding correlated inputs,
called the intrinsic size. The final output of one hidden-layer neural network with M
hidden neurons, d inputs (x) and one output (y), illustrated in Figure 1.3, is described
as:

y(x) = f

(
M∑
k=0

w̃kg

(
d∑

j=0

wkjxj

))
(1.2)

Figure 1.3: Illustration of one hidden-layer neural network. For each hidden neuron
the output is computed as in 1.1 and the same formula is applied to compute the output
layer neuron result considering as input the neurons’ outputs of the previous (hidden)
layer
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The weights W are adjusted over the training to best represent the input-output relation,
based on a context-dependent loss which allows quantifying the goodness of the network
and therefore have a response on the validity of the set weights. Training a Neural
Network means finding the appropriate weights that minimize the loss function. Tools
of infinitesimal calculus are employed to find the minimum of the error function in the
Gradient Descent propagation algorithm, which is usually exploited in the training.

An Autoencoder is a neural network trained to copy its input to its output. Autoencoders
are used for data reconstruction in unsupervised learning. Let the matrix X ∈ RNxJ be
the input data, X = {x1, ..., xN} set of N training vectors xi (i ∈ {1, ..., N}), characterized
by J features. The simplest version of an AE is constituted by a single hidden layer with
H neurons between the input and output layers which count J neurons each. The hidden
layer has usually fewer neurons than the input and output layer (H <<< J) generating
a latent representation of the input in a space of reduced dimension. Mimicking the
identity function, the Autoencoder learns an encoded version of the data compressing
and aggregating information in input, in the best way for the network to reconstruct the
original information from the latent representation.

The network can be seen as constituted by two parts: an encoder and a decoder. The
encoder and decoder functions can be represented, with reference to neural network defi-
nition as: hi = f(Wxi + b) in the encoder that map each input vector xi into an encoded
version of itself of size H; and xi = g(W′hi + b′) in the decoder that maps back the latent
representation vector to the J-dimensional space. An illustration of the one hidden-layer
autoencoder can be found in Figure 1.4.
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Figure 1.4: Illustration of a one hidden layer Autoencoder. The encoder maps
each input vector xi into an encoded version of itself of size H; and the decoder maps
back the latent representation vector to the J-dimensional space.

The model is trained through gradient descent of the loss function L(x, x); where L is
typically the mean squared reconstruction error (MSRE) for continuous features, that is,
the mean squared Euclidean distance between the input values and the reconstructed val-
ues for each observation, and L is typically a cross-entropy for categorical variables that
measure the difference between input and reconstructed values probability distributions.
Minimizing the cross-entropy corresponds to maximizing the likelihood with respect to
parameter W.

In general, we can define an AE as a map ϕ(xi) : RJ → RJ , such that

ϕ(xi) = g(W′f(Wxi + b) + b′)

and the weights are optimized so that the reconstruction xi = ϕ(xi) is as close as possible,
considering the loss, to xi. Suppose now that the first K features are continuous while
the last J-K are binary, the optimal representation of xi, xi, is given by:
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ϕ(xi) = argminϕL(xi, ϕ(xi))

L(xi, ϕ(xi)) =

(
K∑
j=1

(xij − ϕ(xij))
2 +

J∑
j=K+1

(xij ∗ log(ϕ(xij)) + (1− xij)log(1− ϕ(xij))

)

(1.3)

(1.4)

Autoencoders typically do not provide exact reconstruction since H <<< J but the
latent representation is expected to be meaningful and a compact representation of the
input. [39]. Better representations can be achieved using multiple hidden layers and
constraints that force autoencoders not only to replicate the input but to learn effective
representations of such input in the hidden layer. A common way to achieve this goal
is to introduce sparsity in the most internal layer of the deep architecture by adding a
regularization term in the loss function (1.4) :

LS(xi, ϕ(xi)) = L(xi, ϕ(xi)) + ω(h(l)) (1.5)

The regularization can take various forms. In a deep sparse autoencoder (DSAE), the L1

penalization is applied on the activation of the most internal hidden layer h(l) and it is
controlled by a parameter λ, that is:

LS(xi, ϕ(xi)) = L(xi, ϕ(xi)) + λ|h(l)| (1.6)

The parameter λ is usually optimized through grid search. This penalization term forces
the model to activate the minimum number of hidden nodes to reconstruct the input
reducing the need for tailored choices or expensive optimization to define the proper
architecture and incrementing generalization propriety of the model [39].

1.3.2. Anomaly detection autoencoders

Autoencoders are used for learning data representations, dimensionality reduction, and
anomaly detection. An anomaly is a data point that is significantly different from the re-
maining data and arouses suspicions that it was generated by a different mechanism [25].
Among many anomaly detection methods, spectral anomaly detection techniques try to
find the lower dimensional embeddings of the original data where anomalies and normal
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data are expected to be separated from each other. After finding those lower dimensional
embeddings, they are brought back to the original data space. Reconstructed data are
expected to contain only the true nature of the data, without uninteresting features and
noise. Given a set of data, an autoencoder learns to minimize the reconstruction error
on this set and, thanks to its generalization probability, it should be able to reconstruct
effortlessly points close to its original input. Autoencoder-based anomaly detection meth-
ods are deviation-based. That is, in a semisupervised learning setting, they exploit the
reconstruction error as the anomaly score. In particular, one-class detection AEs, are
trained exclusively on normal observations so that the AE will reconstruct normal data
very well while failing to do so with anomaly data that has not been encountered before.
Data points with high loss are considered to be anomalies. A pseudo-algorithm of an
autoencoder-based anomaly detection procedure is presented in Algorithm 1.1 [2].

Algorithm 1.1 Autoencoder-based anomaly detection
INPUTS

• X: Training dataset;
• xi i = {1, ..., N} Test dataset;
• Threshold ∆.

1: ϕ, W, W’ ← train an autoencoder using the normal dataset X
2: for i = 1, ...., N do
3: REi ← evaluate reconstruction error as in (1.4)
4: if REi > ∆ then
5: xi is an anomaly
6: else
7: xi is not an anomaly
8: end if
9: end for

In the algorithm, the autoencoder is trained only on normal data and tested on an inde-
pendent population containing both normal and anomaly data. For each of the test set
samples, the reconstruction error of the autoencoder is evaluated and, given a user-defined
threshold, the sample is classified as an anomaly or not.

1.3.3. Denosing autoencoders

An additional consideration should be pointed out for the context of uncertain data, such
as that of imputed genotype. Imputation error can be also considered as noise in the
input data and tacked via signal processing techniques. Noise reduction techniques are
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needed in all those analyses where real-world data are corrupted by noise and outliers.
Denoising autoencoders are trained to reconstruct noise-free corrupted versions of their
inputs. They can be viewed either as a regularization option or as robust autoencoders
which can be used for error correction [7]. In these architectures, the input is disrupted
by some noise (e.g., additive white Gaussian noise) and the autoencoder is expected to
reconstruct the clean version of the input [7], as illustrated in Figure 1.5

Figure 1.5: Illustration of a one-layer denoising autoencoder. The input x is
disrupted by some noise ϵ and the autoencoder is expected to reconstruct the original
input.

General noise reduction techniques in autoencoders and machine learning problems are
detailed in [24].

1.3.4. Feature selection in unbalanced datasets with covariates
characterized by high-order interactions

To perform a solid and effective classification and consequently, create robust prediction
models, it is essential to consider only highly influential features that provide intrinsic
information and discriminant property for class separability. Feature selection aims at
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doing so, while decreasing computational costs, aiding inference, and giving a better un-
derstanding of the model representation.
Features selection is key in clinical cases where the variables are often many and correlated
with each other, and became essential within genomic studies where the covariates are
often several hundred and the curse of dimensionality plays an important role. Oftentimes
genetic studies, in addition to a large number of covariates, are characterized by a rela-
tively limited amount of data. High variance and overfitting are major concerns in this
setting since not enough information is present in the relatively small number of samples
to efficiently estimate a high-dimensional covariance matrix or a large number of model
parameters. As a result, feature selection and model penalization need to be introduced.
However, feature selection in genetic applications is made difficult by the presence of un-
balanced classes and the importance of identifying the discriminant characteristics of the
minority class, where an inaccurate feature selection can lead to an inaccurate diagnosis.
On top of the limited amount of data and unbalanced setting, there is also increasing
awareness that epistasis, or gene-gene complex interactions, are more important than the
effects of any single genetic variant so the feature selection method needs to take into ac-
count the effect of high-order interactions in selecting important covariates [22]. Finally,
domain experts are oftentimes interested in understanding which specific features should
be kept under control, requiring a simple and interpretable feature selection model [39].

Traditional FS techniques become sub-optimal or even prejudicial to classification effec-
tiveness when the classes are strongly imbalanced and usually just consider the main effect
of covariates in performing the selection.

Autoencoders have been recently exploited for reconstruction-based FS in many ap-
proaches. Some examples can be found in [18, 21, 47, 55]. Autoencoders models for
feature selection are a mixture of two different statistical problems: density estimation,
the objective of which is to model the unconditioned distribution of data in an unsu-
pervised manner, and classification, the objective of which is to model the conditional
distribution of target classes based on inputs in a supervised way. The goal is to produce
a data-based model approximating the distribution of data conditioned to classification
labels. Typical autoencoder-based FS share an unsupervised setting and have demon-
strated their potential as feature selectors against other state-of-the-art techniques. On
the other hand, they usually are approaches designed for balanced classification. This
balanced selection of features was argued as potentially harmful in strongly imbalanced
settings.
Given the clinical setting, it is fundamental that the FS process is not affected by these
problems.
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1.3.5. Application of anomaly detection autoencoder to feature
selection in imbalanced settings and interaction-aware PRS

algorithm

This thesis starts from an innovative feature selection methodology for binary outcome
in imbalance settings presented in [39] and aims at widening its applicability to breast
cancer late toxicities and generalizing it to a multi-endpoint framework. The FS presented
in [39] is a combination of anomaly detection autoencoders and FS autoencoders and
was developed specifically to be efficient in the case of unbalanced classes. To achieve
FS advantages in this setting, it has been proposed a filtering FS algorithm, ranking
feature importance based on autoencoder reconstruction error. Exploiting the ability of
the autoencoder to differentiate between samples generated from different mechanisms,
likewise anomaly detection autoencoders, the method’s final aim is selecting features able
to distinguish between the different classes.

The FS method presented in [39] was assembled in a wider method presented in [22] whose
purpose was to analyze prostate cancer patients within the REQUITE study to identify
the effect of different single nucleotide polymorphisms (SNPs) and their interactions on
the risk of post-radiotherapy (RT) toxicity; its methodological aim was to propose a new
method for polygenetic risk scoring that incorporates SNP-SNP high order interactions
(hiPRS) to maximize the predictive power of risk models and performing an interpretable
FS, characterizing the most important SNPs also basing on their synergy. Further details
on hiPRS algorithm can be found in [22].

In this section, the work within [22] is briefly explained by presenting the methodology
pipeline and main innovations, focusing on the FS section.

The pipeline can be divided into two parts. The first part exploits a Deep Sparse Au-
toencoder Ensemble to perform feature selection, and the second part presents hiPRS
algorithm in which the most important high-order interactions are selected and the PRS
is defined.

In the first part of the pipeline, a Deep Sparse AutoEncoder Ensamble (DSAEE) is ex-
ploited to perform feature selection and create a subset of influential SNPs related to
the specific endpoint in consideration. Each DSAE is trained to characterize the set of
patients not presenting the endpoint. The set of patients presenting the toxicity will
instead be referred to as minority or case sample. This set will be referred to in the fol-
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lowing as the majority class or control set. Accordingly, the training set consists only of
patients without toxicity (overrepresented class), and the model is tested on a mixed in-
dependent population that includes patients with and without toxicity (underrepresented
class). The algorithm ranks feature importance based on the Reconstruction Error of the
test set. From the analysis of the aggregated Reconstruction Error, the features where
the minority class presents a different distribution of values w.r.t. the overrepresented
one are identified, thus selecting the most relevant features to discriminate between the
two. The DSAE pseudo-algorithm is presented in Algorithm 1.2

Algorithm 1.2 DSAEE for Minority Class Feature Selection
INPUTS

• X: Majority class covariate dataset with K features;
• X’: Minority class covariate dataset with K features;
• B: Enasamble iterations;
• α: Threshold (quantile).

OUTPUT Feature set F.

1: minority sample size ← number of X’ rows
2: Set Q // empty array
3: for i = 1, ...., B do
4: Xtest ← Sample minority sample size observations from X
5: Xtrain ← {xi ∈ X|xi /∈ Xtest}
6: Xtest ← concatenate(Xtest,X

′)

7: Define y
test

containing class belongings of Xtest

8: ϕ, W, W’← train a autoencoder using the normal dataset Xtrain considering (1.6)

9: R ← evaluate reconstruction error on Xtest as in (1.4)
10: Label R with y

test

11: Q ← concatenate(Q,R)

12: end for
13: Qmaj, Qmin ← {rej ∈ Q|ytest,j = 0}, {rej ∈ Q|ytest,j = 1}
14: mean_remaj , mean_remin ← Column mean of Qmaj, Qmin

15: ∆ ← mean_remin - mean_remaj

16: F ← {k|∆k > ∆α, k ∈ {1, ..., K}}

This methodology is exploited because of the inherent hierarchical structure of the au-
toencoder where each layer performs a non-linear combination of previous ones. This is
particularly suited to mimic the complex dependencies within the data. The approach
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uses a representation learning technique to obtain the best representation of the majority
class (healthy patients in this dataset) and consequently identify which SNPs distinguish
the minority class (unhealthy patients) from the majority class.

This algorithm presents three major benefits: the first is the ability to deal with heavy
class imbalance and robustify the selection thanks to its ensemble approach [37, 39];
the second one is the interaction consideration, with autoencoder intrinsic hierarchical
structure; the third one lies in the increased interpretability of the subsequent algorithms
and results. Indeed, identifying features that are the most informative, w.r.t. a target
class within a dataset is insightful information by itself in many application contexts [39].

In the second part of the pipeline hiPRS algorithm is presented. It is based on a simple
and interpretable model that succeeds in including high-level interactions among SNPs in
the calculation of the Polygenic Risk Score. The procedure is displayed in Figure 1.6.

Figure 1.6: Illustration of hiPRS algorithm workflow. Starting with a predefined
set of SNPs of interest (A), hiPRS exploits FIM (Frequent Itemset Mining) routines to
create a list of possible significant interactions (B). These terms are then ranked according
to their relationship to the endpoint in terms of Mutual Information (MI) (D). A limited
number of user-defined interactions are then selected via Minimum Redundancy Maximum
Relevance (mRMR) algorithm (E) for inclusion in the final PRS (F and G). Source: [38]

hiPRS treats data at the genotype level and, starting with a predefined set of SNPs of
interest (A), exploits FIM (Frequent Itemset Mining) routines to create a list of possi-
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ble significant interactions. This is achieved considering only patients with toxicity and
evaluating interactions that, within the class, have a high empirical frequency(B). These
terms are then ranked according to their relationship to the endpoint in terms of Mutual
Information (MI) (D). A limited number of user-defined interactions are then selected for
inclusion in the final PRS (F and G). To this end, hiPRS exploits a selection algorithm
similar to Minimum Redundancy Maximum Relevance (mRMR): the algorithm selects
terms through greedy optimization of the ratio between MI (relevance) and a suitable
similarity measure for interactions (redundancy) (E). This leads to a set of predictive, yet
diverse, interactions that are used to define the score. In the end, the latter is built by
weighting the contribution of each interaction term accordingly to the weights obtained
when fitting a logistic regression model with the selected endpoint as outcome (G) [38].

1.4. Aim of the study

This thesis proposes an innovative methodology capable of performing variable selection
in high-dimensional contexts where high-order interactions are of interest and multiple
outcomes are simultaneously studied. The feature selection accounts for intra-outcome
correlation structure and properly defines a set of significant features for a comprehensive
endpoint that summarizes the multivariate response, aggregating individual results. The
multivariate FS is developed specifically to work on genomic data. The algorithm is
robust to data imputation and suitable for multiple binary classification problems with
high imbalance in the classes of each outcome. The selection can be exploited to efficiently
include genetic effects in clinical risk models.

To this aim techniques of Machine Learning, Deep Learning, signal processing method,
and non-parametric statistics are exploited.

Each of the fundamental aspects of the feature selection methods is individually tack-
led, developing a specific methodology and simulation setting to properly understand its
characteristics. A final comprehensive methodology that encapsulates the single method-
ologies developed is presented and applied to the case study of REQUITE data.
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This Chapter presents the methodologies developed in order to achieve the aim of the
study and tackle all the problems described in Chapter 1. Starting from the method
reported in Section 1.3.5 in order to achieve robustness to imputation error signal pro-
cessing methods are assimilated to deep learning techniques: a denoising procedure is
introduced in the training process of the DSAE so that the imputation error is considered
in the reconstruction error of both groups, leading to an unbiased analysis. Selection of
the discriminating feature between the classes is achieved by comparing the reconstruc-
tion error distributions available from the ensemble learning procedure. In particular, a
non-parametric test is exploited to assess the distribution difference in the reconstruction
error between the classes. This methodology selects all the features able to distinguish
between them. Multi-outcome feature selection is achieved by the proper definition of
DSAEE groups, accounting for correlation in the endpoints. Feature selection is per-
formed starting from a unique control sample, extracted from the intersection of each
endpoint majority class, and an endpoint-depending case sample. The selection is able
to produce a set of SNPs describing each specific toxicity accounting for the dependency
structure in the multivariate outcome, increasing the statistical power of the model.
Finally, a comprehensive methodology that implements a multi-outcome feature selection
specifically developed in the context of clinical risk models and genomic data is presented.
The selected SNPs for each outcome can then be combined to form an informative set of
features correlated with general toxicity and able to distinguish generally radiosensitive
patients.

2.1. Anomaly detection autoencoders for feature se-

lection with imputed data

The first part of the chapter is devoted to the application of a denoising procedure to
the DSAE to achieve robustness to imputation error and enable an unbiased analysis.
The presence of imputed data within association analysis implies the need to introduce
specific techniques to avoid poor performance and misleading results. The technique
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introduced in this section is inspired by denoising autoencoders. The hypothesis is that,
as autoencoders are able to reconstruct corrupted input error, similarly it is possible to
force them to reconstruct noisy continuous input data into accurate categorical data.

A binary supervised learning setup is considered with an available set of N (input, target)
pairs

D̃ = {(x̃1, Y1), ..., (x̃N , YN)}

where Yi is the target that takes values in {0, 1} and x̃i ∈ RJ with i = 1, ..., N is the
input feature vector of imputed data or, in general, noisy data. Suppose that xi true
categorical feature vector is known for each patient present in the training set and that a
fixed number of M categories is available for each feature. Therefore a second dataset is
available with N (input, target) pairs

D = {(x1, Y1), ..., (xN , YN)}

where Yi is the target that takes values in {0, 1} and xi ∈ {1, ...,M}J with i = 1, ..., N

is the input feature vector of categorical data. If the true categorical feature vector is
unknown, it is possible to simply round each imputation to the closest integer and consider
it the categorical representation of the data. The accuracy of this representation is not
fundamental, since the algorithm works so that the possible inaccuracy is considered.
Finally, suppose that imbalance in the class is present, with a minority class Y = 1

(case class) and a majority class Y = 0 (control class). The rationale of the DSAEE
follows in general the one presented in [38] with the intention of including imputation
noise in the reconstruction process. The procedure rationale is detailed in the following
and schematized in Algorithm 2.1.

In particular, X is defined as the set of categorical features related to the majority class
and X̃ is defined as the set of continuous features related to the majority class. Analo-
gously, X’ is defined as the set of categorical features related to the minority class, and
X̃′ is defined as the set of continuous features related to the minority class.
In each ensemble iteration b ∈ {1, ...., B} a test set containing 2 * O data points, where
O is the minority class numerosity, is constructed by concatenating all the minority class
patients with a random sample of the same size from the majority class. The remaining
observations of the majority class are included in the training set. Note that for both the
training and the test set two datasets are available, respectively the one with continuous
and categorical features. This train-test set structure allows training each DSAE learner
in an unsupervised fashion only on the overrepresented population, and to test its per-
formance when facing both majority and minority class examples, so that comparison of
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the RE in two populations is possible.

Algorithm 2.1 DSAEE for Minority Class Feature Selection with imputed data
INPUTS

• D: categorical covariate dataset;
• D̃: continuous covariate dataset;
• B: Enasamble iterations;
• δ: Threshold (quantile).

OUTPUT Feature set F.

1: X ← {xi ∈ D|Yi = 0}
2: X̃ ← {x̃i ∈ D̃|Yi = 0}
3: X’ ← {xi ∈ D|Yi = 1}
4: X̃′ ← {x̃i ∈ D̃|Yi = 1}
5: O ← minority sample size or number of X’ rows
6: Set Q // empty array
7: for i = 1, ...., B do
8: Xtest ← Sample O observations from X
9: X̃test ← Sample the same observations in Xtest from X̃

10: Xtrain ← {xi ∈ X|xi /∈ Xtest}
11: X̃train ← {x̃i ∈ X̃|x̃i /∈ X̃test}
12: Xtest ← concatenate(Xtest,X

′)

13: X̃test ← concatenate(X̃test, X̃
′)

14: Define Ytest containing class belongings of Xtest

15: ϕ, W, W’ ← train a deep sparse autoencoder using the normal dataset X̃train as
input and Xtrain as output considering (2.3)

16: R ← evaluate reconstruction error on X̃test and Xtest as in (2.2)
17: Label R with Ytest

18: Q ← concatenate(Q,R)

19: end for
20: Qmaj, Qmin ← {rej ∈ Q|Ytest,j = 0}, {rej ∈ Q|Ytest,j = 1}
21: mean_remaj , mean_remin ← Column mean of Qmaj, Qmin

22: ∆ ← mean_remin - mean_remaj

23: F ← {j|∆j > ∆δ, j ∈ {1, ..., J}}

The rationale behind this sampling procedure is the same used for outliers detection:
since the DSAE is trained to reconstruct normal observations only, it will make higher
RE when tested on outlier observations never experienced during training [39]. Moreover,
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the DSAE is trained to reconstruct the continuous input into a categorical output, so that
the possible error due to imputed data is accounted for in the comparison. The input
data are X̃train where each of the J features is considered numerical and the output layer
returns the probability distribution over the M categories in the categorical covariate.
The network weights and reconstruction map are optimized to have the best possible
representation and reconstruction of the J features exploiting the loss in (2.3).

ϕ(x̃) = argminϕL(x, ϕ(x̃))

L(xj, ϕ(x̃j)) = −
M∑
k=0

(xjk ∗ log(ϕ(x̃jk))) for j ∈ {1, ..., J}

LS(x, ϕ(x̃)) =
J∑

j=1

L(xj, ϕ(x̃j)) + λ|h(l)|

(2.1)

(2.2)

(2.3)

where x̃ ∈ X̃train and x ∈ Xtrain. The loss is composed of two different parts, the first
one being a cross-entropy that evaluates the difference in the probability distribution
between the autoencoder outcome and the one-hot encoding of the corresponding cate-
gorical covariate. The second part instead is the L1 loss to induce sparsity in the latent
representation of the covariates, improving the generalization ability of the model.

Once the network has been trained, the reconstruction error is evaluated on each sample
of the test set as in (2.2). For each observation of the test set, the outcome is composed of
J probability distributions over the M categories describing the likelihood of each feature
belonging to each class.

ϕ(X̃test) ∈ R(J,M)

Since the autoencoder was trained exclusively on observation from the majority class,
their representation is expected to be optimal, while the representation and consequently
the reconstruction of minority class samples are expected to be less efficient:

J∑
j=1

(L(xj|Y = 1, ϕ(x̃j))) ≥
J∑

j=1

(L(xj|Y = 0, ϕ(x̃j)))

where x ∈ Xtest and x̃ ∈ X̃test.
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The most discriminant feature should present the highest reconstruction error difference
in the two groups, or, more specifically, the RE distribution of the most discriminant
feature should be statistically different in each class rej|Y = k ∼ fk

j with k ∈ {0, 1} and
j ∈ {1, ..., J} and f0 ≁ f1.

The test set REs from each ensemble repetition are concatenated in Q and at the end
of the ensemble procedure Q ∈ R(B∗2∗O,J). Q is then split in Qmaj, Qmin based on the
belonging of each observation in the test set.

For each feature j, the RE difference in the two groups is evaluated by taking the mean
over all the observations in Qmaj and Qmin.

lbj =

∑O
i=1 L(x

i
j|Yi = 1, ϕ(x̃i

j))−
∑O

i=1(L(x
i
j|Yi = 0, ϕ(x̃i

j))

O
, j ∈ J, b ∈ B

∆j =

∑B
b=1 l

b
j

B
, j ∈ J

(2.4)

(2.5)

Averaging is performed also over ensemble repetition to achieve higher robustness in the
selection method.

Finally, the features are ranked based on (2.5) in decreasing order. The highest-ranked
features are those accurately reconstructed by the DSAE on the majority class (lower
RE), and poorly reconstructed on the minority class (higher RE). To identify an exact set
F, a threshold δ ∈ (0, 1) is defined. ∆δ is the δ-th quantile evaluated on the distribution of
{∆j}Jj=1. Then, all those features j whose average RE difference is above the user-defined
quantile are selected:

F = {j|∆j > ∆δ, j ∈ {1, .., J}} (2.6)

This is the same final selection procedure used in [38]. Note that there is an inverse
relation between δ and the number of selected features: the higher the δ, the lower the
number of selected features.

2.2. Distribution-based methodology for feature se-

lection involving ensemble learning

In this section, a new selection methodology from the Reconstruction Error (RE) of the
autoencoder is developed based on the possibility of simulating the distribution of the RE
in the two groups thanks to the ensemble learning procedure. This method is introduced
specifically in the context of feature selection performed with anomaly detection autoen-
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coders and the rationality beneath the method is to select as discriminating features those
presenting statistically different RE distributions in the two groups. Given the ensemble
nature of the Algorithm 2.1, it is possible to consider the RE distributions evaluated on
the test set as the best approximation available of its real value in the population. Indeed,
the idea of ensemble learning is to build a prediction model by combining the strengths
of a collection of simpler base models to reduce the variance of an estimated prediction
function. This provides a way not only to estimate parameters and perform FS but also
to approximate a sampling distribution, in this case, the RE in each group. Instead of
simply summarizing the information coming from different ensemble iterations in a mean,
it is possible to compute tests on the sampled distributions and generalize the results
to the entire population. Feature Selection can then be performed by picking features
presenting a statistically larger RE distribution in the minority class than in the majority
class.

The feature selection from autoencoder reconstruction error is performed as reported in
Algorithm 2.2 and explained in the following.

Algorithm 2.2 Ensamble-based feature Selection
INPUTS

• Q: matrix of the reconstruction error as computed in Algorithm 1.2 (Q ∈ R(B∗2∗O,J)).
OUTPUT Feature set F.

1: Qmaj, Qmin ← {rej ∈ Q|Ytest,j = 0}, {rej ∈ Q|Ytest,j = 1}
2: set F //empty set
3: for j in J do
4: pj← p-value of the Smirnov test,

testing the difference in Qmaj and Qmin jth column
5: if pj <

0,05
J

then
6: Include j in F
7: end if
8: end for

In particular, the matrix of reconstruction errors Q ∈ R(B∗2∗O,J) computed as reported in
Algorithm 1.2 splits in Qmaj, Qmin based on the belonging of each observation in the test
set. Each of the B ∗ O observations in the two is considered as a sample extracted from
each feature distribution rej|Y = k ∼ fk

j with j ∈ {1, ..., J} and k ∈ {0, 1}. It is possible
then to compare the samples and test if the feature distribution in different groups is
statistically different. The analysis is performed via the Smirnov test. The Smirnov test
is a non-parametric two-sample test, used to determine if two independent random samples
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appear to follow the same distribution. Let x : (x1, x2, ..., xm) and y : (y1, y2, ..., yn) be
independent random samples of size m and n, respectively, from continuous or ordered
categorical populations with CDFs of F and G, respectively. The null hypothesis of the
test is the equality of distribution functions:

H0 : F (t) = G(t), ∀t ∈ R

This null hypothesis can be tested against the two-sided alternative hypothesis:

H1 : ∃t ∈ R : F (t) ̸= G(t)

or it can be tested against a one-sided alternative hypothesis:

H1 : F (t) ≥ G(t) ∀t ∈ R and ∃t ∈ R : F (t) > G(t)

or
H1 : F (t) ≤ G(t) ∀t ∈ R and ∃t ∈ R : F (t) < G(t)

To compute the Smirnov test statistic, the empirical CDFs for the x and y samples are
computed and the difference between the two distributions can be measured by the signed
differences or by the absolute value of the difference depending on H1 for every t. The
maximum value of the selected difference between the two empirical cumulative distribu-
tion functions is then used as the test statistic [12]. For more information about the test
refer to [12].
Once the test is performed, set F includes all the features whose test p-value is lower than
the Bonferroni corrected threshold of 0.05.
The F set computed with Algorithm 2.2 can include an oversized number of features. This
method can be also used as a pre-screening of the features. To restrict the selected set of
features F, it is possible to compute for each j ∈ F the RE overall mean difference in the
two groups by taking the mean over all the observations in Qmaj, Qmin as in (2.5); rank
them based on (2.5) in decreasing order and given a threshold δ ∈ (0, 1) and the ∆δ, δ-th
quantile evaluated on the distribution of {∆j}j∈F , select:

Fcombined = {j|∆j > ∆δ, j ∈ F}
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2.3. Generalization of anomaly detection autoencoders

for feature selection to multivariate response

This section is devoted to the illustration of a multi-outcome feature selection. Multivari-
ate FS is achieved by the proper definition of DSAEE groups, accounting for correlation
in the endpoints. In particular, feature selection is performed starting from a unique train
sample, extracted from the intersection of the majority classes of each endpoint, and an
endpoint-depending test sample. This means that each learner is trained to represent a
population that does not present any toxicity. Clinicians believe that interindividual dif-
ferences in toxicity outcomes are only partly endpoint-specific [30], consequently starting
from a control population extracted specifically from each endpoint majority class could
lead to concealing of genetic risk pattern linked to general toxicity, due to their presence
in both the majority and minority class. The selection is able to produce a set of SNPs
describing each specific toxicity accounting for the dependency structure in the multivari-
ate outcome and consequently increasing the statistical power of the model. The selected
SNPs can then be combined to form an informative set of features correlated with general
toxicity and able to distinguish generally radiosensitive patients.

A multi-outcome binary supervised learning setup is considered with an available set of
N (input, targets) pairs

D = {(x1, y1), ..., (xN , yN)}

where y
i
= {Yi1, ..., YiT} is the multi-endpoint target, each endpoint that takes values in

{0, 1} and xi ∈ {1, ....,M}J with i = {1, ..., N} is the input feature vector of true cate-
gorical data. Suppose that a fixed number of M categories is available for each feature.
Finally, suppose that imbalance in the classes is present for each of the endpoints, with
a minority class Yk = 1 and a majority class Yk = 0 with k ∈ {1, ..., T}. The rationale
of the DSAEE follows in general the one presented in [38] with the intention of including
correlation between the endpoints in the analysis to exploit information from other end-
points in the FS of each endpoint. A set of features is selected for each endpoint and a
comprehensive outcome as detailed in the following and schematized in Algorithm 2.3.

In particular, X is defined as the dataset of the J categorical features. Y is defined as
the target dataset, containing the T binary endpoint.
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Algorithm 2.3 DSAEE for multi-outcome Feature Selection
INPUTS

• D: Dataset with J covariates and M outcomes;
• B: Enasamble iterations;
• α: Vector of thresholds (quantiles).

OUTPUT
• Feature set Fk, k ∈ {1, ...T} one for each endpoint;
• Feature set Ftot linked to a comprehensive outcome.

1: X ← from D extract the covariate dataset with J features;
2: Y ← from D the targets dataset with T outcomes;
3: for k = 1, ...., T do
4: Xk

maj ← {xi ∈ X|Yik = 0}
5: end for

6: Xmaj ←
T⋂

k=1

Xk
maj

7: for k = 1, ....,M do
8: X’ ← {xi ∈ X|Yik = 1}
9: O ← minority sample size or number of X’ rows

10: Set Q // empty array
11: for i = 1, ...., B do
12: Xtest ← Sample O observations from Xmaj

13: Xtrain ← {xi ∈ Xmaj|xi /∈ Xtest}
14: Xtest ← concatenate(Xtest,X

′)

15: Define Ytest containing class belongings of Xtest in endpoint k
16: ϕ, W, W’ ← train a deep sparse autoencoder using the normal dataset Xtrain

considering (2.9)
17: R ← evaluate reconstruction error on Xtest as in (2.8)
18: Label R with Ytest

19: Q ← concatenate(Q,R)

20: end for
21: Qmaj, Qmin ← {rej ∈ Q|Ytest,j = 0}, {rej ∈ Q|Ytest,j = 1}
22: mean_remaj , mean_remin ← Column mean of Qmaj, Qmin

23: ∆ ← mean_remin - mean_remaj

24: Fk ← {j|∆j > ∆αk
, j ∈ {j, ..., J}}

25: end for

26: Ftot ←
T⋃

k=1

Fk
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First, the set of common controls needs to be defined. These are those patients that do
not present any of the endpoints considered and it is computed as the intersection of the
control samples of all the endpoints, in the following it is referred to as the majority class.
For each endpoint, the specific set of selected features is computed as follows. First, the
case sample (minority class) is defined, including all the patients that present the specific
endpoint. Then, in each ensemble iteration b ∈ {1, ...., B} a test set containing 2 * O
data points, where O is the minority class numerosity, is constructed by concatenating
all the minority class patients with a random sample of the same size from the common
control sample. The remaining observations of the common majority class are included
in the training set. This train-set structure allows us to train each DSAE learner in an
unsupervised fashion only on the population not presenting any toxicity, and to test its
performance when facing both groups’ examples so that comparison of the RE in two
populations is possible. The network weights and reconstruction map are optimized to
have the best possible representation and reconstruction of the J features in the common
majority class exploiting the loss in (2.9).

ϕ(x) = argminϕL(x, ϕ(x))

L(xj, ϕ(xj)) = −
M∑
k=0

(xjk ∗ log(ϕ(xjk))) for j ∈ {1, ..., J}

LS(x, ϕ(x)) =
J∑

j=1

L(xj, ϕ(xj)) + λ|h(l)|

(2.7)

(2.8)

(2.9)

where x ∈ Xtrain. The loss is composed of two different parts, the first one being a
cross-entropy that evaluates the difference in the probability distribution between the
autoencoder outcome and the one-hot encoding of the corresponding categorical covariate.
The second part instead is the L1 loss to induce sparsity in the latent representation of
the covariates, improving the generalization ability of the model.

Once the network has been trained, it is applied to the test set. For each observation of
the test set, the outcome is composed of J probability distributions over the M categories
describing the likelihood of each feature belonging to each class.

ϕ(Xtest) ∈ R(J,M)

The reconstruction error is evaluated on each sample of the test set as in (2.8).

The test set REs from each ensemble repetition are concatenated in Q and at the end
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of the ensemble procedure Q ∈ R(B∗2∗O,J). Q is then split in Qmaj, Qmin based on the
belonging of each observation in the test set. For each feature j, the RE difference in the
two groups is evaluated by taking the mean over all the observations in Qmaj and Qmin.

lbj =

∑O
i=1 L(x

i
j|xi ∈ Qmin, ϕ(x

i
j))−

∑O
i=1(L(x

i
j|xi ∈ Qmaj, ϕ(x

i
j))

O
, j ∈ J, b ∈ B

∆j =

∑B
b=1 l

b
j

B
, j ∈ J

(2.10)

(2.11)

Averaging is performed also over ensemble repetition to achieve higher robustness in the
selection method. Finally, the features are ranked based on (2.11) in decreasing order. The
highest-ranked features are those accurately reconstructed by the DSAE on the majority
class (lower RE), and poorly reconstructed on the minority class (higher RE). To identify
an exact feature set for the endpoint considered, a threshold αk ∈ (0, 1) is defined. ∆αk

is the αk-th quantile evaluated on the distribution of {∆j}Jj=1. Then, all those features j

whose average RE difference is above the user-defined quantile are selected:

Fk = {j|∆j > ∆αk
, j ∈ {1, .., J}}

Once the set of features is selected for each endpoint, it is possible to define a set Ftot as the
union of all the features selected, that incorporates significant features for a comprehensive
endpoint.

2.4. Multi-outcome feature selection via anomaly de-

tection autoencoder in genomic applications

The last section presents a methodology that encapsulates the key components described
in previous sections and implements a multi-outcome feature selection specifically devel-
oped in the context of clinical risk models and genomic data.

A multi-outcome binary supervised learning setup is considered with an available set of
N (input, targets) pairs

D̃ = {(x̃1, y1), ..., (x̃N , yN)}

where y
i
= {Yi1, ..., YiT} is the multi-endpoint target, each endpoint takes values in {0, 1}

and x̃i ∈ RJ with i = 1, ..., N is the input feature vector of imputed data or, in general,
noisy data. Suppose that xi, true categorical feature vector, is known for each patient
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present in the training set and that a fixed number of M categories is available for each
feature. Therefore a second dataset is available with N (input, target) pairs

D = {(x1, y1), ..., (xN , yN)}

where y
i
is the same multi-endpoint target and xi ∈ {1, ...,M}J with i = 1, ..., N is the

input feature vector of categorical data. If the true categorical feature vector is unknown,
as in the denoising case, it is possible to simply round each imputation to the closest
integer and consider it the categorical representation of the data. Finally, suppose that
imbalance in the classes is present for each of the endpoints, with a minority class Yk = 1

and a majority class Yk = 0 with k ∈ {1, ..., T}. The method employs an ensemble of
deep sparse autoencoders to perform multi-output feature selection. Each autoencoder is
trained, as an anomaly detection autoencoder, to optimally represent a class of controls,
and aim to distinguish them from the anomalies (cases). Anomaly detection autoencoders
perform well, especially in unbalanced settings, where the normal sample presents several
units (majority class) and the anomaly sample only a few (minority class). In a supervised
learning setting, it is possible to observe how each feature is reconstructed in the major-
ity and minority class samples. The difference in the distribution of the reconstruction
error in the two groups is assessed by exploiting a non-parametric test, and discriminant
features are selected as those presenting statistically different distributions between them.
Multivariate FS is achieved by the proper definition of DSAE control and case groups,
accounting for correlation in the endpoints. In particular, feature selection is performed
starting from a unique control sample, extracted from the intersection of the majority
classes of each target, and a target-dependent case sample. Each learner is trained to
represent a population that does not present any of the targets considered. A set of fea-
tures is selected for each endpoint and the union of all of them is considered significant in
explaining a comprehensive outcome. The method is robust to error in the imputation of
genomic data thanks to a procedure inspired by denoising autoencoders. Each learner is
trained to reconstruct from the noisy input the categorical output, including imputation
noise in the reconstruction process and imposing an unbiased analysis. The method is
detailed in the following and schematized in Algorithm 2.4.

In particular, X is defined as the dataset of the J categorical features, and X̃ as the
dataset of the J continuous features. Y is defined as the target dataset, containing the T
binary outcomes.
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Algorithm 2.4 DSAEE for multi-outcome Feature Selection in the context of genomic data
INPUTS

• D : categorical covariate dataset;
• D̃: continuous covariate dataset;
• B: Enasamble iterations;
• α: Vector of thresholds (quantiles).

OUTPUT
• Feature set Fk, k ∈ {1, ...T} one for each endpoint;
• Feature set Ftot linked to a comprehensive outcome.

X ← from D extract the categorical covariatre dataset with J features;
X̃ ← from D̃ extract the continuous covariatre dataset with J features;
Y ← from D the targets dataset with T outcomes;
for k = 1, ...., T do

Xk
maj ← {xi ∈ X|Yik = 0};

X̃k
maj ← {x̃i ∈ X̃|Yik = 0};

end

Xmaj ←
T⋂

k=1

Xk
maj

X̃maj ←
T⋂

k=1

X̃k
maj

First, the set of common controls needs to be defined. These are those samples that
do not present any of the outcomes considered and it is computed as the intersection of
the majority class samples from each endpoint. Two different datasets containing com-
mon controls are available X̃maj and Xmaj, respectively with continuous and categorical
features and will be referred to as the majority class dataset in the following.
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DSAEE for multi-outcome Feature Selection in the context of genomic data (Part II)

for k = 1, ...., T do
X’ ← {xi ∈ X|Yik = 1}
X̃′ ← {x̃i ∈ X̃|Yik = 1}
O ← minority sample size or number of X’ rows
Set Q //empty array
for i = 1, ...., B do

Xtest ← Sample O observations from Xmaj

X̃test ← Sample the same observations in Xtest from X̃maj

Xtrain ← {xi ∈ Xmaj|xi /∈ Xtest}
X̃train ← {x̃i ∈ X̃maj|x̃i /∈ X̃test}
Xtest ← concatenate(Xtest,X

′)

X̃test ← concatenate(X̃test, X̃
′)

Define Ytest containing class belongings of Xtest in endpoint k
ϕ, W, W’ ← train a deep sparse autoencoder using the continuous dataset X̃train

as input and the categorical one Xtrain as output considering (2.3)
R ← evaluate reconstruction error on X̃test and Xtest as in (2.2)
Label R with Ytest

Q ← concatenate(Q,R)

end
Qmaj, Qmin ← {rej ∈ Q|Ytest,j = 0}, {rej ∈ Q|Ytest,j = 1}
set Fk //empty set
for j in J do

pj← p-value of the Smirnov test,
testing the difference in Qmaj and Qmin jth column
if pj <

0,05
J

then
Include j in Fk

end

end

end

Ftot ←
T⋃

k=1

Fk

For each outcome, the specific set of selected features is computed as follows. The case
sample (minority class) is defined, including all the patients that present the specific
endpoint. Two different minority datasets are computed X̃′ and X’, respectively with
continuous and categorical covariates. Then, in each ensemble iteration b ∈ {1, ...., B}



2| Methodologies 43

a test set containing 2 * O data points, where O is the minority class numerosity, is
constructed by concatenating all the minority class patients with a random sample of the
same size from the common control class patients. The remaining observations of the
latest are included in the training set. Each DSAE learner is trained in an unsupervised
fashion only on the population not presenting any outcome. The training includes a
denoising procedure forcing the DSAE to reconstruct from the continuous input ( X̃train)
its categorical representation (Xtrain) so that the possible error due to imputation in the
data is accounted for in the comparison. The network weights and reconstruction map are
optimized to have the best possible representation and reconstruction of the J features in
the training set exploiting the loss in (2.3):

Loss(x, ϕ(x̃)) =
J∑

j=1

−
M∑
k=0

(xjk ∗ log(ϕ(x̃jk))) + λ|h(l)|

where x̃ ∈ X̃train and x ∈ Xtrain. The loss function heeds the cross-entropy between the
autoencoder outcome and the one-hot encoding of the corresponding categorical covariate
and the L1 loss to improve the generalization ability of the model.

Once the network has been trained, it is applied to the test set. The evaluation of its
performance when facing both majority and minority class examples enables the compar-
ison of the RE in two populations. For each observation of the test set, the outcome is
composed of J probability distributions over the M categories describing the likelihood of
each feature belonging to each class.

ϕ(X̃test) ∈ R(J,M)

The reconstruction error is evaluated on each sample of the test set as in (2.2):

RE(xj, ϕ(x̃j)) = −
M∑
k=0

(xjk ∗ log(ϕ(x̃jk))) for j ∈ {1, ..., J}

The test set REs from each ensemble repetition are concatenated in Q and labeled ac-
cording to the class belongings of Xtest in the specific endpoint. At the end of the
ensemble procedure Q ∈ R(B∗2∗O,J). Q is then split in Qmaj, Qmin, dividing majority
and minority class observations in the test set. Each of the B ∗O observations in the two
is considered as a sample extracted from each distribution xj|xj ∈ Qmin ∼ fmin

j (x) and
xj|xj ∈ Qmaj ∼ fmaj

j (x). It is possible then to compare the samples and test if the feature
distributions in different groups are statistically different. The analysis is performed via
the Smirnov test, a non-parametric two-sample test, used to determine if two independent
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random samples appear to follow the same distribution. Once the test is performed, the
set Fk includes all the features whose test p-value is lower than the Bonferroni corrected
threshold of 0.05.
If the Fk includes an oversized number of features. A second selection method can be
applied to Fk to restrict it. It is possible to compute for each j ∈ Fk the RE difference
in the two groups by taking the mean over all the observations in Qmaj and Qmin as in
(2.5):

∆j =

∑B
b=1

(∑O
i=1 L(x

i
j|xi ∈ Qmin, ϕ(x

i
j))−

∑O
i=1(L(x

i
j|xi ∈ Qmaj, ϕ(x

i
j))
)
/O,

B
, j ∈ J

rank them based on ∆j in decreasing order and given a threshold αk ∈ (0, 1) and the ∆αk
,

δ-th quantile evaluated on the distribution of {∆j}j∈Fk
, select:

F = {j|∆j > ∆αk
, j ∈ Fk}

Once the set of features is selected for each endpoint, it is possible to define a set Ftot as the
union of all the features selected, that incorporates significant features for a comprehensive
endpoint.

Evaluation metrics employed in the analysis

The methodologies presented in the previous section are separately tested on simulated
datasets and the comprehensive algorithm is applied to REQUITE case study. To high-
light their proprieties, performance metrics are employed.
The methods’ performance in classification tasks is evaluated based on the classical met-
rics indexes of binary classification. In this work, we evaluated those in Table 2.1. Note
that since data present unbalanced classes few performance indexes evaluating the predic-
tion of the minority class are introduced. The metrics’ definitions are stated hypothesizing
a binary classification with subjects positive and negative to the outcome. The method’s
performance in FS tasks is evaluated by metrics indices described in Table 2.2 considering
the metric introduced in [39] and an additional one evaluating the ability of the method
in the selecting features specific to the single outcome considered in presence of highly
correlated outputs. Finally, to evaluate autoencoders’ performance metrics presented in
Table 2.3 are exploited. In the definitions of Table 2.3 x represent the true value and x

the predicted value.
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Metrics used to evaluate binary classification

Metrics Description Formula

AUC

Area under the curve of the receiver
operating characteristic curve (ROC).
A ROC curve is a graph showing
the performance of a classification
model at all classification thresholds.
A ROC curve plots True Positive Rate(TPR)
(y) vs. False Positive Rate (FPR)(x)
at different classification thresholds.
AUC is usually approximated using a
Riemann sum.

True Positive Rate(TPR):
TRP = TP

TP+FN

False Positive Rate (FPR):
FPR = FP

FP+TN

Precision

Precision describes the ratio
between true positive and
total number of sample classified as positive.
The precision describes the ability of
the classifier not to label as positive a
sample that is negative.

P = TP
TP+FP

AP

Avarage precision: AP summarizes a
precision(P)-recall(R) curve as the
weighted mean of precisions achieved at each
threshold, with the increase in recall from
the previous threshold used as the weight.
It indicates whether the
classifier is able to correctly identify
all the positive samples
without accidentally marking too
many negative samples as positive

AP =
∑

n(Rn −Rn − 1) ∗ P

where
R = TP

TP+FN

and
P = TP

TP+FP

F1 Measure of the test accuracy evaluated
from the precision and recall of the classification F1 = 2∗P∗R

P+R

Sensitivity Percentage of true positive among those
that are positive (True Positive Rate) TRP = TP

TP+FN

Specificity Percenatage of true negative among those
that are negative (True Negative Rate) TNR = TN

TN+FP

NPV
Negative Predictive Values:
percentage of true negative among those
who are classified as negative (True Negative Rate)

NPV = TN
TN+FN

Table 2.1: Definition and description of the metrics used to evaluate binary
classification method. The table contains in the columns the metrics name used in the
thesis text, their descriptions, and the formulas used to compute them given the confusion
matrix of the classification model.
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Metrics used to evaluate FS

Metrics Description Formula

Tests:

Wasserstein distance

Wilcoxon paired
signed-rank test

t-test

To quantify and evaluate the separation
of the class-specific RE distributions
parametric and non-parametric methods
are adopted to avoid strict assumptions
on the distributions of RE. The Wasserstein
distance quantifies the difference in the
shape of the two empirical distributions,
the Wilcoxon paired signed-rank test
evaluates whether the two related samples
come from the same distribution
(two-sided test), or there is a stochastic
order between the two distributions
(one-sided test) and the t-test evaluate
the mean difference in the groups
under the normality assumption.

FSP

FS Performance evaluates the capability
of the algorithm to produce a meaningful
ranking of features and selecting the most
informative features to discriminate the
two classes. It is a
useful-to-selected ratio where both
informative and redundant features are
considered useful.

FSP = |IRF |/|F |

where
|IRF | : total number of
informative and redundant
features selected

and
|F | : total number of
features selected

FSC

FS Correspondence quantifies the ability
of the methodology in
selecting every and only informative
feature avoiding redundant ones.

FSC = |IF |/|TIF |

where
|IF | : total number of
informative features selected
and
|TIF | : total number
of true
informative features

Table 2.2: Definition and description of the metrics used to evaluate feature
selection. The table contains in the columns the metric names used in the thesis text,
their description, and the formulas used to compute them.
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Metrics used to evaluate Autoencoder perfromances

Metrics Desciption Formula

MSE

Mean Square Error (MSE) measures
the square of Euclidean distance between
the estimated values and the actual value, i.e.
the average squared difference between them.

MSE = 1
N

∑N
i=1(xi − xi)

2

Accuracy /
Binary accuracy

The frequency with which the estimated
value matches the true value acc =

∑
i(xi==xi)

N

Binary crossentropy

The cross-entropy calculates the difference
between two probability distributions p and q.
In binary classification, the true probability
pi is the true label, and the given
distribution qi is the predicted value
of the current model

cross ← −Ep(logq)
where E is the expected value w.r.t. p
bin_cross ← −

∑
i

∑
j pjlog(qj)=

=−
∑

i xilog(xi)+
(1- xi)log(1− xi)

AUC See: Table 2.4 See: Table 2.4
Table 2.3: Definition and description of the metrics used to evaluate autoen-
coder performance. The table contains in the columns the metric names used in the
thesis text, their descriptions, and the formulas used to compute them.
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3.1. Simulation setting

In this section, the distinctive aspects introduced in the proposed method are validated
through a simulation study. To do that, simulated data needs to reproduce peculiar
characteristics of genomic data, namely categorical features (i.e. the variants) and the
presence of complex interactions determining the endpoints’ onset. Moreover, to test the
improved power of the proposed FS algorithm for multivariate targets, we simulated a
generative model determining correlated endpoints. The algorithm exploited to gener-
ate the simulated data begins with the construction of the multivariate target endpoint.
Specifically, the multivariate output is constructed as a matrix of binary features with a
user-defined intra-features correlation structure. Then, the genotype data is generated as
a set of binary covariates representing the variants (with a defined variant’s frequency).
At this point, to simulate the complex genotype-multivariate phenotype relationship, the
algorithm defines, for each dimension of the multivariate endpoint a set of interacting
features (hereby called “pattern”) with a specified co-occurrence frequency with its corre-
sponding dimension. More details about the generative process can be found in Appendix
B and in [36].

3.1.1. Denoising proprieties of the developed method

This section aims at validating the utility of the denoising aspect introduced in the novel
DSAEE algorithm. That is, to verify the capability of the denoising DSAEE to improve
imputation error handling.

This simulated experiment includes a dataset with 1000 observations and 100 variants
with a 10% relative frequency. The output is univariate with a minority class composed
of 100 samples. The length of the associated pattern contains 20 variants and the co-
occurrence frequency of the pattern and endpoint is 70%. The noisy dataset is generated
starting from the original categorical dataset adding random noise as in Algorithm 3.1.
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Algorithm 3.1 Noise addition procedure
INPUTS

• D : categorical covariate dataset.
OUTPUT : D̃: continuous covariate dataset.

1: def AddNoise(x) {
2: ok ← sample from ∼ Bi(0.7)
3: if ok then
4: ϵ ← sample from ∼ Exp(5)
5: if x is 0 then
6: x ← min(1, x+ ϵ)

7: else
8: x ← max(0, x− ϵ)

9: end if
10: end if
11: return x
12: }
13: X ← from D extract the categorical covariate dataset with J features
14: Y ← from D the targets dataset with T outcomes;
15: X̃ ← apply elementwise AddNoise to X
16: D̃ ← merge(X̃,Y)

To test the denoising capability of the Algorithm 2.1, referred to in the following as de-
noising DSAEE, is compared to the DSAEE Algorithm 1.2, referred to in the following as
DSAEE. The denoising DSAEE algorithm introduces exclusively the denoising procedure
with respect to the DSAEE algorithm. Changes and improvements from one algorithm
representation to the other are then the consequence of better imputation error handling.
In both cases, the same simple autoencoder architecture is implemented and its in-training
convergence is analyzed. Each AE is composed by an encoder with one 90-nodes hidden
layer, followed by a bottleneck layer of 50 nodes and a symmetrical decoder and the en-
semble is composed of 10 learners. More details about the architecture are present in
Table B.1 in Appendix B.

To quantify and evaluate the reconstruction ability of the autoencoder, metrics presented
in Table 2.3 are adopted and their evolution is studied during the training process. In
Figure 3.1 in-train loss of both methods is plotted to be compared.

In the DSAEE methodology, features are considered to be continuous variables. To eval-
uate the loss the mean squared error is adopted. In the denoising DSAEE features are,
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instead, reconstructed as categorical variables, and the loss is evaluated via binary-cross
entropy. During both trainings, a validation split is performed to describe how the au-
toencoder behaves when tested on unseen data.

Figure 3.1: In-train loss of the compared methodologies. In the DSAEE the loss is
evaluated via MSE since noisy data are treated like continuous variables, while in denois-
ing DSAEE the loss is evaluated via cross-entropy since the encoder output distribution
is compared to the real categorical value. The training was performed excluding a vali-
dation set to mimic the performance of both algorithms on unseen data. The loss on the
validation sets is also presented

The accuracy is reported in Figure 3.2.

Further insight into the representation capability of the DSAEE denoising can be ex-
tracted from the mean AUC. The denoising DSAEE reconstructs binary data evaluating
the probability of the variation presence. The AUC can be computed for each feature
reconstruction and averaged over all. The in-train AUC is shown in Figure 3.3.

Several observations emerge from these plots. First, the denoising DSAEE keeps both the
validation and training set loss very low and very close with respect to DSAEE, showing
a better reconstruction performance on seen and unseen data and better generalization
ability. Moreover, both loss and accuracy plots reveal a faster and smoother convergence
in the denoising DSAEE. Reducing the computational effort in training has great advan-
tages on the total computational time enabling, in ensemble learning algorithms, a higher
number of repetitions to be performed and higher performance.
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Figure 3.2: In-train accuracy of the compared methodologies. The training was
performed excluding a validation set to mimic the performance of the autoencoder on
unseen data

Figure 3.3: In-train AUC of DSAEE denoising Algorithm. The training was performed
excluding a validation set to mimic the performance of the autoencoder on unseen data

Finally, the AUC performance of the denoising algorithm stabilized at approximately 62%
in both the training and the validation set. The performance in AUC, although, probably
weakened by the high noise-to-signal ratio present in the data, shows the ability of the
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autoencoder to isolate the signal, and compute a latent representation that enables a good
reconstruction of noisy data.

In conclusion, the simulated analysis reveals the denoising DSAEE ability to reconstruct
from noisy data their true categorical values. In this stage, accuracy in data representation
is fundamental to better distinguish the classes of the binary outcome, and consequently
to perform a better feature selection when applied within the multivariate methodology.

3.1.2. Distribution-based methodology for feature selection to
improve selection precision and correspondence

The aim of this section is to verify the improvement in selection performance including
the distributional approximation of the reconstruction error in the discovery of significant
covariates.

This simulated experiment includes a dataset with 1000 observations and 100 variants
with a 10% relative frequency. The output is univariate with a minority class composed
of 100 samples. The length of the associated pattern contains 20 variants and the co-
occurrence frequency of the pattern and endpoint is 70%. To test the improvement in
performance, the selection method presented in Section 2.2, referred to in the following
as distributional FS, is compared to the one presented in Algorithm 1.2, referred to in the
following as ranking FS. In addition, the combined selection where a pre-screening of the
feature is performed via distributional FS and the final selection is computed on the pre-
screening exploiting the ranking FS is analyzed. A simple architecture is implemented and
unique training is performed before selecting independently the relevant features with the
methods. Each AE is composed of an encoder with one 90-nodes hidden layer, followed by
a bottleneck layer of 50 nodes and a symmetrical decoder, and the ensemble is composed
of 10 learners. More details about the architecture are present in Table B.2 in Appendix B.
A single DSAEE is trained according to Algorithm 1.2. Once matrix Q is computed, each
selection methodology is applied to the same Q. Selection performances are evaluated
via metrics present in Table 2.2, namely FSP, which evaluates the percentage of useful
features selected over the total number of selected features, and FSC, which evaluates the
ability of the method in selecting every and only informative feature avoiding redundant
ones. The δ parameter of the ranking and combined selection is optimized in each method
first on FSP, as the fundamental goal is to avoid introducing non-informative features in
the selection, and secondly on FSC to get the best possible set of features. The results
are presented in Table 3.1.

Results show how the distributional FS method selects a large number of features that
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Result from the simulation study of FS

Distributional FS Combined FS Ranking FS
FSP FSC FSP FSC FSP FSC
0,171 1 1 0,584 1 0,417

Table 3.1: Result metrics from the different FS methods. In the table metrics
evaluation from Table 2.2 are reported for each of the methods compared. In the first
columns are reported the result using Algorithm 2.2, in the second results from the com-
bined methodology and in the third the results using Algorithm 1.2

cover all the covariates important for the endpoint, introducing, on the other hand, a
large number of irrelevant features in the selection. A possible reason for this behavior is
the clean separation of the class in the simulation setting. In applications, usually, groups
are overlapping and the set of features statistically able to distinguish between them is
restricted. The combined method resolves this issue by selecting the most relevant feature
between those that present a different distribution in the two groups. All the selected
features are significant, as in the ranking FS, but the FSC is 17% higher than the ranking
selection method.
Through these observations, the improvement in the novel selection method can be vali-
dated. Other results are presented in Section 3.1.3. In that context, simulation analyses
are performed on a multivariate outcome, FS is performed with each methodology and
can be compared to robustify the findings of this section. Moreover, FSC in multivariate
analysis is also a measure of how the methods can select specific features of one endpoint
avoiding those related to correlated outcomes.

In conclusion, the simulated analysis reveals the distributional method improves the FSC
of feature selection and, more importantly, that the proposed combined methodology can
reach ranking method performance in FSP and improve performance in FSC.

3.1.3. Inclusion of intra-endpoints correlation structure in the
FS improve the method performance

This section aims to verify the capability of the multi-outcome methodology described
in Section 2.3 to improve variable selection in terms of the metrics defined in Table 2.2.
In the simulation, more performance evaluations of the distribution FS methodology are
included.

This simulated experiment includes a dataset with 1000 observations and 100 variants
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Simulation dataset multivariate case

Numerosity Cases Correlation Pattern-endpoint co-occurance
Total 1000 50
y1 1000 27 a (0.8) 0.7
y2 1000 12 a (0.8) 0.8
y3 1000 7 a (0.8) 0.9
y4 1000 25 b (1) 0.9
y5 1000 20 b (1) 0.6

Table 3.2: Multi-outcome simulation dataset summary. 5 outcomes are considered
in the simulation. Their numerosities in the minority classes with their correlation struc-
ture and theit co-occurrance with the associated patterns are reported in the table

with a 10% relative frequency. The output is multivariate with five outcomes and a
comprehensive minority class composed of 50 samples. The correlation structure within
the multivariate output is composed of two sets of correlated dimensions: the first 3 with
a correlation of 0.8 and the last two with a correlation of 0.7. Each outcome is associated
with a pattern of variants. The length of the associated patterns ranges from 10 to 15
variants. The co-occurrence frequency of pattern and endpoint ranges from 60% to 90%.
Details about the dataset are presented in Table 3.2 To test the improvement in the
multi-outcome selection the multivariate algorithm, described in Algorithm 2.3, is tested
against an algorithm performing univariate selection for each outcome as described in
Algorithm 1.2. The multi-outcome algorithm introduces the definition of a unique control
set, i.e. the null class across all target dimensions. Conversely, the univariate algorithm is
trained on the control group of each endpoint separately. Changes and improvements from
one algorithm selection to the other are then to be attributed only to the introduction
of outcomes correlation in the FS. The final selection is performed exploiting the three
different selection methods studied in Section 3.1.2.

To compare the two algorithms in terms of feature selection only, the same AE architecture
was exploited for both. Specifically, each AE is composed of an encoder with one 90-nodes
hidden layer, followed by a bottleneck layer of 50 nodes and a symmetrical decoder and
the ensemble is composed of 10 learners. The parameter regulating the sparsity term
of the loss (i.e. lambda) is instead optimized by grid search during the training of each
DSAEE. More details about the architecture are present in Table B.3 in Appendix B.

An additional endpoint is defined.The "at least one" (alo) endpoint is defined for each
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Multivariate method performance on the simulated dataset

Distributional FS Combined FS Ranking FS
FSP FSC FSP FSC FSP FSC

y1 0,562 0,857 1 0,571 1 0,286
y2 0,615 0,125 1 0,125 0,8 0,375
y3 0,611 0,75 0,857 0,5 0,8 0,25
y4 0,357 1 1 0,875 1 0,25
y5 0,375 1 1 0,857 1 0,57
alo 0,688 0,355

alo_union 1 0,55
Table 3.3: Multi-outcome method performance on simulation dataset. For each
of the considered outcomes, metrics evaluation of the selection via Distributional FS,
Ranking FS, and Combined methodology is presented. The last two rows present the
result of the best working algorithm on selection for a comprehensive endpoint by the
direct definition of at least one endpoint, as the maxi yi, and the union of the selected
features for each outcome.

sample as the maximum among all the other outcomes.

yalo = max5
i=0yi

If an observation presents any of the considered endpoints then yalo = 1 otherwise yalo =

0. The endpoint is introduced to represent the presence of overall toxicity. Aiming at
explaining yalo exploiting a univariate algorithm the DSAEE is trained on the null class
across all target dimensions, as for the other endpoints, and tested on cases presenting at
least one endpoint. Finally, in both the multivariate and the univariate methods, the union
of all the selected covariates for each endpoint is evaluated in predicting a comprehensive
endpoint. The multivariate selection for overall toxicity can then be compared to the
univariate one. To quantify and evaluate the selection ability of the methods, metrics
presented in Table 2.2 are adopted to evaluate the feature selection for each outcome and
for the comprehensive endpoint. In Table 3.3 metrics evaluation is reported in the case
of multivariate selection, while in Table 3.4 metrics evaluation is reported in the case of
the comparison univariate methodology.

The first result emerging from the analysis concerns the comparison between the various
selection method considered. Both within the multivariate and univariate selection the
combined selection is the best-performing one. As observed in the previous section, the
distribution FS presents good performances in FSC but defines a set of covariates too large
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Univariate method performance on the simulated dataset

Distributional FS Combined FS Ranking FS
FSP FSC FSP FSC FSP FSC

y1 0,394 0,714 0,7 0,429 0,7 0,286
y2 0,444 0 0,666 0 0,5 0,143
y3 0,4545 0,571 1 0,286 0,6 0,429
y4 0,25 0,875 1 0,5 1 0,625
y5 0,21 0,5 0,5 0 0,3 0

alo_union 0,737 0,452
Table 3.4: Univariate method performance on simulation dataset. For each of the
considered outcomes, metrics evaluation of the selection via Distributional FS, Ranking
FS, and Combined methodology is presented. The last row presents the result of the best
working algorithm on selection for a comprehensive endpoint by the union of the selected
features for each outcome.

and therefore includes insignificant covariates among those selected; the combined model
instead, achieves the same FSP as the ranking method with an improvement in FSC. These
results consolidate the conclusions from the previous simulation study. The comparison
between multivariate and univariate selection methodology is performed focusing on the
best-performing selection, namely the combined FS.
From the comparison, it is possible to observe that the multivariate model shows an
improvement in FSP in almost every endpoint, and when the FSP is the same the FSC
metrics increase, implying a selection focused on the discovery of every and only significant
feature that better avoid those linked to correlated endpoints. One of the objectives in
developing a multi-outcome feature selection is to be able to define a set of features
informative about general radiosensitivity. It is possible to observe that the union of
selected variables for individual endpoints identifies a set of covariates more informative
for yalo with respect to the selection performed univariately on the yalo endpoint and the
union set of variants chosen in the univariate case. These analyses validate the hypothesis
that the multivariate method improves the selection of variables for individual outcomes,
avoiding the pitfalls of a univariate selection when a strong correlation exists between
endpoints. Indeed, the independent univariate selection might identify as predictive for
a certain target, features that are actually determinants for a correlated target. This,
while in principle still granting an acceptable predictive power of the selected features,
may affect the interpretation of the underlying generative mechanism. In the context of
genetic studies, this would translate into false discoveries of the biological interactions
determining the phenotype of interest.



58 3| Applications

3.2. Case study: REQUITE data

As mentioned in the introduction, the selection and discovery of genomic variants predic-
tive of late toxicities can inform downstream models such as PRSs and NTCPs. Therefore,
in this section, the case study application of the proposed algorithm on the REQUITE
breast cancer Cohort is presented. The features selected via the multivariate method
described in Section 2.4 is finalized to introduce genetic information in the NTCP modes
together with clinical covariates. Based on the selected SNPs, PRSs are defined for each
patient, and an attempt is made to introduce genetic information through the scores in
the personalized risk models.

The dataset employed in this analysis is presented in Section 1.2.2 To recap two different
datasets are available, each containing N = 599 triplets (genome, boost, endpoints)

D = {(x1, z1, y1), . . . , (xN , zN , yN)}

and
D̃ = {(x̃1, z1, y1), . . . , (x̃N , zN , yN)}

where for every patient i belonging to {1, . . . , 599}, x̃i belonging to R122 is the vector
containing values in [0,2] of the 122 SNPs considered; xi belonging to {0, 1, 2}122 is the
vector containing rounded values of the 122 SNPs considered; yi belongs to {0, 1}6 and
it’s the vector describing the presence or absence for each of the 6 endpoints evaluated,
while zi belonging to {0, 1} describes the delivery or not of an additional radiotherapy
dose. In the analysis conducted, two groups of patients are considered based on whether
or not they received an additional dose of radiation therapy. Those who did are referred
to in the following as "boost" group and the others are "no boost" group. The pool of
genetic features to select from included 122 variants previously identified in the litera-
ture as correlated to radio-induced late toxicities in breast cancer patients. The features
selected via the proposed multivariate method are meant to be exploited to construct a
PRS for breast cancer late toxicities. Therefore the algorithm is applied to a multivari-
ate target combining the six (highly correlated) late toxicity endpoints. This resulted
in six dimension-specific sets of selected SNP exploited independently to build six differ-
ent PRSs (one for each late toxicity endpoint). The PRSs are computed following the
PRSi algorithm presented in [22] that exploits FIM (Frequent Itemset Mining) routines
to create a list of possible significant interactions and builds the score by weighting the
contribution of each interaction term accordingly to the weights obtained when fitting a
logistic regression model with the considered endpoint as the outcome, more details can
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be found in Section 1.3.5. The computed scores are ultimately added to an NTCPs model
involving influential clinical covariates selected in an affiliated work, within the RADpre-
cise project, aiming at predicting long-term side effects from clinical information. In the
analyses, the prediction ability of the PRSi logistic regression is evaluated to estimate the
selection ability of the multivariate FS introduced in the thesis. Moreover, the prediction
improvement in the addition of the genomic score to clinical risk models is assessed by
comparing the performance of NTCPs including genetic information to those based only
on clinical information.

Analyses

The multivariate feature selection is performed following Algorithm 2.4. The common
control sample definition is refined. Only patients in the boost group are eligible to be
part of the control sample. This restriction, in agreement with the clinical counterpart in
the RADprecise process, is necessary to avoid selecting patients in whom toxicities had
not presented because of the scarce radiation dose. If those patients are included, there
is a high chance of introducing risk patterns that require higher doses to express within
the controls masking their effect in the case sample.

Given an ensemble of 10 DSAE, the autoencoders architecture is optimized in this phase
based on the in-train metrics described in Table 2.3, while the λ parameter of the L1
loss is optimized to get the best separation between the reconstruction errors of the two
classes. The separation is assessed via non-parametric tests reported in same Table. A grid
search is performed with λ ∈ {1.0, 0.5, 0.25, 0.1, 0.05, 0.001, 0.0001, 0.00001, 0.000001, 0.0}.
Details about autoencoders’ architecture for each endpoint can be found in Table C.1 and
C.2 in Appendix C. An example of the in-train accuracy and loss for the y6 endpoint is
reported in Figure 3.5 and Figure 3.4.
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Figure 3.4: In-train loss of the DSAEE for y6.In the DSAEE the loss is evaluated
via cross-entropy since the autoencoder output distribution is compared to the rounded
categorical value. The training was performed excluding a validation set to mimic the
performance on unseen data. The loss on the validation sets is also presented

Figure 3.5: In-train accuracy of the DSAEE for y6. The training was performed
excluding a validation set to mimic the performance of the autoencoder on unseen data
and the accuracy , measured during training, is plotted for both the training and the
validation set
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The final variable selection is performed by the distributional selection methods producing
a final set of informative features for each endpoint.

The integrity of the dataset is then divided into a train and a test set. The train set is
exploited to train and optimize the parameters of the risk models fitted with PRSi algo-
rithm while the test set is exploited to evaluate the performance of the fitted model in the
end. The user-defines parameters of the PRSi, namely the threshold γ for high-frequency
appearing patterns in the FIM routine, the K selected patterns and the threshold ES, for
the accuracy at which the DSAE training is stopped, are optimized via cross-validation.
The threshold γ ranges in
{0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}, K in {3, 5, 10, 15, 20, 25, 30, 35, 40} and ES in
{0.8, 0.85, 0.90, 1}. Details of the chosen parameter for each endpoint are presented in
Table C.3 in Appendix C.

The PRSi prediction models are computed both for the entire training set and for the
two groups separately. Those are evaluated via metrics defined in Table 2.1. Starting
from the set of selected features a Lasso and a Ridge regression are computed to assess
the importance of interaction inclusion in the prediction. The AUC of these models is
reported with PRSi prediction model performance. Results are presented in Table 3.5
for the entire train set, in Table 3.6 for the "no boost " group and in Table 3.7 for the
"boost" group. All the reported results are computed in cross-validation. An example of
the patterns selected by the PRSi algorithm for y6 is reported in Figure 3.6.
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Figure 3.6: Illustration of patterns selected for y6. Interactions selected by the PRSi
algorithm to predict y6 are represented in order. High-order interactions with four and
six SNPs are selected for the description of the toxicity uprising.

To assess the performance of the feature selection and the ability of PRSi algorithm
to define the most informative high-order interactions for endpoint prediction, its per-
formance is compared to state-of-the-art models. A Random Forest and an XGboost
algorithm are exploited to create prediction models for each endpoint from the initial set
of literature-identified SNP. These models usually work very well in classification prob-
lems where high-order interactions between covariates are relevant but they could lose
predictive ability when the classes are unbalanced, as in our case. The performance of the
state-of-the-art models in cross-validation, in terms of AUC, can be found in Table 3.8
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PRS model performance computed via hiPRS

Endpoint AUC AP f1 sens spe NPV Lasso_AUC Ridge_AUC
y1 0.6 0.55 0.48 0.42 0.81 0.616 0.59 0.57
y2 0.53 0.23 0.3 0.58 0.58 0.873 0.49 0.5
y3 0.64 0.18 0.29 0.78 0.55 0.969 0.54 0.54
y4 0.64 0.34 0.34 0.64 0.61 0.915 0.68 0.68
y5 0.6 0.23 0.28 0.64 0.56 0.928 0.58 0.56
y6 0.76 0.36 0.5 0.77 0.89 0.98 0.41 0.44

Table 3.5: PRS model performance computed via hiPRS on the entire training
set. For each endpoint a PRS model is computed and evaluated via metrics presented
in Table 2.2. In addition, two linear models are fitted considering the same set of SNPs
selected. The AUC of these models is reported to assess the importance of high-order
interactions. All the reported results are computed in cross-validation.

PRS model performance computed via hiPRS on no boost group

Endpoint AUC AP f1 sens spe NPV Lasso_AUC Ridge_AUC
y1 0,64 0,582 0,7 0,82 0,6 0.80 0,58 0,57
y2 0,61 0,4 0,43 0,32 0,56 0,814 0,15 0,18
y3 0,68 0,45 0,51 0,73 0,7 0.917 0,61 0,63
y4 0,91 0,67 0,77 1 0,91 1 0,97 0,73
y5 0,93 0,6 0,7 1 0,87 1 0,41 0,33
y6 _ _ _ _ _ _ _ _

Table 3.6: PRS model performance computed via hiPRS on the set of patients
that didn’t receive the boost dose. For each endpoint a PRS model is computed and
evaluated via metrics presented in Table 2.2. In addition, two linear models are fitted
considering the same set of SNPs selected. The AUC of these models is reported to assess
the importance of high-order interactions. All the reported results are computed in cross-
validation.
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PRS model performance computed via hiPRS on boost group

Endpoint AUC AP f1 sens spe NPV Lasso_AUC Ridge_AUC
y1 0.6 0.55 0.48 0.42 0.81 0.616 0.59 0.57
y2 0.53 0.23 0.3 0.58 0.58 0.873 0.49 0.5
y3 0.64 0.18 0.29 0.78 0.55 0.969 0.54 0.54
y4 0.64 0.34 0.34 0.64 0.61 0.915 0.68 0.68
y5 0.6 0.23 0.28 0.64 0.56 0.928 0.58 0.56
y6 0.76 0.36 0.5 0.77 0.89 0.98 0.41 0.44

Table 3.7: PRS model performance computed via hiPRS on the set of patients
that received the additional dose. For each endpoint a PRS model is computed and
evaluated via metrics presented in Table 2.2. In addition, two linear models are fitted
considering the same set of SNPs selected. The AUC of these models is reported to assess
the importance of high-order interactions. All the reported results are computed in cross-
validation.

Once PRS are defined, it is possible to associate each patient, of both training and test
set, its score. This score can be used directly to predict the endpoint or in combination
with other clinical covariates. Three risk models can then be defined: (i) a model based
solely on clinical covariates correlated with the selected endpoint, (ii) one solely on the
PRS score, and (iii) the last combining the clinical and genomic information. The models
are fitted on the training set and validated on the test set, measuring their performance
throw the metrics described in Table 2.1. Results of model (i) are reported for the training
set in Table 3.9 and for the test set in Table 3.10; results of model (ii) are reported for the
training set in Table 3.11 and for the test set in Table 3.12; and results of model (iii) are
reported for the training set in Table 3.13 and for the test set in Table 3.14. The
same three risk models are also fitted focusing exclusively on the prediction of the "boost
group". The results can be found in Appendix C. Here are reported only model (i) and
(iii) performance on the test set, resp. in Table 3.15 and in Table 3.16, to perform a
comparison.

Results

The feature selection method developed performance can be assessed through the per-
formance of the PRSi prediction models. The selection seems to work quite well on the
full dataset. The multivariate FS is performed on the entire cohort since genetic variants
from which toxicities arise should be radiation-dose independent. However, their expres-
sion and interactions could be radiation-dose related [16] opening the possibility to create
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Prediction performance of the state-of-the-art model

Endpoint RF_AUC XGB_AUC
y1 0,506 0,503
y2 0,5 0,472
y3 0,5 0,426
y4 0,5 0,496
y5 0,5 0,485
y6 0,5 0,473

Table 3.8: Prediction performance of the Random Forest and XGboos classifier
applied with the aim of predicting the endpoint from the initial literature-identified
SNPs. The performance is assessed via AUC computation. All the reported results are
computed in cross-validation.

NTCP model performance including clinical covariates on training set

Endpoint AUC AUC ( 95% CI) prec f1 sens spe NVP
y1 0.743 (0.697, 0.790) 0.618 0.690 0.781 0.572 0.747
y2 0.751 (0.676, 0.826) 0.284 0.4 0.674 0.757 0.942
y3 0.731 (0.648, 0.814) 0.139 0.235 0.75 0.617 0.967
y4 0.757 (0.673, 0.841) 0.224 0.328 0.611 0.805 0.957
y5 0.785 (0.688, 0.883) 0.159 0.264 0.777 0.729 0.980
y6 0.871 (0.790, 0.952) 0.126 0.217 0.785 0.814 0.991

Table 3.9: NTCP model performance including clinical covariates on the train-
ing set. For each endpoint a prediction model is computed by logistic regression and
evaluated via metrics presented in Table 2.2.

NTCP model performance including clinical covariates on test set

Endpoint AUC AUC ( 95% CI) prec f1 sens spe NVP
y1 0.724 (0.626, 0.821) 0.637 0.698 0.770 0.618 0.755
y2 0.766 (0.638, 0.893) 0.318 0.424 0.636 0.802 0.938
y3 0.552 (0.293, 0.811) 0.117 0.19 0.5 0.708 0.948
y4 0.729 (0.521, 0.938) 0.384 0.434 0.5 0.919 0.948
y5 0.653 (0.394, 0.911) 0.166 0.258 0.571 0.807 0.965
y6 0.863 (0.718, 1) 0.12 0.214 1 0.784 1

Table 3.10: NTCP model performance including clinical covariates on the test
set. For each endpoint a prediction model is computed by logistic regression and evaluated
via metrics presented in Table 2.2.
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Prediction model performance including exclusively PRS score on train set

Endpoint AUC AUC ( 95% CI) prec f1 NVP sens spe
y1 0.565 (0.519, 0.612) 0.55 0.478 0.578 0.422 0.697
y2 0.835 (0.782, 0.888) 0.422 0.517 0.945 0.666 0.864
y3 0.692 (0.605, 0.779) 0.127 0.220 0.972 0.824 0.525
y4 0.728 (0.654, 0.803) 0.147 0.25 0.973 0.842 0.540
y5 0.772 (0.688, 0.856) 0.162 0.256 0.967 0.607 0.786
y6 0.974 (0.959, 0.989) 0.283 0.441 1 1 0.91

Table 3.11: Prediction model performance including exclusively PRS score on
the train set. For each endpoint a prediction model is computed by logistic regression
and evaluated via metrics presented in Table 2.2.

Prediction model performance including exclusively PRS score on test set

Endpoint AUC AUC ( 95% CI) prec f1 sens spe NVP
y1 0.654 (0.568, 0.740) 0.25 0.217 0.192 0.49 0.408
y2 0.498 (0.332, 0.664) 0.0968 0.156 0.4 0.417 0.816
y3 0.513 (0.333, 0.694) 0.089 0.156 0.625 0.505 0.945
y4 0.499 (0.307, 0.690) 0.042 0.059 0.1 0.772 0.896
y5 0.727 (0.592, 0.863) 0 0 0 0.606 0.9
y6 0.447 (0.147, 0.748) 0.042 0.078 0.5 0.579 0.968

Table 3.12: Prediction model performance including exclusively PRS score on
the test set. For each endpoint a prediction model is computed by logistic regression
and evaluated via metrics presented in Table 2.2.

NTCP model performance including clinical covariates and PRS score on
training set

Endpoint AUC AUC (CI) AP f1 sens spe NPV prs p-value
y1 0.753 (0.707, 0.799) 0.643 0.693 0.751 0.630 0.740 0.0181
y2 0.894 (0.844, 0.943) 0.54 0.635 0.767 0.907 0.965 4.81e-10
y3 0.804 (0.733, 0.875) 0.19 0.312 0.875 0.693 0.985 0.0002
y4 0.821 (0.750, 0.892) 0.217 0.339 0.777 0.741 0.973 4.76e-05
y5 0.895 (0.843, 0.947) 0.214 0.345 0.888 0.785 0.99 5.85e-06
y6 0.989 (0.9769, 1) 0.359 0.528 1 0.939 1 5.26e-05

Table 3.13: NTCP model performance including clinical covariates and PRS
score on the training set. For each endpoint a prediction model is computed by
logistic regression and evaluated via metrics presented in Table 2.2. The last column
contains the p-value of the coefficient test, namely H0 : βPRS = 0 vs H0 : βPRS ̸= 0.
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NTCP model performance including clinical covariates and PRS score on test
set

Endpoint AUC AUC (CI) AP f1 sens spe NPV
y1 0.670 (0.566, 0.774) 0.623 0.653 0.688 0.636 0.7
y2 0.709 (0.526, 0.893) 0.28 0.389 0.636 0.763 0.935
y3 0.522 (0.245, 0.798) 0.106 0.18 0.625 0.592 0.953
y4 0.681 (0.451, 0.910) 0.219 0.333 0.7 0.747 0.961
y5 0.464 (0.235, 0.694) 0.085 0.148 0.571 0.587 0.953
y6 0.611 (0.264, 0.957) 0.074 0.133 0.666 0.755 0.987

Table 3.14: NTCP model performance including clinical covariates and PRS
score on the test set. For each endpoint a prediction model is computed by logistic
regression and evaluated via metrics presented in Table 2.2.

NTCP model performance including clinical covariates on the test set of boost
group

Endpoint AUC AUC (CI) AP f1 sens spe NPV
y1 0.712 (0.598, 0.825) 0.659 0.698 0.743 0.634 0.722
y2 0.748 (0.611, 0.885) 0.258 0.4 0.888 0.634 0.975
y3 0.506 (0.204, 0.808) 0.111 0.19 0.666 0.609 0.961
y4 0.703 (0.485, 0.921) 0.333 0.417 0.555 0.870 0.943
y5 0.549 (0.267, 0.830) 0.043 0.08 0.5 0.195 0.842
y6 0.862 (0.713, 1) 0.15 0.261 1 0.779 1

Table 3.15: NTCP model performance including clinical covariates on the test
set of boost group. For each endpoint a prediction model is computed by logistic
regression and evaluated via metrics presented in Table 2.2.
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NTCP model performance including clinical covariates and PRS score on the
test set of boost group

Endpoint AUC AUC (CI) AP f1 sens spe NPV
y1 0.689 (0.572, 0.805) 0.646 0.713 0.795 0.585 0.75
y2 0.674 (0.495, 0.853) 0.263 0.357 0.555 0.777 0.924
y3 0.593 (0.347, 0.838) 0.125 0.2 0.5 0.744 0.953
y4 0.638 (0.429, 0.846) 0.375 0.352 0.333 0.935 0.923
y5 0.559 (0.265, 0.853) 0.216 0.043 0.08 0.5 0.842
y6 0.771 (0.674, 0.867) 0.13 0.23 1 0.74 1

Table 3.16: NTCP model performance including clinical covariates and PRS
score on the test set of boost group. For each endpoint a prediction model is
computed by logistic regression and evaluated via metrics presented in Table 2.2.

different risk models for patient groups receiving different radiation doses. Indeed, PRSi
predictive models improve their performance when different selections are performed be-
tween the two groups of patients. The introduction of performance measures focusing on
the prediction of the minority class exposes the difficulty of the logistic regression model in
classifying correctly patients presenting toxicities. This can be expected since imbalanced
class distribution can greatly reduce the predictive power of a binary logistic regression
and entail poor predictive performance, especially for the minority class [44]. The ability
of the model in detecting the minority class could be improved using imbalance learning
methods as cost-sensitive models, that typically introduce different costs for the major-
ity and minority class observations. Notably, the NPV, the percentage of true negatives
among those classified as negative, is quite high in all models. In the radiogenic context, a
characteristic fundamental for the model to be practicable is the patient’s ability to avoid
misclassification of patients as non-radiosensitive.
The difference between AUC performance in the classical linear models and PRSi assesses
the importance of interaction in the genomic context. An example can be found in end-
point y6 where the ability of the developed algorithm to consider high-order interaction
in feature selection is fundamental in performing a good prediction. This can be assessed
also from Figure [? ] where the patterns selected by the PRSi algorithm present interac-
tions composed of three or more SNPs.
State-of-the-art models are introduced as comparison methods and to have a first measure
of how informative the genomic covariates are for each endpoint. The low results obtained
can be caused by a low signal-to-noise ratio and by the imbalanced and imputed nature
of the data.
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Clinical models perform quite well on both the train and test set but, as PRSi models,
aren’t able to accurately distinguish the minority set. Sensitivity, specificity, and NPV are
though pretty good. PRS scores are able to predict well the outcome on the train set but
lose performance on the test set. The pronounced difference is probably due to overfitting.
Only 320 samples are available in the training set and optimization of the parameters is
performed in cross-validation reducing further the set of starting information. A larger
dataset is needed to perform a more robust analysis. Moreover, the addition of the PRS
score in the clinical NTCP model is significant if the p-value of the coefficient test is
considered, but does not improve the performance w.r.t. clinical models. The missing
improvement could be due to the fact that the score is simply added to an already large
set of clinical covariates. The models are not reduced and the attempt is simply to add to
the contribution of the correct clinical covariates a genetic contribution. A better way to
integrate clinical and genomic data should be studied. The presence of many covariates
lead also to the overfitting that can be observed in the gap between the training and test
performance of the complete model.





71

4| Conclusions and Discussion

The innovation of this work is the development of a methodology able to detect the most
important genomic features in a multi-outcome setting. The proposed method builds upon
the original work in [39], where an ensemble of anomaly detection AEs (i.e, the DSAEE
algorithm) is exploited to select predictive features to discriminate between classes. In
this work, the DSAEE is extended to allow FS for multivariate binary outcomes and
enriched with a denoising technique that robustifies the analysis to imputation error in
genomic data. Similarly to its predecessor, the method developed is designed to overcome
the challenges imposed by the peculiar setting of genomic studies. In particular, it is
meant to tackle, class imbalance derived from the study of rare traits, and the need to ac-
count for predictive high-order interactions among features, due to the complex biological
mechanisms determining phenotypic traits. The developed methodology can be applied
to clinical case studies with the aim of identifying SNPs associated with late-toxicity end-
points and including genetic information in personalized risk models, such as NTCPs.
Based on simulation studies, we can say that the developed model succeeds in improve-
ment in the representation of noisy data thanks to the denoising technique. Moreover, the
inclusion of the intra-endpoint correlation structure in the FS improves the accuracy in
the selection of highly influential features that provide intrinsic information and discrim-
inant properties for class separability. The accurate definition of influential feature for
the specific toxicity can be fruitful for an interpretation of biologically relevant variants.
Indeed, the model, in addition to selection, can be exploited for the discovery of influ-
ential genetic variants or validation of variants previously identified in the literature as
correlated to radio-induced toxicities. The developed method, thanks to a well-performing
FS, can improve the definition of genetic predisposition to general toxicities and can be
employed by physicians to take more informed individual decisions in cancer treatment.
The importance of the model lies in its clinical applicability.
The method can be generalized to all contexts where it is necessary to perform a multi-
variate FS with unbalanced classes and similar data characteristics.
Some of the limitations of the developed model are the need for ground truth definition of
noisy input data and the difficulty to scale in input features due to the high computational
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cost.

The full methodology is applied to the REQUITE Breast Cancer Cohort. Case study
results show the ability of the developed method in selecting informative features evalu-
ating the impact of high-order interaction. The selection is finalized to introduce genetic
information in the NTCP modes together with clinical covariates. Based on the selected
SNPs, PRSs are defined for each patient, and an attempt is made to introduce genetic
information through the scores in the personalized risk models. However, the significance
of the genetic information in describing the presence of toxicity is notably reduced when
summarized in a single score and the addition of the scores to the clinical-based risk mod-
els does not improve the ability of the models to distinguish radiosensitive patients.
The limitation in the available data, the presence of high-dimensional clinical covariates,
and the employment of logistic regression impact the performance of the NTCP model
containing both clinical and genetic covariates. The strong overfitting in the train set
hield a model not up to standards. Moreover, better methodologies to integrate clinical
and genetic variants need to be implemented. A possibility is to conduct feature selec-
tion of SNPs independently from clinical data, capturing those variants able to introduce
information uncorrelated with clinical covariates. This could be achieved by applying the
developed methodology to groups of control and cases defined as misclassified radiosensi-
tive patients and correctly classified patients.
This work paves the way for several further developments. Variational autoencoders have
already been proposed for anomaly detection [3, 23]. Anomaly detection in this case is
performed considering the reconstruction probability, a probabilistic measure that takes
into account the variability of the distribution of covariates. It has a theoretical back-
ground making it a more principled and objective anomaly score than the reconstruction
error considered here [3]. However, variation autoencoders require a large training dataset
that hinders its applicability in this thesis work. Improvement can be done also on the
denoising characteristic of the autoencoder. Denoising terms can be introduced directly
in AEs loss avoiding the need to define or approximate the true value of the considered
features [24]. In this work, we chose to use a denoising method that with good perfor-
mance was more interpretable and controllable. Finally, it would be interesting to further
develop the multivariate setting developing a full multivariate methodology for multiple
endpoint PRS definition.
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Appendix A contains details about the REQUITE database. Available information is
grouped into three main topics: toxicities, patients’ history, and treatment data. The
covariates are both continuous and categorical. For continuous variables, the minimum,
maximum, 1st quantile, 3rd quantile, mean and median are reported. Categorical vari-
ables are summarized by the number of samples belonging to each category. Additional
covariates are available as reported in [49].
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Patient toxicities data summary

Atrophy 0 :5611 1 :2493 2 : 725 3 : 67 NA’s: 361
Nipple retraction 0 :7824 1 : 893 2 : 92 NA’s: 448
Oedema 0 :7207 1 :1581 2 : 149 3 : 6 NA’s: 314
Skin ulceration 0 :8723 1 : 153 2 : 47 3 : 14 NA’s: 320
Telangiectasia
tumour bed 0 :8711 1 : 213 2 : 15 NA’s: 318

Telangiectasia
outside tumour bed 0 :8685 1 : 230 2 : 18 NA’s: 324

Skin induration
tumour bed 0 :5287 1 :3099 2 : 489 3 : 43 NA’s: 339

Skin induration
outside tumour bed 0 :7905 1 : 894 2 : 107 3 : 16 NA’s: 335

Erythema 0 :6908 1 :1577 2 : 466 3 : 29 NA’s: 277
Arm lymphodema 0 :8703 1 : 245 2 : 32 3 : 2 NA’s: 275
Skin hyperpigmentation 0 :7425 1 :1460 2 : 46 NA’s: 326
Pneumonitis 0 :8889 1 : 27 2 : 14 3 : 1 NA’s: 326
Pain 0 :6108 1 :3090 NA’s: 59 NA
Pain severity 1 :2525 2 : 444 3 : 118 NA’s:6170
Swollen arm 0 :8603 1 : 574 NA’s: 80 NA

Table A.1: Summury of late toxicities in the sample
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Patients’ history data summary

Subject Id Length:2034 Class :character
Visit Length:2034 Class :character
Date of visit Length:2034 Class :date
Height (cm) Min. :140.0 1st Qu.:158.0 Median :163.0 Mean :162.8 3rd Qu.:168.0

Max.: 187.0 NA’s:10
Weight at
cancer diagnosis (kg) Min. : 36.00 1st Qu.: 60.00 Median : 68.00 Mean : 70.11 3rd Qu.: 78.00

Max.: 187.00 NA’s: 13
Age at radiotherapy
start (yrs) Min. :23.00 1st Qu.:50.00 Median :58.00 Mean :58.25 3rd Qu.:66.00

Max.: 90.00
Bra cup size Min. : 1.000 1st Qu.: 3.000 Median : 4.000 Mean : 3.902 3rd Qu.: 5.000

Max.: 11.000 NA’s: 68
Band size Min. : 1.000 1st Qu.: 5.000 Median : 6.000 Mean : 6.033 3rd Qu.: 7.000

Max.: 10.000 NA’s: 90
Smoker 0 :1142 1 : 505 2 : 83 3 : 282 NA’s: 22
Alcohol intake 0 :872 1 : 66 2 : 59 3 :980 NA’s: 57
Menopausal status 1 : 491 2 :1364 3 : 150 NA’s: 29
Hormone
replacement therapy 0 :1005 1 : 328 NA’s: 701

Diabetes 0:1908 1: 126
History of
heart disease 0 :1892 1 : 141 NA’s: 1

Ra 0:1976 1: 58
Systemic lupus
erythematosus 0:2030 1: 4

Other collagen
vascular disease 0:2020 1: 14

Hypertension 0:1467 1: 567
Depression 0:1795 1: 239
Ace inhibitor 0 :1890 1 : 143 NA’s: 1
Amiodarone 0:2027 1: 7
Analgesics 0:1834 1: 200
Antidepressant 0:1796 1: 238
Breast cancer
family history 0 :1625 1 : 405 NA’s: 4

Radiotherapy toxicity
family history 0 :1535 1 : 64 NA’s: 435

Ethnicity 1 :1913 7 : 23 5 : 16 3 : 15 17 : 11
(Other): 50 NA’s: 6

Household income 2 : 312 3 : 240 4 : 164 1 : 107 5 : 92
(Other): 85 NA’s: 1034

Household members Min. :1.000 1st Qu.:2.000 Median :2.000 Mean :2.261 3rd Qu.:3.000
Max.: 8.000 NA’s: 424

Previous
malignancies 0 : 474 1 : 16 NA’s:1544

Table A.2: Summury of patients’ data
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Treatment data summary

Surgery 1 :2022 NA’s: 12
Surgery type 1 :1107 2 : 907 NA’s: 20
Axillary surgery 0 : 163 1 :1859 NA’s: 12
Post operative haematoma 0 :1721 1 : 31 2 : 229 NA’s: 53
Post operativeoedema 0 :1811 1 : 145 NA’s: 78
Post operative infection 0 :1900 1 : 91 NA’s: 43
Infection antibiotics 0 : 4 1 : 76 2 : 6 NA’s:1948
Tumour quadrant 2 :774 3 :239 1 :228 8 :151 6 :148

(Other):321 NA’s:173
Tumour locality 1 :1762 2 : 247 3 : 10 NA’s: 15
Tumour histological
grade 1 : 407 2 :1036 3 : 509 4 : 1 NA’s: 81

Tumour histological
type 1 :1303 2 : 192 3 : 270 4 : 38 5 : 213

NA’s: 18
Pathological
tumour size (mm) Min. : 0.00 1st Qu.: 9.00 Median : 14.00 Mean : 15.38 3rd Qu.: 20.00

Max.:128.00 NA’s:73
Chemo neo adjuvant 0 :1833 1 : 190 NA’s: 11
Chemo neoadjuvant
anthracycline 0 : 24 1 : 170 NA’s:1840

Sys treatment 0 : 406 1 :1617 NA’s: 11
Sys tamoxifen 0 :796 1 :815 NA’s:423
Sys aromatase 0 :806 1 :801 NA’s:427
Radio breast dose Min. :28.50 1st Qu.:40.05 Median :50.00 Mean :45.30 3rd Qu.:50.00

Max.:56.00
Radio breast fractions Min. : 5.00 1st Qu.:15.00 Median :25.00 Mean :20.46 3rd Qu.:25.00

Max.:31.00
Radio breast
ct volume (cm3) Min. : 38.0 1st Qu.: 442.0 Median : 711.0 Mean : 808.7 3rd Qu.:1049.0

Max.:5450.0 NA’s:17
Radio imrt 0 :1028 1 :1003 NA’s: 3
Radio type imrt 1 : 807 2 : 196 NA’s:1031
Radio axillary levels 0 :1774 1 : 13 2 : 14 3 : 87 4 : 62

5 : 63 NA’s: 21
Radio supraclavicular
fossa 0 :1758 1 : 261 NA’s: 15

Radio boost 0: 653 1:1381
Table A.3: Summury of treatment’s data
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B.1. Simulation algorithm

The algorithm employed in the simulation studies is developed in [36]. One of the main
complexities of running simulation studies is the definition of the generating mechanism
for the simulated data. Indeed, to showcase the value of the proposed algorithms, the
generated data need to mimic real variomics data and phenotypes of complex traits, whilst
presenting a peculiar structure. In particular,

• to represent genotype information, a potentially very large set J of binary variables
needs to be generated, with a probability P(j = 1) representing a true distribution
of variants in the population, namely a minor allele frequency (MAF);

• the target binary phenotype needs to be either univariate or multivariate according
to the specific experimental setting. For immediacy of notation, Y ∈ RNxT in bold
is the matrix of the multivariate target, its subvectors of size N being Yk, with
k ∈ {1, ...T}, while the univariate will be identified by the vector Y ∈ RN . In the
case of the multivariate target, the dimensions Yk need to present some internal
correlation (and/or association) structure;

• genotype data has to include high-order interaction associated with the target phe-
notype. These are defined as patterns that in practice results in sequences of co-
occurring genetic variants. In the case of homogeneous trait, the association of the
patterns to the target Y has to be defined differentially w.r.t. the negative class (i.e.
the controls population) only. In the case of heterogeneous trait, these patterns
need to be associated to Y w.r.t. the negative class, while also imposing an associa-
tion between each Yk and at least one specific pattern not forcefully associated with
the others. The simulated dataset needs to present an association for each pattern
specifically to one Yk. The association among Y dimensions might lead patterns to
be associated with multiple Yks: this is a desirable result as we wish our algorithm
to be able to identify and discriminate between all forms of association, prioritizing
for each sub-target the variants’ patterns directly associated with them.
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In the case of the univariate outcome, the algorithm allows the user to define a number of
desired patterns to be included in the generated data, the maximal length lmax of each of
these patterns, and the association strength, or coverage, of each pattern with the positive
class α ∈ (0, 1). In brief, for a final dataset of size N , with n observations belonging to
the positive class, and J variants, the algorithm works as follows: First, it generates the
matrix X of N rows and J columns (binary genetic features). Each entry of this matrix X
is filled with 1 with a probability specified by the user (which should resemble the MAF),
0 otherwise. Then, it generates the binary target variable Y ∈ RN , including exactly n
positive class observations (i.e. Y = 1) and Nn negative class observations (Y = 0). Then,
the algorithm generates the desired number of interaction patterns with a probabilistic
process. The final patterns will be binary vectors of length equal to the respective lmax.
Then, for each pattern and each associated lmax, the algorithm will randomly pick αn

positive class observations and impose the pattern on the picked observations over the
first lmax randomly populated columns of X not previously exploited in this process. The
aforementioned imposition of the patterns works as the application of the logic condition
OR when logically combining two binary vectors.

In the multivariate simulation, the process is similar except for the generation to a multi-
variate Y. The algorithm allows defining a structure for the Y in terms of interrelation-
ships among Yk subgroup vectors. The level of association among the dimensions yp can
be specified for each of the subgroups by imposing a value of relatedness r ∈ (0, 1), that
will result in a joint probability P (Yk=i = 1, Yk=j = 1) ≥ rc∀i, j in the same structure c.
The algorithm imposes such conditions by generating the C structures separately. First,
it splits the total number of observations to be generated in C parts: in a dataset that
will comprise n positive class observations (or cases), the algorithm computes nY = n

C
.

Then, for each structure, the algorithm generates a first binary vector c1 of size nY with
P (c1 = 1) = 1. Then, it generates the other binary vector of the same subgroup ci of the
same size, with a probability P (ci = 1) = rc. The vectors are concatenated column-wise
obtaining the structure matrix M(C) with nY rows and a number of columns equal to the
number of conditions in each structure. The process is repeated until all C structures have
been covered, resulting in C structure matrices M(C). Then, all the structure matrices
are combined placing them on the diagonal of the final target matrix Y, which has n
rows and T columns. The remaining entries of the target matrix are filled with 1s with
a predefined low probability pfilling, 0 otherwise to introduce further stochasticity. Once
the multivariate target has been defined, the algorithm imposes patterns in a way that is
very similar to the univariate case.



B| Appendix B 85

Input layer dimension 100
Output layer dimension 100
Number of hidden layer 3

Neurons in the first hidden layer 90
Neurons in the second hidden layer 50
Neurons in the third hidden layer 90
Activation in the first hidden layer hyperbolic tangent

Activation in the second hidden layer rectified linear unit
Activation in the third hidden layer hyperbolic tangent

Activation in the output layer sigmoid
Optimizer adam

Loss
MSE in DSAEE

and
Categorical cross-entropy for denoising DSAEE

Epochs 250
Batch Size 50

λ 0,01
Early Stopping Not used

Table B.1: Details in Autoencoder definition in denoising simulation study. The
Table report detail the autoencoder architecture and training process in the denoising sim-
ulation case. In the simulation, two autoencoders were trained with the same parameters.

B.2. Details on autoencoder architecture in the sim-

ulation settings

This section contains the detail of autoencoder architecture in the simulated setting.
Details for each of the simulations are presented in a separate table. Tables report detail
about the architecture, such as the dimension of the input layer and the number of neurons
in each layer, and details about the training, such as the number of epochs of the value
of the parameter related to the L1 loss.
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Input layer dimension 100
Output layer dimension 100
Number of hidden layer 3

Neurons in the first hidden layer 90
Neurons in the second hidden layer 50
Neurons in the third hidden layer 90
Activation in the first hidden layer hyperbolic tangent

Activation in the second hidden layer rectified linear unit
Activation in the third hidden layer hyperbolic tangent

Activation in the output layer sigmoid
Optimizer adam

Loss Categorical cross-entropy
Epochs 250

Batch Size 50
λ 0,001

Early Stopping Not used

Table B.2: Details in Autoencoder definition in the FS simulation study. The
Table report detail about the autoencoder architecture and training process in the FS
simulation case.

Input layer dimension 100
Output layer dimension 100
Number of hidden layer 3

Neurons in the first hidden layer 90
Neurons in the second hidden layer 50
Neurons in the third hidden layer 90
Activation in the first hidden layer hyperbolic tangent

Activation in the second hidden layer rectified linear unit
Activation in the third hidden layer hyperbolic tangent

Activation in the output layer sigmoid
Optimizer adam

Loss Categorical cross-entropy
Epochs 250

Batch Size 50

λ
Outcome dependent,

choose between {0.005, 0.001, 0.0001}
Early Stopping Not used

Table B.3: Details in Autoencoder definition in the multi- outcome FS sim-
ulation study. The Table report detail on the autoencoder architecture and training
process in the FS simulation case.
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Appendix C contains details about the case study application. Details about the DSAE
architectures are reported in Table C.1 and C.2 while details about the chosen hyperpa-
rameters in the hiPRS algorithm for each endpoint can be found in Table C.3. Finally,
additional results on the boost group are available in the Tables reported below.

DSAEE details in REQUITE case study

Endpoint Input
layer dim

Output
layer dim

DSAE
hidden layers Activations Optimizer

y1 122 122x3 [90,50,90] [htan, reLu, htan] Adam
y2 122 122x3 [100,50,100] [htan, reLu, htan] Adam
y3 122 122x3 [100,50,100] [htan, reLu, htan] Adam
y4 122 122x3 [100,50,100] [htan, reLu, htan] Adam
y5 122 122x3 [100,60,100] [htan, reLu, htan] Adam
y6 122 122x3 [90,50,90] [htan, reLu, htan] Adam

Table C.1: Details in Autoencoder definition in the REQUITE case study. The
Table report detail of the autoencoder architecture and training process.
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DSAEE details in REQUITE case study (part II)

Endpoint loss Epochs Batch Size λ H0 test rejection
y1 Categorical cross-entropy 150 50 0.000001 no
y2 Categorical cross-entropy 150 50 0.1 yes
y3 Categorical cross-entropy 150 50 0.05 no
y4 Categorical cross-entropy 150 50 0.001 yes
y5 Categorical cross-entropy 150 50 0.0001 yes
y6 Categorical cross-entropy 150 50 0.000001 yes

Table C.2: Details in Autoencoder definition in the REQUITE case study. The
Table report detail of the autoencoder architecture and training process. The last column
refers to the rejection of the null hypothesis that the RE has the same distribution in the
groups by one of the tests described in Table 2.2.

hiPRS hyperparameters definition in REQUITE case study

Endpoint SNPs considered K γ ES
y1 5 3 0,1 0,85
y2 14 30 0,15 1
y3 4 5 0,1 0,85
y4 8 20 0,35 0,8
y5 9 10 0,01 0,8
y6 18 35 0,3 0,9

Table C.3: hiPRS hyperparameters definition in REQUITE case study. For each
endpoint the hyperparameters are optimized in cross-validation. γ is the threshold for
high-frequency appearing patterns in the FIM routine, K is the number of selected interac-
tions, and ES is the threshold of accuracy at which the training is stopped. The threshold
γ ranges in {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}, K in {3, 5, 10, 15, 20, 25, 30, 35, 40}
and ES in {0.8, 0.85, 0.90, 1}.
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NTCP model performance including clinical covariates on the training set of
boost group

Endpoint AUC AUC (CI) AP f1 sens spe NPV
y1 0.741 (0.688, 0.793) 0.713 0.632 0.567 0.778 0.65
y2 0.762 (0.685, 0.84) 0.217 0.344 0.833 0.568 0.959
y3 0.753 (0.648, 0.857) 0.168 0.257 0.541 0.790 0.956
y4 0.775 (0.694, 0.855) 0.227 0.338 0.666 0.752 0.954
y5 0.813 (0.727, 0.898) 0.192 0.31 0.8 0.738 0.979
y6 0.855 (0.765, 0.945) 0.141 0.239 0.785 0.79 0.988

Table C.4: NTCP model performance including clinical covariates on the train-
ing set of boost group. For each endpoint a prediction model is computed by logistic
regression and evaluated via metrics presented in Table 2.2.

Prediction model performance including exclusively PRS score on the train
set of boost group

Endpoint AUC AUC (CI) AP f1 sens spe NPV
y1 0.611 0.553-0.669 0.58 0.544 0.512 0.644 0.578
y2 0.881 0.845-0.918 0.370 0.533 0.956 0.752 0.991
y3 0.850 0.784-0.915 0.158 0.27 0.92 0.622 0.99
y4 0.816 0.740-0.892 0.298 0.390 0.566 0.87 0.953
y5 0.698 0.594-0.802 0.224 0.293 0.423 0.881 0.949
y6 0.924 0.875-0.972 0.17 0.289 0.933 0.796 0.996

Table C.5: Prediction model performance including exclusively PRS score on
the train set of boost group. For each endpoint a prediction model is computed by
logistic regression and evaluated via metrics presented in Table 2.2.
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Prediction model performance including exclusively PRS score on the test set
of boost group

Endpoint AUC AUC (CI) AP f1 sens spe NPV
y1 0.5724 0.4517-0.693 0.395 0.395 0.395 0.422 0.422
y2 0.5143 0.3039-0.7246 0.10 0.175 0.5833 0.197 0.75
y3 0.6982 0.5247-0.8716 0.103 0.187 1 0.3658 1
y4 0.5014 0.3121-0.6907 0.119 0.21 0.888 0.253 0.952
y5 0.6433 0.4499-0.8367 0.04918 0.0895 0.5 0.292 0.888
y6 0.5268 0.2277-0.8259 0.055 0.105 1 0.19 1

Table C.6: Prediction model performance including exclusively PRS score on
the test set of boost group. For each endpoint a prediction model is computed by
logistic regression and evaluated via metrics presented in Table 2.2.

NTCP model performance including clinical covariates and PRS score on the
training set of boost group

Endpoint AUC AUC (CI) AP f1 sens spe prs p-value NPV
y1 0.7648 0.7143-0.8153 0.725 0.6798 0.6397 0.766 0.03391 0.688
y2 0.9184 0.8819-0.955 0.36 0.526 0.972 0.752 9.22e-08 0.995
y3 0.9248 0.8773-0.9724 0.302 0.46 0.958 0.826 6.51e-06 0.996
y4 0.8959 0.8401-0.9516 0.444 0.547 0.714 0.916 2.75e-05 0.971
y5 0.8631 0.8019-0.9244 0.2079 0.333 0.84 0.75 9.5e-05 0.983
y6 0.9467 0.8899-1 0.5238 0.62857 0.7857 0.9687 2.87e-05 0.990

Table C.7: NTCP model performance including clinical covariates and PRS
score on the training set of boost group. For each endpoint a prediction model is
computed by logistic regression and evaluated via metrics presented in Table 2.2. The last
column contains the p-value of the coefficient test, namely H0 : βPRS = 0 vs H0 : βPRS ̸= 0.
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