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Abstract

In present work, a linear elasticity analogy based mesh morpher is developed for various
CFD applications like Fluid Structure Interaction (FSI), aerodynamic shape optimization
etc. The mesh is assumed to have the behaviour of an elasticity body which follows
the law of linear elasticity. Due to the applicability of the law of linear elasticity on
small deformations only, a multi-step approach is applied to handle large deformations.
A variation of two different pre-existing relations for the computation of the elasticity
coefficient is proposed and analyzed. A parametric study is conducted over the parameters
introduced in the proposed relations to compute the elasticity coefficient or stiffness.
The results obtained using the linear elasticity solver are then compared with available
promising mesh morphing techniques like the Laplacian and the Laplacian quaternions
techniques. The developed linear elasticity solver is tested on different kinds of meshes
from simple to complex with different kinds of deformations which the related application
might undergo. In the end, it is found in the results of the case studies that a good
quality mesh well beyond the practically needed deformations can be obtained using the
presently developed linear elasticity based mesh morpher.

Keywords: Linear elasticity analogy, Mesh morphing, Fluid Structure Interaction, Aero-
dynamic shape optimization, Elasticity coefficient, Laplacian quaternions
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1| Introduction

The role of quality of dynamically updated 3D meshes is quite important in the design
and analysis of many engineering applications where the boundary between the fluid and
the solid can have motion. Some of the examples of these applications are as follows:

• Aerodynamic shape optimization: In various aerodynamic applications, the shape
optimization takes many design iterations which makes mesh morphing a faster
alternative [1].

• Moving boundary problem: When the boundary between the solid and the fluid has
moving components [2].

• Fluid-structure interaction (FSI): When the fluid mesh boundary undergoes a defor-
mation [3, 4]. It is mostly critical when the degree of physical coupling between the
fluid and the structure is considerable. Ex.(in increasing order of physical coupling)-
rigid bodies and blade deformations, vortex-induced vibration and aero-elastic flut-
ter, biomedical membranes and highly deformable solids.

• Free surface flows

The design process of these dynamic CFD applications require new meshes in every design
iteration. There exist mainly two kinds of methods to generate the new meshes for each
design iteration. The first method is to regenerate the mesh after each iteration. Since the
generation of mesh is a tedious task, it is very time expensive to recreate a good quality
mesh after every design iteration, and therefore it is not the best method to carry on
design iterations. Another shortcoming of re-meshing is in applications like aerodynamic
optimization, where after each design step, the targeted field suffers from discretization
errors [5]. The second method to create the new mesh for the new design iteration is
to morph the existing mesh. This method is hardly as time consuming but the quality
depends on the technique used to morph the existing mesh. Another benefit of mesh
morphing is the ease to achieve high-order accuracy in time because of the unchanged
mesh topology with respect to the time steps [6].
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1.1. Literature survey

In literature, numerous research has been carried out to morph the volumetric meshes [6–
13]. There exist mainly two kinds of techniques to morph a target mesh namely; 1.
Physical analogy based techniques and, 2. Interpolation based techniques. Among the
physical analogy based techniques, there are spring based, elasticity based and Lapla-
cian based techniques, whereas among the interpolation based techniques, there exist the
Transfinite interpolation (TFI), Inverse distance weighting (IDW), Radial basis functions
(RBF), Delaunay graph, Quaternions based etc. techniques.

1.1.1. Physical analogy based techniques

As the title suggests, physical analogy based techniques are based on some physical prin-
ciples which are generally governed by differential equations. The mesh morphing using
these techniques require solution of the system of these differential equations which are
some times partial differential equations. In general, physical analogy based techniques
need grid connectivity information which makes them memory intensive. Following is a
brief about the most commonly used physical analogy based techniques

• Spring based analogy: In the spring based analogy, an edge of the mesh is con-
sidered analogous to a tension spring. One of the oldest and well known work
incorporating this technique is by Batina [7] where the spring constant is considered
proportional to the inverse of the length of the edge. In this technique, the equi-
librium length of the spring is assumed to be equal to the initial length of the edge
in the mesh. The governing equation for this technique is derived by equating the
total force at a node by 0 under the condition of static equilibrium. The following
equation is obtained for the displacement vector δ⃗ which is to be solver iteratively:

δ⃗i
k+1

=

∑ni

j=1 αij δ⃗j
k∑ni

j=1 αij

(1.1)

Here, αij is the stiffness of the edge between nodes i and j, and ni is the number
of neighbours of node i. In a work conducted by Blom [14], it was found for a 1D
mesh undergoing a deformation that no collisions in the nodes take place. This
although doesn’t stand for a triangular mesh undergone a rotary deformation where
the collision of nodes and therefore invalid mesh was observed. In order to solve the
problems with the element inversion, various modified spring analogies were also
published in the literature. Farhat [15] proposed a torsional spring analogy where
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a torsional spring was placed between every set of adjacent edges in the triangular
mesh. Another similar analogy called semi-torsional spring was proposed by [14].
In this analogy, in order to increase the stiffness of the mesh for large deformations,
the spring stiffness was divided by the angles of the rest of the two edges of the
triangle. This although converted the system of equations into a non-linear one,
which is computationally expensive. Two more well known tension spring based
analogies are the ortho-torsional spring analogy and the ball-vertex spring analogy,
which were initially explained by [16] and [17] respectively.

• Linear elasticity based analogy: In this analogy, the mesh is considered analo-
gous to a structure which follows the law of linear elasticity. The displacement field
in the mesh is obtained by solving the set of linear elasticity equation 1.2 in the
bulk mesh.

∇.σ = f on Ω, (1.2)

The equation of linear elasticity depends on the material properties like elasticity
coefficient and Poisson’s ratio. While applying the linear elasticity analogy, these
properties are defined such that they are functions of the mesh characteristics. In
literature, various relations are suggested for these properties as a function of the
mesh characteristics. In two of the most popular relations, the Poisson’s ratio is kept
uniform and constant within a range of −1 to 0.5 and the elasticity coefficient is
assumed to be proportional to the inverse of the volume of the cell and inverse of the
distance from nearest boundary respectively [6, 18, 19]. These two kinds of relations
help in avoiding invalid elements close to the boundary. An alternative approach
suggested in the literature is to set the elasticity coefficient to a constant and keep
the Poisson’s ratio such that 1

(1−2ν)
= aspect ratio of the cell [20, 21]. A similar

alternative approach suggested is to keep the Poisson’s ratio ν = constant and E =

aspect ratio of the cell [22]. An adjoint based optimization procedure was proposed
and implemented by Yang and Mavripilis [23] where an optimal distribution of E
was produced. For this optimization, an objective function proportional to the cell
volume was minimized by setting different E in all the cells. This optimization
resulted in valid mesh for high deformations but turned out to be computationally
expensive. In another approach by Hsu [24], the final deformation was achieved
in two steps. Among these steps, the first one takes into account a constant E =

1 whereas the second step takes into account a varying E. Most of the studies
mentioned above have taken into account a finite element method (GMRES most
commonly) to discretize and solve the equations of linear elasticity [18, 19, 22, 24,
25].
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• Laplacian technique: The solution of the Laplacian equation (∇.(∇u) = 0) cor-
responds to maximum/minimum principle. This solution also means that the dis-
placements in the bulk mesh are going to be bounded by the boundary deformation.
This prevents the internal mesh from crossing the boundary and keeps it valid. A
modified version of the Laplacian (∇.(γq∇u) = 0) equation was also introduced with
the introduction of diffusion coefficient (γ) and it’s exponent (q). The main disad-
vantage of the normal Laplacian solution is that all the 3 components are solved
independently and therefore and not coupled. As far as the modified Laplacian is
concerned, another challenge is for the optimal results in a practical case, where the
exponent q is not same for all the cells.

1.1.2. Interpolation based techniques

The interpolation based techniques are computationally effective and require lesser mem-
ory in general because of no need of connectivity information. Although, because of based
on interpolations, these techniques do have interpolation errors associated.

Following is a brief of the most commonly used interpolation based techniques:

• TFI and Algebraic damping technique: TFI [8] and algebraic damping tech-
nique [9] are two of the most simple interpolation based techniques. In TFI, a
generic node in the bulk mesh is deformed equal to the boundary times a scalar fac-
tor which depends on the distance between the boundary and the node. In algebraic
damping technique, every node in the bulk mesh is assigned a boundary node and
the displacement is computed using a distance function and a displacement function
as shown in Eq. 1.3.

D⃗(xi) = f(xbi).D⃗(xbi), (1.3)

The TFI technique is not suitable for the unstructured mesh because of high skew-
ness and no prevention from element crossings. On the other hand, the algebraic
damping technique can provide robust results even for high deformations with the
use of a smoothing procedure [9].

• IDW technique: As the name suggests, for every bulk mesh node, a weight is
assigned to all the boundary nodes inversely proportional to it’s distance from the
bulk mesh node to an exponent. As shown in Eq. 1.4, an average over these weights
is computed to obtain the displacement at the bulk mesh node.

D⃗(xi) =

∑nb
k=1 xkw(rk)∑nb
k=1w(rk)

(1.4)
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In this technique, to improve the mesh orthogonality at the boundaries, the bound-
ary rotation is treated in a separate manner [10]. This method is computationally
very efficient because of no need to solve any matrices.

• RBF technique: RBF is one of the well developed tools for mesh morphing and
for interpolating data in general [11, 26, 27]. This method produces high quality
mesh for high deformations. The orthogonality at the boundary can be reasonably
preserved using RBF. Like any other interpolation method, RBF does not need any
mesh-connectivity data which makes it memory efficient. The RBF method takes
into account a linear system of equations which is constructed only for the boundary
mesh points and not for the bulk mesh points. This shows the need to solve the
equations only at the boundary nodes making the RBF method computationally
efficient as well. In RBF technique, an interpolation function S can be approximated
by the sum of the product of displacement and basis function over the boundary
nodes.

S(X⃗) =

nb∑
j=1

αjϕ(X⃗ − X⃗bj) + P (X⃗) (1.5)

Here, X⃗bj is the displacement vector of the boundary nodes which is known, P

is a polynomial, nb is the number of boundary nodes, and ϕ is the selected basis
function over the Euclidean distance ||x||. The coefficients αj and polynomial P are
obtained using the interpolation conditions. The basic implementation of RBF for 3-
D problems is costly though. To improve the RBF technique for such cases, Rendal
and Allen [28] proposed a data reduction algorithm called the greedy algorithm
which was implemented with the RBF interpolation. With the inclusion of the
greedy algorithm and further improvements in the RBF technique ( [1, 29–31]),
a considerable improvement in the computational efficiency and mesh quality was
obtained.

• Delaunay graph: This method needs the creation of a Delaunay graph of the
initial mesh. To create a Delaunay graph, only boundary nodes are required. All
the interior nodes are assigned to different Delaunay elements that these nodes
belong to. After deforming the Delaunay graph using the boundary condition, the
displacement in the interior mesh can be interpolated [12]. This method needs
mainly 4 steps; namely, Generation of Delaunay graph, Allocation of mesh points
on the Delaunay graph, Deforming the Delaunay graph, and Relocating the interior
mesh nodes ( [32, 33]). The main disadvantage of the Delaunay graph method is
that for complex meshes and high deformations, intersections between the Delaunay
elements may occur and a regeneration of the Delaunay graph followed by relocation
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of interior nodes is needed in such cases which is computationally costly.

• Quaternion based technique: A quaternion is a scalar with a direction and is
composed of a real and three imaginary numbers (Q = q0 + q1i + q2j + q3k). A
quaternion is useful when translational and rotational information is required. A
quaternion based mesh morphing technique was proposed by Samareh [13] where
a three step approach to morph the bulk mesh was introduced. These steps were
following: 1. Translation of the deformed nodes, undeformed nodes and neighbor
nodes of the origin. 2. Rotate the undeformed nodes to make their normals align
with the normals of deformed nodes using a quaternion as follows:

Q1 = [cos(α/2), nu × ndsin(α/2)] (1.6)

where α is the angle between the two normals nu and nd. 3. Rotate the undeformed
nodes about the deformed boundary normal vectors to minimize the angle between
neighbour nodes using another quaternion as follows:

Q2 = [cos(θ/2), ndsin(θ/2)] (1.7)

where θ denotes the average angles between the neighbour nodes. After all this,
total rotation and translation can be computed as Q = Q1.Q2 and T = Xd −
QXuQ

∗ respectively. Here, Xd and Xu are the deformed and undeformed positions
respectively. The translation and rotation now can be propagated using a spring
analogy technique or a Laplacian based technique as done in [34].

There have been various other methods in literature for the bulk mesh deformation. Some
noticeable methods are as follows: a free form deformation (FFD) technique [35–37], a
tree-code optimization based interpolation technique for polyhedral meshes by Luke et
al. [38], a hybrid mesh deformation algorithm using anisotropic PDEs and multiobjective
mesh optimization by Kim et al. [39], and a mesh deformation energy minimization based
technique for FSI problems by Oh [40].

To compare the various mesh morphing techniques, the comparison table presented by
Selim and Koomullil [3] is extended and shown in table 1.1. The comparison is based on
the main advantages, disadvantages and order of complexity of these techniques. It can be
observed in the comparison that among the physical analogy based techniques, the linear
elasticity based analogy is promising but the main challenges are the computational cost
and optimization of the physical properties E and ν. As far as the interpolation based
techniques are concerned, the RBF with greedy algorithm seems to be the well developed
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Main advantage Main disadvan-

tage

Complexity Note

Linear
spring

Simple and easy to
implement

Element crossing
and overlapping

O(ne
3) ne is total number

of edges
Torsional
spring

Robust, preserves
mesh quality

Computationally
expensive

O(ne
3 + nv

3) nv is the total
number of vertices

Linear elas-
ticity

Computationally
feasible

Optimizing E and
ν to avoid invalid
element is difficult

O(nelogne) Uses FEM dis-
cretization with
GMRES solver

Laplacian Computationally
efficient

Works for single
frequency defor-
mations only

O(ne) Partial differential
equation based

TFI Simple and effi-
cient

Element crossing
and overlapping

O(nv) Applicable only on
structured meshes

Algebraic
damping

Simple and effi-
cient

Highly rigid defor-
mation near boun-
daries and highly
elastic elsewhere

O(nv) Smoothing proce-
dure can be used
to improve mesh
quality

IDW Simple and effi-
cient

Basic IDW does
not incorporate
rotational defor-
mations

O(nv) Rotational de-
formations can
be handled sep-
arately for addi-
tional cost

Delaunay
graph

Robust and com-
putationally feasi-
ble

Delaunay Graph
needs to be regen-
erated frequently

O(nD+nv
1/3) nD = Delaunay

graph vertices

RBF Robust, preserves
mesh quality

Computationally
expensive

O(nb
3) nb = No. of

boundary nodes

RBF with
greedy al-
gorithm

Robust and
computationally
efficient

No major disad-
vantage

O(ns
3) ns < 5%nb

Laplacian
Quaternion

Computationally
feasible

No major disad-
vantage

10×O(RBF ) Laplacian prop-
agation on
Quaternions

Tree-code
optimiza-
tion

Computationally
feasible

Might suffer from
robustness for low
error bounds

O(nelogne) Complexity can be
reduced by further
optimization

Table 1.1: Comparison of various mesh morphing techniques (extension of [3]).
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and best performing technique.

The linear elasticity analogy based mesh morphing technique has been widely studied in
literature. One of the initial well accepted study on mesh morphing using linear elastic-
ity analogy was presented by Stein et al. [41] where the capability of the technique to
handle large deformations specifically for fluid-structure interaction (FSI) problems was
demonstrated. A finite element formulation was used to discretize and solve the govern-
ing equations with a jacobian option to keep the stiffness of the smaller cells close to
the boundary more than the stiffness of the bigger cells far from the boundary. After
the demonstration of the linear elasticity analogy for mesh morphing by Stein et al. [41],
there have been various further additions in the basic technique. Persson and Peraire [42]
used the linear elasticity model to morph the curved mesh. In a study by Dwight [25], it
was investigated that the solution of the linear elasticity equations does not provides good
results in case of rigid body rotation and proposed a modification in the constitutive lin-
ear elasticity law. It was illustrated that the modified constitutive law gives much better
results for the rigid body rotation cases. In a study by Barral et al. [43], for a transient
FSI problem, the linear elasticity model was coupled with a changing connectivity moving
mesh method. This study observed valid meshes for high deformations as well. The linear
elasticity model was also used to morph the mesh in an application of electro-magnetic
solver [44]. The objective of the study was to do the parametric study and optimization
of high frequency devices with FEM. In FSI and moving boundary and interfaces (MBI),
elasticity mesh morpher is used with the mesh-jacobian based stiffness (MJBS) to keep
the mesh cells close to the boundary (small cells) stiffer with respect to the cells far from
the boundary which are bigger in general. In a transient problem between time tn and
tn+1, a deformation is executed in cycles which is path dependent which in turn includes
accumulation of the mesh distortion. In a recent study by Tonon et al. [45], a method
called as back-cycle-based mesh movement (BCBMM) is proposed to eliminate this ac-
cumulation based mesh distortion. To do this, the mesh motion is computed from the
configuration in the first cycle.

1.2. Objectives and scope

From the existing literature of linear elasticity technique, it is evident that finding an
optimum relation for the elasticity coefficient E and Poisson’s ratio ν is still a challenge
and hence required to be worked upon. In the field of aerodynamic shape optimization, the
contribution of the linear elasticity technique is not explored yet. Moreover, for the FSI
applications, complex deformations for complex geometries are not studied well in detail.
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In literature, the results of the linear elasticity technique have not been compared with
the results obtained using any other promising technique at any level of detail. Therefore,
there exist the scope of not only finding the new relations for the elasticity coefficient and
Poisson’s ratio in the linear elasticity technique but also exploration of it’s use in different
CFD applications and comparisons of the results with the other different techniques.

Driven by the promising nature of the linear elasticity technique, the related applications
and possible improvements, the present thesis focuses on the development of the linear
elasticity analogy based mesh morphing technique. The objective of the present study is
to develop a robust and accurate mathematical model and find a global relation for the
physical properties E and ν. A special emphasis is given to the accuracy of mathematical
model at the boundaries. A second order accuracy is ensured throughout the mesh. A
parametric study is conducted to see the effect of different parameters in the relations of
E and ν on the quality of the mesh. The effect of different kinds of surface deformation
on the optimum parameters is analysed too. In present work, the benefit of using a linear
elasticity at the boundary is also demonstrated. Another objective of the present study
is to apply the elasticity morpher to different kinds of industrial applications and check
the quality of the deformed mesh under different kinds of extreme deformations that
the industrial application might undergo. The results obtained by the linear elasticity
morpher are also compared with the results obtained by the existing Laplacian and the
Laplacian quaternions techniques which were available to the author. Throughout the
study, efforts are made to increase the accuracy of the various computation terms.

The present thesis document is structured in the following order: 2. Governing equations
and the mathematical model 3. Results and discussion on the test case of a cube. 4.0

Parametric study for the E and ν relations. 5. Comparisons with the Laplacian and
the Laplacian quaternions techniques 6. Testing of the linear elasticity analogy based
technique on industrial cases 7. Conclusions and Discussion.
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2| Governing equations and

Mathematical model

This chapter is dedicated to how the linear elasticity analogy described in Chapter 1 for
the bulk mesh deformation can be elaborated by means of governing equations and how a
mathematical model is developed to incorporate the linear elasticity equations to deform
the bulk mesh. The overall design of the mesh morpher and various schemes used in the
solver are described in this chapter.

2.1. Elasticity analogy and governing equations

An elastic solid subjected to body forces and surface traction undergoes deformation. In
case of small deformations it is possible to govern the behaviour of the solid using the law
of linear elasticity. For a small displacement U = (u, v, w) the equation of linear elasticity
can be written as follows:

∇.σ = f on Ω, (2.1)

Here, f is the body force, σ is the stress tensor, and Ω is the computational domain. The
stress tensor σ can be described in terms of the strain tensor ϵ using the constitutive
relation as follows:

σ = λTr(ϵ)I + 2µϵ (2.2)

where λ and µ are the Lamé constants and Tr is the trace. The Lamé constants are
functions of the material properties Young’s modulus E and Poisson’s ratio ν as follows:

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(2.3)

The Young’s modulus E shows the stiffness of the solid. A large E indicates that the
solid is rigid, whereas a low E indicates more elastic nature. Poisson’s ratio ν indicates
the measure of deformation in lateral direction when the solid is undergone a deformation
in the axial direction. The value of ν for physical materials can lie between (−1, 0.5).
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As per the linear kinematic law

ϵ =
1

2
(∇U +∇UT ), (2.4)

describes the change in length and orientation of an element in the solid. For rigid
body rotations, an alternative relation for the Lamé constants is suggested in a study by
Dwight [25] by making the stress on the elements equal to 0 instead of the ones derived
from the elasticity equations. It is reported that a better mesh quality is obtained for
not only the rigid body rotation cases but all the other applications in general. These
alternative Lamé constants are shown hereby:

λ = −E, µ = E, (2.5)

In present work, these alternative Lamé constants are inspected along the ones obtained
from the elasticity equations. As far as boundary conditions are concerned, one of the
possibility over the boundary surface can be the Dirichlet boundary condition given by U

= Ub in ∂Ω.

In literature there have been various ways of computing the elasticity Coefficient E and
the Poisson’s ratio ν as discussed in Sec. 1.1.1. Among the relations proposed, the relation
of E inversely proportional to the volume of the cell is widely accepted and used [3], with
ν kept as a constant value between (−1.0, 0.5). Given the agreement in literature, in
present work, a variant of this relation is proposed and studied. This new relation is
shown as follows:

ECell =
1

(VCell)p
, (2.6)

Where, ECell and VCell are the elasticity coefficient and volume of the concerned cell, and p

is an exponent to the inverse of volume of the cell. Exponent p helps in providing the cells
close to the boundary, which have smaller volume with respect to the cells far from the
boundary, with considerably high stiffness which in turn helps these cells in preserving
their shape. Another widely used relation for E keeping the ν constant is inverse of
distance from the boundary. In present work, a variant of this relation is proposed and
studied. This new relation is as follows:

ECell =
1

(dCell)q
, (2.7)

Where, dCell is the distance of the concerned cell centroid from the nearest boundary
point , and q is an exponent to the inverse of this distance. Just like p, exponent q helps



2| Governing equations and Mathematical model 13

in providing the cells close to the boundary, which have smaller dCell with respect to the
cells far from the boundary, with considerably high stiffness which in turn helps these
cells in preserving their shape.

2.2. Explicit FVM mathematical model

In literature, the equation of linear elasticity Eq. 2.1 is discretized mostly using a finite
element method and the related system of linear equation is solved using a GMRES
method [18, 19, 22, 24, 25]. In present work, equation of linear elasticity is discretized using
a finite volume method (FVM) and solved using a PETSc library. The main reasons for
choosing the FVM are the simplicity of the method and existence of some useful developed
modules. In present work, the FVM discretization is done based on field variables at the
cell centers. Using Eqs. 2.2 and 2.4, Eq. 2.1 can be rewritten in the following Einstein
form:

∂

∂xi

[
λ
∂uk

∂xk

Iij + µ

(
∂ui

∂xj

+
∂uj

∂xi

)]
= fi (2.8)

Equation 2.8 contains mainly three kinds of terms in the left hand side. These three terms
can be described as following:

terma =
∂

∂xi

(
λ
∂uk

∂xk

Iij

)
; termb1 =

∂

∂xi

(
µ
∂ui

∂xj

)
; termb2 =

∂

∂xi

(
µ
∂uj

∂xi

)
(2.9)

These terms are then integrated with respect to volume and converted into the surface
integrals using the Divergence theorem as follows:

Terma =
∑
f

λf ∂uk

∂xk

∣∣∣∣fIijni
f∆Sf (2.10)

Termb1 =
∑
f

µf

(
∂ui

∂xj

)f

ni
f∆Sf (2.11)

Termb2 =
∑
f

µf

(
∂uj

∂xi

)f

ni
f∆Sf (2.12)

Here, the summation shows the sum over all the faces of the considered finite volume
or cell, ni

f indicates the ith component of the normal vector to the face f , Iij is the
identity matrix, and ∆Sf is the area of the face f of the cell. In equation 2.10, Terma

contains the trace of the gradient which increases the order of coupling between the
different components of Eq. 2.8. In first of the attempts, an explicit method is used to
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solve Eq. 2.8 over the volumetric mesh. In the explicit method, Termb2 is kept in the
LHS whereas the other terms Terma and Termb1 are kept in the source term. It is to be
noticed that the gradients at the faces are required to compute all the terms. It can be
observed that termb2 in Eq. 2.9 is a Laplacian term which as shown in Eq. 2.12 depends
only on the normal fluxes incoming from the all the faces of the considered cell.

2.3. Boundary condition

As mentioned in Sec. 2.2, the system of equation needs boundary conditions to be solved.
This boundary condition in case of the equation of linear elasticity can be Dirichlet kind
or the Neumann kind based on the boundary information provided. In case when the
surface deformation over the whole boundary is known, a Dirichlet boundary condition
shown in Eq. 2.13 can be used.

U = Ub, on ∂Ω (2.13)

If the gradient of the field over a part of the boundary or the whole boundary is known,
The Neumann boundary condition can be used as shown in Eq. 2.14

∂U

∂xi

= Constant, on ∂Ω (2.14)

In symmetric CFD meshes, in general a symmetry plane is used to split the computational
domain in half to reduce the complexity of the problem. For such cases, the displacements
and therefore the Dirichlet boundary condition on the symmetry planes are not available
and a slip condition is required to be applied. The slip condition for the symmetry plane
can be described as follows:

U.n⃗ = 0, for U on symmetry plane (2.15)

∂U

∂xi

− ∂U

∂xi

.n⃗ = 0, for U on symmetry plane (2.16)

Here, n⃗ is the normal unit vector to the symmetry plane. Eq. 2.15 shows the zero Dirichlet
boundary condition for the normal component of the displacement on the symmetry plane
and Eq. 2.16 shows the zero Neumann boundary condition for the components parallel to
the symmetry plane on the symmetry plane. The combination of Eq. 2.15 and 2.16 shows
the slip boundary condition for the symmetry plane.
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2.4. Design of the overall solver

The required mesh morpher needs to execute different kinds of operations like the bound-
ary deformation, the bulk mesh deformation and the generation of new volumetric mesh.
Based on these operations, the overall solver can be described mainly in three parts as
shown in Fig. 2.1. The first part of the overall solver uses a previously developed RBF
or FFD based surface manipulator which takes the initial volumetric mesh and the defor-
mation information as inputs and gives the initial geometry and the deformation field on
the boundary nodes as the outputs. Internally, this part of the overall solver extracts the
boundary mesh first and applies the RBF or the FFD techniques based on the deforma-
tion information. The output of the first part is the displacement field on the boundary
of the volumetric mesh.

Figure 2.1: Design scheme of the overall solver.

The second part of the overall solver is the elasticity solver where the equation of linear
elasticity mentioned in Sec. 2.1 are solved. This elasticity solver takes in the initial
volumetric mesh and the output of the first part of the overall solver as inputs and
generates the displacement field on the bulk volumetric mesh as the output. For the
equations of linear elasticity in the elasticity solver, the output of the first part which is
the displacement field on the boundary nodes works as the boundary condition, Dirichlet
kind particularly.

The third and final part of the overall solver is the deformation applier as shown in
Fig. 2.1. Deformation applier takes in the initial geometry and the displacement field on
the bulk mesh as the inputs and generates the final deformed mesh. This is to be noted
that in all the three parts, the connectivity information is required and passed as inputs
as well. The second part of the overall solver which is the elasticity solver is developed
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in the present thesis work. The first and third parts of the overall solver were developed
already in a previous work and out of scope of the present work.

2.5. Computation of cell and face gradients

Considering the unstructured 3D domain of the target geometries, the computation of
the gradients over cells and faces is done by forming stencils. In present work, a second
order least square method is used to compute the cell and face gradients as described in
Darwish and Moukalled [46]. A least square method provides a good flexibility in the
order of accuracy and the used stencils. For the 2D representation of a generic 3D mesh
shown in Fig. 2.2, the gradients on cell centers for a field ϕ according to the least square
method can be written as follows:


∑NB(C)

k=1 wk∆xk∆xk

∑NB(C)
k=1 wk∆xk∆yk

∑NB(C)
k=1 wk∆xk∆zk∑NB(C)

k=1 wk∆yk∆xk

∑NB(C)
k=1 wk∆yk∆yk

∑NB(C)
k=1 wk∆yk∆zk∑NB(C)

k=1 wk∆zk∆xk

∑NB(C)
k=1 wk∆zk∆yk

∑NB(C)
k=1 wk∆zk∆zk





(
∂ϕ
∂x

)
C(

∂ϕ
∂y

)
C(

∂ϕ
∂z

)
C



=


∑NB(C)

k=1 wk∆xk∆ϕk∑NB(C)
k=1 wk∆yk∆ϕk∑NB(C)
k=1 wk∆zk∆ϕk



(2.17)

C

Cell neighbours 

C1

C2 C3

C4

C5C6

Figure 2.2: 2D representation of a generic geometry with the immediate neighbours.
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Eq. 2.17 can be used to compute the stencils for gradients at the cell centers given that
the matrix in the LHS is not singular. The weight wk used in Eq. 2.17 describes the
properties of the stencil and dependence over the neighbor cells k. Generally, w can be
described as a function of the distance between the neighbour and owner cell center as
shown in Eq. 2.18.

wk =
1

|rFk
− rC |p

(2.18)

Here, p is an exponent which can be used to describe the dependence of the gradient on
the neighbor cells. In the 2D representation as shown in Fig. 2.2, it is possible to show
only the neighbours that are adjacent to the faces of the cell under consideration. In 3D
geometries, there can be not only the neighbours which share a common face but also the
neighbours which share only an edge. In present study, in order to increase the accuracy
of the gradients, both the face and the edge adjacent neighbours are considered in the
stencils.

In a similar way as described in Darwish and Moukalled [46], the gradients at the face
centers are computed by interpolating from the cell centers to the face centers as shown
in Fig. 3.4. The gradients at the face centers are provided with 2 different contributions;
first, parallel to the face, and second, along the normal of the face.

To compute these contributions, the averaging of the neighbour cells is not enough because
it does not take into account the actual fields at these neighbour cells. In order to take
the contribution of the fields at the neighbour cells, the normal component of the face
gradient is computed by projecting the fields at the neighbouring cells (at C1 and C2) at
the normal line (P1 and P2) passing through the face center F . Followed by taking the
projections P1 and P2, the distance of these projections is computed from the face center
F . The distance a = min(P1F, P2F ) is considered for the computation of the nor-

F C2

C1

a

a

O1

O2

(∇𝜙)C1

(∇𝜙)C2
P2

P1

(a) Face gradient computation.
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(∇𝜙)C2

(∇𝜙)C1

(b) Average of neighbour gradients.

(∇𝜙)F

(c) Components of face gradient.

Figure 2.3: Computation of the face gradients using the cell gradients.

mal component of the face gradient. The component of the face gradient along the normal
of the face can be computed as shown in Eq. 2.19.

(∇ϕ)F,⊥ =

(
ϕO1 − ϕO2

2a

)
n⃗ (2.19)

where, the fields ϕO1 and ϕO2 are computed by interpolating the fields from the cell center
to points O1 and O2 respectively as follows:

ϕOi
= ϕCi

+ (∇ϕCi
).
−−→
CiOi (2.20)

For the component of face gradient parallel to the face, an average of the gradients at the
neighbor cells is computed and subtracted from the component of this average along the
direction of normal to the face as shown in Eq. 2.21. The average of neighbor stencils
(Fig. 2.3b) can be computed by taking a simple average as shown in Eq. 2.22.

(∇ϕ)F,∥ = (∇ϕ)F − ((∇ϕ)F .n⃗)n⃗ (2.21)
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(∇ϕ)F =
((∇ϕ)C1 + (∇ϕ)C2)

2
(2.22)

In this way, the face gradient stencils for the whole geometry can be computed using the
cell gradient stencils. Though it is to be noticed at the boundary, that a boundary face
always has only one neighbour cell (as shown in Fig. 2.4) which makes the interpolation
technique explained by Eqs. 2.19- 2.21 inappropriate to use. For the boundary faces, the
face gradients are defined as follows:

Boundary

F
C

P

C
F1

distD

C1
C3

C2

C4

F2

Figure 2.4: 2D representation of a generic mesh at the boundary.

(∇ϕ)F,∥ = (∇ϕ)C,∥ = (∇ϕ)C − ((∇ϕ)C .n⃗)n⃗ (2.23)

(∇ϕ)F,⊥ =
ϕP − ϕF

distD
(2.24)

Here, ϕF denotes the field at the boundary face centroid F , ϕP denotes the field at a
point P projected from the cell center C to the normal of the boundary face, and distD

represents the distance between the point of projection and the boundary face center. In
Eq. 2.24, ϕP can be computed using the cell gradient as shown in Eq. 2.20.

2.6. Boundary corrections in cell and face gradients

It is to be noticed that the cell and face gradients formulation shown in Sec. 2.5 illustrate
the gradients in the bulk mesh well but their accuracy at the boundary still needs to
be checked. It can be observed in Eq. 2.17, that a cell gradient stencil is constructed
using the neighbour cells. In case of a boundary cell, for example in Fig. 2.4, it can be
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observed in Eq. 2.17 that the contribution due to the boundaries is not taken into account
in computing the cell gradient. In such a case, the accuracy of the gradient becomes 1st

order instead of desired 2nd order. For good quality mesh morphing, it is under utmost
priority that the boundary mesh should be preserved, and hence it is needed for the
boundary gradients to be of high order accuracy. In order to recover the second order
accuracy of cell gradients at the boundary cells, it is required to consider the contribution
of the boundary faces as well.

It is evident from Eq. 2.19- 2.21 that the face gradients are interpolated from the cell
gradients to the faces. This indicates that the contribution of the boundary faces is
required to be considered not only in cell but face gradient stencils as well.

2.6.1. Correction in cell gradient stencils

In order to consider the contribution of the boundary faces in the boundary cell gradient,
an additional stencil is defined for all the cells in the geometry. This new face based
stencil does not contain any element for the non-border cells. For the border cells, the
elements of this second stencil are only the boundary faces associated with the concerned
border cell. The contribution or weight of every boundary face is computed in exactly
the same way as computed for neighbour cells as shown in Eqs. 2.17 and 2.18 with the
use of centroid of the boundary face instead of neighbour cell centers. Therefore, the new
overall stencil for the cells can be written as follows:

StCell = StC + Stbf (2.25)

Here, StCell represents the overall stencil for the cell gradient, StC represents a stencil
with the contributions from the neighbour cells and Stbf represents a stencil with the
contributions from the boundary faces. Following equation needs to be used to compute
the gradient at the cell center:

(∇ϕ)C = StC .(ϕN) + Stbf .(ϕbf ) (2.26)

Here, ϕN is the set of fields at the neighbour cells, and ϕbf is the set of fields at the
neighbour boundary faces. An example of the sets ϕN and ϕbf for a cell C can be seen in
Fig 2.4 where ϕN is the set of fields on cell centers C1-C4 and ϕbf is the set of fields on
boundary faces F1-F2 respectively.
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2.6.2. Correction in face gradient stencils

As it can be seen from Eqs. 2.21- 2.22 and 2.23- 2.24, in the whole geometry, the face gra-
dient stencils depend on the cell gradient stencils. The addition of the contributions from
boundary faces in the cell gradient stencils as shown in Eq. 2.25 makes this contribution
to be accounted in the face gradient stencils as well. As shown in Sec. 2.5, since there
exist two kinds of face gradient stencils; one for the boundary faces in Eqs. 2.23- 2.24 and
the other for the faces in internal mesh in Eqs. 2.19- 2.21, both of these kinds of stencils
are needed to be corrected differently.

Case1: Boundary faces

For the boundary faces, Eqs. 2.23- 2.24 are modified in order to consider the contribution
of boundary faces which is considered in Sec. 2.6.1 for the cell gradient stencils.

StFace,∥ = (StC − (StC .n⃗)n⃗) + (Stbf − (Stbf .n⃗)n⃗) (2.27)

StFace,⊥ =
(StC .

−→
CP )n⃗

distD
+

((Stbf .
−→
CP )− ϕF )n⃗

distD
(2.28)

Eqs. 2.27 and 2.28 contain contributions from the neighbour cells and the contribution
from the neighbour boundaries as well. A boundary face gradient can be computed using
the following equation:

(∇ϕ)F = StFace,∥.{ϕN , ϕbf}+ StFace,⊥.{ϕN , ϕbf} (2.29)

Here, ϕN is the set of fields at the neighbor cells of the neighbor cell of the boundary face,
and ϕbf is the set of fields at the boundary faces of the neighbour cell of the boundary
face. An example of the sets ϕN and ϕbf for a Face F can be seen in Fig. 2.4 where the
only neighbour of F is cell C. Hence, the set ϕN for face F is the neighbour cells of C
which are C1 − C4, and set ϕbf is boundary neighbour faces of C which are F1 − F2.

Case2: Faces in internal mesh

For faces in the internal mesh, Eqs. 2.19- 2.21 are corrected by considering the corrected
cell gradients. The corrected parallel component of the face gradient stencils is computed
as follows:

StFace,∥ = (StF − (StF .n⃗)n⃗) + (Stbf,F − (Stbf,F .n⃗)n⃗) (2.30)
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C2
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C
C3

C4C5
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C7 F1

F2

Boundary

F3

Figure 2.5: Bulk mesh near the boundary with different kinds of neighbours.

Here, StF = StC1+StC2

2
, and Stbf,F =

Stbf,C1+Stbf,C2

2
, where Stbf,C1 is the stencil containing

the boundary face neighbours of the first neighbour cell and Stbf,C2 is the stencil containing
the boundary face neighbours of second neighbour cell. The corrected normal component
of the face gradient stencils is computed as follows:

StFace,⊥ =
(StC1.

−−−→
O1C1 − StC2.

−−−→
O2C2)n⃗

2.distD
+

(Stbf,C1.
−−−→
O1C1 − Stbf,C2.

−−−→
O2C2)n⃗

2.distD
(2.31)

In this case, there can be different sub-cases as well. All the cell gradient stencils do not
have the contributions from the boundary faces. Among the non-boundary faces, there
exist faces which have either 1, 2 or no neighbour cells with boundary face contributions
as shown in Fig. 2.5 by face centers F1, F2, and F3 respectively. The Eqs. 2.30 and 2.31
are generic for all these kind of faces and applicable for all.

2.7. Computation of the Laplacian term

With the computation of the cell and face gradient stencils, Termb2 in Eq. 2.12 which
is the only term in the LHS, can be computed in terms of a product of a new stencil
StLapl,Cell and the field at the elements of this stencil as follows:

Termb2 = StLapl,Cell.Φ (2.32)

StLapl,Cell =
∑
F

µFStF .ni
F∆SF (2.33)
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Here, StLapl,Cell is the LHS in the present explicit linear solver, whereas Φ is the unknown
vector in the linear solver. It is to be noticed that in Eq. 2.12, the Lamé constant µ

works as diffusivity, which is not a constant throughout the geometry but depends on
the elasticity Coefficient E and Poisson’s ratio ν which in turn depend on the mesh
characteristics. In present work, µF at a face F is considered to be the average of the two
neighbour cells of the face F . In case of boundary faces, µ at the only neighbour cell in
the internal mesh is assigned to the boundary face.

It is to be noticed that at the border cells, Eq. 2.33 does not considers the contribution of
the boundary faces. This contribution now is directly incorporated in the source term of
the linear solver. This contribution in the source term is computed by the product of the
StLapl,Cell and field at the boundary faces alongside boundary face contribution from the
StF in Eq. 2.33. The other contribution for the source term are computed using Eqs. 2.10
and 2.11.

2.8. Convergence condition and control method

In present work, the residuals after every elasticity solver iteration are computed using a
method similar to the one used in [46]. This method is shown hereby for a matrix system
of equation Ax = b. Residuals ri for the ith component of the displacement can be defined
as:

ri = bi − Axi (2.34)

Applying residual scaling using the following normalization steps:

ni =
∑

(|Axi − Axi|+ |bi − Axi|) (2.35)

Here, xi stands for the average displacement of the ith displacement component. The
scaled residuals can be obtained as:

ri =
1

ni

∑
|bi − Axi| (2.36)

R = max(ri) (2.37)

In the present study, for the linear elasticity solution to converge, the maxima of the
residuals, R, is kept under a tolerance of 1E-10. In order to converge the solution, a
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relaxation factor is considered which is shown in the following equation:

x = ax+ (1− a)xold (2.38)

Here, a is the relaxation factor, x is the solution of the new elasticity solver iteration, and
xold is the solution of the previous or old iteration. In present work, different relaxation
factors between 0 and 1 are used for different case studies and geometries.

In order to solve the linear system of equations, a PETSc library is used with a tolerance
of 1E-12.

2.9. Interpolation from nodes to face centers and cell

centers to nodes

In present work, there are mainly two kinds of interpolation required in two different
steps, namely; nodes to face center interpolation, and cell center to nodes interpolation.

2.9.1. Nodes to face center interpolation

This kind of interpolation is required to connect the first part of the overall solver to the
second part of the overall solver. The displacement data obtained from the RBF/FFD
manipulator is available at the nodes but the elasticity solver needs the boundary condition
at the face centers. The difference in data location creates the need of an interpolation
from nodes to the face centers at the boundary of the volumetric mesh as shown in Fig. 2.6.
The interpolation technique used in the present work for this purpose is shown as follows:

F
P3

P2

P1

P5 P4

Figure 2.6: Interpolation from nodes to face centers.

XF =

∑n
i=1wi.Xi∑n

i=1wi

, where wi =
1

(dFPi
)p

(2.39)
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Here, XF is the interpolated field at the face center F , Xi is the field at the neighbour node
i, n is the number of neighbour nodes of the face center F , and wi is the weight function
for the ith neighbour of the face center which is equal to the inverse of the distance dFPi

between this neighbour and the face center F to the power an exponent p.

2.9.2. Cell center to nodes interpolation

The elasticity solver in the present study takes into account a FVM method of distretiza-
tion to solve the linear elasticity equations with fields on the cell centers. As a result
of the this consideration, the output of the elasticity solver, which is the displacement
of the bulk mesh, is also obtained on the cell centers. In order to define or update a
geometry, the displacements are required to be on the node location and not on the cell
centers. Therefore, there is a need of an interpolation from cell centers to the nodes in
the volumetric mesh to provide the nodes with the intended displacements as shown in
Fig. 2.7. In present work, this interpolation is done in the following way:

P C2
C1

C3

Figure 2.7: 2D representation of interpolation from cell centers to nodes in a volumetric
mesh.

XP =

∑n
i=1wi(XCi

+ ∂X
∂zk

∣∣
Ci
.(d⃗PCi

))∑n
i=1wi

, where wi =
1

(Vi)p
(2.40)

Here, XP is the interpolated field at the node P , XCj
is the field at the cell center i, n

is the number of neighbour cells of the node P , and wi is the weight function for the ith

neighbour of the node P which is equal to the inverse of the volume Vi of the neighbour
cell to the power an exponent p. Vector d⃗PCi

denotes the vector connecting point P to
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the neighbor C. The method of interpolation shown in Eq. 2.40 requires the gradients at
cell centers Ci which can be computed as described in Sec. 2.6.

2.10. Multi-step algorithm

As mentioned in Sec. 2.2, an explicit scheme is used to solve the system of Eq. 2.8. From
the first part of the solver, we get the initial geometry and the boundary displacements
as the boundary condition for elasticity solver as shown in Fig. 2.1. The algorithm incor-
porated in the present work in the elasticity solver is shown in Algorithm 2.1.

Algorithm 2.1 Solution algorithm for the elasticity solver with a single step.
1: Setup the solver: Initial geometry, boundary displacements on nodes, relaxation factor

2: Interpolate displacements from boundary nodes to boundary face centers
3: Computation of the cell and face gradient stencils
4: Computation of the Lamé constants
5: Computation of the Laplacian stencils
6: Initial guess for the displacements in the bulk mesh
7: Initialize the solver by passing the LHS
8: while max(residuals) < Tolerance do
9: Compute the cell and face gradients

10: Compute the source terms due to Terma and Termb1

11: Compute the source term due to the contribution from Laplacian term
12: Compute the overall source term
13: Solve the system of linear equations using PETSc component by component
14: Compute the residuals using the new and old solutions
15: end while
16: Interpolate the obtained displacements from cell centers to nodes
17: Calculate the error between the boundary displacement provided to elasticity solver

and obtained from elasticity solver and propagate into the bulk mesh
18: Final displacements

The implementation of the elasticity solver as shown in Algorithm 2.1 has some pros
and cons as well. In this algorithm, it can be noticed that all the deformation is executed
directly in one step. This results in considering the cell and face gradient stencils computed
using the initial undeformed geometry which can be a lot different than the final geometry.
Also, it can be noticed that the Lamé constants which depend on the mesh characteristics,
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Algorithm 2.2 Solution algorithm for the elasticity solver with multi-step.
1: Setup the solver: Initial geometry, boundary displacements on nodes, relaxation factor

2: Interpolate displacements from boundary nodes to boundary face centers
3: Computation of the cell and face gradient stencils
4: Computation of the Lamé constants
5: Computation of the Laplacian stencils
6: Initial guess for the displacements in the bulk mesh
7: Divide the boundary displacements by nsteps
8: Initialize the solver by passing the LHS
9: for (istep = 0; istep < nsteps; istep++) do

10: while max(residuals) < Tolerance do
11: Compute the cell and face gradients
12: Compute the source terms due to Terma and Termb1

13: Compute the source term due to the contribution from Laplacian term
14: Compute the overall source term
15: Solve the linear system of equations using PETSc component by component
16: Compute the residuals using the new and old solutions
17: end while
18: Interpolate the obtained displacements from cell centers to nodes
19: Calculate the error between the boundary displacement provided and obtained from

this step and propagate into the bulk mesh
20: Update the displacements in the bulk mesh
21: Apply the displacements on the bulk mesh and update the geometry
22: if istep < nsteps-1 then
23: Update the cell and face gradient stencils
24: Update the Lamé constants
25: Update the Laplacian gradient stencils
26: Update the LHS in the solver
27: end if
28: Compute the total displacement upto this step
29: Set the solution as the initial guess for the next step
30: end for
31: Restore the initial geometry
32: Restore the initial boundary condition
33: Final displacements
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are computed before the while loop in step 7 which in turn indicates that the Lamé con-
stants belongs to the initial geometry which can be very different from the final geometry.
Similarly, the amplitude of the error propagated in step 16 using the Laplacian method
also comes out a lot more considerable in one step. Therefore, because of these reasons,
it is needed that an incremental deformation is provided to the mesh under considera-
tion. An important benefit of using the incremental deformation approach is that the
linear elasticity law stands for small deformations only and considering an incremental
deformation enables the model to be applicable for high deformations as well.

By applying this multi-step approach, the approximations considered can be minimized.
In present work, the algorithm for the implementation of this multistep deformation is
described in Algorithm 2.2.

It can be observed in Algorithm 2.2 that the cell and face gradient stencils and the
Laplacian stencil (which is LHS) are updated after every step in order to consider the
newly available geometry. Similarly, Lamé constants are updated after every step. In
the end of this algorithm, the initial Geometry is restored to apply the accumulated
displacement in the bulk mesh which is done in the third part of the overall solver. The
multistep is expected to give better results because of the aforementioned improvements
but computationally expensive as well at the same time.
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3| Results: A cube of 64k cells

This chapter is dedicated to demonstrate the results obtained using the linear elasticity
solver developed in the present work as shown in Chapter 2. First, the accuracy of the
computed gradients using the stencils derived in Sections 2.5 and 2.6 for a test case is
compared. Following the validity of the gradients, a bigger case of a non-uniform cube
is considered to explain the results. In this chapter, the results are obtained for different
kinds of deformations using single and multi-step approaches as explained in Sec. 2.10.
In the final part of this chapter, the results of the multi-step approach are compared with
the results of a single step approach. The software tool ParaV iew is used to visualize
the results.

3.1. Gradient computation at cell and face centers

As shown in Eqs. 2.10- 2.12, the present linear elasticity solver requires the gradient of
the field variable displacement at the interfaces of the cells. It is evident from Sec. 2.5
that the gradients at the interfaces are interpolated from the cell gradients. Therefore,
the accuracy of the solution of the linear elasticity solver depends on the accuracy of
the computed cell and face gradients both. In present work, a generic second order least
square methodology to compute cell and face gradients is defined as shown in Sec. 2.5
which suffers from first order accuracy at the boundaries. The accuracy of second order at
the boundary cells and faces is preserved by introducing corrections as derived in Sec. 2.6.
In present section, the accuracy of cell and face gradients without and with the correction
are demonstrated for a generic field function as shown in Eq. 3.1. This function F (x, y, z)

contains linear and non-linear terms to demonstrate the accuracy of gradients not only
for different polynomials but for polynomials coupled in different dimensions as well.

F (x, y, z) = a.x+ b.y2 + c.z3 + d (3.1)

Here, a, b, c, and d are coefficients of the linear, quadratic, cubic and constant terms
respectively. For the ease of understanding, a uniform cube with 64 cells and 240 faces is
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used in the present study. The span of the used cube is (2, 2, 2) with all the cells having
the same volume. The center of the cube is kept at (0, 0, 0). A relative error Errreli for
component i of the computed gradient is calculated as follows:

Errreli =
(Fi,Comp − Fi,Ana)

Fi,Ana

(3.2)

Here, Fi,Comp and Fi,Ana represent the computed and analytical gradients respectively for
the ith component.

3.1.1. Cell gradients

In this subsection, the relative error in the computed partial derivative of the function
F (x, y, z) over the cell centers is presented component by component using ParaV iew

tool as shown in Fig. 3.1. The upper and lower limits of the relative errors are kept same
for the same components to compare the figures by the intensity of the colors. Among
the color map, red color denotes a positive error, blue color denotes a negative error
and grey color denotes an error approaching zero. In Fig. 3.1, the figures on left and
right denote the gradients without and with the boundary face contributions derived in
Sec. 2.6 respectively. The x component of the gradient shown in Fig. 3.1a shows that
the inclusion of boundary face contributions as shown in Sec. 2.6 makes the red and blue
colors in the cube lighter, which indicates that the relative error in the x gradient has
reduced. Similarly, in Figs. 3.1b and 3.1c, it can be observed that the relative error in
the y and z gradients respectively decreases by the introduction of the boundary face
contributions.

(a) x component.
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(b) y component.

(c) z component.

Figure 3.1: Relative error in cell gradients without and with boundary face contributions.

To get a more clear and precise estimation of these gradients, the results are plotted on
relative error vs cell ID’s plane as shown in Fig. 3.2 component by component. It is
evident from the plots that the precision of the gradients improves by the introduction of
the boundary face contributions. For the results including boundary face contributions,
though the gradients improve by incorporating the corrections in the stencils, a careful
evaluation of the relative errors indicates that for the x gradient component, which is the
linear part of F (x, y, z), the range of relative error stays ±5%, whereas for y gradient
component, which is the quadratic part of F (x, y, z), the range increases to ±10%, and
for z gradient component, which is the cubic part of F (x, y, z), the range of relative error
further increases to (0, 130)%. Since the cube being descretized in a very course manner,
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(a) Gradient of linear part.
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(b) Gradient of quadratic part.
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(c) Gradient of cubic part.

Figure 3.2: Relative errors in cell gradient vs cell ID’s.
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errors upto ±10% are acceptable but the error of 130% for the cubic function needs to be
studied further.
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Figure 3.3: Gradient for a linear equation.

For a linear function, the gradients from the least square method are expected to be exact
and not approximated even for a very course symmetric mesh but a non-zero relative
error is found as shown in Fig. 3.2a. The main reason behind this is the presence of
the other components in the function F (x, y, z). In Fig. 3.3, the x gradient of F (x, y, z)

with coefficients b and c equal to 0 is shown without and with the contributions from
the boundary faces. It is observed that the relative error in x gradient comes out to be
approaching to 0 all over the cube for both without and with boundary face contributions.

3.1.2. Face gradients

In this subsection, the computed partial derivative of the function F (x, y, z) over the face
centers is presented component by component as shown in Fig. 3.4. Since the paraview

tool does not support the face ID field visualization, the results are shown on relative error
vs face ID’s planes. It can be observed from the results that the relative error decreases
with the inclusion of the boundary face contributions for all the components. Almost
like cell center gradients, for the case with boundary face contributions, the x and y
components of the gradient show the relative error ranges of ±6% and ±12% respectively,
whereas the z component of the gradient shows a relative error range of (−25, 130)%.
The range of relative error for the cubic part is again a considerable one and needs to be
inspected.
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(a) Gradient of linear part.
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(b) Gradient of quadratic part.
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Figure 3.4: Face gradients without and with boundary face contributions.
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To demonstrate the computation of gradients over a more complex and fine mesh, and
to inspect the high relative error in the gradient of the cubic part of F (x, y, z), a non-
uniform cube with 64k cells is considered. The cube is made in such a way that the cell
thickness of the cells increases from the boundary to the bulk making the volume of all
the cells non-uniform in the bulk. For the case with the inclusion of the boundary face
contributions, Fig. 3.5 shows the computed cell gradients in the left and the relative errors
in the computed cell gradients in the right respectively component by component. It can
be observed in Figs. 3.5 that the range of relative errors in linear and quadratic parts of
the function F (x, y, z) drops to ±0.36% and ±0.87% respectively. Though a maxima of
relative error 130% still exists in the gradient of the cubic part of the function F (x, y, z)

as shown in Fig. 3.5c.

(a) Gradient of linear part.

(b) Gradient of quadratic part.
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(c) Gradient of cubic part.

Figure 3.5: Cell gradients and their relative errors with face contributions using Paraview.

It is to be noticed in the left figure of Fig. 3.5c that the magnitude of the gradient at
the cells near the center of the cube where the x coordinate approaches 0 is very close to
0. This makes the order of the analytical gradient close to the order of the error which
results in higher relative error (see Eq. 3.2) close to the center of the cube. Overall, since
the magnitude of gradient for the cubic part of Eq. 3.1 is close to 0 near the coordinate
0 as shown in Fig. 3.5c, the impact of high relative error can be considered as negligible.
Therefore, based on these results it can be said that the gradients in the present work are
accurate enough to develop the elasticity solver and carry out the mesh morphing.

3.2. Mesh morphing results: outward and inward de-

formations

In present work, the results of the developed elasticity solver are demonstrated on a
non-uniform cube with 64k cells by applying mainly two different and opposite kinds of
boundary conditions; namely, outward and inward. In the outward kind of boundary
condition, all the 6 faces of the cube are expanded by pivoting the center of the faces and
pulling by a length 60% of the edge length of the cube. In the inward kind of boundary
condition, the same faces are compressed by pivoting the centers of the faces and pushing
by a length 25% of the edge length of the cube. To obtain the results in the present
section, the elasticity coefficients are computed using an inverse of volume method as
explained in Sec. 2.1 with exponent p = 1. In present work, because of the use of a
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Figure 3.6: Mesh morphing for a cube with 64k cells: outward deformation.

FVM for discretization, the displacement field is computed at the cell centers and then
interpolated to the nodes. The magnitude of the displacements obtained from the linear
elasticity solver for an outward deformation at the cell centers are shown in the left of
Fig 3.6. The displacement field at the cell centers increases from blue to red color. After
interpolating the displacement field from the cell centers to the nodes and applying this
displacement field on initial geometry (in the final part of the overall solver as shown in
Sec. 2.4), the final deformed geometry is obtained as shown in right of Fig 3.6. Similarly,
for the inward deformation, the displacements on the cell centers and the final deformed
mesh are shown in Fig. 3.7. For the cases of outward and inward deformations, it is
observed that the boundary cells of the cube show the least shape change and hence
preserve their shapes. This happens because of more stiffness at the cells close to the
boundaries due to the low cell volumes near the boundaries. Fig. 3.8 shows a section of
the deformed cube for the outward and inward deformations. It is to be noticed from the
results that the orthogonality of the mesh near the boundary is very close to 90 deg, which
shows a good quality of the mesh near the boundary. It can be also observed that the
deformed mesh in both the outward and inward deformations is not in straight line but
curved lines which means that the displacements in different dimensions are dependent.
The reason for this behaviour of the deformed mesh is the coupled behaviour of the linear
elasticity equation defined by a trace as shown in Eq. 2.10.
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Figure 3.7: Mesh morphing for a cube with 64k cells: Negative deformation.

(a) Outward deformation. (b) Inward deformation.

Figure 3.8: Zoomed figures of the morphed mesh close to the boundary.

A table containing various mesh quality parameters as defined in Appendix A for the
outward and inward deformations is shown in Table 3.1. Positive minimum cell volumes
and passed cell face validity show that both the cases generate valid meshes for the applied
displacements. For a good quality mesh, the non-orthogonality at any interface should
not be more than 70◦ which is satisfied by the results in Table 3.1. For the mesh morphing
applications as discussed in Chapter 1, the quality of the mesh at the boundaries should
be good. It is evident from Table 3.1 for the present case of a non-uniform cube, that the
maximum non-orthogonality at the boundary comes out to be almost 17◦ and 3.5◦ for the
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outward and inward deformations respectively which show a good mesh quality.

Def-
orma-
tion

Max.

non-ortho-

gonality

(deg.)

Max. bound-

ary non-

orthogonality

(deg.)

Avg. non-

orthogonality

(deg.)

Max.

skew-

ness

Min.

cell vol-

ume

Cell

face

valid-

ity

Outward 66.13 17.11 21.76 0.83 1.25e-07 1

Inward 22.71 3.65 6.64 0.44 1.25e-07 1

Table 3.1: Mesh quality in outward, inward and no deformation cases.

3.3. Multi-step results and comparisons with single

step results.

Following the discussion in Sec. 2.10 regarding the merits of a multi-step approach, the
present section describes the results for the case of a non-uniform cube mentioned in the
previous section using a multi-step approach. For the current study, 4 different number of
steps are chosen and compared for both the outward and inward deformation boundary
conditions. The boundary conditions used in the present section are similar as used in
the previous section. As per the discussion in Sec. 2.1, the Lamé constants are computed
using an approach mentioned in Eq. 2.5 to consider the rigid body motion as well.

3.3.1. Outward deformation

For an outward deformation as mentioned in the previous section, the non-uniform meshed
cube is simulated with 1, 2, 5 and 10 steps. The results for these 4 different cases are
shown in Fig. 3.9. In the case of an outward deformation, the effect of multi-step is not
so clear in the cross section images, and therefore, a mesh quality Table 3.2 is shown for
details on the quality of the mesh with the number of steps.

It can be observed in Table 3.2 that the maximum non-orthogonality does not change
much but the average non-orthogonality decreases considerably by increasing the number
of steps. It can be also observed that the maximum non-orthogonality at the boundary
decreases as well which is much needed improvement for mesh morphing applications. For
all the cases with different number of steps, it is found that the minimum cell volume
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(a) One step. (b) 2 steps.

(c) 5 steps. (d) 10 steps.

Figure 3.9: Outward deformation using the multi-step approach as shown in Sec. 2.10.

Steps Max. non-

orthogonality

(deg.)

Max. bound-

ary non-

orthogonality

(deg.)

Avg. non-

orthogonality

(deg.)

Max.

skew-

ness

Min.

cell vol-

ume

Cell

face

valid-

ity

1 61.99 24.37 20.69 0.80 1.25e-07 1

2 61.63 22.79 19.17 0.83 1.25e-07 1

5 62.01 22.02 18.03 0.85 1.25e-07 1

10 61.95 21.65 17.58 0.86 1.25e-07 1

Table 3.2: Mesh quality in outward deformation with different number of steps.

is positive and all the cell face validity are passed which indicate that all the deformed
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meshes remain valid. It is to be noticed that the skewness increases with the increase
in number of steps but the extent of increase is not considerable with respect to the
betterment in the non-orthogonality and a trade-off benefits the high number of steps.

3.3.2. Inward deformation

For an inward deformation, all the 6 faces of the cube are pushed by a length equal to 25%

of the edge length of the cube with respect to 15% in the previous section to better show
the impact of the multi-step approach. The simulations are done for 4 different number
of steps: 1, 2, 5, and 10. The results for inward deformation for these 4 cases are shown
in Fig. 3.10. Unlike the outward deformations in Fig. 3.9, the effect of using a multi-step
approach is clearly visible in Fig. 3.10. For such a high inward deformation, a single step
approach as shown in Fig. 3.10a fails to provide a valid mesh. It can be seen that the
nodes at and near the boundary intersect with the nodes in the bulk mesh. For steps 2-10

(a) One step. (b) 2 steps.

(c) 5 steps. (d) 10 steps.

Figure 3.10: Inward deformation using the multi-step approach as shown in Sec. 2.10.
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in Fig. 3.10, it can be observed that the congestion of the mesh near the boundary de-
creases with increase in number of steps, which indicates that the mesh near the boundary
is preserving it’s shape more for more number of steps. To look into further details, the
mesh quality parameters are listed in Table 3.3 for a comparison between all the 4 cases.

Steps Max. non-

orthogonality

(deg.)

Max. bound-

ary non-

orthogonality

(deg.)

Avg. non-

orthogonality

(deg.)

Max.

skew-

ness

Min.

cell vol-

ume

Cell

face

valid-

ity

1 180.0 3.99 13.25 6.7 -5.10e-05 0

2 37.98 4.83 12.57 0.73 1.25e-07 1

5 39.61 5.61 13.49 0.73 1.25e-07 1

10 40.3 5.99 13.82 0.73 1.25e-07 1

Table 3.3: Mesh quality in inward deformation with different number of steps.

For a single step approach, it is clear from Table 3.3 that the maximum mesh non-
orthogonality of 180◦, negative mesh volumes and a 0 cell face validity exist, which make
the overall mesh invalid. For number of steps 2 − 10 it is observed that the maximum
and average non-orthogonality and maximum skewness increase slightly with the increase
in number of steps. The reason behind this behaviour can be explained using Fig. 3.10
where it can be seen that the increase in number of steps decreases the congestion near the
boundaries. Due to decrease in congestion near the boundaries, the mesh overall moves
towards the center of the cube and because of the finite volume inside the cube, the
average angle between the normal of a face and the vector connecting the two neighbour
cell centers increases. The similar happens at the boundary, where the cells are more
orthogonal when they are smaller and hence closer to each other but they become less
orthogonal when the congestion reduces and cells try to preserve their original shape and
hence farther from each other.

Overall, it can be said based on observations that a multi-step approach gives better
results than a single-step approach in terms of mesh quality. Although the optimum
number of steps can vary application to application. For applications with outward like
deformations, clearly more number of steps help in providing better quality morphed
mesh, but for inward like deformations, more number of steps helps in preserving the
shape of the mesh close to the boundary but it hardly helps in enhancing the mesh
quality parameters studied in the present work.
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3.4. Conclusions

Based on the results presented in the present chapter, following conclusions can be listed:

• The implementation of the proposed corrections in the second order least-square
method to include the contribution of boundary faces as described in Sec. 2.6 im-
proves the quality of the cell and face gradients considerably.

• The linear elasticity analogy is able to morph the volumetric mesh for different kinds
of deformations of opposite nature for a non-uniform cube of 64k cells.

• The linear elasticity analogy when applied using a multi-step approach produces
considerably better results than a single step approach for all kinds of deformations
considered in the present work. The mesh at the boundary can be more preserved
when a multi-step approach is used.

• In general, the optimum number of steps in the multi-step approach is a trade off
between the computational complexity and mesh quality. Although, it is found that
more number of steps necessarily does not mean better mesh quality but depends
on the kind of deformation as well.
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4| Parametric study

One of the objective of the present work is to investigate the proposed relations for the
elasticity coefficient E and Poisson’s ration ν as described in Sec. 2.1. This chapter is
dedicated to investigate these relations and present a parametric study for the parameters
present in the proposed relations. As described in Sec. 2.1, the present parametric study
is divided in two sections; namely for elasticity coefficient E and for Poisson’s ratio ν. In
both these sections, a non-uniform cube is simulated for both the outward and inward
deformations as described in Sec. 3.3 of the previous chapter. A single-step approach is
used to conduct all the simulations in the present chapter.

4.1. Elasticity coefficient

For the elasticity coefficient E, there are mainly 2 relations studied in the present work
as discussed in Sec: 2.1; namely, inverse of volume and inverse of distance relations with
exponents p and q respectively. In present work, for both the proposed relations, different
simulations are done for these exponents p and q starting from 0 to 5. For the computation
of Lamé constants, Eq. 2.5 which considers the rigid body motion as well is used , and
therefore, the Poisson’s ratio ν does not play a role in this section.

The distribution of the elasticity coefficient E over the cells near the boundary of the
non-uniform cube for exponent p = 1 for the inverse of volume method and q = 1 for
the inverse of distance method is shown in Fig. 4.1. It can be seen in Fig. 4.1a that
that due to the small volumes, the cells near the boundary have a much higher elasticity
coefficient with respect to the cells far from the boundary. It can be observed that the
elasticity coefficient decreases gradually while moving away from the boundary. Similarly,
in Fig. 4.1b, it can be observed that due to small distance from the nearest boundary,
the cells near the boundary have a much higher elasticity coefficient with respect to the
cells far from the boundary. With increasing distance from the boundary, the elasticity
coefficient gradually decreases while moving away from the boundary. At the boundary,
an increase in exponent p or q increases the elasticity coefficient further with respect to
the cells far from boundary.
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(a) Inverse of Volume relation (p = 1). (b) Inverse of Distance relation (q = 1).

Figure 4.1: Distribution of elasticity coefficient E near the boundary of non-uniform cube.

It is to be noticed in the present work, that the difference between the elasticity coefficient
between the boundary and the bulk mesh plays the key role in defining the stiffness of
the cells. It can be observed from Fig. 4.1a that with respect to the boundary cells,
the elasticity coefficient drops almost by 50% in the cells adjacent to the boundary cells,
whereas in Fig. 4.1b, this drop in elasticity coefficient is almost by 75%. Similarly, it
can be observed in the range of elasticity coefficient in both of Figs. 4.1a and 4.1a that
the ratio of maximum limit to the minimum limit in elasticity coefficient is almost 10 in
the earlier whereas more than 100 in the later. This comparison overall shows that the
difference in the elasticity coefficient E between the boundary and bulk mesh is much
more in inverse of distance method than in inverse of volume method. This difference
increases further by the increase of the exponents p and q.

4.1.1. Outward mesh deformation

In this subsection, the results for outward deformation on the cube are shown with E

computed using an inverse of the volume of the cell and inverse of distance of the cell
center from the nearest boundary surface with exponents p and q respectively.

Inverse of volume method

To demonstrate the results with the use of inverse of cell volume method, 6 different
simulations have been carried out with the exponent p from 0− 6. The cross sections of
the deformed cubes for exponent p = 0 − 5 passing through the center of the cube are
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shown in Fig. 4.2. For exponent p = 0, the elasticity coefficient E becomes a constant
throughout the domain irrespective of the volume of the cell. The exponent p starting
from 1 to 5 shows that the lesser the volume, the more the elasticity coefficient and the
more the stiffness. From Fig. 4.2a− 4.2f, it can be observed that the deformed meshes
look quite different. To understand the quality of the mesh better, different mesh quality
parameters are listed in Table 4.1 for exponents 0− 5.

It can be observed from Table 4.1 that the maximum and average non-orthogonality
decreases significantly by increasing the exponent from 0 to 1. In addition, a drastic
improvement in the maximum non-orthogonality at the boundary is found which plays
an important role for the mesh morphing applications. On the other hand, an increase
in maximum skewness is observed. An increase in exponent p from 1 to 2 shows a valid
mesh with positive volumes and passed cell face validity. It can be observed from Ta-
ble 4.1, that the maximum and average non-orthogonality increases but the maximum
non-orthogonality at the boundaries decreases drastically. The maximum skewness in-
crease a little by changing exponent p from 1 to 2. The change in the behaviour of

(a) p = 0. (b) p = 1.

(c) p = 2. (d) p = 3.
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(e) p = 4. (f) p = 5.

Figure 4.2: Effect of inverse of volume exponent p on the Outward deformation.

Exp-

onent

p

Max. non-

orthogonality

(deg.)

Max. bound-

ary non-

orthogonality

(deg.)

Avg. non-

orthogonality

(deg.)

Max.

skew-

ness

Min.

cell vol-

ume

Cell

face

valid-

ity

0 69.92 70.39 24.41 0.58 1.25e-07 1

1 61.90 24.37 20.69 0.80 1.25e-07 1

2 71.87 2.17 21.93 0.86 1.25e-07 1

3 180.0 2.33 24.39 6.31 -8.46e-06 0

4 180.0 1.81 27.14 14.47 -8.2e-05 0

5 180.0 1.41 29.4 108.32 -2.4e-04 0

Table 4.1: Mesh quality in outward deformation with different number of steps.

mesh by changing the exponent from 1 to 2 can be observed in Fig. 4.2b and 4.2c that the
mesh at the boundary becomes much more orthogonal but gets compressed in the bulk
resulting in more non-orthogonality in the bulk mesh.

A further increase in the exponent p from 2 to 3 results in an invalid mesh as the min-
imum cell volume becomes negative and the cell face validity fails. The maximum non-
orthogonality becomes 180◦ which is evident from Fig. 4.2d. Increasing the exponent p

further to 4 and 5 results in even worse mesh quality as can be clearly seen in Figs. 4.2e
and 4.2f. It can be noticed from Table 4.1 that the minimum negative cell volume increases
and the skewness increases unacceptably as well.
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Therefore, based on the results, it can be said the exponent of the inverse of volume from
0 to 2 result in valid meshes but from 3− 5 result in invalid meshes. It is observed, that
for a generic application, exponent p = 1 can be a good candidate but exponent p = 2

shows much better results at the boundaries. It is to be noticed that in case of exponent
p = 2, the maximum non-orthogonality is found to be > 70◦ which is not recommended
as a good mesh characteristic and the user must be careful while using this exponent.
Therefore, for mesh morphing applications, exponents 1 and 2 can be used based on the
application.

Inverse of distance method

For the inverse of distance relation for the elasticity coefficient E, 3 different cases with the
exponent q changing from 0 to 2 are simulated. The planes passing through the centers
of the deformed cubes are shown in Fig. 4.3 for all the 3 cases. For exponent q = 0, the

(a) q = 0. (b) q = 1.

(c) q = 2.

Figure 4.3: Effect of inverse of distance exponent q on the Outward deformation.
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elasticity coefficient E becomes a constant throughout the cube mesh irrespective of the
distance from the nearest boundary from the cell center. The increase in exponent q

shows the increase in elasticity coefficient in the cells close to the boundary and therefore
more stiffness for the cells close to the boundary. It can be observed in Fig. 4.3 that
the mesh changes drastically by increasing the exponent q from 0 to 2. Various mesh
quality parameters considered in the present work are listed in Table 4.2 for exponent q

from 0 − 2. It can be observed in Table 4.2, that by increasing the exponent q from 0

to 1, the maximum non-orthogonality increases by almost 5◦ and becomes > 70◦ which
is not good but the maximum boundary non-orthogonality reduces by over 65◦ which
is a big improvement for the mesh near the boundary. This decrease in the maximum
non-orthogonality

Exp-

onent

q

Max. non-

orthogonality

(deg.)

Max. bound-

ary non-

orthogonality

(deg.)

Avg. non-

orthogonality

(deg.)

Max.

skew-

ness

Min.

cell vol-

ume

Cell

face

valid-

ity

0 69.92 70.39 24.41 0.58 1.25e-07 1

1 74.99 4.43 23.48 0.85 1.25e-07 1

2 180.0 1.46 31.17 106.43 -1.93e-04 0

Table 4.2: Mesh quality in outward deformation with different number of steps.

can be clearly observed in Fig. 4.3b where it can be observed that the boundary mesh
becomes almost orthogonal. It can be also observed in Table 4.2 that the average non-
orthogonality decreases as well but the maximum skewness increases.

For an increase in the exponent q from 1 to 2, it can be observed that the minimum cell
volume becomes negative and the cell face validity fails which indicate that the mesh has
become invalid for exponent q = 2. Fig. 4.3c clearly reflects this bad quality of the mesh
and the inverted cells. The boundary becomes further more orthogonal but compresses
the internal mesh so much that the maximum non-orthogonality becomes 180◦ in the bulk
resulting in a failed mesh.

Overall, based on the results, it can be said that the relation of E as the inverse of
the distance between the centroid of the cell and the nearest boundary point works well
only for the case with an exponent q = 1. Because of the existence of maximum non-
orthogonality > 70◦, the user must be careful while using this relation. In present work,
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the simulations with q > 2 were carried out as well but the quality of the deformed mesh
becomes unacceptably worse and therefore it is needless to show them here.

4.1.2. Inward mesh deformation

In this subsection, the results for inward mesh deformation for a non-uniform cube with
E computed using the inverse of volume and inverse of distance relations are presented.

Inverse of volume method

Just like the outward deformation, 6 different simulations have been carried out with the
exponent p from 0 − 5. For these 6 cases, the planes passing through the center of the
corresponding deformed cubes are shown in Fig. 4.4. For p = 0, it can be seen in Fig. 4.4a
that the mesh stays preserved around the center of the deformed cube but dramatically
fails near the boundary because of the same stiffness of all the cell irrespective to their cell
volumes. For an exponent p = 1, it can be seen in Fig. 4.4b, that the mesh quality near
the boundary improves but the cells intersect and result in a failed mesh overall. A further
increase in exponent p > 1 shows further improves the quality of the mesh at the boundary
but contracts the mesh in the bulk as well. To understand the results better, the various
mesh quality parameters are listed in Table 4.3 for exponent p from 0−5. By increasing the
exponent p from 0 to 1, it can be observed that the average non-orthogonality, maximum
boundary non-orthogonality and skewness all decrease drastically, but due to negative
mesh volume, 180◦ maximum non-orthogonality and failed cell face validity, the overall
mesh fails. An increase in the exponent p from 1 to 2 decreases the maximum skewness
to a practical value and decrease the average non-orthogonality with positive minimum
cell volume and passed cell face validity, but the maximum non-orthogonality comes out
to be 180 which is unacceptable.

(a) p = 0. (b) p = 1.



52 4| Parametric study

(c) p = 2. (d) p = 3.

(e) p = 4. (f) p = 5.

Figure 4.4: Effect of inverse of volume exponent p on the Inward deformation.

Exp-

onent

p

Max. non-

orthogonality
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ary non-

orthogonality

(deg.)

Avg. non-

orthogonality

(deg.)
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skew-

ness

Min.

cell vol-

ume

Cell

face

valid-

ity

0 180.0 175.65 20.03 70.96 -9.38e-05 0

1 180.0 3.99 13.25 6.69 -5.1e-05 0

2 180.0 4.73 12.33 0.73 1.25e-07 1

3 53.46 4.88 14.06 0.73 1.25e-07 1

4 69.62 4.79 16.43 0.73 1.25e-07 1

5 180.0 4.73 19.57 18.60 -5.07e-05 0

Table 4.3: Mesh quality in outward deformation with different number of steps.
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A further increase in the exponent p to 3 makes the mesh valid for all the quality pa-
rameters as shown in Table 4.3. It can be observed in Fig. 4.4d that the mesh near the
boundary preserve their shape very well but results in bit more non-orthogonality in the
bulk mesh. An increase in exponent p from 3 to 4 makes the mesh near the boundary
even more preserved, but as the internal mesh gets compressed even more, the maximum
and average non-orthogonality increase as well. For an exponent p = 5, the internal
mesh gets compressed so much that it starts to overlap and becomes invalid as shown in
Fig. 4.4f. It can be observed that there exists negative minimum volume, 180◦ maximum
non-orthogonality, an unacceptable skewness of 18.6039, and a failed cell face validity.

Therefore, for the present inward deformation case, the relation of elasticity coefficient
with the inverse of volume comes out such as the exponents 0− 2 result in a failed mesh
because of the boundary mesh being highly skewed and maximum non-orthogonality of
180◦ near the boundary whereas the exponent p = 5 fails because of crushing of the
internal cells far from the boundary in order to preserve the mesh near the boundary.
The exponents p = 3, 4 work well in preserving the mesh at the boundary and keeping
the internal mesh valid.

Inverse of distance method

Like in previous Sec. 4.1.1, 3 different cases with 3 different exponents q are considered to
discuss the effect of inverse of distance relation. For these 3 cases with exponent q = 0−2,
the planes passing through the center of the deformed cube are demonstrated as shown
in Fig. 4.5. Just like the case with p = 0 in the inverse of volume method, all cells have
the a constant and same elasticity coefficient for q = 0 case and therefore the result is
the same as well for this case. For q = 1, the elasticity coefficient becomes large near the
boundaries providing the cells nearby with high stiffness. This high stiffness helps in

(a) q = 0. (b) q = 1.
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(c) q = 2.

Figure 4.5: Effect of inverse of distance exponent q on the Inward deformation.
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0 180.0 175.65 20.03 70.96 -9.38e-05 1

1 51.17 4.54 13.7 0.73 1.25e-07 1

2 180.0 4.74 24.08 90.80 -2.1e-04 0

Table 4.4: Mesh quality in outward deformation with different number of steps.

preserving the mesh near the boundary as shown in Fig. 4.5b. The table containing the
mesh quality parameters for exponents q = 0−2 is shown in Table 4.4. A drastic decrease
in all the mesh quality parameters is observed by increasing exponent q from 0 to 1 which
makes the mesh valid for q = 1 case. An increase in exponent q from 1 to 2 improves the
mesh quality near the boundaries a lot and the mesh near the boundary almost preserves
their initial shape as shown in Fig. 4.5c, but the internal mesh gets crushed and results
in 180◦ of maximum non-orthogonality, negative minimum cell volume and a failed cell
face validity, which indicates that the mesh fails for q = 2 case.

Therefore, based on the results, it can be said for the present inward deformation, that for
the inverse of distance relation, the exponent q = 1 works well at both the boundary and
the internal mesh, but q = 0 results in failed mesh at the boundaries and good mesh far
from boundary, whereas q = 2 results in good mesh near the boundary and failed mesh
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far from the boundary.

To sum up this section, it can be said based on the results that for the inverse of distance
relation, only the exponent q = 1 provides us with a valid deformed mesh for the given
given outward and inward deformations. For the inverse of volume method, the exponents
p = 3, 4 work best for the given outward deformation, whereas exponents p = 0 − 2

work for the given inward deformation. Based on the results, it can be said for the
inverse of volume relation that the optimum exponent depends on the kind and amount
of deformation provided to the initial mesh. In a general case, the user can use the
exponents p = 1− 4 for good quality deformed mesh.

4.2. Poisson’s ratio

In the basic linear elasticity model, the Lamé coefficients are computed using the equation
derived from the linear elasticity law as shown in Eq. 2.3 which uses both the elasticity
coefficient E and the Poisson’s ratio ν. In the proposed relations for E and ν in the
present work as described in Sec. 2.1, the Poisson’s ratio ν is kept at a same and constant
value throughout the mesh. The present section is dedicated to find out the optimum
Poisson’s ratio ν for both the outward and inward deformation cases for a non-uniform
cube. As per Eq. 2.3, ν can be kept between −1.0 and 0.5. In present work, 7 different
case studies are simulated with 7 different Poisson’s ratios ν at a difference of almost 0.25
starting from −1.0.

4.2.1. Outward mesh deformation

The non-uniform cube under consideration is undergone outward deformation for all the
faces as described in the previous section. In present subsection, the elasticity coefficient
relation inversely proportional to the volume of the cell with an exponent p = 1 is con-
sidered. The results with an outward deformation for the range of ν between (−1.0, 0.5)

are shown in Fig. 4.6. For the first and final simulation ν = −1.0 and 0.5 would give a
undefined solution and therefore a value of −0.99 and 0.49 are simulated. It is found out
that the solution does not converge for 0.49 and an upper limit of ν = 0.30 is obtained.
From Fig. 4.6, it can be observed that the results do not change a lot. The only noticeable
detail seems that the orthogonality at the boundary increases from Fig. 4.6a to 4.6g but
the internal mesh gets compressed as well. To understand better the change in mesh, a
table with various mesh quality parameters is shown in Table 4.5.

It can be observed in Table 4.5, that with the increase in Poisson’s ratio ν, the maximum
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(a) ν = −0.99 . (b) ν = −0.75.

(c) ν = −0.5. (d) ν = −0.25.

(e) ν = 0.0. (f) ν = 0.25.

(g) ν = 0.35.

Figure 4.6: Effect of Poisson’s ratio on the outward deformation.
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ν Max.
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ness
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cell vol-

ume

Cell

face

valid-

ity

-0.99 62.55 22.18 20.98 0.81 1.25e-07 1

-0.75 62.74 21.84 21.03 0.81 1.25e-07 1

-0.5 63.08 21.35 21.1 0.81 1.25e-07 1

-0.25 63.66 20.62 21.2 0.82 1.25e-07 1

0 64.54 19.43 21.37 0.82 1.25e-07 1

0.25 66.13 17.11 21.76 0.83 1.25e-07 1

0.3 66.93 16.34 21.9 0.83 1.25e-07 1

Table 4.5: Mesh quality in outward deformation with different number of steps.

non-orthogonality decreases at the boundary which is good for the mesh morphing appli-
cations, whereas the maximum non-orthogonality in the bulk mesh increases. The reason
for maximum non-orthogonality to increase is again that to preserved the boundary mesh,
the internal mesh gets compressed and suffers from more non-orthogonality. It is observed
that the average non-orthogonality and the maximum skewness increase but not consid-
erably. The minimum cell volume stays positive and the cell face validity passes which
indicates that the mesh does not fail in any case.

Overall, for better mesh quality at the boundaries which is needed in the mesh morphing
applications, a positive Poisson’s ratio ν can be used. This does suffers from bad mesh
quality in the bulk mesh but a multi-step approach can help in optimizing the mesh
quality further.

4.2.2. Inward mesh deformation

In this subsection, the non-uniform cube is undergone an inward deformation at all the
faces. The elasticity coefficient is considered to be computed from the inverse of cell
volume approach with an exponent p = 3. The results for an inward deformation for the
range of ν between (−1.0, 0.5) are shown in Fig. 4.7. For an inward deformation, the
maximum ν for which a converged solution is obtained is found out to be 0.35. Therefore,
6 simulations for ν from −0.99−0.25 and one for 0.35 are conducted in the present study.
It can be observed from Fig. 4.7a to 4.7g that the cells between the boundary and the
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(a) ν = −0.99 . (b) ν = −0.75.

(c) ν = −0.5. (d) ν = −0.25.

(e) ν = 0.0. (f) ν = 0.25.

(g) ν = 0.35.

Figure 4.7: Effect of Poisson’s ratio on the inward deformation.
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center of the cube become less compressed. The details of various mesh quality parameters
for all the ν are listed in Table 4.6.

For all the 7 cases with different ν, the minimum cell volume stays positive and cell face
validity passes which indicates that all the deformed meshes are valid. It can observed
in Table 4.6 that the maximum non-orthogonality in the mesh and the maximum non-
orthogonality at the boundary decrease with increase in the ν whereas the average non-
orthogonality and maximum skewness do not change considerably.

The results overall show that the mesh quality improves from negative to positive Poisson’s

ν Max.

non-ortho-

gonality

(deg.)
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orthogonality
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Avg. non-

orthogonality

(deg.)
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skew-

ness

Min.

cell vol-
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Cell

face

valid-

ity

-0.99 51.69 4.4 14.01 0.73 1.25e-07 1

-0.75 51.47 4.33 14.02 0.73 1.25e-07 1

-0.5 51.17 4.23 14.03 0.73 1.25e-07 1

-0.25 50.75 4.1 14.05 0.73 1.25e-07 1

0 50.36 3.89 14.12 0.73 1.25e-07 1

0.25 49.93 3.53 14.31 0.73 1.25e-07 1

0.35 49.86 3.42 14.39 0.73 1.25e-07 1

Table 4.6: Mesh quality in outward deformation with different number of steps.

ratio ν. Therefore, it can be said in general that a positive Poisson’s ratio (ν > 0) shows
the optimum results from the point of view of good mesh quality.

Based on both the above subsections, it can be said that a positive Poisson’s ratio ν gives
better results than a negative one and is recommended to be used.

4.3. Conclusions

In present chapter, 2 different kinds of parametric studies are conducted; One on the
Elasticity coefficient E, and the other on the Poisson’s ratio ν. In the first kind of
parametric study on elasticity coefficient E, 2 different relations to compute the elasticity
coefficient are considered with two different parameters p and q respectively. In the
second kind of parametric study, an optimum Poisson’s ratio ν is found out by simulating
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the linear elasticity solver for different ν values. An outward and an inward kinds of
deformations are considered for the simulations with a single step approach. A summary
of the conclusions based on the parametric study conducted in the present chapter can
be listed as follows:

Elasticity coefficient E

• For any kind of deformation considered in this chapter, increasing the parameter p

in the inverse volume relation or q in the inverse distance relation helps in preserving
the mesh near the boundary but compresses the internal mesh far from the boundary
resulting in clustering of cells.

• For an outward deformation, parameter p = 0, 1, 2 provides valid meshes in in-
creasing order of mesh quality and parameter q = 0, 1 provides valid meshes with
increasing order of mesh quality. When comparing the mesh quality tables, it is
found that the inverse volume method with p = 1, 2 provides better results than
inverse distance relation with q = 1.

• For an inward deformation, a valid mesh is generated using p = 3, 4 with decreasing
mesh quality and q = 1. The deformed mesh fails for p = 0, 1, 2 and q = 0 because
of clustering and inversion of cells near the boundary and fails at p = 5 and q >= 2

due to clustering and inversion of cells far from the boundary. When comparing the
mesh quality tables, p = 3 and q = 1 provide comparable mesh quality.

It is to be noted that the present parametric study is conducted over high deformations.
There might exist small deformations where all the relations are able to provide with
a valid mesh. The optimum choice of the parameters p and q depends on the kind of
deformation provided as well.

Poisson’s ratio ν

• Despite the possible upper limit of the Poisson’s ratio ν being 0.5, a converged
solution is obtained only until a maximum of 0.3 for both the outward and the
inward kinds of deformations.

• For both kinds of deformations, a Poisson’s ratio ν > 0 generates the mesh with
optimum mesh quality.
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5| Comparisons with Laplacian
and Laplacian quaternions
techniques

There exist various techniques to morph a given volumetric unstructured mesh as dis-
cussed in Chapter 1. All the techniques have some pros and cons, and therefore, the user
is required to choose the appropriate method according to the application and type of
deformation. In present chapter, the results of mesh morphing using the linear elasticity
technique developed in the present work are compared with the results obtained using
other promising mesh morphing techniques as follows:

• Laplacian technique

• Laplacian quaternions technique

• Laplacian technique with narrow band width

• Laplacian quaternions technique with narrow band width

The first two of the aforementioned techniques are explained in Chapter 1. The concept
of narrow band width is such that the mesh until a distance from the boundary is forced
to be undeformed in order to preserve it. In present chapter, the elasticity coefficient is
computed using the relation inversely proportional to the cell volume with an exponent
p = 1. The Lamé constants are computed using the relation shown in Eq. 2.5. The
present chapter is divided mainly in two sections with demonstrating the comparisons for
single and multi-step approaches. Both of these sections contain the results for outward
and inward kinds of deformations.

5.1. Comparisons for a single-step approach

For a single-step approach, the outward and inward deformations are used as boundary
conditions as used in Sec. 4.1 of the previous chapter.
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5.1.1. Outward mesh deformation

For an outward deformation, the planes of the non-uniform deformed cubes passing
through the center and parallel to one of the initial faces are shown in Fig. 5.1 for the
linear elasticity technique and the aforementioned techniques. It is observed for the tech-
niques other than the linear elasticity solver that the mesh is hardly orthogonal at the
boundaries of the deformed cube. For the Laplacian quaternions technique without and
with the narrow band width, it can be observed in Figs. 5.2c and 5.2e that the mesh
get accumulated near the boundary but does not deform far from the boundary. For
better description of the mesh quality, the various mesh quality parameters are listed in
Table 5.1.

It is observed in Table 5.1, that for a single-step approach, with 180◦ of maximum non-
orthogonality, large maximum non-orthogonality at the boundary, unacceptably large
maximum skewness, negative minimum cell volume, and failed cell face validity, Laplacian

(a) Linear elasticity analogy. (b) Laplacian technique.

(c) Laplacian quaternions technique. (d) Laplacian technique with Narrow band
width.
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(e) Laplacian quaternions technique with Nar-
row band width.

Figure 5.1: Outward deformation in the cube with a single step approach.
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(a) 61.90 24.37 20.69 0.80 1.25e-07 1

(b) 67.97 68.57 24.95 0.77 1.25e-07 1

(c) 180.0 144.06 41.94 29.67 -4.3e-04 0

(d) 67.44 68.24 25.48 0.83 1.25e-07 1

(e) 180.0 84.92 38.28 83.36 -4.7e-04 0

Table 5.1: Mesh quality in outward deformation with a single step approach.

quaternion approach fails to to deliver a valid mesh with or without the narrow band
width. On the other hand, Laplacian technique with and without the narrow band width
delivers a valid mesh. In comparison to the linear elasticity technique, the Laplacian
technique results in large non-orthogonality not only at the boundary but throughout the
mesh as anticipated from Fig. 5.1.

Therefore, for an outward deformation with a single-step, it is found out that that the
developed linear elasticity technique generates the best quality mesh among the techniques
aforementioned.
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5.1.2. Inward mesh deformation

For an inward deformation on the non-uniform cube, the planes passing through the center
of the cube and parallel to the original surface of the cube are shown in 5.2. For all the
Figs. 5.2a- 5.2e, it can be noticed that all meshes show very bad quality at the boundary
of the cube and result in overlapped and negative volume cells. The various mesh quality
parameters are listed in Table 5.2 for the meshes shown in Fig. 5.2.

It can be observed for all the meshes that the maximum non-orthogonality stays unac-
ceptable 180◦ with high maximum boundary non-orthogonality and negative minimum
cell volumes, which make these meshes invalid. Though, it can be noticed among these
meshes that the average non-orthogonality is lowest in case of linear elasticity technique
than all the other techniques. Similarly, the maximum skewness turns out to be minimum
using the linear elasticity technique.

(a) Linear elasticity analogy. (b) Laplacian technique.

(c) Laplacian quaternions technique. (d) Laplacian technique with Narrow band
width.
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(e) Laplacian quaternions technique with Nar-
row band width.

Figure 5.2: Inward deformation in the cube with a single step approach.
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(a) 180.0 3.99 13.25 6.7 -5.1e-05 0

(b) 180.0 46.47 15.89 17.42 -4.6-05 0

(c) 180.0 104.16 18.02 232.34 -1.9-04 0

(d) 180.0 46.23 16.15 31.32 -7.4-05 0

(e) 180.0 3.44 16.53 111.43 -3.1e-04 0

Table 5.2: Mesh quality in inward deformation with a single step approach.

Therefore, based on the results for the given inward deformation, it can be said that the
mesh fails in all the cases but the best quality among the failed meshes comes out to be
for the case with the use of linear elasticity technique.

5.2. Comparisons for a multi-step approach

In this section, the simulations are done using a multi-step approach for the linear elastic-
ity technique and all the other techniques mentioned above. A total 10 number of steps
are used to simulate every case. An outward and an inward deformations are provided to
the non-uniform cube for the comparisons.



66 5| Comparisons with Laplacian and Laplacian quaternions techniques

5.2.1. Outward mesh deformation

In this subsection, the non-uniform cube is provided with an outward deformation to all
the faces of the cube as boundary condition. The results are shown in form of a cross
section plane passing through the center of the cube as shown in Fig. 5.3. In order to
support the analysis, the mesh quality parameters for all these techniques are listed in
Table 5.3.

It is observed from Table 5.3 that the Laplacian technique with and without the narrow
band width shows high maximum and average non-orthogonality over the bulk mesh. It is
to be noticed that the non-orthogonality at the boundary for the Laplacian technique with
and without the narrow width exhibit large values which are also evident from Fig. 5.3b
and 5.3d. Laplacian quaternion technique, on the other hand, generates a good quality
mesh with a low maximum non-orthogonality at the boundary. This non-orthogonality
at the boundary for the Laplacian quaternion technique reduced further when a narrow

(a) Linear elasticity analogy. (b) Laplacian technique.

(c) Laplacian quaternions technique. (d) Laplacian technique with Narrow band
width.
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(e) Laplacian quaternions technique with Nar-
row band width.

Figure 5.3: Outward deformation in the cube with a 10 step approach.

Tech-

nique

Max. non-

ortho-

gonality

(deg.)

Max. bound-

ary non-

orthogonality

(deg.)

Avg. non-

orthogonality

(deg.)

Max.

skew-

ness

Min.

cell vol-

ume

Cell

face

valid-

ity

a 61.86 21.65 17.58 0.86 1.25e-07 1

b 67.55 68.38 21.17 0.76 1.25e-07 1

c 66.49 15.79 21.47 0.88 1.25e-07 1

d 68.7 68.24 21.20 0.83 1.25e-07 1

e 70.77 12.74 22.31 0.87 1.25e-07 1

Table 5.3: Mesh quality in outward deformation with a 10 step approach.

band width is applied. For the linear elasticity solver developed in the present work, the
maximum non-orthogonality obtained at the boundary is larger than in case of Laplacian
quaternion with and without the narrow band width. As far as maximum and average
non-orthogonality in the bulk mesh are concerned, the presently developed linear elasticity
technique provides much better results. In case of Laplacian quaternion technique with
narrow band width, despite very good maximum boundary non-orthogonality, the overall
maximum non-orthogonality crosses 70◦ which is labelled as bad characteristic for a mesh.
It is to be noticed that the maximum skewnwss is also lesser in case of linear elasticity
techniques than the Laplacian quaternions techniques.
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Therefore, based on the results and comparisons, it can be said that the linear elasticity
solver generate a much better quality mesh compared to Laplacian techniques with and
without the narrow band width, where it can be said upto some extent, that the Laplacian
quaternions technique with narrow bandwidth show a mesh quality comparable with the
linear elasticity model as used in the present section. Although, because of the possibility
of using an exponent p > 1 or q = 1, it is possible to further enhance the quality of mesh
at the boundary and the bulk for the linear elasticity solver.

5.2.2. Inward mesh deformation

For an inward mesh deformation on a non-uniform cube, the cross-sectional view of the
cube parallel to the initial surface of the cube is shown in Fig. 5.4. It is observed in the
results that unlike the single-step case, all the meshes look without any overlapping and
valid. Various mesh quality parameters for all the techniques using a 10 step approach
are listed in Table 5.4.

(a) Linear elasticity analogy. (b) Laplacian technique.

(c) Laplacian quaternions technique. (d) Laplacian technique with Narrow band
width.
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(e) Laplacian quaternions technique with Nar-
row band width.

Figure 5.4: Inward deformation in the cube with a 10 step approach.
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a 40.33 5.99 13.82 0.73 1.25e-07 1

b 45.91 46.66 15.11 0.74 1.25e-07 1

c 47.33 3.46 12.1 0.74 1.25e-07 1

d 46.24 46.23 16.36 0.75 1.25e-07 1

e 51.34 4.66 12.76 0.74 1.25e-07 1

Table 5.4: Mesh quality in inward deformation with a 10 step approach.

It is observed in Table 5.4 that all the techniques generate a mesh with positive minimum
cell volume and passed cell face validity and hence a valid mesh. It is noticed that
the maximum skewness remains almost same in all results from all the techniques. For
the Laplacian technique with and without the narrow band width, it is found that the
non-orthogonality at the boundary comes out to be very high with respect to the other
methods. The maximum and average non-orthogonality in the bulk mesh is also found
out to be the higher than rest of the techniques. For Laplacian quaternion techniques with
and without the narrow band width, it is found that the maximum non-orthogonality at
the boundary and the average non-orthogonality come out to be lesser than the linear
elasticity technique, with the later being smaller in both the properties. On the other
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hand, the maximum non-orthogonality for the linear elasticity method comes out to be
considerably lesser than the Laplacian quaternion method with or without the narrow
band width.

Therefore, based on the results and comparisons, it can be said that the Laplacian tech-
niques with or without the narrow band width does not perform well when compared to
the rest of the methods. For the Laplacian quaternion technique with and without the
narrow band width, it can be said that it performs comparative to the linear elasticity
solver as it is used. It is to be noticed that there is a possibility of an improvement in the
quality of mesh near the boundary and the bulk by using p > 1 or q = 1.

5.3. Conclusions

In this section, the developed linear elasticity solver is compared with some of the promis-
ing existing mesh morphing techniques; namely, Laplacian and Laplacian quaternion tech-
niques each with and without the narrow band width. The results of all the techniques
are compared for a single as well as multi-step approaches. The results presented in the
present chapter can be concluded as follows:

• For a single step approach, irrespective of the kind of deformation, the linear elas-
ticity solver clearly provides results with much better mesh quality. The boundary
mesh is preserved in a much better way in the solution of linear elasticity solver.
The linear elasticity technique outperforms all the other techniques in all the mesh
quality parameters.

• For a multi-step approach, the linear elasticity technique clearly outperforms the
Laplacian technique for any kind of deformation with or without the narrow band
width.

• For a multi-step approach, for an outward deformation, the linear elasticity tech-
nique provides better results in the bulk mesh than the Laplacian quaternion tech-
nique with or without the narrow band width, but the Laplacian quaternion tech-
niques with and without the narrow band width provides with better results at the
boundary.

• For a multi-step approach with an inward deformation, the mesh quality comes out
to be comparable for the linear elasticity technique and the Laplacian quaternion
technique with or without the narrow band width. The narrow band width improves
the mesh quality for both the outward and inward deformations at the boundary
but worsen the mesh quality in the bulk mesh.
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Mesh morphing has various applications in the field of aerodynamic shape optimization,
FSI, moving boundary problem etc. as discussed in Chapter 1. These wide field of
applications provide the opportunity to apply the presently developed linear elasticity
mesh morpher on the meshes undergoing such applications and test the quality of the
output mesh. So far, the developed linear elasticity mesh morpher is tested only on
a non-uniform cube with 64k cells. To test the robustness of the presently developed
linear elasticity technique, two industrial cases from two different application fields are
considered as follows:

• Wing of an airplane: FSI application

• Aerodynamic shape optimization in a car

6.1. Wing of an airplane

In present section, the industrial case of the wing of an airplane is considered. Unlike the
non-uniform cube, where only the structured mesh with hexahedron kinds of cells was
used, the wing contains a totally unstructured mesh with tetrahedron and hexahedron
both kinds of cells. The mesh of the wing contains over 1.25 million cells including a
symmetry plane. The mesh quality parameters for the undeformed non-uniform cube and
the wing cases are listed in Table 6.1. It can be seen that the case of wing has a large

Mesh Max. non-ortho-

gonality (deg.)

Max. boundary non-

orthogonality (deg.)

Min. cell

volume

Cell face

validity

Non-uniform
cube

0 0 1.25e-07 1

Wing of an
airplane

80.32 72.31 6.95e-11 1

Table 6.1: Mesh quality parameters for a non-uniform cube and a wing of an airplane.
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maximum cell and maximum boundary non-orthogonality. Therefore, it can be said that
the industrial case of a wing is good case to test the robustness of the presently developed
linear elasticity mesh morpher.

For the wing of an airplane, one of the most critical application is to undergo the well
known event of turbulence. During turbulence, the example of FSI can be clearly noticed.
Under the turbulence, the wing can undergo difference kinds of deformations. In present
work, mainly 4 kinds of deformations are considered. These deformations are as follows:

• Bending

• Twisting

• Bending + Twisting

• Cambering

Out of these deformations, only bending, twisting and bending + twisting deformations
can be found during the event of turbulence. In present work, cambering deformation
is also simulated to show an example of the aerodynamic shape optimization application
for the wing. The boundary conditions used for all these kinds of simulations is the
Dirichlet boundary condition. The Dirichlet boundary condition is obtained using the
part 1 of the overall solver as described in Sec. 2.4. Unlike the non-uniform cube case
where a RBF technique was used to get the surface deformations, a FFD technique is
used to get the deformations for the surface of the wing. This surface deformation works
as the Dirichlet boundary condition in the present chapter. In the FFD technique for
surface deformations, a FFD box is made around the surface mesh to be morphed and a
deformation in the FFD box leads to the deformation in the surface mesh. The FFD box
in it’s original shape can be seen alongside the wing in Fig. 6.1. For different kinds of
deformations, this FFD box is provided with the respective deformation information and
the surface deformation or the boundary conditions are generated.

6.1.1. Bending

In order to get the Dirichlet boundary condition for the bending case, the FFD box is
rotated about the line where the wing and the symmetry plane intersect, i.e. the root
of the wing. For the bending deformation, mainly two cases with two different kinds of
bends are considered. In the first kind of bend, the FFD box is rotated linearly, whereas
in the second kind of bend, the FFD box is rotated non-linearly as shown in Fig. 6.2. A
multi-step approach is used for the present study with every step equal to 5◦ of bending.
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Figure 6.1: The wing of an airplane with the FFD box.

(a) Linear bend. (b) Non-linear bend.

Figure 6.2: FFD box for linear and non-linear bends.

In the linear bend as shown in Fig. 6.2a, the angle of bend is equal to the angle between
the original and the new FFD box, whereas in the non-linear bend as shown in Fig. 6.2b,
the angle of bend is equal to the angle between the line connecting the second and fourth
points of the FFD box and the original FFD box as shown in Fig. 6.3.

The mesh quality parameters for the linear bend in the wing are listed in Table 6.2 and
plotted in Fig. 6.4a for different angles of bending from 0◦ to 35◦. It can be observed from
the results that the maximum cell non-orthogonality decreases slightly until 30◦ and then
increases rapidly, whereas the maximum boundary non-orthogonality increases rapidly
with the increase in the angle of bend. The maximum cell non-orthogonality crosses the
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Figure 6.3: Angle of bend for a non-linear bend.

Angle of

Bend (deg.)

Max. non-ortho-

gonality (deg.)

Max. boundary non-

orthogonality (deg.)

Min. cell

volume

Cell face

validity

0 80.32 72.31 6.95e-11 1.0

10 80.14 74.43 7.54e-11 1.0

20 80.01 76.38 6.78e-11 1.0

30 79.98 77.93 6.33e-11 0.89

35 86.4 79.32 5.9e-11 0.0

Table 6.2: Mesh quality parameters for a linear bending in the wing of an airplane.

limit of maximum non-orthogonality for a valid mesh which is set at 85◦ almost at 34◦

of bending. Moreover, it is observed that the cell face validity decreases slightly with the
increase of angle of bend until almost 30◦ and then decreases further suddenly to zero by
crossing the minimum cell face validity limit which is set at 0.5. Therefore, it is safe to
say based on the simulation results that the mesh quality remains valid until almost 34◦

of a linear bend and becomes invalid with a further increase of angle of bend due to bad
maximum non-orthogonality in the bulk mesh and inversion of some elements.

The mesh quality parameters for the non-linear bend in the wing are plotted in Fig. 6.4b
and listed in Table 6.3 for different angles of bending from 0◦ to 50◦. A similar be-
haviour that to the linear bend is observed in the non-linear bend. The maximum cell
non-orthogonality decrease slightly with the increase in the angle of bend, where the maxi-
mum boundary non-orthogonality increases rapidly. The maximum cell non-orthogonality
crosses the maximum non-orthogonality limit at almost 47◦ of bend. Therefore, based on
the results, it can be said that a valid mesh can be obtained upto a non-linear bend of
almost 47◦. In the case of a non-linear bend, it is to be noticed that all the cell volumes
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(a) Linear bend.
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(b) Non-linear bend.

Figure 6.4: Mesh quality plot for bending in a wing.

stay positive and and no cell inversion occurs but the mesh becomes invalid because of
the bad maximum non-orthogonality in the bulk mesh.
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Angle of

Bend (deg.)

Max. non-ortho-

gonality (deg.)

Max. boundary non-

orthogonality (deg.)

Min. cell

volume

Cell face

validity

0 80.32 72.31 6.95e-11 1

10 80.16 74.45 7.53e-11 1

20 80.06 76.43 6.76e-11 1

30 80.04 77.98 6.31e-11 0.9

40 79.98 80.94 5.5e-11 0.89

45 80.68 82.31 5.19e-11 0.83

50 88.86 83.56 4.96e-11 0.51

Table 6.3: Mesh quality parameters for a non-linear bending in the wing of an airplane.

The original wing mesh with the maximum possible linear and non-linear bends of 30◦

and 45◦ respectively with a valid mesh are shown in Fig. 6.5. The left hand side figures

(a) Undeformed mesh.

(b) Linear bend of 30◦.
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(c) Non-linear bend of 45◦.

Figure 6.5: Bending in a wing for linear and non-linear bends.

in Fig. 6.5 show the surface deformation obtained using the FFD technique and the right
hand side figures show the deformed volumetric mesh at a plane parallel to the symmetry
plane near the tip of the wing. It can be seen that due to the upward bends, the aerofoil
shaped region of the wing moves up resulting in the mesh over the wing compressed
whereas the mesh below the wing expanded. In both the linear and non-linear bends, it
can be observed from the results that the mesh near the boundary of the wing remains
almost the same due to small cell volume and high cell stiffness whereas the mesh far
from the boundary deforms due to high cell volumes and low cell stiffness. This way, the
shape of the cells near the surface of the wing preserves.

6.1.2. Twisting

In the twisting kind of deformation on the wing, the Dirichlet boundary condition is
obtained by rotating the FFD box with respect to an axis normal to the symmetry plane
and passing through the center of the FFD box as shown in Fig. 6.6. A multi-step
approach is used for the twisting case with an increment of 5◦ in every step.

The mesh quality parameters for the twisting deformation are plotted in Fig. 6.7 and listed
in Table 6.4 for various angles of twist from 0◦ to 50◦. It is observed from the results
that the maximum cell and boundary non-orthogonality increase with an increase in the
angle of twist. The maximum boundary non-orthogonality crosses the limit of maximum
non-orthogonality at an angle of twist almost equal to 47◦. It is also observed that the
cell face validity decreases with an increase in the angle of twist approaching the limit
value of 0.5 at 47◦ of angle of twist. It is to be noticed from Fig. 6.7 that a decrease in
maximum boundary non-orthogonality is observed for the angle of twist from 0◦ to 5◦.
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Figure 6.6: FFD box for a twist in the wing of an airplane.
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Figure 6.7: Mesh quality plot for a twist in the wing of an airplane.

The reason behind this behaviour can be the initial structure of the mesh which might
get better at the boundary due to a twist until 5◦. Therefore, it can be said based on the
results shown in Fig. 6.7 and Table 6.4 that a valid mesh is obtained upto an angle of
twist of 47◦.

It is to be noticed that for the case with 50◦ angle of twist, unlike the bending case, the
mesh fails because of the maximum boundary non-orthogonality crossing the limits inst-
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Angle of

twist (deg.)

Max. non-ortho-

gonality (deg.)

Max. boundary non-

orthogonality (deg.)

Min. cell

volume

Cell face

validity

0 80.32 72.31 6.95e-11 1.0

10 80.94 73.70 5.75e-11 1.0

20 81.54 77.16 4.66e-11 0.92

30 82.07 80.01 3.81e-11 0.89

40 82.71 83.05 2.7e-11 0.87

45 83.0 84.4 2.22e-11 0.51

50 83.27 85.59 1.78e-11 0.51

Table 6.4: Mesh quality parameters for twisting in the wing of an airplane.

(a) Undeformed mesh.

(b) Twist of 45◦.

Figure 6.8: Twisting in a wing.
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ead of maximum cell non-orthogonality, which indicates that the twisting of the wing
deteriorates the quality of mesh more in the boundary mesh, whereas the bending of wing
deteriorates the quality of mesh more in the bulk mesh. The original wing mesh alongside
the mesh with a twist of 45◦ with a valid mesh are shown in Fig. 6.8. The left hand side
figures show the surface deformation obtained using the FFD technique whereas the right
hand side figures show the deformed volumetric mesh at a plane parallel to the symmetry
plane near the tip of the wing. It can be observed from Fig. 6.8 that the mesh near the
boundary of the wing stays the same even after a big twist of angle 45◦.

6.1.3. Bending + Twisting

Another possible case study is the case with both the bending and twisting deformations
together. The deformation in the FFD box for such a deformation is shown in Fig. 6.9.
Because of more feasibility, the non-linear bending is chosen in the present section among
the options. A multi-step approach with an increment of 5◦ of angle of bend and angle of
twist both in every step is chosen for the present section.

Figure 6.9: FFD box for a bend + twist in the wing of an airplane.

The mesh quality parameters are plotted in Fig. 6.10 and listed in Table 6.5 for different
angles starting from 0◦ to 55◦. It is observed from the results that the maximum cell and
boundary non-orthogonality increase with an increase in the angle of bend and twist. The
maximum cell non-orthogonality crosses the limit of maximum non-orthogonality at an
angle of bend and twist equal to almost 51◦. It is also observed that the cell face validity
decreases with an increase in the angle of bend and twist. Therefore, it can be said that
the original mesh of the wing can be deformed upto 51◦ bend and twist altogether with
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a valid mesh.
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Figure 6.10: Mesh quality plot for a bend + twist in the wing of an airplane.

Angle of

bend and

twist (deg.)

Max. non-ortho-

gonality (deg.)

Max. boundary non-

orthogonality (deg.)

Min. cell

volume

Cell face

validity

0 80.3215 72.31 6.95e-11 1.0

10 80.707 72.07 6.55e-11 1.0

20 80.8959 74.50 6.31e-11 0.90

30 80.905 76.99 6.46e-11 0.87

40 80.9365 79.67 5.23e-11 0.85

50 83.9625 81.80 4.27e-11 0.84

55 91.99 82.67 3.91e-11 0.83

Table 6.5: Mesh quality parameters for bending + twisting in the wing of an airplane.

The original mesh alongside the mesh with a bend + twist of 50◦ is shown in Fig. 6.11.
The left hand side figures show the surface deformation in the wing and the right hand
side figures show a plane parallel to the symmetry plane close to the tip of the wing. It
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(a) Undeformed mesh.

(b) Non-linear bend + twist of 50◦.

Figure 6.11: Non-linear bending + twisting in a wing.

can be observed in right hand side of Fig. 6.11 that the aerofoil boundary moves up due
to bending and rotates due to twisting. It can be observed from the results that the mesh
near the boundary of the wing does not change much and moves as the wing surface moves
keeping the cells near the boundary preserved despite large movement.

6.1.4. Cambering

During the aerodynamic shape optimization of the wing, the camber angle of the wing
is one of the most influential parameter to determine the lift or drag forces on the wing.
The design iterations for the design of the wing consist of the different camber angles
throughout the span. In present subsection, the wing is given cambering kind of deforma-
tion where the wing is undergone an incremental camber angle starting from zero camber
at the root of the wing. In the initial geometry of the wing, the camber angle is equal to
zero throughout the span, i.e. a symmetric wing. A multi-step approach is used in the
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Figure 6.12: FFD box for cambering the wing of an airplane.

present subsection with a cambering angle at the tip from 0◦ to 60◦. The FFD box for
a cambering of a wing is shown in Fig. 6.12. The mesh quality parameters for all the
multi-steps are plotted in Fig. 6.13 and listed in Table 6.6. It can be observed that the
maximum cell and boundary non-orthogonality increases with an increase in the camber
angle. The maximum cell non-orthogonality crosses the limit of 85◦ at a tip camber angle
of almost 56◦. The cell face validity decreases with an increase in the tip camber angle
and crosses the limit of 0.5 at an tip camber angle of almost 55◦. Therefore, based on the
results, it can be said that the present developed elasticity solver can camber the wing
until an angle of 55◦.
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Figure 6.13: Mesh quality plot for cambering in the wing of an airplane.
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Angle of cam-

ber (deg.)

Max. non-ortho-

gonality (deg.)

Max. boundary non-

orthogonality (deg.)

Min. cell

volume

Cell face

validity

0 80.32 72.31 6.95e-11 1.0

10 80.74 71.9 6.31e-11 1.0

20 81.11 73.24 5.83e-11 1.0

30 81.46 75.24 5.27e-11 1.0

40 81.7 77.21 4.71e-11 0.88

50 81.92 79.15 4.02e-11 0.50

55 82.05 80.01 3.12e-11 0.50

60 101.26 80.87 -4.9e-09 0.04

Table 6.6: Mesh quality parameters for cambering in the wing of an airplane.

(a) Undeformed mesh.

(b) Cambering of 55◦.

Figure 6.14: Cambering in the wing of an airplane.
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The original undeformed mesh and the deformed mesh with most possible tip camber
angle with valid mesh are shown in Fig. 6.14. It can be seen in the results in the right
hand side figures that the cells near the boundary of the wing at a plane parallel to the
symmetry plane remain preserved and results in a valid mesh. These results confirm that
the presently developed linear elasticity technique can be used for aerodynamic shape
optimization applications.

6.1.5. Comparison with Laplacian quaternions technique

For the industrial case of the wing of an airplane, all the kinds of deformations performed
in the present section are simulated using a Laplacian quaternion technique and compared
with the results obtained for presently developed linear elasticity technique. A multi-step
approach with 10 steps is used for both the techniques. The maximum deformations
possible with a valid mesh using both the techniques are listed in Table 6.7.

Kind of deformation Linear elasticity tech-

nique (deg.)

Laplacian quaternions

technique (deg.)

Non-linear bending 47 46

Twisting 47 48

Non-linear bending +
twisting

51 42

Cambering 55 54

Table 6.7: Maximum deformation with a valid mesh using different techniques.

It can be observed that the Laplacian quaternions technique gives comparable results to
the linear elasticity technique for the non-linear bending and twisting kinds of deforma-
tions. For the non-linear bending + twisting kind of deformation, the presently developed
linear elasticity technique is able to provide valid mesh for 9 more degrees of deformation
than the Laplacian quaternions technique. For the cambering deformation, the results
seem to be comparable. Therefore, it can be said based on the results, that between
the two schemes, the maximum possible deformation is comparable for simpler kinds of
deformations like non-linear bending, twisting and cambering, whereas the presently de-
veloped linear elasticity technique outperforms the Laplacian quaternions technique for a
relatively complex deformation like non-linear bending + twisting.
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6.2. Aerodynamic shape optimization in a Car

Aerodynamics shape optimization is another important application of mesh morphing. In
the automobile sector, the design phase contains numerous number of design iterations
and it can be highly time and resource expensive to reconstruct the mesh for all the design
iterations. Therefore, a robust mesh morphing tool developed in the present work can
play an important role in speeding up the aerodynamic shape optimization. In present
section, the industrial case of a car is considered as shown in Fig. 6.15a. The mesh for
the car consists of almost 2 million cells with polyhedral shape. To obtain the bound-
ary deformation as the boundary condition, a RBF parameterization technique is used.
The deformation in the surface of the car considered in the present section is shown in
Fig. 6.15b. For the surface deformation, 6 different kinds of deformations are provided
at different parts of the car. These deformations are: front window angle change, rear
window angle change, roof drop or change in roof angle, greenhouse angle change, front

(a) Undeformed surface mesh.

(b) Deformed surface mesh.

Figure 6.15: Surface deformation in the industrial case of a car.
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bumper nose extrusion, and front bumper nose drop. All these deformations can be
observed in Fig. 6.15.

It is to be noticed that the Dirichlet boundary condition is available only at the car surface
and the walls of the CFD domain, and therefore, a slip condition as described in Sec. 2.3
is applied at the symmetry plane.

In present section, a multi-step approach with 5 steps is used to propagate the deformation
in the volumetric mesh of the car. The elasticity coefficient E for the present section
is computed using the relation with the inverse of volume with an exponent p = 1.
The volumetric mesh displacement is demonstrated by showing a plane parallel to the
symmetry plane for the initial and final geometries as shown in Fig. 6.16. The mesh
quality parameters for the initial geometry and the geometries after all the steps of the
multi-step approach are listed in Table 6.8.

It can be observed from the results that from step 0 to step 3, the mesh quality changes

(a) Undeformed mesh.

(b) Deformed mesh.

Figure 6.16: Volumetric mesh at a plane parallel to the symmetry plane.
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Step Max. non-ortho-

gonality (deg.)

Max. boundary non-

orthogonality (deg.)

Min. cell

volume

Cell face

validity

0 76.99 103.26 1.43e-09 0.53

1 76.99 103.25 1.44e-09 0.53

2 76.99 103.24 1.44-09 0.53

3 77.87 103.23 1.45e-09 0.53

4 87.11 103.22 1.45e-09 0.53

5 110.64 103.2 1.46e-09 0.53

Laplacian
quaternions

178.54 175.19 -8.41e-05 0

Table 6.8: Mesh quality parameters for the industrial case of a car.

very little and the mesh remains valid, whereas for step 4, a considerable increase in the
maximum cell non-orthogonality is observed. It is found for step 4 that one face exists
where the cell non-orthogonality crosses the 85◦ limit of maximum non-orthogonality. For
the final step 5, it is observed that the maximum cell non-orthogonality increases further
to 110◦. It is found that four faces have non-orthogonality more than the limit of 85◦.
Despite the limit crossing non-orthogonality in few faces, it is found that the cell volume
remains positive for all the cells and cell face validity remains more that the limit 0.5.
The maximum non-orthogonality at the boundaries is found out to be almost 103◦ for
all the steps because of some bad cells near the wheels of the car. Since a zero Dirichlet
boundary condition is provided to the wheels, these bad quality cells do not affect the
solution considerably.

The results for the present industrial case are compared also with the results obtained
using a multi-step approach Laplacian quaternions technique as explained in Chapter 5.
The mesh quality parameters after the final step of the Laplacian quaternions technique
are listed in Table 6.8. It can be observed from Table 6.8 that negative volumes with
failed cell face validity exist for the solution of the Laplacian quaternions technique. It
is also observed that the maximum cell and boundary non-orthogonality come out to
be unacceptably high for the Laplacian quaternions method. Therefore, based on the
comparison, it can be said that the linear elasticity solver gives much better results for
the present industrial case than the Laplacian quaternions technique which was giving
comparable quality results in case of a non-uniform cube as shown in Chapter 5.

Therefore, based on the results, it can be said for the present industrial case that the linear
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elasticity technique with multi-step approach works well and can be used for aerodynamic
shape optimization. Although, for large deformations, the user must be careful about the
high non-orthogonality at a few faces.

6.3. Conclusions

In this chapter, the applications of the presently developed linear elasticity mesh morpher
are demonstrated by means of two different industrial cases. An industrial case of the
wing of an airplane is considered to show the application in the field of FSI, whereas an
industrial case of a car is used to show the application in the field of aerodynamic shape
optimization. Both the industrial cases are undertaken different kinds of deformations
and the following conclusions are made:

• For the possible deformations under a turbulence like situation, the wing can with-
stand a linear bending upto 34◦, non-linear bending upto 47◦, twisting upto 47◦,
cambering upto 55◦, and bending + twisting of upto 51◦.

• By increasing the angle of bend or twist more than the limit mentioned in above
bullet, the mesh fails due to a high maximum cell non-orthogonality (>85◦) for the
bending and bending + twisting cases and due to a high maximum boundary non-
orthogonality for the twisting case. The cambering deformation fails because of the
max. non-orthogonality and cell face validity crossing the respective limits and a
negative cell volume altogether.

• The maximum possible bend, twist or camber with a valid mesh with the use of
the linear elasticity technique are of the order to that when using the Laplacian
quaternions technique, whereas the linear elasticity solver outperforms the Laplacian
quaternions technique for a relatively complex non-linear bending + twisting kind
of deformation.

• The present linear elasticity based technique can morph the high deformation pro-
vided in the design of the car.

• For the car case, the presently developed linear elasticity technique provides with
much better mesh compared to the Laplacian quaternions technique.

• For both the wing and the car industrial cases, it is found that the mesh near the
boundary preserved their shape despite high deformations and makes the presently
developed linear elasticity technique a robust tool to deform the meshes with high
deformations thanks to the multi-step approach.
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developments

In present thesis, a mesh morpher based on the linear elasticity analogy is developed to
propagate the surface deformation in the volumetric mesh. A FVM is used to descritize
the PDEs and a PETSc library is used to solve the linear system of equations. While
computing the cell and face gradients using a 2nd order least square method, the missing
boundary contributions in the original method are also considered in order to keep the
2nd order of accuracy throughout the domain including the boundary. The newly added
boundary contributions are tested over a sample function for simple geometries and it is
found that the added boundary contributions improve the accuracy of the cell and face
gradients. Since the linear elasticity law is defined for small displacements, a multi-step
step approach is developed where the solution geometry of the previous step is used as
the initial geometry of the next step. To demonstrate the results, two different kinds of
deformations, outward and inward are used for the case of a cube with 64k cells. For an
outward deformation, it is found that the quality of the resulted mesh improves with an
increase in the number of the steps in the multi-step approach, whereas in the inward
deformation, it is found that a multi-step approach improves the quality of the resulted
mesh considerably with respect to a single step approach but increasing the number of
steps does not improve mesh quality further due to congestion in the internal mesh.

A variation of two of the pre-existing relations for the computation of the elasticity coef-
ficient E is proposed and analyzed in the present work. It is observed that the optimum
values of the parameters used in these relations depend on the kind of deformation and
the complexity of the mesh. For a simple mesh like a non-uniform cube, the parameter
p, which is the exponent of the inverse of volume relation, gives best results for an out-
ward deformation when lying in a range 1 − 2, whereas gives best results for an inward
deformation when lying in a range 3− 4. On the other hand, for the complex meshes in
the industrial cases, the wing of an airplane and the car, it is found that the best results
are produced for the exponent p = 1. Similarly, the exponent q in case of inverse of
distance relation gives best results when set equal to 1 for outward and inward both kinds
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of deformation in a non-uniform cube. Therefore, it can be concluded that the proposed
relations for the computation of the elasticity coefficient provides the user with a degree
of freedom to choose a p or q depending on the kind of deformation and the complexity
of geometry.

In present work, the results obtained using the presently developed linear elasticity tech-
nique are also compared with some of the promising techniques such as the Laplacian
technique and the Laplacian quaternions technique with and without a narrow band
width for single and multi-step approaches. For the initial geometry of a non-uniform
cube, it is found that the linear elasticity technique clearly outperforms the Laplacian
technique with and without the narrow band width for both the outward and inward
kinds of deformations, whereas the Laplacian quaternions technique produces comparable
results with the linear elasticity technique for an inward deformation and worse results
than the linear elasticity technique for an outward deformation. For the complex ini-
tial geometry of a wing, simple kinds of deformations like linear and non-linear bending,
twisting, and cambering, the linear elasticity technique can generate a valid mesh up to
same order of angle of respective deformation as with Laplacian quaternions technique,
whereas the linear elasticity technique outperforms the Laplacian quaternions technique
for a relatively complex deformation like non-linear bending + twisting. For another in-
dustrial case of the car, it is observed for a complex boundary condition that the linear
elasticity solver outperforms the Laplacian quaternions technique by a good margin.

The developed linear elasticity technique is tested for two different CFD applications,
FSI and aerodynamic shape optimization, by means of two different industrial cases with
much more complex and different kinds of meshes than the non-uniform cube. The first
industrial case of the wing of an airplane contained tetrahedral and hexagonal mesh cells
and tested over different kinds of deformations inspired by the turbulence event and aero-
dynamic shape optimization. Under the turbulence event, the wing of the airplane gives
valid meshes until 47 degrees of twisting, 47 degrees of bending and 51 degrees of twisting
+ bending. As an application of aerodynamic shape optimization, the wing showed a
valid mesh until a cambering of 55 degrees. It is observed in all kinds of deformations
that the mesh near the boundary of the wing stays preserved due to small volume re-
sulting in high stiffness caused by inverse of volume relation with exponent p = 1. The
second industrial case of a car shows an application of aerodynamic shape optimization
where the surface mesh of the car is morphed highly and this surface displacements are
propagated in the volume mesh. This mesh contained polygonal kinds of mesh cells and
is used for turbulent CFD. It is observed that the presently developed linear elasticity
solver is able to solve the high deformation provided to the car without any negative cell
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volume or cell inversion. The cells near the boundary of the car preserve their shape due
to high stiffness caused by small mesh volume.

Therefore, based on the results of the non-uniform cube, the wing of an airplane and the
car, it can be said that the presently developed multi-step approached linear elasticity
solver provides with the best results compared to the Laplacian and Laplacian quater-
nions techniques with and without the narrow band width. This shows and affirms that
the presently developed linear elasticity based mesh morpher can be used for the FSI,
aerodynamic shape optimization and all the other kinds of CFD applications where mesh
morphing is required.

It is to be noticed that the present work also sets up a platform for possible future research
and opens up new possibilities in the field of mesh morphing for CFD applications. Some
of these possibilities are as follows:

• Based on the present work, it can be said that the different kinds of meshes and
deformations require different optimum exponents for the inverse of volume method
and therefore, an interesting future scope of the present work is to distribute the
exponent p over the cells of the mesh rather than a single value. The same stands
for the inverse of distance method as well.

• Another possibility is to merge the linear elasticity technique and the Laplacian or
Laplacian quaternions technique in such a way that the later can be used when it
comes to the cells close to zero Dirichlet boundary condition and the earlier can be
used otherwise. The main benefit of this merge of two different techniques will be
decreases in complexity of the linear elasticity solver.

• The present method of implementation includes the use of FVM which includes in-
terpolation errors at the end. If the equations are descretized using a FEM than the
interpolation error can be avoided and there will not be any need of the propagation
of the error in the whole mesh.
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A| Appendix A

Mesh quality parameters

In present work, the considered mesh quality parameters can be defined as follows:

• maximum cell non-orthogonality: The maximum angle between the normal of
a face and the vector connecting the centroids of the two neighbour cells of the
face. More maximum non-orthogonality indicates non-orthogonal cells which are
not good for a good quality mesh.

• maximum boundary non-orthogonality: The maximum angle between the nor-
mal of the boundary face and the vector connecting the centroid of the neighbour
cell and the center of the boundary face.

• Maximum skewness: The maximum distance between the centroid of a face and
the point where the line connecting the two neighbour cell centroids and the line
along the face meet. The less the maximum skewness, the better the mesh quality.

• Cell face validity: In a cell, minimum ratio of the sum of the area of the faces for
which the dot product between the normal to the face and the vector connecting
the face and cell centroids is positive and sum of the area of all the faces of a cell.
This mesh quality parameter is not equal to 1 especially when the mesh consists of
pyramid shaped, polygonal or convex cells, and when the angle between the normal
to the face and the vector connecting face and cell centres is more than or equal to
90◦. In a case with the cell face validity < 0.5, it can be considered that the cell has
been inverted resulting in a failed mesh.

Average cell non-orthogonality is the average of the cell and boundary non-orthogonality
all over the geometry, and minimum cell volume, as the name suggests, is the volume of
the smallest cell by volume.
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