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1. Introduction
The sea has always been a source of opportunity,
for everyone. It is simultaneously the habitat
that preserves an immense multitude of plants,
the home to countless fish, and the surface that
has greatly facilitated the development of trade
and human exploration. However, when dis-
cussing opportunities, it does not refer solely to
the positive ones: its vast distances have often
contributed to the emergence and evolution of
various forms of illegal activities as well.
In this context, this thesis aims to investigate
new methods for the classification of human ma-
rine activities, with the goal of creating a model
that serves as an ally in identifying potential il-
legal fishing activities. The approach used was
to test various strategies based on the use of
state-of-the-art deep learning Transformer archi-
tectures (models known for their high perfor-
mance in the field of sequential data, such as
those related to language), comparing different
alternatives and achieving promising results.
To classify the type of naval activity, the trajec-
tory traced by the boat has been studied. In par-
ticular, data from AIS (Automatic Identification
System) have been used to analyze the variation
in the position of the vessel under study over the
temporal range of analysis.

2. Related works
Transformers-based models are now widely
prevalent in the field of Natural Language Pro-
cessing (NLP), and there is a rich available lit-
erature. This kind of architecture was initially
introduced in [7] as a model capable of revolu-
tionizing textual analysis. However, it quickly
proved to be highly versatile and capable of pro-
cessing data in many different forms, such as
images ([1]). This adaptability of Transformer
algorithms has been effectively leveraged in this
thesis.

Figure 1: Trajectories of different vessel types
(left image) and the result of trajectory cluster-
ing (right image), image from [3].

In the past, several attempts have been made
to classify naval activities, using different data
sources and strategies. [3], is an example where
the trajectory itself is not considered as a geo-
metric entity, but rather the focus is placed on
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the spatial arrangement of the vessels (see Fig-
ure 1 ).
Geographical areas have been associated with
the presence of a particular type of vessel. The
classification is done by spatializing the vessel
and incorporating additional information. For
example, if a large-sized vessel (additional infor-
mation required) is located in the area associ-
ated with high tanker traffic (the black region on
the map), then the model classifies it as a tanker.
Although the results are encouraging, this model
requires detailed data such as the tonnage of the
vessel.
By searching for ideas outside of the mar-
itime domain, [2] proposes an innovative method
(based on [4], [5], and [6]) for trajectory classi-
fication that is not based on the sequence of co-
ordinates but on the creation of representative
images, which are then used as input to a CNN
model. The trajectories are spatially discretized,
transforming them into pixels of a 2-dimensional
image (see Figure 2 ).

Figure 2: The scheme of the process used in the
paper image from [2].

The study analyzes trajectories found in a city
and aims to classify them based on the mode of
transportation (such as bicycles, cars, subways,
etc.). This paper can be seen as the missing link
among all the others. So, why not use Vision
Transformers (ViT) to study naval trajectories
in a similar way to what is presented in this pa-
per? This question, along with the points listed
above, serves as the starting point for this study.

3. Research questions
After researching the state of the art, it became
clear that there are no studies focused on the
development of Transformer-based classification
models. The purpose of this thesis is to shed
light on these still poorly explored fields, finding

in particular an answer to the following main
research questions:

What is the effectiveness and potential of
using ViT models for the detection of IUU
activities?

ViT (Vision Transformer) models excel at cap-
turing spatial relationships and long-range de-
pendencies in images. This potential can be har-
nessed for detecting fishing activities, especially
illegal, unreported, and unregulated (IUU) fish-
ing, by analyzing AIS satellite data. ViT mod-
els can learn to recognize patterns, vessel types,
or behaviors associated with IUU activities, en-
hancing monitoring and enforcement efforts.

What are the most effective strategies?

What emerges as the optimal strategy for study-
ing trajectories? Should textual models be em-
ployed, treating trajectories as text sequences,
or should images of the trajectories be utilized
instead? Moreover, what information is ad-
visable to incorporate in the inputs (e.g., the
amount of information to be depicted on the im-
ages)?

Is the pre-training dataset always so im-
portant?

The need for enormous datasets to train the
model often translates to high costs and limited
practical usability. However, the question arises:
How far is it possible to push the versatility of
these models?

4. Data
The primary data source for this thesis is the
AIS (Automatic Identification System), a sys-
tem known for its uniqueness in data exchange
among various entities, each with distinct pur-
poses and modes of communication. AIS data
includes information about a vessel’s position
and direction, transmitted via VHF systems
and interpreted by AIS transponders. Different
classes of AIS instruments exist, such as Class A,
Class B, and Class C, each with varying func-
tionalities and transmission frequencies. The
relevant data for this study revolves around ship
identification, type, position, and transmission
time. This focus ensures that the model relies
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on readily available information, minimizing the
reliance on specific data that may be incomplete
or absent.
AIS data is employed by multiple users, includ-
ing vessels themselves for enhancing situational
awareness, data providers for commercial pur-
poses, and port authorities for managing and
monitoring coastal traffic. However, access to
AIS data via satellite equipment is typically re-
stricted to private data providers due to the high
costs involved. For this thesis, data obtained
from the eastern coast of the United States, a
region known for its dense fishing activity, has
been used.
This area was selected due to its relevance in
fisheries, as compared to other less active mar-
itime zones. The dataset comprises both static
and dynamic information, and it exhibits a slight
imbalance, with approximately 22.9% of the
training data and 18.7% of the testing data re-
lated to fishing activities.
The table below summarises the characteristics
of the data used in this thesis, from the geo-
graphic and temporal perspectives.

Detail Value

Longitude min 34.18621

Longitude max 43.40141

Latitude min -75.94461

Latitude max -65.05574
TRAIN Data
Time Range

from 2019-09-03
to 2019-12-07

TEST Data Time
Range

from 2018-12-31
to 2019-01-17

Table 1: Dataset description.

5. Models & Experiments
This section will provide a description of all the
methodologies used in this thesis. It is divided
into 3 main sections: the pre-processing phase,
where raw AIS data was converted into use-
ful trajectories; the description of the first test
done using a classic Transformer architecture
and studying maritime trajectories as sequences
of characters; the description of the application
of ViT models to classify naval activities.

5.1. Pre-processing
This initial phase is common to both approaches
used for the actual classification. AIS data ap-
pears as long sequences of rows, where each row
represents an AIS signal. It is indeed possible
to represent the initial AIS data as a set of spa-
tially scattered points. Each point is associated
with a signal from a vessel, but the trajectories
and behaviors of individual ships are not clear at
this stage. After removing any items with NaN
values in the features related to position, identi-
fication, and type, the first step was to simplify
the vast amount of data as much as possible.
It is easy to notice how the human eye can
almost instantly identify different trajectories
among the cluster of points. However, it is a
completely different challenge for an algorithm
to achieve the same task. To tackle this, a deci-
sion was made to leverage the study of various
anchorage areas to create a robust method that
autonomously identifies different trajectories.
Vessels within an anchorage area may have vary-
ing degrees of movement, leading to irregular
patterns in the clustered data. Some ships may
remain relatively stationary with slight drift,
while others might experience more significant
shifts due to currents or other factors.
To study this phenomenon, the Minimal Enclos-
ing Circle (MEC) algorithm was chosen as the
primary tool. The Minimum Enclosing Circle
(MEC) algorithm is a geometric algorithm used
to find the smallest circle that encloses a given
set of points in a two-dimensional plane. The al-
gorithm’s basic idea revolves around finding the
center and radius of the circle that encloses the
points while ensuring no point lies outside the
circle. For each point, the following five points
were considered, and the Minimum Enclosing
Circle (MEC) was calculated.

Figure 3: Cluster of points related to an anchor-
ing phase in dark blue.

A threshold of 75 meters was used to determine
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whether that point was related to a navigation
phase or if the ship was anchored at that point.
In other words, if a ship emits a series of AIS
signals close to each other (such that the circle
enclosing five consecutive signals has a radius
smaller than the 75-meter limit), it is assumed
that the ship is anchored and making minimal
movements (see Figure 3 ).
Within the sub-datasets, the points were then
divided between those related to navigation
phases and those related to anchoring. For fur-
ther simplification, consecutive points related to
anchoring were condensed into a single point
whose position was the average of the positions
of the AIS signals where the ship was anchored.
After defining the anchoring points, defining
the trajectories becomes straightforward. The
trajectories are the lines described by all con-
secutive points that lie between two anchoring
points. The algorithm identifies these trajecto-
ries and assigns a unique identifier to each of
them.

5.2. Trajectory as a sentence
As previously mentioned, Transformer archi-
tectures are considered state-of-the-art when it
comes to natural language processing. As the
first methodology to use in identifying fishing
activities, it was decided to apply them in their
"natural habitat" by transforming trajectories
into sentences.
Of course, it is not possible to do this using com-
monly used words, so spatial discretization has
been exploited to describe trajectories not as a
sequence of spatial coordinates but rather as a
sequence of simple numerical characters.

Figure 4: The output is simply the sequence of
cell IDs.

Each trajectory was considered by discretizing
the space it extends over. Each portion of
discretized space was associated with a unique
number. Therefore, the trajectory was described

by a sequence of unique numbers referring to the
sections of space it passes through (see Figure
4 ).
Regarding the model related to trajectory classi-
fication as textual sequences, it can be analyzed
and described by breaking it down into 7 main
blocks.

Figure 5: Sequence classification model main
steps.

In the initial setup section, the code imports
all the necessary libraries, including Keras and
TensorFlow. Then, the definition of the trans-
former block (named "TransformerBlock") is
performed. At this stage, a custom Keras layer is
defined, with the goal of representing the trans-
former architecture. The third step in the code
is the implementation of the "TokenAndPosi-
tionEmbedding" class, which serves as a custom
Keras layer for embedding the input text data
(i.e., the trajectories) as tokens and their corre-
sponding positions. The output of the layer is
the sum of token and position embeddings, ef-
fectively incorporating both the spatial informa-
tion (positions) and semantic information (to-
kens) into the continuous vector representations
of the input text data. In the fourth step, the
dataset is loaded and the fifth stage is where
the model architecture is defined. The input
sequences are passed through the custom To-
kenAndPositionEmbedding prepared in the sec-
ond step. Then, the data is passed through
the TransformerBlock layer. The final output
from the TransformerBlock is averaged across
all time steps using a particular pooling layer
(specifically called "GlobalAveragePooling1D"),
followed by a couple of Dense layers to clas-
sify the text into two classes (positive or neg-
ative sentiment). The two classes are referred
to as fishing or not-fishing maritime activities.
The fifth and sixth points are where the actual
model defined in the previous points is used.
The model is compiled with an optimizer, loss
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function, and evaluation metric. The code pro-
ceeds to train the model on the training data and
evaluate its performance on the validation data.
The training is done for 10 epochs with a batch
size of 32, but further details will be discussed
in the following chapter.

5.3. Trajectory as a picture
The research direction shifted towards this ap-
proach due to the less-than-ideal results ob-
tained in the first methodology. It was hypoth-
esized that leveraging the Transformer’s ability
to capture shape features in trajectory images
could potentially improve the classification per-
formance. In contrast to the first approach, in
this case, the study explored various trajectory
image creation techniques. Another difference
is that a pre-trained version of ViT was here
used (instead of a non-pre-trained Transformer).
The decision to use a pre-trained model offered a
practical and efficient solution to achieve favor-
able results and it was driven by two primary
reasons:

1. The time and resources required to train a
Vision transformer model from scratch were
prohibitive (several times the data required
to train a vanilla transformer).

2. By utilizing a pre-trained model that had
been trained on diverse datasets, poten-
tially dissimilar from the data used in this
particular study, researchers had the oppor-
tunity to assess the adaptability and versa-
tility of these models.

Four different approaches were used to create
images of the trajectories from AIS data. The
first approach was to leverage the spatial dis-
cretization described earlier, which was used to
create textual sequences, for generating images
as well.

Figure 6: First image synthesis approach.

In essence, the groundwork was already in place:

instead of extrapolating a sequence of unique
numbers, the approach involved saving an im-
age depicting the spatial sections through which
the trajectory passed.
After observing a significant improvement in the
results (as discussed in the subsequent chapter),
the decision was made to test additional varia-
tions of trajectory images.

Figure 7: Second image synthesis approach.

The first evolution involved a change in the zoom
perspective. Instead of focusing on the trajec-
tory’s shape, the attention shifted toward the
ship’s geographic position. In the second graph-
ical approach, images were created with a con-
stant scale and geographic center for all trajec-
tories. From this point onward, no spatial dis-
cretization is used. By maintaining a consistent
scale and center across all images, the shape of
the trajectory was no longer emphasized, par-
ticularly for shorter trajectories. However, this
approach provided valuable information about
the geographic location of the trajectory.
The third set of images created and used is, in
fact, the same as described above in the second
point. The trajectories are the same, and the
methodology is identical, with the only differ-
ence being the addition of a map as the back-
ground.

Figure 8: Third image synthesis approach.

The fourth approach represents a further evo-
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lution in terms of the amount of information
included. Multiple indicators have been added
for both the starting and ending points of the
trajectory. Additionally, the trajectory’s color
representation is no longer constant; instead, it
is depicted using a range of tones based on the
normalized velocity of the ship.

Figure 9: Fourth image synthesis approach.

Following a similar process to what was done for
the analysis of the model used for sequence clas-
sification, the model used here has been divided
into steps (see Figure 10 ).
Similarly to the previous approach, the first
step involves initializing the actual model, and
all the required libraries for the model are
loaded. In the second step, the data used for
image classification is loaded. During this stage,
the different datasets created were loaded one
by one to evaluate their performance from a
classification perspective. In the third stage,
the script defines image transformations using
"transforms.Compose" from torchvision library.
The transformations include converting images
to tensors, resizing them to (224, 224) pixels,
and normalizing the pixel values. This step is
required to use the images as input for the trans-
former layers.

Figure 10: Image classification model main
steps.

In the fourth step, the script defines a cus-
tom dataset class named ImageDataset, which

is tailored for the ViT model. It inherits from
torch.utils.data.Dataset and provides methods
to access images and their corresponding labels.
In the fifth step, the code defines a custom Py-
Torch module for the Vision Transformer (ViT)
model. The custom module is called ViT, and
it extends the functionality of the ViTModel
class provided by the Hugging Face’s transform-
ers library. The ViT class combines the Vision
Transformer model with a linear classifier for
multi-class classification tasks. The last steps
are quite similar to the ones referred to in the
sequences analysis. In them, the code loads the
model, loss function (cross-entropy), and opti-
mizer (Adam). Training data is then loaded us-
ing the ImageDataset class and then fed into the
model in batches. The model is trained for a
specified number of epochs (10), and the loss and
accuracy are printed at the end of each epoch.

6. Results
The results of the classification of trajectories as
text sequences are the following:

Metric Value

Accuracy 0.8124

PPV 0.0037

TPR 0.3590

F1 Score 0.0073

Table 2: Metrics from 1st approach.

The results from the image classification strat-
egy (four different images of trajectories) are the
following:

Metric Value

Accuracy 1 0.7440

PPV 1 0.3301

TPR 1 0.3207

F1 Score 1 0.3253

Accuracy 2 0.9520

PPV 2 0.8089

TPR 2 0.9252

F1 Score 2 0.8632

6



Executive summary Damiano Masuino

Accuracy 3 0.9550

PPV 3 0.8200

TPR 3 0.9312

F1 Score 3 0.8721

Accuracy 4 0.9538

PPV 4 0.8679

TPR 4 0.8831

F1 Score 4 0.8755

Table 3: Metrics from 2nd approach.

7. Conclusions
Transformer architectures have demonstrated
remarkable capabilities in natural language pro-
cessing tasks, image recognition, and various
other domains. The researchers hypothesized
that these architectures could be adapted and
fine-tuned for marine activity classification using
Automatic Identification System (AIS) data.

Figure 11: F1 scores comparison.

In the graph above, it is posible to see a com-
parison of F1 scores for different models used.
The first one on the left refers to the classi-
fier model utilizing sequences, while the others
are related to trajectory classifications using the
produced images (with their four corresponding
strategies).
Evaluating the different scores, it is evident
that studying trajectories as images yields sig-
nificantly better results compared to studying
naval routes as sequences. Another clear con-
clusion is that the classification of fixed-scale
and zoomed images (focusing on geographical
dispersion and not just the shape of the trajec-
tory) promises better results than other alter-

natives. The quantity of information contained
in each image does not seem to significantly
impact the performance. The Transformer ar-
chitectures, particularly the Vision Transformer
(ViT), demonstrated versatility. Excellent clas-
sification results were achieved even when start-
ing from pre-trained models on different images.
This highlights the immense potential of an ideal
model trained solely on a massive number of
naval scenarios.
In summary, using images to study trajectories
and leveraging the power of Transformer archi-
tectures, especially ViT, holds great promise for
improving the classification of maritime activi-
ties.

7.1. Further Developments
From a future perspective, several further ad-
vancements can be made in this area.
• A more in-depth study of the type of infor-

mation to include in the images could lead
to new insights. While this study did not
find information that significantly improved
classification, it does not mean that such in-
formation does not exist.

• There is potential for studying how this
model could be used for classifying other
types of maritime activities or diving into
more detailed classifications, such as differ-
ent types of fishing practices.

• Developing a system that integrates real-
time maritime activity on a single dash-
board, similar to the live map available on
some websites, along with indications of ac-
tivities classified as suspicious by the model
(false negatives), would be highly beneficial.
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