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Abstract

As of today, social media occupy a big role in our lives, most people have one or more so-
cial media accounts where they post regularly documenting their lives. This has brought
to our society various improvements in how we connect with people and overall in our
quality of life, but what are the negative consequences? Continuously sharing information
about our life on social media can reveal many sensitive information about ourselves. An
important one is our location. Location inference is the practice of discovering someone’s
location without them disclosing it directly. For these reasons, data from social media
can be used to infer someone’s location, without their consent. There are many ways to
achieve this: by using mentioned location in posts, local words and, more importantly,
activity of a user’s friends on social media. Thanks to those information, it is possible to
infer a user’s location even through social media activity that is not coming directly from
them. The intricate interplay between online social connections and physical geography
has catalyzed the emergence of innovative strategies for predicting user locations. Many
works till today have studied this phenomenon and proposed their methods to infer some-
one’s location through their friends as well as other sources of information. Because of
this, a work that organizes them in order to give a complete overview about this subject
is needed. That is the reason of this survey: to examine a collection of methodologies,
algorithms, and models that exploit interconnected relationships to infer someone’s loca-
tion leveraging social media data. While the scope of this survey is to give a complete
overview about the state of the art regarding location inference through friendships, in
order to give a more complete and broader description of the subject this survey also
covers the various aspects related to location data and location privacy. To achieve this,
it also analyzes the topic of location privacy protection mechanisms, location inference in
general, and friendship inference using location data from social media.

Keywords: location inference, location data in social media, location privacy, user’s
friendships
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Abstract in lingua italiana

Al giorno d’oggi, i social media svolgono un grande ruolo nelle nostre vite. La maggior
parte delle persone possiede uno o più account sui social media, dove condivide regolar-
mente fatti riguardanti la propria vita. Questo ha introdotto nella nostra società numerosi
miglioramenti per la qualità della vita e il modo in cui restiamo in contatto con altre per-
sone. Ma quali sono le conseguenze negative? Condividere continuamente informazioni
relative alla vita privata può rivelare molte informazioni sensibili. Una di esse é la po-
sizione. Inferire la posizione di qualcuno consiste nello scoprire la sua posizione senza che
questi la riveli intenzionalmente. Siccome i social media ricoprono un ruolo significativo
nelle nostre vite, come detto, e siccome rilasciamo una quantità rilevante di informazioni
ogni giorno su queste piattaforme, esse sono un’ottima fonte di informazioni per inferire
la posizione di qualcuno. Ci sono molti modi di scoprire la posizione di un utente: sfrut-
tando i posti menzionati, le parole tipiche di alcune regioni geografiche e, soprattutto,
sfruttando le attività degli amici sui medesimi social. Grazie a queste informazioni, é
appunto possibile inferire la posizione di un utente grazie ad attività sui social non prove-
nienti direttamente da lui. L’intricato intreccio fra relazioni sociali sui social media e
le posizioni geografiche ha contribuito allo sviluppo di strategie innovative per inferire
le posizioni degli utenti. Molti lavori hanno studiato questo fenomeno e proposto i loro
metodi per inferire la posizione di qualcuno tramite le sue amicizie e altre informazioni
tratte dai social media. Per questo motivo serve una survey che li organizzi al fine di
fornire una panoramica completa riguardo questo campo. E’ questa la motivazione alla
base di questo lavoro: esaminare una serie di metodi, algoritmi, e modelli che sfruttano
le interconnessioni tra le persone per scoprire la posizione di qualcuno attraverso i social
media. Nonostante lo scopo principale di questa tesi sia fornire una panoramica dello
stato dell’arte sull’inferire la posizione di un utente attraverso le sue amicizie sui social
media, per fornire una descrizione completa e ampia del problema questa tesi tratta an-
che i vari aspetti della localizzazione e della privacy relativa alla posizione. Per ottenere
questo risultato, questo lavoro analizza anche i vari meccanismi per proteggere la privacy
della posizione, analizza il problema della localizzazione in generale, e anche il problema
dell’inferenza delle amicizie nella vita reale tramite i dati della posizione ricavabili dai



social media.

Parole chiave: localizzazione, dati di posizione nei social media, privacy della posizione,
amicizie fra utenti
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Introduction

Discussing how location privacy can be inferred from social media data is an important
subject due to the increasing integration of location-based services and the pervasive na-
ture of digital technologies in our lives. Location data are very important due to many
reasons: locating data is highly sensitive and can reveal intimate details about individuals’
lives, such as their daily routines, preferences, and social relationships. Location data can
be used to profile users basing on their habits, preferences, and demographics. Moreover
social media data from people who we interact with can affect our privacy. Many fac-
tors today make talking about this subject more and more relevant: the advancement of
technology increases the potential for more accurate and granular location data inference;
thanks to the widespread use of smartphones and the integration of location-sharing fea-
tures in social media platforms, a lot of the population is now disclosing its whereabouts.
And even when users don’t disclose their position directly, it is still possible to infer it
by analyzing the other data that users post on social platforms. In fact it is possible to
infer someone’s location by using mentioned location in posts, local words and activity
of a user’s friends on social media. This way it is possible to infer users’ location even
through social media activity that is not coming directly from them. This correlation be-
tween online social relationships and physical locations has caused the emergence of new
and innovative ways to infer someone location. As a matter of fact, numerous studies to
date have explored the concept of inferring individuals’ location by leveraging their social
connections and various sources of data. Given the diversity of these approaches, a com-
prehensive survey is necessary to synthesize and present these methodologies. This survey
aims to fulfill this need by systematically examining a range of techniques, algorithms,
and models that exploit interconnected relationships to deduce a person’s location from
the data available on social media platforms. While the primary goal of this survey is to
offer a comprehensive overview of the latest advancements in location inference through
friendships, its scope extends beyond that. It encompasses a broader understanding of
location-related topics, including the various aspects of location data and location privacy.
In fulfilling this comprehensive approach, the survey also delves into subjects such as safe-
guarding location privacy, broader location inference methodologies, and the utilization
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of location data in deducing social connections. By embarking on this comprehensive
exploration, the survey not only provides insights into the state of the art in location
inference through social connections but also offers a well-rounded understanding of the
landscape of location data and its privacy implications.

Given the abundance of works in this field, this thesis focuses on giving an overview by
collecting and categorizing them. This to give a base for future works and researches
that will bring innovation into this field. This thesis will cover techniques that use data
from centralized social media, it will not include distributed tracking applications such
as the ones used for the pandemic of COVID-19. It will cover data from social media
such as Twitter, Facebook etc., and will also cover data from more location-centric social
media and mobile applications such as Foursquare. The methods that this thesis covers
exploit various sources such as check-ins, location trajectories, text of post in social media,
following relationships on social media, mentions of other users and other interactions,
etc.

The main aims of this work are the following:

• Giving an overview of the defense mechanisms for preserving location privacy.

• Giving an exhaustive overview of how social media’s data and data from other
services can be used to infer location of users, especially when adding information
regarding the social network of a user.

• Covering the subject of inferring social relations using location data from social
media and other services.

To achieve to goals mentioned before, this work is structured as follows: In Chapter 1,
this work will cover works that focused on the same or similar subjects covered in this
thesis. This by describing their focus, achievements, and differences from this survey.
The following Chapter 2 will start by covering the topic about location privacy preserving
mechanisms, highlighting their characteristics, how they work, how to evaluate them, and
how effective they are. This section is particularly important for the aim of this thesis
because it is necessary to cover the protection mechanisms and privacy models that are
protecting our sensitive data today. This section comes before the section about location
inference. The reason behind this choice is to give the reader a general understanding of
the protection mechanisms the location inference attacks covered in the following chapters
will have to deal with. So, in Chapter 3, the topic of location inference will be covered,
dividing the examined works in three main categories based on what type of location is
being inferred: home location, activity location and next location. Then, Chapter 3, will
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cover the topic of inferring location through users’ social network (users relationships such
as friends, and people surrounding them), by differentiating methods that uses data from
friends from methods that exploit similarity between users’ behaviors. In Chapter 4, the
subject of inferring friendships using location data will be briefly covered. This topic is
covered after the previous one because it covers the opposite side of the problem covered
in Chapter 3 (location inference through friends’ social media) and it is interesting to
see the correlations between them both. Then, in Chapter 5, this work will present its
observations and open research questions. Finally, Chapter 6 will contain the conclusions.
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1| Related Works

Location inference and privacy in social media is a broad subject that touches many fields.
To define it, location inference is a particular type of attribute inference. With attribute
inference we refer to the process of deducing sensitive or personal information about
individuals through the analysis of their publicly available attributes or characteristics.
These attributes could include demographic information, behavioral patterns, preferences,
or even seemingly innocuous data points. The goal of attribute inference is to unveil
additional information beyond what is explicitly disclosed by an individual. For instance,
if someone’s age and educational background are publicly known, attribute inference might
involve deducing their income level or political affiliations. This process can be carried out
through data mining, statistical analysis, machine learning techniques, or a combination
of these methods. About the specific topic of this work, location inference is a category of
attribute inference, where the inferred attribute is someone’s geographical location. So we
can define location inference as the process of deducing or predicting individuals’ physical
location based on the analysis of various sources of information, such as their online
activities, social interactions, and publicly available data. This process involves using
clues or patterns in the data to estimate where a person is or has been at a particular
time.

There are works that focus on covering the whole attribute inference subject, and by
doing that they also cover privacy problem related to location inference. One of them is
the work Privacy Inference Attack Against Users in Online Social Networks: A Literature
Review [79]. In this work many papers are collected and discussed dividing them into
different categories. This paper is especially interesting because it has a section discussing
geographic location inference attacks. This section takes especially into consideration
works that exploit social relationships and friends to better infer location of users. Another
interesting section is the one regarding social relationships inference attacks, where some
of the discussed works also use location to infer relationships. Another work that covers
the whole privacy inference subject is the work A survey on privacy in social media:
Identification, mitigation, and applications [9]. This research paper provides an overview
of significant advancements in the realm of user privacy within social media. Specifically,
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it comprehensively examines and contrasts cutting-edge algorithms pertaining to both
privacy attacks and anonymization. The paper also delves into the diverse spectrum of
privacy risks that stem from social media, categorizing them methodically. A particular
section of this study is dedicated to exploring the intersection of social media users’
location and privacy concerns.

Other works focus more on location inference only instead of attribute inference in gen-
eral, such as the work Mining location from social media: A systematic review [102]. In
this review the authors focus on differentiating every possible different source of data that
can be used for location inference. For example they have a section for works that use
videos, and a dedicated section for works that use links to other social media platforms.
So they dedicate a lot of efforts to collect many works related to location inference and
to categorize them using very specific categories. In the work A survey on next location
prediction techniques, applications, and challenges [35] they focus on listing all the works
that have been conducted regarding next location prediction, categorizing them in dif-
ferent categories. The work A survey of location prediction on twitter [121] centers on
location prediction challenges within Twitter. In this segment, the authors commence
by providing an insight into the Twitter platform. Approaching it from a typical user’s
perspective, they present a synopsis of the Twitter dataset, examining it through content,
network, and contextual lenses. Subsequently, the work delves into three prevalent geolo-
cation issues. These prediction challenges hinge on the previously mentioned information
as their primary input. They also cover the evaluation metrics utilized. This paper
is particularly interesting for its section about location inference with friendship-based
methods. Another work Location prediction in large-scale social networks: an in-depth
benchmarking study [3] categorize many location prediction models, including some that
use friendships, and it highlites the most important and influential ones. The paper An
overview of microblog user geolocation methods [64] presents a comprehensive analysis of
users’ geolocation techniques in the microblogging domain. The aim of the paper is to
systematically assess, categorize, and juxtapose the efficacy of current methods for ge-
olocating users within microblogs. The authors offer a comprehensive user geolocation
framework, summarizing approaches outlined in prior literature, and succinctly outlining
the merits and constraints of these methods. Their assessment is based on a performance
evaluation achieved by comparing experimental outcomes reported in existing literature,
all on the same datasets. Again, this work is particularly interesting for its section about
network-based methods.

There are works that focus more on the exploitation of a user social network and social
relationships to better infer the location. The paper Geolocation prediction in twitter using
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social networks: A critical analysis and review of current practice [52] focuses on reviewing
the state of the art’s methods for location inference using the social network. In particular,
they tested nine geolocation inference techniques. The main contributions of this thesis
are: firstly, the authors underscore that the practical performance of algorithms often
falls short of the accuracy reported in initial experiments; secondly, their investigation
reveals the limitations of relying on users’ self-reported locations as the ground truth,
this traditional approach consistently yields subpar outcomes (using sparser GPS-based
locations as the ground truth, in contrast, yields considerably better results); thirdly,
they shed light on the diminishing count of posts that a trained model can effectively tag,
this reduction occurs at a rate of halving every four months, driven by changes in the
platform’s user base.

This thesis is particularly relevant because it tries to cover the whole subject of location
inference of users in social media, while going extensively into details about location
inference through social network-based models. Since many works cover the whole subject
without trying to cover extensively the social network-based models, the peculiarity of
this work is to cover in detail location inference through social network while still covering
the various aspects of location inference, location data, and location privacy.
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2| Location Privacy Protection

Given the large amount of data present in social media today, in order to protect user’s
privacy, it is important that social media platform providers implement robust enough
protection mechanisms. The abundant collection of data actuated by companies highlights
the problem that these data need to be protected. The data collection still needs to
continue for companies in order to run their businesses (usually advertising), but the
privacy of the users need to be preserved as well. For this reason, there are privacy models
and protection mechanisms to achieve privacy protection while preserving the utility of
the data. To present to the reader the various methods that exists to achieve location
privacy, this section will start by presenting the privacy models that exist. Afterwards
it will describe the location privacy protection mechanisms that are used to achieve such
privacy standards and properties. After that, it will cover the metrics used to measure the
level of privacy protection. To conclude this chapter, last section will discuss the efficacy
of the protection mechanism presented.

2.1. Location Privacy Protection Mechanisms

Numerous studies have dedicated their efforts to gathering relevant material on location
privacy protection mechanisms [50][8][9][82]. Initially, privacy policy was guaranteed by
a set of laws that ruled the relations between users and service providers. Such laws de-
termined limits and conditions that external entities must follow when accessing, storing,
and utilizing a user’s location information in posses of the service provider. However,
similar privacy policies are strictly dependent on the graphical locations of the service
provider, which has to comply to the laws ruling that country. Essentially, the LBS
(location-based service) server is obligated to obtain users’ consent before accessing their
location information. However, the LBS server not always completely respects such rules.
For instance, the paper [32] examines 30 Android apps: about half of them, (the paper
explicitly refers to MySpace and Evernote as the two of the most widespread platforms)
leaked customers’ location data to advertisement or analytics without explicit consent
from the users. Also in case the LBS server strictly follows privacy rules, it is possi-
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ble that it can be attacked by hackers and similar actors searching for information. For
instance the article [56] quotes the case of the black hat hacker "Peace", who in 2013
exposed the data, including location information, of over 167 million LinkedIn users. A
similar fate affected in 2016, about 360 millions MySpace users [77]. [48] adds the case
of OpenSSL cryptography library which was attacked through a bug called Heartbleed.
The hacker had a great possibility to extract sensitive data. The main problem connected
to such system of privacy policy is that it relies on legal rules, but cannot be an aim
in itself of the activity of the LBS provider. Moreover, such laws imply a follow of the
frequent changes in rules and cannot be applied to dynamic location aware environment.
To sum up, law-based privacy policies do not represent a sure and reliable protection of
users data, they are always a step behind the technological developments and the growth
of the amount of data made known in social media.

To protect users’ privacy there are privacy models that defines properties that, when sat-
isfied, will guarantee a certain degree of privacy. To first one is k-anonymity: The concept
of k-anonymity, introduced in 2002 [103], aims at preventing the unique identification of
individuals based on a small subset of their attributes known as a quasi-identifier. The
sensitive attributes, which are not part of the quasi-identifier, are the attributes that need
protection. The paper [82] considers the typical case of medical records. In this case,
birth date, gender, and zip code are the quasi-identifier. Through quasi-identifier is pos-
sible to identify individuals. In this case the sensitive information is the disease of the
patient. The principle of k-anonymity states that for effective protection, a user should be
indistinguishable from at least k−1 other users. To this goal, all k indistinguishable users
must share the same attribute values in their quasi-identifier, creating what is known as
an anonymity group. Consequently, the likelihood of an attacker, without any external
knowledge, to re-identify an individual among k similar users is limited to at most 1/k.
In the paper [82] k-anonymity is defined as follow: "Let d be a sequence of records with n

attributes a1, . . . , an and Qd = ai, . . . , aj ∈ a1, . . . , an be the quasi-identifier associated
with d. Let dk be the k-th record of d and r[Qd] the projection of record rϵd on Qd,
i.e., the |Qd|-tuple formed of values for only the attributes of Qd in r. d is said to satisfy
k-anonymity if and only if each unique sequence of values in the quasi-identifier appears
with at least k occurrences in d". Formally:

∀s ∈ {r[Qd]|r ∈ d}, |{i ∈ N |di[Qd] = s}| ≥ k

In Table 2.1 there is an example of a dataset with k-anonymity with k = 2. The quasi-
identifier are birth year, gender and zip code, and the sensitive attribute is the Disease.
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This table provides 2-anonymity because by knowing birth year, gender and zip code from
someone you cannot infer their disease, since there is at least another person with the
exact same quasi-identifier. In the case where k = 3 there would have been at least 2
other persons with the same quasi-identifier.

Birth Gender Zip Disease

1980 M 0257 Asthma
1980 M 0257 Appendicitis
1980 F 0257 Neck pain
1980 F 0257 Asthma
1980 F 0257 Neck pain
1959 M 0222 High blood pressure
1959 M 0222 High blood pressure

Table 2.1: An example dataset with k-anonymity with k = 2

K-anonymity presents limitations, especially because it does not provide sufficient protec-
tion for users’ location privacy. In case of densely populated areas, the region containing
at least k users may be too small, which can lead to the disclosure of users’ private data
[20]. To extend k-anonymity, l-diversity is introduced [66]. It expands upon the concept of
k-anonymity by introducing an additional requirement of having at least l well-represented
values within each anonymity group. Specifically, it enforces a specific distribution of val-
ues for sensitive attributes among the members of each anonymity group. This concept
of well-representation is formally defined in three different ways in [66]. The simplest
form is referred to as distinct l-diversity, which stipulates that each sensitive field within
an anonymity group must have at least l distinct values. The idea is to ensure that
each sensitive attribute in the dataset has at least l distinct values within each group
of records that share the same non-sensitive attributes. In simpler terms, it means that
within a group of similar individuals (based on non-sensitive attributes), there should
be enough diversity in their sensitive attributes to prevent the identification of a spe-
cific individual. For example, consider a dataset of medical records where each record
includes attributes like birth year, gender, and medical condition. To achieve l-diversity,
the sensitive attribute (medical condition) should be represented in such a way that each
group of records sharing the same year of birth and gender contains at least l different
medical conditions. This ensures that an adversary cannot easily identify a person basing
on a unique combinations of attributes. t-closeness [57] is an additional enhancement to
l-diversity, aiming to go beyond the sole requirement of having a diverse representation
of sensitive values. In this approach, t-closeness ensures that the distribution of each
sensitive attribute within anonymity groups aligns with the distribution of the attribute
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in the entire dataset, with a threshold of t being applied.

Differential privacy is a model introduced in [28]: the concept revolves around ensuring
that the computation of an aggregate result remains nearly unchanged, regardless of the
presence or absence of any individual element within the dataset. Put simply, the proba-
bility of any outcome from an aggregate function should not be significantly altered by the
addition or removal of a single element. Unlike k-anonymity, the definition of differential
privacy remains unaffected by any external knowledge possessed by an attacker. Differ-
ential privacy is defined as: "Let ϵ ∈ R+∗ and K and K be a randomized function that
takes a dataset as input. Let image(K) be the image of K. K gives ϵ-differential privacy
if for all datasets D1 and D2 differing on at most one element, and for all S ⊆ image(K)"
[82],

Pr[K(D1) ∈ S] ≤ eϵ · Pr[K(D2) ∈ S]

The authors from [5] introduce an expanded privacy concept called geo-indistinguishability,
which extends the principles of differential privacy. They conclude that geo-indistinguishability
can effectively safeguard the precise locations of individuals. According to this notion,
the level of privacy protection desired should be linked to the concept of distance. Geo-
indistinguishability can be defined as: "Assume a possible location set of users X and a
probable reported location set Z, and let d(·, ·) denote the Euclidean distance. For any
two locations x1, x2 ∈ X, z ∈ Z and d(x1, x2) ≤ r, algorithm K is ϵ-Geo-differentially
private if:

Pr[K(x1) = z] ≤ eϵ·d(x1,x2) · Pr[K(x2) = z]

where ϵ indicates the privacy degree at one unit of distance" [50]. This definition implies
that when the actual locations x1 and x1 are very close to each other, there is a similar
probability in the distributions of generating the same new location z. On the other hand,
as the distance between x1 and x1 increases, the difference between the probability distri-
butions becomes larger. This difference is determined by the parameter ϵ ·d(x1, x2), which
represents the level of privacy protection. It has to be noted that geo-indistinguishability
consumes the privacy budget quickly, with the result of a finite number of LBS queries.

Now we can talk about Location Privacy Protection Mechanisms (LPPMs) to achieve
privacy. The first one is Generalization-Based Mechanisms : Generalization techniques
have been effectively utilized to achieve k-anonymity in the realm of location privacy, pri-
marily applying "spatial cloaking" as proposed in [37]. The fundamental concept revolves
around divulging less precise location data instead of the exact coordinates of the users.
By doing so, it becomes possible to create cloaking regions where, at any given time, there
are present at least k users. This not only diminishes the level of precision in the disclosed
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information but also facilitates the establishment of areas where user identities remain
indistinguishable. Usually there are three types of generalization: spatial generalization,
temporal generalization, data generalization (also with fixed or adaptive ranges) [83]. A
graphical representation of this mechanism is presented in Figure 2.1.

Figure 2.1: Generalization-Based Mechanisms.

Dummies-Based Mechanisms : another strategy to create k-anonymity consists in creating
"dummy users" who are fake users. Such strategy works similarly to generalization based
methods, but does not rely on the presence of other real users, which can hide their
identity. Even if the attacker might be aware of the presence of fake users withing the
acquired data, he is not able to distinguish between real users and dummies. This method
was first introduced by the work [54]. In general, dummy-based methods offer various
advantages compared to other LPPMs:

• they operate independently of third parties;

• they enable accurate query results;

• they eliminate the need for sharing encryption keys between users and LBS servers;

• they maintain effectiveness even if attackers are aware of the privacy protection
approach being employed.
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However, these methods do come with certain drawbacks. Firstly, they tend to incur high
communication costs. Additionally, they can result in resource wastage at LBS servers due
to the servers having to respond to multiple fictitious queries. Lastly, only experiments
can measure the real effect of this methods while mathematical proof in a strict sense can
not be shown [50]. A graphical representation of this mechanism is presented in Figure 2.2.

Figure 2.2: Dummies-Based Mechanisms.

Hiding-Based Mechanisms : there are two ways to apply these methods. The first one
consists in the suppression of location data, the second one is their sampling. Noise in-
troduction is avoided in these methods. According to [83] a possibility is to suppress
small counts (SSC) by assigning zeros to location time-series which are lower than a
predetermined threshold in the respective aggregate. Suppressing Less Popular Loca-
tions/Timeslots (SLP) consists in suppressing a percentage of the least popular visited
locations and time-intervals. Sampling (SMP) consists in deleting a fixed percentage of
users’ data in a random manner, and in releasing the aggregates computed by utilizing
the sampled data.

Perturbation-Based Mechanisms : protection techniques aim to achieve k-anonymity by
concealing a user within a larger group; the alternative mechanisms aim at the same goal
by modifying the data transmitted to an LBS for protection. Perturbation is usually
used to achieve geo-indistinguishability. In this scenario, the challenge lies in finding a
balance between privacy, where the data must be distorted sufficiently to safeguard it, and
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utility, where excessively distorted data may render the results from the LBS unusable.
Many mechanisms tackle this challenge by introducing additional noise, often in a random
manner, to the original raw data. There are different types of perturbation: Perturbing
Small Counts (PSC) involves introducing noise from the Laplace distribution to the counts
of the aggregate location time-series that fall below a certain threshold k; on the other
hand, the Fourier Perturbation Algorithm (FPA) follows a specific procedure: firstly the
Discrete Fourier Transformation changes the time series into the frequency; then the result
is perturbed by adding noise using Laplace distribution. At last, perturbed time-series is
obtained by the application of the inverse Discrete Fourier Transformation. Hiding and
Perturbation can also be combined (Sampling Perturbing Small Counts, Sampling Fourier
Perturbation Algorithm).

Another LPPMs is Mix-Zones : Mix-zones were first introduced in [144] after the pioneer-
ing work [145] on mix networks. The authors apply the mix-zones idea to the situation
in which mobile users interact with LBSs: it is realized by using pseudonyms in the place
of their real data that can unveil their actual identity (real name, IP, or MAC address).
According to the authors, in a mix-zone the movements of users remain untrackable, be-
cause they cannot communicate directly with an LBS. Every time that users enters in
another mix-zone, they are assigned with a new pseudonym. So, if there are k users at
the same time in the same mix-zone, their identities will be mixed, achieving k-anonymity
and creating confusion for potential attackers.

Path Confusion is another technique that mitigates the problem of the possibility of re-
covering trajectories from several location points, thanks to spatio-temporal correlations
between them. To solve this with Path Confusion, when two entities meet, they exchange
their identities with a specified probability so that the server cannot link consecutive lo-
cation samples to one user or another.

Figure 2.3: Path Confusion-Based Mechanisms.



16 2| Location Privacy Protection

Another LPPM is Co-location Masking : it consists in grouping together multiple nearby
co-locations, limiting the ability for the attackers to identifying which of the co-locations
in the group are real and which ones are false.

Lastly, there are techniques more focused on protecting users’ privacy in graph data. Data
like friendship, following/follower and mobility traces can be represented trough graphs;
for this reason techniques more oriented towards graphs anonymization are required. The
first one is Edge Manipulation: an edge manipulation algorithm usually consists in ran-
domly adding, deleting or switching edges to a graph structure.
Another technique is Clustering where an algorithm groups users and edges, and reveals
only the information regarding the density and size of the cluster, protecting individual
users data.

Figure 2.4: Conceptual map of LPPMs.
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Name Type Explanation
k-anonymity Privacy model A user should be indistinguishable from

at least k− 1 other users. To this goal,
all k indistinguishable users must share
the same attribute values in their quasi-
identifier, creating what is known as an
anonymity group

l-diversity Privacy model Each sensitive field within an
anonymity group must have at
least l distinct values

t-closeness Privacy model The distribution of each sensitive at-
tribute within anonymity groups aligns
with the distribution of the attribute in
the entire dataset, with a threshold of
t being applied

Differential Privacy Privacy model The computation of an aggregate re-
sult remains nearly unchanged, regard-
less of the presence or absence of any
individual element within the dataset

Geo-
indistinguishability

Privacy model When the actual locations x1 and x1

are very close to each other, there is a
similar probability in the distribution
of generating the same new location z.
On the other hand, as the distance be-
tween x1 and x1 increases, the differ-
ence between the probability distribu-
tions becomes larger

Generalization-Based
Mechanisms

LPPM Divulging less precise location informa-
tion instead of the exact coordinates of
users

Dummies-Based
Mechanisms

LPPM Creating "dummy users" who are fake
user. They are indistinguishable from
real users

Hiding-Based Mecha-
nisms

LPPM Suppressing or sampling location data



18 2| Location Privacy Protection

Name Type Explanation
Perturbation-Based
Mechanisms

LPPM Introducing additional noise, often in
a random manner, to the original raw
data

Mix-Zones LPPM In a mix-zone the movements of users
remain untrackable, because they can-
not communicate directly with an LBS.
Every time that users enters in another
mix-zone, they are assigned with a new
pseudonym. So the identities of users
in a mix-zone are mixed

Path Confusion LPPM When two entities meet, they exchange
their identities with a specified proba-
bility so that the server cannot link con-
secutive location samples to one user or
another

Co-location Masking LPPM Group together multiple nearby co-
locations, limiting the ability for the
attackers to identifying which of the
co-locations in the group are real and
which ones are false

Edge Manipulation LPPM Randomly adding, deleting or switch-
ing edges to a graph structure

Clustering LPPM An algorithm groups users and edges,
and reveals only the information re-
garding the density and size of the clus-
ter, protecting individual users data

Table 2.2: Privacy models and LPPMs

2.2. Privacy evaluation metrics

Applying strong mitigation measures to aggregate data is technically possible, but it
comes at the cost of reduced utility and increased overhead. When discussing defense
mechanisms, a careful balance must be struck among three factors: location privacy,
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utility, and overhead. Enhancing location privacy typically results in diminished utility
and heightened overhead. With overhead we refer to the computational requirement
increase to perform mitigation techniques. There are tree types: computational overhead,
communication overhead, storage overhead. Various metrics can be employed to gauge
location privacy.

One is the anonymity level: The privacy concept seen before called k-anonymity requires
the property of indistinguishability among a set of k users or dummy locations. The value
k gives a representation of the privacy level, this is why we can talk about k-anonymity
as a measure for location privacy, but also as a property for protection mechanism. So,
for k-anonymity, the value of k is one of the parameters than can be used to represent the
guaranteed location privacy. There is a problem with using k-anonymity: in the definition
of k-anonymity there are no assumptions about the attackers’ background knowledge. For
this reason, the value of k fails to quantify the level of privacy in case of an inference attack
with background knowledge.

Expected Estimation Error serves as the established criterion for quantifying location
privacy. This measurement gauges the precision with which adversaries deduce the true
position x by observing the disclosed location x′ and utilizing their pre-existing knowl-
edge. Normally the attacker’s prior knowledge consists in the probability distribution
across potential users’ location. This privacy-preserving mechanism receives the genuine
user location x as input and reveals a fabricated location x′. With x′ in hand, poten-
tial attackers can calculate a posterior probability distribution pertaining to the genuine
location x [50], denoted by:

Pr(x|x′) =
π(x)Pr(x′|x)∑
x∈X Pr(x|x′)

According to [50]: "given the posterior probability distribution, adversaries can calculate
an estimated location x̂ by minimizing the expected inference error, which is the expected
deviation between the estimated position x̂ and the actual position x":

x̂ = argm
x̂
in
∑
x∈X

Pr(x|x′)|x̂− x|

So, the expected estimation error is calculated as:

ExpErrprivacy = E|x̂− x| =
∑
x̂

Pr(x̂|x′)|x̂− x|
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The effectiveness of various location privacy preserving mechanism, such as dummy loca-
tions, can be calculated through expected distance error.

Another metric is Entropy: it measures the level of privacy protection by assessing the
uncertainty an attacker faces in identifying a specific answer from a pool of candidates.
While this measure captures privacy in terms of the uncertainty an attacker has, it does
not account for the accuracy of the attacker’s estimation in relation to the actual location.
In a similar way to the case of the expected estimation error, the attacker computes the
posterior probability Pr(x|x′) based on x̂. Starting from the observed version x′, the
attacker’s uncertainty about the real location x can be represented as the entropy of the
posterior probability according to the following formula:

Hx = −
∑
x̂

Pr(x̂|x′) · log(Pr(x̂|x′))

The last measure is Geo-indistinguishability. As said before, geo-indistinguishability is
a privacy concept that determines if an algorithm K is ϵ-geo-differentially private. This
measure is immune to side-channel information, the attacker’s prior-knowledge, and im-
plies that a user enjoys ϵr-privacy within r if any two locations at a distance of no more
than r result in pseudo-locations with “similar” probability distributions. Therefore, pa-
rameter ϵ represents the user’s level of privacy. This parameter ϵ, which quantifies the
user’s level of privacy, is the reason that geo-indistinguishability is also used as a mea-
sure to evaluate privacy. In fact this parameter, when geo-indistinguishability is used,
essentially quantifies our level of privacy. As said before, geo-indistinguishability is a con-
cept derived from differential privacy, wherein a method is often employed to introduce
noise into the output of a query, which represents the pseudo-location. This noise adjust-
ment alters the probability distribution of the pseudo-location, thereby achieving privacy
protection. It is important to note that the privacy metric of geo-indistinguishability is
primarily used to assess the privacy level provided by a location perturbation mechanism
based on differential privacy.

On the other hand, when evaluating the utility aspect, a commonly employed utility
metric is the expected distance between the released location and the actual location. This
metric, often referred to as the "loss of quality", serves as a general measure of data utility.
It is widely accepted by the research community and is applicable across various location-
based applications, providing a standardized approach for assessing utility independent
of specific application contexts. According to [50], the formula is:

ExpErrutility = E|x′ − x|
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2.3. Effectiveness of LPPMs

The effectiveness of these systems when it comes to inferring location by using addi-
tional information from social media such as friendship network and co-locations can be
questioned, on the basis of the various works that are presented later in this document.
In the paper Protecting Against Inference Attacks on Co-location Data [2], it has been
studied how effective are state of the art’s defenses against attack that exploited users’
co-location information. This was accomplished through the simulation of an adversary’s
attack, wherein the adversary aims to extract information from both the position of a
user’s check-ins and the positions of all other check-ins that possibly have co-located with
the initial one. The objective is to identify patterns of user’s check-in behavior and co-
locations, following the idea that people usually co-locate with people they have social
relationship with. The LPPMs studied are:

• Gaussian Perturbation: the location and timestamp of a co-location is distorted
with a spatial noise vector and a temporal scalar noise magnitude derived from the
Gaussian distribution.

• Adaptive Perturbation: it introduces noise dependent on the distribution of the
nearest spatiotemporal neighbors for that co-location.

• Co-location Masking: it group together multiple nearby co-locations, limiting the
ability for the attackers to identifying which of the co-locations in the group are real
and which ones are false.

• ϵ-geo-indistinguishability: they considered the mechanism implemented in [5] for
achieving geo-indistinguishability.

From their experiments it results that:

• Gaussian Perturbation: as noise increases the attack precision decreases, but the
protection is inconsistent. In fact, users in sparse areas are still not well protected.

• Adaptive Perturbation: the Adaptive Perturbation mechanism solves the problem
present with Gaussian Perturbation, where spare areas are no well protected. With
adaptive perturbation that does not happen anymore. As protection increases, the
inference precision decreases.

• Co-location masking: the obtained results are similar to the one obtained with
Adaptive Perturbation.

• ϵ-geo-indistinguishability: the precision of the attack results lower, however it re-
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sults that the protection is inconsistent. Again, the areas that are less protected
are the less dense ones. It also results that with some implementations of geo-
indistinguishability the noise introduced is so large that it makes the data useless.

Their experiments make evident that state-of-the-art methods not tuned specifically
against co-locations introduce to much noise in the data. This results in the data being
not very usable; more importantly, the protection against attack that exploit co-location
information yields poor results. In conclusion, further research is required to advance the
existing state of location privacy protection mechanisms in addressing location inference
through co-location and social relationships.
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Location inference is a type of attribute inference, as defined above. As said in [79]: "at-
tribute inference can be regarded as a method to infer a group of sensitive attributes that
users don’t want to be known by others, from users’ online publishing and interaction in-
formation". So, location inference is the practice of inferring the location of users without
them disclosing it directly. This can be achieved by using location related information
contained in users’ post, such as mentioned locations or word used mainly in specific ge-
ographic regions. Also user friendships and social relationships like co-workers and such
can be leveraged to infer someone’s location more accurately. In this section various works
that focus on inferring location of user’s social media are collected. Sections 3.1, 3.2 and
3.3 will refer to the various types of locations that can be inferred respectively: home lo-
cation, which is a user’s residence location; activity location, where users tends to spend
time outside of their house; and next location, which is a future place that a user might
go to in the future. Then, Section 3.4 will cover the most important part of this thesis,
which is location inference through social network. By social network, this work refers
to the various social relationships that a user can have with other users. This section is
divided in two subsection: Subsection 3.4.1 will cover works that utilize information from
friends of a user, Subsection 3.4.2 will cover works that utilize information from other
users that have similar living patterns to the user of interest. This division has the fol-
lowing reason: we can learn important information from friendships that show themselves
on online social media in an explicit manner via mentions, interactions, followings and so
on. But some friendships do not manifest online and there is no way to find those real
life friends other than by observing the similarity in their moving patterns. This because
friends tends to visit places together, do the same activities and share some similar living
patterns. In the process of analyzing similar users, it is also possible to retrieve a lot of
information from users that have high similarities, but are not necessarily friends, since
they share similar living patterns.
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3.1. Home Location Inference

Inferring the home locations of social media users has numerous applications, including
local content recommendation, location-based advertising, public health monitoring, and
public opinion polling, etc. However, since it is often not mandatory for users to provide
their residential information on most social media platforms, their home locations are
frequently missing or unreliable. While location can still be derived from a user’s profile,
this approach has limited effectiveness, particularly on platforms like Twitter where the
information is typically limited to city or state level [102]. As a result, considerable
research has been dedicated to deducing the home locations of users.

When discussing posts composed from text (like tweets for example), the primary source
of information we typically rely on is the text itself. An effective way to infer location from
tweets’ text is to identify location relevant words [121]. Most studies model the problem of
using local words by using a probabilistic model. A representative probabilistic model is
introduced by the authors of [15], as follows: "the distribution of users’ u’s home location
l given their tweet posts S(u) is decomposed as P (l|u) ∝

∑
w∈S(u) P (l|w)P (w)" [121].

They considered local words w, and P (w) stands for the probability of w over the entire
corpus. The focus is to estimate the spatial word usage, which consists in the location
distribution P (l|w) of word w. With this strategy, they where able to estimate a user’s
city-level location, even when the posts did not have any location cues.

An effective way to infer locations is to analyze the context of a post, including location
description and timezone. In [88] the authors used a multilayer perceptron (MLP) with
one hidden layer in order to infer users’ home locations. They employ the l2 normalized
bag-of-words representation of a user’s tweet content as input, with the outcome being
a pre-defined discretized region formed using either a k-d tree or k-means algorithm.
The authors from [67] and [68] used as source of information to infer locations tweet
posting time. Posting times are logged in GMT (Greenwich Mean Time). They divide
the GMT day into slots of equal-length times, so that they can view users according their
distributions. Due to the variations in time zones, users display shifts in their distribution
patterns. To address this, a time-zone classifier is trained using the distribution as input
feature. These classifications offer insights into the time zones of users and can provide a
broad estimation of their locations. Since self-declared locations and time zones in posts
are often deceptive because for instance abbreviations can be used to indicate places, the
authors of [40] and [41], they also incorporate features such as four-grams of self-declared
locations and time zones to train a classifier for identifying home locations. In [29] the
authors developed a probabilistic model that recourse to the temporal distribution of
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geo-tags contained in tweets in order to estimate a user’s home location and workplace.
They ground their method on the assumption that there is an high probability that late
in the night users’ tweets come from their home location, while in day time hours they
come from what could be their workplace. The authors from [81] affirm that relying
only on the media as home locations could be deceptive, because users often can have
multiple active regions. To avoid this error, they consider as home clusters the group of
posts with the highest recurrence after having clustered all the geo-tags. By making the
geometric median of all points within the home clusters, they assume to attain the home
coordinates. Another possibility, considered in [16], is offered by the aggregation of users’
geo-tags into a square pattern. By pinpointing the most geotagged square they inferred
the central point, and by iterating this procedure within the central area, they break it
into smaller unities until they reach pre-established threshold, so they do not simply apply
the geometric median, so that the user’s home location corresponds to the final center of
the procedure. The work [87] takes a different approach by leveraging a neural network
model combined with a mixture density network. They transform the two-dimensional
geo-tags into a continuous vector space and use them as input for inference. An alternative
approach to deducing a user’s home location entails examining the distribution of their
check-ins and photos, as exemplified in [100].

3.2. Activity Location Inference

Instead of inferring users’ residence location, there may be an interest in determining the
location they visit when they are not necessarily at home. This can be accomplished
by inferring the location from where a user makes a post on social media platforms like
Twitter.

To infer the location from tweets, word-centric methods can be employed [121]. In [1]
the authors propose an approach that utilizes Gaussian mixture models for tweet location
prediction. They focus not only on modeling the spatial usage of individual words but
also n-grams to increase redundancy since only one tweet is available as input for tweet
location prediction. Another similar approach is to model spatial n-gram usage using
Gaussian models, as discussed in [33]. The authors of [18] use a different approach, based
on a learning-to-rank method: to encode tweet content it recourse to smoothed probability
estimation of words recurring at a specific venue.

Instead of focusing solely on words and n-grams, another approach is to prioritize the
topic of the tweet. This can be achieved by extracting the topic from the words used in
the tweet. Words such as "NBA" and "Kobe" could represent the topic of "basketball", as
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exemplified in [121]. To better illustrate the work made on topics it’s better to talk about
two works that focus on home location inference, but are used as reference by successive
works for location prediction by focusing on topic. The work [30] introduces the concept
of corrupting topics by including related terms. In the example taken the corrupted topic
for "basketball" may also include "Celtics" corresponding to the location in Boston, which
is the city of that team. The same authors further enhance the concept of topic corruption
in [31] by formulating what they call Sparse Additive Generative model (SAGE). This
model develops the notion of location-based topic corruption already presented in [30],
while also enabling sparsity and simplicity in model inference. However, the reader of this
paper must keep in mind that the works quoted [30] [31] are reported here on for sake
of completeness about topic-model-based methods, because they focus on home location
inference only. The SAGE model [31], has been extended by other works, as for instance
[44]. This paper considers a set of data (region, topic and users’ interests) to build a
model that maintains the original structure of tweets, differently from [30] and [31]. In
this way to model location in a per-tweet manner, the authors assume that tweet location
depends on the user’s geographical interest distribution, while the topic of a tweet relies
on the user’s topical interest as well as local topics. In this perspective, tweets are created
starting from the topic and according to a local word distribution. Paper [14] assume
another point of view. It does not model users geographical interests in function of a
multinomial distribution. Instead it uses users’ interests as a latent variable to construct
a specific function related to the location (eating, shopping, health care and similar).
All this variables, are used to bridge users and locations since each user is characterized
by a specific distribution interest according to location and related activities, which are
involved in tweets generation. Work [117] presents another approach, which show some
similarities to the previous one, but presuppose the recourse to an intermediate variable:
the authors call it regions and it is located between users and tweet locations. This by
following the idea that users normally have a "work" place (region) and a "home" place
(region), which are modeled by Gaussian distributions having center coinciding with the
respective workplace and home location. Following the supposition that users are involved
in activities near their work and home places, for example during lunch time, they would
often choose a restaurant near their work place. By doing so, it is probable that the user
would leave a tweet about eating there, quoting the restaurant’s name.

Contextual information, such as location description and timezone, can also be leveraged
[121]. In fact, a timestamp may be very informative if enough historical data for locations
are provided; for example, bar, public local and clubs are normally posted about during
afternoon and night, according to normal working time. Instead, places such as parks
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are tweeted about during weekend days or festive days. By keeping this in mind, the
authors from [60] divide tweets according to time distributions for locations at three
different scales: day, week, and month. Preferences between location are inferred by the
combination of tweets associated with the same timestamp, according to the set of three
distributions. In the same way but on a lower scale, the work [117] recourses to a binary
distinction between weekdays and weekends combinated with the different time in a day.
So, by basing on the users choices, the authors can infer if a tweet is posted during a
weekday or weekend. Given a user, the generative model determines whether a tweet
is sent on a weekday or weekend. In a successive step they can infer also the daytime
again from their daily hours distribution. Again, time zone and tweet posting time are
both taken into consideration in [27] to use them as features in a classifier. The scope
is to predict users’ location according to cyclical temporal patterns as reconstructed by
the classifier. In a more traditional way the authors of [99] collect information from data
made accessible by the users in their public profiles such as self-declared home locations,
websites, and timezones, and so on. All that in order to create what they call "polygon-
shaped administrative regions" created by a query among many different databases for
10 specific indicators. They assume that the height of the polygons corresponds to these
10 indicators, so that in a following paper they can infer possible tweet locations [110].
Experiments confirm that such a multi indicator approach is more effective than single
indicator approach, because the latter seems to be affected by ambiguity. From another
point of view, paper [18] is based on using context information by assuming that location
prediction can be inferred with great probability from both venues active time and users’
visiting place histories. In first place, they use a smoothed kernel density estimation
method to evaluate the possibility that a user can get to a location at a time given by
analyzing venues active time. After that, they conclude that a normal user is spatially
is usually limitated in spatial choices because of a set of motivation (geography, social
conditions and relationships, personal factors). So, by combining the previous information
and considerations the presume to better estimate if a user could be in a specific location.

Other work demonstrate that are other ways to infer location that use less conventional
sources to gather information to infer activity location. For example the work Tagvisor:
A Privacy Advisor for Sharing Hashtags [118] presents the first systematic analysis of
privacy issues related to hashtags, which have not been explored before. By using a
random forest model, they showed that they can infer a user’s precise location from
hashtags with accuracy from 70% to 76%. In the work PowerSpy: Location Tracking
Using Mobile Device Power Analysis [71] they take advantage from the fact that modern
mobile operating systems such as Android allow installed applications to read aggregate
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power usage on the phone. This information is considered harmless in regards of privacy,
but with the use of machine learning algorithms, they managed to infer location using that
information. To locate the phone they need strong assumptions about the attacker prior
knowledge: they assume the attacker has prior knowledge of the area or routes through
which the victim is traveling. This knowledge allows the attacker to measure the power
consumption profile along different routes in that area in advance; they also assume that
the tracked phone is moving by car or by bus while being tracked, because their system
cannot locate a phone that is standing still since that provides only the power profile for
a single location. Their experiments show that it is possible to track users who follow a
daily routine. For example a mobile device owner might choose one of a small number
of routes to get from home to work; the system identifies what route was chosen and
in real-time can identify where the phone is along that route. This work is important
because it underlines also how some apparently harmless information can be privacy
inferring. Another unconventional way to infer location has been found in the paper
Inferring User Routes and Locations Using Zero-Permission Mobile Sensors [73], where
the authors discovered that they can use the gyroscope, accelerometer and magnetometer
data on the smartphone of online social network users to infer the user’s location. This
can be done by modeling the problem as a maximum likelihood route identification on a
graph. The graph is generated from the OpenStreetMap publicly available database of
roads. From their experiments, it results that for most cities it is possible to output a list
of 10 routes containing the traveled one with a probability higher than 50%.

3.3. Next Location Prediction

Instead on inferring the home location of a user, companies can be interested in predicting
the next location of a user to improve things such as advertising etc. Usually, it is easier
to do that with data coming from LBSNs. The mobile application of Foursquare and of
other LBSNs allows us to know the exact location of a user at a given time through users’
check-ins when they visit places. Location prediction involves training a model using
users’ historical tracks to anticipate their next position. Typically, significant places are
extracted from the trajectory history, and a statistical model is employed to predict the
user’s next location [35].

The first category is Machine learning-based prediction. The study MPE: A mobility pat-
tern embedding model for predicting next locations [12] introduces a new mobility pattern
embedding a model called MPE, which exhibits two distinctive features. The first feature
is integration of different types of information, mainly locations, time and object: they
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are combined into a low-dimensional latent space, which is an abstract multi-dimensional
space which encompasses feature values that are difficult to interpret directly. The other
feature is the evaluation of the data originating from road networks in traffic trajectories.
The proposed method surpasses state of the art methods, according the experiments con-
ducted by the authors. Another work Exploiting machine learning techniques for location
recognition and prediction with smartphone logs [17] develops a method that is grounded
on Hidden Markov models: they utilize k-nearest neighbor and decision trees, for infer-
ring the users’ next locations, gaining 90% of successful results. In the study Unlicensed
taxis detection service based on large-scale vehicles mobility data [106] the authors aim to
detect unlicensed taxis in a context of huge traffic by observing personal mobility trends.
In a first place a set of spatio-temporal data are taken from the information collected,
and second a system of three techniques of machine learning (SVMs, decision trees and
logistic regression) are used to correct accuracy of information. This study is conducted in
Xiamen, China, with excellent result, even though some adjustments are related to other
datasets (demographics and POIs and so on). The work Where are you going? Next place
prediction from Twitter [21] proposes two models: one for exploring individual features
and a related on for combining them into a supervised learning framework grounded on
a M5 decision trees incorporated in a WEKA framework (machine learning algorithms).
The list of considered features includes: weekend location, visit count, visit probability,
nighttime location, tweet count, location visit entropy, movement entropy, popular desti-
nations, and spatial characteristics. They have taken into account a multitude of users’
features. The algorithm chosen is the NexT clustering algorithm which gives an accuracy
of 83%.

The second category is Deep learning-based prediction. In the study Predicting the next
location: A recurrent model with spatial and temporal contexts [61], a Spatial-Temporal
Recurrent Neural Network (ST-RNN) is proposed. This model incorporates local tempo-
ral and spatial contexts in each layer to uncover mobility patterns. The results achieved
in this work are superior to existing state of the art’s approaches. Another work Location
embedding and deep convolutional neural networks for next location prediction [97] deals
with the training of a model which classifies the sequence of previous location correspond-
ing to a user in order to infer successive locations. On this basis, the authors incorporated
a model called loc2vec on the basis of the similar model word2vec, which is used to predict
the successions of words in a phrase. The new system encodes locations into a vector and
when two or more location are present in the sequences at the same time, the vectors
will be at close distance. This way, this method improved the state of the art. The
research paper CEM: a convolutional embedding model for predicting next locations [13]
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introduces the CEM model, which aims to predict future locations using traffic trajectory
data. The model utilizes a one-dimensional convolution to capture the relative ordering
of locations, taking into account the constraints imposed by road networks. Addition-
ally, CEM incorporates a double-prototype representation for each location to eliminate
incorrect location transitions and considers a combination of factors (such as sequen-
tial, personal, and temporal) that influence human mobility patterns. By encompassing
these elements, CEM achieves higher prediction accuracy compared to methods solely
based on sequential patterns. The effectiveness of CEM is validated through experiments
conducted on two real-world trajectory datasets, where it outperforms existing state-of-
the-art approaches. In the work T-CONV: a convolutional neural network for multi-scale
taxi trajectory prediction [65] the focus is on predicting taxi trajectories to enhance var-
ious intelligent location-based services, particularly targeted advertising for passengers.
The paper introduces T-CONV, a model that represents trajectories as two-dimensional
images and leverages multi-layer convolutional neural networks to capture multi-scale tra-
jectory patterns. Through comprehensive experiments using trajectory data, T-CONV
achieve results superior to existing state of the art’s approaches.

Works Inferred Location Data Method
[15] Home location Location relevant

words
Probabilistic model

[88] Home location Posts’ context Multilayer perceptron
[67] Home location Posts’ context Time-zone classifier
[68] Home location Posts’ context Time-zone classifier
[40] Home location Posts’ context Self-declared location

and time-zone classifier
[41] Home location Posts’ context Self-declared location

and time-zone classifier
[29] Home location Posts’ context Probabilistic Model
[81] Home location Posts’ context Geometric median of

locations
[16] Home location Posts’ context Geometric median of

locations
[87] Home location Posts’ context Neural network and

mixture density net-
work

[100] Home location Posts’ context Probabilistic model
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Works Inferred Location Data Method
[30] Home location Posts’ topic Topic corruption
[31] Home location Posts’ topic Topic corruption and
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[1] Activity location Location relevant
words

Gaussian mixture
model

[33] Activity location Location relevant
words

Gaussian model
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text

Learning-to-rank

[44] Activity location Posts’ topic Sparse Additive Gener-
ative model

[14] Activity location Posts’ topic Bayesian model
[117] Activity location Posts’ topic and con-

text
Probabilistic genera-
tive model

[60] Activity location Posts’ context Language modeling
[27] Activity location Posts’ context Feature classifier
[99] Activity location Posts’ context Multi indicator ap-

proach
[110] Activity location Posts’ context Multi indicator ap-

proach
[118] Activity location Posts’ hashtags Random forest
[71] Activity location Phone power usage Hidden Markov model
[73] Activity location Phone gyroscope,
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Maximum likelihood
route identification

[12] Next location Time and locations Low-dimensional latent
space

[17] Next location Locations of nearest
neighbors

Hidden Markov model

[106] Next location Taxis’ mobility SVMs, decision trees
and logistic regression
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Works Inferred Location Data Method
[21] Next location Tweet count, visits

count, nighttime loca-
tion, weekend location,
popular destinations
and spatial characteris-
tics

WEKA framework

[61] Next location Local temporal and
spatial contexts

Neural Network model

[97] Next location Location sequences Deep learning based on
vectors

[13] Next location Traffic trajectories Double-prototype rep-
resentation

[65] Next location Taxis’ trajectories Multi-layer convolu-
tional neural network

Table 3.1: Works regarding various types of Localization through Social Media

3.4. Location Inference through Social Network

Rather than solely concentrating on individual users to deduce their location, incorpo-
rating supplementary data from other users has demonstrated substantial enhancements
in localization attacks. Real-world relationships frequently extend to social media plat-
forms, as users commonly engage with those in close proximity to their residential areas.
This reality underscores the significance of social relationships as an attribute that can
significantly enhance the precision of inferring an individual’s location.
Furthermore, an alternative approach to harnessing the collective insight of other users
for location inference involves analyzing clusters of analogous users. This analysis aims
to discern patterns and various forms of resemblance related to location, encompassing
factors like residence and check-ins.

3.4.1. Location Inference through Friendships

A common way to infer location of users using friends location data is using a proba-
bilistic method that focuses on maximizing the likelihood of a location to be the user’s
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location. The work Find me if you can: improving geographical prediction with social and
spatial proximity [7] proposes a probabilistic method based on the distance between users
in the friendship graph. The FindMe algorithm makes the assumption that geographical
distance of two users is inversely proportional to the possibility that they be friends in
the network. So, starting from the distribution of friends locations, the method chooses
the location that maximizes the likelihood of it being the user’s location. This method
has been reworked by SPOT: locating social media users based on social network context
[55], where they assume that connections of a users should have different weights when
inferring user’s location. On this assumption, there is the need to utilize a coefficient for
social proximity, which represents the similarity of the friendship network of two users.
The number of common friends in the social network between two users evaluate the sim-
ilarity of their networks. The coefficient so calculated can help to determine the weight of
the location of a friend in the case of location inference. Another work Location prediction
in social media based on tie strength [70] extends the method from [7] adapting it from
Facebook to Twitter. The focus of this work is to classify a user’s Twitter relationships
because it probably serves as predictors of a user’s location. After having selected users’
with a minimum of three GPS posts, and calculated the average latitude and longitude
values to establish their location, a tree regression model is trained with the established
relationships between them, so that it became possible to predict their distance. In this
way the predictive capability are determined by the predicted distances. The social re-
lations are divided into ten parts, ordering them from the most predictive to the least
predictive. In this way we can identify the friendships that are most useful for location
inference. During the likelihood calculation, the most useful friendships found in the pre-
vious step will carry more weight. These relationship partitions are what separates this
method from the one of [7]. The last work that this thesis presents that extends the work
[7] is the work [69]. They investigated the relationship between the distance between a
pair of two users, and the strength of the tie between them. They used several factors for
their work such as: following, mentioning and conversations.
In another paper, Towards social user profiling: unified and discriminative infulence model
for inferring home locations [59], the authors aim to deduce geolocations by considering
the combined impact of both users and locations. This approach stems from the no-
tion that specific users hold more valuable insights for predicting the locations of their
neighbors. The most effective strategy among their approaches initially assigns users to
random locations, subsequently updating these locations in an iterative manner based on
information from neighboring users and mentioned location references. This refinement
process involves adjusting parameters in response to the prediction error of users with
known locations.
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Lastly, the work [84] uses a probabilistic framework based on a semi-supervised factor
graph model to infer location of users. To better improve accuracy, they exploited the
users’ network made of friends from social media.

Bayesian network (a type of probabilistic graphical model) is a common method to infer
location of users. In a study [74], titled Quantifying interdependent privacy risks with
location data, the authors propose an approach that infers a user’s location from reported
co-locations in messages and pictures posted on social media. Another source of co-
locations is retrieved from IP addresses of user’s friends. These co-location information
is also extended to friends of friends and beyond. A general Bayesian network model is
the basis for a belief propagation algorithm proposed in the study for inferring locations.
In the work Finding your friends and following them to where you are [96], they studied
the correlations between trajectories of a user’s friends. To do that they used a Dynamic
Bayesian Network trained of locations sequences. The work [75] implements a Bayesian
hidden location inference model and a multi-factor fusion based hidden location inference
model that also exploits friends’ locations. The addition of this paper is that it measures
the similarity between two friends. This concept is extended in other works that we
will see later when this similarity is not only used for friends. In the study Multiple
Location Profiling for Users and Relationships from Social Network and Content [58] the
authors explore the concept that users could potentially have multiple home locations.
To uncover these multiple home locations, they employ a sophisticated approach that
leverages social connections between users and references to location names found in
posts. This is achieved through an extended version of the supervised Latent Dirichlet
Allocation, a type of Bayesian Network.

Artificial Neural Networks are a common tool in this field. In the work ‘Current city’
prediction for coarse location based applications on Facebook [10] the focus is directed to
extracting explicit and implicit location information from users’ friends. This information
is then utilized to build a Current City Prediction Model (CCP) using an artificial neural
network (ANN) learning framework. This model aims to accurately predict the current
city of target users. Another work that uses a neural network is [72]. In this work
they encoded user friendships into a neural network model. This neural network model
learns from unified text, metadata and from the user network that is generated from user
mentions.

Another work is [101], that introduces a de-anonymization attack that uses a user’s friend-
ship information in social media to de-anonymize users mobility traces. The underlying
concept is that people meet with those who have a relationship with and so they can be
identified by their social relationships. A contact graphs is created through the mobil-
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ity traces of users by using Distance Vector, Randomized Spanning Trees, and Recursive
Subgraph Matching heuristics. These methods permit to calculate the mapping strength
and propagate it through the network. The accuracy and computational complexity of
this work was later improved in [49].

There are many works that focus to achieve accurate location inference basing their meth-
ods on the label propagation algorithm (LPA or LP algorithm) [124]: the LP algorithm
can be defined as: "a semi-supervised, iterative algorithm designed to infer labels for
items connected in a network". The LP algorithm is by far one of the most used methods
in this field. In Figure 3.1 an example illustrating how the algorithm works is presented.
It has to be noted that, since the LP algorithm is not deterministic, the last node in the
graphs can obtain the blue label or the orange one. In some variations a node can obtain
two labels at the same time.

Figure 3.1: Label Propagation Algorithm example.

The first work that presented in this thesis that utilizes the LP alg. is called That’s
What Friends Are For: Inferring Location in Online Social Media Platforms Based on
Social Relationships [51]. The authors allocate a user’s location as the geometric median
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of all the locations of their neighboring users, utilizing ground truth data. Subsequently,
these initial assigned labels can serve as a basis for deducing a user’s location during a
second iteration through the dataset. The research presented in Geotagging one hundred
million Twitter accounts with total variation minimization [23] addresses the challenge of
deducing user’s locations as an optimization over a social network with a total variation-
based objective. The study introduces a scalable and distributed algorithm to tackle
this problem, building upon the adaptation of the label propagation method outlined in
a previous work [51]. This advancement in [23] refines method from [51] by enhancing
the initial location calculation process in the first pass. This enhancement incorporates
weighted edges in the network, where the weights are determined by the frequency of
interactions between user pairs. This adjustment favors locations of friends with whom a
user interacts most frequently. Subsequent iterations of the label propagation algorithm
focus on updating a user’s location only if it aligns reasonably closely with the locations
of their neighbors. In this way, errors in location information cannot be propagated.
In the work Find you from your friends: graph-based residence location prediction for
users in social media [113] the authors adapt the LP algorithm with the assumption that
users geographically close to each other are more likely to establish friendship relations.
They also pose that nearby users are inclined to share more common friends and publish
similar geo-related content. This assumption stems from the notion that users’ social
media content is primarily influenced by their physical world experiences. This approach
surpasses the FindMe method in terms of accuracy and efficiency. While state-of-the-art
techniques necessitate greater distance between non-friends, this method leverages the
presence of more friends in close proximity. Its scalability and efficiency are enhanced by
considering only a user’s friends instead of the entire user population, thereby reducing
the dataset volume. With location inference we can focus on inferring the residence
location of users, or the locations where a user tends to spend time. These types of
location are referred in [39] as “activity locations” and are defined as the places among
the highly checked-in region where most of user’s activities occur. Inferring these types
of locations is the focus of the work Activity location inference of users based on social
relationship [39], where they exploit social relationships following the assumption that
users’ location tends to coincide with the locations their friends go to with high frequency.
They proposed a method where they ignore friends whose majority of the neighbors have
far activity locations. First they begin by verifying a user’s location based on the distance-
probability relationship for friendship. To do this, they simultaneously select each labeled
user to validate whether the location information of the users can be exploited to predict
the locations of their neighbors. Therefore, after selecting a labeled user, they mask
the user’s location first. After that, basing on the location distribution of the user’s



3| Location Inference 37

labeled neighbors, the location among the neighbors’ activity location that has maximum
likelihood is assigned. In case where the last assigned location of a determined user
appears to far from the original activity location, this user will be removed from the pool
of users taken into consideration for location inference. After addressing the neighbor’s
selection challenge, the study delves into the core issue of label propagation, that is how
to prioritize inferring locations for unlabeled users. The priority is set as follows:

• users having a number of labeled neighbors closer to their mean location point;

• users with number of labeled neighbors;

• users with number of neighbors (both labeled and unlabeled).

These represent the fundamental concepts underpinning the sequential iterative algorithm
introduced in this research, termed as Sequential Spatial Label Propagation (SSLP). The
evaluation of this approach involved the utilization of several key parameters: average
error distance, accuracy, inference coverage (a metric gauging the proportion of unlabeled
users within a dataset that received a location assignment irrespective of accuracy), and
running time. From testing, SSLP results to have lower average error distance than state
of the art methods such as [7] and [51]. Same thing happens for accuracy where SSLP
beats state of the art methods. For users inference coverage they noticed that SSLP has
little lower coverage than SSLPn, which is the same algorithm as SSLP without the neigh-
bor validation process. When it comes to running time, SSLP happens to perform worse
than [7] and [51] methods by a significant amount. As expected, SSLPn performs worse
than SSLP. Alternative approaches to employing label propagation for location inference
have been explored, as exemplified in the study Twitter User Location Inference Based
on Representation Learning and Label Propagation [104] where they use representation
learning and label propagation (ReLP). Their method involves a series of steps: connec-
tion relation graph construction, user relationship filtering, user representation learning,
propagation probability calculation, and user’s location inference. To initiate the con-
struction of the connection graph, user’s relationships are established by utilizing regular
expressions to identify mentions of "@user" within user-generated texts. Additionally,
the information gain rate (IGR) of all words is computed, with words exhibiting high
IGR considered indicative of location. These location-indicative words, combined with
collected user mentions, contribute to the creation of an undirected connection graph.
In the process of filtering user’s relationships, an algorithm is implemented to elimi-
nate predominantly global celebrities who are frequently mentioned but lack relevance
to user-geographic attributes. In the third step (user’s representation learning), they
map location-similar users to a vector space based on a connection relation graph. For
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propagation probability calculation, two key phases are executed. Initially, directly or
indirectly adjacent users are identified through the adjacent relations of the connection
relation graph. Subsequently, a propagation probability matrix is established using the
user’s relationship matrix. Notably, the likelihood of label propagation between users is
heightened when their geographic attributes exhibit greater similarity. Finally, for the
user’s location inference step, the label propagation algorithm is actuated. Notably, the
study acknowledges the challenge posed by users maintaining distinct accounts across
various social network platforms. Consequently, the conventional practice of predicting
a user’s location solely based on a single social network is deemed limiting in this con-
text. Another work that uses the LP algorithm is Twitter user geolocation using a unified
text and network prediction model [85]. The data that they used for analyzing the social
network are @-mentions. The same authors published also another work [86] that shows
that Label propagation is very powerful when used in conjunction to text-based methods.
Similarly to the previous one, this work uses an hybrid method focusing on @-mentions
between users.

In the research paper Where’s @wally?: a classification approach to geolocating users
based on their social ties [94], they model the problem within the classification framework:
a user could be assigned to any of the cities in the United Kingdom. To achieve this, a
Support Vector Machine (SVM) classifier is utilized, incorporating three primary features:
(i) the cities of the user’s friends, relative to the number of Twitter users in that city, (ii)
the number of closed triads in a user’s social network residing in the same city, and (iii)
the number of reciprocal following relationships a user has per city. A simple method
for location inference is the one proposed in the work Inferring the Location of Twitter
Messages Based on User Relationships [26]. In this work the Neighborhood Vote method
is proposed. This method makes the assumption that the location of a user is the same
as the most frequent location occurring within its friendship group. In order to correct
the limitation implicit in this model, determined by whether a user has too many or,
on the contrary, too few connections, they introduce a series of corrective parameters,
which must obviously be adjusted: (i) minimum number of connections, (ii) maximum
number of connections, (iii) minimum frequency of mentions guaranteeing the reliability
of the inferred location. The paper Toponym disambiguation in online social network
profiles [34] utilizes a social graph along with friends’ locations. It introduces LocusRank,
an algorithm designed for location inference within online social networks. LocusRank
constructs a social graph utilizing the self-reported (potentially ambiguous) locations of
a user’s friends. This method then disambiguates the target geographic location and
accurately infers the user’s likely location with a high degree of probability.
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The work [11] focuses on inferring home location for Twitter users. To solve this problem,
they proposed a Social Tie Factor Graph Model (STFGM) for inferring users’ city-level
home location using three factors: (i) following network, (ii) user-centric data and (iii) tie
strength.
In the work [38] they introduced a new concept called social trust.This social trust concept
quantifies the number of mutual friends, and by doing so it measures the closeness of two
entities. This is obviously leveraged to better infer locations.
The work [114] tries to solve the problem that some friends live apart from each other. To
solve that, they introduce the concept of landmarks: users with a lot of friends who live
in a small region, and not far from each other. On this basis they succeeded in inferring
users’ location through a model introduced by them, called Landmark Mixture model.

A possibility to improve location inference is to combine multiple methods to achieve the
best possible result. This is the strategy of the work Strategies for combining Twitter users
geo-location methods [91]. In this work the authors analyzed a bunch of the aforementioned
works [26] [7] [55] [58] [94] [23] [51]. After analyzing them, they also though that it is
possible to combine location inference through friendships with other methods that exploit
other types of information, such as text-based methods. Text-based methods use different
sources of text information to infer users’ locations. The text source can be extracted from:
(i) user self-reported location field, (ii) the description profile, (iii) Twitter user name, (iv)
tweets, and (v) a mix of the previous ones. Some works [90] [92] tried to improve accuracy
using this combination, but did not manage to accomplish that. A work that manage to
achieve better results than using the two methods individually is Text-based Twitter user
geolocation prediction [41]. In work [91] to improve the state of the art, they use [41]
and [43] text-based methods in order to actuate experimental comparisons. In [91] they
evaluate the aforementioned methods by using the following metrics:

• Recall: percentage of users that the method is able to predict a location to.

• Acc@k: percentage of users whose location was inferred within a k kilometers radius
of the real location.

• AUC-g: it calculates the distance between the real and predicted city groups, con-
sidering the distance from the center of the inferred city group to the center of the
user real group.

• AUC-c: it calculates the distance between the center of the assigned group to the
user’s real city.

• Mean: arithmetic mean of the distances between the center of the groups assigned
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to the user and the user’s real city.

The outcomes of the study reveal that FindMe, when coupled with the mentions network,
emerges as the frontrunner in terms of accuracy-related metrics, presenting the most fa-
vorable overall results. On the other hand, the Spot method, leveraging the friendship
network, showcases the highest recall performance. Nevertheless, an equilibrium between
these two metrics is not strikingly achieved by either of these methods. Interestingly,
the Neighborhood Vote approach, which takes the friendship network into account, at-
tains the most noteworthy accuracy-related outcome (AUC-c of 0.58 and AUC-g of 0.81)
and covers 90% of the data-set. On initial observation, Neighborhood Vote appears to
hold the advantage as the optimal overall technique. However, it is essential to consider
the intricacies of collecting the friendship network from social media platforms, such as
Twitter, which often entails considerable resource investment. Furthermore, the efficacy
of this approach may be compromised in scenarios where the network exhibits low den-
sity, thereby warranting careful consideration. In [91] the aforementioned methods are
compared, leading to the following observations: they have high level of disagreement in
the inferred location and they also cover very different sets of users; this opens up the
opportunity to take advantage of all these methods together. So they combine the dif-
ferent methods using two approaches: voting committees and meta-decision trees. This
is attributed to the conjecture that due to varying practices in location disclosure among
users, employing a blend of diverse techniques across distinct user metadata can poten-
tially enhance the ability to infer the location of a larger user population with heightened
precision. For voting committees the authors used tree variations:

• Majority Vote (MV): it considers as the inferred location the one attributed by the
highest number of base methods.

• Weighted Accuracy Vote (WAVe): similar to MV, but the contribution of different
base methods to the final location is allocated by using weights for each one that
are assigned according to the accuracy in the validation partition.

• Genetic Adjusted Vote (GAVe): in the same way as WAVe, it modifies the contribu-
tions of the votes of different classifiers using weights that are iteratively optimized
using a genetic algorithm.

The fourth proposed strategy is grounded in Meta Decision Trees (MTDs), which share
the structural framework of conventional decision trees but emphasize amalgamating out-
comes from diverse classifiers. Decision trees, a form of supervised learning, are deployed
for classification and regression tasks. In these trees, internal nodes encapsulate data
attribute conditions, and each leaf node corresponds to a projected class for that tree
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path. What distinguishes MTDs is that each leaf node denotes a method designated for
forecasting the location of a new user. According to their empirical findings, GAVe and
MDT strike an optimal balance between precision and recall. The result achieved using
GAVe are: coverage of 98% of the totality of users without a friendship network, and ac-
curate categorization of 61% of them in a range of 100km from their actual location. This
work is relevant because it achieved nearly complete user coverage while also enhancing
accuracy.

Figure 3.2: Meta Decision Tree example.

3.4.2. Location Inference through User Similarity

Instead of trying to localize a user from its friendship network, many work focus on
finding user who share similar moving patterns and/or habits to infer location. One way
to approach this is by analyzing co-location information. With co-location we refer to
two users appearing in the same location at the same time (or in the same time interval).
This is useful because we can extract information from users who share similar moving
patterns.

The first work that this thesis presents is Deanonymizing Mobility Traces With CoLo-
cation Information [53]; the primary focus of this study involves harnessing data from
Twitter and Swarm to execute two distinct attacks, leveraging historical location traces
for the creation of user mobility profiles. In the devised attack scenarios, the adversary
functions as an observer with access to divulged mobility traces. In the first attack, the
observer possesses information regarding a user’s location and co-location data within the
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observed temporal span. In the second attack, the adversary augments this knowledge
with access to past location traces to formulate a comprehensive user mobility profile. The
adversary’s primary objective revolves around identifying the trace that best aligns with
the provided user information across all observed traces. For the initial attack, a maxi-
mum likelihood estimator (MLE) is employed to discern the obscured mobility trace of a
user. Transitioning to the second attack, the inference problem translates into resolving
a first-order Hidden Markov model (HMM). To accomplish this, the researchers employ a
widely recognized inference algorithm termed iterative forward algorithm. Evaluation of
the first attack demonstrates an enhancement in identification accuracy when observed
locations are coupled with co-location data. In essence, a greater availability of location
(co-location) information amplifies the attacker’s likelihood of pinpointing the intended
user’s trace. Subsequent testing of the second attack reveals its effectiveness even when
solely relying on co-locations. Remarkably, the attacker can successfully identify up to
17% of users within the traces using solely mobility profiles. The efficacy of the attack
corresponds to the accuracy with which the constructed mobility profiles depict users’
movements, underscoring the interplay between profile precision and attack success.
User’s behavior habits can also be used in conjunction to other factors seen before such
as textual content, social relationships and/or user similarity to predict user’s location.
This has been done in the work Location Prediction in Social Networks [62], where they
combine the three factors just mentioned to predict user’s current locations for tweets
without any location tags. To be more specific, in this work they use 3 main factors: tex-
tual content, social relationship, and behavior habit. When examining textual content,
the researchers seek out indicators and words associated with specific locations within
tweets. Concerning social relationships, the focus isn’t solely on online friendships, but
rather on users who share a local connection determined by the similarity of their tra-
jectories, rather than explicit friendship ties. Regarding behavioral habits, the aim is to
extract patterns from historical data, such as a user’s movement between places of resi-
dence. These three factors are addressed using distinct models. To address content-based
analysis, a Convolutional Neural Network (CNN) is employed to establish the interrela-
tion between textual data and geographical locations. In the social relationship model, a
novel approach is introduced that quantifies the similarity between two users by evaluat-
ing the resemblance of their trajectory sequences (sequence of user’s check-ins). Beyond a
certain threshold, users with similar trajectories are identified, enabling the estimation of
the likelihood of their presence in a specific location. As for the behavioral habit compo-
nent, a Markov chain (utilizing the Monte Carlo method) is employed to predict a user’s
forthcoming location based on their locations. Upon evaluating experimental outcomes,
it is deduced that the content-based model is most adept at handling tweets containing
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location-specific terms. For the relationship-based model, varying thresholds for the simi-
larity parameter were tested, revealing a modest enhancement in prediction accuracy with
larger thresholds. In the behavior habit-based model, the dataset is divided into training
and testing subsets. The accuracy of this location prediction model rises proportionally
with an increase in error distance, successfully locating around 41% of predicted tweets
within a 5 km radius of their actual locations. In a bid to optimize results, a linear
combination model was tested, amalgamating the last two models. Notably, the fusion
of the relationship-based model with the behavior habit-based model nearly doubled the
prediction accuracy compared to leveraging solely the social relationship-based model. In
conclusion, while the first model excels specifically with location-related word-rich tweets,
a combination of the other two models can offer precise outcomes for other types of tweets.
In the work No place to hide: Inadvertent location privacy leaks on Twitter [95] a novel
inference technique called Jasoos is introduced. Jasoos employs a modified Naive Bayes
approach to detect common vocabularies shared among users, considering both temporal
and non-temporal aspects. Through the analysis of user sharing behavior, this method
pinpoints the geographical locations of social media users.
Studying social relation affinity and moving pattern similarity can be useful not only
to infer someone’s location, but also to predict a user trajectory (next-location predic-
tion). The work Modeling user mobility for location promotion in location-based social
networks [123] introduces a distance-based mobility model to represent user check-in be-
havior within location-based social networks (LBSNs). To optimize location promotion,
they frame it as an influence maximization problem in a LBSN. The question becomes:
given a target location and an LBSN, which initial set of k users (referred to as seeds)
should be advertised to effectively propagate and attract the majority of other users to
visit the target location? Their evaluation involves employing Gaussian-based mobility
models (GMM) and distance-based mobility models (DMM) on Gowalla and Brightkite
datasets. The comprehensive experimental findings highlight that the DMM approach
surpasses other existing methods by effectively capturing individual check-in behaviors.
In the work Social lstm: Human trajectory prediction in crowded spaces [4] the authors
propose a "Social long short-term memory network (LSTM)" designed for predicting hu-
man motion dynamics or future trajectories within densely populated areas. By using
a "social" pooling layer which shares hidden states, Social-LSTM achieves more accu-
rate trajectory predictions compared to current state-of-the-art methods on two distinct
datasets and also demonstrates the ability in jointly predicting trajectories of pedestrians
moving in groups or pairs. Another noteworthy work called Human mobility prediction
through Twitter [22] introduces a strategy called "Similarity-based next-place Prediction
from Twitter" (SimPreT) that focuses on forecasting a user’s subsequent location by uti-
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lizing historical data and a custom similarity function designed for trajectory patterns.
This technique encompasses sequential pattern mining while incorporating the Haversine
distance as the pattern similarity metric to align with the user’s ongoing trajectory. In
cases where multiple patterns score the highest similarity, the approach combines vari-
ous indicators encompassing user location regularities and patterns. The experimental
findings reveal precision of 84%, recall of 91%, and an F1-measure of 87%, showcasing
the superior performance of this method in comparison to existing state-of-the-art ap-
proaches. The authors of [33] further improved their work in the following one [19] by
differentiating word importance for different locations. Due to the limited information
provided by a single tweet, since users often go to the same places according to their
routine or external factors, the authors recur to query expansion in order to include the
user’s previous tweets as additional information. Another work is A User Location Pre-
diction Method Based on Similar Living Patterns [47]; this work addresses the challenge
of improving user’s location prediction accuracy, which is often hindered by the sparsity of
users’ check-ins. To address this issue, the authors propose a method that initially creates
vector representations of users’ living habits, allowing for clustering of users with similar
living patterns. This method focuses on three concepts: check-in points, check-in traces,
and users’ living patterns. These patterns encompass the most frequently visited types
of Points of Interest (POIs) for each time slice, prioritizing the time a user visits a POI.
To effectively capture both POI category and temporal information while measuring user
similarity, the paper adopts a representation learning approach based on Global Vectors
for Word Representation (GloVe) [76], embedding user life patterns into a common vector
space. The derived model, referred to as POI Type to Vector (PT2V), segregates the
prediction of locations into two distinct tasks: forecasting activities through POI type
embedding vectors and predicting locations using POI location embedding vectors. Real
user’s check-in data demonstrates that in various cases this approach consistently outper-
forms baseline methods.
There is a category of works that analyzes text from posts and give a central role to lo-
cations: locations are treated as pseudo-documents that encompass all tweets from users
residing in those locations. To forecast a user’s home location, the pseudo-document of
that user is compared to other pseudo-documents, and the locations sharing the most
similar pseudo-documents are identified as prediction outcomes [121]. The authors from
[108] employ a grid-based representation for locations. They construct a language model
[80] for each grid using its corresponding pseudo-documents. To enhance the probability
estimation for unseen words, they apply Good-Turing smoothing [36]. To quantify the
likeness between location and user documents, they employ the Kullback-Leibler diver-
gence. Inspired by [93], the following work by the same authors [109], utilizes adaptive
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grids. In situations requiring the reporting of geo-coordinates rather than grids, they
found that indicating the centroid of user locations within the grid offers improved accu-
racy compared to indicating the mid-points of the grid.

A list of all the works from this section and all of their differences is shown below in Table
3.2.

Work Approach Method Data Inferred
location

[7] Friendships Probabilistic method Friends’ geographical
distance

Home lo-
cation

[55] Friendships Probabilistic method Friends’ geographical
distance

Home lo-
cation

[70] Friendships Probabilistic method
with decision tree

Friends’ geographical
distance

Home lo-
cation

[59] Friendships Probabilistic method Friends’ locations
and mentioned loca-
tions

Home lo-
cation

[69] Friendships Probabilistic method Followers, mentions
and conversations

Home lo-
cation

[84] Friendships Probabilistic method Friends’ locations Home lo-
cation

[74] Friendships Bayesian network Reported co-
locations with
friends

Activity
location

[96] Friendships Dynamic Bayesian
Network

Friends’ location se-
quences

Activity
location

[75] Friendships Bayesian hidden
location inference
model and a multi-
factor fusion based
hidden location in-
ference model

Friends’ similarity Activity
location

[58] Friendships Supervised version of
Latent Dirichlet Al-
location

Multiple home loca-
tions

Home lo-
cation
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Work Approach Method Data Inferred
location

[10] Friendships Artificial neural net-
work

Multiple explicit and
implicit positions of
friends

Home lo-
cation

[72] Friendships Neural network
model

Mentions network
and text

Home lo-
cation

[101] Friendships Distance Vector,
Randomized Span-
ning Trees, Recursive
Subgraph Matching
heuristics

Anonymized mobil-
ity traces

Activity
location

[49] Friendships Distance Vector,
Randomized Span-
ning Trees, Recursive
Subgraph Matching
heuristics

Anonymized mobil-
ity traces

Activity
location

[51] Friendships LP algorithm Geometric median
of location of user’s
neighbors

Home lo-
cation

[23] Friendships LP algorithm Geometric median
of location of user’s
neighbors with
weights

Home lo-
cation

[113] Friendships LP algorithm Geo-related content
of friends

Home lo-
cation

[39] Friendships LP algorithm Co-locations with
friends

Activity
location

[104] Friendships LP algorithm and
representation learn-
ing

Mentions in user-
generated texts

Home lo-
cation

[86] Friendships LP algorithm and
text-based methods

Mentions network
and text

Home lo-
cation

[85] Friendships LP algorithm Mentions network Home lo-
cation
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Work Approach Method Data Inferred
location

[26] Friendships Majority Vote Friends’ locations Activity
location

[34] Friendships LocusRank algo-
rithm

Friends’ self reported
locations

Home lo-
cation

[94] Friendships SVM Number of friends
per city

Home lo-
cation

[11] Friendships Social Tie Factor
Graph Model

Following network
from Twitter

Home lo-
cation

[38] Friendships Influence model and
global iteration algo-
rithm

Number of common
friends

Home lo-
cation

[114] Friendships Landmark Mixture
Model

Friends that live
close to the user

Home lo-
cation

[91] Friendships Mix of more methods
using voting com-
mittees and decision
trees

Output of other
methods

Home lo-
cation

[53] User similarity Maximum likelihood
estimator and Hid-
den Markov model

Co-locations and
published mobility
traces

Activity
location

[62] User similarity Convolutional Neu-
ral Network, Markov
chain based on
Monte Carlo

Textual content, be-
havior habits, simi-
larity between user’s
trajectories

Activity
location

[95] User similarity Naive Bayes Shared vocabularies
between users

Activity
location

[123] User similarity Gaussian-based mo-
bility model

user’s check-ins from
LBSN

Next lo-
cation

[4] User similarity Social long short-
term memory net-
work

Individual or group
trajectories

Next lo-
cation

[22] User similarity Similarity function Trajectory patterns Next lo-
cation
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Work Approach Method Data Inferred
location

[47] User similarity Representation
learning

user’s check-ins Next lo-
cation

[19] User similarity Collaborative filter-
ing

Mobility behavior of
users

Activity
location

[108] User similarity Pseudo-documents Tweets from users Home lo-
cation

[109] User similarity Pseudo-documents Tweets from users Home lo-
cation

Table 3.2: Works regarding Localization through Social Network
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4| Friendship Inference through

Location Data

In this thesis the problem of inferring social relationships by exploiting location data from
social media is introduced. This problem is relevant to location inference because it tries
to solve the exact opposite problem: in location inference we can exploit friends’ data to
infer location more accurately, in friendship inference we can exploit location data to dis-
cover users’ relationships. Friendships inherently reflect social interactions and patterns,
which have a significant impact on individuals’ movement and activities. When users’
friendships are taken into account, it can enhance the precision of location predictions
by leveraging shared patterns and locations among friends. In fact, addressing friendship
inference through location data enriches the understanding of how social relationships can
contribute to enhancing the accuracy and efficacy of location predictions. This section is
divided in three parts: section 4.1 covers methods that use check-in data to infer friend-
ships; section 4.2 covers methods that exploit trajectories to infer friendships; section 4.3
covers methods that use multiple sources including location data.

4.1. Friendship Inference through Check-Ins

Approaches grounded in check-in location data emphasize individual check-in points
rather than sequences or trajectories. These methods discern users’ inclinations or pat-
terns in the real world through their recorded check-in locations or areas [107].

In study [46], it was observed that around 30% of new connections emerged among users
who shared common places they visited. As a result, several investigations evaluated users’
proximity by extracting co-location attributes, encompassing factors like co-location fre-
quency, proximity of significant locations, and the likelihood of co-location. In another
study [105], the researcher introduces a range of check-in location attributes, including
GeoDist and check-in observations, and then conducts a comparative analysis of their
predictive efficacy. To harness diverse information sources, multiple researches effort to
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amalgamate online and offline attributes, subsequently evaluating user similarities through
the definition of multiple features. In a separate study [25], a trio of network types were
established: social network, co-location network, and co-located friend networks. Within
each network, approximately 67 attributes were defined across five categories to delineate
distinct characteristics. Furthermore, numerous user-generated contents, such as posts
related to Points of Interest (POIs), also proliferated in Location-Based Social Networks
(LBSNs). To predict social relations, the paper titled vec2Link: Unifying heterogeneous
data for social link prediction [122] integrated offline check-in behavior and users’ online
behavior. The vec2link framework employees a neural network for embedding user social
relation and uses a location sensitive hash for efficient convolutional network learning. The
study Inferring social ties from geographic coincidences [24], employs geographic coordi-
nates of users in a social network to infer social relationships via a co-occurrence model.
Mobility intention-based relationship inference from spatiotemporal data [115] introduced
the MIRI model, inferring friend relationships through mobility intention dyads as fea-
tures. This model leveraged spatiotemporal data to enhance relationship inference. The
scope of this paper is to solve the following problem: in spatiotemporal datasets generated
by IOT devices in public locations, it’s difficult to distinguish co-locations between friends
and strangers. The work Exploiting place features in link prediction on location-based so-
cial networks [98] created a social graph based on users who visited the same locations,
forming a supervised learning model. Their findings indicated that approximately 30%
of new social links are established among users who frequent the same places, termed as
"place-friends" in the study. The primary objective of this study is to uncover potential
future connections among users.
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Figure 4.1: Co-locations between friends example.

4.2. Friendship Inference through Trajectories

While the incorporation of check-in location data indeed enhances the precision of friend-
ship prediction, certain constraints remain evident. Firstly, the method may yield inac-
curate estimations of actual social strength for friends who infrequently share locations
or for unrelated individuals who frequently coincide at the same places. Secondly, these
investigations overlook the dynamics of users’ overall trajectory patterns as they shift in
response to different lifestyles. Hence, in contemporary times, trajectory similarity has
been harnessed for the scrutiny of user mobility homophily. Associated techniques delve
into the underlying trajectory patterns within user trajectories, transcending mere geo-
positions, to explore and evaluate the likeness in mobility among users. This notion is
rooted in the belief that trajectory sequences mirror users’ distinctive "lifestyles", thereby
fostering connections between individuals who share similar "lifestyles" [107].

In the study outlined in [116], the researchers utilizes the tags corresponding to landmarks
that users traversed as semantic labels for their trajectories. This approach resulted in
a trajectory representation such as "school → park → restaurant", forming a semantic
sequence. Subsequently, they extracted the most significant semantic trajectory pattern
from each user’s trajectory, employing it to quantify the likeness between trajectories. In
a separate study, detailed in [112], the authors transformed each stay region into a distinct
feature vector and organized these stay points into distinct categories, each endowed with
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a distinct semantic implication. These categories collectively formed a semantic location
history (SLH), wherein user trajectories were encoded. Finally, SLH permits to measure
user similarity. As a supplementary method to trajectory similarity based methods that
can be used to improve friendship inference is topic-based methods. This because they
can extract location semantics and users’ preferences. In [119], the researchers introduces
a probabilistic generative model, which facilitates the discovery of patterns determined
by lifestyle within users’ trajectories. This model encompasses a series of features: (i)
users’ preferences, (ii) interdependence between diverse locations, (iii) service duration,
(iv) users’ lifestyle. The research presented in Inferring online social ties from offline
geographical activities [45] introduced the O2O-Inf framework, which capitalizes on users’
offline geographical activities such as check-in records and meetings to infer online social
relationships. The researchers devised a linkage graph to illustrate relationships between
nodes and utilized a graph-based SSL method. This iterative process computes the prob-
ability of nodes becoming friends by taking into account adjacent nodes within the linkage
graph. In walk2friends: Inferring social links from mobility profiles [6], the authors trans-
ferred a method based on deep learning for inferring user’s location, to the inference of so-
cial relationships. Random walk traces in users’ location graph represents their neighbors,
and similarity measurements between users help in predicting social connections. Graph
convolutional networks on user mobility heterogeneous graphs for social relationship infer-
ence [111] harnesses a graph convolutional network (GCN) to construct a heterogeneous
mobility graph with an unsupervised method that analyzes human trajectories. In order
to infer social relationships, this graph covers a series of features: (i) user-user meeting,
(ii) social graph, (iii) user-location bipartite, (iv) location-location co-occurrence graphs.
CIFEF: Combining implicit and explicit features for friendship inference in location-based
social networks [42] focuses on learning track features from check-in sequences, proposing
the CIFEF method. This approach combines implicit features from weekdays’ and week-
ends’ trajectory patterns with a new explicit feature based on shared locations, effectively
inferring friendships even between users with minimal co-occurrence.
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Figure 4.2: Trajectory example of two students that are friends.

4.3. Friendship Inference through Multiple Sources

Including Location Data

As exemplified many times in the location inference section, location information can be
used in conjunction with other information sources such as published images, tags etc. to
better infer social relationships. This mix of different sources and types of information
can often yield to better results.

The authors from [120] introduced a two-stage deep learning framework, known as TDFI,
designed for friendship inference. This framework employs an extended adjacency matrix
(EAM) to capture diverse information from multiple sources. Utilizing the enhanced
deep Siamese network IDSN, the fusion features’ similarity is measured to determine
users’ friendships. In another study, [63] the authors proposed an inference model that
combines random forest, SVM, and naive Bayes techniques to infer friendships. Relating
to location-based social networks, this fusion of multi-source data encompasses different
features: (i) user social topology, (ii) location categories, (iii) check-in locations. The work
[89] employees long-term multimodal information to deduce social relationships. This
approach integrates various sources, including images, tags, titles, geographic locations,
and established friendships, to enhance the accuracy of friendship inference. EBM: An
entropy-based model to infer social strength from spatiotemporal data [78] proposed an
entropy-based model using spatial-temporal data to infer social connections based on
diversity and weighted frequency. Other than inferring social connections, this paper also
infers the strength of social relationships by analyzing people’s co-locations in space and
time. This work highlights the efficacy of merging location-based data with other data
types such as temporal data and social attributes to deduce social connections.
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5| Discussion and Open Research

Questions

This chapter will provide observations about the current state of the art, what its current
limitations are, and which research questions remain open. The observations made are
divided in two sections to distinguish between the state of the art regarding location
privacy protection and regarding location inference.

Regarding location privacy, this thesis analyzed the two privacy models: k-anonymity and
geo-indistinguishability. These two models are the main guidelines that social media and
location services providers follow when trying to protect users privacy, but they are not
bullet-proof and each of them has their own limitations. K-anonymity does not defend
against background knowledge attacks. If attackers have access to external information
or auxiliary data sources, they may be able to de-anonymize individuals in the dataset by
matching it with external data, potentially revealing sensitive information. For this rea-
son, mixing different types of data to infer locations is very effective against k-anonymity.
When it comes to geo-indistinguishability, instead, its main limitation is the excessive
decrease in data utility when applied. Typically, to achieve geo-indistinguishability, the
common approach is to use perturbation-based mechanisms, which introduce noise, this
results in a utility loss when it comes to the data in question. Having made these two ob-
servations, an open research direction is to invest more efforts and researches into hiding
correlations between location data and temporal data; the reason behind this observation
is that a lot of information is derived from spatio-temporal data and not only from loca-
tion data. For example, it is possible to tell weather a bar is visited during work breaks or
during evenings by the temporal aspect, and this can be used to infer information about
users such as workplaces and so on. This research direction should improve the current
state of the art in two ways: hiding does not decrease utility of the data as aggressively
as perturbation-based techniques do, especially when hiding links between location data
and temporal data; furthermore, this would also overcome the previously mentioned lim-
itation of k-anonymity, since we are removing additional information from location data.
Additionally, putting more focus on to contextual anonymization is an open question in
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the location privacy field: developing methods to anonymize location data (for example
by suppresing or sampling) in conjunction with contextual information would provide use-
ful but privacy-preserving insights. Additionaly, data can be aggregated with contextual
attributes: that is to group location data based on the identified contextual attributes; for
example, by aggregating location data by time intervals or venue categories. Improving
data utility while preserving location privacy remains an open research question. Improv-
ing utility can be achieved by utilizing local differential privacy: it consists in adding noise
to individual data points before aggregation. This can enhance privacy without sacrificing
too much utility. Another observation can be made from the following fact: one of the
most common approaches to infer location using social relationships is label propagation.
Since the Label Propagation algorithm focuses on analyzing graph data, LPPMs focused
on graph data and their effectiveness against the LP algorithm should be further inves-
tigated, to counter this type of location inference. There is place for more investigation
on this specific subject. Techniques such as random edge deletion (hiding), random edge
addition and random edge switching need to be tweaked to increase privacy protection
against LP algorithm attacks. Since the LP algorithm is non deterministic, increasing
privacy protection on graph data should make the optimization of the LP algorithm more
difficult. This because there would be more cases where it is not certain which label an
entity in the graph should receive. The degree of privacy protection achieved against LP
algorithm attacks in relation to the number of altered edges and the loss of data utility
is an open question for research.

Moving on to the subject of location inference attacks, from the research conducted in
this thesis, a common trend that can be noticed is the fact the researchers mention only
the social media that the data came from, but don’t make any comments about which
LPPMs were implemented in that specific data-set. The most common observation that
researchers do when inferring location is the sparsity of geo-tagged posts, or the noise
in self-reported locations. This gives an interesting perspective, because it shows the
scenario where an attacker has no knowledge regarding the protection mechanisms used.
That said, it would benefit the research in the state of the art if more focus is put on the
correlations between the LPPMs and the location inference techniques, from the perspec-
tive of location inference researchers. There are too few papers that analyze this subject
in the works specifically devoted to location inference, at the moment. Also another cur-
rently open research question that can benefit from further research is the use of deep
learning methods (artificial neural networks etc.) This research direction has been already
explored by various works, but it is very likely that it will be pursued more and more.
Deep learning should be more and more dominant in location inference approaches for



5| Discussion and Open Research Questions 57

its capacity of extracting features from raw data. Moreover, deep learning models inher-
ently learn meaningful representations of data, which can be valuable for understanding
underlying patterns and relationships. Another reason is their scalability: Deep learning
models can scale with the availability of more data and computational resources. This
scalability allows them to handle large datasets and complex problems effectively. Par-
ticular relevance has the fact that deep learning models can handle large datasets: with
the continuous rising of social media usage, datasets will only increase in dimensions.
In particular, graph neural networks are particularly useful for location inference when
considering the friendship network, because they can capture the complex relationships
between users trough graphs. Another open research question is the use of data from mul-
tiple social media to better improve location inference. Using data from different social
media will solve in part the problem of sparse data (one of the major obstacles in location
inference): by including different sources, the number of information can be significantly
increased, with the cost of a significant increase in computational complexity. The addi-
tional data sources would make the rise in computational complexity worth it; this could
permit to study how users’ behavior and relationships differ across various social media
platforms. Developing techniques that can generalize across platforms would be valu-
able. Another open research direction is to take inspiration from the approach presented
in [91], where different methods were combined using voting systems and meta decision
trees. This approach can be further extended by adding different ways of combining and
choosing results from different methods; for example, averaging results can be used in
cases where different methods achieve different results for the same user and, for cases
where methods cover different sets of data (or some are better than others for certain sets
of users), other types of decision support systems and/or ensemble methods can be further
investigated. Another interesting open research direction is mobile and IoT integration:
that is to incorporate data from mobile devices and the Internet of Things (IoT) into
location inference models to create a more comprehensive view of users’ locations. This
integration will benefit location inference by providing more location data from mobile
devices in real time. This could also be used for real time location inference; this could
be useful for emergency response or location-based marketing. Incorporating multi-modal
data remain an open research question: exploring how other types of data, such as images,
audio, or video shared within social networks, can enhance location inference. Integrat-
ing multi-modal data could provide richer context for understanding users’ behavior. In
particular, the effectiveness of computer vision technologies to extract location informa-
tion from images and videos shared on social media platforms is an interesting research
direction. Lastly, using contextualized and advanced language models such as GPT-3 or
similar could help to extract location-related information from textual data. Since these
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language models are very recent and still under improvement, their potential for location
inference remains an open research question.
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6| Conclusions

This work focused on various subjects regarding location privacy. While the scope of this
thesis was to give a complete overview about the state of the art regarding location infer-
ence through friendships, in order to give a more complete and broader description of the
subject, this survey also covered the various aspect related to location data and location
privacy. To achieve this, it also analyzed the topic of location privacy protection mech-
anisms, location inference in general, and friendship inference using location data from
social media. In Chapter 1, this work covered works that focused on the same or similar
subjects covered in this thesis. This by describing their focuses, achievements, and differ-
ences from this survey. Then, in Chapter 2, this work covered the topic about location
privacy preserving mechanisms, highlighting their characteristics, how they work, how
to evaluate them, and how effective they are. This chapter preceded the chapter about
location inference in order to give the reader a general understanding of the protection
mechanisms that the location inference attacks analyzed in the following chapters have
to deal with. Chapter 3 analyzed the topic of location inference, dividing the examined
works in three categories based on the type of location inferred: home location, activ-
ity location and next location. Then, Chapter 3 covered the topic of inferring location
through users’ social network (users’ relationships such as friends, and people surrounding
them), by differentiating methods that use data from friends from methods that exploit
similarity between users’ behaviors. In Chapter 4, the subject of inferring friendships
using location data was briefly covered. This was to highlight the opposite side of the
problem covered in Chapter 3 (location inference through friends’ social media). Then,
Chapter 5 presented observations and open research questions.
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