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1. Introduction
The ever-increasing number of space debris may
put at risk the accessibility of space in the fu-
ture. The recent development of large constel-
lations means that, even with the proper miti-
gation strategies, the number of unwanted ob-
jects orbiting Earth will rapidly increase. To
revert the trend, missions such as Active Debris
Removal (ADR) and On-Orbit Servicing (OOS)
are required. They strive to reduce space de-
bris by adopting different strategies: ADR plans
to move large, mostly intact, satellites to orbits
with a fast natural decay, and OOS aims to in-
crease the operational life of existing satellites.
Within the aforementioned framework, the
ESA’s e.Deorbit mission was conceptualized.
The e.Deorbit mission aims to develop a multi-
purpose vehicle capable of performing both OOS
and ADR missions, since the two mission types
have numerous requirements and tasks in com-
mon.
One critical phase that OOS and ADR have in
common is the post-capture phase. This sce-
nario has seen less analyses than other phases,
especially when the flexibility effects are con-
sidered. In most researches, like the one pro-
posed by Raina et al. [4], the manipulator is

the only component modelled including flexibil-
ity effects. Neglecting the effects of large flexible
appendices could decrement the performance of
attitude and parameter estimation algorithms.
The work presented by Meng et al. [3] is one
of the most comprehensive studies on the effects
of flexibility for the control stability in the post-
capture phase.
This work aims to further increase the knowl-
edge of the effects of flexible space structures in
the post-capture phase of an ADR or OOS mis-
sion. The main focus is on the attitude and mass
parameter estimation process through the use of
Kalman filtering techniques. In particular, the
Extended Kalman Filter (EKF) and the Multi-
plicative Extended Kalman Filter (MEKF) will
be considered.
Another contribution of this study is the exten-
sive usage of the Functional Mock-up Interface
(FMI) [1] for the estimation process.

2. Model implementation
The model includes a chaser linked to the ESA’s
derelict satellite (Envisat), through a seven
degrees-of-freedom (DoFs) manipulator. Both
satellites have flexible solar panels. In order to
model the flexibility effects, the solar panel is
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discretized in a finite number of rigid sections
connected through joints with a spring-damper
element. The 7 DoF manipulator has only joint
flexibility.
The first methodology considered to implement
the system’s model was the Euler-Lagrange for-
malism. Although such an approach would give
the smallest number of equations to describe the
system dynamics, the use of this method was
found to be inefficient. The reason stands with
the necessity to use symbolic manipulation in de-
riving the non-linear system of equations. The
by-hand approach was discarded a-priori since
the involved equations are cumbersome to de-
rive and the method would be hardly scalable.
The symbolic manipulation process slows down
considerably when the system gets increasingly
complex. In the initial modeling process, it was
seen that the code was unable to handle a sys-
tem with only a solar panel discretized in 3 rigid
elements and with a 7 DoFs manipulator.
As an alternative, the acausal Modelica pro-
gramming language was chosen. It allows to
model a complex rigid bodies system using con-
nections that do not infer any assignments but
rather a relationship between variables. The
model was implemented inside the Dymola envi-
ronment, a third-party program using the Mod-
elica language. The modeled system comprises
the Envisat satellite, a 7 DoFs manipulator, and
the chaser satellite. The overall system config-
uration can be visualized in figure 1, where En-
visat is reported in blue, the manipulator in or-
ange, and the chaser satellite is shown in green.

Figure 1: 3D Model visualization

3. Model validation
Since the solar panels are modeled with a
lumped parameter approach, a comparison with
the results of a FEM is performed to ensure the
model’s validity.
The validation procedure first step consists in

linearizing the solar panel equations of mo-
tion. The required equations are derived us-
ing Newton-Euler formalism. The Denavit-
Hartenberg parameters are then used in formu-
lating the solar panel kinematics since they al-
low for the derivation of the equations using a
recursive approach. The kinetic energy and the
potential energy relative to each link of the solar
panel are reported in equation (1).
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Where q is the generalized joint variables vec-
tor. The Euler-Lagrange formalism is applied to
equations (1) to obtain the non-linear dynamic
equation governing the system’s motion. Then,
through the use of symbolic manipulation, the
system of equations is reduced to a first-order
system, which is then linearized in the equilib-
rium point described by q̇ = 0n×1 and q = 0n×1.

ẋ = f(x) x = [q̇, q]T

A =
∂f

∂x
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x=x0

(2)

Matrix A represents the overall linearized sys-
tem dynamics from which the eigenvalues and
eigenvectors are extracted.
A FEM model is used for the comparison pro-
cess. Both solar panels are discretized with
20×60 elements. The property of the elements
is defined using the PCOMP, where the stacking
sequence is defined by providing the thickness,
orientation, and material id of each ply compos-
ing the stack. The layup is an aluminum honey-
comb core sandwich with uni-directional carbon
fiber layers for the upper and lower faces. The
presence of the solar cell is modeled by increas-
ing the density of the upper ply of the lami-
nate. The solar panel model is constrained on
one short edge by fixing all 6 DoFs of the nodes.
The second step in the validation procedure con-
sists of deriving the equivalent spring stiffness
values. The linearized dynamics show that the
torsional behavior is decoupled from the flexu-
ral one. Therefore the spring constants’ deriva-
tion is carried out separately. Only one spring
connected to the base of the solar panel is used
to introduce the torsional dynamic. The solar
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panel is modeled with five rigid elements due
to limitations introduced by the symbolic ma-
nipulation process. An optimization procedure
is carried out to recover the stiffnesses of the
lumped spring of the simplified model. The sys-
tem identification procedure reads:

min
k∈Rn

eTWe s.t. Ŷ = g(k) (3)

Where e = (ȳ − ŷ)T represents the linear fre-
quencies and shape modes error between the lin-
earized model and the FEM. The cost criterion
in eq. (3) is computed as the weighted square
norm of the error vector, where the weight ma-
trix is represented by the matrix W(w). The
value of w is used to modify the relative weights
of the frequencies with respect to the modal
shapes. The approximation is performed by a
Gauss-Newton method. Three different opti-
mizations are carried out for Envisat’s solar pan-
els and the chaser. The runs differ by the weights
used.
After this step, the true validation process can
take place. The validation consists of the tran-
sient load analysis performed separately on Dy-
mola and with the FEM (using Nastran). A sine
weep load is applied to the tip of the solar panel.
The test is run for 100 [s] with 800 samples. The
analysis is carried out on the tip displacement
measurements, performed three times with dif-
ferent weight values. As the performance index,
the position of the first resonance peak has been
chosen, and the results are reported in table 1.

Dymola FEM
weight 1 10 0.1 −

Peak [Hz] 0.0499 0.0499 0.0798 0.0799

Table 1: Resonance frequencies

The results show that the closest match with the
FEM data is the one associated with w = 0.1.
Thus the errors due to any frequency mismatch
are underweighted. The obtained spring stiff-
nesses are reported in table 2.

Stiffness [Nm/rad]

k1 k2 k3 k4 k5
8051 47568 15648 6884 8565

Table 2: Stiffnesses obtained from optimization
with w = 0.1

On the other hand, the torsional spring is de-
rived only by matching the first torsional fre-
quency, and the resulting stiffness is ktor =
621.6 [Nm/rad].
Figure 2 shows the single-sided amplitude spec-
trum of the tip displacements relative to the En-
visat solar panel with w = 0.1. As seen, the
model implemented inside Dymola closely fol-
lows the behavior obtained from the FEM anal-
ysis. Femap has been used as pre and post-
processing software.
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Figure 2: Transient analysis validation

The chaser solar panel validation followed the
same procedure described above for the Envisat
solar array. The only differences are the load
magnitude, which is set to 0.01 [N ] instead of 1
[N ], and the thickness of the honeycomb core,
which is decremented from 8 to 2 [mm]. The
best match was obtained with the weights set
to 0.1, and the derived spring stiffnesses are re-
ported in table 3.

Stiffness [Nm/rad]

k1 k2 k3 k4 k5 ktor
53.6 99.7 63.1 36.4 15.2 9.93

Table 3: Chaser stiffnesses with w = 0.1

The analysis performed on the chaser’s solar
panel gave worse results when compared to the
previous one. This could be explained by the
non-linearity of the system, which has larger ef-
fects in the smaller panel.

4. Filter implementation
Within the aim of this thesis, three different fil-
ters have been used. Regarding attitude esti-
mation, the EKF and MEKF have been imple-
mented. To perform the estimate of the mass
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of Envisat, a modified EKF is derived. To rep-
resent the attitude of the chaser satellite, the
quaternion formulation is used.
One contribution of this work is the implementa-
tion of the non-linear filtering techniques for at-
titude and parameter estimation in a Functional
Mock-up Unit (FMU). The FMU is a file format
specified by the FMI standard [1] intending to
simplify the interchange of dynamic simulation
models. There are two types of FMUs: model
exchange and co-simulation. In this work, the
second type of FMU was used since it includes
both the dynamic model of the system and the
numerical solver.
The filters are implemented directly inside the
FMU code. The code has a predefined struc-
ture that can be divided into two distinct parts
by the call to the function fmiDoStep [2]. This
function instructs the FMU to integrate the sys-
tem to the next time instant. With this knowl-
edge, the proposed Kalman filters, characterized
by a predictor and corrector step, are imple-
mented in the FMU. The predictor step is in-
serted before the DoStep function, while the cor-
rector step is written after. The FMU-provided
functionalities are used in the filter implementa-
tion process. Before the actual implementation,
the labels that refer to the quantities of interest
must be identified. These labels are contained in
the ModelDescription file along with the FMU.
The above quantity labels are required for all
FMU activities.
In the predictor step, the computa-
tion of the state and measurements Ja-
cobian can be done with the function
fmiGetDirectionalDerivatives, which
provides the linearized Jacobian. Just before
the call to DoStep, the corrected state computed
at the previous time step is applied to the FMU
using fmiSetReal.
Right after the DoStep code, the function
fmiGetReal is used to extract from the FMU
the predicted state and measurements. Finally,
the filter’s corrector step is inserted without sig-
nificant modifications.
Next, the EKF and the MEKF are implemented
directly without modifying their classical formu-
lation. They differ only by the fact that the
EKF uses the FMU tools for the state and mea-
surements linearized Jacobian, while the MEKF
uses predefined matrices. This difference resides

in the derivation process of the MEKF. This fil-
ter is derived directly from the quaternion kine-
matic equation of a satellite and utilizes a state
transition matrix. Thus, the MEKF utilizes
the FMU-specific tools only when extracting the
predicted state and measurements.
The third filter, used for the parameter estima-
tion, is obtained by modifying the EKF. The
mass is defined as strictly positive; thus, it is
necessary to impose constraints on the range
in which the parameter is allowed to vary. A
Sigmoid function allows to apply the required
constraints without major modifications to the
Kalman filtering structure. The direct and in-
verse Sigmoid function is used, as shown in equa-
tion (4), to create a map between the state vari-
ables x to the inertial parameter θ.

θ = Sig(x) =
a− b

1− e−cx
= b

x = Sig−1(θ) =
1

c
ln

(
b− θ

a− θ

) (4)

The chaser acceleration and the manipulator
joint angular acceleration are used as inputs for
the mass estimation procedure. They are chosen
because, as described by the ModelDescription
file, they do depend on the inertial parameter of
interest.

5. Overall model structure
The EKF and MEKF filters are used in conjunc-
tion with the parameter estimation filter. The
dual estimation scheme is used where the pa-
rameter estimation filter works in parallel to the
attitude filter. The dual estimate is advanta-
geous because it is possible to write and test
the filters separately before assessing the cou-
pled stability. In addition to that, this approach
allows for greater flexibility in the attitude filter
implementation. For example, it is possible to
use a different filter structure to the predictor-
corrector one. The outputs of the attitude filters
are used as the inputs of the parameter estima-
tion filter. The estimated mass is then routed
back to the attitude estimation filter. The dual
estimate scheme is then inserted in the Dymola
environment with the system model, as shown
in figure 3.
A star tracker and a gyroscope are used and
modelled as sensors.
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FMU EKF/MEKF

FMU Par. Est.

System Model

Thrusters

Star Tracker

Gyroscope

Figure 3: Overall system structure

6. Results
The attitude filter is changed between the EKF
and MEKF. The system model inside the FMU
is changed from a flexible model, the same one in
the Dymola environment, to a model with all the
springs constants set to k = 1e + 7 [Nm/rad],
mimicking a rigid model. Thus, for each com-
bination, one simulation is done, for a total of
four simulations.
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(a) Attitude estimate
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Figure 4: Fourth quaternion est. EKF

The EKF filter is tuned with R3×3 =
0.012I3×3 Q3×3 = 0.00072I3×3 P0,3×3 =
0.022I3×3. The EKF for parameter estimation
is tuned with the parameter shown in equation
(5).

c = 0.001 a = 9000 [kg] b = 5000 [kg]

Rθ =

[
10−4I3×3 03×7

07×3 10−2I7×7

]
[kg2]

(5)

The variance value assigned to the input noise
added to the parameter decreases from 20.1
to 0.1 within the simulation time. The auto-
covariance is large at the start of the simulation
to obtain a fast convergence of the parameter es-
timate to the real one. Then, at the end of the
simulation the variance will assume a small value
to reduce the oscillation. The results relative to
the EKF with the flexible model are reported in
figure 4. Figure 4a shows the estimation of the
fourth quaternion element. In figure 4b, the rel-
ative error with respect to the true state is com-
pared against the confidence level derived from
the covariance estimate of the filter. As seen
from the results, the EKF filter with the flexi-
ble model can provide a reliable estimate for the
state. In the simulation, without the parameter
estimation filter, the EKF gives a less noisy es-
timate because there is no interaction between
the two FMUs.
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(a) Mass estimate flexible EKF
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(b) Mass estimate rigid EKF

Figure 5: Mass estimate for EKF filters

The mass estimation process is carried out with
an initial error of 100 [kg] on the Envisat mass.
Figure 5 shows the estimation results for the
mass. The EKF with the flexible model con-
verges quickly towards the true value, and, at
the end of the simulation, the estimated mass
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has an error of 11 [kg]. The EKF with the rigid
body cannot estimate the inertial parameter for
two main reasons: it does not use the accel-
erations of the manipulator’s joints since it is
assumed as rigid, and it utilizes an inaccurate
model inside the FMU.
The MEKF results are only reported in figure
6 with the mass parameter estimation and the
fourth quaternion component estimate of the
flexible model. Although the filter used in the
parameter estimation is the same as the previous
analysis, the dual estimation scheme with the
MEKF does not provide a reasonable estimate
for either mass or attitude. The different imple-
mentations of the MEKF can explain this be-
havior. Indeed, as mentioned above, it does not
utilize the FMU tools in the computation of the
Jacobians. The oscillation can also be explained
by the continuous variation in the Envisat esti-
mated mass, destabilizing the MEKF. With the
inaccurate data coming from the MEKF, the pa-
rameter estimation algorithm struggles to reach
convergence in the simulation time.
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Figure 6: Mass and state est. MEKF

The MEKF with the rigid body implementation
performed similarly to the rigid EKF analysis.

7. Conclusions
The first part of this work showed the model im-
plementation procedure with a validation tech-
nique. The validation procedure showed that
the choice of weights in the optimization proce-

dure is fundamental to achieve a good match be-
tween the FEM and the Dymola models. It high-
lights that the Euler-Lagrange approach is not
suited for modeling complex rigid bodies stat-
ing the usefulness of acausal programming lan-
guages. Then, a novel application of the FMI
standard is demonstrated with the implementa-
tion of Kalman filtering techniques for attitude
and constrained parameter estimation inside the
FMU code. At last, the performance of the fil-
ters is evaluated and compared. The simulations
show that the EKF outperforms the MEKF in
the estimation process. This could be explained
by the EKF’s use of FMU specific tools. For
what it concerns the rigid bodies implementa-
tion, it is clear that the simplified model, when
utilized in the dual filtering scheme, does not
provide a reliable estimate for the mass and, sub-
sequently, for the attitude of the chaser satel-
lite. In future developments, it would be ad-
visable to implement the parameter estimation
filter directly inside the attitude EKF, in order
to verify whether the enlargement of the state
could provide any performance improvements.
This procedure cannot be done directly in the
MEKF using the FMU since such filter utilizes
the quaternion error as a stare and not the atti-
tude quaternion as the EKF.
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