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1. Introduction
DNA methylation is an epigenetic mechanism
that happens in correspondence of particular re-
gions of the DNA, the CpG sites. It plays a vital
role in several key cellular processes, and alter-
ation levels of methylation are present for ge-
netic, environmental and aging factors. Accord-
ing to the majority of scientific papers from the
epigenetics field, anomalous methylation levels
contribute to the development and progression
of cancer. However, further studies are needed
to understand which altered CpG sites are reli-
able cancer risk bio-markers, since these signs
can guide clinical decision making with data-
based knowledge.
This thesis has the aim of discovering the most
important methylation features for detecting
breast cancer risk several years before the di-
agnosis. Breast cancer is the most common can-
cer worldwide and according to the World Health
Organization 2020 reports, it accounts for 15.5%
of all female cancer deaths, and represents 24.5%
of the female cancer cases. Studying methyla-
tion data of patients affected by breast cancer
can lead to prevention improvements and tar-
geted therapies.
The mechanism of DNA methylation has been

deeply researched recently by means of large-
scale machine learning models, as new techno-
logical advancements enabled analysis of DNA
at the molecular level. We set ourselves apart
from the existing literature on the subject, by
seeking the most relevant CpG sites driving risk
prediction in a survival analysis setting, suppos-
ing that the closer the appearance of cancer,
the more alterations are present in specific sites.
There are two main challenging issues that drove
us to build our method proposal tailored for the
DNA methylation context:
• the high number of variables to consider in

the model needs a huge amount of data, not
available.

• the CpG sites have highly nonlinear inter-
actions that cannot be ignored.

The framework of the standard Cox models in
this setting provides scarce results, since they
make too strict assumptions on the survival
function to be estimated. On the other hand,
deep learning techniques have been applied in
similar contexts with successful results.
Therefore, in this work we set up a deep sur-
vival model and we measure the most useful
CpG sites for the risk prediction task. Although
some methodologies are well-established in the
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genomics literature for this purpose, further re-
search is needed to manage high-dimensional
data and complex biological interactions in an
interpretable framework. We develop from the
work of Yousefi et al. [5]; our main contribution
consists on the application in genomics of a deep
autoencoder for pre-training purposes, followed
by the fine-tuning of a deep survival model, per-
fect for the SHAP algorithm employment, and
has, to the best of our knowledge, never been
implemented before. We argue that this imple-
mentation can solve the motivating problems.

2. Data
We apply the methodology proposed in this
work to a prospective case study, the European
Prospective Investigation into Cancer and Nutri-
tion (EPIC) [4] project. The data was collected
from whole-blood: its evaluation as a cancer risk
bio-marker is of great interest, because blood is
a convenient tissue to assay for constitutional
methylation and its draw is non-invasive.
We have at our disposal a subset of the Italian
cohort of the EPIC dataset, formed by 1112 in-
dividuals. Half of those were affected by a can-
cer (breast, colon, lung) before the end of the
study (cases), while the other half were not (con-
trols) and have been selected afterwards to be
included in the study according to their similar-
ity to the cases. Each subject is characterized by
the time to diagnosis data, explanatory features
and the beta values of each CpG site, a met-
ric that measures the intensity of methylation.
We want to continue on the work of Gagliardi et
al. [1] on this dataset by exploiting the survival
data available and specializing on the individual
sites’ aberrations, to obtain a more fine-grained
analysis.
We focused on the breast cancer cohort and,
since the controls revealed a different distribu-
tion with respect to the cases, we concentrated
on the cases for the model application. We de-
cided to use only the CpG sites of the EZH2
enzyme, since DNA methylation aberrations of
this polycomb group protein have been demon-
strated to have a high influence on cancer devel-
opment. We preprocessed the data by grouping
CpG sites into CpG islands through the means
of the beta values of each island, to account for
the strong dependence among data belonging to
the same region. After the preprocessing, the

dataset was composed by 248 observations as
rows and 3807 CpG islands’ mean beta values
and the time to event as columns.

3. Methodologies
The proposed methodology consists in 3 main
steps, as depicted in Figure 1.

Figure 1: Schematic pipeline of the method.

(A) Feature Clustering: We apply agglomer-
ative clustering to the CpG islands.

(B) Deep Survival Modelling: We build a
deep autoencoder and then we train it in
a greedy layer-wise fashion. We retain only
the encoder, and we attach to it a fully con-
nected layer to build a deep survival Cox
model. We fine-tune all the layers to opti-
mize the parameters for the survival task.

(C) Feature Importance Ranking: We use
the Kernel SHAP algorithm to measure the
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relevance of each variable. After ranking
the features according to their importance,
we extract the most important CpG islands.

3.1. Feature clustering
Biological information is shared among the sin-
gular CpG islands, as confirmed by our prelim-
inary analysis. We employ feature clustering
to aggregate biologically similar features and to
stabilize the data.
Feature clustering is a technique that extracts
new variables from the original ones by group-
ing them into sets with high similarity; then each
cluster is summarized by a unique feature. It
is similar to an agglomerative clustering proce-
dure, but recursively merges features instead of
samples. The choices we pursued for its param-
eters are tailored to the application: the Eu-
clidean distance, the Ward linkage that resulted
in clusters of comparable size and the mean ag-
gregating function, maintaining the effects of the
outliers, that have been useful to detect aberrant
behaviors in previous researches.

3.2. Deep survival model
In modelling non-linear gene interactions, it is
too simplistic to assume that the log-risk func-
tion is linear, like in the Cox model, hence a
richer family of survival models is needed. Neu-
ral networks have shattered performance bench-
marks in genomics by extracting latent high-
level features and modeling interactions. There-
fore, our model choice consists of a modern
deep survival model, inspired by an established
benchmark in the field, DeepSurv [2]. Our model
optimizes the same average log partial likelihood
function and exploits most of its up to date deep
learning techniques, as the adaptive moment es-
timation, early stopping, learning rate decay.
To simplify the training procedure for the model,
we provide a meaningful initialization to the
weights of the network using an autoencoder
pre-training. As a form of regularization, it
minimizes variance and introduces bias towards
configurations of the parameter space that are
useful for embedding purposes, in this way it
improves the generalization capabilities of the
model. The training of the autoencoder is con-
ducted greedy layer-wise, one layer at a time, as
it eases the training of the first layers.

3.3. Feature importance ranking
While high performing machine learning mod-
els can be incredibly accurate, usually they lack
interpretability, especially in deep learning. Ex-
planations, in the form of features importance,
can be particularly useful in medicine, where
doctors must have a motivation to a diagnosis
in order to choose an adequate treatment.
As a feature importance algorithm, we choose to
pursue the Kernel SHAP methodology [3]. The
goal of SHAP is to assign as importance value
to each feature its Shapley Value, as the average
marginal contribution of the feature value across
all possible feature coalitions. We use the Kernel
SHAP methodology for three reasons:
• SHAP values are one of the most common

methods for dealing with interacting fea-
tures, which could go unnoticed otherwise.

• SHAP values have the advantage to oper-
ate both on a local and global level: we can
detect the features that are most important
for a single subject, giving motivations to a
diagnosis, but we can also detect the most
important risk factors in general, identify-
ing useful bio-markers.

• Kernel SHAP frames the question of im-
portance in terms of differences from a ref-
erence state. This allows us to obtain in-
terpretations according to 4 different back-
ground datasets, leveraging most of the
original data.

To make the feature importance more robust,
we exploit an ensemble approach, computing the
global SHAP values for a series of random splits
of the data and averaging those to produce the
final importance values. Then, we sort the fea-
tures by decreasing final importance value, ob-
taining the desired ranking. To make feature se-
lection of the most relevant islands, we select a
threshold on the number of features in the rank-
ing to be retained, then we recover the islands
composing these first features.

4. Applications and results
4.1. Experiments
We compared our proposal with the most com-
mon methodology in the literature, the Cox
model. Feature clustering was applied before ev-
ery model employment to reduce the dimension-
ality of the problem, experimenting with 128,
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256, 512 and 1024 clustered features. After fea-
ture clustering, we deployed on the breast cases
dataset the Cox models and our deep survival
models, experimenting with both 16 and 32 la-
tent dimensions for each input. We trained the
models with 10-fold cross-validation, to justify
in an unbiased way whether they were overfit-
ting.

4.2. Performance measures
We assess the feature rankings’ quality by eval-
uating two aspects of the methods: predictive
performance and feature ranking stability:
• Usually when the predictive performance

of a model increases, interpretation qual-
ity increases as well. Therefore, we evaluate
the models’ predictive capabilities using the
Harrell’s Concordance Index. It quantifies
how well a model predicts the ordering of
the patients’ diagnosis times.

• For what concerns feature ranking stability,
we exploit the KT-Stability. It calculates
the complementary of the dispersion of the
set of rankings obtained from all the cross-
validation splits by computing their mean
pairwise weighted Kendall Tau distance.

We calculate the mean validation C-Index and
KT-stability with the corresponding 95% confi-
dence intervals for each method to get robust
findings.

4.3. Performances
We report the models’ performances in Ta-
ble 1. The Cox models presented predictive
performances between C � Index = 0.586 and
C�Index = 0.652. The deep models achieved a
significantly better predictive performance, be-
tween C � Index = 0.688 and C � Index =
0.723, and attained a stability often better than
the Cox model, between KT �Stability = 0.603
and KT � Stability = 0.691.
Comparing the deep models with the Cox ap-
proaches, we observed relevant upgrades, there-
fore we selected them as the best type of model
for our application. Among the input dimen-
sionalities, we chose the simplest model both to
train and to interpret, avoiding a too fine gran-
ularity, the one with 128 input features. Among
the latent dimensionalities, 16 dimensions were
chosen, since for 128 inputs they provided both
better prediction and stability. From now on,

we will consider only this model.

4.4. Explanations
We sorted the clustered features by decreasing
global SHAP importance values, computed ex-
ploiting the breast controls dataset as reference,
and we plotted them in Figure 2, where we no-
tice that feature 120 is consistently the most im-
portant one.

Figure 2: Global importance of the first 10 fea-
tures in the ranking.

According to the ranking, we selected feature
120, consisting of 20 CpG islands, and we vi-
sualized its distribution binned by the time to
event (Figure 3): there is an evident descending
trend, confirming the relation between the time
to diagnosis and the methylation level.

Figure 3: Boxplot of the best feature 120, binned
by time to event.

4.5. Post-hoc analysis
We visualize and quantify the relevance of the
single islands of feature 120 by constructing the
Kaplan-Meier estimators stratified by categori-
cal classes of methylation: hypomethylated (un-
der the median of the island) and hyperme-
thylated (over the median). The hypermethy-
lated population has in every island a higher
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Type Input dim. Latent dim. KT-Stab. (±95% int.) C-Index (±95% int.)

Cox 128 None 0.593 (± 0.038) 0.610 (± 0.032)
Cox 256 None 0.621 (± 0.042) 0.586 (± 0.024)
Cox 512 None 0.601 (± 0.042) 0.628 (± 0.025)
Cox 1024 None 0.620 (± 0.033) 0.652 (± 0.017)

Deep survival 128 16 0.643 (± 0.030) 0.704 (± 0.013)
Deep survival 128 32 0.603 (± 0.039) 0.688 (± 0.027)
Deep survival 256 16 0.661 (± 0.037) 0.713 (± 0.017)
Deep survival 256 32 0.623 (± 0.034) 0.718 (± 0.017)
Deep survival 512 16 0.631 (± 0.034) 0.706 (± 0.018)
Deep survival 512 32 0.691 (± 0.036) 0.702 (± 0.013)
Deep survival 1024 16 0.630 (± 0.039) 0.719 (± 0.017)
Deep survival 1024 32 0.606 (± 0.031) 0.723 (± 0.013)

Table 1: Performance comparison of the models.

survival median than the hypomethylated pop-
ulation and each log-rank test gives a significant
p-value for the alternative hypothesis of a differ-
ence in the survival profiles. The hazard ratio of
hypermethylated over hypomethylated is always
higher than 1, often higher than 2: in every is-
land being hypermethylated is a risk factor. We
plot the Kaplan-Meier curve for one of the 20
islands in Figure 4, to show that it reveals differ-
ent risk profiles for hypomethylated and hyper-
methylated subjects (the other islands present
similar behaviours).

Figure 4: Kaplan-Meier curves of island
9:34618796-34619343.

To understand if the "best" variables could help
in distinguishing the cases from the controls, we
conducted Wilcoxon signed-rank tests using as
samples the means of cases and controls for the
islands composing the 10 most relevant features,
according to the alternative hypothesis that the
cases have higher methylation means. 8 out of

10 tests returned a significant p-value at level
5%. This fact is in agreement with our model,
since it supports the hypothesis that being hy-
permethylated is a risk factor.
To validate the method and transform the re-
sults into biological insights, we conducted a
Weighted Kolmogorov Smirnov test, using the
importance values as weights. We show in Fig-
ure 5 the results of the analysis using the breast
controls as reference dataset. 8 pathways are
identified as significant: all have been already
described to have a role in tumor development
and 5 have been even specifically described to
have a role in breast cancer: PI3K-Akt signaling
pathway, Ras signaling pathway, Breast cancer,
Calcium signaling pathway and Proteoglycans in
cancer.

Figure 5: Barplot representation of the WKS
test results.
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5. Conclusions
The aim of this work was the development of a
methodology whose objective is the discovery of
the most important DNA methylation features
for detecting breast cancer risk. We had to over-
come the challenges that methylation data im-
pose, mostly the huge dimensionality and the
complex biological interactions.
We constructed a deep survival model, and we
extracted the features’ relevance for the risk pre-
diction aim. The feature clustering aggregated
the data, the autoencoder pre-training increased
the generalization capabilities, the deep survival
model predicted the hazards by modeling the
interactions, the feature importance algorithm
managed to interpret the complex predictions.
We succeeded in the objective of solving the
key motivating problems that lead to the new
method’s introduction, maintaining the predic-
tions interpretable.
We discovered that breast cancer is a phe-
nomenon strongly correlated with DNA methy-
lation in some CpG islands of the EZH2 pro-
tein, proving that the time to diagnosis is re-
lated to this mechanism. We reported the CpG
islands selected by our analysis, that could be
further analyzed to be used for prevention. Con-
sidering these islands, hypermethylated patients
experienced the event earlier than hypomethy-
lated ones, making being hypermethylated in
these regions a risk factor for breast cancer. Sin-
gle islands do not suffice on their own for dis-
tinguishing cases from controls; however, differ-
ential levels of methylation between them are
present when islands are considered together.
The biological analysis strengthens our conclu-
sions: over-represented pathways are correlated
with cancer and in particular with breast cancer.
This thesis work opens the way for further im-
provements in multiple directions, but the most
important goal in the long term is to extend the
model to take into account controls. In most ap-
plications, we do not know a priori if a subject
will experience the disease: modelling the con-
trols could lead to more practical results, useful
for doctors in applications.
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Abstract

DNA methylation is a critical epigenetic mechanism that occurs at CpG sites as
a chemical modification of DNA. Alteration levels of methylation are present for
genetic, environmental and aging factors. Several studies demonstrated a correlation
of methylation with cancer risk, but it is still uncertain which altered CpG sites are
relevant risk indicators.

Thanks to the Italian part of the EPIC project, we wish to discover new evidence
on how to detect breast cancer appearance likelihood, in order to conduct targeted
interventions on patients. This is a unique chance, since this prospective study has
been designed to collect whole-blood DNA samples several years before the appearance
of the disease.

Investigating data science techniques in this context is complex: the high dimen-
sionality, small sample size, non-linear interactions and abundant noise are tough
challenges to deal with. In order to overcome these problems and achieve our purpose,
we introduce a novel deep learning methodology.

First, we employ a feature clustering algorithm to reduce the dimensionality of
the data, aggregating biologically similar features. Afterwards, we construct a deep
survival model, that exploits both autoencoders and survival analysis. We adopt
layer-wise pre-training as a regularization technique, after which we fine-tune the
parameters for the survival task.

Finally, we employ a feature importance ranking technique, applicable both from
a global and a local perspective, that uses a method based on Shapley values (SHAP)
to detect the relevant variables in a fast and automatized way.

Our proposal outperforms the competitor Cox model methodology and provides
meaningful insights on the DNA methylation relation with breast cancer risk.

Keywords: DNA Methylation, Breast Cancer, Feature Clustering, Deep Survival
Model, Interpretability, SHAP.
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Abstract in lingua italiana

La metilazione del DNA è un meccanismo epigenetico critico che si verifica nei siti
CpG attraverso una modifica chimica del DNA. Alterazioni dei livelli della metilazione
sono dovuti a fattori genetici, ambientali e di invecchiamento. Diversi studi hanno
dimostrato una correlazione tra la metilazione e il rischio di cancro, ma è ancora
incerto quali siti CpG alterati siano indicatori rilevanti di rischio.

Grazie alla componente Italiana del progetto EPIC, ci poniamo l’obiettivo di
trovare nuovi indicatori per rilevare la probabilità di comparsa del cancro al seno,
al fine di condurre interventi mirati sui pazienti. Questa è un’occasione unica, dal
momento che si tratta di uno studio prospettico progettato per raccogliere campioni
di DNA di sangue intero diversi anni prima della comparsa della malattia.

Applicare le tecniche di data science in questo contesto è complesso: l’elevata dimen-
sionalità, la piccola grandezza del campione, le interazioni non lineari e l’abbondante
rumore sono sfide difficili da affrontare. Al fine di superare questi problemi, introduci-
amo una nuova metodologia basata sul deep learning.

In primo luogo, utilizziamo un algoritmo di clustering delle variabili per ridurre la
dimensionalità dei dati, aggregando covariate biologicamente simili. Successivamente,
costruiamo un modello profondo di predizione del rischio, che sfrutta sia gli autoencoder
che l’analisi di sopravvivenza. Adottiamo il pre-training a strati come tecnica di
regolarizzazione, dopodiché ottimizziamo i parametri per la predizione dei tempi
all’evento.

Infine, utilizziamo una tecnica per classificare l’importanza delle variabili, applica-
bile sia con una prospettiva globale sia locale, basata sui valori di Shapley (SHAP)
per rilevare le covariate rilevanti in modo rapido e automatizzato.

La nostra proposta presenta performance migliori rispetto a quelle ottenute con la
metodologia basata sul modello di Cox e fornisce risultati significativi sulla relazione
tra la metilazione del DNA e il rischio di cancro al seno.

Parole chiave: Metilazione del DNA, Cancro al Seno, Clustering delle Variabili,
Modello di Sopravvivenza Profondo, Interpretabilità, SHAP.
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Introduction

The mechanism of DNA methylation has been deeply studied recently, as new techno-
logical advancements enabled genome-wide analysis of DNA at the molecular level [1].
It is vital for normal human development and, according to the majority of disserta-
tions and scientific papers from the epigenetics field, anomalous methylation levels are
implicated with cancer. Researchers are seeking for reliable bio-markers for diagnosis,
prognosis and cancer risk [2]. These signs can guide clinical decision making with
data-based knowledge.

This thesis has the aim of discovering the most important methylation features for
detecting breast cancer risk several years before the diagnosis. Studying methylation
data can lead to prevention improvements and targeted therapies.

Previous investigations of DNA methylation changes in plasma and serum have
revealed that DNA methylation of gene-specific CpG sites could provide a promising
alternative for non-invasive breast cancer screening [3]. This problem is already studied
in the literature, but further research is needed. Indeed, Ennour-Idrissi et al. [4],
compared 20 different researches on the topic and concluded that, while there is a
consistent trend toward an association between global DNA methylation and breast
cancer risk, new studies are essential to identify the differently methylated sites. None
of the recognized anomalous CpG sites overlap between the researches included in the
review.

In the last years we witnessed a considerable increase in data availability: with the
advent of public big datasets, several machine learning techniques have been applied
by means of large-scale models in the genomics area, involving complex relationships
between millions variables [5].

In our work, we set ourselves apart from the existing literature on the subject by
seeking for the most relevant CpG sites driving risk prediction in a survival analysis
setting. To the best of our knowledge, this is one of the first efforts in this direction,
together with Yousefi et al. [6]. Survival analysis models can provide novel insights on
the problem of identification of the most important CpG sites when survival data is
available: we will use the time to disease as a response variable, supposing that the
closer the appearance of cancer, the more alterations are present in the genome. This
assumption was already verified by Gagliardi et al. [7], using a simplified approach
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based on the total number of Stochastic Epigenetic Mutations (SEMs). We wish to
extend their results, specializing on the individual sites’ aberrations.

There are two main challenging issues that drove us to build our tailored method
proposal:

• the high number of variables in the model usually needs a huge amount of data,
not available.

• the CpG sites have highly nonlinear interactions that cannot be ignored.

The framework of the standard Cox proportional hazards models [8] in this setting
provides scarce results. They obtain low performances, due to the high number of
predictors, and their natural coefficient based feature importance ranking can be
untruthful. They make too strict assumptions on the survival function to be estimated,
in particular the linear proportional hazards hypothesis.

On the other hand, deep learning techniques have been applied in genomics with
successful results [9]. However, they were mostly applied as unsupervised methods
due to the lack of labels, or as supervised methods for diagnosis, solving binary
classification problems (healthy or diseased). Conversely, in this work, we set up a
deep survival model that analyzes times to disease, and we measure the most useful
CpG sites for the risk prediction task in the process. Our main contribution consists
on the application of pre-training and fine-tuning to DNA methylation data with
survival and feature importance purposes. The selection of the relevant features and
the comprehension on how they influence the risk scores needs to be precise, reliable
and explicable.

We applied our approach to the European Prospective Investigation into Cancer
and Nutrition Study (EPIC) project [10], to pursue concrete results and validate the
method. The data was collected conducting an analysis that is not focused on the
specific organ, but on whole-blood: its evaluation as a cancer risk bio-marker is of great
interest, because blood is a convenient tissue to assay for constitutional methylation
and its collection is non-invasive [11]. The richness of the dataset, especially the
prospective data collection approach, allow us to investigate the breast cancer risk
factors in a less inspected way.

The dissertation is organized as follows.

• Data: In Chapter 1 we begin our work presenting the data available in this
thesis. We introduce the basic medical concepts about DNA methylation, breast
cancer and their correlation. We proceed by conducting a preliminary analysis
of the available subset of the EPIC dataset, preprocessing and visualizing it.

• Methodologies: In Chapter 2 we illustrate our approach, showing in details
the complete methodology. After presenting the essential background theory for
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each step, the proposal is introduced, together with its theoretical and practical
motivations. It is composed by a prediction model and a feature importance
ranking algorithm. The former is a deep survival model made up of three parts:
feature clustering, autoencoder pre-training and survival training. The latter
is the kernel variation of the SHAP algorithm [12], followed by the selection of
the first features in the ranking. Furthermore, we introduce the statistical and
biological techniques used to validate the approach.

• Applications and Results: Once described the necessary theory, in the last
Chapter 3 we apply the model to our dataset and report the outcome of the
analysis. We give the model specifications for the application and provide the
full pipeline of the experiments. After selecting the best performing model, we
analyze and comment on the derived explanations for the most relevant features.
We conduct a post-hoc analysis, leveraging the results obtained to validate the
methodology.

We conclude our work with the discussion of the results that have been obtained
and few proposals for future developments.

The analysis are carried out with multiple programming languages: for setting up
the models we used Python [13] with TensorFlow [14], PySurvival [15] and SHAP [12],
while for the preprocessing and the post-hoc analysis we used R [16].
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Chapter 1

Data

This Chapter is devoted to presenting the data available in this thesis. We seek to
better understand the complex relationships that exist among methylation and breast
cancer. Our methodology is strongly based on the requirements of the application;
therefore, an introduction on genomics is needed, together with a review of the
latest studies of DNA methylation on feature importance and model explanation,
to set the work with respect to the literature landscape. For the same reason, the
characterization of the EPIC dataset is essential. In fact, several model choices will
be driven by data peculiarities.

In Section 1.1, we give a brief introduction of the basic medical concepts for the
work. We present the epigenetic mechanism of DNA methylation. After displaying the
breast cancer statistics motivating our research question, we highlight the correlation
between methylation and cancer development. We discuss the state of the art results
in genomics relevant to our work, to fix the starting point for the study.

We proceed with the presentation of the EPIC dataset in Section 1.2. We introduce
the available variables and select the considered cohort of patients; then, we report
the pre-existing results on the dataset that we wish to extend.

In Section 1.3 we conduct the preliminary analysis. After a descriptive introduction,
we visualize the data by projecting it, in order to comprehend the critical points in
more detail and apply tailored methods. Finally, we do the required preprocessing, to
be ready for the model application.

1.1 Medical introduction

In this Section we will define the setting for DNA methylation and breast cancer
where we will act upon in this thesis.

4



Chapter 1. Data 1.1. Medical introduction

1.1.1 DNA methylation

Epigenetics is the study of the heritable phenotype changes in gene function that do
not entail a change in DNA sequence. Usually, a change in the genotype, i.e. the
DNA sequence, leads to a variation in the phenotype, i.e. the observable features
of the individual. However, epigenetics’ mechanisms do not lead to a change in the
original DNA, but have the potential to modify the phenotype. Epigenetics involves
modifications that can result from external or environmental factors, or be part of
normal development. The most extensively studied mechanism that produces such
marks is DNA methylation.

DNA methylation is a chemical modification that consists of the addition of a
methyl group via a covalent bond to the C-5 position of the cytosine ring of DNA,
through the methyltransferase enzymes (Figure 1.1). The methylated regions of the
DNA (hypermethylated), are associated with condensed chromatin and repression of
transcription. The unmethylated regions of the DNA (hypomethylated), are associated
with open chromatin and permissive to gene transcription. DNA methylation plays
a vital role in several key cellular processes including regulating gene silencing,
aging, transcriptions, host defense against endogenous parasitic sequences, embryonic
development, as well as possibly playing a role in learning and memory [17]. As for
every epigenetics’ mechanism, DNA methylation can change the expression of genes
and can be altered by both genetics and the environment. Molecular level methylation
studies are essential to understand DNA methylation functions and marks. For
example, analyses have identified a number of CpG sites where methylation changes
significantly across individuals as they age, like the cg16867657 site [18]; the same
type of study can be applied to discover associations between specific CpG sites and
diseases.

DNA methylation can happen in correspondence of CpG sites (or loci). The
CpG sites are regions of DNA where a cytosine nucleotide is followed by a guanine
nucleotide in the linear sequence of bases, along its 5 ! 3 direction. In Figure 1.2, a
CpG site is highlighted on the yellow DNA strand in the left, with its complementary
on the blue strand, while no CpG site is present on the right. In humans, DNA
methylation is almost exclusively present in CpG sites, and the cytosines on both
strands are usually methylated. Hence, when studying DNA methylation at a local
level, usually data from only CpG sites is present.

CpG sites occur with high frequency in certain DNA regions, denominated CpG
islands. Formally, CpG islands are usually defined as regions with a length greater
than 200 base pairs, a guanine and cytosine content greater than 50% and a ratio of
observed to expected sites greater than 0.6 [19]. In Figure 1.3, there are on the left
CpG sites (in yellow) with high frequency forming a CpG island in a promoter (in
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Figure 1.1. Schematic representation of the cytosine methylation process. The CH3 group
connects to the C-5 position in cytosine, thanks to the methyltransferases
enzymes.

Figure 1.2. Portion of the DNA where a CpG site is found in the yellow strand on the left
and no CpG site is found on the right.
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red) region, on the right CpG sites with normal frequency. There are more than 20
million CpG sites in the human genome, forming around 25000 CpG islands, excluding
repeated sequences [20]. They are major regulatory sites, frequently located in gene
promoter regions, and their methylation results in stable silencing of gene expression.
However, several functions of CpG islands are still being uncovered and further studies
are needed to determine to what degree DNA methylation of CpG islands regulates
gene expression.

Figure 1.3. On the left, a CpG island, on the right, CpG sites with normal frequency.

1.1.2 Breast cancer

Breast cancer is the most common cancer worldwide [21]. It starts with the creation
of abnormal cells in the breast, that rapidly grow out of control beyond their normal
boundaries and spread to other organs, through the metastasis process. Main known
risk factors include obesity, alcoholism, older age and having family history of breast
cancer [22].

Over the past 50 years, generic cancer incidence was constantly increasing. It could
be expected that by 2030 there will be 26.4 million total cases and 17 million that
occur in a year [23]. In the same 50 years period, also incidence and mortality rates due
to breast cancer increased significantly [24]. According to World Health Organization

7



Chapter 1. Data 1.1. Medical introduction

(WHO) 2020 reports, breast cancer is the leading cause of cancer death in women,
accounting for 15.5% of all female cancer deaths (Figure 1.4), and representing 24.5%
of the female cancer cases (Figure 1.5). Even if we consider both sexes it is still the
most diagnosed cancer, representing 11.7% of the all cancer cases (Figure 1.7), and
accounting for 6.9% of all cancer deaths (Figure 1.6) [21]. About one in eight women
develops invasive breast cancer during the course of their lifetime [25].

Figure 1.4. Pie chart of female cancer deaths by site. Breast is colored in pink.

Figure 1.5. Pie chart of female cancer cases by site. Breast is colored in pink.
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Figure 1.6. Pie chart of all cancer deaths by site. Breast is colored in pink.

Figure 1.7. Pie chart of all cancer cases by site. Breast is colored in pink.
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The early diagnosis of the disease is a critical task. In fact, breast cancer treatment
can be highly effective, especially when the cancer is identified at early stages. It
usually consists of surgical removal, radiation therapy and medication, which can
prevent cancer spread, hence saves lives [24]. The reported data show the huge
relevance of the breast cancer problem and motivate the study of better approaches
to achieve early diagnosis.

1.1.3 Review of the relevant literature

In this Section we aim at clarifying how this thesis builds up on the existing litera-
ture. In fact, the study of the selection of the most relevant characteristics of DNA
methylation for assessing breast cancer risk has improved immensely in recent years.
We present the principal works on this topic both from a biological and a machine
learning point of view, to provide a general overview before going into details with
the dataset and the model.

Aberrant methylation patterns have been implicated in many diseases including au-
toimmune diseases, metabolic and psychological disorders and aging [26]. Furthermore,
it is well-established that DNA methylation alterations contribute to development and
progression of cancer: hypermethylated tumor-suppressor genes and hypomethylated
oncogenes are associated with tumors and can lead to pathogenesis and poor progno-
sis [27]. In genomics, researchers are seeking for reliable biomarkers for cancer risk [2],
since these signs can guide clinical decision making through data-based knowledge.
However, anomalous DNA methylation regions’ patterns vary depending on cancer
type. For example, ten diagnosis markers and eight prognosis markers in circulating
tumor DNA of hepatocellular carcinoma have been screened [28]. With similar reliable
bio-markers for all cancer types, we could predict the disease appearance risk with
great precision. Therefore, quantifying the differences in DNA methylation across
large cohorts is a crucial issue.

In the last years, several studies have been conducted on genome-wide DNA
methylation data [1], thanks to recent technological improvements that enabled
analysis at the molecular level, and several state of the art approaches that have
been implemented to extract biological information from these data. Widely popular
data collection technique is the high-throughput bisulfite sequencing, to measure
methylation at the single-base resolution [29]. One of the most spread types of
bisulfite sequencing is the Illumina Infinium method, which yields an approximation
of the ratio of DNA copies that are methylated at each CpG site, and reports them
as beta values. The EPIC data (Section 1.2.1) is collected with this technology.

With the advent of public big datasets, as the Genomic Data Commons Data
Portal [30], from the Cancer Genome Atlas, data availability has greatly increased
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in the last years. To extract information from this type of data, state of the art
techniques with remarkable results have been developed. In genomics, Way et al. [31],
chose to use a variational autoencoder to embed the CpG beta values, with the
objective to aid in cancer stratification and predict activated expression patterns that
would result from treatment effects. They captured the relevant biological relations
identifying specific patterns in a latent space, and extracted the most important
CpG sites through the decoder weights. Titus et al. [32], extended this work using
Spearman correlation to improve the feature extraction technique. They found the
most differentially methylated features between different types of cancers, overcoming
the Lasso performances.

Supervised techniques are employed when labels are present, like in Liu et al. [33].
Thanks to a complex classifier composed of Lasso, random forests and other techniques,
they distinguished cancer samples from the respective normal samples in pan-cancers.
They used the SHAP algorithm [12] for feature importance, to identify the sites whose
alterations diversify diseased individuals. When the high dimensionality becomes an
issue, more complicated prediction models are necessary. For example, a method,
in genomics, using an autoencoder for embedding, and then a classification model
for prediction, can be found in Levy et al. [34]. They created a library to construct
embeddings, make predictions, generate new data, and uncover unknown heterogeneity
with minimal user supervision. In particular, they also chose SHAP as a feature
importance technique to recover the relevancy of the variables, taking care of their
complex relationships. Deep survival models can be applied to large scale genomics
profiles, as in Yousefi et al. [6], to handle survival time to event data, and simultaneously
taking care of the high dimensionality of the data. Beyond the model, this work
exploits a feature importance risk backpropagation method to recover the features
significance, directly from the neural network weights.

Although the aforementioned methodologies are well established in the genomics
literature, further research can be conducted by combining them in a high-performance
technique, suitable for specific domains. To manage high-dimensional data and complex
biological interactions in an interpretable framework, none of the presented techniques
provides reliable results independently from the dataset. The application of a deep
autoencoder for pre-training purposes on DNA methylation data, followed by the fine-
tuning of a deep survival model, perfect for the SHAP employment, has, to the best
of our knowledge, never been implemented before. We argue that this implementation
can solve the motivating problems in our context.
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1.2 Dataset

In this Section we will introduce the dataset of interest for the analysis, together with
a comment on the variables we decided to extract for the analysis and we will report
the previous work carried out by Gagliardi et al. [7].

1.2.1 EPIC

As anticipated, we applied the methodology proposed in this work to a specific case
study, dealing with the analysis of DNA methylation data for breast cancer insurgence
risk prediction.

The European Prospective Investigation into Cancer and Nutrition (EPIC) [10] is
one of the largest studies in the world, accounting for more than 521,000 participants
enrolled from 23 centres in 10 European countries and monitored for over 20 years.
It is a prospective cohort study with detailed information on lifestyle characteristics,
anthropometric measurements, demographic variables and medical history, collected
at recruitment years before the insurgence of the disease. Whole blood samples,
from which DNA methylation beta values can be extracted, were also collected at
recruitment from 387,889 participants and are stored at the International Agency for
Research on Cancer-World Health Organization (IARC-WHO). The EPIC repositories
constitute one of the largest biobanks worldwide for genetic analysis on cancer and
maintain more than 9 million aliquots.

From the recruitment of the patients in 1992-1999 until 2015, more than 67,000
EPIC participants were diagnosed with cancer, 43,000 females and 24,000 males,
including about 16,700 cases of breast cancer, 4,600 of lung cancer and 7,100 of
colorectal cancer. 58,000 deaths were reported among all the participants, split into
32,000 females and 26,000 males.

EPIC was designed to investigate the relationships between lifestyle, environmental
factors and the incidence of cancer. EPIC investigators are active across all areas
of epidemiology, and they have produced important contributions using bio-marker
analysis as well as genetic and environmental investigations.

1.2.2 Dataset presentation

We have at our disposal a subset of the Italian cohort of the EPIC dataset, formed
by 1,112 individuals from all the areas in Italy, identified by an univocal personal
code. Half of those (556) were affected by cancer before the end of the study (cases).
The other half were not affected by the disease (controls) and have been selected
afterwards to be included in the study according to the similarity of their demographic
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and lifestyle variables with respect to the cases. We will call "class" a binary variable
that distinguishes the cases (True) from the controls (False).

The dataset is furnished with several patient specific information: there is a total
of 313,335 variables recorded for every individual. The variables available for each
sample are:

• Time to disease (time.to.disease) [years]: when present, it indicates the years
elapsed between the recruitment of the individual at the beginning of the study
and the cancer diagnosis. When absent (NaN ), it means that the individual
did not develop cancer during the time horizon considered. Hence, it can be
considered as a censored event. The censoring occurs at the end of the study for
each subject, therefore, we can infer the censoring times as equal to the total
period of observation.

• Lifestyle and demographic variables: various lifestyle and demographic
variables characterizing the subjects are present. In particular, we are furnished
with the age of recruitment (age.recr) at the start of the study period, the BMI
(bmi) categorized in three classes as Normal weight, Overweight and Obese, the
sex (sex) that can be male (M ) or female (F ), the smoking habits (smoking)
categorized in three classes as Current if they are currently smoking, Former if
they quit smoking and Never if they never smoked, the drinking habits (alcohol)
categorized in three classes as Habitual drinker if they are drink often, Occasional
drinker if they drink seldom and Non drinker if they do not drink, the education
level (education) categorized in three classes as High, Medium or Low, the level
of physical activity (phys.act) categorized in three classes as High, Medium or
Low, the quality of the diet (dietary.qual) categorized in three classes as High,
Medium or Low. Only about 1% of the observations have missing values in at
least one of these variables. Several of these features are known to be correlated
with cancer development (age, sex, smoking, alcohol...) and their relationship
could be investigated further.

• Matching (match.id): each case is associated with a control in a matching,
based on their demographic and lifestyle variables. In the dataset, this is
represented with an integer number identifying each pair. In this way, analysis
can study the differences encountered in the methylation patterns of similar
subjects: demographic and lifestyle variables equal, they can detect better
the effects of a specific feature on the disease. In other words, the dataset is
composed of 556 pairs of cases and controls. Matched individuals usually differ
very slightly by age and only in either one or two of the categorical lifestyle and
demographic variables.
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• Type (study): it categorizes the location of the cancer: B for breast, C for
colon and L for lung. Other than the cases, also the controls have a study
associated: for each control, it represents the cancer type of the case in the
matching. As already specified, we will focus on breast cancer cases for the model
development, neglecting the other studies to develop more accurate methods
and obtain precise results. However, we will use this grouping for the features
importance computations.

• CpG sites’ beta values (cg...): they represent the vast majority of the data
features and are the fulcrum of our analysis. The DNA methylation data,
extracted from blood samples, is taken on a whole genome level thanks to the
Illumina Infinium HumanMethylation450 BeadChip, one of the most widely
spread data collection techniques, from the Illumina Infinium method. Thanks
to it, scientists obtained in total 313,324 CpG sites’ data for each subject. For
each CpG site we have its beta value. This metric corresponds to the ratio of
intensity between the methylated probe and the overall intensity, and its value is
naturally bounded between 0 and 1. Under ideal conditions, a value of 0 means
the CpG site is completely unmethylated and a value of 1 indicates the site is
fully methylated. Each site has a different distribution, and deviations from
standard levels indicate anomalies. CpG sites can be grouped in three main
ways: by chromosome, by island and by gene pathway, to study them under
different circumstances. There are no observations with missing values in any of
these variables.

An example of 6 of the 1112 observations available in the EPIC dataset is provided
in Table 1.1. For space reasons, the Table is divided in three parts. Each patient
(row) is identified by its personal number and characterized by time to event data,
explanatory features and the beta values of each site. Here, only 4 of the beta values’
columns are reported for simplicity, they are: cg03725447, cg25215298, cg03256938,
cg18297246.

Whole-blood DNA methylation studies have less frequently been conducted, with
respect to organ-specific ones, and a systematic review of the literature can be found in
Guan et al. [3]. In their work, they state that so far detected whole-blood methylation
markers are insufficient for breast cancer early detection, but may be useful for
breast cancer risk stratification. They claim that, using high-throughput methods of
methylation quantification, future works should focus on mining informative markers,
ideally in prospective settings. Therefore, we aim to continue on these studies,
exploiting data science techniques on the EPIC blood samples at our disposal.
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patient time.to.disease study age.recr bmi

200109360008_R01C01 6.986995 B 53.550342 Normal weight

7766130100_R06C01 NaN B 34.685832 Obese

6042316165_R01C01 8.966461 C 63.989049 Normal weight

7668610146_R06C01 NaN C 53.390828 Normal weight

3999875083_R05C02 16.169747 L 57.601643 Normal weight

3999875048_R03C02 NaN L 59.099247 Overweight

Table 1.1. Example of samples in the dataset at our disposal.

sex smoking alcohol education phys.act dietary.qual

F Former Habitual drinker 1_High 1_High 2_Medium

F Current Occasional drinker 2_Medium 3_Low 2_Medium

M Current Habitual drinker 3_Low 2_Medium 3_Low

F Never Non drinker 2_Medium 3_Low 2_Medium

M Former Occasional drinker 2_Medium 1_High 2_Medium

F Never Occasional drinker 3_Low 3_Low 1_High

Table 1.1. Example of samples in the dataset at our disposal (Continuation).

match.id cg03725447 cg25215298 cg03256938 cg18297246

match_141 0.192584 0.277721 0.881829 0.449754

match_137 0.084782 0.343562 0.848235 0.481278

match_260 0.216812 0.320498 0.898258 0.450233

match_348 0.178374 0.311865 0.900772 0.412366

match_487 0.180652 0.324830 0.866643 0.533926

match_407 0.210455 0.318499 0.864264 0.415800

Table 1.1. Example of samples in the dataset at our disposal (Continuation).
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1.2.3 Previous studies

To biologically interpret the DNA methylation data, researchers have started to
investigate the accumulation of DNA methylation outliers (SEMs). They occur when
the DNA methylation level at a specific site of an individual differs greatly from that
of the majority of the population.

The same cohort at our disposal, was already studied in Gagliardi et al. [7].
Categorizing the beta values through SEMs, they discovered that their total number
is associated with cancer risk. Furthermore, they found that specific parts of the
genome, including the EZH2 polycomb protein, are better risk identifiers.

We confirmed a part of their analysis by means of a statistical test comparing the
percentages of SEMs in each island of the EZH2 protein of the two classes of patients
(cases and controls). We designated a SEM as an observation distant more than 3
times the interquartile range from the first or third quartile, as they did in their work.
We defined H0 : same distribution of the percentage of SEMs in cases and controls,
H1 : different distribution of the percentage of SEMs in cases and controls. We
conducted a two samples paired Wilcoxon signed-rank test, free from the gaussianity
assumption. We rejected the null hypothesis with high confidence (pvalue < 10�93),
so we confirmed that there is a distinction between cases and controls. This supports
the hypothesis that the number of SEMs is correlated with cancer risk. We reported
a table comparing the percentages to show that, out of the first 20 sites by total
SEMs percentage, 14 times the cases percentage was higher than the controls one
(Figure 1.8). In the table, % Outliers represents the percentage of patients with an
outlier in the CpG site, % Outliers with cancer represents the percentage of cases
with an outlier in the CpG site, % Outliers without cancer represents the percentage
of controls with an outlier in the CpG site, Comparison is a boolean variable True if
the number of cases with an outlier is higher than the number of controls with an
outlier and False otherwise.

We want to continue on Gagliardi et al. study exploiting the survival data available.
In our work, to obtain a more fine-grained analysis and identify particular regions of
the DNA, we choose an approach exploiting the individual raw beta values. These,
conversely to SEMs, are continuous and better suited for the application of a neural
network.

1.3 Preliminary analysis

Before the model application we conduct some preliminary analysis on the dataset.
Afterwards, we preprocess the selected data in order to apply the main approach
described in Chapter 2.
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Figure 1.8. Outlier percentages in the first 20 sites by number of outliers.
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Due to the huge dimensionality of the dataset that would have compromised
subsequent results, we decided to focus on the the CpG sites of the EZH2 protein,
composed of 13,449 sites. Indeed, DNA methylation aberrations of this polycomb group
protein have been demonstrated to have a high influence on cancer development [35].
As we explained, this result was also supported by Gagliardi et al. [7], the work that
we wish to extend.

1.3.1 Descriptive analysis

The total number of samples in the cohort is 1,112. Among these, 556 (50%) are cases,
and 556 (50%) are controls. Among the cases, 248 (44.6%) experienced breast cancer,
168 (30.2%) lung cancer, 140 (25.2%) colon cancer. The EZH2 dataset we concentrate
on, is composed by 13,460 variables, of which 13,449 are beta values; in the following
we describe only the main statistics of the variables relevant for our analysis.

The mean time to disease is 7.1 years, the corresponding standard deviation is
3.8 years, and the range is from 1.0 to 16.2 years. In the following we will divide the
cases in bins according to the time to event. In particular, the bins we will choose
for the visualizations are 1-3.5 years (22%), 3.5-7 years (29%), 7-10.5 years (26%),
10.5-17 years (23%), since they permit to divide the number of samples in an almost
uniform way.

For what concerns the beta values, although all bounded between 0 and 1, they
present very different distributions. In Figure 1.9 we show a violin plot of 7 selected
CpG sites. It can be noticed that they vary in mean, standard deviation, skewness and
outliers presence. While more than 85% of the sites have a mean lower than 0.3, due
to the low methylation level in CpG islands, there are several sites with higher levels:
the beta values’ means per site range over all the spectrum, from 0.007 to 0.991. Also,
the standard deviations per site range a lot, from 0.004 to 0.254. Therefore, we will
use normalization for each baseline feature before the model application, standardizing
with a 0 mean and a standard deviation of 1.

1.3.2 Visualization and sample selection

First, we show a plot representing a clustermap (heatmap with feature clustering)
of the first 8 CpG sites of the dataset, in which the correlation is reported for each
couple of sites, along with a dendrogram representing the feature clustering algorithm
application (Figure 1.10). We can notice, for example, a cluster of sites highlighted
in dark blue in the top left corner with a high similarity. It shows the presence
of collinearity among the variables; this result is coherent with the literature and
supports the hypothesis that biological interactions are strong and need to be taken
into account by the model.

18



Chapter 1. Data 1.3. Preliminary analysis

Figure 1.9. Violin plot of the distributions of 7 selected CpG sites.

Using the t-SNE algorithm [36] on the CpG sites for the cases, we obtain a two-
dimensional projection of the data. t-SNE is a nonlinear dimensionality reduction
technique for embedding high-dimensional data for visualization in a low-dimensional
space. Specifically, it models each object by a two-dimensional point in such a way
that, with high probability, similar objects are modeled by nearby points and dissimilar
objects are modeled by distant points. Thanks to its visualization, we can clearly
distinguish the three differently colored types of cancer in the dataset (Figure 1.11).
The blue, red and green observations are present diverse patterns in this bidimensional
space. Therefore, the relevant features characterizing cancer vary depending on the
type.

In order to analyze the difference between the cases and the controls populations,
we conducted a two samples paired Wilcoxon signed-rank test on the paired means
of the beta values of the CpG sites per class. We defined H0 : same distribution of
the means in cases and controls, H1 : different distribution of the means in cases and
controls. We rejected the null hypothesis with very high confidence (pvalue ' 0),
so we confirmed that the means of the sites in the two populations differ, as can be
seen in Figure 1.12, where the boxplot of the differences in the paired means is not
centered in zero. This supports the hypothesis that the means of the beta values of
the CpG sites are correlated with breast cancer risk.

As suggested in the introduction, for the following analysis, we will focus only
on breast cancer, the red observations in Figure 1.11, to concentrate the scope of
the analysis. Indeed, methylation values of different tumors exhibit specific patterns,
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Figure 1.10. Clustermap of 8 CpG sites of the EPIC dataset, colored according to the
correlation between them, and clustered with a hierarchical agglomerative
algorithm using the euclidean distance.
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Figure 1.11. t-SNE visualization of DNA methylation data, colored by different cancer types.

Figure 1.12. Boxplot of the difference between cases and controls of the paired means of the
beta values.
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as seen in the scatterplot, where they occupy diverse portions of the bidimensional
projection space, thus should be considered by themselves.

Since our objective is to analyze the connection between DNA methylation and
the times to disease, we focus only on the cases for the model training. The controls
revealed a different distribution with respect to the cases, as noticed in Figure 1.12,
hence their behavior should be modeled by a method tailored for them. If exploited
for the training of our model, the controls could modify weights to undesirably model
behaviours out of our scope. Hence, we will remove the controls from the analysis
before the model application until the explanations’ computation.

We summarize the sample selection for the model in Table 1.2. For each step
we can find the sample retained, the cause of the removal, the number of patients
removed and the number of patients retained, along with their percentage. We can
notice that after the selection our dataset is composed of 248 patients, that have
developed breast cancer in the time horizon. The mean time to disease is 7.2 years,
the corresponding standard deviation is 4.2 years, and they range from 1.0 to 15.6
years.

Sample Cause of removal Removed Retained % retained

Breast study Focus on one study 616 496 45%

Breast cases Model times to disease 248 248 50%

Table 1.2. Patients selection.

1.3.3 Preprocessing

For the model application, we will not consider the lifestyle and demographic features,
to focus the scope of the analysis only on methylation data. Also the variable indicating
the type of the study (breast, colon, lung) is no more useful, since we concentrate
our attention on breast cancer only. The same is done for the variable indicating the
matching, since only cases were included.

We preprocess the data by grouping CpG sites into CpG islands, to account for
the strong dependence among data belonging to the same region. As we suggested in
Section 1.1.1, further studies are needed to determine to what degree DNA methylation
of CpG islands influences the disease development, since several functions of CpG
islands are still being uncovered. We wish to develop our work in this direction.
Technically, we use the means of the beta values of each island as input variables for
the following analysis, to reduce the number of features down to 3807. The mean is
chosen as aggregating function since it is influenced by both the trend of a CpG site
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distribution and the outliers presence, being the latter, as suggested by the SEMs
studies, informative for detecting anomalies.

We summarize the variable selection and pre-model aggregation steps in Table 1.3.
For every step we can find the cause of the removal, the number of variables removed
and the number of variables retained, along with their percentage.

Cause of removal Removed Retained % retained

Only EZH2 protein 299875 13460 4.3%

No lifestyle, study and matching 10 13450 99.9%

Aggregation in CpG islands 9643 3808 28.3%

Table 1.3. Variable selection and aggregation.

We can notice that, after the preprocessing, our dataset is composed by 248
observations as rows and 3807 CpG islands’ mean beta values and the time to event
as columns.
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Chapter 2

Methodologies

So far, we illustrated the dataset and its main characteristics. In this Chapter, we
present our proposal for extracting and analyzing the feature importance ranking
of the DNA methylation features driving risk prediction, describing in details the
complete methodology of our work and formalizing the approach. We explain the
fundamental theory on which we establish our method, presenting the concepts and
useful properties of the techniques that are either directly used in our approach, or
functional to comprehend it.

In order to accomplish our goal, first, we set up a risk prediction model that analyzes
times to disease. This model is composed of a feature clustering algorithm and a deep
survival model. Second, we measure the most useful DNA methylation features for
the prediction with a feature importance algorithm. Therefore, we can divide the
whole methodology in three parts: feature clustering, deep survival modelling and
feature importance ranking.

In Section 2.1 we explain the general pipeline of the method, together with the
theoretical and practical motivations of each of the parts composing it.

In Section 2.2 we describe the feature clustering algorithm. Feature clustering [37]
is a technique that extracts new variables from the original ones by grouping them
into sets with high similarity, and then summarizes each set with a unique feature.
It leverages hierarchical agglomerative clustering, but merging features instead of
samples. Hence, after the general hierarchical clustering algorithm is presented, we
give the specifications for the application.

In Section 2.3 we describe the deep learning regression model, in which a pre-
training procedure with an autoencoder and a survival model concur in obtaining a
powerful approach. We need to introduce first the preliminary theory. We illustrate
the field of survival analysis focusing on the Cox model [8]. Then, we explain the
fundamentals of deep learning, with a special attention reserved for the genomics
applications, and we extend the Cox model to a deep survival model [38]. Moreover,
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the autoencoder is introduced, underlining its purpose as a pre-training technique.
Thanks to this background, we present our proposal of a deep survival model, pre-
trained with an autoencoder in an unsupervised way to improve the generalization
capabilities of the method.

In Section 2.4, we present the feature importance ranking method. It consists
of the SHAP algorithm [12], in particular its Kernel variation. To introduce it, we
illustrate the interpretability problem in deep learning and how it has been confronted
in the literature, concentrating on the concept of Shapley values [39], fundamental
for explaining SHAP. We obtain rankings with respect to different reference subsets
of the dataset and select the first features in order of importance for the post-hoc
analysis.

To conclude, in Section 2.5, we report the statistical and biological validation
to be conducted on the results of the approach. For what concerns the statistical
validation, we train survival models with the CpG islands retained by feature selection,
we estimate the Kaplan-Meier curves [40] of the most relevant CpG islands and we
compare cases and controls by means of Wilcoxon signed-rank tests [41] on the means
of the first islands in the ranking. For what concerns the biological validation, we
conduct a weighted variant of enrichment analysis, the Weighted Kolmogorov-Smirnov
test [42], that identifies over-weighted genes according to the importance values.

The methodology explained in this Chapter obtains the results reported in Chapter
3, where it is applied to the EPIC dataset.

2.1 Pipeline

In this Section we present a general overview of our proposal, together with the
theoretical motivations that are crucial to support the model choice.

The proposed methodology consists in three main steps, as depicted in Figure 2.1:

(A) Feature Clustering: We apply agglomerative hierarchical clustering with
Euclidean distance and Ward linkage to the CpG islands, to aggregate similar
behaving regions into meaningful features.

(B) Deep Survival Modelling: i) We build a deep autoencoder, connecting
encoding and decoding layers with a bottleneck, and then we train it in a greedy
layer-wise fashion to reconstruct the input data. We retain only the encoder, in
order to create a latent space representation that reduces the dimensionality,
conserving biological information. ii) Then, we attach to the encoder a last fully
connected layer to build a deep survival Cox model, and we fine-tune all the
layers to optimize the parameters for the survival task.
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Figure 2.1. Schematic pipeline of the method.

26



Chapter 2. Methodologies 2.1. Pipeline

(C) Feature Importance Ranking: i) We use the Kernel SHAP algorithm to
measure the relevance of each variable. We obtain feature importance with
respect to reference datasets both locally, for a single sample, and globally, for
the whole cohort. ii) Finally, after reordering the features according to their
importance, we extract the most important CpG islands, to be analyzed further.

2.1.1 Motivations

The final goal of this work is to extract and analyze an importance ranking of the
DNA methylation features driving risk prediction. In order to accomplish it, the three
steps reported concur in the resolution of the challenges that the analysis presents.
Here we express the motivations behind each of these steps.

Feature clustering and deep survival modelling

The first task of our method is to predict accurately survival times and construct
insightful survival curves. Traditional Cox proportional hazards survival models
require huge cohorts on datasets with high dimensionality [6]. High dimensional data
are frequent in machine learning, and several approaches have been developed for
predicting survival times in this setting. Prior knowledge has been used to reduce
the number of features, regularization approaches like Lasso have been employed to
perform data driven feature selection, random forests are usually capable of resisting
overfitting, and have been adapted to survival settings [6]. Advances in neural networks
shattered performance benchmarks, enabled by improvements in computing hardware,
methodology and data availability. Deep neural networks exploit feature learning to
extract latent high-level features, and have been successfully applied to biomedical
problems [43]. They are well suited in situations in which high order interactions
are present, as in our case. Therefore, our choice consists of a modern deep survival
model, inspired by the established benchmark in the field, DeepSurv [38]. However,
considering the huge amount of variables with respect to the number of samples in the
cohort, we need to simplify the training procedure for the network. We accomplish
it by providing a meaningful initialization to the weights of the network through
autoencoder pre-training.

As stated by Erhan et al. [44], one of the key challenges in training deep architec-
tures is dealing with the strong dependencies that are present between the parameters
across layers. A way to conceive the difficulty of the problem is that we wish to
simultaneously:

• train the first layers in order to provide adequate input to the last layers

• train the last layers to make wise use of the final setting of the first layers.
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The second problem is easy if tackled alone, when the final setting of the first layers
is known. It is not clear how complicated is the first one, and a particular difficulty
arises when both sets of layers must be learned jointly. Furthermore, since the last
layers often overfit the training set, the training error does not necessarily reveal the
difficulty in optimizing the first layers. The standard training techniques tend to
place the parameters in regions of the space that do not permit generalization. Our
proposal leverages autoencoder pre-training as a way to ease the training of the first
layers and improve generalization capabilities. After the latent representation layer
obtained by the autoencoder, we plug in a fully connected layer and fine-tune the
model using the time to events provided.

This procedure, however useful, is not enough for our noisy data. With DNA
methylation beta values, biological information is shared among the singular CpG
sites. In the first place, across the CpG islands, and then across gene pathways and
regions with coordinated functionalities. As anticipated in Section 1.3.2, the heatmap
of the islands reveals sets of correlated features. Each of these features is subject to a
lot of noise. If we considered the islands one by one, we would be overwhelmed by
the amount of irrelevant anomalies. Contrarily, aggregating the islands, we get the
information about the general trend of a group. Therefore, we exploit a dimensionality
reduction technique, before the pretraining of the network, i.e. the feature clustering.
It serves as a stabilization procedure and is key for obtaining reliable explanations.

Feature importance algorithm

It is complicated to find feature importance algorithms compatible with the prediction
model described. Neural networks, and models with interacting features in general,
are known to be hardly interpretable, as we will deeply explain in section 2.4.1. The
choice we pursue is the SHAP methodology, particularly for three reasons:

• SHAP values are one of the most common methods for dealing with interacting
features, which could go unnoticed otherwise. The algorithm allows the possibil-
ity of providing insights into the relationships between the model’s variables. As
we argued, this is one of the motivating problems for the method development,
since we relate with DNA methylation.

• SHAP has the advantage to operate both on a local and a global level. This
means that we can detect the features that are most important for a single
subject, and this is key in medical applications to give motivations to a diagnosis,
but we can also detect the globally most important risk factors, identifying useful
bio-markers. Indeed, although we get SHAP values locally for each instance,
we can easily build the global values. With SHAP, global interpretations are
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consistent with local explanations, property absent in most of the competitor
algorithms, as LIME [45], which provides only local values.

• SHAP computes feature importance values based on a reference dataset, called
"background dataset", used for integrating out features. To determine the
relevance of a variable, that variable is replaced with the values it takes in
instances that we sample from the background dataset and the change in the
model prediction is observed. A variable has a high importance for an observation
if the value of the observation is more useful for the prediction than the values
that variable assumes in the background dataset. At our disposal we have several
sensible sets of subjects to consider as the background dataset, leveraging the
controls, the colon and lung studies and the matching. Each of these sets
provides a peculiar perspective of the explanations, and is capable of detecting
anomalous behaviors of the cohort with respect to different types of samples.
This would not be possible using a method like the Wald statistic from the Cox
model.

2.2 Feature clustering

2.2.1 Method description

Hierarchical clustering

Clustering is the task of aggregating a set of data points in such a way that data in the
same group (i.e. cluster) have similar properties, while data in different groups have
dissimilar properties [46]. Clustering is a common unsupervised learning technique
for data analysis that aims to understand data structure. An example of a clustering
algorithm applied to two-dimensional data points is provided in Figure 2.2.

Figure 2.2. Clustering example.
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Hierarchical clustering is a family of clustering algorithms which seeks to construct
nested groupings by merging or splitting clusters iteratively. It is possible to plot a
tree representing the hierarchical structure of clusters as a dendrogram (Figure 2.3).
Visual inspection of the dendrogram are useful for understanding the structure of the
dataset. The root of the tree is the single cluster that includes the totality of the
observations, the leaves represent the clusters containing only one sample. When the
tree is deep, it is generally better to plot the dendrogram up to a certain number of
clusters and to report the number of samples in each leaf, for a cleaner visualization.
The height of the links represents the distance at which the clusters merge or split.

Figure 2.3. Example of a clustering dendrogram.

The most popular strategy for hierarchical clustering is agglomerative clustering
(Figure 2.4). Each observation is initially considered as a cluster by itself (Step 0).
Afterwards, recursively, after computing the matrix of pairwise distances between all
clusters, the two clusters that are at the minimum distance are merged into a unique
cluster (Steps 1,2,3). This procedure is iterated until all points are member of just
one single cluster (Step 4).

The key operation is the computation of the proximity of two clusters, hence
different approaches for defining the distance between clusters distinguish different
algorithms. We can select the distance function, that computes the distance between
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Figure 2.4. Example of an agglomerative clustering algorithm.

two data points, and the linkage criterion, that computes the distance between two
clusters given a distance function. Several possibilities are available for both distance
(Euclidean, Manhattan, Cosine...) and linkage (single, average, complete, Ward...).
We will explain only the choices we pursue in more detail below.

Feature aggregation

To stabilize the data and reduce dimensions, we apply feature clustering. Feature
clustering [37] is a technique that creates new features, extracted from the original
ones, condensing the relevant information into lower dimensionality. It groups the
variables into sets with high similarity, that are summarized by a unique feature.
Feature clustering is similar to a hierarchical agglomerative clustering procedure, but
recursively merges features instead of samples. It consists in simply transposing the
dataset matrix in tabular representation and applying the clustering algorithm already
described. Due to the vast diffusion of hierarchical clustering, various documented
libraries are implemented and can be used for feature clustering. Those provide
a high flexibility through the possibility of varying the parameters: the distance,
the linkage, the pooling function and the dimensionality. The choices we pursue
for these parameters are tailored to the application: we use the Eucliean distance,
the Ward linkage, the mean pooling function and we experimented with multiple
dimensionalities.
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2.2.2 Parameters for the aggregation

• Euclidean distance. The Euclidean distance is the most widely used distance
measure used for continuous numeric attributes. Let x and y be the two data
points of n dimensions between whose we wish to calculate the distance. Then
the euclidean distance is defined in the following formula:

d(x,y) = kx� yk2 =

vuut
nX

i=1

(xi � yi)2 (2.1)

that is the square root of the sum of the square differences.

The value of the euclidean distance is intimately related to the scale on which
measurements are made. Therefore, usually variables are normalized to have
standard deviation one and mean zero, before measuring the inter-observation
dissimilarities. This is recommended in particular in the context of gene ex-
pression data analysis. Indeed, the beta values revealed diverse distributions;
since we are interested in the relative magnitudes, and not the absolute ones,
Euclidean distance with normalization is the best choice. Furthermore, the Eu-
clidean distance defines clearly the concept of centroid of a cluster, as the point
that better summarizes the whole cluster, that is necessary for the application
of the Ward’s method, the linkage we wish to use.

• Ward linkage. For what concerns the linkage, we use the Ward’s minimum
variance criterion [47], that tries to minimize an objective function, the total
within-cluster variance (i.e. error sum of squares). At the start, all clusters are
singletons, then at each step the algorithm finds the pair of clusters that leads
to minimum increase in the total error sum of squares. To apply the recursive
algorithm under this objective function, the distance between individual samples
must be the squared Euclidean distance.

Let mX be the centroid of a cluster X of NX values:

mX =
1

NX

NXX

j=1

xj (2.2)

where xj for j 2 {1, ..., NX} denotes the vector of observation j belonging to
cluster X. Then, the error sum of squares of the cluster X is the sum of squares
of the deviations from the centroid, and is described by the following expression:

ESS(X) =
NXX

i=1

kxi �mXk22 (2.3)
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The total error sum of squared is hence defined as:

ESStot =
KX

X=1

ESS(X) (2.4)

where K is the total number of clusters. In the algorithm, the total error sum of
squares starts at zero (because every point is in its own cluster) and then grows
as we merge clusters. Ward’s method keeps this growth as small as possible.

Mathematically, the linkage function specifying the distance between two clusters
X and Y is computed as the increase in the total error sum of squares after
merging the two clusters into a single cluster and described by the following
expression:

D(X, Y ) = ESS(XY )� [ESS(X) + ESS(Y )] (2.5)

where XY is the combined cluster resulting from merging clusters X and Y .

Ward’s is said to be the most suitable method for quantitative variables and for
noisy data. It avoids the drawback of the single linkage that leads to uneven
cluster sizes, where clusters may be forced together due to few elements being
close, even though most of the samples may be distant to each other. This
phenomenon is present with lower magnitude also in average and complete
linkage when dealing with high dimensional settings, while Ward linkage, as
confirmed by our experiments, results in clusters of more comparable size.

• Mean pooling function. For grouping the features, we choose to use the
mean, to maintain the effects of the outliers, that, as suggested by the SEMs
studies, have been very useful to detect relevant aberrant behaviors [7].

• Multiple dimensionality experiments. We continue the analysis with 128,
256, 512 and 1024 features. To compare the clustering dimensions, we fix the
subsequent survival model to be of the same type, and we measure the difference
in predictive and interpretative performances. Therefore, we will compare in
Section 3.1.2 four sets of features of different dimensionalities as input for the
survival model.
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2.3 Survival modeling

2.3.1 Background

Survival data

Survival analysis is a collection of statistical procedures for which the outcome variable
of interest is the time elapsed from a starting event until an endpoint occurs, i.e. the
survival time. We will concentrate on the application in medical research: hence, by
time, we mean years, months or days from the beginning of follow up of a patient
until an event occurs; by event, we mean disease diagnosis, death or any designated
experience of interest that may happen to the patient. In our case time corresponds
to years, the origin event is the patient’s recruitment and the event of interest is the
patient’s breast cancer diagnosis.

Often, survival analyses must consider a key problem called (right) censoring.
Censoring occurs when a subject leaves the study before the event of interest occurs.
For each patient i, survival data is made of pairs (Ti, Ei). Additional covariates xi

can be present as baseline data. Let T ⇤
i be the non-negative random variable denoting

the event time (e.g. cancer diagnosis) and Ci be the random variable denoting the
time at which the censoring happens (e.g. end of study). What we actually observe
in survival analysis studies is the failure time Ti, that is either the event time T ⇤

i or,
if it is smaller, the censoring time Ci:

Ti = min(T ⇤
i , Ci) (2.6)

In addition, we are given the information on whether Ti is an event time or a censoring
time through a binary variable Ei, denoting the event indicator:

Ei =

8
<

:
1 if T ⇤

i  Ci

0 if T ⇤
i > Ci

(2.7)

If the event of interest is observed, the event indicator is Ei = 1, and we have an
uncensored observation (i.e. case). If the event of interest is not observed, the event
indicator is Ei = 0, and we have a censored observation (i.e. control). An illustration
of how censored survival times may arise is given in Figure 2.5. It illustrates a
hypothetical medical study where 10 subjects are monitored over a time period to
until some specific event occurs. Some subjects experience the event before the end of
the study, therefore they are uncensored (in red). Other subjects experience the event
after the end of the study, or do not experience the event at all, therefore they are
right censored (in blue).
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Figure 2.5. Example of survival data.

Survival function and hazard rate

Let T denote the non-negative continuous random variable of failure time, admitting
a probability density function f(t) and the distribution function F (t) = P(T  t). We
can characterize the distribution of T using two other fundamental survival analysis
functions, to illustrate different aspect of the data: the survival function and the
hazard function. The survival function, denoted by S(t), represents the probability
that a subject survives beyond time t:

S(t) = P(T > t) = 1� F (t) (2.8)

Therefore, S(t) is a non-increasing function of time t such that S(0) = 1.
The hazard function, denoted by h(t), is the instantaneous risk of failure at time

t, conditioned on surviving up to that time (i.e. the conditional failure rate). It is
a measure of the propensity to failure as a function of the time. A greater hazard
signifies a greater risk of the event occurring early. It is defined as:

h(t) = lim
�t!0

P(T  t+�t|T � t)

�t
(2.9)

It can also be defined in terms of the survival function S(t) and the density function
f(t):

h(t) =
f(t)

S(t)
(2.10)
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Notice that while the survival curve is a function that starts at 1 and decreases over
time, the hazard rate can be any non-negative function.

In the subsequent modeling, we make the assumption of non-informative censoring:

Ci ? T ⇤
i (2.11)

It is a strong assumption stating that the censoring of an individual is unrelated to the
outcome. Patients who are censored have the same survival prospects of those who
continue to be followed. It is often not verified, but it is needed for the development
of most models.

Survival modeling assumes that the observations come from an unknown distribu-
tion. The traditional methods for estimating the survival distribution are two: the
Kaplan-Meier estimator and the Cox proportional hazards model.

Kaplan-Meier estimator

To estimate the survival function S(t) from a sample of survival data, the Kaplan-
Meier estimator [40], also known as the product limit estimator, is the most popular
method. It is a non-parametric approach that can deal with censored data.

Let t⇤1 < t⇤2 < ... < t⇤J denote the unique event times of the data, that are the
distinct ordered times of events. For each t⇤j , let dj be the number of observed events
at t⇤j and nj the number of patients still at risk at that moment. The Kaplan-Meier
estimator is defined as:

Ŝ(t) =
Y

j:t⇤jt

(1� dj
nj

) (2.12)

The Kaplan-Meier estimate is a step function with jumps at the observed event times.
If there is no censoring, it coincides with the empirical survival function.

The Kaplan-Meier estimator is often used to compare two populations of subjects,
plotting their Kaplan-Meier curves together. If the curve of one population evidently
diverges from the other, it means that the populations have a different survival profile,
vice versa if the two curves overlap, the survival profiles are similar.

Generally, we wish to obtain a bound on goodness of the estimate, other than the
estimate itself. The 95% confidence interval for the Kaplan-Meier survival estimator,
based on the Greenwood’s formula and usually plotted together with the estimator
itself, is given by:

CI0.95(S(t)) = [Ŝ(t)± z0.975ŝe(t)] (2.13)

where the standard error is:
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ŝe(t) = Ŝ(t)

vuut
X

j:t⇤jt

dj
nj(nj � dj)

(2.14)

Log-rank test and hazard ratio

The log-rank test (Mantel-Cox test) [48] is the most commonly used non-parametric
survival statistical test, which makes no assumptions about the survival distributions,
for comparing two groups of subjects. Defining as S1(t) the survival function of the
first group and as S2(t) the survival function of the second group, the null hypothesis
of the test is that there is no difference in the survival profile of the two groups
H0 : S1(·) = S2(·) while the alternative hypothesis is that there is a difference between
them H1 : S1(·) 6= S2(·). One way to assess H0 is to look at the difference between
observed and expected (if the null hypothesis was true) number of events in both
groups on each time interval. If the difference is significant, we have evidence of
the difference of the functions. It can be used as a quantitative confirmation of the
difference between two Kaplan-Meier curves.

The hazard ratio is the ratio of the hazard rates corresponding to the conditions
described by two levels of an explanatory variable, or in simpler words, is the ratio of
the risk of the event in a group 1 to the risk of the event in a group 2. In formulas, it
is expressed as:

HR =
O1/E1

O2/E2
(2.15)

where Oi is the number of observed events in group i 2 {1, 2} and Ei is the number
of expected events in group i 2 {1, 2}. It can be interpreted as the chance of an event
occurring in group 1 divided by the chance of the event occurring in the group 2. The
hazard ratio is interpreted according to the list:

• HR=1 no effect in belonging to a group.

• HR<1 reduction in the hazard, belonging to group 1 is a protective factor.

• HR>1 increase in the hazard, belonging to group 1 is a risk factor.

These concepts will be useful for the statistical validation procedures described in
Section 2.5.2.

Cox model

A proportional hazards model is a typical method for modeling an individual’s
survival given their baseline data x. The model assumes that the hazard function is
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the multiplication of two non-negative functions: a baseline hazard function, h0(t),
and a risk function, r(x), denoting the effects of an individual’s covariates. Among
other properties, this means that we suppose that our covariates are fixed over time.

Among proportional hazards models, a popular one in survival analysis that can
be used to assess the importance of various covariates in predicting the survival times
of individuals is the Cox proportional hazards model [8].

Let X 2 Rnxp be the covariate matrix where Xi,j denotes the j-th covariate of the
i-th subject. For an individual i with covariate vector Xi, the Cox model assumes a
hazard function for the survival time of the form:

hi(t) = h0(t)r(Xi) = h0(t) exp {�TXi} (2.16)

where h0(t) is an unspecified baseline hazard and � 2 Rp is the column vector of the
unknown regression coefficients that we want to estimate. The model estimates the
log-risk function by a linear function: log(r(Xi)) = �TXi. Hence, it is also called the
linear proportional hazard model.

This kind of model for censored survival data specifies that covariates have a
proportional effect on the hazard function of the survival distribution of an individual.
Indeed, the hazard ratio for two subjects with covariate vectors Xi and Xk is:

HR =
hi(t)

hk(t)
= exp {�T (Xi �Xk)} (2.17)

that is constant over time.
The estimation of Cox’s regression coefficients is not straightforward because of

the semi-parametric nature of the model. Since it is impossible to exploit the ordinary
likelihood approaches, it is necessary to use a partial likelihood. The term partial is
used because the likelihood formula considers probabilities only for the subjects who
experience the event, and does not explicitly consider probabilities for the subjects
who are censored.

Let Tj be an observed event time and suppose that T1 < T2 < ... < TN , let ij be
the index of the individual who experiences an event at Tj and let Yi(t) be an indicator
function which assumes the value 1 if i-th patients is at risk for the event of interest just
before time t and the value 0 otherwise. Introducing Rj = {l 2 {1, ..., n}|Yl(Tj) = 1}
indicating the risk set at time Tj, the partial likelihood for � is:

L(�) =
Y

Tj

exp{�TXij(Tj)}P
l2Rj

exp{�TXl(Tj)}
(2.18)

The maximum partial likelihood estimator �̂ is the value of � that maximizes the
expression:
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�̂ = argmax
�2Rp

L(�) (2.19)

where the optimization is typically conducted by applying the Newton-Raphson
procedure.

As anticipated, the Cox model, although the most used and successful model with
explanatory variables, is too basic for several settings. It makes strict assumptions on
the survival function to be estimated: the model assumes that a patient’s log-risk of
failure is a linear combination of the patient’s covariates. In many applications, for
example modeling non-linear gene interactions, it may be too superficial to assume
that the log-risk function is linear. Hence, the Cox proportional hazards model
would require to compute high-level interaction terms, but this becomes prohibitively
expensive when the number of features increases. Therefore, a wider family of survival
models is needed to better fit survival data with non-linear log-risk functions. This
requires changing the model of the function r(x).

2.3.2 Deep models

Deep learning introduction

To introduce the concepts of deep survival model and autoencoder, an essential
presentation of the main deep learning concepts is required. In recent years machine
learning has shown dramatic improvements on very different subjects where it is key
to get data-based results with high accuracy. Deep learning is a subset of machine
learning that learns the relevant features via the use of deep neural networks.

A feed-forward neural network (that we will simply refer as a neural network)
defines a complex parametric function y = f(x) which maps an input x 2 Rn to an
output y 2 Rm, where f(x) is a sequence of high-level building blocks called layers.
Each layer is composed of a collection of units called artificial neurons. Connections
between neurons transmit a signal from one to another. Every layer l from 1 to L

is a function gl : Rp ! Rq that receives as inputs the outputs of the previous layer
(referred as activations al�1), transforms them and then passes the output values al

to the next layer.
One type of layer, fundamental for us, is the fully connected layer. Defining as

Wl 2 Rpxq the weights of layer l, as bl 2 Rq the bias of layer l, and as �l : Rq ! Rq

the activation function of layer l, every fully connected layer activation al, is computed
through the recursive formula:

al = gl(al�1) = �l(Wlal�1 + bl) (2.20)

Observe that the function gl consists in a composition of a linear function Al(al�1) =
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Wlal�1 + bl and the non-linear activation function �l(x). Our goal in training the
network is to estimate the parameters Wl and bl of Al(al�1) for every layer l, or,
if considered together for all layers, the parameters ✓ = {Wl,bl|l 2 {1, ..., L}}.
The activation function �l(x), usually equal for every layer except for the last one
(�l(x) = �(x), 8l 2 {1, ..., L� 1}), makes the network non linear and able to model
complex functions. In the application, we will focus on one of the most commonly
used activation function for feed forward neural networks, the sigmoid:

�(x) =
1

1 + e�x
(2.21)

Feed-forward neural networks are typically represented as directed acyclic graphs,
illustrating how the layers are joint together. In Figure 2.6 we show an example
representation of a feedforward neural network with four input dimensions, two hidden
layers of three neurons and one output dimension.

Figure 2.6. Example representation of a feedforward neural network.

The parameters ✓ of the network need to be estimated. After the initialization
according to a useful distribution, they are updated in a training phase, using an
algorithm that tries to minimize a loss function L, that measures the quality of the
predictions. In general, a gradient-based optimization algorithm is carried on, in our
case the stochastic gradient descent with momentum [49]. Parameters are iteratively
updated according to the rule:

✓k+1 = ✓k � ⌘zk , zk = r̃f(✓k) + �zk�1 (2.22)

where ✓k indicates the network parameters at iteration k, ⌘ is the learning rate, � is
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the momentum parameter and r̃f is the approximated gradient of the whole neural
network. This algorithm helps to avoid local minima and to proceed towards the
general direction of the gradient.

In theory, we could use the entire training set to compute the gradient. However,
it is common practice to compute it only for a set of samples Ik chosen at random at
each iteration, the mini-batch, with |Ik| < N , where N is the total number of training
data. In formulas, we can write it as:

r̃f(✓k) =
1

|Ik|
X

j2Ik

rfj(✓
k) (2.23)

where the gradient for a single instance rfj(✓k) is computed through the backprop-
agation algorithm. This, thanks to the sampling procedure, shortens training time
and decreases computational needs, without excessively increasing the variance of the
gradient estimation.

Because of the huge number of parameters |✓| with respect to the numerosity of
training data, neural networks are prone to overfitting. Overfitting is a problem that
consists of constructing too complex functions with a low error on the training data,
but with a high variance on the test data, so that they fail to generalize. We will
discuss our solutions to this problem directly in our proposal.

Neural networks’ main advantage, with respect to standard linear models, is
the wider range of learnable functions (universal approximation theorem [50]). Deep
learning is perfect in situations with unstructured data, high order complex interactions
and a huge number of features. In these cases, features hand-crafting is tedious and
less efficient, so deep learning is the best suited alternative.

In recent years, the accessibility of large datasets, graphics processing units and
emerging modeling techniques have made these approaches more accurate for the
analysis of molecular data in genomics. By unsupervised training, the deep neural
network can automatically extract the hidden information in the noisy biomedical
data. By supervised training, the deep neural network has been applied to predict
the sequence specificity of DNA and RNA binding proteins and of regulatory regions,
gene expression and control of splicing, as reported by Zou et al. [9].

Neural networks in survival analysis

To model non-linear survival data, researchers have applied neural networks to survival
analysis. Risk neural networks learn complex relationships between genomic features
and an individual’s risk of failure. In applications, for example, when the success of
a treatment is affected by an individual’s characteristics, the model can learn the
relationships without any domain expertise. The network can provide a personalized
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recommendation based on the computed risk of a treatment [38].
Faraggi et al. [51] presented the first application of neural networks to survival

analysis in 1995, the Faraggi-Simon network. It consisted of an approach to modelling
censored survival data using the a feed-forward neural network, and provided the
basis for a non-linear proportional hazards model. They experimented with a single
hidden layer network with only three nodes. The model required no prior assumption
of the risk function r(x) other than its continuity. Contrarily to the standard Cox
model, the neural network computed non-linear features from the training data and
calculated their combination to predict the risk function. They replaced the linear
combination of features �TXi in Equation 2.16 with the function f(Xi), where f is
the neural network. Similar to Cox regression, the network optimized a modified Cox
partial maximum likelihood.

As previous research suggests, the Faraggi-Simon network has not been shown
to outperform the linear Cox proportional hazards model [38]. Developing the
Faraggi-Simon model, DeepSurv [38] showed that, with modern techniques, risk neural
networks provide state of the art performance and can be used for a variety of medical
applications. In fact, they showed that DeepSurv performs as well as or better than
other survival analysis methods on data with both linear and non-linear effects from
covariates. DeepSurv provides further improvements regarding treatment effects and
recommendations, but those are out of the scope of our analysis.

DeepSurv is a configurable deep neural network which predicts the effects of a
patient’s features on the hazard rate using the parameters of the network ✓. Figure 2.7
illustrates the basic components of DeepSurv. The input to the network is the patient’s
baseline data x. The blocks forming the hidden layers consist of a fully-connected
layer, followed by a dropout layer. The output of the neural network is a unique
neuron with a linear activation that estimates the risk function ĥ✓(x).

Let T be the times to disease and E the event indicators. Defining the neural
network risk function ĥ✓(x), parameterized by the weights of the network ✓, the
average negative log partial likelihood to optimize is:

L(✓) = � 1

NE=1

X

i:Ei=1

(ĥ✓(Xi)� log(
X

j2R(Ti)

eĥ✓(Xj))) + �k✓k22 (2.24)

where the risk set R(t) = {i : Ti � t} is the set of patients still at risk of disease at
time t, NE=1 is the total number of patients who experience the event and � is the l2
regularization parameter. Modern deep learning techniques are used to optimize the
training of the network. These include: standardizing the input, Adaptive Moment
Estimation for the gradient descent algorithm, Nesterov momentum and learning rate
scheduling.

A more sophisticated deep learning technique, free from further assumptions and
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Figure 2.7. Basic scheme of the DeepSurv model.
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that can smoothly handle competing risks, is found in DeepHit [52]. Indeed, in this
work, no assumption about the underlying stochastic process is made.

Autoencoders

We also introduce deep autoencoders [53] that will be a key part of our model. These
models are neural networks with the same dimensionality in input and output, whose
seemingly trivial task is to return the input. However, between the input x 2 Rp and
the output x0 2 Rp, several hidden layers are stacked. Autoencoders are composed
of a possibly multi-layer encoder reducing dimensions, and a possibly multi-layer
decoder retrieving original information, connected by a bottleneck layer (Figure 2.8).
Features returned by the bottleneck are tipically referred as latent representation.
Autoencoders generally do not provide exact reconstruction since d << p, where d is
the size of the latent representation. By training the network we expect the latent
representation to be a meaningful and compact representation of the input. Hence,
autoencoders must find the best way to preserve information in order to reconstruct
it.

Figure 2.8. Example of the autoencoder model.

The autoencoder we employ aims to minimize a mean absolute error reconstruction
loss:
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L(x,x0) =

Pn
i=1 |xi � x0

i|
n

(2.25)

Additional regularization terms may be included in the loss function, if needed. More
powerful and non-linear representations can be learnt by stacking multiple hidden
layers. In this way, the training of the model is made more challenging, but the
features learnt could be more general and relevant.

Autoencoders can be very useful as pre-training techniques when we have not
much labelled data, typically in semi-supervised applications, since the straightforward
application of a model would not be sufficient. After the learning procedure the decoder
is removed maintaining only the encoder for the following analysis. They initialize
the weights of a supervised model when few annotated data are provided in a fully
unsupervised way. They are more powerful than a linear PCA, because they are able
to provide more complex representations. Since in our case we have few data, their
application is convenient.

Autoencoder pre-training serves as a generalization technique, as presented in
Erhan et al. [44]. They argue that unsupervised pre-training is an unusual form of
regularization: minimizing variance and introducing bias towards the configurations
of the parameter space that are useful for unsupervised learning. This approach is
unique among regularization techniques, since it acts by defining a useful prior to the
supervised fine-tuning training procedure rather than either modifying the supervised
objective function or explicitly imposing constraints on the parameters during training.
The effectiveness of the unsupervised pre-training strategy is limited to the extent that
learning P(x) can be helpful in learning P(y|x), where x is the input of a supervised
model, and y is the corresponding output.

The training of the autoencoder can be conducted greedy layer-wise [54], one layer
at a time. We start by training a shallow one-layer autoencoder; then, recursively, we
train a deeper autoencoder from the latent representation’s initialization found in the
previous step, diminishing the dimensions of the bottleneck (Figure 2.9). It helps the
stability of the weights of the model and improves predictive performances at the cost
of a heavier computational burden.

Many variations of the standard autoencoder have been employed to cope and
improve on some aspects, in particular variational [55], that sample latent features
based on gaussian distributions, and adversarial [56], that train generators and
discriminators networks to compete in an adversarial game. They could be exploited
in future developments of this work.
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Figure 2.9. Layer-wise pre-training of an autoencoder.

2.3.3 Proposed prediction model

Pre-training

The first part of our survival model proposal is a deep encoder, initialized by the
autoencoder pre-training, conserving meaningful biological information and discarding
noise while embedding the data, as in Titus et al. [32]. Its implementation as a
deep structure permits to learn more general latent representations, as empirically
demonstrated in Kuchaiev et al. [57]. In our experiments, we compared the deep
structure with a shallow one composed of only the bottleneck layer between the input
and the output. We ascertained that while the shallow model provided a better
reconstruction error, the model lacked generalization capabilities. To avoid overfitting
we then chose the deep network.

Before being fed into deep learning models, all data are subjected to standardization
to fit a standardized normal distribution; namely the average is 0, and the standard
deviation is 1. Other than the already described fully connected layer, the batch
normalization layer is also used in the network, therefore we will explain its functioning
after the architecture presentation. We use a scheme based on two types of building
blocks, repeated until we reach the dimensionality desired. The first type of block is
the encoder one, made of a fully connected layer halving the dimensionality, followed
by a batch normalization layer. The second block is the decoder one, made of a
fully connected layer doubling the dimensionality, followed by a batch normalization
layer. Moreover, at the end, we place a final fully connected layer to recover the
original dimensions. The presence of several fully connected layers reflects the strive
to account for the complex relationship between features. The sigmoid activation
function reported in Equation 2.21, is used in every fully connected layer except for
the last one, that needs not to be bounded between 0 and 1.
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We need to select the best input dimensionalities and the best latent representation
dimensionalities for the application. The input choice reflects the feature clustering
algorithm, therefore we construct architectures with 128, 256, 512, 1024 input di-
mensions. Regarding the latent representation, we focus on the two most promising
alternatives of 16 and 32 latent features. We will experiment with every combination
of the input and latent representation dimensionalities in Section 3.1.2. To visualize
the structure, the architecture of the biggest of these models (the one with 1024 input
dimensions and 16 latent dimensions) is shown in Table 2.1. In yellow the encoder
part is highlighted, since is the section we will conserve for the survival model, while
the decoder part is reported in white.

Networks converge faster if inputs have been whitened (zero mean, unit variance)
and are uncorrelated. We can have internal covariate shift in the network, thus
normalization could be useful also at the level of hidden layers. Batch normalization [58]
is a technique to cope with this. It can be interpreted as a preprocessing of some
hidden layers of the network, but integrated into the network itself in a differentiable
way. We carried out batch normalization after the activation function of every hidden
layer. Let B be a mini-batch of size m of the training set. The empirical mean and
variance of B could be denoted as:

µB =
1

m

mX

i=1

xi , �2
B =

1

m

mX

i=1

(xi � µB)
2 (2.26)

For a layer of the network with a d-dimensional input, xi = (x(1)
i , ...,x(d)

i ), each
dimension is then normalized separately:

x̂(k)
i =

x(k)
i � µ(k)

Bq
�(k)2

B + ✏
(2.27)

where k 2 {1, ..., d}, i 2 {1, ...,m} and ✏ is added in the denominator for numerical
stability as an arbitrarily small constant. To restore the representation power of the
network, a linear transformation follows:

ŷ(k)
i = �(k)x̂(k)

i + �(k) (2.28)

where the parameters �(k) and �(k) are learned through backpropagation. Batch
normalization has shown to improve gradient propagation through the network, allows
to use higher learning rates (faster learning), reduces the strong dependence on weights
initialization and acts as a form of regularization, reducing the need for dropout.
Indeed, no dropout on any level was needed to prevent overfitting. The optimization
procedure is carried on using the stochastic gradient descent with momentum algorithm
of Equation 2.22, helping to avoid local minima and proceeding in the general direction
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Layer Dimensions Parameters

Input 1024 0

Dense 512 524800

Batch normalization 512 2048

Dense 256 131328

Batch normalization 256 1024

Dense 128 32896

Batch normalization 128 512

Dense 64 8256

Batch normalization 64 256

Dense 32 2080

Batch normalization 32 128

Dense 16 528

Batch normalization 16 64

Dense 32 544

Batch normalization 32 128

Dense 64 2112

Batch normalization 64 256

Dense 128 8320

Batch normalization 128 512

Dense 256 33024

Batch normalization 256 1024

Dense 512 131584

Batch normalization 512 2048

Dense 1024 525312

Table 2.1. Architecture of the autoencoder.
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of the gradient. This technique diminishes the variance procured by the sampling
procedure in mini-batches.

The training is monitored though the use of validation data, not directly used
for optimizing the parameters, but to take decisions on the model. As standard,
it will be exploited for model selection, in the sense that we will choose the model
with the best validation performances. Furthermore, we need validation data for
the application of two techniques: early stopping and learning rate decay. Early
stopping [59] is the practice of interrupting the training when the loss of the validation
set stops decreasing. In practice, we stop the training if, for 10 consecutive epochs,
the validation error does not decrease. It limits overfitting by stopping the training.
Learning rate decay [60] is the practice of diminishing the learning rate when the
validation loss stops decreasing. In practice, we diminish the learning rate if, for 5
consecutive epochs, the validation error does not decrease. It refines the solution by
focusing the research for the optimum in a small region of the space.

After the training, the decoder is removed and the encoder is retained for the
survival model application.

Survival training

With the encoder embedding, we want to define a survival model using the latent
representation as input. In theory it could be of a generic type, for example a Cox
model or a survival forest, however, the parameters of the encoder are not task specific
for survival analysis. They provide a useful initialization for the network, optimized
for a compression objective, but need to be modified for the survival task to achieve
the results we desire.

We improve on the twofold model idea by using a deep neural network survival
model. After the deep encoder structure, the last layers of a neural network are linked
forming the full survival model. All the architecture is retrained by fine-tuning the
weights of the network, in order to obtain a single synchronized architecture. In
particular, we add a fully connected layer with no activation function (linear) after a
dropout layer. To visualize the structure, the architecture of the biggest of our models
(the one with 1024 input dimensions and 16 bottleneck dimensions) is shown in Table
2.2. In yellow the encoder part is reported, while the new survival part is highlighted
in orange.

This model is inspired by DeepSurv. It optimizes the same average negative
log-partial likelihood function, derived from the Cox model, reported in Equation 2.24.
It exploits most of the modern deep learning techniques of DeepSurv as the adaptive
moment estimation, early stopping, learning rate decay. However, it differs from the
DeepSurv model in regards of the dropout use, which here is strongly limited to just
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Layer Dimensions Parameters

Input 1024 0

Dense 512 524800

Batch normalization 512 2048

Dense 256 131328

Batch normalization 256 1024

Dense 128 32896

Batch normalization 128 512

Dense 64 8256

Batch normalization 64 256

Dense 32 2080

Batch normalization 32 128

Dense 16 528

Batch normalization 16 64

Dropout 16 0

Dense 1 17

Table 2.2. Architecture of the deep survival model.
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one layer, and the regularization of the weights, which here is absent, setting the
regularization parameter to zero. In fact, these techniques help to avoid overfitting,
that we dealt with through the pre-training of the network.

We employed only one dropout layer to further increase the generalization capabil-
ities of the last fully connected layer, since this layer is not affected by the pre-training
regularization procedure. Dropout [61] is a form of stochastic regularization, that, by
turning off randomly some neurons, forces to learn independent features, preventing
hidden units to rely on other units (co-adaptation). In Figure 2.10 a schematic
representation of a neural network with the dropout application is illustrated. It
behaves as an ensemble method reducing variance.

Figure 2.10. Visual representation of the dropout technique.

For what regards data usage, we continue to use only the breast cases for the model
training as for feature clustering. Through the use of pre-training the generalization
performance is improved, and overfitting is prevented. This implementation solves the
aforementioned motivating problems of high dimensionality and non-linear interactions.
Here stands the novelty of our approach: the application of pre-training and fine-tuning
to DNA methylation with survival and feature importance purposes. For further
technical details on the model regarding the hyperparameters used, consult Appendix
A.

2.4 Feature importance ranking

Most of this Section is based on the textbook by Molnar and Christoph "Interpretable
machine learning" [62], where the use of SHAP values for model interpretability is
proposed.
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2.4.1 Interpretability in deep learning

In machine learning, black-box models with high performances are increasingly being
exploited to solve real-world problems. While these models can be incredibly accurate,
they lack interpretability. It is very difficult to analyze these models and deduce the
relationship between their inputs and outputs. The non-linear transformations that
machine learning methods apply to input features makes interpreting these models
more difficult. This is especially true for deep learning, where the input covariates
are subjected to multiple stacked transformations. To understand the prediction of
a deep neural network, we would need to consider countless weights that interact in
complex ways. For this reason, deep learning models are often treated as black-box
models: details of their functioning are unknown or ignored. As a result, deep learning
models often meet difficulties when being applied in certain real-world settings. This
is particularly true for medicine, where doctors need an explanation of a diagnosis in
order to choose the correct corresponding treatment. Efforts are in the development
to make deep learning models more interpretable, more accessible, and more useful to
doctors [63].

A key component of explanations is the contribution of individual input features
(i.e. feature importance) to the model prediction. It is assumed that a prediction
is explained when every feature is assigned to a value quantifying its impact on the
prediction. We display in Figure 2.11 a barplot example of feature importance values
attributed by a random forest to the variables predicting the price of a house in the
renowned Boston Housing Dataset. The relative magnitude and ordering of the values
associated to the variables are the key aspect of this visualization. If a variable is
more relevant for a prediction, it obtains a higher feature importance value.

Interpretation of high dimensional models poses several challenges, mostly due
to the drawbacks of assigning feature attributions to multi-collinear data. With
traditional linear models, interactions have the effect of adjusting the coefficients of
the predictors in undesirable ways, such that the results are not correctly interpretable.

Feature importance can be achieved by using both model agnostic [64] and model
based [62] techniques. Model agnostic techniques disregard any detail of the model,
considering it as a black-box. They can be used with any machine learning model and
are applied after the model has been deployed. These methods work by analyzing
input and output pairs, because by definition they cannot have access to model
specifications as weights or structural information. Model based techniques exploit
additional model information. The great advantage of model agnostic interpretation
methods over model specific ones is their flexibility. Typically several types of machine
learning models are employed to solve a task, and when comparing them in terms of
interpretability, it is easier to work with model agnostic techniques, because the same
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Figure 2.11. Barplot of the features importance of a machine learning model.

method can be applied on diverse models.
The other dichotomy that we present is the one between local and global feature

importance methods. Local feature importance algorithms return the importance of
each feature for each observation, representing which features impact the most towards
a single prediction. Global feature importance algorithms return the importance of
each feature for the whole dataset, they represent the impact of the feature on the
entire model. Both types of algorithms have their own advantages. We propose
the example of our application. A local method can detect the features that are
most important for a single subject, and this is key in medical applications to give
motivations to a diagnosis. A global method can detect the general most important
risk factors, identifying useful bio-markers. Moreover, sometimes local methods have
the advantage to be able to operate also at a global level, considering that we can
build the global values using strategies to aggregate local importance.

Wald statistic

First, we describe the relevant consolidated methods, that have also been applied in
the DNA methylation field. The Cox model, as a type of linear survival model, is
highly interpretable. Indeed, it is defined by a fixed set of weights that represent how
features impact in predicting patient risk. The predicted risk can be conceived as a
plane �TXi that has a uniform gradient for any input value. The slope of this plane is
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defined by the model weights � and represents the rate of change of risk with respect
to each feature. The importance of a feature can be measured by the absolute value
of its Wald statistic, that evaluates whether the �̂j coefficient of a given variable is
statistically significantly different from 0.

When training a Cox model, we obtain different information regarding each variable,
among which there is the Wald statistic value. It corresponds to the ratio of each
regression coefficient to its standard error:

z =
�̂j

se(�̂j)
(2.29)

where se(�̂j) is an estimate of the standard error of �̂j, calculated through the
hessian matrix of the partial log likelihood. The importance of a feature increases
with increasing absolute value of the estimated coefficient, but the more variance the
coefficient has, the less important the feature is. The hessian matrix is computed as:
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(2.30)
where ✓l = exp(�TXl(Tj)) and the other symbols were already defined in Section
2.3.1. The inverse of the hessian matrix of the partial log likelihood, evaluated at
the estimate of �̂, is used as a covariance matrix to produce the standard errors for
the regression coefficients. The standard errors for the individual coefficients are the
square roots of the corresponding diagonal entries of this covariance matrix.

se(�̂j) =
q
(H�1(�̂))jj (2.31)

The Cox model provides truthful explanations when the linear model is appropriate
for the relationship between features and outcome. The more non-linearities and
interactions there are, the less accurate the linear model becomes and the less truthful
the explanations become. Therefore, for the Cox model, the predictive performance is
a metric to evaluate the truthfulness of the explanations.

In the non-linear survival models, the prediction can be conceptualized instead as a
non-linear surface where the risk gradients change depending on a patient’s covariates
values, therefore the local behaviour in a specific point can result different from the
global behaviour. This is the case of neural networks. To solve this problem, we
can choose several alternatives. In our approach we leverage a feature importance
algorithm called SHAP. In order to understand how SHAP works, we first need to
explain the concepts behind LIME and Shapley values, as SHAP connects those.
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LIME

LIME [45] (Local Interpretable Model-agnostic Explanations) is a feature explanation
algorithm that fits localized surrogate models to explain how local predictions are
achieved. It is based on the local linearization of the model, in which the slope
provides the importance of the features, as it can locally approximate the gradient of
black-box models. LIME is model-agnostic and local. LIME tests what happens to
the predictions when variations of the data are given into the machine learning model.
The technique perturbs the input, observes the resulting impact on the output and
understands how the prediction changes. On the perturbed observations, weighted by
the proximity to the instance of interest, LIME trains an "interpretable" model. This
model can be of different types, but usually it is a linear regression model. The trained
model should be an accurate approximation of the machine learning model locally,
but it generally does not provide an accurate global approximation. Mathematically,
the explanation produced by LIME is obtained by the following:

�(x) = argmin
g2G

L(f, g, ⇡x) + ⌦(g) (2.32)

The explanation model for instance x is the model g (e.g. the linear regression model)
that minimizes a loss L (e.g. the mean squared error), which measures how close the
explanation is to the prediction of the original model f . The proximity measure ⇡x

defines how large is the neighborhood around instance x that we consider for the
explanation. G is the family of possible explanations (e.g. all possible linear regression
models). The regularization function ⌦(g), penalizes complex explanation models
to ensure that the they are easy to interpret, preferring fewer features. In practice,
LIME only optimizes the loss part, and the user selects the complexity by choosing
the maximum number of features that the explanation model should use.

In the current implementation, only linear models are used to approximate the local
behaviour. This assumption is sensible when focusing on a very small region around
the data sample. By expanding the neighborhood however, a linear model might
not be powerful enough to explain the behaviour of the original model. Moreover, it
is important to note that LIME local explanations are not additive and should not
be combined into a global feature importance value. Linden et al. [65] found that
when aggregated, LIME local explanations fail to reliably represent the global model
behaviour.

Shapley values

In 1974, Shapley proposed a game theory method for assigning fair payouts to players
depending on their contribution to the total gain [39]. Assume that in a game there
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are p players and x = (x1, ..., xp) is the set of all the players. Let S be a subset of the
players and let vx(S) be the total gain of the set S of players. When player j joins
the S players, player j’s marginal contribution is vx(S [ {j})� vx(S). If we take the
average of the contribution over the possible combinations in which the coalition can
be formed, we get the contribution of player j:

�j =
X

S✓{x1,...,xp}\{xj}

|S|!(p� |S|� 1)!

p!
(vx(S [ {xj})� vx(S)) (2.33)

In a model prediction task, this concept translates into assigning an importance
value to features depending on their contribution in the prediction of a model f , as the
average marginal contribution of a feature value across all possible feature coalitions.
With this definition, a Shapley value for a given feature can be interpreted as the
difference between the actual prediction and the average prediction for the whole
dataset. The “game” is the prediction task for a single instance of the dataset. The
“gain” is the actual prediction for this instance minus the average prediction for the
whole dataset. The “players” are the feature values of the instance that concur to
predict a certain output. Mathematically, vx(S) is the prediction of the instance x to
be explained for the feature values in set S that are marginalized over features that
are not included in set S:

vx(S) =

Z
f(x1, ..., xp)dPx/2S � Ex[f(x)] (2.34)

Therefore, the Shapley value of a feature value is its contribution to the outcome,
weighted and summed over all feature values combinations.

When some features are missing in a coalition, we replace the feature values with
other ones from the dataset to get a prediction from the model. All possible coalitions
of feature values need to be evaluated with and without the j-th feature to calculate
the exact Shapley value, hence, the computational time increases exponentially in
the number of features. Strumbelj et al. [66] proposed an approximation with a
Monte-Carlo sampling technique, computing contributions for only a subset of the
samples of all the possible coalitions:

�̂j =
1

M

MX

m=1

(f(xm
+j)� f(xm

�j)) (2.35)

where f(xm
+j) is the prediction for xm

+j 2 Rp, created from x 2 Rp, but with a random
number of feature values substituted by the values of a different random instance
z 2 Rp, except for the value of feature j. The vector xm

�j 2 Rp is almost identical to
xm
+j, but the value xm

j is also taken from the sampled z. M represents the number
of total iterations, to be determined according to the computational power and time
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available.
The difference between the prediction and the average prediction is fairly distributed

among the feature values of the instance. This property distinguishes the Shapley
values from LIME, that does not guarantee it. In situations where the model requires
explainability, Shapley values are one of the only "fair" methods: the axioms on which
they are based (efficiency, symmetry, dummy, additivity) give the explanations a solid
theoretical foundation.

The Shapley value requires a lot of computing time. In real-world problems, only
the approximate solution is feasible. An exact computation of a Shapley value is
computationally expensive because there are 2p total coalitions to evaluate for each
instance and the absence of a feature needs to be simulated by drawing random
samples. The exponential number of the coalitions is dealt with by sampling coalitions
and by limiting the number of iterations M . M should be large enough to accurately
estimate the Shapley values, but small enough to complete the computation in a
reasonable time. However, setting M to feasible values leads often to poor estimations.

2.4.2 SHAP

SHAP (SHapley Additive exPlanations) [12] is a family of feature importance tech-
niques, hence its goal is to explain the prediction of an instance x by computing
the contribution of each feature to the prediction, in particular the Shapley values.
SHAP exploits the principle that there exists a unique solution for the problem of
finding feature importance values �j that satisfy the properties of local accuracy,
missingness, and consistency. The main innovation of SHAP with respect to the
standard Shapley values computation is that the explanation is represented as an
additive feature attribution method. This perspective connects LIME and Shapley
values.

Define as �j 2 R the feature attribution for a feature j, the Shapley value. To
compute the �j’s, we will simulate that some features values are present and some
are absent through the use of a coalition vector z0 2 {0, 1}p, where p is the maximum
coalition size (i.e. the number of features). In the coalition vector, an entry of 1 means
that the corresponding feature value is present and 0 that it is absent. SHAP then
specifies the explanation model g as:

g(z0) = �0 +
pX

j=1

�jz
0
j (2.36)

The representation as a linear model of coalitions is a technique for the computation
of the approximated �j’s. More about the actual estimation is explained when we
present the Kernel variation.
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Shapley values represent local explanations, but they can be combined into global
explanations. If we run SHAP for every instance, we get a matrix of Shapley values,
with one row for each data instance and one column for each feature. We can interpret
the entire model by analyzing the entries of this matrix. The idea behind SHAP
global feature importance is simple: features with large absolute Shapley values are
important. Therefore, to compute the global importance, we average the absolute
local Shapley values per feature across the samples.

To transfer this technique in a general survival analysis setting is possible to adapt
the method as done with LIME: in SurvLIME [67], LIME is extended to operate with
survival censored data. The main idea of the proposed method is to apply the Cox
proportional hazards model to approximate the survival model at a local area around
a test example. A similar survival extension has been applied to SHAP in genomics
by [68]. However, our survival problem, from a feature importance perspective, is
equivalent to a regression one, because we do not consider the censored observations
for the prediction. This allows us to use the standard SHAP algorithm for regression,
without any modification.

Kernel SHAP

For the computation of the SHAP values we use a variant of the SHAP method,
named Kernel SHAP [12], which, as a model agnostic technique, can handle also
neural networks.

Kernel SHAP consists of 4 steps:

1. We sample coalitions z0k 2 {0, 1}p, k 2 {1, ..., K} (1 for a feature present in the
coalition, 0 for a feature absent). We create these random coalitions by repeated
Bernoulli samples until we have a sequence of p binary values. Since the smallest
and largest coalitions will account for most of the weight in the weighted linear
model, we get better Shapley value estimates by using a part of the sampling
budget K to include these coalitions. Therefore, we start with all the possible
coalitions with 1 and p � 1 features. Then, we can include coalitions with 2

and p� 2 features and so on, until we have not enough budget left. From the
remaining coalition sizes, we sample with the adjusted weights. The K sampled
coalitions become the dataset for the regression model.

2. We get the prediction for each z0k by first converting it to the original feature
space and then applying model f . The target for the regression model is the
prediction for a coalition. To get from coalitions of feature values to valid data
instances, we need to define a function hx(z0) = z where hx : {0, 1}p ! Rp.
The function hx maps 1’s to the corresponding value from the instance x that
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we want to explain, and it maps 0’s to the values of another instance that we
sample from a background dataset. In this way the prediction for the coalition
becomes f(hx(z0k)). hx for tabular data treats absent and present features as
independent integrating over the marginal distribution:

f(hx(z
0)) = EXC [f(x)] (2.37)

where XC are the values present for the instance.

To treat the absent features, we need to define the background dataset. For
low dimensional problems the background dataset can be the whole training
set, or a dataset that we consider as "standard", but for higher dimensional
problems it can be used a single reference value or a function to summarize the
whole dataset into a smaller set. In fact, the computation of the SHAP values
requires a high memory and computing power. To speed up by several orders the
velocity, we use the K-means algorithm built in the SHAP package, clustering
the observations. After choosing the number of total samples n wanted in the
background dataset, we aggregate the entire dataset in a number of clusters equal
to n. For each cluster, we extract only one sample corresponding to the centroid
of the cluster, and we use it as a sample of the background dataset, since it
summarizes the information contained in the group. This techniques introduces
no bias and reduces the computational burden by the amount required by the
specific application. The cost to be paid is in the loss of information due to the
aggregation of observations in a cluster. We will compute the feature importance
with respect to 4 distinct background dataset for each cross-validation split of
each model, so the speed up is crucial.

3. We compute the weight for each z0k with the SHAP kernel. Here relies a difference
with respect to LIME. LIME weights the instances according to how close they
are to the original instance. SHAP weights the sampled instances according
to the weight the coalition would get in the Shapley value estimation. Small
coalitions and large coalitions get the largest weights, because we learn most
about individual variables contribution if we study their impact in isolation.
Contrarily, if a coalition consists of around half the features, we learn little about
the individual variables contribution, as there are several possible coalitions
composed of this number of features. To achieve the Shapley weighting, Lundberg
et al. [12] propose the SHAP kernel:

⇡x(z
0) =

M � 1�
M
|z0|

�
|z0|(M � |z0|)

(2.38)
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Here, M is the maximum coalition size and |z0| is the number of present features
in coalition z0. Lundberg et al. show that a linear regression with this kernel
weights estimates the Shapley values.

4. We fit the weighted linear model. We defined the data, the outputs and the
weights available to build the weighted linear regression model presented in
Equation 2.36. We train the linear model g by optimizing the following loss
function L:

L(f, g, ⇡x) =
X

z02Z

[f(hx(z
0))� g(z0)]2⇡x(z

0) (2.39)

where Z is the set of the sampled coalitions (i.e. the training data). We solve
the problem using weighted least squares and we yield as Shapley values �j the
estimated coefficients of the linear model.

Properties

Since SHAP computes Shapley values, all the advantages of standard Shapley values
apply: SHAP has a solid theoretical foundation in game theory. SHAP values present
excellent properties which are not found simultaneously in other methods, that let
the prediction be fairly distributed among the feature values. Indeed, SHAP values
are the only solution that satisfies the properties of local accuracy, missingness and
consistency, which together can be considered the definition of a fair payout:

• Local accuracy: The prediction with the explanation model g of the coalition
vector x0 of the instance of interest, a vector of 1’s, is equal to the prediction
with the real model f of the instance x. In simpler words, without changing
any feature, the explanation model is equivalent to the real model for the input
value:

f(x) = g(x0) = �0 +
MX

j=1

�jx
0
j (2.40)

• Missingness: A feature that is missing in the original input has no impact,
and gets a zero attribution:

x0
j = 0 =) �j = 0 (2.41)

• Consistency: If a model changes so that the marginal contribution of a feature
value does not decrease (regardless of the other features), the Shapley value also
does not decrease. Let fx(z0) = f(hx(z0)) and z0�j indicate a coalition almost
equal to z0 but such that z0j = 0. For any two models f and f 0 that satisfy:

f 0
x(z

0)� f 0
x(z

0
�j) � fx(z

0)� fx(z
0
�j) (2.42)
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for all inputs z0 2 {0, 1}M , then:

�j(f
0,x) � �j(f,x) (2.43)

As stated in Section 2.1.1, SHAP values are one of the most common methods
for dealing with interacting features and have the advantage to operate both on a
global and local level. We will highly rely on these two properties in the application.
Citing the results of Liu et al. [69], SHAP produces more consistent global feature
explanations when compared to tradition methods and is a more stable algorithm
than LIME [69]. In fact, SHAP relies on averaging the marginal contributions of
a feature, while LIME involves perturbing an instance and measuring the response.
This additional stability may result in more trustworthy interpretations.

For what regards Kernel SHAP, it has the advantage of being model agnostic.
However, it suffers from the drawback of being computationally expensive, with a
computing time exponential in the number of features. This makes Kernel SHAP
impractical to use when we want to compute Shapley values for many instances.
However, using the K-means function to aggregate the background samples, we
can drastically reduce the complexity of the method, resulting in acceptably fast
computations.

Background datasets

As we anticipated, Kernel SHAP frames the question of importance in terms of
differences from some observations from which we wish to compute it, a reference
state, where the reference is chosen according to the problem to deal with. This allows
us to obtain interpretations according to different background datasets, potentially
distinguishing importance on the basis of the set to which we are comparing the
observations.

Since all the breast cases are females, we always use as reference only the females.
As depicted in Figure 2.12, where two exemplifying CpG sites are reported in a
scatterplot, females (red) and males (blue) reveal different methylation patterns in
some sites. The males, if used as reference, would introduce further noise, hence we
could detect differences due to sex and not due to the disease.

We claim that the following 4 datasets are interesting references for the application:

• Matched breast controls. For every validation set we use, we select the
control group paired with them in matching. Since the matching couples share
most of the lifestyle and demographic variables, explanations using this reference
can reveal the differential methylation characteristics of similar subjects. In this
way we compare only 50 observations in the background dataset.
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Figure 2.12. Scatterplot of two selected CpG sites, colored according to sex.

• All the breast controls. We enlarge the background set to 248 individuals,
where there are more diverse subjects, but all in the breast study.

• All the breast, colon and lung controls. We enlarge the background set to
385 individuals. Since all the controls have not experienced the disease, they are
the largest "normal" population. The importance with respect to them gives
information about the difference in methylation of subjects that will be affected
by breast cancer with respect to a wide variety of healthy people.

• All the breast, colon and lung controls, and all the colon and lung

cases. We enlarge the background set to the biggest sensible dataset of 522
individuals.

Going from the first to the last background dataset, we increase the sample size,
controlling the trade-off between bias, that increases, and variance, that decreases. In
this way we exploit most of the original dataset for our purposes. If the estimations of
the Shapley values with respect to the background datasets lead to different results, it
means that the algorithm detects different diverging behaviours when confronted with
the references. If they lead to similar results, it could strengthen the stability of the
methodology with respect to the background dataset. We will obtain and compare
the results in Section 3.3.2.
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2.4.3 Ranking and selection

A complete list of the feature explanation methods we presented is shown in Table 2.3.
For each method we specify whether it provides global values, whether it provides
local values, the prediction models compatible with the method and the qualitative
computational time complexity of the computation.

Method Global Local Compatibility Complexity

Wald statistic Yes No Cox Low

LIME No Yes All Medium

Shapley values Yes Yes All Very high

Kernel SHAP Yes Yes All High

Kernel K-means SHAP Yes Yes All Medium

Table 2.3. Comparison of the presented feature importance methods.

As we already argued, the Kernel SHAP method, using the K-means algorithm to
summarize the background dataset, is the best suited method for our setting, therefore
we calculate the importance values according to it. To make the feature importance
ranking more robust, we cut the variability by exploiting an ensemble approach. We
perform a series of random splits of the data into training and validation sets and we
independently compute the global SHAP values for the features in each validation set.
Then, we average those to produce the final importance values. This procedure can
be easily conducted in parallel with the cross-validation error computation for the
prediction model.

We sort the features by decreasing final importance values and we obtain a ranking,
where in the first positions the most relevant variables for prediction are present.
However, these are the clustered features, each composed of a set of islands. To
convert those to the original islands, we can simply assign the importance of the
clustered features to all the islands composing the cluster. This procedure is useful
for the biological validation, in particular for the weighted enrichment analysis.

For what regards a possible variable selection, now that we have the feature
importance, we can easily select the best variables. To make feature selection of the
best CpG islands, our proposal consists of ordering the clustered variables according to
their importance, and selecting a threshold to the number of variables in the ranking
to be retained. This value can vary according to the specific application and the size
of the clusters. Each of these variables is composed of a group of islands, which can
be recovered from feature clustering.
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2.5 Validation

After training the model and obtaining the explanations for the features, we need
to assess the quality of the methodology and provide insights on the results. The
validation of the methodology and the analysis of the results is conducted in two ways:

• Test with a biological procedure. It is wise to compare the results we obtain
with literature ones, to argue if they correspond or if we have discovered new
knowledge. The first features in the ranking could be associated to gene pathways
already known to be correlated with cancer, and in particular breast cancer.
In this case, we would validate the methodology since it provides sensible and
truthful explanations. On the other hand, the features could be associated to
gene pathways not known to be correlated with cancer, and they should be
investigated further by future experiments.

In this biological setting there are present several techniques adequate for
our purpose, but the most common is enrichment analysis, to identify over-
represented genes in some selected features. However, since we have available
the importance values of all the CpG islands, we can use a more sophisticated
test, the Weighted Kolmogorov-Smirnov test [42]. We conduct it as reported in
Section 2.5.1.

• Test with statistical procedures. Statistical analysis can provide a lot of informa-
tion, also indirectly connected to the method as the relationship between cases
and controls. We mostly concentrate on three different statistical procedures:
the training of simpler models with the CpG islands retained by the feature
selection procedure, the computation of the Kaplan-Meier estimators of the
most important CpG islands, divided in hypomethylated and hypermethylated
sets of instances, and the non-parametric tests on the difference in distribution
between cases and controls. We conduct these analysis as reported in Section
2.5.2.

2.5.1 Biological validation

To validate the feature importance obtained and transform the results into biological
insights, we conduct a Weighted Kolmogorov-Smirnov (WKS) test [42]. This method
is similar to Gene Set Enrichment Analysis (GSEA) [70], but it produces large savings
in computing time. We employ it to identify over-represented gene sets in the weighted
set of islands. We assign to every island a weight given by the importance of the feature
to which it belongs to, then we compare the distribution of the weights of genes of
the same pathway with the expected distribution in the case in which the weights are
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assigned randomly. When these distributions have a significant positive difference, the
genes in the pathway are over-represented and, according to our analysis, connected
to the time to disease.

As GSEA, WKS compares a vector of weights indexed by the set of all the genes,
to the genes belonging to a given subset (i.e. the pathway we test). Denote all the
genes as N regularly spaced values in the interval [0, 1], and their weights as the
output of a positive function g : [0, 1] ! R+, assumed to be continuous. Consider
the gene subset {U1, ..., Un} of the set of all genes of size n that we want to test.
Mathematically, the null hypothesis is that there is no particular relation between the
weights and the gene set (H0: the gene set is composed of independent and identically
uniformly distributed random variables in the interval [0, 1]). We define the following
step function, cumulating the proportion of weights in the gene set, for all t between
0 and 1 by:

Sn(t) =

Pn
k=1 g(Uk)IUktPn

k=1 g(Uk)
(2.44)

where I is the indicator function. The WKS test statistic proposed by Charmpi et
al. [42] is different from the GSEA one proposed by Subramanian et al. [70], even if
both are based on this quantity. In fact, the GSEA test statistic is not appropriately
centered, unless the weights are constant, while the following WKS test statistic is
centered:

T ⇤
n =

p
n sup

t2[0,1]

�����Sn(t)�
R t

0 g(u)duR 1

0 g(u)du

����� (2.45)

When the weights are not constant, the distribution of the test statistic T ⇤
n under the

null hypothesis is unknown, so we need to approximate it with its limit distribution.
As n increases, the distribution of T ⇤

n under the null hypothesis tends to that of the
following random variable T :

T = sup
t2[0,1]

|Z(t)| (2.46)

where the random process Z is defined by:

Z(t) =

Z t

0

g(u)dWu �G(t)

Z 1

0

g(u)dWu (2.47)

where Wt, t 2 [0, 1] is the standard Brownian motion and G is the primitive of g:
G(t) =

R t

0 g(u)du. Denoting by F (x) the cumulative distribution function of Z, F (x)

only depends on the weights to be tested. Generalizing the testing procedure of the
standard Kolmogorov Smirnov test, since T ⇤

n has asymptotic cumulative distribution
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function F under the null hypothesis, then the p-value of an observation T ⇤
n = x is

1� F (x).
We repeat the test for all possible gene pathways. Since F only depends on the

weights, the same evaluation of F is used for different gene sets, saving computing
time. The repeated test on several gene sets introduces the issue of false discovery
rate correction, solved by the method of Benjamini et al. [71] for multiple tests in
genomics.

If the pathways identified as significant find support in the literature, in the sense
that a known correlation with breast cancer exists, we confirm the solidity of our
proposal.

2.5.2 Statistical validation

• Using only the breast cancer cases dataset, we assess if the features retained
in the feature selection procedure are relevant by training a simpler survival
model using only those, and measuring the predictive capabilities. Therefore,
we train a Cox model and measure its performances through a cross-validation
approach. If the features retained are key, the model will present acceptable
predictive capabilities, even if using only a small percentage of the total number
of features.

• We want to visualize and quantify the relevance of the single islands of the
most important features in the survival setting. The established approach to
achieve it is to construct the Kaplan-Meier estimators divided by categorical
classes of methylation. We divide the observations of each singular island in
hypermethylated and hypomethylated according to a meaningful range. We
considered an approach with SEMs as hypomethylated and hypermethylated
observations, however it exploited an extremely low percentage of the data, with
several features having even zero outliers.

Therefore, we use two alternative possible classifications according to the quan-
tiles of the distribution of each island. The first one distinguishes the observations
higher and lower than the median, to obtain two equally sized sets exploiting all
the data. The second distinguishes observations higher than the third quartile
and lower than the first quartile, to analyze in more detail the extremes of the
distribution.

Plotting both types of stratified Kaplan-Meier curves for every island, together
with the 95% confidence intervals, we get a complete idea of the survival profile
conditioned on the level of methylation of the island for a patient. We obtain
also the information about the uncertainty and the overlapping of the curves
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of hypomethylated and hypermethylated patients. Using the log-rank test, we
assess statistically the difference in the survival profiles of the two methylation
levels. Using the hazard ratio, we quantify numerically the effect of methylation
of the island on the survival function, whether being hypermethylated is a
protective factor, a risk factor or an irrelevant factor. We conduct the same
analysis for all the selected islands to show the stability of the findings.

• To understand if the best variables retained through the feature selection
procedure could help also in distinguishing the cases from the controls, other
than predicting the time to event, we conduct statistical tests on the differences
between cases and controls on the most relevant islands. If a difference is
confirmed, our model could help in the direction of a more general and incredibly
useful model classifying cases and controls. We first conduct tests on the
difference in the distribution of the independent populations of cases and controls
considering one island at a time, to discover if there exist features taken singularly
that reveal significant differences.

Moreover, inspired by the preliminary results found by the tests conducted in
Section 1.3.2, we hypothesized that the islands could reveal differences between
cases and controls when considered together. Therefore, we also conduct tests
using as populations the means of the cases and controls for all the islands
of the relevant features. In particular, for each of the first 10 features in the
ranking, we extract all the CpG islands of which they are composed. For every
island of a feature, we compute the mean of the cases and the mean of the
controls. We obtain for each feature a set of means of cases and a set of means
of controls: we compare their distribution. Since the features are the same in
the two populations, it is better to leverage a paired test, where the pairs are
composed by the means of the same features.

After conducting several Shapiro tests of gaussianity, we noted that usually the
normality hypothesis was rejected, hence we could not use the standard t-test.
Non-parametric tests are used in these settings and maintain their hypothesis
of exactness even in situations of strong non-gaussianity, in contrast with the
t-test, that relies on those. In particular for a paired test, we can use the
Wilcoxon signed-rank test [41]. Unlike the Student’s t-test, it just assumes that
the differences between the means are independent and identically distributed.

Mathematically, we define X and Y to be the vectors of the means of cases
and controls of length n, equal to the number of islands considered. The test
evaluates H0 : P(X > Y ) = 0.5 vs. H1 : P(X > Y ) 6= 0.5. Let R(zi) be the
rank of a generic value zi with respect to the vector z to which it belongs. The
signed-rank test statistic to evaluate is defined as:
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W =
nX

i=1

sign(Xi � Yi)R(|Xi � Yi|) (2.48)

whose distribution is centered in 0 and depends only on n under the null
hypothesis. Its quantiles need to be estimated via a one time Monte Carlo
simulation, since the explicit formula is not available for generic n. It takes into
consideration both the sign and the magnitude of the differences. An example
of a histogram showing the simulated distribution of the test statistic for n = 20

is presented in Figure 2.13. The red line indicates the value of the statistic in
this case. Since it is situated on the tail of the distribution, we reject the null
hypothesis, identifying a difference in the two populations.

On a wide variety of data sets, the Wilcoxon signed-rank test has greater
statistical power than the Student’s t-test and is more likely to produce a
statistically significant result. The cost of this applicability is that it has less
statistical power than the Student’s t-test when the data is normally distributed.

Figure 2.13. Simulated distribution of the test statistic with n = 20.

We report the results of the validation procedures described in Section 3.4.
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Applications and Results

In this last Chapter, we apply the model described in Chapter 2 to the EPIC dataset.
In Section 3.1 we illustrate how the experiments have been conducted. We present

two performance metrics that evaluate different qualities of the methodologies and we
explain the whole procedure followed for applying our proposal and the competitor
Cox model methodology to the EPIC dataset.

In Section 3.2 we report the performances achieved by all the models. We compare
our proposal with the Cox model and select the best performing methodology for
further analysis.

In Section 3.3 we extract and comment on the feature importance rankings
obtained. We report the four sets of explanations for the features using diverse
samples as background data, and we select the best features to be retained.

In Section 3.4 we validate the method with the analysis proposed in Section
2.5. Therefore, we train a Cox model using the retained features, to confirm that
the selection procedure is spot on. We display the Kaplan-Meier curves to reveal
differences in the survival function of hypermethylated and hypomethylated subjects.
We compare the methylation levels in cases and controls by means of non-parametric
statistical tests. Finally, we illustrate the biological validation procedure outcome, to
confirm that our methodology has obtained results supported by the literature.

3.1 Experimental setting

3.1.1 Performance measures

There is no unanimous consensus about how to assess the quality of an interpretation
in machine learning, nor it is clear how to quantitatively measure it [62]. For example,
understanding how predictive accuracy impacts interpretation quality would make
data science analyses more trustworthy. Although research has been conducted on
this topic and attempts to formulate objective approaches for evaluation have been
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developed, no method is solidly established [72]. We choose to assess the feature
rankings’ quality by evaluating two aspects of the techniques: predictive performance
and feature ranking stability. We exploit two metrics, both of which will be taken
into account when selecting the best model.

C-Index

As emphasized by Liu et al. [69], usually when the predictive performance of a model
increases, interpretation quality increases as well, for both global and local feature
explanations. Developing from this idea, we evaluate the models’ predictive capabilities
using the Harrell’s Concordance Index [73]. The C-Index is a generalization of the
area under the ROC curve (AUC) for survival analysis, that can handle censored data.
Survival models output risk scores: a higher risk score means that there is a higher
probability that the event of interest occurs early. Therefore, the models are able to
predict the order of a series of events. The C-Index is a metric suitable to evaluate
the quality of the predicted risk scores, having a clinically meaningful interpretation.
It is a measure of rank correlation between the model’s predicted risk scores and the
observed times to event. It quantifies how well a model predicts the ordering of the
patients’ diagnosis times. Defining as n the number of patients and using the notation
introduced in Section 2.3.1, it can be computed by the following formula:

C � Index =

Pn
i=1

Pn
j=1 ITj<TiIrj>riEjPn

i=1

Pn
j=1 ITj<TiEj

(3.1)

where ri is the risk score of unit i, ITj<Ti = 1 if Tj < Ti, otherwise ITj<Ti = 0, and
Irj>ri = 1 if rj > ri, otherwise Irj>ri = 0. A value of C � Index = 0.5 corresponds to
the average performance of a random model, while C � Index = 1 corresponds to a
model capable of perfectly ordering patients with different times to event.

KT-Stability

For what concerns feature ranking stability, an attempt to formulate an approach for
evaluation is given by Liu et al. [69]. We exploit a variation of their stability metric,
that measures how much the ranking of the features changes when varying the set on
which the estimation is based.

Consider a prediction model, trained and evaluated using l-fold cross-validation.
For each cross-validation split i 2 {1, ..., l} we get a different feature ranking ri for
the model by ordering the importance values, obtaining the set {r1, ..., rl}. We wish
to compute the dispersion of the set of rankings {r1, ..., rl} by computing the mean
pairwise dissimilarity of the set. To find the dissimilarity between two rankings ri and
rj , we calculate the weighted Kendall Tau distance between the two rank vectors [74].
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It counts the number of pairwise disagreements between two rankings, imposing a 1/k

penalty on any comparison involving the kth rank, since, from a practical perspective,
it is more important to identify the top predictors of a model, rather than accurately
rank all the features. In formulas, it is defined as:

K(ri, rj) =
X

{a,b}2P

Ka,b(ri, rj)

rank(a)rank(b)
(3.2)

where P is the set of unordered pairs of distinct elements in ri and rj , Ka,b(ri, rj) = 0

if a and b are in the same order in ri and rj and Ka,b(ri, rj) = 1 otherwise, rank(a)
is the rank of element a and rank(b) is the rank of element b. We truncate the
rank vectors after the top 10 ranks to reduce computational time. We scale this
distance to be bounded between 0 and 1 and we transform it into a similarity measure
S(ri, rj) = 1 � K(ri, rj), so that higher scores are attributed to more concordant
rankings. With the weighted Kendall Tau metric, we calculate the similarity between
each pair of rankings in {r1, ..., rl}: the average of these

�
l
2

�
pairwise distances

represents the stability of our rank measurements, since it quantifies how much the
ranking varies in expectation when we change the evaluation dataset. We abbreviate
this metric as KT-Stability.

3.1.2 Procedure

In this Section we explain the pipeline used for the experiments. We applied our
proposal and the alternative Cox methodology to the dataset.

For feature clustering all the breast cancer cases were exploited. To find the best
dimensionality we analyzed diverse methodologies. The Silhouette score resulted little
informative due to the high dimensionality and the within sum of squares plot did
not reveal a clear elbow (Figure 3.1), so we disregarded it. We chose to proceed on
the basis of the direct model performances, both predictive and interpretative. We
limited the available possibilities between around 100 and 1000 dimensions. The
less we aggregate, the more complex interactions we can model but the more the
network is prone to overfitting. Contrarily, the more we aggregate, the more stable
the results are but the lower become the predictive capabilities. We selected the four
dimensionalities of 128, 256, 512, 1024 for the models’ comparison.

Therefore, feature clustering with 128, 256, 512 and 1024 dimensions was applied
before every deep survival model employment to reduce the huge dimensionality of the
problem; otherwise, as confirmed in our experiments, the standalone model provided
unstable explanations. The Cox model applied to the original 3807 dimensions was
not able converge by means of the Newton-Raphson optimization, hence it did not
perform better than a random model. Therefore, we applied the same four types of
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Figure 3.1. Within sum of square in function of the clustering dimensions.

feature clustering also to the Cox model, to compare more fairly the performances.
This translated into training four types of Cox models, from 128, 256, 512 and 1024
input clustered features.

We report the dendrogram obtained by feature clustering in Figure 3.2. Truncation
is used to condense the dendrogram since the original observation matrix is too large.
We report only the last 20 non-singleton clusters formed in the agglomeration. The
truncated dendrogram is equivalent for all the dimensionalities, since the clusterings
are nested. The dendrogram is balanced with no evident chaining effects, providing
similar sized clusters.

After feature clustering, we deployed our deep survival models and the Cox
alternative approaches on the breast cases data. Regarding the latent dimensions for
the deep models, after experimenting with a wider range, we decided to focus on the
two most promising alternatives of 16 and 32 bottleneck features, constructing simple
architectures. They were found to be the right pragmatic compromise between an
acceptable conservation of information and a decisive dimensionality reduction. We
used the best hyper-parameters found by a greedy search for both the Cox models
and the deep survival models. All the relevant hyper-parameters and the training
details for these methodologies are reported in Appendix A.1. In total we will show
the results obtained using 12 models: the complete list is reported in Table 3.1. We
experimented with several further methods, that are not reported in this Chapter to
concentrate on our best proposal. We briefly cite them in Appendix A.2.
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Figure 3.2. Dendrogram of the feature clustering.

Type Input dimensionality Latent dimensionality

Cox 128 None

Cox 256 None

Cox 512 None

Cox 1024 None

Deep survival 128 16

Deep survival 128 32

Deep survival 256 16

Deep survival 256 32

Deep survival 512 16

Deep survival 512 32

Deep survival 1024 16

Deep survival 1024 32

Table 3.1. List of the compared models.
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We trained the models by feeding them the training dataset and we used the
validation dataset to justify whether the model were overfitting. To determine the
splits in an unbiased manner, we used a technique similar to 10-fold cross-validation,
but randomizing the splits in order to maintain a percentage of 20% validation data
and 80% training data in each fold; in this way the validation performance was less
variable. In training each deep model, we saved the latent representations of the data
before and after fine-tuning.

We calculated the mean validation C-Index and the corresponding 95% confidence
intervals for each method to get robust findings. For the feature rankings computation,
we needed to calculate the importance values. For what concerns Cox models, this
was achieved by computing the Wald statistic. In regards of our proposal, this was
achieved by computing the global SHAP values, for which we had to select the
evaluation dataset and the background dataset. As evaluation set we decided to use
the validation set of each split, to obtain generalizable explanations. As background
datasets we decided to use the four we presented in Section 2.4.2. For each combination,
we got the local values, from which we built the global ones. For feature ranking
stability evaluation, we decided to use the breast cancer controls cohort as background
dataset, as a compromise between a considerable sample size and similar patients’
characteristics to the ones of the breast cases. We obtained the KT-Stability as well
as the corresponding 95% confidence intervals. We aggregated the feature rankings in
a unique super-ranking by averaging the importance values attributed to the same
feature. Then, we compared the validation C-Index and the KT-Stability to select
the best model. To clearly understand the pipeline, the whole procedure is reported
in Algorithm 1.

3.2 Performances

3.2.1 Models’ comparison

In this Section a comparison among the performances of the methods is proposed.

Cox model

The Cox models’ performances are presented in Table 3.2. Each row represents a
dimensionality and has associated the mean and the corresponding 95% confidence
intervals for both the KT-Stability and the C-Index.

The predictive performance is quite unsatisfactory for each dimensionality, between
C � Index = 0.586 and C � Index = 0.652, probably because the Cox model did
not capture relevant interactions between the features. Convergence was difficult to
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Algorithm 1: Experimental procedure.
Load the dataset ;
Preprocess the data ;
foreach Nclusters 2 {128, 256, 512, 1024} do

Apply feature clustering(Nclusters) ;
foreach Nlatent 2 {16, 32} do

foreach Split 2 {1, ..., 10} do

Split the data into a training and a validation set ;
Pre-train and train the deep model(Nclusters,Nlatent, Split)
with the training data ;

Save latent embedding matrices before and after fine-tuning ;
Evaluate the predictive performances with
C-Index(Nclusters,Nlatent, Split) using the validation data ;

foreach Background 2 {breast, ...,matched} do

Compute the local and global
SHAP values(Nclusters,Nlatent, Split, Background) ;

end

Evaluate the stability performances with
KT-Stability(Nclusters,Nlatent, Split) using the breast controls
as background ;

end

Calculate mean and 95% confidence intervals for C-Index and
KT-Stability for the deep model(Nclusters,Nlatent) ;

end

foreach Split 2 {1, ..., 10} do

Split the data into a training and a validation set ;
Train the Cox model(Nclusters, Split) with the training data ;
Evaluate the predictive performances with C-Index(Nclusters, Split)
using the validation data ;

Compute the Wald statistic(Nclusters, Split) for each feature ;
Evaluate the stability performances with
KT-Stability(Nclusters, Split) ;

end

Calculate mean and 95% confidence intervals for C-Index and
KT-Stability for the Cox model(Nclusters) ;

end

Compare the performances ;
Select the best model ;
Analyze and visualize the results given by the selected model ;
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Input KT-Stab. (±95% interval) C-Index (±95% interval)

128 0.593 (± 0.038) 0.610 (± 0.032)

256 0.621 (± 0.042) 0.586 (± 0.024)

512 0.601 (± 0.042) 0.628 (± 0.025)

1024 0.620 (± 0.033) 0.652 (± 0.017)

Table 3.2. Performances of the Cox models.

achieve and specific parameters needed to be identified instead of the default ones,
forcing a slower training in order to guarantee that the algorithm did not produce
gradient explosions. These parameters are reported in Appendix A.1. Usually, the
Cox model is bounded to achieve lower predictive performances in favour of a higher
stability. However, in this application it is not the case, since the feature rankings are
not very stable, between KT � Stability = 0.593 and KT � Stability = 0.621.

Comparing the dimensionalities, it is not evident whether decreasing or increasing
them provides significant improvements, although the best model seems to be the 1024
dimensions one. It achieves the highest predictive performance with C�Index = 0.652,
by a margin greater than its confidence interval, and the second highest stability with
KT � Stability = 0.620.

The feature ranking produced by the model with 1024 inputs truncated to the first
ten features is shown in Figure 3.3. The barplot represents the Wald statistic mean
value attributed to each feature, as the measure of global relevance. In order, we have
the features 259, 977, 505, 420, 561, 63, 1017, 555, 654, 1001. The importance values
of these features are all similar from around 0.6 to 0.7, hence they do not clearly
distinguish the most informative ones from the others.

We show in Figure 3.4 the boxplot of the first ranked feature according to the
1024 inputs Cox model, binned by time to event in the four classes already described
of 1-3.5 years, 3.5-7 years, 7-10.5 years, 10.5-17 years. It reveals no evident trend with
respect to the time to event, a sign that the explanations could be not truthful.

Deep survival model

The deep survival models’ performances are presented in Table 3.3. Each row represents
a pair of dimensionalities (input and latent) and has associated the mean and the
corresponding 95% confidence intervals for both the KT-Stability and the C-Index.

The deep survival model achieved a more satisfying performance in predicting the
validation set, between C � Index = 0.688 and C � Index = 0.723. Convergence was
easier to achieve for all the dimensionalities. Moreover, the deep model attained a
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Figure 3.3. Feature ranking using the Cox model with 1024 inputs.

Figure 3.4. Boxplot of the first ranked feature 259 according to the 1024 inputs Cox model
binned by time to event.
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Input Latent KT-Stab. (±95% interval) C-Index (±95% interval)

128 16 0.643 (± 0.030) 0.704 (± 0.013)

128 32 0.603 (± 0.039) 0.688 (± 0.027)

256 16 0.661 (± 0.037) 0.713 (± 0.017)

256 32 0.623 (± 0.034) 0.718 (± 0.017)

512 16 0.631 (± 0.034) 0.706 (± 0.018)

512 32 0.691 (± 0.036) 0.702 (± 0.013)

1024 16 0.630 (± 0.039) 0.719 (± 0.017)

1024 32 0.606 (± 0.031) 0.723 (± 0.013)

Table 3.3. Performances of the deep survival models.

stability comparable and often better than the Cox model, between KT � stability =

0.603 and KT � stability = 0.691. The 95% confidence intervals for the C-Index are
strict enough to indicate a precise estimation and for all the dimensionalities they do
not contain any of the values obtained by the Cox models, hence the deep survival
models are significantly better in the prediction task.

Comparing the dimensionalities, both the input and latent ones, it is not evident
if increasing or decreasing those provides significant improvements in either metric.
The selection of the best dimensionalities and the visualization of the best model’s
feature importance will in this case be conducted respectively in Section 3.2.2 and in
Section 3.3.1.

Latent representations

The deep survival model presents an interesting advantage with respect to the Cox
model: it provides a latent low dimensional representation of the original data. The
representations obtained before fine-tuning are general and can be reused in future
developments of our work. They could be useful for training supervised models with
different tasks and to apply unsupervised techniques on low dimensionality, above all
clustering.

These embeddings are also useful for data visualization purposes. In fact, we can
provide a visualization of the two principal components of the latent representations
before and after the fine-tuning procedure, colored according to the time to disease to
provide insights on the model training.

We report two models’ latent representations examples for 128 and 512 dimensions
(that we will respectively call Model 1 and Model 2), visualizing all the breast cancer
cases. Notice for Model 1 after pre-training in the left Figure 3.5 the light blue points
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at the bottom side (early observations) and the violet points at the top left corner
(late observations). Those clouds are spurious and not well separated, moreover the
top right portion of the space does not reveal any time to event related pattern. After
fine-tuning the same Model 1, in the right Figure 3.5 we notice the time to event
variable decreasing going from the left side to the right side in a clear way. No more
spurious regions are present and a simple regression model could probably model well
this trend. Similar behaviours are noticeable for Model 2 in the left Figure 3.6 after
pre-training and in the right Figure 3.6 after fine-tuning. Before fine-tuning most of
the early observation are at the bottom side, mixed with the green ones, and most of
the late observations are at the top side, spread from left to right. After fine-tuning
the same Model 2, the colors are better divided going from the bottom left corner to
the top right corner.

(a) Before the survival training. (b) After the survival training.

Figure 3.5. PCA projection of the latent space produced by Model 1 and colored according
to time to event.

(a) Before the survival training. (b) After the survival training.

Figure 3.6. PCA projection of the latent space produced by Model 2 and colored according
to time to event.

Generalizing, after the pre-training procedure, the data points of the same time
binned class already occupy certain portions of the space more than others. However,
after fine-tuning the colors are more clearly divided in the bidimensional plane. Fine-
tuning proved to be a great improvement with respect to a twofold model composed of
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an embedding autoencoder doing feature engineering and a Cox model for prediction,
since we optimized the feature engineering for the survival task.

3.2.2 Model selection

In Figure 3.7 we visualize the predictive performances of the models using a forest
plot. On the y axis there are all the models to be compared (Cox models under
the blue line, deep survival models over the blue line), while on the x axis there is
the C-Index. The mean and the confidence intervals for the C-Index of each model
can be visualized. All the intervals do not cross the 0.5 line, hence the predictive
performances are statistically better than random. As already noticed, the Cox models
provide a significantly worse performance (C � Index = 0.619 in mean) than the deep
models (C � Index = 0.709 in mean). However, when changing the dimensionality
we do not assist at any significant variation.

In Figure 3.8 we visualize the ranking stability performances of the models using a
forest plot. The confidence intervals and the mean for the KT-Stability of each model
can be visualized. The differences both between the dimensionalities and between the
models are not so evident, even if the deep models introduce an improvement in mean
(KT � Stability = 0.609 in mean for the Cox models, KT � Stability = 0.636 in
mean for the deep models). The deep model with 512 input and 32 latent dimensions
seems to produce better stability (KT � Stability = 0.691), but no continuous trend
on the dimensionality changes is present.

Summarizing, comparing the deep survival models with the Cox approaches, we
observe relevant upgrades: the deep models attain a slightly better stability, and a
significantly better predictive performance, therefore we selected them as the best
type of model for the application.

Among the input and latent dimensionalities, it is more difficult to find an objective
best model. In our case, the simplest model, the one with 128 input features, is
preferable to the ones that are more complex. Moreover, the model with 128 input
features, averages around 30 CpG islands belonging to each feature, while this value is
halved when doubling progressively the input dimensionality, until becoming less than
4 for 1024 inputs. To avoid a too fine granularity and to choose the simplest model
both to train and to interpret, we selected the one with 128 input features. For what
regards the latent dimensionality, 16 dimensions were chosen, since for 128 inputs they
provided both better prediction (C�Index = 0.704 with respect to C�Index = 0.688)
and stability (KT � Stability = 0.643 with respect to KT � stability = 0.603).

For the subsequent analysis in Sections 3.3 and 3.4, we will always consider only
the 128 input dimensions and 16 latent dimensions deep survival model.
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Figure 3.7. Comparison of the predictive performances of the models proposed.
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Figure 3.8. Comparison of the stability performances of the models proposed.
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3.3 Interpretation of the model

3.3.1 Features’ relevance

In this Section we focus on the feature importance computed exploiting the breast
controls dataset, since it is the background dataset we used for calculating robustness
and for feature selection. In Section 3.3.2, we will compare it to the ones computed
using the other reference datasets.

According to the purpose both local and global SHAP importance values can be
convenient. Local values provide useful information for new observations, in settings in
which we need to assess the risk of a singular subject, but the global values represent
the main goal of our analysis. Therefore, we concentrate on the global SHAP values.
We order the features by decreasing global importance values and we visualize them.
Figure 3.9 shows the barplot representing the global SHAP mean value attributed to
each feature. Feature 120 is consistently the most important, with almost double the
weight of the third feature in the ranking, followed by feature 25, and then several
others with similar values (57, 69, 80, 63, 75, 114, 124, 97).

Figure 3.9. Global importance of the first 10 features in the ranking with the breast controls
background dataset.

According to the ranking, we select the first feature 120 as the most informative
one, since it attains an importance value far above the other features and by itself
it consists of 20 CpG islands. We visualize its distribution binned by time to event
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(Figure 3.10), to confirm and highlight its dependence with respect to the time to
disease. We notice that this plot is substantially different from the one of the Cox
model (Figure 3.4). The descending trend is evident and smooth, suggesting in favour
of the hypothesized correlation between methylation levels and times to event. Further
analysis on this feature is conducted in Section 3.4.2.

Figure 3.10. Boxplot of the best feature 120 binned by time to event.

We report the CpG Islands forming the feature 120 in Table 3.4. They belong to
different chromosomes, 13 in total, a sign that we selected a wide variety of islands.

We could also have considered the second best feature 25 (formed by 26 islands)
for the feature selection procedure, but we decided to limit the analysis to the first one
to concentrate the efforts. However, since its importance is still significantly higher
than the other features (Figure 3.9), we report the islands composing feature 25 in
Table 3.5.

3.3.2 Comparison of rankings

In this Section we compare the rankings obtained with the different reference datasets
described in Section 2.4.2. We present them in Figure 3.11 for the breast, colon and
lung controls, and the colon and lung cases, in Figure 3.12 for the breast, colon and
lung controls, in Figure 3.13 for the matched breast controls and in the already shown
Figure 3.9 for all the breast controls.
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Chromosome Location

1 90945518-90945656
158090642-158091676

2 100086548-100088317

4 149584089-149584799

6
1570179-1570756

43530362-43531683
166137998-166138866

8 21701267-21701566
145119282-145120028

9 34618796-34619343

10 102493904-102494072
119294070-119294143

14 87862626-87863008

16 85096322-85097146

18 75811758-75814395

19 1704275-1706659
13070446-13070515

20 21438169-21438255
21449303-21449404

22 37180713-37182260

Table 3.4. CpG islands extracted from feature 120.
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Chromosome Location

1 865469-868226

2

19426231-19426446
29191342-29192596
60816270-60816526
96350676-96351591

111592378-111592494
120696359-120697921

5 50709925-50710642

6 107066242-107067664
126110416-126111339

7 33910191-33912012

10 22766721-22766770
28071059-28071285

11
124437941-124438845
128067882-128069119
128069183-128070496

12 94708005-94709488
97811594-978117175

14 50629875-50632237
104630538-104631418

15 88873730-88875119

16 87046231-87050015

17 35008894-35009025

19 6541379-6542072

21 37003057-37003703

22 18085311-18086745

Table 3.5. CpG islands extracted from feature 25.
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Figure 3.11. Global importance of the first 10 features in the ranking with the breast, colon
and lung controls, and the colon and lung cases background dataset.

Figure 3.12. Global importance of the first 10 features in the ranking with the breast, colon
and lung controls background dataset.

87



Chapter 3. Applications and Results 3.4. Post-hoc analysis

Figure 3.13. Global importance of the first 10 features in the ranking with the matched
breast controls background dataset.

The rankings are very similar, changing only the positioning of features with close
importance values (124, 97, 15...). The correlation among the importance values
varying the reference is always above 0.99. This happens partially because of the
k-means function in the SHAP algorithm that removes variance from the background
datasets, but predominantly because of the stability of the method with respect to
the references, a property that we wish to highlight.

3.4 Post-hoc analysis

In this Section we conduct the validation procedures presented in Section 2.5.

3.4.1 Cox model with the selected islands

We selected the first feature in the ranking (Feature 120) as the most important. We
built a Cox model using the islands of which it is composed and set the parameters
as the default ones, as anticipated in Section 2.5.2. The mean C-Index computed
through 10-fold cross-validation was C�Index = 0.656 and its 95% confidence interval
was 0.656 ± 0.018. These are comparable predictive performances with respect to
the complete Cox model, confirming that the model retained the best variables for
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prediction. This model even provided an improvement with respect to the full Cox
models already described (ranging from C � Index = 0.586 to C � Index = 0.652).
It probably happened due to the difficulty of training a model with a huge amount of
features: selecting only the most important ones, we avoided overfitting and achieved
a higher validation performance, even though the training performance was lower.
However, subsequent features in the ranking could have a strong dependence with
cancer and should not be discarded when the purpose is a powerful predictive model.
For an interpretative aim we concentrated our efforts only on the set of islands in
feature 120 to reveal insights about them.

3.4.2 Kaplan-Meier curves

The results obtained by the Kaplan-Meier estimators analysis described in Section
2.5.2 are reported in this Section.

We deal with the distinction of hypomethylated and hypermethylated subjects,
considering one island at a time and using the two classifications described in Section
2.5.2. The first classification splits the observations in over (hypermethilated) and
under (hypomethilated) the median of an island. The second classification splits
observations in over the third quartile (hypermethilated) and under the first quartile
(hypomethilated). We report the results according to the two classifications together,
to compare them.

We show the statistics associated to each island of feature 120 for the first clas-
sification in Tables 3.6 and 3.7. In Table 3.6 for each island we report the survival
median of the hypomethylated population, the survival median of the hypermethylated
population and the difference of the survival medians of the two populations. In
Table 3.7 for each island we report the p-value of the log-rank test between the two
populations and the hazard ratio of hypermethylated over hypomethylated subjects,
together with its 95% confidence interval. We show the statistics associated to each
island of feature 120 for the second classification in Tables 3.8 and 3.9, structured as
the ones for the first classification.

We notice interesting facts about the median survival times of the two categories.
The hypermethylated population has in all the islands a higher survival median with
respect to the hypomethylated population, using both definitions of the classes (40 out
of 40 comparisons). The mean of the hypomethylated medians for the first classification
is 8.98 and for the second classification is 9.31. The mean of the hypermethylated
medians for the first classification is 4.95 and for the second classification is 3.96. The
difference between the median survival times of the two populations is always positive:
for the first classification ranges from 2.35 to 5.57 years with a mean of 4.03 years
and for the second classification ranges from 4.14 to 6.81 years with a mean of 5.35
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CpG island Median hypo. Median hyper. Median diff.

1:90945518-90945656 9.16 4.57 4.59

1:158090642-158091676 8.76 5.28 3.47

2:100086548-100088317 8.13 5.78 2.35

4:149584089-149584799 9.00 4.57 4.43

6:1570179-1570756 9.34 4.21 5.13

6:43530362-43531683 9.05 5.44 3.62

6:166137998-166138866 8.02 5.28 2.74

8:21701267-21701566 9.30 4.41 4.88

8:145119282-145120028 8.39 5.99 2.40

9:34618796-34619343 9.62 4.21 5.41

10:102493904-102494072 9.12 5.34 3.78

10:119294070-119294143 9.03 5.28 3.74

14:87862626-87863008 8.80 4.97 3.82

16:85096322-85097146 9.09 5.57 3.53

18:75811758-75814395 9.31 4.29 5.02

19:1704275-1706659 9.78 4.21 5.57

19:13070446-13070515 9.00 5.00 4.00

20:21438169-21438255 9.16 4.79 4.37

20:21449303-21449404 8.50 5.52 2.98

22:37180713-37182260 9.14 4.36 4.78

Table 3.6. Survival medians of the 20 most relevant islands according to the first classification.
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CpG island Log-rank p-value Hazard ratio [95% interval]

1:90945518-90945656 3.88e-08 2.03 [1.57, 2.63]

1:158090642-158091676 1.26e-03 1.51 [1.17, 1.94]

2:100086548-100088317 3.36e-04 1.58 [1.23, 2.03]

4:149584089-149584799 3.18e-07 1.93 [1.49, 2.49]

6:1570179-1570756 5.62e-07 1.89 [1.47, 2.43]

6:43530362-43531683 1.16e-05 1.75 [1.36, 2.25]

6:166137998-166138866 3.77e-03 1.45 [1.12, 1.86]

8:21701267-21701566 1.85e-08 2.05 [1.59, 2.65]

8:145119282-145120028 5.20e-06 1.82 [1.40, 2.36]

9:34618796-34619343 2.30e-12 2.49 [1.92, 3.24]

10:102493904-102494072 3.66e-03 1.45 [1.13, 1.87]

10:119294070-119294143 3.04e-04 1.58 [1.23, 2.04]

14:87862626-87863008 7.93e-05 1.65 [1.28, 2.12]

16:85096322-85097146 2.39e-07 1.96 [1.51, 2.53]

18:75811758-75814395 2.23e-08 2.04 [1.58, 2.63]

19:1704275-1706659 2.51e-11 2.35 [1.82, 3.05]

19:13070446-13070515 1.78e-02 1.36 [1.05, 1.75]

20:21438169-21438255 4.91e-07 1.90 [1.47, 2.44]

20:21449303-21449404 1.04e-02 1.39 [1.08, 1.78]

22:37180713-37182260 3.10e-09 2.17 [1.67, 2.82]

Table 3.7. Further statistics of the 20 most relevant islands according to the first classification.
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CpG island Median hypo. Median hyper. Median diff.

1:90945518-90945656 10.51 4.01 6.50

1:158090642-158091676 7.92 3.78 4.14

2:100086548-100088317 8.54 3.53 5.00

4:149584089-149584799 10.59 4.21 6.38

6:1570179-1570756 9.31 4.01 5.30

6:43530362-43531683 8.39 4.04 4.35

6:166137998-166138866 8.91 2.87 6.05

8:21701267-21701566 9.21 3.72 5.49

8:145119282-145120028 8.91 4.50 4.41

9:34618796-34619343 10.04 3.66 6.38

10:102493904-102494072 9.03 4.34 4.68

10:119294070-119294143 9.21 4.36 4.85

14:87862626-87863008 8.50 3.93 4.57

16:85096322-85097146 9.96 4.41 5.54

18:75811758-75814395 9.27 3.04 6.23

19:1704275-1706659 9.42 3.77 5.65

19:13070446-13070515 9.70 5.44 4.26

20:21438169-21438255 9.39 3.20 6.19

20:21449303-21449404 9.05 4.85 4.20

22:37180713-37182260 10.43 3.62 6.81

Table 3.8. Survival medians of the 20 most relevant islands according to the second classifi-
cation.
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CpG island Log-rank p-value Hazard ratio [95% interval]

1:90945518-90945656 2.57e-08 2.83 [1.94, 4.14]

1:158090642-158091676 8.42e-06 2.26 [1.56, 3.25]

2:100086548-100088317 1.08e-04 2.01 [1.40, 2.88]

4:149584089-149584799 1.02e-09 3.20 [2.17, 4.72]

6:1570179-1570756 6.00e-11 3.54 [2.38, 5.29]

6:43530362-43531683 6.12e-04 1.86 [1.30, 2.66]

6:166137998-166138866 7.22e-05 2.04 [1.43, 2.93]

8:21701267-21701566 9.03e-08 2.68 [1.84, 3.90]

8:145119282-145120028 1.22e-06 2.54 [1.72, 3.74]

9:34618796-34619343 9.24e-10 3.12 [2.13, 4.56]

10:102493904-102494072 6.52e-02 1.40 [0.98, 2.01]

10:119294070-119294143 6.85e-06 2.25 [1.57, 3.24]

14:87862626-87863008 5.01e-04 1.88 [1.31, 2.70]

16:85096322-85097146 2.44e-08 2.93 [1.98, 4.33]

18:75811758-75814395 7.00e-10 3.06 [2.11, 4.44]

19:1704275-1706659 8.03e-07 2.47 [1.71, 3.58]

19:13070446-13070515 4.59e-03 1.67 [1.17, 2.40]

20:21438169-21438255 8.86e-07 2.44 [1.69, 3.52]

20:21449303-21449404 8.41e-03 1.62 [1.13, 2.32]

22:37180713-37182260 2.67e-09 3.04 [2.07, 4.45]

Table 3.9. Further statistics of the 20 most relevant islands according to the second classifi-
cation.

93



Chapter 3. Applications and Results 3.4. Post-hoc analysis

years. In 20 out of 20 islands the difference between the medians is higher for the
second classification, as we would expect. In several cases (7 out of 20 times for the
first classification and 17 out of 20 for the second classification) being hypomethylated
doubles or more the median diagnosis time with respect to being hypermethylated.

Each log-rank test, except for island 10:102493904-102494072 with a p-value of
6.52e-02, gives significant results at 5%: for the first classification the maximum
p-value is 1.78e-02, for the second classification the maximum p-value is 6.52e-02.
Most of the tests have much lower p-values, indicating that the methylation classes
differ significantly in the survival profile. 13 out of 20 times the p-value is lower in the
first classification, 7 out of 20 times the p-value is lower in the second classification.
It depends on the fact whether the effect of the sample size (the confidence intervals
narrow using more samples) is stronger than the effect of the difference of the estimated
curves.

The hazard ratio of the hypermethylated subjects over the hypomethylated subjects
is greater than one 40 out of 40 times, suggesting an increase of hazard when being
hypermethylated. The hazard ratio is 19 out of 20 times higher for the second
classification with respect to the first one suggesting that observations more distant
in time to event have more different hazards. The hazard ratio is often close or
higher than 2, indicating that the risk of the event in the hypermethylated population
can be double or more the risk in the hypomethylated one. In particular for the
first classification the mean hazard ratio is 1.82, ranging from 1.36 to 2.49, for the
second classification the mean hazard ratio is 2.44, ranging from 1.40 to 3.54. In every
unique island being hypermethylated is a risk factor, while being hypomethylated is a
protective factor.

It is important to note that all the patients considered in this analysis have been
diagnosed with breast cancer, therefore all the results concern the time of the event,
and not the probability of it happening. The controls are not exploited at this step,
continuing consistently with the previous analysis: we will try to find some results on
the controls in Section 3.4.3.

In Figures 3.14 and 3.15 we can find the forest plots of the hazard ratios estimates
and their corresponding 95% confidence intervals according to the first and second
classification. The vertical dashed line represents a hazard ratio of one. We consider one
island at a time, highlighting each unique relation between the island and methylation
levels. All the islands have a ratio significantly different from 1 except for island
10:102493904-102494072 for the second classification, indicating a significant effect
of methylation and a difference between the populations. The second classification
provides more uncertain wider intervals, but also higher means.

We plot the Kaplan-Meier curves for 3 selected islands of the 20, to verify that
they reveal different risk profiles for hypomethylated and hypermethylated subjects
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Figure 3.14. Forest plot of the hazard ratios of the CpG islands composing feature 120
according to the first classification.
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Figure 3.15. Forest plot of the hazard ratios of the CpG islands composing feature 120
according to the second classification.
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and in which manner. Therefore, we stratify the survival curves according to the
methylation level (violet for hypomethylated, light blue for hypermethylated) in order
to investigate the effect of this variable on the outcome. For each island we present in
order the curves for both the first classification based on the median and the second
classification based on the first and third quartile. In Figure 3.16 and 3.17 we visualize
the curves for island 6:1570179-1570756, in Figure 3.18 and 3.19 we visualize the
curves for island 9:34618796-34619343, in Figure 3.20 and 3.21 we visualize the curves
for island 19:1704275-1706659. The curves for the other 17 islands are reported in
Appendix B. In each survival plot on the x-axis there is the time in years, from 0 to the
last time recorded, on the y-axis there is the probability for a people to not experience
the event of interest. In each plot the p-value of the log-rank test is shown, from
which we can conclude whether the curves are significantly different and methylation
level influences the survival profile. Also the confidence intervals and the number of
subjects at risk every 3.5 years for both populations are reported.

The Kaplan-Meier curves confirm the analysis previously reported through the
Tables from 3.6 to 3.9 in a visual way. Additionally, interpreting the plots, we collect
further information about the survival profiles of the populations.

According to the first classification, after in mean 2 years the probability of survival
is approximately 75% for the hypermethylated population. The same probability is
achieved after in mean 5 years for the hypomethylated population. After in mean 8
years the probability of survival is approximately 25% for the hypermethylated popula-
tion. The same probability is achieved after in mean 12 years for the hypomethylated
population.

According to the second classification, after in mean 2 years the probability
of survival is approximately 75% for the hypermethylated population. The same
probability is achieved after in mean 6 years for the hypomethylated population.
After in mean 7 years the probability of survival is approximately 25% for the
hypermethylated population. The same probability is achieved after in mean 12 years
for the hypomethylated population.

3.4.3 Non-parametric tests on cases and controls

In this Section we report the results of the tests conducted on the distributions of
cases and the controls introduced in Section 2.5.2. The tests on singular islands could
not prove any relationship between the methylation levels and cancer classification,
because each island alone provided a too feeble signal. In fact, we conducted non-
parametric permutational univariate tests for the comparison of the two independent
populations of cases and controls on each of the 20 islands of the first ranked feature
120. No single test rejected the null hypothesis at a 5% level.
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Figure 3.16. Kaplan-Meier curves of island 6:1570179-1570756, stratified by methylation
level according to the median split (first classification).

Figure 3.17. Kaplan-Meier curves of island 6:1570179-1570756, stratified by methylation
level according to the first and third quartile split (second classification).
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Figure 3.18. Kaplan-Meier curves of island 9:34618796-34619343, stratified by methylation
level according to the median split (first classification).

Figure 3.19. Kaplan-Meier curves of island 9:34618796-34619343, stratified by methylation
level according to the first and third quartile split (second classification).
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Figure 3.20. Kaplan-Meier curves of island 19:1704275-1706659, stratified by methylation
level according to the median split (first classification).

Figure 3.21. Kaplan-Meier curves of island 19:1704275-1706659, stratified by methylation
level according to the first and third quartile split (second classification).
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For what regards the tests on the means of the islands in each feature, we considered
the first 10 most relevant features. For each of these we conducted the Wilcoxon
signed-rank test, both according to a two-sided alternative hypothesis and according
to the one-sided alternative hypothesis that the cases have higher methylation means.
The results are shown in Table 3.10. For each feature we reported the number of
islands of which it is composed, the value of the signed-rank test statistic, the p-value
of the two-sided test and the p-value of the one-sided test.

Feature Numerosity Statistic Two-sided Right-sided

120 20 168 0.000824 0.000413

25 26 189 0.015400 0.007542

57 18 117 0.008946 0.004484

69 17 143 0.000140 0.000083

80 20 178 0.000336 0.000151

63 11 12 0.637760 0.318790

75 11 28 0.240504 0.120390

114 15 112 0.000432 0.000206

124 18 171 0.000008 0.000002

97 45 927 0.000000 0.000000

Table 3.10. Tests results on the ranked first 10 features for the difference between the means
of the cases and controls.

8 out of 10 tests returned a significant p-value at level 5% (according to both
tests). We discovered that the means were 10 out of 10 times higher for the cases with
respect to the controls (as seen by the signed-rank test statistic always greater than
0). This fact is in agreement with our model, since it supports the hypothesis that
hypermethylated subjects have a higher risk of catching the disease. The two-sided
tests always gave higher p-values with respect to the one-sided ones, because the cases
were always more methylated than the controls.

3.4.4 Weighted Kolmogorov-Smirnoff test

Using the importance values of the features as weights, we conducted the Weighted
Kolmogorov-Smirnoff test described in Section 2.5.1 for each background set presented.
We tested 177 gene pathways, some biologically correlated with cancer while other
uncorrelated. We visualize the four Figures with the results of the analysis for the
breast controls (Figure 3.22), for all the controls and the colon and lung cases (Figure
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3.23), for the matched controls (Figure 3.24), for all the controls (Figure 3.25). In
every Figure on the x axis the �log10(p-value) of the test is represented, on the y
axis the pathway tested is reported. The vertical line corresponds to the threshold of
p-value = 0.05. The light blue bars represent the pathways that reached a significant
p-value.

As the feature rankings, the results of the enrichment analysis are very similar
among the background datasets, identifying as significant almost the same pathways.
With an empirical p-value < 0.05, 8 pathways are identified as significant for all the ref-
erences: Pathways in cancer (hsa05200), PI3K-Akt signaling pathway (hsa04151), Ras
signaling pathway (hsa04014), Gastric cancer (hsa05226), Breast cancer (hsa05224),
Calcium signaling pathway (hsa04020), Proteoglycans in cancer (hsa05205), Tran-
scriptional misregulation in cancer (hsa05202) and other 2 are significant only for
all the controls and all the controls and colon and lung cases: Signaling pathways
regulating pluripotency of stem cells (hsa04550), Cytokine-cytokine receptor interaction
(hsa04060).

Among these 10 significant pathways, all have been already described to have
a role in tumor development. 5 have been even specifically described to have a
role in breast cancer: PI3K-Akt signaling pathway (hsa04151) [75], Ras signaling
pathway (hsa04014) [76], Breast cancer (hsa05224) [77], Calcium signaling pathway
(hsa04020) [78] and Proteoglycans in cancer (hsa05205) [79]. The enrichment results
are sensible and encouraging, since the pathways detected are coherent with the
outcome we are studying.
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Figure 3.22. Barplot representation of the WKS test results using the breast controls as
reference.

Figure 3.23. Barplot representation of the WKS test results using all the controls and the
colon and lung cases as reference.
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Figure 3.24. Barplot representation of the WKS test results using the matched controls as
reference.

Figure 3.25. Barplot representation of the WKS test results using all the controls as reference.
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The aim of this thesis was the development of a methodology whose objective is the
discovery of the most important DNA methylation features for detecting breast cancer
risk. We had to overcome the challenges that this type of data imposes, mostly the
huge dimensionality of the problem and the complex biological interactions between
the CpG sites.

We proposed an effective method to be employed with DNA methylation data
for extracting a feature importance ranking. This method represents one of the
first attempts in the literature of detecting the most relevant biological sites driving
risk prediction in a survival analysis setting, and allows for the explanation of the
results, a complex problem to deal with when using customized neural networks. We
constructed a deep survival model able to predict times to disease, then we extracted
the features’ relevance for the risk prediction aim. With this approach, we succeeded
in the objective of solving the key motivating problems that lead to the new method’s
introduction, maintaining the predictions interpretable.

We applied the full methodology to the concrete case of the EPIC dataset. We
discovered that breast cancer is a phenomenon strongly correlated with DNA methy-
lation in some CpG islands of the EZH2 protein, in particular proving that the time
to diagnosis is related to this mechanism. We reported the CpG islands selected by
our analysis, to be biologically investigated further. In these islands hypermethylated
patients experienced the event earlier than hypomethylated ones, making being hyper-
methylated in these regions a risk factor for breast cancer. The Weighted Kolmogorov
Smirnov biological analysis strengthens our conclusions: over-represented pathways
are correlated with cancer and in particular with breast cancer.

The most important limitation of our method is the fact that it does not take into
account controls. In most practical applications, we do not know a priori if a subject
will experience the disease. Our methodology at the current state is not able to model
observations that will not be diagnosed with cancer. The solution to this problem
could lead to results more useful for doctors in the applications.

This thesis work opens the way for many further improvements, that can continue
in multiple directions, both in the fields of statistical methods and biology. We give a
brief overview about some possible developments on three topics:
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• Data: with the opportunity it would be helpful to test our proposal on indepen-
dent datasets, to further validate the method by evaluating its performance, both
in terms of the performance metrics and in terms of similarity of the relevant
features detected with the ones we found by our analysis. Moreover, an in depth
work on an external dataset could lead to further discoveries, comprehending
which characteristics different populations have in common and which are cohort
specific.

• Model: several variations of the standard deep autoencoder can be employed
to improve on some aspects of the model, enforcing to get a better latent
organization or to learn smoother representations. In particular we could employ
variational autoencoders [55] or adversarial autoencoders [56]. The choice of an
alternative more sophisticated deep survival model, like DeepHit [52], should
also be considered.

• Feature importance: as concerns the limitations of the feature importance
algorithm, we are aware of the fact that Kernel SHAP is not perfectly suited
for neural networks and is slower in obtaining the results. Deep SHAP [80]
is an enhanced model-based version of SHAP for deep neural networks, with
a complexity that scales linearly with sample size. However, the Deep SHAP
implementation in the SHAP package is not compatible with our model in the
current TensorFlow version 2.6.0. Substituting the Kernel SHAP algorithm
with Deep SHAP should provide speed boosts, maintaining similar importance
estimations.
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Appendix A

Detailed description of the models

In this Appendix we describe further specifics of the models employed in the experi-
ments, both the ones described in Section 3.1.2 and some alternative approaches.

A.1 Hyper-parameters and training specifics

In this Section we focus on the hyper-parameters used for the deep survival models
and the Cox models. For both types of models, the hyper-parameters are the same
across all combinations of dimensionalities, only the input dimensionality and the
structure of the deep network vary. To make the experiments reproducible, we fixed
the seeds of Random, Numpy and Tensorflow. We implemented the models in Google
Colaboratory through the use of Python Notebooks.

We start by presenting the deep survival models. The architecture is the modular
one described in Section 2.3.3: removing or adding the firsts and lasts hidden blocks
we can change the input dimensionality, removing or adding the hidden blocks before
and after the latent representation we can change the latent dimensionality. For
each combination of dimensionalities, we trained 10 networks in cross-validation, each
with the layer-wise pre-training and the kernel SHAP values computation for the 4
background datasets summarized by 50 samples. On the Colab CPUs, this procedure
took approximately 50 minutes for the 128 input dimension models, 1.45 hours for the
256 input dimension models, 3 hours for the 512 input dimension models, 5.30 hours
for the 1024 input dimension models. Below we report in detail the hyper-parameters
and the measures adopted for the pre-training and for the training of the networks.

• For what concerns the autoencoder pre-training, model parameters were ini-
tialised randomly following the approach in Glorot et al. [81]. The loss function
was optimized by mini-batch stochastic gradient descent with momentum with a
learning rate of 0.1 and a momentum parameter of 0.9. The mini-batch size was
set to 32, counting for around 16% of the training set and processing 7 batches
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each epoch. We trained the model for a maximum of 1000 epochs. However, it
usually terminated the training after around 100 epochs due to early stopping.
Early stopping was activated after 10 consecutive epochs without improvements
and was set to restore the weights providing the lowest validation loss. Learning
rate decay was applied after 5 consecutive epochs without improvements and
reduced the learning rate by a factor of 0.5. No l2 regularization was needed at
any level and the other hyper-parameters were left at their default settings.

• For what concerns the survival training, model parameters were initialized
according to the pre-training weights, apart for the last layer for which we
applied the Glorot initialization. We used the adaptive moment estimation
technique for optimization, inspired by DeepSurv, with a learning rate of 0.0001
and mini-batch sizes of 32 samples. We fine-tuned the whole network for 100
epochs, using the same early stopping parameters exploited for pre-training.
The dropout applied before the last fully connected layer had a probability of
switching off neurons equal to 0.1. No l2 regularization was needed at any level
and the other hyper-parameters were left at their default settings.

We continue by describing the Cox models. For each dimensionality, we trained 10
models in cross-validation, each with the Wald statistic computation for every feature.
On the Colab CPUs, this procedure took approximately 40 minutes for the 128 input
dimension model, 1.30 hours for the 256 input dimension models, 3.15 hours for the
512 input dimension model, 7 hours for the 1024 input dimension model. The learning
rate was set to 0.1 while the number of maximum iterations was set to 100. The
initialization of the weights was accomplished by setting all the parameters to zero,
since we noticed that by leaving the standard random initialization, the gradient was
susceptible to explosions. These hyper-parameters represented a combination for which
the training procedure managed to converge. We set the remaining hyper-parameters
to values commonly accepted in literature for the Cox model.

A.2 Further approaches

We conducted several further experiments varying the nature of the model, whose
results were not reported in Section 3.1.2 to focus on the best proposal. However, we
wish to cite those.

• The DeepSurv model [38] is the deep Cox extension that we leveraged in the
survival training part of our model. We compared it to our proposal to show
the necessity of the autoencoder pre-training. It presented stability issues that
confirmed our concerns.
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• A model was built like our proposal, except for the pre-training of the encoder,
that was conducted directly in one step, as opposed to greedy layer-wise [54].
We compared this approach to support the generalization improvement given by
the layer-wise pre-training procedure. It resulted in performances comparable
to our proposal, but with higher cross-validation variance.

• A multitask training (supervised autoencoder), that tries to minimize a linear
combination of the reconstruction error of the input and the survival loss, shrink-
ing the learning into a single step, is a possibility [82]. It simultaneously searches
for a meaningful latent representation and a fine survival model: generalization
performance can be improved when enough data is present. Let ✓ be the set of
the parameters of the model, Lr(✓) be the reconstruction loss and Ls(✓) be the
survival loss, then the total loss L(✓) can be defined as:

L(✓) = ↵ · Lr(✓) + (1� ↵) · Ls(✓) (A.1)

where ↵ 2 [0, 1] is a hyperparameter that controls the weight of the two losses.
The model had both stability and performance issues; it probably would perform
better with a larger cohort.
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Appendix B

Complete list of the Kaplan-Meier
curves

In this Appendix we report all the Kaplan-Meier curves for the 20 islands composing
the ranked first feature 120, from Figure B.1 to Figure B.20, obtained thanks to the
analysis conducted in Section 3.4.2. We stratify the survival curves according to
the methylation level (violet for hypomethylated, light blue for hypermethylated) in
order to investigate the effect of this variable on the outcome. For each Figure on
the left the first classification based on the median is used, on the right the second
classification based on the first and third quartile is used. In each survival plot on the
x-axis there is the time in years, from 0 to the last time recorded, on the y-axis there
is the probability for a people to not experience the event of interest. In each plot the
p-value of the log-rank test is shown, from which we can conclude whether the curves
are different and methylation level influences the survival profile. Also the confidence
intervals and the number of subjects at risk every 3.5 years for both populations are
reported.

(a) Median split. (b) First and third quartile split.

Figure B.1. Kaplan-Meier curves of island 1:90945518-90945656.
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(a) Median split. (b) First and third quartile split.

Figure B.2. Kaplan-Meier curves of island 1:158090642-158091676.

(a) Median split. (b) First and third quartile split.

Figure B.3. Kaplan-Meier curves of island 2:100086548-100088317.

(a) Median split. (b) First and third quartile split.

Figure B.4. Kaplan-Meier curves of island 4:149584089-149584799.
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(a) Median split. (b) First and third quartile split.

Figure B.5. Kaplan-Meier curves of island 6:1570179-1570756.

(a) Median split. (b) First and third quartile split.

Figure B.6. Kaplan-Meier curves of island 6:43530362-43531683.

(a) Median split. (b) First and third quartile split.

Figure B.7. Kaplan-Meier curves of island 6:166137998-166138866.
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(a) Median split. (b) First and third quartile split.

Figure B.8. Kaplan-Meier curves of island 8:21701267-21701566.

(a) Median split. (b) First and third quartile split.

Figure B.9. Kaplan-Meier curves of island 8:145119282-145120028.

(a) Median split. (b) First and third quartile split.

Figure B.10. Kaplan-Meier curves of island 9:34618796-34619343.
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(a) Median split. (b) First and third quartile split.

Figure B.11. Kaplan-Meier curves of island 10:102493904-102494072.

(a) Median split. (b) First and third quartile split.

Figure B.12. Kaplan-Meier curves of island 10:119294070-119294143.

(a) Median split. (b) First and third quartile split.

Figure B.13. Kaplan-Meier curves of island 14:87862626-87863008.
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(a) Median split. (b) First and third quartile split.

Figure B.14. Kaplan-Meier curves of island 16:85096322-85097146.

(a) Median split. (b) First and third quartile split.

Figure B.15. Kaplan-Meier curves of island 18:75811758-75814395.

(a) Median split. (b) First and third quartile split.

Figure B.16. Kaplan-Meier curves of island 19:1704275-1706659.
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(a) Median split. (b) First and third quartile split.

Figure B.17. Kaplan-Meier curves of island 19:13070446-13070515.

(a) Median split. (b) First and third quartile split.

Figure B.18. Kaplan-Meier curves of island 20:21438169-21438255.

(a) Median split. (b) First and third quartile split.

Figure B.19. Kaplan-Meier curves of island 20:21449303-21449404.
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(a) Median split. (b) First and third quartile split.

Figure B.20. Kaplan-Meier curves of island 22:37180713-37182260.
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Appendix C

Essential code

In this Appendix we show the main parts of the code used to develop this thesis work.
For concision reasons, we do not report the complete code, but only the essential parts.
In particular we concentrate on the dataset preprocessing in Section C.1, feature
clustering in Section C.2, survival modeling and feature explanations in Section C.3,
post-hoc analysis in Section C.4. Several visualizations, the preliminary analysis, the
data loading, the dimensionality variations of the models and the biological validation
are not reported.

The analysis are implemented with multiple programming tools: for Sections C.1
and C.4 we used R scripts in RStudio, while for Sections C.2 and C.3 we used Python
notebooks in Google Colaboratory.

C.1 Preprocessing

In this first part, we focus on the R script concerning the creation of the data matrices
from the raw data given, as described in Section 1.3. We report the selection of the
EZH2 protein subset and the aggregation in islands.

1 # dnam is a table containing the beta values for each CpG site (rows = sites ,
columns = patients)

2 # cgs_EZH2 is a list of all the sites in the EZH2 protein
3 # samples is a table containing all the non -genomic information of samples (rows =

patients , columns = features)
4 dnam_filtered = dnam[rownames(dnam) %in% cgs_EZH2 ,] # select only EZH2 protein sites
5 Dataset_raw = merge(samples , t(dnam_filtered), by=0) # join all the information

about patients
6 Dataset = data.frame(Dataset_raw[,-1], row.names=Dataset_raw[,1]) # assign the row

names
7 write.csv(Dataset ,"Dataset_EZH2.csv") # save
8
9

10 # annotations contains all the information about CpG sites (chromosomes , islands ...)
11 # select only EZH2 protein sites from annotations and dnam
12 annotations_filtered = annotations[rownames(annotations) %in% cgs_EZH2 ,]
13 Dataset_EZH2 = t(dnam[rownames(dnam) %in% cgs_EZH2 ,])
14
15 # extract the islands names
16 Islands = unique(annotations_filtered$HMM_Island)
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17 Islands = Islands [-8] # do not consider the sites not belonging to an island
18
19 for(i in 1: length(Islands)){ # for each island
20
21 # select the sites in the island
22 current_sites=rownames(annotations_filtered[which(annotations_filtered$HMM_Island

== Islands[i]) ,])
23
24 # create a new variable as the mean of the sites of the island
25 x=as.matrix(Dataset_EZH2[,colnames(Dataset_EZH2) %in% current_sites ])
26 D=rowMeans(x)
27
28 # add to the final dataset
29 if (i==1){
30 new_dataset = data.frame(D)
31 }else{
32 new_dataset=cbind(new_dataset ,D)
33 }
34 }
35
36 # assign names to rows and columns
37 rownames(new_dataset) = rownames(Dataset_EZH2)
38 colnames(new_dataset) = Islands
39
40 # save the dataset
41 write.csv(new_dataset ,"Dataset_Islands_Means.csv")

C.2 Feature clustering

The following codes in Python allow to apply the feature clustering algorithm, as
described in Section 2.2 and applied in Section 3.1, and to compare the WSS. Moreover
they allow to analyze in more detail the clustered features for 128 dimensions, and to
create the datasets for the post-hoc analysis.

Datasets construction

1 # packages
2 !pip install -U scikit -learn
3 import pandas as pd
4 import numpy as np
5 import matplotlib.pyplot as plt
6 import os
7 from scipy import stats
8 from scipy.cluster.hierarchy import dendrogram , linkage , fcluster
9 from sklearn.preprocessing import StandardScaler

10 from sklearn import cluster
11 from sklearn.manifold import TSNE
12
13 np.random.seed (1)
14
15 # load the data
16 Dataset = pd.read_csv(’Dataset_EZH2.csv’, index_col="Unnamed: 0")
17 Dataset2 = pd.read_csv(’Dataset_Islands_Means.csv’, index_col="Unnamed: 0")
18
19 # create the class column
20 Dataset_with_class=Dataset
21 Dataset_with_class[’class’]= ~ Dataset_with_class[’time.to.disease ’]. isnull ()
22
23 # join in a unique dataset
24 Dataset_complete=Dataset2.join(Dataset_with_class [[’time.to.disease ’, ’study’, ’age.

recr’, ’bmi’, ’sex’, ’smoking ’, ’alcohol ’, ’education ’, ’phys.act’, ’dietary.
qual’, ’class’, ’match.id’]])
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25
26 # select the breast observations and create the time binned variable
27 DatasetB=Dataset_complete[Dataset_complete[’study ’]==’B’]
28 DatasetB[’time.binned ’]=pd.cut(DatasetB[’time.to.disease ’], bins =(1 ,3.5 ,7 ,10.5 ,16))
29
30 # select the cases and save in another dataset the non -genomic variables
31 DatasetB=DatasetB[DatasetB[’class ’]== True]
32 Dataset2B=DatasetB.copy()
33 DatasetB=DatasetB.drop([’time.to.disease ’, ’study ’, ’age.recr’, ’bmi’, ’sex’, ’

smoking ’, ’alcohol ’, ’education ’, ’phys.act’, ’dietary.qual’, ’class’, ’match.id
’, ’time.binned ’],axis =1)

34
35 # select the controls
36 Dataset_controls=Dataset_complete[Dataset_complete[’class’]== False]
37
38 # similar procedure for all the controls
39 Dataset_controls[’time.binned ’]=pd.cut(Dataset_controls[’time.to.disease ’], bins

=(1 ,3.5 ,7 ,10.5 ,16))
40 Dataset_controls2=Dataset_controls.copy()
41 Dataset_controls=Dataset_controls.drop([’time.to.disease ’, ’study’, ’age.recr’, ’bmi

’, ’sex’, ’smoking ’, ’alcohol ’, ’education ’, ’phys.act’, ’dietary.qual’, ’class’
, ’match.id’, ’time.binned ’],axis =1)

42
43 # select the colon and lung cases
44 Dataset_cases_colonlung=Dataset_complete[Dataset_complete[’class’]== True]
45 Dataset_cases_colonlung=Dataset_cases_colonlung[Dataset_cases_colonlung[’study’]!="B

"]
46
47 # similar procedure for colon and lung cases
48 Dataset_cases_colonlung[’time.binned ’]=pd.cut(Dataset_cases_colonlung[’time.to.

disease ’], bins =(1 ,3.5 ,7 ,10.5 ,16))
49 Dataset_cases_colonlung2=Dataset_cases_colonlung.copy()
50 Dataset_cases_colonlung=Dataset_cases_colonlung.drop([’time.to.disease ’, ’study ’, ’

age.recr’, ’bmi’, ’sex’, ’smoking ’, ’alcohol ’, ’education ’, ’phys.act’, ’dietary
.qual’, ’class’, ’match.id’, ’time.binned ’],axis =1)

51
52 # scaling based on the breast cases
53 scaler=StandardScaler ().fit(DatasetB)
54
55 # transform each dataset
56 DatasetB_scaled = scaler.transform(DatasetB)
57 Dataset_controls_scaled = scaler.transform(Dataset_controls)
58 Dataset_cases_colonlung_scaled = scaler.transform(Dataset_cases_colonlung)

Transformation for all the dimensionalities

1 # select data and dimensionalities for feature clustering
2 X=DatasetB_scaled
3 range_n_clusters = [128 ,256 ,512 ,1024]
4
5 for n_clusters in range_n_clusters: # for every dimensionality
6
7 # apply feature clustering
8 clusterer = cluster.FeatureAgglomeration(n_clusters=n_clusters , affinity="

euclidean", linkage="ward", pooling_func=np.mean)
9 clusterer.fit(X)

10 cluster_labels = clusterer.fit(X).labels_ # extract the labels
11
12 # transform the breast cases and save the dataset
13 DatasetB_reduced = clusterer.transform(DatasetB_scaled)
14 DatasetB_final=pd.DataFrame(DatasetB_reduced , index=DatasetB.index)
15 DatasetB_final=DatasetB_final.join(Dataset2B [[’time.to.disease ’, ’study’, ’age.

recr’, ’bmi’, ’sex’, ’smoking ’, ’alcohol ’, ’education ’, ’phys.act’, ’dietary.
qual’, ’class’, ’match.id’, ’time.binned ’]])

16 DatasetB_final.to_csv(’Clustering_Breast ’+str(n_clusters)+’.csv’)
17
18 # transform the controls and save the dataset
19 Dataset_controls_reduced = clusterer.transform(Dataset_controls_scaled)
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20 Dataset_controls_final=pd.DataFrame(Dataset_controls_reduced , index=
Dataset_controls.index)

21 Dataset_controls_final=Dataset_controls_final.join(Dataset_controls2 [[’time.to.
disease ’, ’study’, ’age.recr’, ’bmi’, ’sex’, ’smoking ’, ’alcohol ’, ’education ’,
’phys.act’, ’dietary.qual’, ’class ’, ’match.id’, ’time.binned ’]])

22 Dataset_controls_final.to_csv(’Clustering_Controls ’+str(n_clusters)+’.csv’)
23
24 # transform the colon and lung cases and save the dataset
25 Dataset_cases_colonlung_reduced = clusterer.transform(

Dataset_cases_colonlung_scaled)
26 Dataset_cases_colonlung_final=pd.DataFrame(Dataset_cases_colonlung_reduced , index=

Dataset_cases_colonlung.index)
27 Dataset_cases_colonlung_final=Dataset_cases_colonlung_final.join(

Dataset_cases_colonlung2 [[’time.to.disease ’, ’study ’, ’age.recr’, ’bmi’, ’sex’,
’smoking ’, ’alcohol ’, ’education ’, ’phys.act’, ’dietary.qual’, ’class ’, ’match.
id’, ’time.binned ’]])

28 Dataset_cases_colonlung_final.to_csv(’Clustering_Cases_colonlung ’+str(n_clusters)+
’.csv’)

WSS analysis

1 # function to calculate the centroids of X
2 def to_codebook(X, part):
3 codebook = []
4 for i in range(part.min(), part.max()+1):
5 codebook.append(X[part == i].mean (0))
6
7 return np.vstack(codebook)
8
9 # function to calculate WSS of X for values in range_n_clusters

10 def calculate_WSS(X, range_n_clusters):
11
12 #transpose to apply agglomerative clustering
13 Y=X.T
14 sse = []
15
16 for n_clusters in range_n_clusters: # for each dimensionality
17
18 # apply agglomerative clustering
19 clusterer=cluster.AgglomerativeClustering(n_clusters=n_clusters , affinity=’

euclidean ’, linkage=’ward’)
20 pred_clusters = clusterer.fit(Y).labels_
21
22 # find centroids
23 centroids = to_codebook(Y,pred_clusters)
24 curr_sse = 0
25
26 # calculate square of euclidean distance of each point from its centroid and add

to the current WSS
27 for i in range(len(Y)):
28 curr_center = centroids[pred_clusters[i]]
29 curr_sse += (Y[i, 0] - curr_center [0]) ** 2 + (Y[i, 1] - curr_center [1]) ** 2
30
31 sse.append(curr_sse)
32 return sse
33
34 # parameters and data
35 range_n_clusters = np.arange (100, 1000, 10)
36 X=DatasetB_scaled
37
38 # calculate the WSS
39 sse=calculate_WSS(X, range_n_clusters)
40
41 # plot the results
42 plt.figure(figsize =(16 ,10))
43 plt.plot(range_n_clusters , sse)
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Analysis for 128 dimensions

1 # apply feature clustering
2 agglo = cluster.FeatureAgglomeration(n_clusters =128, affinity="euclidean", linkage=

"ward", pooling_func=np.mean , compute_distances=True)
3 agglo.fit(DatasetB_scaled)
4 DatasetB_reduced = agglo.transform(DatasetB_scaled)
5
6 # extract the numerosity of clusters
7 lab=agglo.labels_
8 unique , counts = np.unique(lab , return_counts=True)
9 dict(zip(unique , counts))

10
11 # function to plot a dendrogram
12 def plot_dendrogram(model , ** kwargs):
13
14 # compute the linkage matrix
15 counts = np.zeros(model.children_.shape [0])
16 n_samples = len(model.labels_)
17 for i, merge in enumerate(model.children_):
18 current_count = 0
19 for child_idx in merge:
20 if child_idx < n_samples:
21 current_count += 1
22 else:
23 current_count += counts[child_idx - n_samples]
24 counts[i] = current_count
25 linkage_matrix = np.column_stack ([model.children_ , model.distances_ , counts ]).

astype(float)
26
27 # Plot the corresponding dendrogram
28 dendrogram(linkage_matrix , ** kwargs)
29
30 # plot the dendrogram
31 plt.figure(figsize =(18 ,9))
32 plt.title(’Hierarchical Clustering Dendrogram ’)
33 plot_dendrogram(agglo , truncate_mode=’lastp’, p=20) # truncate to the last 20 merged

clusters
34 plt.xlabel("Number of points in node (or index of point if no parenthesis).")
35 plt.show()
36
37 # Apply PCA
38 PCA_Data = DatasetB_reduced
39 pca = PCA(n_components =2)
40 new_data = pca.fit_transform(PCA_Data)
41 pca_data = pd.DataFrame(data = new_data , columns = [’principal component 1’, ’

principal component 2’])
42 pca_data[’time.binned ’] = np.array(Dataset2B [[’time.binned ’]])
43
44 # plot the PCA
45 plt.figure(figsize =(16 ,10))
46 sns.scatterplot(
47 x=’principal component 1’, y=’principal component 2’,
48 hue="time.binned",
49 palette=sns.color_palette("hls", 4),
50 data=pca_data ,
51 legend="full",
52 alpha =1)
53
54
55 # select the first ten features in the ranking
56 features = np.array ([120 ,25 ,57 ,69 ,80 ,63 ,75 ,114 ,124 ,97])
57
58 # create datasets with the best features
59 for i in features: # for each of the top 10 features
60 best_features=DatasetB[DatasetB.columns[np.where(lab == i)]]
61 best_features[’time.to.disease ’]= Dataset2B[’time.to.disease ’]
62 best_features.to_csv(os.path.join(’best_features_codicifinali_ ’ +str(i)+ ’.csv’))
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C.3 Model training and feature importance

The following codes concern the definition of the survival functions for the model,
the construction of both the autoencoder and the deep model, the training and
performances computation in cross-validation, the extraction of the feature importance,
the Cox model training and some visualizations, described in Sections 2.3 and 2.4,
and applied in Sections 3.1, 3.2 and 3.3. We report only the deep survival model with
128 input dimensions and 16 latent dimensions and the Cox model with 128 input
dimensions.

Datasets definition

1 # packages
2 import keras
3 from keras.layers import Input , Dense
4 from keras.models import Model
5 from keras import backend as K
6 from keras import layers
7
8 from sklearn.decomposition import PCA
9 from sklearn.preprocessing import StandardScaler

10 from sklearn.manifold import TSNE
11 from sklearn.model_selection import train_test_split
12
13 import numpy as np
14 import matplotlib.pyplot as plt
15 import os
16 import pandas as pd
17 import seaborn as sns
18 import tensorflow as tf
19 import random as rn
20
21 !pip install shap
22 import shap
23
24 !pip install pysurvival
25 import pysurvival
26 from pysurvival.models.semi_parametric import CoxPHModel
27 from pysurvival.utils.metrics import concordance_index
28
29 # function to calculate the c-index
30 def c_statistic_harrell(pred , labels):
31 total = 0
32 matches = 0
33
34 # count the matches in the ordering
35 for i in range(len(labels)):
36 for j in range(len(labels)):
37 if labels[j] > 0 and abs(labels[i]) > labels[j]:
38 total += 1
39 if pred[j] > pred[i]:
40 matches += 1
41 return matches/total
42
43 # load the feature clustered breast cases
44 Dataset_raw = pd.read_csv(’Clustering_Breast ’+str (128)+’.csv’, index_col="Unnamed: 0

")
45
46 # save the non -genomic variables
47 Dataset2=Dataset_raw [[’time.to.disease ’, ’study’, ’age.recr’, ’bmi’, ’sex’, ’smoking

’, ’alcohol ’, ’education ’, ’phys.act’, ’dietary.qual’,’class’,’match.id’,’time.
binned ’]]. copy()
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48 Dataset_raw.drop([’time.to.disease ’, ’study’, ’age.recr’, ’bmi’, ’sex’, ’smoking ’, ’
alcohol ’, ’education ’, ’phys.act’, ’dietary.qual’,’class’,’match.id’,’time.
binned ’], axis=1, inplace=True)

49
50 # load the feature clustered controls
51 Dataset_raw_controls = pd.read_csv(’Clustering_Controls ’+str (128)+’.csv’, index_col=

"Unnamed: 0")
52
53 # select the breast controls dataset
54 Dataset_raw_controls_breast=Dataset_raw_controls[Dataset_raw_controls[’study’]==’B’

].copy()
55
56 # save the non -genomic variables
57 Dataset2_controls_breast=Dataset_raw_controls_breast [[’time.to.disease ’, ’study ’, ’

age.recr’, ’bmi’, ’sex’, ’smoking ’, ’alcohol ’, ’education ’, ’phys.act’, ’dietary
.qual’,’class’,’match.id’,’time.binned ’]]. copy()

58 Dataset_raw_controls_breast.drop([’time.to.disease ’, ’study’, ’age.recr’, ’bmi’, ’
sex’, ’smoking ’, ’alcohol ’, ’education ’, ’phys.act’, ’dietary.qual’,’class’,’
match.id’,’time.binned ’], axis=1, inplace=True)

59
60 # load the feature clustered colon and lung cases
61 Dataset_raw_cases_colonlung = pd.read_csv(’Clustering_Cases_colonlung ’+str (128)+’.

csv’, index_col="Unnamed: 0")
62
63 # select the all controls and colon and lung cases dataset
64 Dataset_raw_cases_colonlung_controls=pd.concat ([ Dataset_raw_cases_colonlung[

Dataset_raw_cases_colonlung[’sex’]==’F’], Dataset_raw_controls[
Dataset_raw_controls[’sex’]==’F’]]).copy()

65
66 # save the non -genomic variables
67 Dataset2_cases_colonlung_controls=Dataset_raw_cases_colonlung_controls [[’time.to.

disease ’, ’study’, ’age.recr’, ’bmi’, ’sex’, ’smoking ’, ’alcohol ’, ’education ’,
’phys.act’, ’dietary.qual’,’class’,’match.id’,’time.binned ’]]. copy()

68 Dataset_raw_cases_colonlung_controls.drop([’time.to.disease ’, ’study ’, ’age.recr’, ’
bmi’, ’sex’, ’smoking ’, ’alcohol ’, ’education ’, ’phys.act’, ’dietary.qual’,’
class ’,’match.id’,’time.binned ’], axis=1, inplace=True)

69
70 # select the all controls dataset
71 Dataset_raw_controls_female=Dataset_raw_controls[Dataset_controls[’sex’]==’F’].copy

()
72
73 # save the non -genomic variables
74 Dataset2_controls_female=Dataset_raw_controls_female [[’time.to.disease ’, ’study ’, ’

age.recr’, ’bmi’, ’sex’, ’smoking ’, ’alcohol ’, ’education ’, ’phys.act’, ’dietary
.qual’,’class’,’match.id’,’time.binned ’]]. copy()

75 Dataset_raw_controls_female.drop([’time.to.disease ’, ’study’, ’age.recr’, ’bmi’, ’
sex’, ’smoking ’, ’alcohol ’, ’education ’, ’phys.act’, ’dietary.qual’,’class’,’
match.id’,’time.binned ’], axis=1, inplace=True)

76
77 # scaling based on only the breast cases
78 scaler=StandardScaler ().fit(Dataset_raw)
79 Dataset = np.array(scaler.transform(Dataset_raw))
80
81 # scale all datasets
82 Dataset_controls_breast = np.array(scaler.transform(Dataset_raw_controls_breast))
83 Dataset_cases_colonlung_controls = np.array(scaler.transform(

Dataset_raw_cases_colonlung_controls))
84 Dataset_controls_female = np.array(scaler.transform(Dataset_raw_controls_female))

Survival model definition

The definition of the following survival model is taken by the notebook https:
//nbviewer.org/github/sebp/survival-cnn-estimator/blob/master/tutori
al_tf2.ipynb. We adapted the code according to our needs.

1 # packages
2 !pip install --upgrade pip
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3 !pip uninstall --yes --quiet osqp
4 !pip install -U scikit -survival
5 from typing import Any , Dict , Iterable , Sequence , Tuple , Optional , Union
6 from pathlib import Path
7 from sksurv.nonparametric import kaplan_meier_estimator
8 from sksurv.metrics import concordance_index_censored
9 import tensorflow.compat.v2.summary as summary

10 from tensorflow.python.ops import summary_ops_v2
11
12 # functions
13
14 # compute mask that represents each sample ’s risk set
15 def _make_riskset(time: np.ndarray) -> np.ndarray:
16
17 assert time.ndim == 1, "expected 1D array"
18 o = np.argsort(-time , kind="mergesort")
19 n_samples = len(time)
20 risk_set = np.zeros((n_samples , n_samples), dtype=np.bool_)
21 for i_org , i_sort in enumerate(o):
22 ti = time[i_sort]
23 k = i_org
24 while k < n_samples and ti == time[o[k]]:
25 k += 1
26 risk_set[i_sort , o[:k]] = True
27 return risk_set
28
29 # callable input function that computes the risk set for each batch
30 class InputFunction:
31
32 def __init__(self ,
33 images: np.ndarray ,
34 time: np.ndarray ,
35 event: np.ndarray ,
36 batch_size: int = 32,
37 drop_last: bool = False ,
38 shuffle: bool = False ,
39 seed: int = 89) -> None:
40 self.images = images
41 self.time = time
42 self.event = event
43 self.batch_size = batch_size
44 self.drop_last = drop_last
45 self.shuffle = shuffle
46 self.seed = seed
47
48 def size(self) -> int:
49 return self.images.shape [0]
50
51 def steps_per_epoch(self) -> int:
52 return int(np.floor(self.size() / self.batch_size))
53
54 # compute risk set for samples in batch
55 def _get_data_batch(self , index: np.ndarray) -> Tuple[np.ndarray , Dict[str , np.

ndarray ]]:
56
57 time = self.time[index]
58 event = self.event[index]
59 images = self.images[index]
60 labels = {
61 "label_event": event.astype(np.int32),
62 "label_time": time.astype(np.float32),
63 "label_riskset": _make_riskset(time)
64 }
65 return images , labels
66
67 # generator that yields one batch at a time
68 def _iter_data(self) -> Iterable[Tuple[np.ndarray , Dict[str , np.ndarray ]]]:
69
70 index = np.arange(self.size())
71 rnd = np.random.RandomState(self.seed)
72

125



Appendix C. Essential code C.3. Model training and feature importance

73 if self.shuffle:
74 rnd.shuffle(index)
75 for b in range(self.steps_per_epoch ()):
76 start = b * self.batch_size
77 idx = index[start :( start + self.batch_size)]
78 yield self._get_data_batch(idx)
79
80 if not self.drop_last:
81 start = self.steps_per_epoch () * self.batch_size
82 idx = index[start :]
83 yield self._get_data_batch(idx)
84
85 # return shapes of data returned by ‘self._iter_data ‘
86 def _get_shapes(self) -> Tuple[tf.TensorShape , Dict[str , tf.TensorShape ]]:
87
88 batch_size = self.batch_size if self.drop_last else None
89 d = input_shape1
90 images = tf.TensorShape ([batch_size , d])
91
92 labels = {k: tf.TensorShape ((batch_size ,))
93 for k in ("label_event", "label_time")}
94 labels["label_riskset"] = tf.TensorShape ((batch_size , batch_size))
95 return images , labels
96
97 # return dtypes of data returned by ‘self._iter_data ‘
98 def _get_dtypes(self) -> Tuple[tf.DType , Dict[str , tf.DType ]]:
99

100 labels = {"label_event": tf.int32 ,
101 "label_time": tf.float32 ,
102 "label_riskset": tf.bool}
103 return tf.float32 , labels
104
105 # create dataset from generator
106 def _make_dataset(self) -> tf.data.Dataset:
107
108 ds = tf.data.Dataset.from_generator(
109 self._iter_data ,
110 self._get_dtypes (),
111 self._get_shapes ()
112 )
113 return ds
114
115 def __call__(self) -> tf.data.Dataset:
116 return self._make_dataset ()
117
118 # normalize risk scores to avoid exp underflowing
119 def safe_normalize(x: tf.Tensor) -> tf.Tensor:
120
121 x_min = tf.reduce_min(x, axis =0)
122 c = tf.zeros_like(x_min)
123 norm = tf.where(x_min < 0, -x_min , c)
124 return x + norm
125
126 # compute logsumexp across ‘axis ‘ for entries where ‘mask ‘ is true
127 def logsumexp_masked(risk_scores: tf.Tensor ,
128 mask: tf.Tensor ,
129 axis: int = 0,
130 keepdims: Optional[bool] = None) -> tf.Tensor:
131
132 risk_scores.shape.assert_same_rank(mask.shape)
133
134 with tf.name_scope("logsumexp_masked"):
135 mask_f = tf.cast(mask , risk_scores.dtype)
136 risk_scores_masked = tf.math.multiply(risk_scores , mask_f)
137 # for numerical stability , substract the maximum value before taking the

exponential
138 amax = tf.reduce_max(risk_scores_masked , axis=axis , keepdims=True)
139 risk_scores_shift = risk_scores_masked - amax
140 exp_masked = tf.math.multiply(tf.exp(risk_scores_shift), mask_f)
141 exp_sum = tf.reduce_sum(exp_masked , axis=axis , keepdims=True)
142 output = amax + tf.math.log(exp_sum)
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143 if not keepdims:
144 output = tf.squeeze(output , axis=axis)
145 return output
146
147 # negative partial log -likelihood of Cox’s proportional hazards model
148 class CoxPHLoss(tf.keras.losses.Loss):
149
150 def __init__(self , ** kwargs):
151 super ().__init__ (** kwargs)
152
153 # compute loss
154 def call(self ,
155 y_true: Sequence[tf.Tensor],
156 y_pred: tf.Tensor) -> tf.Tensor:
157
158 event , riskset = y_true
159 predictions = y_pred
160
161 pred_shape = predictions.shape
162 if pred_shape.ndims != 2:
163 raise ValueError("Rank mismatch: Rank of predictions (received %s)

should "
164 "be 2." % pred_shape.ndims)
165
166 if pred_shape [1] is None:
167 raise ValueError("Last dimension of predictions must be known.")
168
169 if pred_shape [1] != 1:
170 raise ValueError("Dimension mismatch: Last dimension of predictions "
171 "(received %s) must be 1." % pred_shape [1])
172
173 if event.shape.ndims != pred_shape.ndims:
174 raise ValueError("Rank mismatch: Rank of predictions (received %s)

should "
175 "equal rank of event (received %s)" % (
176 pred_shape.ndims , event.shape.ndims))
177
178 if riskset.shape.ndims != 2:
179 raise ValueError("Rank mismatch: Rank of riskset (received %s) should "
180 "be 2." % riskset.shape.ndims)
181
182 event = tf.cast(event , predictions.dtype)
183 predictions = safe_normalize(predictions)
184
185 with tf.name_scope("assertions"):
186 assertions = (
187 tf.debugging.assert_less_equal(event , 1.),
188 tf.debugging.assert_greater_equal(event , 0.),
189 tf.debugging.assert_type(riskset , tf.bool)
190 )
191
192 # move batch dimension to the end so predictions get broadcast row -wise when

multiplying by riskset
193 pred_t = tf.transpose(predictions)
194 # compute log of sum over risk set for each row
195 rr = logsumexp_masked(pred_t , riskset , axis=1, keepdims=True)
196 assert rr.shape.as_list () == predictions.shape.as_list ()
197 losses = tf.math.multiply(event , rr - predictions)
198
199 return losses
200
201 # compute concordance index across one epoch
202 class CindexMetric:
203
204 def reset_states(self) -> None:
205 self._data = {
206 "label_time": [],
207 "label_event": [],
208 "prediction": []
209 }
210
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211 # collect observed time , event indicator and predictions for a batch
212 def update_state(self , y_true: Dict[str , tf.Tensor], y_pred: tf.Tensor) -> None:
213
214 self._data["label_time"]. append(y_true["label_time"]. numpy())
215 self._data["label_event"]. append(y_true["label_event"].numpy ())
216 self._data["prediction"]. append(tf.squeeze(y_pred).numpy ())
217
218 # compute the concordance index across collected values
219 def result(self) -> Dict[str , float]:
220
221 data = {}
222 for k, v in self._data.items ():
223 data[k] = np.concatenate(v)
224
225 results = concordance_index_censored(
226 data["label_event"] == 1,
227 data["label_time"],
228 data["prediction"])
229
230 result_data = {}
231 names = ("cindex", "concordant", "discordant", "tied_risk")
232 for k, v in zip(names , results):
233 result_data[k] = v
234
235 return result_data
236
237 # train and the model similarly to model.fit
238 class TrainAndEvaluateModel:
239
240 def __init__(self , model , model_dir , train_dataset , eval_dataset ,
241 learning_rate , num_epochs):
242 self.num_epochs = num_epochs
243 self.model_dir = model_dir
244 self.model = model
245 self.train_ds = train_dataset
246 self.val_ds = eval_dataset
247 self.optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
248 self.loss_fn = CoxPHLoss ()
249 self.train_loss_metric = tf.keras.metrics.Mean(name="train_loss")
250 self.val_loss_metric = tf.keras.metrics.Mean(name="val_loss")
251 self.val_cindex_metric = CindexMetric ()
252
253 @tf.function
254 def train_one_step(self , x, y_event , y_riskset):
255 y_event = tf.expand_dims(y_event , axis =1)
256 with tf.GradientTape () as tape:
257 logits = self.model(x, training=True)
258
259 train_loss = self.loss_fn(y_true =[y_event , y_riskset], y_pred=logits)
260
261 with tf.name_scope("gradients"):
262 grads = tape.gradient(train_loss , self.model.trainable_weights)
263 self.optimizer.apply_gradients(zip(grads , self.model.trainable_weights))
264 return train_loss , logits
265
266 def train_and_evaluate(self):
267 ckpt = tf.train.Checkpoint(
268 step=tf.Variable(0, dtype=tf.int64),
269 optimizer=self.optimizer ,
270 model=self.model)
271 ckpt_manager = tf.train.CheckpointManager(
272 ckpt , str(self.model_dir), max_to_keep =2)
273
274 if ckpt_manager.latest_checkpoint:
275 ckpt.restore(ckpt_manager.latest_checkpoint)
276 print(f"Latest checkpoint restored from {ckpt_manager.latest_checkpoint

}.")
277
278 train_summary_writer = summary.create_file_writer(
279 str(self.model_dir / "train"))
280 val_summary_writer = summary.create_file_writer(
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281 str(self.model_dir / "valid"))
282
283 patience = 10
284 wait = 0
285 best = 0
286
287 for epoch in range(self.num_epochs):
288 with train_summary_writer.as_default ():
289 self.train_one_epoch(ckpt.step)
290
291 # run a validation loop at the end of each epoch.
292 with val_summary_writer.as_default ():
293 curr_c_index=self.evaluate(ckpt.step)
294
295 # early stopping strategy
296 wait += 1
297 if curr_c_index > best:
298 best = curr_c_index
299 wait = 0
300 if wait >= patience:
301 break
302
303 save_path = ckpt_manager.save()
304 print(f"Saved checkpoint for step {ckpt.step.numpy()}: {save_path}")
305
306 def train_one_epoch(self , step_counter):
307 for x, y in self.train_ds:
308 train_loss , logits = self.train_one_step(
309 x, y["label_event"], y["label_riskset"])
310
311 step = int(step_counter)
312 if step == 0:
313 func = self.train_one_step.get_concrete_function(
314 x, y["label_event"], y["label_riskset"])
315
316 # Update training metric.
317 self.train_loss_metric.update_state(train_loss)
318
319 # Log every 20 batches.
320 if step % 20 == 0:
321 mean_loss = self.train_loss_metric.result ()
322 print(f"step {step}: mean loss = {mean_loss :.4f}")
323 summary.scalar("loss", mean_loss , step=step_counter)
324 self.train_loss_metric.reset_states ()
325
326 step_counter.assign_add (1)
327
328 @tf.function
329 def evaluate_one_step(self , x, y_event , y_riskset):
330 y_event = tf.expand_dims(y_event , axis =1)
331 val_logits = self.model(x, training=False)
332 val_loss = self.loss_fn(y_true =[y_event , y_riskset], y_pred=val_logits)
333 return val_loss , val_logits
334
335 def evaluate(self , step_counter):
336 self.val_cindex_metric.reset_states ()
337
338 for x_val , y_val in self.val_ds:
339 val_loss , val_logits = self.evaluate_one_step(
340 x_val , y_val["label_event"], y_val["label_riskset"])
341 self.val_loss_metric.update_state(val_loss)
342 self.val_cindex_metric.update_state(y_val , val_logits)
343
344 val_loss = self.val_loss_metric.result ()
345 summary.scalar("loss",
346 val_loss ,
347 step=step_counter)
348 self.val_loss_metric.reset_states ()
349
350 val_cindex = self.val_cindex_metric.result ()
351 for key , value in val_cindex.items():
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352 summary.scalar(key , value , step=step_counter)
353
354 print(f"Validation: loss = {val_loss :.4f}, cindex = {val_cindex[’cindex ’]:.4

f}")
355
356 return val_cindex[’cindex ’]

Cross-validation training

1 # set seeds
2 SEED = 10
3 np.random.seed(SEED)
4 tf.random.set_seed(SEED)
5 rn.seed(SEED)
6 os.environ[’PYTHONHASHSEED ’] = ’0’
7 SEED_split =2
8
9 # initialize results

10 accuracy =[] # c-index
11 shaps =[] # global colon lung
12 shapscomplete =[] # local colon lung
13 shaps1 =[] # global controls
14 shapscomplete1 =[] # local controls
15 shaps2 =[] # global breast controls
16 shapscomplete2 =[] # local breast controls
17 shaps3 =[] # global matched controls
18 shapscomplete3 =[] # local matched controls
19
20 # cross -validation
21 for i in range (10):
22 # split data (also the controls for the matched background)
23 x_train , x_test , t_train , t_test , control_train , control_test = train_test_split(

Dataset , Dataset2[’time.to.disease ’], Dataset_controls_breast , test_size = 0.2,
random_state = (i+SEED_split))

24 input_shape = np.shape(x_train)[1]
25
26 # first layer pre -training
27
28 # learning parameters
29 loss=’mean_absolute_error ’
30 optimizer = tf.keras.optimizers.SGD(learning_rate =0.1, momentum =0.9, nesterov=

False , name="SGD")
31
32 # architecture
33 inputs = Input(shape=( input_shape ,))
34 latent = Dense(64, activation=’sigmoid ’)(inputs)
35 latent = keras.layers.BatchNormalization ()(latent)
36 outputs = Dense(input_shape)(latent)
37 autoencoder1 = Model(inputs , outputs)
38 autoencoder1.summary ()
39 autoencoder1.compile(optimizer=optimizer , loss=loss)
40
41 # early stopping and learning rate decay
42 callbacks =[]
43 es_callback = keras.callbacks.EarlyStopping(monitor=’val_loss ’, patience =10,

restore_best_weights=True)
44 callbacks.append(es_callback)
45 LR_adapter_callback = keras.callbacks.ReduceLROnPlateau(monitor=’val_loss ’, factor

=0.5, patience =5 , verbose=1, mode=’auto’, min_delta =0.0001 , cooldown =0)
46 callbacks.append(LR_adapter_callback)
47
48 # training
49 autoencoder1.fit(x_train , x_train , epochs =1000, batch_size =32, shuffle=True ,
50 callbacks=callbacks , validation_data =(x_test , x_test))
51
52 # second layer pre -training
53
54 # learning parameters
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55 loss=’mean_absolute_error ’
56 optimizer = tf.keras.optimizers.SGD(learning_rate =0.1, momentum =0.9, nesterov=

False , name="SGD")
57
58 # architecture
59 inputs = Input(shape=( input_shape ,))
60 enc_intermediate = Dense(64, activation=’sigmoid ’)(inputs)
61 enc_intermediate = keras.layers.BatchNormalization ()(enc_intermediate)
62 latent = Dense(32, activation=’sigmoid ’)(enc_intermediate)
63 latent = keras.layers.BatchNormalization ()(latent)
64 dec_intermediate = Dense(64, activation=’sigmoid ’)(latent)
65 dec_intermediate = keras.layers.BatchNormalization ()(dec_intermediate)
66 outputs = Dense(input_shape)(dec_intermediate)
67 autoencoder2 = Model(inputs , outputs)
68
69 # fix weights to the found ones
70 autoencoder2.layers [1]. set_weights(autoencoder1.layers [1]. get_weights ())
71 autoencoder2.layers [2]. set_weights(autoencoder1.layers [2]. get_weights ())
72 autoencoder2.layers [7]. set_weights(autoencoder1.layers [3]. get_weights ())
73 autoencoder2.summary ()
74 autoencoder2.compile(optimizer=optimizer , loss=loss)
75
76 # early stopping and learning rate decay
77 callbacks =[]
78 es_callback = keras.callbacks.EarlyStopping(monitor=’val_loss ’, patience =10,

restore_best_weights=True)
79 callbacks.append(es_callback)
80 LR_adapter_callback = keras.callbacks.ReduceLROnPlateau(monitor=’val_loss ’, factor

=0.5, patience =5 , verbose=1, mode=’auto’, min_delta =0.0001 , cooldown =0)
81 callbacks.append(LR_adapter_callback)
82
83 # training
84 autoencoder2.fit(x_train , x_train , epochs =1000, batch_size =32, shuffle=True ,
85 callbacks=callbacks , validation_data =(x_test , x_test))
86
87 # third layer pre -training
88
89 # learning parameters
90 loss=’mean_absolute_error ’
91 optimizer = tf.keras.optimizers.SGD(learning_rate =0.1, momentum =0.9, nesterov=

False , name="SGD")
92
93 # architecture
94 inputs = Input(shape=( input_shape ,))
95 enc_intermediate = Dense(64, activation=’sigmoid ’)(inputs)
96 enc_intermediate = keras.layers.BatchNormalization ()(enc_intermediate)
97 enc_intermediate = Dense(32, activation=’sigmoid ’)(enc_intermediate)
98 enc_intermediate = keras.layers.BatchNormalization ()(enc_intermediate)
99 latent = Dense(16, activation=’sigmoid ’)(enc_intermediate)

100 latent = keras.layers.BatchNormalization ()(latent)
101 encoder = Model(inputs , latent)
102 dec_intermediate = Dense(32, activation=’sigmoid ’)(latent)
103 dec_intermediate = keras.layers.BatchNormalization ()(dec_intermediate)
104 dec_intermediate = Dense(64, activation=’sigmoid ’)(dec_intermediate)
105 dec_intermediate = keras.layers.BatchNormalization ()(dec_intermediate)
106 outputs = Dense(input_shape)(dec_intermediate)
107 autoencoder = Model(inputs , outputs)
108
109 # fix weights to the found ones
110 autoencoder.layers [1]. set_weights(autoencoder2.layers [1]. get_weights ())
111 autoencoder.layers [2]. set_weights(autoencoder2.layers [2]. get_weights ())
112 autoencoder.layers [3]. set_weights(autoencoder2.layers [3]. get_weights ())
113 autoencoder.layers [4]. set_weights(autoencoder2.layers [4]. get_weights ())
114 autoencoder.layers [9]. set_weights(autoencoder2.layers [5]. get_weights ())
115 autoencoder.layers [10]. set_weights(autoencoder2.layers [6]. get_weights ())
116 autoencoder.layers [11]. set_weights(autoencoder2.layers [7]. get_weights ())
117 autoencoder.summary ()
118 autoencoder.compile(optimizer=optimizer , loss=loss)
119
120 # early stopping and learning rate decay
121 callbacks =[]
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122 es_callback = keras.callbacks.EarlyStopping(monitor=’val_loss ’, patience =10,
restore_best_weights=True)

123 callbacks.append(es_callback)
124 LR_adapter_callback = keras.callbacks.ReduceLROnPlateau(monitor=’val_loss ’, factor

=0.5, patience =5 , verbose=1, mode=’auto’, min_delta =0.0001 , cooldown =0)
125 callbacks.append(LR_adapter_callback)
126
127 # training
128 autoencoder.fit(x_train , x_train , epochs =1000 , batch_size =32, shuffle=True ,
129 callbacks=callbacks , validation_data =(x_test , x_test))
130
131 # save the latent representation pre -training
132 latent_representation=encoder.predict(Dataset)
133 latent_data=pd.DataFrame(latent_representation)
134
135 autoencoder.save(os.path.join(’Clustering_Breast_pretraining_model ’+str (128)+str(i

)))
136 np.save(os.path.join(’Clustering_Breast_pretraining_latent ’+str (128)+str(i)),

latent_data)
137
138
139 # survival model
140 encoder_copy= keras.models.clone_model(encoder)
141 encoder_copy.set_weights(encoder.get_weights ())
142
143 # fine -tune all layers
144 finetuning = True
145 if finetuning:
146 freeze_until = 0 # layer from which we want to fine -tune
147 for layer in encoder_copy.layers [: freeze_until ]:
148 layer.trainable = False
149 else:
150 encoder_copy.trainable = False
151
152 # architecture
153 model = keras.Sequential ()
154 model.add(encoder_copy)
155 model.add(keras.layers.Dropout (0.1))
156 model.add(keras.layers.BatchNormalization ())
157 model.add(Dense (1))
158
159 # data
160 time= np.concatenate ((t_train , t_test))
161 event = np.repeat(1,len(time))
162 time_train = time[:len(t_train)]
163 event_train = event[:len(t_train)]
164 time_test = time[len(t_train):]
165 event_test = event[len(t_train):]
166
167 # training
168 train_fn = InputFunction(x_train , time_train , event_train , drop_last=True , shuffle

=True)
169 eval_fn = InputFunction(x_test , time_test , event_test)
170
171 trainer = TrainAndEvaluateModel(model=model , model_dir=Path("ckpts_128_"+str(i)),

train_dataset=train_fn (), eval_dataset=eval_fn (), learning_rate =0.0001 ,
num_epochs =100))

172 trainer.train_and_evaluate ()
173
174 # save the latent representation post -training
175 new_model = Model(inputs=model.input ,outputs=model.layers [1]. input)
176 latent_representation=new_model.predict(Dataset)
177 latent_data=pd.DataFrame(latent_representation)
178
179 model.save(os.path.join(’Clustering_Breast_posttraining_model ’+str (128)+str(i)))
180 np.save(os.path.join(’Clustering_Breast_posttraining_latent ’+str (128)+str(i)),

latent_data)
181
182 # prediction performances
183 accuracy.append(c_statistic_harrell(model.predict(x_test), t_test))
184
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185 # explanations with colon and lung cases and controls
186 explainer = shap.KernelExplainer(model , shap.kmeans(

Dataset_cases_colonlung_controls , 50))
187 shap_values = explainer.shap_values(x_test)
188
189 shaps.append(np.mean(np.abs(shap_values [0]), axis = 0))
190 shapscomplete.append(shap_values [0])
191
192 # explanations with controls
193 explainer1 = shap.KernelExplainer(model , shap.kmeans(Dataset_controls_female , 50))
194 shap_values1 = explainer1.shap_values(x_test)
195
196 shaps1.append(np.mean(np.abs(shap_values1 [0]), axis = 0))
197 shapscomplete1.append(shap_values1 [0])
198
199 # explanations with breast controls
200 explainer2 = shap.KernelExplainer(model , shap.kmeans(Dataset_controls_breast , 50))
201 shap_values2 = explainer2.shap_values(x_test)
202
203 shaps2.append(np.mean(np.abs(shap_values2 [0]), axis = 0))
204 shapscomplete2.append(shap_values2 [0])
205
206 # explanations with matched controls
207 explainer3 = shap.KernelExplainer(model , shap.kmeans(control_test , 50))
208 shap_values3 = explainer3.shap_values(x_test)
209
210 shaps3.append(np.mean(np.abs(shap_values3 [0]), axis = 0))
211 shapscomplete3.append(shap_values3 [0])

Performances

1 # from now on we concentrate only on the breast controls background dataset using "
shaps2" as global SHAP values

2
3 # compute confidence interval for c-index
4 ci=[np.mean(accuracy)-np.std(accuracy)*1.96/ np.sqrt (10), np.mean(accuracy), np.mean(

accuracy)+np.std(accuracy)*1.96/ np.sqrt (10)]
5
6 # calculate the mean SHAPs across models
7 mean_shaps =[]
8 for i in range (128):
9 cur =[]

10 for j in range (10):
11 cur.append(shaps2[j][i])
12 mean_shaps.append(np.mean(cur))
13
14 # order the features according to the super -ranking
15 mean_shaps1=np.array(mean_shaps)
16 I = np.argsort(-mean_shaps1)
17 I=I.astype(’str’)
18 z = -np.sort(-mean_shaps1)
19
20 # function to compute the weighted Kendall -Tau distance
21 def normalised_kendall_tau_distance(values1 , values2):
22 n = len(values1)
23 assert len(values2) == n, "Both lists have to be of equal length"
24 i, j = np.meshgrid(np.arange(n), np.arange(n))
25 a = np.argsort(values1)
26 b = np.argsort(values2)
27 ndisordered = (np.logical_or(np.logical_and(a[i] < a[j], b[i] > b[j]), np.

logical_and(a[i] > a[j], b[i] < b[j]))/(i+1)/(j+1)).sum()
28 return ndisordered / (n * (n - 1))
29
30 # cycle to compute the KT -stability of the set of rankings
31 rank_shaps=np.empty (10*9//2)
32 p=0
33 for j in range (10):
34 for k in range((j+1) ,10):
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35 cur=np.empty (10)
36 cur1=np.empty (10)
37 l=0
38 for i in I[:10]:
39 cur[l]= shaps2[j][i.astype(int)]
40 cur1[l]= shaps2[k][i.astype(int)]
41 l=l+1
42 dist=normalised_kendall_tau_distance(cur , cur1)
43 rank_shaps[p]=dist
44 p=p+1
45
46 # confidence interval for KT-stability
47 ci=[(1-np.mean(rank_shaps)*10)-np.std(rank_shaps)*10*1.96/ np.sqrt (10*9//2) , (1-np.

mean(rank_shaps)*10), (1-np.mean(rank_shaps)*10)+np.std(rank_shaps)*10*1.96/ np.
sqrt (10*9//2)]

Visualization

1 # barplot of the importance
2 fig = plt.figure(figsize =(12 ,8))
3 ax = fig.add_axes ([0,0,1,1])
4 ax.bar(I[:10],z[:10])
5 plt.xlabel("Clustered Features")
6 plt.ylabel("Feature Importance")
7 plt.show()
8
9 # forceplot of the local explanations

10 shap.initjs ()
11 shap_values_loc = explainer2.shap_values(x_test [0,:])
12 shap.force_plot(explainer2.expected_value , shap_values_loc [0], x_test [0,:])
13
14 # load the latent data pre -training
15 latent_data1=np.load(os.path.join(’Clustering_Breast_pretraining_latent ’+str (128)+

str (4)+’.npy’), allow_pickle=True)
16
17 # apply PCA
18 latent_data=pd.DataFrame(latent_data1)
19 latent_data[’time.binned ’]=pd.cut(Dataset2.reset_index ()[’time.to.disease ’], bins

=(1 ,3.5 ,7 ,10.5 ,16))
20 PCA_Data = StandardScaler ().fit_transform(latent_data.drop([’time.binned ’], axis =1))
21 pca = PCA(n_components =2)
22 new_data = pca.fit_transform(PCA_Data)
23 pca_data = pd.DataFrame(data = new_data , columns = [’principal component 1’, ’

principal component 2’])
24 pca_data[’time.binned ’] = np.array(latent_data [[’time.binned ’]])
25
26 # plot PCA divided by time binned
27 plt.figure(figsize =(16 ,10))
28 sns.scatterplot(
29 x=’principal component 1’, y=’principal component 2’,
30 hue="time.binned",
31 palette=sns.color_palette("hls", 4),
32 data=pca_iris_complete ,
33 legend="full",
34 alpha =1)
35
36 # load the latent data post -training
37 latent_data1=np.load(os.path.join(’Clustering_Breast_posttraining_latent ’+str (128)+

str (4)+’.npy’), allow_pickle=True)
38
39 # apply PCA
40 latent_data=pd.DataFrame(latent_data1)
41 latent_data[’time.binned ’]=pd.cut(Dataset2.reset_index ()[’time.to.disease ’], bins

=(1 ,3.5 ,7 ,10.5 ,16))
42 PCA_Data = StandardScaler ().fit_transform(latent_data.drop([’time.binned ’], axis =1))
43 pca = PCA(n_components =2)
44 new_data = pca.fit_transform(PCA_Data)
45 pca_data = pd.DataFrame(data = new_data , columns = [’principal component 1’, ’

principal component 2’])
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46 pca_data[’time.binned ’] = np.array(latent_data [[’time.binned ’]])
47
48 # plot PCA divided by time binned
49 plt.figure(figsize =(16 ,10))
50 sns.scatterplot(
51 x=’principal component 1’, y=’principal component 2’,
52 hue="time.binned",
53 palette=sns.color_palette("hls", 4),
54 data=pca_iris_complete ,
55 legend="full",
56 alpha =1)
57
58 # plot boxplot of the best feature divided by time binned
59 plt.figure(figsize =(12 ,8))
60 sns.boxplot(y=Dataset [:,120],x=pd.cut(Dataset2[’time.to.disease ’], bins

=(1 ,3.5 ,7 ,10.5 ,16))).set(xlabel=’Time to Disease ’, ylabel=’Feature 120’)

Cox model

1 # set the input dimensions , to change the model is enough to change this
2 n_clusters =128
3
4 # set seeds
5 SEED = 10
6 np.random.seed(SEED)
7 tf.random.set_seed(SEED)
8 rn.seed(SEED)
9 os.environ[’PYTHONHASHSEED ’] = ’0’

10
11 accuracy =[] # c-index
12 zabs =[] # Wald statistic
13
14 # load the feature clustered breast cases
15 Dataset_raw = pd.read_csv(’Clustering_Breast ’+str(n_clusters)+’.csv’, index_col="

Unnamed: 0")
16 Dataset2=Dataset_raw [[’time.to.disease ’, ’study’, ’age.recr’, ’bmi’, ’sex’, ’smoking

’, ’alcohol ’, ’education ’, ’phys.act’, ’dietary.qual’,’class’,’match.id’,’time.
binned ’]]. copy()

17 Dataset=Dataset_raw.copy()
18
19 # add the event column and drop the irrelevant variables
20 Dataset[’event’]= Dataset[’class ’]. astype(int)
21 Dataset.drop([’study’, ’age.recr’, ’bmi’, ’sex’, ’smoking ’, ’alcohol ’, ’education ’,

’phys.act’, ’dietary.qual’,’class’, ’match.id’, ’time.binned ’], axis=1, inplace=
True)

22
23 # set the names of the columns
24 time_column = ’time.to.disease ’
25 event_column = ’event’
26 features = np.setdiff1d(Dataset.columns , [time_column , event_column] ).tolist ()
27
28 # number of samples
29 N = Dataset.shape [0]
30
31 # cross -validation
32 for i in range (10):
33 # split data
34 index_train , index_test = train_test_split(Dataset.index , test_size = 0.2,

random_state = (i+2))
35 data_train = Dataset.loc[index_train ]. reset_index( drop = True )
36 data_test = Dataset.loc[index_test ]. reset_index( drop = True )
37
38 # dividing data according to their meaning
39 X_train , X_test = data_train[features], data_test[features]
40 T_train , T_test = data_train[time_column], data_test[time_column]
41 E_train , E_test = data_train[event_column], data_test[event_column]
42
43 # train the model
44 coxph = CoxPHModel ()

135



Appendix C. Essential code C.3. Model training and feature importance

45 coxph.fit(X_train , T_train , E_train , lr = 1e-1, max_iter = 100, init_method=’zeros
’)

46
47 # show the summary
48 coxph.summary[’zabs’]= coxph.summary[’z’]. astype(float).abs()
49 summary=coxph.summary [[’variables ’,’zabs’,’p_values ’]]
50
51 # reorder data
52 summary[’variables ’]= summary[’variables ’]. astype(’int’)
53 summary=summary.sort_values(by=’variables ’)
54 summary.reset_index(inplace=True)
55
56 # extract the Wald statistics
57 zabs.append(current1[’zabs’])
58
59 # prediction performances
60 c_index = concordance_index(coxph , X_test , T_test , E_test)
61 accuracy.append(c_index)
62
63 # compute confidence interval for c-index
64 ci=[np.mean(accuracy)-np.std(accuracy)*1.96/ np.sqrt (10), np.mean(accuracy), np.mean(

accuracy)+np.std(accuracy)*1.96/ np.sqrt (10)]
65 print(ci)
66
67 # calculate the mean statistics across models
68 mean_zabs =[]
69 for i in range(n_clusters):
70 cur =[]
71 for j in range (10):
72 cur.append(zabs[j][i])
73 mean_zabs.append(np.mean(cur))
74
75 # order the features according to the super -ranking
76 mean_zabs1=np.array(mean_zabs)
77 I = np.argsort(-mean_zabs1)
78 I=I.astype(’str’)
79 z = -np.sort(-mean_zabs1)
80
81 # barplot of the importance
82 fig = plt.figure(figsize =(12 ,8))
83 ax = fig.add_axes ([0,0,1,1])
84 ax.bar(I[:10],z[:10])
85 plt.xlabel("Clustered Features")
86 plt.ylabel("Feature Importance")
87 plt.show()
88
89 # code to compute the KT-stability
90 rank_zabs=np.empty (10*9//2)
91 p=0
92 for j in range (10):
93 for k in range((j+1) ,10):
94 cur=np.empty (10)
95 cur1=np.empty (10)
96 l=0
97 for i in I[:10]:
98 cur[l]=zabs[j][i.astype(int)]
99 cur1[l]=zabs[k][i.astype(int)]

100 l=l+1
101 dist=normalised_kendall_tau_distance(cur , cur1)
102 rank_zabs[p]=dist
103 p=p+1
104
105 # confidence interval for KT-stability
106 ci=[(1-np.mean(rank_shaps)*10)-np.std(rank_shaps)*10*1.96/ np.sqrt (10*9//2) , (1-np.

mean(rank_shaps)*10), (1-np.mean(rank_shaps)*10)+np.std(rank_shaps)*10*1.96/ np.
sqrt (10*9//2)]
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C.4 Post-hoc analysis

The following code in R concerns the post-hoc analysis, described in Section 2.5 and
applied in Section 3.4. We train the Cox model using the retained best feature’s
islands, we compute the Kaplan-Meier statistics and curves and we conduct the
non-parametric tests for the differences in the means of the methylation levels of CpG
islands in cases and controls.

Cox reduced model

1 # packages
2 library(survival)
3 set.seed (1)
4
5 # load the dataset with the islands composing feature 120
6 dataset = read.csv(file = ’best_features_codicifinali_120. csv’)
7
8 # consider only cases
9 dataset = dataset[!is.na(dataset$time.to.disease) ,]

10 dataset[’event’] = rep (2 ,248)
11
12 concordance=numeric (10) # c-indexes
13 for (i in 1:10){ # in cross -validation
14
15 # split train and validation data
16 sample = sample.int(n = nrow(dataset), size = floor (.8*nrow(dataset)), replace = F

)
17 train = dataset[sample , ]
18 test = dataset[-sample , ]
19
20 # fit the Cox model
21 cox = coxph(Surv(time.to.disease , event) ~ ., data = train)
22
23 # compute the validation performances
24 risks = predict(cox , test[,-c(21 ,22)], type=’risk’)
25 concordance[i] = rcorr.cens(-risks , Surv(test[,’time.to.disease ’], test[,’event ’])

)[1]
26 }
27
28 # compute mean and 95% interval
29 mean(concordance)
30 sd(concordance)*1.96/sqrt (10)

Kaplan-Meier estimators

1 # packages
2 library(survival)
3 set.seed (1)
4
5 # load the dataset with the islands composing feature 120
6 dataset = read.csv(file = ’best_features_codicifinali_120. csv’, check.names = FALSE)
7
8 # consider only cases
9 dataset = dataset[!is.na(dataset$time.to.disease) ,]

10 dataset[’event’] = rep (2 ,248)
11 names=colnames(dataset)[1:20] # feature names
12
13 # create the vectors of the results concerning the first classification
14 pvalues=numeric (20) # p-values of log -rank test
15 hazards=numeric (20) # hazard ratio
16 hazardsl=numeric (20) # hazard ratio left 95% bound
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17 hazardsr=numeric (20) # hazard ratio right 95% bound
18 medians_hypo=numeric (20) # survival median of the hypomethylated population
19 medians_hyper=numeric (20) # survival median of the hypermethylated population
20
21 # create the vectors of the results concerning the second classification
22 pvalues1=numeric (20)
23 hazards1=numeric (20)
24 hazardsl1=numeric (20)
25 hazardsr1=numeric (20)
26 medians_hypo1=numeric (20)
27 medians_hyper1=numeric (20)
28
29 for(i in 1:20){ # for every island
30
31 # bin the classes according to the first classification (median)
32 cutted = cut(dataset[,i], breaks=c(0, median(dataset[,i]), 1), labels=c("

Hypomethylated", "Hypermethylated"))
33
34 # fit the model
35 fit_kaplan = survfit(Surv(time.to.disease , event) ~ cutted , data = dataset)
36
37 # compute the hazard ratio confidence interval
38 fit = coxph(Surv(time.to.disease , event) ~ cutted , data = dataset)
39 hazards[i]=exp(coef(fit))
40 hazardsl[i]=exp(confint(fit))[1]
41 hazardsr[i]=exp(confint(fit))[2]
42
43 # plot the Kaplan -Meier curves
44 print(ggsurvplot(fit_kaplan , conf.int = T, risk.table = TRUE ,
45 risk.table.col = "strata", surv.median.line = "hv",
46 ggtheme = theme_bw(), break.time.by=3.5,
47 legend.labs=c("Hypomethylated","Hypermethylated"),
48 legend.title="Methylation class", palette=c("darkblue","cyan3"),
49 title=paste("Kaplan -Meier Curves for", names[i], "by methylation

class for Breast Cancer Diagnosis"),
50 pval=T))
51
52 # compute the p-value of the log -rank test
53 a=survdiff(Surv(time.to.disease , event) ~ cutted , data = dataset)
54 pvalues[i]= pchisq(a$chisq , length(a$n) -1, lower.tail = FALSE)
55
56 # compute the survival medians
57 medians_hypo[i]= unname(summary(fit_kaplan)$table[,’median ’])[1]
58 medians_hyper[i]= unname(summary(fit_kaplan)$table[,’median ’])[2]
59
60
61 # bin the classes according to the second classification (quartiles)
62 cutted1 = cut(dataset[,i], breaks=c(0, quantile(dataset[,i] ,0.25), quantile(

dataset[,i] ,0.75), 1), labels=c("Hypomethylated", "Medium", "Hypermethylated"))
63 dataset1=dataset[cutted1!="Medium",]
64 cutted1=cutted1[cutted1!="Medium"]
65
66 # fit the model
67 fit_kaplan1 = survfit(Surv(time.to.disease , event) ~ cutted1 , data = dataset1)
68
69 # compute the hazard ratio confidence interval
70 fit1 = coxph(Surv(time.to.disease , event) ~ cutted1 , data = dataset1)
71 hazards1[i]=exp(coef(fit1))[2]
72 hazardsl1[i]=exp(confint(fit1))[2,1]
73 hazardsr1[i]=exp(confint(fit1))[2,2]
74
75 # plot the Kaplan -Meier curves
76 print(ggsurvplot(fit_kaplan1 , conf.int = T, risk.table = TRUE ,
77 risk.table.col = "strata", surv.median.line = "hv",
78 ggtheme = theme_bw(), break.time.by=3.5,
79 legend.labs=c("Hypomethylated","Hypermethylated"),
80 legend.title="Methylation class", palette=c("darkblue","cyan3")

,
81 title=paste("Kaplan -Meier Curves for", names[i], "by methylation

class for Breast Cancer Diagnosis"),
82 pval=T))
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83
84 # compute the p-value of the log -rank test
85 a1=survdiff(Surv(time.to.disease , event) ~ cutted1 , data = dataset1)
86 pvalues1[i]= pchisq(a1$chisq , length(a1$n)-1, lower.tail = FALSE)
87
88 # compute the survival medians
89 medians_hypo1[i]= unname(summary(fit_kaplan1)$table[,’median ’])[1]
90 medians_hyper1[i]= unname(summary(fit_kaplan1)$table[,’median ’])[2]
91 }
92
93 # build data for forestplot for the first classification
94 dataplot = structure(list(mean = hazards , lower = hazardsl , upper = hazardsr), .

Names = c("mean", "lower", "upper"), row.names = names , class = "data.frame")
95
96 # create forest plot for first classification
97 ggplot(data=dataplot , aes(y=seq(1, 20, by=1), x=mean , xmin=lower , xmax=upper)) +
98 geom_point() +
99 geom_errorbarh(height =.3) +

100 scale_y_continuous(name = "", breaks =1: nrow(dataplot), labels=names) +
101 scale_x_continuous(limits = c(0, 4)) +
102 labs(title=’Hazard Ratio by Island ’, x=’Hazard Ratio’, y = ’Island ’) +
103 geom_vline(xintercept =1, color=’black’, linetype=’dashed ’, alpha =.5) +
104 theme_minimal ()
105
106 # build data for forestplot for second classification
107 dataplot1 = structure(list(mean = hazards1 , lower = hazardsl1 , upper = hazardsr1),

.Names = c("mean", "lower", "upper"), row.names = names , class = "data.frame")
108
109 # create forest plot for second classification
110 ggplot(data=dataplot1 , aes(y=seq(1, 20, by=1), x=mean , xmin=lower , xmax=upper)) +
111 geom_point() +
112 geom_errorbarh(height =.3) +
113 scale_y_continuous(name = "", breaks =1: nrow(dataplot1), labels=names) +
114 scale_x_continuous(limits = c(0, 6)) +
115 labs(title=’Hazard Ratio by Island ’, x=’Hazard Ratio’, y = ’Island ’) +
116 geom_vline(xintercept =1, color=’black’, linetype=’dashed ’, alpha =.5) +
117 theme_minimal ()

Non-parametric tests

1 # packages
2 library(survival)
3 set.seed (1)
4
5 # best features indexes
6 features=c(120 ,25 ,57 ,69 ,80 ,63 ,75 ,114 ,124 ,97)
7
8 # create the vectors of the results
9 p.value=numeric(length(features)) # p-value of the Wilcoxon test two -sided

10 p.valuel=numeric(length(features)) # p-value of the Wilcoxon test one -sided
11 Ws=numeric(length(features)) # Wilcoxon statistic
12 Ns=numeric(length(features)) # Number of islands in the feature
13
14 index =1
15 for(j in features){ # for each of the top 10 features
16
17 # load the data for the feature
18 dataset = read.csv(file = gsub(" ", "", paste(’best_features_codicifinali_’,as.

character(j),’.csv’)))
19
20 # create event column
21 dataset[’event’]=as.integer(!is.na(dataset$time.to.disease))+1
22
23 # save the numerosity
24 n=ncol(dataset) -2
25 Ns[index]=n
26
27 # split in cases and contols
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28 dataset1=dataset[dataset$event ==1,]
29 dataset2=dataset[dataset$event ==2,]
30
31 # create the two poulations of means
32 means_controls=numeric ((n))
33 for(i in 1:(n)){
34 means_controls[i]=mean(dataset1[,i])
35 }
36 means_cases=numeric ((n))
37 for(i in 1:(n)){
38 means_cases[i]=mean(dataset2[,i])
39 }
40 differences <- means_cases -means_controls
41
42 # compute the test statistic
43 ranks <- rank(abs(differences))
44 W.plus <- sum(ranks[differences > 0])
45 W.minus <- sum(ranks[differences < 0])
46 W <- W.plus - W.minus
47 Ws[index]=W
48
49 # MC computation of the distribution under H0
50 B <- 1000000
51 W.sim <- numeric(B)
52 for (k in 1:B){
53 ranks.temp <- sample (1:n)
54 signs.temp <- 2*rbinom(n, 1, 0.5) - 1
55 W.temp <- sum(signs.temp*ranks.temp)
56 W.sim[k] <- W.temp
57 }
58
59 # Plot the histogram
60 hist(W.sim , breaks = 15, xlim=c(-n*(n+1)/2, n*(n+1)/2), xlab=’Test statistic ’,

main=paste(’Distribution of test statistic under H0 for feature ’,as.character(j)
))

61 abline(v = W, col=’red’)
62 abline(v = 0, lwd=3)
63
64 # two -sided test
65 p.value[index] <- 2 * sum(W.sim >= abs(W))/B
66
67 # left -sided test
68 p.valuel[index] <- sum(W.sim >= W)/B
69
70 index=index+1
71 }
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